WO2024024427A1 - Method for determining outer membrane detachment in cyanobacterium, device for determining outer membrane detachment in cyanobacterium, and program - Google Patents
Method for determining outer membrane detachment in cyanobacterium, device for determining outer membrane detachment in cyanobacterium, and program Download PDFInfo
- Publication number
- WO2024024427A1 WO2024024427A1 PCT/JP2023/024903 JP2023024903W WO2024024427A1 WO 2024024427 A1 WO2024024427 A1 WO 2024024427A1 JP 2023024903 W JP2023024903 W JP 2023024903W WO 2024024427 A1 WO2024024427 A1 WO 2024024427A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- outer membrane
- cyanobacteria
- cell wall
- protein
- cyanobacterium
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 214
- 238000000034 method Methods 0.000 title claims abstract description 75
- 241001464430 Cyanobacterium Species 0.000 title claims abstract description 69
- 210000002421 cell wall Anatomy 0.000 claims abstract description 127
- 150000001413 amino acids Chemical class 0.000 claims abstract description 86
- 229940024606 amino acid Drugs 0.000 claims abstract description 70
- 239000012228 culture supernatant Substances 0.000 claims abstract description 53
- 238000005259 measurement Methods 0.000 claims abstract description 26
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims abstract description 20
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims abstract description 20
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims abstract description 20
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims abstract description 20
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229960000310 isoleucine Drugs 0.000 claims abstract description 20
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims abstract description 20
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims abstract description 20
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 claims abstract description 20
- 241000192700 Cyanobacteria Species 0.000 claims description 249
- 229960003136 leucine Drugs 0.000 claims description 2
- 229960005190 phenylalanine Drugs 0.000 claims description 2
- 229960004441 tyrosine Drugs 0.000 claims description 2
- 108090000623 proteins and genes Proteins 0.000 description 324
- 102000004169 proteins and genes Human genes 0.000 description 212
- 235000018102 proteins Nutrition 0.000 description 211
- 210000004379 membrane Anatomy 0.000 description 193
- 210000004027 cell Anatomy 0.000 description 135
- 101150042050 Slh gene Proteins 0.000 description 59
- 230000006870 function Effects 0.000 description 57
- 108090000790 Enzymes Proteins 0.000 description 56
- 102000004190 Enzymes Human genes 0.000 description 56
- 235000001014 amino acid Nutrition 0.000 description 56
- 229940076788 pyruvate Drugs 0.000 description 48
- 238000004519 manufacturing process Methods 0.000 description 47
- 101001000653 Chlamydia pneumoniae Probable outer membrane protein pmp1 Proteins 0.000 description 38
- 239000000126 substance Substances 0.000 description 37
- 230000001580 bacterial effect Effects 0.000 description 36
- 239000000243 solution Substances 0.000 description 30
- 230000014509 gene expression Effects 0.000 description 28
- 241000192581 Synechocystis sp. Species 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 19
- 241000192584 Synechocystis Species 0.000 description 17
- 210000001322 periplasm Anatomy 0.000 description 16
- 230000000243 photosynthetic effect Effects 0.000 description 16
- 230000028327 secretion Effects 0.000 description 16
- 239000012634 fragment Substances 0.000 description 14
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 14
- 230000002829 reductive effect Effects 0.000 description 14
- 244000005700 microbiome Species 0.000 description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical group CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 12
- 239000013612 plasmid Substances 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- 239000013611 chromosomal DNA Substances 0.000 description 11
- 101710116435 Outer membrane protein Proteins 0.000 description 10
- 241000894007 species Species 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000003752 polymerase chain reaction Methods 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 238000003917 TEM image Methods 0.000 description 8
- 238000012258 culturing Methods 0.000 description 8
- 108090000765 processed proteins & peptides Proteins 0.000 description 8
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 7
- 108010013639 Peptidoglycan Proteins 0.000 description 7
- 210000000170 cell membrane Anatomy 0.000 description 7
- 101150093858 psbA1 gene Proteins 0.000 description 7
- 239000002344 surface layer Substances 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 230000014616 translation Effects 0.000 description 7
- 108091006146 Channels Proteins 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 241000192560 Synechococcus sp. Species 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 229940107700 pyruvic acid Drugs 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 230000001629 suppression Effects 0.000 description 6
- 241000192542 Anabaena Species 0.000 description 5
- 241000195493 Cryptophyta Species 0.000 description 5
- 241000192707 Synechococcus Species 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 241000192685 Calothrix Species 0.000 description 4
- 102000034573 Channels Human genes 0.000 description 4
- 241000065719 Crocosphaera Species 0.000 description 4
- 241000192701 Microcystis Species 0.000 description 4
- 241000192656 Nostoc Species 0.000 description 4
- 101100245405 Parasynechococcus marenigrum (strain WH8102) psbA2 gene Proteins 0.000 description 4
- 241000179979 Pleurocapsa Species 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 210000000805 cytoplasm Anatomy 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 229930027917 kanamycin Natural products 0.000 description 4
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 4
- 229960000318 kanamycin Drugs 0.000 description 4
- 229930182823 kanamycin A Natural products 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 235000015097 nutrients Nutrition 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 239000013076 target substance Substances 0.000 description 4
- 230000002103 transcriptional effect Effects 0.000 description 4
- FCSSPCOFDUKHPV-UHFFFAOYSA-N 2-Propenyl propyl disulfide Chemical compound CCCSSCC=C FCSSPCOFDUKHPV-UHFFFAOYSA-N 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 241000192537 Anabaena cylindrica Species 0.000 description 3
- 108091033409 CRISPR Proteins 0.000 description 3
- 241000159506 Cyanothece Species 0.000 description 3
- 108090000862 Ion Channels Proteins 0.000 description 3
- 102000004310 Ion Channels Human genes 0.000 description 3
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 3
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 210000003763 chloroplast Anatomy 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000004299 exfoliation Methods 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 230000000415 inactivating effect Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910001410 inorganic ion Inorganic materials 0.000 description 3
- PGLTVOMIXTUURA-UHFFFAOYSA-N iodoacetamide Chemical compound NC(=O)CI PGLTVOMIXTUURA-UHFFFAOYSA-N 0.000 description 3
- 238000004811 liquid chromatography Methods 0.000 description 3
- 238000006011 modification reaction Methods 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 230000029553 photosynthesis Effects 0.000 description 3
- 238000010672 photosynthesis Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229920002477 rna polymer Polymers 0.000 description 3
- 230000003248 secreting effect Effects 0.000 description 3
- BTURAGWYSMTVOW-UHFFFAOYSA-M sodium dodecanoate Chemical compound [Na+].CCCCCCCCCCCC([O-])=O BTURAGWYSMTVOW-UHFFFAOYSA-M 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- 241000192531 Anabaena sp. Species 0.000 description 2
- 235000016425 Arthrospira platensis Nutrition 0.000 description 2
- 240000002900 Arthrospira platensis Species 0.000 description 2
- 238000010446 CRISPR interference Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 210000000712 G cell Anatomy 0.000 description 2
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 2
- 241000215457 Leptolyngbya Species 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 241001453296 Synechococcus elongatus Species 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000002869 basic local alignment search tool Methods 0.000 description 2
- AFYNADDZULBEJA-UHFFFAOYSA-N bicinchoninic acid Chemical compound C1=CC=CC2=NC(C=3C=C(C4=CC=CC=C4N=3)C(=O)O)=CC(C(O)=O)=C21 AFYNADDZULBEJA-UHFFFAOYSA-N 0.000 description 2
- 238000012742 biochemical analysis Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000012531 culture fluid Substances 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000001493 electron microscopy Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 229940126578 oral vaccine Drugs 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000002708 random mutagenesis Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 2
- 229960000268 spectinomycin Drugs 0.000 description 2
- 229940082787 spirulina Drugs 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- MSWZFWKMSRAUBD-CBPJZXOFSA-N 2-amino-2-deoxy-D-mannopyranose Chemical compound N[C@@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-CBPJZXOFSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 101001000626 Chlamydia pneumoniae Probable outer membrane protein pmp2 Proteins 0.000 description 1
- 241000195597 Chlamydomonas reinhardtii Species 0.000 description 1
- 206010008631 Cholera Diseases 0.000 description 1
- 102000009016 Cholera Toxin Human genes 0.000 description 1
- 108010049048 Cholera Toxin Proteins 0.000 description 1
- YAHZABJORDUQGO-NQXXGFSBSA-N D-ribulose 1,5-bisphosphate Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)C(=O)COP(O)(O)=O YAHZABJORDUQGO-NQXXGFSBSA-N 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 241001464795 Gloeobacter violaceus Species 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 241000192710 Microcystis aeruginosa Species 0.000 description 1
- 241000909283 Negativicutes Species 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 108010010522 Phycobilisomes Proteins 0.000 description 1
- 241000223960 Plasmodium falciparum Species 0.000 description 1
- 101000983333 Plasmodium falciparum (isolate NF54) 25 kDa ookinete surface antigen Proteins 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 101100408844 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) oprB gene Proteins 0.000 description 1
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 1
- 241000192589 Synechococcus elongatus PCC 7942 Species 0.000 description 1
- 241000192593 Synechocystis sp. PCC 6803 Species 0.000 description 1
- 241001313706 Thermosynechococcus Species 0.000 description 1
- 241001313699 Thermosynechococcus elongatus Species 0.000 description 1
- 241001504076 Thermosynechococcus elongatus BP-1 Species 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- ABUBSBSOTTXVPV-UHFFFAOYSA-H [U+6].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O Chemical compound [U+6].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O ABUBSBSOTTXVPV-UHFFFAOYSA-H 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- HOQPTLCRWVZIQZ-UHFFFAOYSA-H bis[[2-(5-hydroxy-4,7-dioxo-1,3,2$l^{2}-dioxaplumbepan-5-yl)acetyl]oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HOQPTLCRWVZIQZ-UHFFFAOYSA-H 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 210000000692 cap cell Anatomy 0.000 description 1
- 238000007623 carbamidomethylation reaction Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- YPHMISFOHDHNIV-FSZOTQKASA-N cycloheximide Chemical compound C1[C@@H](C)C[C@H](C)C(=O)[C@@H]1[C@H](O)CC1CC(=O)NC(=O)C1 YPHMISFOHDHNIV-FSZOTQKASA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 238000012269 metabolic engineering Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 210000002306 phycobilisome Anatomy 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- OFVLGDICTFRJMM-WESIUVDSSA-N tetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O OFVLGDICTFRJMM-WESIUVDSSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000002377 thylakoid Anatomy 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/34—Measuring or testing with condition measuring or sensing means, e.g. colony counters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/12—Unicellular algae; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
Definitions
- the present disclosure relates to a method for determining outer membrane detachment of cyanobacteria, an apparatus for determining outer membrane detachment of cyanobacteria, and a program.
- Photosynthetic microorganisms such as cyanobacteria and algae are attracting attention as tools for realizing next-generation material production systems with low environmental impact. Substance production by photosynthetic microorganisms is carried out in an environment of normal temperature and pressure, using water and carbon dioxide (CO 2 ) in the air with light as an energy source. Furthermore, with the recent development of genetic engineering technology, it has become possible to produce a wide range of chemical compounds using genetically modified photosynthetic microorganisms.Therefore, substance production using photosynthetic microorganisms is expected to be a next-generation technology that can achieve carbon neutrality. has been done.
- the present disclosure provides a method for determining whether or not the outer membrane of cyanobacteria has peeled off from the cell wall, in which it is possible to easily determine whether or not the outer membrane has peeled off from the cell wall, as the state of the cyanobacteria cells is suitable for efficient substance production.
- a determination method a determination device for outer membrane detachment of cyanobacteria, and a program.
- a method for determining outer membrane detachment of cyanobacteria includes measuring the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of cyanobacteria.
- the method includes a measuring step, and a determining step of determining whether the outer membrane of the cyanobacterium has peeled off from the cell wall based on the concentration of the at least one amino acid measured in the measuring step.
- the apparatus for determining outer membrane detachment of cyanobacteria determines the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of cyanobacteria.
- the method includes a measuring section that performs measurement, and a determining section that determines whether or not the outer membrane of the cyanobacteria is peeled from the cell wall based on the concentration of the at least one amino acid measured by the measuring section.
- the program according to one aspect of the present disclosure is configured to determine whether the cyanobacterium is out of the cyanobacteria based on the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of the cyanobacteria.
- This is a program that causes a computer to execute a method for determining whether or not a membrane has detached from a cell wall.
- the apparatus for determining outer membrane detachment of cyanobacteria According to the method for determining outer membrane detachment of cyanobacteria, the apparatus for determining outer membrane detachment of cyanobacteria, and the program of the present disclosure, it is possible to easily determine whether the outer membrane of cyanobacteria has detached from the cell wall. Can be done.
- FIG. 1 is a block diagram showing an example of the functional configuration of a cyanobacterial outer membrane exfoliation determination apparatus according to an embodiment.
- FIG. 2A is a flowchart illustrating an example of a flow of a method for determining outer membrane detachment of cyanobacteria according to an embodiment.
- FIG. 2B is a flowchart showing the detailed flow of step S02 in FIG. 2A.
- FIG. 3 is a diagram schematically showing the cell surface layer of cyanobacteria.
- FIG. 4 is a transmission electron microscopy image of an ultrathin section of the modified cyanobacteria of Example 1.
- FIG. 5 is an enlarged image of the broken line area A in FIG. FIG.
- FIG. 6 is a transmission electron microscope image of an ultrathin section of the modified cyanobacteria of Example 2.
- FIG. 7 is an enlarged image of the broken line area B in FIG.
- FIG. 8 is a transmission electron microscope image of an ultrathin section of the modified cyanobacteria of Comparative Example 1.
- FIG. 9 is an enlarged view of the broken line area C in FIG.
- FIG. 11 is a diagram showing the results of amino acid analysis by LC-MS/MS of culture supernatants of two types of cyanobacteria.
- FIG. 12 shows SEQ ID NO: 1 to SEQ ID NO: 3.
- FIG. 13 shows SEQ ID NO: 4 to SEQ ID NO: 6.
- FIG. 14 shows SEQ ID NO:7.
- FIG. 15 shows SEQ ID NO:8.
- FIG. 16 shows SEQ ID NO:9.
- FIG. 17 shows SEQ ID NO: 10.
- FIG. 18 shows SEQ ID NO: 11.
- FIG. 19 shows SEQ ID NO: 12 to SEQ ID NO: 18.
- FIG. 20 shows SEQ ID NO: 19 to SEQ ID NO: 22.
- Cyanobacteria also called cyanobacteria or blue-green algae
- Cyanobacteria are a group of eubacteria that decompose water through photosynthesis to produce oxygen, and use the energy obtained to fix CO2 in the air.
- cyanobacteria can also fix nitrogen (N 2 ) in the air.
- N 2 nitrogen
- cyanobacteria are known to grow quickly and have high light utilization efficiency, and in addition, they are easier to genetically manipulate than other algae species. Active research and development is underway.
- examples of substance production by cyanobacteria include sucrose (Non-Patent Document 1), isobutanol (Non-Patent Document 2), fatty acids (Non-Patent Document 3), Production of amino acids (Non-Patent Document 4), proteins (Non-Patent Document 5), etc. has been reported.
- Non-Patent Document 1 discloses that a genetically modified strain of Synechococcus elongatus in which genes involved in the sucrose biosynthesis pathway have been modified has improved sucrose productivity compared to the wild strain.
- Non-Patent Document 2 describes the production of isobutanol using a genetically modified strain that overexpresses ribulose-1,5-bisphosphate carboxylase/oxidase (Rubisco), which was created by genetically engineering Synechococcus elongatus PCC7942. It has been disclosed that the sex of the strain was improved over that of the wild strain.
- Rubisco ribulose-1,5-bisphosphate carboxylase/oxidase
- Non-Patent Document 3 discloses that a genetically modified strain of Synechocystis sp. PCC6803 in which an acyl-acyl transport protein thioesterase gene has been introduced has improved fatty acid productivity compared to the wild strain.
- Non-Patent Document 4 describes that the tryptophan productivity of a tryptophan overproducing strain isolated by subjecting the wild strain of Synechocystis sp. PCC 6803 to random mutagenesis and selection using amino acids itself It has been disclosed that this has been improved.
- Non-Patent Document 5 the chloroplast of Chlamydomonas reinhardtii, a type of algae, was genetically engineered to produce a chimeric protein consisting of a 25 kDa Plasmodium falciparum surface protein (Pfs25) fused to the ⁇ subunit of cholera toxin (CtxB). It has been disclosed that genetically modified algae that produce (CtxB-Pfs25) in cells can be used as an oral vaccine for malaria.
- Pfs25 Plasmodium falciparum surface protein fused to the ⁇ subunit of cholera toxin
- the target substance is produced within the cells of the genetically modified strain of the photosynthetic microorganism, it accumulates without being secreted outside the cell, or it is difficult to secrete it effectively outside the cell. It is necessary to collect the desired substance by crushing the cells, which takes time and effort to produce the substance. Furthermore, since various substances exist within cells, it may be necessary to remove these substances and purify the target substance, which lowers the recovery rate of the target substance. Furthermore, each time a target substance is produced, it is necessary to prepare a new genetically modified strain, which is time-consuming and increases production costs. As described above, in the conventional techniques described above, the production efficiency of substances by photosynthetic microorganisms is still at a low level, and there is a desire to develop a technique with higher production efficiency.
- the structure of the cell wall and cell membrane of cyanobacteria has low permeability to substances produced within the cell, and it is not easy to artificially modify the structure of the cell membrane and cell wall to improve the ability to secrete and produce substances.
- substances with large molecular weights such as proteins (also referred to as high molecular weight compounds) are difficult to secrete outside cells, unlike substances with relatively small molecular weights such as amino acids (also referred to as low molecular weight compounds).
- Non-Patent Document 6 Hikaru Kobata, Studies on molecular basis of cyanobacterial outer membrane function and its evolutionary relationship with primitive chloroplasts, PhD thesis, [Online], 2018.03.27, Internet: ⁇ URL: http://hdl .handle.net/10097/00122689>
- Non-Patent Document 7 Seiji Kojima, Elucidation and application of membrane stabilization and substance permeation mechanisms derived from bacteria that function in the chloroplast surface membrane, Grants-in-Aid for Scientific Research, [Online] , 2018.04.23, Internet: ⁇ URL: https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H02117>).
- Patent Document 1 describes a modified cyanobacterium in which the function of a protein involved in binding between the outer membrane of cyanobacteria and the cell wall (hereinafter also referred to as binding-related protein) is suppressed or lost, and A method for producing proteins using modified cyanobacteria is disclosed.
- the outer membrane of the cyanobacterium is peeled off from the cell wall while the modified cyanobacterium maintains its ability to proliferate.
- the resulting protein is secreted to the outside of the cell, allowing for efficient protein production.
- the present inventors have intensively investigated a method for easily determining whether or not the outer membrane has peeled off from the cell wall, assuming that the state of the cyanobacterial cells is suitable for efficient substance production. As a result, they found that it is possible to easily determine whether the outer membrane of cyanobacteria has detached from the cell wall based on the concentration of a specific amino acid in the culture supernatant of cyanobacteria. Therefore, according to the present disclosure, it is possible to determine whether or not cyanobacteria are suitable for efficient substance production, and thus it is possible to improve the productivity of substances by cyanobacteria.
- a method for determining outer membrane detachment of cyanobacteria includes measuring the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of cyanobacteria.
- the method includes a measuring step, and a determining step of determining whether the outer membrane of the cyanobacterium has peeled off from the cell wall based on the concentration of the at least one amino acid measured in the measuring step.
- the method for determining outer membrane detachment of cyanobacteria involves collecting the culture supernatant of cyanobacteria and measuring the concentration of at least one amino acid selected from the group consisting of the above four amino acids in the culture supernatant. Therefore, peeling of the outer membrane of cyanobacteria can be easily determined.
- the concentration of four amino acids, isoleucine, leucine, tyrosine, and phenylalanine is measured; Based on the concentrations of the four amino acids, it may be determined whether the outer membrane of the cyanobacterium is detached from the cell wall.
- the method for determining outer membrane detachment of cyanobacteria measures the concentration of the above four amino acids in the culture supernatant of cyanobacteria, and determines outer membrane detachment of cyanobacteria based on the concentration of these amino acids. Therefore, outer membrane detachment of cyanobacteria can be determined with higher accuracy.
- the determination step if at least one of the concentrations of the at least one amino acid is equal to or higher than a threshold value, the outer membrane of the cyanobacteria is removed. If it is determined that the outer membrane of the cyanobacterium has detached from the cell wall, and all of the concentrations of the at least one amino acid are below the threshold, it may be determined that the outer membrane of the cyanobacterium has not detached from the cell wall.
- the method for determining outer membrane detachment of cyanobacteria is that if the concentration of even one of the at least one amino acid measured exceeds a threshold value, it is determined that the outer membrane of cyanobacteria has detached. Even if fluctuations occur due to the culture conditions, it is possible to accurately determine whether the outer membrane of cyanobacteria has peeled off.
- the threshold value may be 100 nM.
- the method for determining outer membrane detachment of cyanobacteria is based on the determination of the concentration of at least one amino acid selected from the group consisting of the above four amino acids contained in the culture supernatant of cyanobacteria whose outer membrane has detached from the cell wall. Detachment of the outer membrane of cyanobacteria can be easily and quantitatively determined by whether or not it exceeds 100 nM.
- the apparatus for determining outer membrane detachment of cyanobacteria determines the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of cyanobacteria.
- the method includes a measuring section that performs measurement, and a determining section that determines whether or not the outer membrane of the cyanobacteria is peeled from the cell wall based on the concentration of the at least one amino acid measured by the measuring section.
- the apparatus for determining cyanobacterial outer membrane detachment only needs to measure the concentration of at least one amino acid selected from the group consisting of the above four amino acids in the cyanobacterial culture supernatant.
- Adventitial detachment can be easily determined.
- the program according to one aspect of the present disclosure is configured to determine whether the cyanobacterium is out of the cyanobacteria based on the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of the cyanobacteria.
- This is a program that causes a computer to execute a method for determining whether or not a membrane has detached from a cell wall.
- the program determines whether or not the outer membrane of cyanobacteria has detached from the cell wall, based on the concentration of at least one amino acid selected from the group consisting of the above four amino acids in the culture supernatant of cyanobacteria. Since the computer determines this, the computer can easily determine outer membrane detachment of cyanobacteria.
- each figure is not necessarily strictly illustrated.
- substantially the same configurations are denoted by the same reference numerals, and overlapping explanations may be omitted or simplified.
- the numerical range does not represent only a strict meaning, but includes a substantially equivalent range, for example, measuring the amount of protein (for example, number or concentration, etc.) or the range thereof.
- both a bacterial body and a cell represent one individual cyanobacterium.
- FIG. 1 is a block diagram showing an example of the functional configuration of a cyanobacterial outer membrane exfoliation determination apparatus according to the present embodiment.
- the determination device 100 includes, for example, a measurement section 110, a control section 120, a storage section 130, an input reception section 140, and a display section 150.
- the control unit 120 includes, for example, a determination unit 122.
- the measurement unit 110 measures, for example, the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of cyanobacteria.
- the measurement unit 110 only needs to be able to measure the concentration of amino acids in the culture supernatant, and may be a conventionally known amino acid analyzer.
- the measurement unit 110 is, for example, a liquid chromatography (HPLC), a liquid chromatograph mass spectrometer (LC/MS), a liquid chromatograph tandem mass spectrometer (LC-MS/MS), or the like.
- the measurement unit 110 includes, for example, a control unit that controls the operation of the measurement unit 110, and the control unit controls the measurement unit 110 according to a control signal output from the control unit 120 of the determination device 100.
- control the behavior of the measurement unit 110 includes the measurement unit 110, but may not include the measurement unit 110.
- the measurement unit 110 is a measurement device, and the determination device 100 is connected to the measurement device via communication.
- the control unit 120 performs information processing to control the operation of the determination device 100.
- the control unit 120 is implemented, for example, by a microcomputer, but may also be implemented by a processor or a dedicated circuit.
- the control unit 120 includes a determination unit 122.
- the determination unit 122 is realized by a processor executing a program for performing the above information processing.
- the determination unit 122 determines whether the outer membrane of the cyanobacteria has peeled off from the cell wall.
- the function of the determination unit 122 is realized by a CPU (Central Processing Unit) executing a program stored in the storage unit 130. The specific function of the determination unit 122 will be explained in the next section.
- the storage unit 130 is a storage device in which control programs executed by the control unit 120 and the like are stored.
- the storage unit 130 is realized by, for example, a semiconductor memory.
- the input accepting unit 140 accepts user operation input.
- the input reception unit 140 is realized by a mouse, a microphone, a touch panel, or the like.
- the display unit 150 is a display device that displays information to be presented to the user based on the control of the control unit 120.
- the display unit 150 is realized by a liquid crystal panel or an organic EL (Electro Luminescence) panel.
- FIG. 2A is a flowchart illustrating an example of a flow of a method for determining outer membrane detachment of cyanobacteria according to an embodiment.
- FIG. 2B is a flowchart showing the detailed flow of step S02 in FIG. 2A.
- the determination method is implemented by the determination device described above.
- the measurement section of the determination device detects at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of cyanobacteria introduced into the measurement section. Measure the concentration (S01).
- the culture supernatant may be sampled at predetermined intervals (for example, on a daily basis) after the start of the main culture. Sampling may be performed manually by a user or may be performed automatically. Isoleucine, leucine, tyrosine, and phenylalanine are characteristically secreted into the culture supernatant when cyanobacterial cells from which the outer membrane has been peeled are cultured.
- the determination unit of the determination device determines whether the outer membrane of the cyanobacteria has peeled off from the cell wall, based on the concentration of at least one amino acid measured by the measurement unit (S02). More specifically, as shown in FIG. 2B, in step S02, the determination unit determines whether all of the concentrations of at least one amino acid measured by the measurement unit are less than a threshold (S11). If it is determined that all of the measured concentrations of at least one amino acid are less than the threshold value (Yes in S11), it is determined that the outer membrane of the cyanobacteria has not peeled off from the cell wall (S12).
- the determination unit determines that the outer membrane of the cyanobacteria has detached from the cell wall ( S13).
- the outer membrane of cyanobacteria is determined by measuring (in other words, quantifying) the concentrations of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of cyanobacteria.
- the amino acids and biomolecules for example, intracellular metabolites
- the measurement method executed in step S01 may be any method that can measure amino acids or biomolecules, such as liquid chromatography (HPLC), liquid chromatograph mass spectrometer (LC/MS), or liquid chromatography.
- the measurement method performed in step S01 may be an enzyme assay for detecting a specific amino acid or biomolecule. It may be.
- Cyanobacteria also called blue-green algae or cyanobacteria, are a group of prokaryotes that perform photosynthesis while collecting light energy with chlorophyll and electrolyzing water to generate oxygen. Cyanobacteria are highly diverse, and include, for example, unicellular species such as Synechocystis sp. PCC 6803 and filamentous multicellular species such as Anabaena sp. PCC 7120. Regarding the growing environment, there are thermophilic species such as Thermosynechococcus elongatus, marine species such as Synechococcus elongatus, and freshwater species such as Synechocystis.
- FIG. 3 is a diagram schematically showing the cell surface layer of cyanobacteria.
- the cell surface layer of cyanobacteria is composed of, in order from the inside, a plasma membrane (also called inner membrane 1), peptidoglycan 2, and outer membrane 5, which is a lipid membrane that forms the outermost layer of the cell.
- Ru Sugar chains 3 composed of glucosamine, mannosamine, etc. are covalently bonded to peptidoglycan 2, and pyruvate is bonded to these covalently bonded sugar chains 3 (Non-Patent Document 8: Jurgens and Weckesser, 1986, J. Bacteriol., 168:568-573).
- the peptidoglycan 2 and the covalent sugar chain 3 are collectively referred to as a cell wall 4.
- the gap between the plasma membrane (that is, the inner membrane 1) and the outer membrane 5 is called the periplasm, and is used for protein decomposition or three-dimensional structure formation, lipid or nucleic acid decomposition, or the uptake of extracellular nutrients.
- the periplasm the gap between the plasma membrane (that is, the inner membrane 1) and the outer membrane 5 is called the periplasm, and is used for protein decomposition or three-dimensional structure formation, lipid or nucleic acid decomposition, or the uptake of extracellular nutrients.
- the SLH domain-retaining outer membrane protein (for example, Slr1841 in the figure) consists of a C-terminal region embedded in the lipid membrane (also referred to as outer membrane 5) and an N-terminal SLH domain 7 that protrudes from the lipid membrane. It is widely distributed in cyanobacteria and bacteria belonging to the class Negativicutes, a group of Gram-negative bacteria (Non-Patent Document 9: Kojima et al., 2016, Biosci. Biotech. Biochem., 10:1954-1959). The region embedded in the lipid membrane (i.e.
- Patent Document 10 Kowata et al., 2017, J. Bacteriol., 199:e00371-17).
- SLH domain 7 In order for SLH domain 7 to bind to cell wall 4, covalent sugar chain 3 in peptidoglycan 2 needs to be modified with pyruvate (Non-Patent Document 11: Kojima et al., 2016, J. Biol Chem., 291:20198-20209).
- genes encoding SLH domain-retaining outer membrane protein 6 include slr1841 or slr1908 held by Synechocystis sp. PCC 6803, or oprB held by Anabaena sp. 90.
- cell wall-pyruvate modification enzyme 9 The enzyme that catalyzes the pyruvate modification reaction of covalent sugar chain 3 in peptidoglycan 2 (hereinafter referred to as cell wall-pyruvate modification enzyme 9) was identified in the Gram-positive bacterium Bacillus anthracis and named CsaB. (Non-patent document 12: Mesnage et al., 2000, EMBO J., 19:4473-4484). Among cyanobacteria whose genome sequences have been published, many species possess genes encoding homologous proteins with amino acid sequence identity of 30% or more with CsaB. Examples include slr0688 held by Synechocystis sp. PCC 6803 or synpcc7502_03092 held by Synechococcus sp. 7502.
- cyanobacteria CO2 fixed through photosynthesis is converted into various amino acids through multi-step enzymatic reactions. Using these as raw materials, proteins are synthesized within the cytoplasm of cyanobacteria. Some of these proteins function within the cytoplasm, while others are transported from the cytoplasm to the periplasm and function within the periplasm. However, no case of active secretion of proteins outside the cell has been reported in cyanobacteria to date.
- cyanobacteria Because cyanobacteria have a high photosynthetic ability, they do not necessarily need to take in organic matter from the outside as nutrients. Therefore, cyanobacteria have very few channel proteins in their outer membrane 5 that allow organic substances to pass therethrough, such as the organic substance channel protein 8 (eg, Slr1270) in FIG. For example, in Synechocystis sp. PCC 6803, organic channel protein 8, which allows organic matter to pass through, is present in only about 4% of the total protein content of outer membrane 5.
- organic substance channel protein 8 eg, Slr1270
- SLH domain-retaining outer membrane protein 6 e.g., Slr1841
- the outer membrane 5 contains many ion channel proteins that cause For example, in Synechocystis sp. PCC 6803, ion channel proteins that permeate inorganic ions account for about 80% of the total protein content of the outer membrane 5.
- Non-Patent Document 6 and Non-Patent Document 7 state that when the slr1841 gene or slr0688 gene, which is involved in adhesion between the outer membrane and the cell wall and contributes to the structural stability of the cell surface, is deleted, the proliferation ability of the cell is reduced. It is stated that it will be lost.
- modified cyanobacteria the cyanobacteria (hereinafter referred to as modified cyanobacteria) according to the present embodiment will be described with reference to FIG. 3. Further, below, proteins will be explained as an example of substances produced using modified cyanobacteria.
- the function of a protein involved in binding between the outer membrane 5 and the cell wall 4 is suppressed or lost.
- the modified cyanobacteria is such that the total amount of proteins involved in binding between the outer membrane 5 and the cell wall 4 (i.e., binding-related proteins) is lower than that in the parent strain (i.e., parent cyanobacteria).
- the total amount of protein is suppressed to 30% or more and 70% or less.
- “the total amount of binding-related proteins is suppressed to 30% of the total amount of the protein in the parent strain” means that 70% of the total amount of the protein in the parent strain has been lost and 30% remains.
- the modified cyanobacteria has improved protein secretion productivity, which secretes proteins produced within the bacterial cells to the outside of the bacterial cells. Furthermore, since it is not necessary to crush the bacterial cells to recover proteins, the modified cyanobacteria can be repeatedly used to produce proteins even after the proteins are recovered.
- the production of proteins by modified cyanobacteria within the bacterial cells is referred to as production
- the secretion of the produced proteins to the outside of the bacterial cells is referred to as secretory production.
- the protein involved in the binding between the outer membrane 5 and the cell wall 4 may be, for example, at least one of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9.
- the function of at least one protein for example, the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9, is suppressed.
- the modified cyanobacteria (i) at least one function of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9 may be suppressed, and (ii) the SLH domain-retaining type that binds to the cell wall 4 may be suppressed.
- At least one of the expression of the outer membrane protein 6 and the expression of an enzyme that catalyzes the pyruvate modification reaction of sugar chains bound to the surface of the cell wall 4 may be suppressed.
- proteins present in the cells of the modified cyanobacteria, particularly in the periplasm tend to leak out of the cells (outside the outer membrane 5).
- cyanobacteria have a high photosynthetic ability, so they do not necessarily need to take in organic matter from the outside as nutrients. Therefore, cyanobacteria only need light, air, water, and a small amount of inorganic substances to cultivate cyanobacteria, and cyanobacteria take inorganic substances into cells through ion channels in the outer membrane 5 and produce proteins within the cells. In particular, various proteins are present in the periplasm, which is the space between the outer membrane 5 and the cell wall 4. In the modified cyanobacterium according to the present embodiment, the functions of proteins involved in binding between the outer membrane 5 and the cell wall 4 are suppressed. As a result, the outer membrane 5 is easily partially peeled off from the cell wall 4.
- the modified cyanobacteria improves the productivity of protein secretion, which secretes proteins produced within the bacterial cells to the outside of the bacterial cells.
- the outer membrane 5 is modified to partially detach from the cell wall 4 by suppressing the function of at least one binding-related protein of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9.
- the following cyanobacteria will be explained in more detail.
- the type of the "parent strain” or "parent cyanobacteria" is not particularly limited and may be any type of cyanobacteria.
- the parent cyanobacteria may be of the genus Synechocystis, Synechococcus, Anabaena, or Thermosynechococcus, among which Synechocystis sp. PCC 6803, Synechococcus sp.
- Thermosynechococcus elongatus BP-1 Good too.
- the parent strain may be a wild cyanobacterium, as long as the total amount of binding-related proteins has not been suppressed to 30% or more and 70% or less, or it may be a modified strain that is equivalent to the wild one. binding-related proteins.
- the base sequence and the position of the gene on the chromosomal DNA or plasmid can be confirmed in the NCBI database and Cyanobase mentioned above.
- the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvic acid modifying enzyme 9, whose functions are suppressed in the modified cyanobacteria according to the present embodiment, can be used in any parent cyanobacteria as long as they are possessed by the parent cyanobacteria. They are not limited by the location of the genes encoding them (for example, on chromosomal DNA or on plasmids).
- the SLH domain-retaining outer membrane protein 6 may be Slr1841, Slr1908, or Slr0042 when the parent cyanobacterium belongs to the genus Synechocystis, or may be NIES970_09470 when the parent cyanobacterium belongs to the genus Synechococcus.
- the parent cyanobacteria is of the genus Anabaena, it may be Anacy_5815 or Anacy_3458, etc.
- the parent cyanobacteria is of the genus Microcystis, it may be A0A0F6U6F8_MICAE, etc.
- the parent cyanobacteria When the parent cyanobacteria is of the genus Cyanothece, it may be A0A3B8XX12_9CYAN, etc. When the parent cyanobacterium belongs to the genus Leptolyngbya, it may be A0A1Q8ZE23_9CYAN, etc. When the parent cyanobacterium belongs to the genus Calothrix, it may be A0A1Z4R6U0_9CYAN, and when the parent cyanobacterium belongs to the genus Nostoc, it may be A0A1C0VG86_9NOSO, etc.
- the parent cyanobacterium belongs to the genus Crocosphaera, it may be B1WRN6_CROS5, and when the parent cyanobacterium belongs to the genus Pleurocapsa, it may be K9TAE4_9CYAN.
- the SLH domain-retaining outer membrane protein 6 is, for example, Slr1841 (SEQ ID NO: 1) of Synechocystis sp. PCC 6803, NIES970_09470 (SEQ ID NO: 2) of Synechococcus sp. NIES-970, or Anabaena cylindrica PCC.
- Anacy_3458 (SEQ ID NO: 3) of 7122 may be used.
- it may be a protein that has an amino acid sequence that is 50% or more identical to these SLH domain-retaining outer membrane proteins 6.
- the function of the protein whose sequence is 50% or more identical may be suppressed, and
- Expression of a protein whose amino acid sequence is 50% or more identical to domain-retaining outer membrane protein 6 may be suppressed.
- the modified cyanobacteria (i) the function of the SLH domain-retaining outer membrane protein 6 in the outer membrane 5 or a protein having a function equivalent to the SLH domain-retaining outer membrane protein 6 is suppressed, or (ii) ) The expression level of the SLH domain-retaining outer membrane protein 6 or a protein having the same function as the SLH domain-retaining outer membrane protein 6 in the outer membrane 5 is reduced. Therefore, in the modified cyanobacteria according to the present embodiment, the binding domain (for example, SLH domain 7) for binding the outer membrane 5 to the cell wall 4 has a reduced binding amount and binding force with the cell wall 4, so The membrane 5 is easily partially detached from the cell wall 4.
- the binding domain for example, SLH domain 7
- the SLH domain-retaining outer membrane protein 6 whose function is suppressed is, for example, one of the amino acid sequences of the SLH domain-retaining outer membrane protein 6 shown in SEQ ID NOs: 1 to 3 above, and 40% or more of the amino acid sequence, Preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, even more preferably 90% or more, and the cell wall 4 is shared. It may be a protein or a polypeptide that has the function of binding to a bound sugar chain 3.
- the cell wall-pyruvate modifying enzyme 9 may be Slr0688, etc. when the parent cyanobacterium belongs to the genus Synechocystis, and when the parent cyanobacterium belongs to the genus Synechococcus, it may be Syn7502_03092 or Synpcc7942_1529, etc. If the cyanobacterium belongs to the genus Anabaena, it may be ANA_C20348 or Anacy_1623, and if the parent cyanobacterium belongs to the genus Microcystis, it may be CsaB (NCBI access ID: TRU80220), or if the parent cyanobacterium belongs to the genus Cyanothece.
- the parent cyanobacterium belongs to the genus Spirulina, it may be CsaB (NCBI access ID: WP_026079530.1), etc. If the parent cyanobacterium belongs to the genus Calothrix, it may be CsaB (NCBI access ID: WP_096658142.1), etc., and if the parent cyanobacterium belongs to the genus Nostoc, it may be CsaB (NCBI access ID: WP_099068528.1), etc.
- the parent cyanobacteria belongs to the genus Crocosphaera, it may be CsaB (NCBI access ID: WP_012361697.1), and if the parent cyanobacterium belongs to the genus Pleurocapsa, it may be CsaB (NCBI access ID: WP_036798735), etc. Good too.
- the cell wall-pyruvate modifying enzyme 9 is, for example, Slr0688 (SEQ ID NO: 4) of Synechocystis sp. PCC 6803, Synpcc7942_1529 (SEQ ID NO: 5) of Synechococcus sp. Anacy_1623 (SEQ ID NO: 6) or the like may be used. Further, it may be a protein having an amino acid sequence that is 50% or more identical to these cell wall-pyruvate modifying enzymes 9.
- any of the cell wall-pyruvate modifying enzymes 9 shown in SEQ ID NOs: 4 to 6 above or any of these cell wall-pyruvate modifying enzymes 9 and the amino acid sequence The function of a protein that is 50% or more identical is suppressed, or (ii) any of the cell wall-pyruvic acid modifying enzymes 9 shown in SEQ ID NOs: 4 to 6 above or any of these cell wall-pyruvic acid Expression of a protein whose amino acid sequence is 50% or more identical to modified enzyme 9 is suppressed.
- the function of the cell wall-pyruvate modifying enzyme 9 or a protein having an equivalent function to the enzyme is suppressed, or (ii) the function of the cell wall-pyruvate modifying enzyme 9 or the enzyme is suppressed.
- the expression level of proteins with equivalent functions decreases. This makes it difficult for the covalent sugar chains 3 on the surface of the cell wall 4 to be modified with pyruvate, so that the sugar chains 3 on the cell wall 4 interact with the SLH domain 7 of the SLH domain-retaining outer membrane protein 6 in the outer membrane 5. The amount of binding and the binding strength are reduced.
- the covalently bonded sugar chains 3 on the surface of the cell wall 4 are difficult to be modified with pyruvate, so the binding force between the cell wall 4 and the outer membrane 5 is weakened, and the outer membrane 5 becomes easily partially detached from the cell wall 4.
- the cell wall-pyruvate modifying enzyme 9 whose function is suppressed is, for example, an amino acid sequence of any one of the cell wall-pyruvate modifying enzymes 9 shown in SEQ ID NOs: 4 to 6 above, and 40% or more, preferably It consists of an amino acid sequence having an identity of 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, even more preferably 90% or more, and It may be a protein or polypeptide that has the function of catalyzing a reaction that modifies covalent sugar chain 3 with pyruvate.
- suppressing the function of the SLH domain-retaining outer membrane protein 6 refers to suppressing the ability of the protein to bind to the cell wall 4, or suppressing or losing the transport of the protein to the outer membrane 5. or suppress the ability of the protein to become embedded in the outer membrane 5 and function.
- suppressing the function of the cell wall-pyruvic acid modifying enzyme 9 means suppressing the function of the protein to modify the covalent sugar chain 3 of the cell wall 4 with pyruvate.
- the means for suppressing the functions of these proteins is not particularly limited as long as it is a means normally used for suppressing the functions of proteins.
- the means includes, for example, deleting or inactivating the gene encoding the SLH domain-retaining outer membrane protein 6 and the gene encoding the cell wall-pyruvate modifying enzyme 9, inhibiting the transcription of these genes,
- the method may include inhibiting the translation of transcription products of these genes, or administering an inhibitor that specifically inhibits these proteins.
- the modified cyanobacteria may have a gene that expresses a protein involved in binding the outer membrane 5 and the cell wall 4 deleted or inactivated.
- the expression of the protein involved in the bond between the cell wall 4 and the outer membrane 5 is suppressed, or the function of the protein is suppressed, so that the bond between the cell wall 4 and the outer membrane 5 is suppressed. (so-called bond amount and bond strength) are partially reduced.
- the outer membrane 5 tends to partially detach from the cell wall 4, so that proteins produced within the bacterial body tend to leak out of the outer membrane 5, that is, to the outside of the bacterial body.
- the modified cyanobacteria according to the present embodiment has improved protein secretion productivity for secreting proteins produced within the bacterial cells to the outside of the bacterial cells. Furthermore, since it is not necessary to crush the bacterial cells to recover proteins, the modified cyanobacteria can be repeatedly used to produce proteins even after the proteins are recovered.
- the gene that expresses the protein involved in the binding between the outer membrane 5 and the cell wall 4 is, for example, at least one of the gene encoding the SLH domain-retaining outer membrane protein 6 and the gene encoding the cell wall-pyruvate modifying enzyme 9. There may be.
- the modified cyanobacteria at least one of the genes encoding SLH domain-retaining outer membrane protein 6 and the gene encoding cell wall-pyruvate modifying enzyme 9 has been deleted or inactivated.
- the modified cyanobacteria for example, (i) the expression of at least one of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9 is suppressed, or (ii) the SLH domain-retaining outer membrane protein At least one function of cell wall-pyruvate modifying enzyme 6 and cell wall-pyruvate modifying enzyme 9 is suppressed. Therefore, the bond between the SLH domain 7 of the SLH domain-retaining outer membrane protein 6 in the outer membrane 5 and the covalent sugar chain 3 on the surface of the cell wall 4 (that is, the bond amount and binding force) is reduced.
- the modified cyanobacterium according to the present embodiment makes it easier for the outer membrane 5 to detach from the cell wall 4 at the portion where the bond between the outer membrane 5 and the cell wall 4 is weakened. Therefore, according to the modified cyanobacterium according to the present embodiment, the binding between the outer membrane 5 and the cell wall 4 is reduced, making it easier for the outer membrane 5 to partially detach from the cell wall 4. This makes it easier for protein to leak out of the bacterial body.
- a gene encoding the SLH domain-retaining outer membrane protein 6 is used. and transcription of at least one gene encoding cell wall-pyruvate modifying enzyme 9 may be suppressed.
- the gene encoding SLH domain-retaining outer membrane protein 6 may be slr1841, slr1908, or slr0042 when the parent cyanobacterium belongs to the genus Synechocystis, and may be nies970_09470 when the parent cyanobacterium belongs to the genus Synechococcus.
- the parent cyanobacteria when the parent cyanobacteria is of the genus Anabaena, it may be anacy_5815 or anacy_3458, etc.
- the parent cyanobacteria is of the genus Microcystis, it may be A0A0F6U6F8_MICAE, etc.
- the parent cyanobacteria When the parent cyanobacteria is of the genus Cyanothece, it may be A0A3B8XX12_9CYAN, etc. If the parent cyanobacteria belongs to the genus Leptolyngbya, it may be A0A1Q8ZE23_9CYAN, etc. If the parent cyanobacterium belongs to the genus Calothrix, it may be A0A1Z4R6U0_9CYAN, and if the parent cyanobacterium belongs to the genus Nostoc, it may be A0A1C0VG86_9NOSO, etc.
- the parent cyanobacterium belongs to the genus Crocosphaera, it may be B1WRN6_CROS5, and when the parent cyanobacterium belongs to the genus Pleurocapsa, it may be K9TAE4_9CYAN.
- the base sequences of these genes can be obtained from the NCBI database or Cyanobase mentioned above.
- genes encoding SLH domain-retaining outer membrane protein 6 include slr1841 (SEQ ID NO: 7) of Synechocystis sp. PCC 6803, nies970_09470 (SEQ ID NO: 8) of Synechococcus sp. NIES-970, and Anabaena cylindrica PCC. 7122 anacy_3458 (SEQ ID NO: 9), or a gene whose base sequence is 50% or more identical to these genes.
- the gene encoding any of the SLH domain-retaining outer membrane protein 6 shown in SEQ ID NOs: 7 to 9 above, or the base sequence of any of these genes is 50% or more identical. Genes are deleted or inactivated. Therefore, in the modified cyanobacteria, (i) the expression of any of the above-mentioned SLH domain-retaining outer membrane protein 6 or a protein having a function equivalent to any of these proteins is suppressed, or (ii) the above-mentioned The function of any of the SLH domain-retaining outer membrane proteins 6 or a protein having a function equivalent to any of these proteins is suppressed.
- the binding amount and binding force of the binding domain for example, SLH domain 7 for binding the outer membrane 5 to the cell wall 4 with the cell wall 4 are reduced, 5 becomes easily partially detached from the cell wall 4.
- base sequence having an identity of 40% or more, preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, still more preferably 90% or more with the base sequence. It may also be a gene that encodes a protein or polypeptide that has the function of binding to the covalent sugar chain 3 of the cell wall 4.
- the gene encoding cell wall-pyruvate modifying enzyme 9 may be slr0688, etc. when the parent cyanobacterium belongs to the genus Synechocystis, and may be syn7502_03092 or synpcc7942_1529, etc. when the parent cyanobacterium belongs to the genus Synechococcus. If the parent cyanobacterium belongs to the genus Anabaena, it may be ana_C20348 or anacy_1623, and if the parent cyanobacterium belongs to the genus Microcystis, it may be csaB (NCBI access ID: TRU80220), etc.
- the parent cyanobacterium belongs to the genus Cynahothece, it may be csaB (NCBI access ID: WP_107667006.1), etc., and if the parent cyanobacterium belongs to the genus Spirulina, it may be csaB (NCBI access ID: WP_026079530.1), etc. , if the parent cyanobacteria belongs to the genus Calothrix, it may be csaB (NCBI access ID: WP_096658142.1), etc., and if the parent cyanobacteria belongs to the genus Nostoc, it may be csaB (NCBI access ID: WP_099068528.1), etc.
- the parent cyanobacterium belongs to the genus Crocosphaera, it may be csaB (NCBI access ID: WP_012361697.1), and if the parent cyanobacterium belongs to the genus Pleurocapsa, it may be csaB (NCBI access ID: WP_036798735). etc. may be used.
- the base sequences of these genes can be obtained from the NCBI database or Cyanobase mentioned above.
- the gene encoding cell wall-pyruvate modification enzyme 9 is slr0688 (SEQ ID NO: 10) of Synechocystis sp. PCC 6803, synpcc7942_1529 (SEQ ID NO: 11) of Synechococcus sp. PCC 7942, or Anabaena cylindrica PCC.
- Anacy_1623 (SEQ ID NO: 12) of 7122 may be used.
- the gene may have a base sequence that is 50% or more identical to these genes.
- the base sequence of the gene encoding any of the cell wall-pyruvic acid modifying enzymes 9 shown in SEQ ID NOs: 10 to 12 above or the gene encoding any of these enzymes is 50% or more. Genes that are identical are deleted or inactivated. Therefore, in the modified cyanobacteria, (i) the expression of any of the above cell wall-pyruvate modifying enzymes 9 or a protein having a function equivalent to any of these enzymes is suppressed, or (ii) the above-mentioned The function of any cell wall-pyruvate modifying enzyme 9 or a protein having a function equivalent to any of these enzymes is suppressed.
- it may be a gene encoding a protein or polypeptide that has the function of catalyzing a reaction that modifies the covalent sugar chain 3 of the peptidoglycan 2 of the cell wall 4 with pyruvate.
- the method for producing a modified cyanobacterium includes the step of suppressing the function of a protein involved in bonding the outer membrane 5 and the cell wall 4 in the cyanobacterium.
- the protein involved in the binding between the outer membrane 5 and the cell wall 4 may be, for example, at least one of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvic acid modifying enzyme 9.
- Means for suppressing protein function include, but are not particularly limited to, deletion or inactivation of the gene encoding the SLH domain-retaining outer membrane protein 6 and the gene encoding the cell wall-pyruvate modifying enzyme 9. It may be possible to inhibit the transcription of these genes, inhibit the translation of the transcripts of these genes, or administer an inhibitor that specifically inhibits these proteins.
- Means for deleting or inactivating the above gene include, for example, introducing a mutation into one or more bases on the base sequence of the gene, replacing the base sequence with another base sequence, or replacing the base sequence with another base sequence. It may be insertion, or deletion of part or all of the base sequence of the gene.
- Means for inhibiting the transcription of the above genes include, for example, introducing mutations into the promoter region of the gene, inactivating the promoter by substituting or inserting other base sequences, or CRISPR interference (non-transfer).
- Patent Document 13 Yao et al., ACS Synth. Biol., 2016, 5:207-212).
- Specific methods for the above-mentioned mutagenesis or base sequence substitution or insertion may be, for example, ultraviolet irradiation, site-specific mutagenesis, or homologous recombination.
- the means for inhibiting the translation of the transcription product of the gene may be, for example, RNA (ribonucleic acid) interference.
- the function of a protein involved in binding the outer membrane 5 and cell wall 4 in cyanobacteria may be suppressed to produce a modified cyanobacterium.
- modified cyanobacteria produced by this production method, the bond between the cell wall 4 and the outer membrane 5 (that is, the amount of bond and binding force) is partially reduced, so that the outer membrane 5 is partially separated from the cell wall 4. It becomes easier to detach. Therefore, in the modified cyanobacteria, proteins produced within the bacterial cells tend to leak out of the outer membrane 5 (that is, out of the bacterial cells). Therefore, according to the method for producing modified cyanobacteria according to the present embodiment, modified cyanobacteria with improved protein secretion productivity can be provided.
- the proteins produced within the bacterial cells leak out of the bacterial cells, so there is no need to disrupt the bacterial cells to recover the proteins.
- the modified cyanobacteria produced by this production method secretes, to the outside of the cell, a group of proteins that are originally present in the periplasm, such as peptidases or phosphatases.
- a group of proteins that are originally present in the periplasm such as peptidases or phosphatases.
- a group of proteins that are originally present in the periplasm such as peptidases or phosphatases.
- the method for producing proteins using modified cyanobacteria according to the present embodiment includes the step of culturing the modified cyanobacteria described above.
- Cultivation of cyanobacteria can generally be carried out based on liquid culture using BG-11 medium (see Table 2) or a modified method thereof. Therefore, culturing of modified cyanobacteria may be carried out in the same manner.
- the culture period of cyanobacteria for protein production may be any period that allows the cells to grow sufficiently and the protein to accumulate at a high concentration, for example, 1 to 3 days. It may be for 4 to 7 days.
- the culture method may be, for example, aeration agitation culture or shaking culture.
- the modified cyanobacteria By culturing under the above conditions, the modified cyanobacteria produce proteins within their cells and secrete the proteins into the culture solution. When recovering proteins secreted into a culture solution, solids such as cells (so-called bacterial bodies) are removed from the culture solution by filtration or centrifugation, and the culture supernatant is recovered. You can. According to the method for producing proteins using modified cyanobacteria according to the present embodiment, since proteins are secreted outside the cells of modified cyanobacteria, there is no need to disrupt cells for protein recovery. Therefore, the modified cyanobacteria remaining after protein recovery can be used repeatedly to produce proteins.
- the method for recovering proteins secreted into the culture solution is not limited to the above example, and proteins in the culture solution may be recovered while culturing the modified cyanobacteria.
- proteins in the culture solution may be recovered while culturing the modified cyanobacteria.
- a permeable membrane that allows proteins to permeate the protein that has passed through the permeable membrane may be recovered.
- useful microorganisms such as lactic acid bacteria may be cultured using the protein that has passed through the permeable membrane as a nutrient source.
- proteins in the culture solution can be recovered while culturing the modified cyanobacteria, so that there is no need to remove the cells of the modified cyanobacteria from the culture solution. Therefore, proteins can be produced more easily and efficiently.
- the recovery process of bacterial cells from the culture solution and the process of crushing the bacterial cells are not necessary, damage and stress to the modified cyanobacteria can be reduced. Therefore, the protein secretion productivity of the modified cyanobacteria is less likely to decrease, and the modified cyanobacteria can be used for a longer period of time.
- enzymes for producing food ingredient raw materials or compounds, diagnostic enzymes or therapeutic enzymes in the medical field, or agricultural, agricultural, and agricultural Enzymes for feed in the livestock industry can be easily and efficiently obtained.
- cyanobacteria As a method for partially detaching the outer membrane of cyanobacteria from the cell wall, we will suppress the expression of the slr1841 gene encoding an SLH domain-retaining outer membrane protein (Example 1) and modify the cell wall with pyruvate. The expression of the slr0688 gene encoding the enzyme was suppressed (Example 2), and two types of modified cyanobacteria were produced. Then, we measured the protein secretion productivity of these modified cyanobacteria and identified the secreted proteins.
- the cyanobacterial species used in this example is Synechocystis sp. PCC 6803 (hereinafter simply referred to as "cyanobacteria").
- Example 1 In Example 1, a modified cyanobacterium in which the expression of the slr1841 gene encoding the SLH domain-retaining outer membrane protein was suppressed was produced.
- a modified cyanobacterial strain in which slr1841 gene expression is suppressed CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) interference method was used as a method for suppressing gene expression.
- the expression of the slr1841 gene is suppressed by introducing the gene encoding the dCas9 protein (hereinafter referred to as the dCas9 gene) and the slr1841_sgRNA (single-guide Ribonucleic Acid) gene into the chromosomal DNA of cyanobacteria. Can be done.
- the degree of suppression of the slr1841 gene can be controlled.
- the mechanism of gene expression suppression using this method is as follows.
- a Cas9 protein lacking nuclease activity (dCas9) and sgRNA (slr1841_sgRNA) that binds complementary to the base sequence of the slr1841 gene form a complex.
- this complex recognizes the slr1841 gene on the cyanobacterial chromosomal DNA and specifically binds to the slr1841 gene. This binding causes steric hindrance, which inhibits transcription of the slr1841 gene. As a result, the expression of the cyanobacterial slr1841 gene is suppressed. Furthermore, by controlling the transcriptional activity of slr1841_sgRNA, the degree of suppression of the slr1841 gene can be controlled.
- the three genes mentioned above are inserted into the psbA1 gene on the chromosomal DNA in a linked state, so they can be amplified as one DNA fragment by PCR.
- the obtained DNA fragment is referred to as "psbA1::dCas9 cassette.”
- the psbA1::dCas9 cassette was inserted into the pUC19 plasmid using the In-Fusion PCR cloning method (registered trademark) to obtain the pUC19-dCas9 plasmid.
- sgRNA specifically binds to the target gene by introducing a sequence of approximately 20 bases complementary to the target sequence into a region called protospacer on the sgRNA gene. do.
- the protospacer sequences used in this example are shown in Table 3.
- the sgRNA gene (excluding the protospacer region) and the kanamycin resistance marker gene are inserted into the slr2030-slr2031 genes on the chromosomal DNA (Non-patent Document (see 13). Therefore, by adding a protospacer sequence (SEQ ID NO: 21) complementary to the slr1841 gene (SEQ ID NO: 7) to the primers used when amplifying the sgRNA gene by PCR method, we created an sgRNA (slr1841_sgRNA) that specifically recognizes slr1841. ) can be easily obtained. Furthermore, by controlling the transcriptional activity of slr1841_sgRNA, the degree of suppression of the slr1841 gene can be controlled.
- a DNA fragment (slr2030-2031::slr1841_sgRNA) was obtained in which i) slr2030 gene fragment, (ii) slr1841_sgRNA, (iii) kanamycin resistance marker gene, and (iv) slr2031 gene fragment were linked in this order.
- slr2030-2031::slr1841_sgRNA was inserted into the pUC19 plasmid to obtain the pUC19-slr1841_sgRNA plasmid.
- the pUC19-slr1841_sgRNA plasmid was introduced into the Synechocystis dCas9 strain in the same manner as in (1-1) above, and the transformed cells were selected on a BG-11 agar medium containing 30 ⁇ g/mL kanamycin.
- a transformant Synechocystis dCas9 slr1841_sgRNA strain (hereinafter also referred to as slr1841 suppressed strain) in which slr1841_sgRNA was inserted into the slr2030-slr2031 gene on the chromosomal DNA was obtained.
- Example 1 the total amount of proteins involved in bonding the outer membrane and cell wall in cyanobacteria was adjusted to the parent strain (Synechocystis dCas9 strain, Comparative Example 1 described below) without impairing the cell growth ability.
- a modified cyanobacterium Synechocystis dCas9 slr1841_sgRNA strain (so-called slr1841 suppressed strain) in which the amount of the protein was suppressed to about 30% compared to the amount of the protein in .
- the proteins involved in the binding between the outer membrane and the cell wall are slr1841, slr1908, and slr0042.
- Example 2 a modified cyanobacterium in which the expression of the slr0688 gene encoding a cell wall-pyruvate modifying enzyme was suppressed was obtained by the following procedure.
- the set of primers slr2030-Fw (SEQ ID NO: 15) and sgRNA_slr0688-Rv (SEQ ID NO: 19) and the set of sgRNA_slr0688-Fw (SEQ ID NO: 20) and slr2031-Rv (SEQ ID NO: 18) listed in Table 1 were used.
- In-Fusion PCR was performed on a DNA fragment (slr2030-2031::slr0688_sgRNA) in which (i) slr2030 gene fragment, (ii) slr0688_sgRNA, (iii) kanamycin resistance marker gene, and (iv) slr2031 gene fragment were linked in this order.
- the procedure was carried out under the same conditions as in (1-2) above, except that the cloning method (registered trademark) was used to insert into the pUC19 plasmid to obtain the pUC19-slr0688_sgRNA plasmid. Furthermore, by controlling the transcriptional activity of slr0688_sgRNA, the degree of suppression of the slr0688 gene can be controlled.
- the cloning method registered trademark
- Example 2 the amount of proteins involved in bonding the outer membrane and cell wall in cyanobacteria was determined from the parent strain (Synechocystis dCas9 strain, Comparative Example 1 described below) without impairing the cell growth ability. ), a modified cyanobacterial Synechocystis dCas9 slr0688_sgRNA strain (hereinafter also referred to as slr0688 suppressed strain) was obtained, in which the amount of the protein was suppressed to about 50%.
- the protein involved in binding the outer membrane and the cell wall is slr0688.
- Example 1 the cell surface conditions of the bacterial strains obtained in Example 1, Example 2, and Comparative Example 1 were observed and protein secretion productivity tests were conducted. The details will be explained below.
- the cells in the resin were sliced into 70 nm thick sections using an ultramicrotome (Ultracut) to create ultrathin sections.
- This ultrathin section was stained with a 2% uranium acetate and 1% lead citrate solution to prepare a transmission electron microscopy sample of the slr1841 suppressed strain of Example 1. Note that the same operation was performed for the slr0688 suppressed strain of Example 2 and the Control strain of Comparative Example 1, respectively, to prepare samples for transmission electron microscopy.
- FIG. 4 is a TEM (Transmission Electron Microscope) image of the slr1841 suppressed strain of Example 1.
- FIG. 5 is an enlarged image of the broken line area A in FIG. 5(a) is an enlarged TEM image of the broken line area A in FIG. 4, and
- FIG. 5(b) is a diagram depicting the enlarged TEM image of FIG. 5(a).
- FIG. 6 is a TEM image of the slr0688 suppressed strain of Example 2.
- FIG. 7 is an enlarged image of the broken line area B in FIG. 7(a) is an enlarged TEM image of the broken line area B in FIG. 6, and
- FIG. 7(b) is a diagram depicting the enlarged TEM image of FIG. 7(a).
- FIG. 8 is a TEM image of the Control strain of Comparative Example 1.
- FIG. 9 is an enlarged image of the broken line area C in FIG. 9(a) is an enlarged TEM image of the broken line area C in FIG. 8, and
- FIG. 9(b) is a diagram depicting the enlarged TEM image of FIG. 9(a).
- the cell surface layer of the Control strain of Comparative Example 1 was well-organized, and the inner membrane, cell wall, outer membrane, and S layer remained laminated in this order.
- the parts where the outer membrane detached from the cell wall, the parts where the outer membrane peeled off from the cell wall (that is, the parts fell off), and the parts where the outer membrane bent were I could't see it.
- Protein secretion productivity test The slr1841 suppressed strain of Example 1, the slr0688 suppressed strain of Example 2, and the Control strain of Comparative Example 1 were cultured, and the amount of protein secreted outside the cells (hereinafter referred to as secreted (also referred to as protein amount) was measured. The protein secretion productivity of each of the above bacterial strains was evaluated based on the amount of protein in the culture solution. Note that protein secretion productivity refers to the ability to produce proteins by secreting proteins produced within the cells to the outside of the cells. A specific method will be explained below.
- Example 1 Culture of strain The slr1841 suppressed strain of Example 1 was cultured in the same manner as in (3-1) above. Culturing was performed independently three times. The strains of Example 2 and Comparative Example 1 were also cultured under the same conditions as the strains of Example 1.
- the culture solution obtained in (4-1) above was centrifuged at 2,500 g for 10 minutes at room temperature to obtain a culture supernatant.
- the obtained culture supernatant was filtered using a membrane filter with a pore size of 0.22 ⁇ m to completely remove the cells of the slr1841 suppressed strain of Example 1.
- the total amount of protein contained in the culture supernatant after filtration was quantified by the BCA (Bicinchoninic acid) method. This series of operations was performed for each of the three independently cultured cultures, and the average value and standard deviation of the amount of protein secreted extracellularly of the slr1841 suppressed strain of Example 1 was determined.
- the protein in the three culture solutions was quantified under the same conditions, and the average value and standard deviation of the protein amounts in the three culture solutions were determined.
- the absorbance (730 nm) of the culture solution was measured and the amount of secreted protein per 1 g of bacterial cell dry weight (mg protein/g cell dry weight) was calculated.
- the amount of secreted protein per gram of bacterial cell dry weight was approximately 36 times higher than that of the Control strain of Comparative Example 1.
- the gene encoding the cell wall-pyruvate modifying enzyme ( The slr0688 suppressed strain of Example 2, in which the expression of slr0688) was suppressed, had a higher amount of protein secreted into the culture supernatant. This is thought to be related to the fact that the number of covalently bonded sugar chains on the cell wall surface is greater than the number of SLH domain-retaining outer membrane proteins (Slr1841) in the outer membrane.
- the modified cyanobacteria and the method for producing the same according to the present embodiment can provide modified cyanobacteria with greatly improved protein secretion productivity.
- IAA iodoacetamide
- cysteine was added at a final concentration of 60 mM, and the mixture was allowed to stand at room temperature for 10 minutes.
- 400 ng of trypsin was added and left standing at 37°C overnight to fragment the protein into peptide fragments.
- TFA Trifluoroacetic Acid
- the sample was dried using a centrifugal evaporator. Thereafter, 3% acetonitrile and 0.1% formic acid were added, and the sample was dissolved using a closed ultrasonic crusher. The peptide concentration was adjusted to 200 ng/ ⁇ L.
- the cells were cultured with shaking for 3 days at a light intensity of 100 ⁇ mol/m 2 /s and at 30°C.
- the culture solution was centrifuged at 2,500 g for 10 minutes at room temperature, and the culture supernatant was filtered through Millex-GV Syringe Filter Unit, 0.22 ⁇ m (Millipore). This filtered supernatant was subjected to amino acid analysis by LC-MS/MS.
- FIG. 11 is a diagram showing the results of amino acid analysis by LC-MS/MS of culture supernatants of two types of cyanobacteria.
- Figure 11 shows the TIC (total ion chromatogram) of the culture supernatant of outer membrane exfoliating cyanobacteria and the culture supernatant of cyanobacteria wild strain, where A is the peak derived from tyrosine and B is the peak derived from isoleucine. C is a peak derived from leucine, and D is a peak derived from phenylalanine.
- the peaks A to D are almost not detected in the culture supernatant of wild-type cyanobacteria, but are detected in the culture supernatant of outer membrane-exfoliating cyanobacteria.
- cyanobacteria that had detached from the cell wall were cultured, it was confirmed that they were characteristically secreted into the culture supernatant.
- Table 5 also shows the measurement results of the concentrations of the four amino acids mentioned above. As shown in Table 5, it was confirmed that isoleucine, leucine, tyrosine, and phenylalanine were present in the culture supernatant of outer membrane-exfoliating cyanobacteria at a concentration of approximately 130 nM or more and 320 nM or less. On the other hand, it was confirmed that these four amino acids were hardly present in the culture supernatant of the cyanobacterial wild strain.
- the modified cyanobacteria of the present disclosure secretes proteins present inside the bacterial cells (in the periplasm in this case) to the outside of the bacterial cells.
- the modified cyanobacteria of the present disclosure can, for example, be genetically modified to produce other proteins instead of the proteins identified above (i.e., proteins originally produced within the bacterial body), Desired proteins can be efficiently produced.
- cyanobacteria have a high photosynthetic ability, so by culturing them with light, water, air, and small amounts of inorganic substances, they can easily obtain the necessary proteins when needed. There is no need to use complicated equipment. Furthermore, proteins tend to lose their functions when processed into, for example, supplements. Therefore, according to the modified cyanobacteria of the present disclosure, it is possible to provide proteins while maintaining their functions. Due to the above advantages, the modified cyanobacteria of the present disclosure are expected to be applied in various fields.
- Table 5 also lists the concentrations of four amino acids characteristically contained in the culture supernatant of outer membrane-exfoliating cyanobacteria as determined by LC-MS/MS analysis. These four amino acids were hardly present in the culture supernatant of the cyanobacterial wild strain. Therefore, it was confirmed that if the concentration of any of these four amino acids in the culture supernatant exceeds a threshold value (e.g., 100 nM), it can be determined that the outer membrane of cyanobacteria has detached from the cell wall. Ta.
- a threshold value e.g. 100 nM
- the total amount of proteins involved in the binding between the outer membrane and the cell wall in cyanobacteria is suppressed to 30% or more and 70% or less of the total amount of the protein in the parent strain, so that the outer membrane and the cell wall are bonded together.
- the binding is weakened and a protein produced within the bacterial cell leaks out of the bacterial cell
- the present disclosure is not limited thereto.
- the bond between the outer membrane and the cell wall may be weakened, or the outer membrane may be weakened.
- the outer membrane may be weakened by adding an enzyme or a drug to the culture solution of cyanobacteria.
- the present disclosure it is possible to easily determine whether or not the outer membrane of cyanobacteria has peeled off from the cell wall, so it is possible to easily determine whether the cyanobacteria are in a state suitable for substance production, and whether the cyanobacteria are in a state suitable for substance production even during the culture process. It is possible to quickly determine whether or not a suitable state is being maintained. Therefore, according to the present disclosure, it is possible to select and use cyanobacteria in a state suitable for material production, thereby making it possible to reliably improve material productivity.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Sustainable Development (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Botany (AREA)
- Cell Biology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present disclosure provides a method for determining outer membrane detachment in a cyanobacterium that makes it possible to conveniently determine whether or not the outer membrane of the cyanobacterium has been detached from the cell wall. This method for determining outer membrane detachment in a cyanobacterium includes: a measurement step (S01) for measuring the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine and phenylalanine in the culture supernatant of the cyanobacterium; and a determination step (S02) for determining whether or not the outer membrane of the cyanobacterium has been detached from the cell wall on the basis of the concentration of the at least one amino acid measured in the measurement step.
Description
本開示は、シアノバクテリアの外膜剥離の判定方法、シアノバクテリアの外膜剥離の判定装置、及び、プログラムに関する。
The present disclosure relates to a method for determining outer membrane detachment of cyanobacteria, an apparatus for determining outer membrane detachment of cyanobacteria, and a program.
シアノバクテリア及び藻類等の光合成微生物は、低環境負荷な次世代の物質生産系を実現するためのツールとして注目を集めている。光合成微生物による物質生産は、常温常圧の環境下で行われ、光をエネルギー源として水と空気中の二酸化炭素(CO2)とを利用して行われる。さらに、近年の遺伝子操作技術の発展によって、遺伝子組み換え光合成微生物を用いて幅広い化合物種の生産が可能になったことから、光合成微生物による物質生産は、カーボンニュートラルを実現可能な次世代の技術として期待されている。
Photosynthetic microorganisms such as cyanobacteria and algae are attracting attention as tools for realizing next-generation material production systems with low environmental impact. Substance production by photosynthetic microorganisms is carried out in an environment of normal temperature and pressure, using water and carbon dioxide (CO 2 ) in the air with light as an energy source. Furthermore, with the recent development of genetic engineering technology, it has become possible to produce a wide range of chemical compounds using genetically modified photosynthetic microorganisms.Therefore, substance production using photosynthetic microorganisms is expected to be a next-generation technology that can achieve carbon neutrality. has been done.
このような光合成微生物による物質生産として、例えば、光合成微生物の代謝又は物質の生合成に関与する遺伝子を改変した遺伝子改変株による物質の生産性を向上させる技術が開示されている。当該技術により、例えば、スクロース(非特許文献1)、イソブタノール(非特許文献2)、脂肪酸(非特許文献3)、アミノ酸(非特許文献4)、及び、タンパク質(非特許文献5)等の生産性が向上される。また、例えば、シアノバクテリアの外膜を細胞壁から剥離させた遺伝子改変株によるタンパク質の生産性を向上させる技術も開示されている(特許文献1)。
As for the production of substances by such photosynthetic microorganisms, for example, techniques have been disclosed to improve the productivity of substances using genetically modified strains in which genes involved in the metabolism or biosynthesis of substances of photosynthetic microorganisms are modified. With this technology, for example, sucrose (Non-patent document 1), isobutanol (Non-patent document 2), fatty acids (Non-patent document 3), amino acids (Non-patent document 4), and proteins (Non-patent document 5), etc. Productivity is improved. Furthermore, for example, a technique for improving protein productivity using a genetically modified strain of cyanobacteria in which the outer membrane is peeled from the cell wall has also been disclosed (Patent Document 1).
しかしながら、上記の従来技術では、光合成微生物の遺伝子改変株の細胞の状態が効率的な物質生産に適した状態であるか否かを、例えば、細胞の電子顕微鏡観察、又は、煩雑な生化学的分析手法を用いて判定する必要があり、手間がかかる。
However, with the above-mentioned conventional technology, whether or not the state of the cells of the genetically modified strain of photosynthetic microorganisms is suitable for efficient substance production can be determined by, for example, electron microscopic observation of the cells or complicated biochemical methods. It is necessary to make a determination using an analytical method, which is time-consuming.
そこで、本開示は、シアノバクテリアの細胞の状態が効率的な物質生産に適した状態として、外膜が細胞壁から剥離しているか否かを簡便に判定することができるシアノバクテリアの外膜剥離の判定方法、シアノバクテリアの外膜剥離の判定装置、及び、プログラムを提供する。
Therefore, the present disclosure provides a method for determining whether or not the outer membrane of cyanobacteria has peeled off from the cell wall, in which it is possible to easily determine whether or not the outer membrane has peeled off from the cell wall, as the state of the cyanobacteria cells is suitable for efficient substance production. Provided are a determination method, a determination device for outer membrane detachment of cyanobacteria, and a program.
本開示の一態様に係るシアノバクテリアの外膜剥離の判定方法は、シアノバクテリアの培養上清中のイソロイシン、ロイシン、チロシン、及びフェニルアラニンからなる群から選択される少なくとも1つのアミノ酸の濃度を測定する測定ステップと、前記測定ステップで測定された前記少なくとも1つのアミノ酸の濃度に基づいて、前記シアノバクテリアの外膜が細胞壁から剥離しているか否かを判定する判定ステップと、を含む。
A method for determining outer membrane detachment of cyanobacteria according to one aspect of the present disclosure includes measuring the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of cyanobacteria. The method includes a measuring step, and a determining step of determining whether the outer membrane of the cyanobacterium has peeled off from the cell wall based on the concentration of the at least one amino acid measured in the measuring step.
また、本開示の一態様に係るシアノバクテリアの外膜剥離の判定装置は、シアノバクテリアの培養上清中のイソロイシン、ロイシン、チロシン、及びフェニルアラニンからなる群から選択される少なくとも1つのアミノ酸の濃度を測定する測定部と、前記測定部により測定された前記少なくとも1つのアミノ酸の濃度に基づいて、前記シアノバクテリアの外膜が細胞壁から剥離しているか否かを判定する判定部と、を備える。
In addition, the apparatus for determining outer membrane detachment of cyanobacteria according to one aspect of the present disclosure determines the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of cyanobacteria. The method includes a measuring section that performs measurement, and a determining section that determines whether or not the outer membrane of the cyanobacteria is peeled from the cell wall based on the concentration of the at least one amino acid measured by the measuring section.
また、本開示の一態様に係るプログラムは、シアノバクテリアの培養上清中のイソロイシン、ロイシン、チロシン、及びフェニルアラニンからなる群から選択される少なくとも1つのアミノ酸の濃度に基づいて、前記シアノバクテリアの外膜が細胞壁から剥離しているか否かを判定する方法を、コンピュータに実行させるためのプログラムである。
Further, the program according to one aspect of the present disclosure is configured to determine whether the cyanobacterium is out of the cyanobacteria based on the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of the cyanobacteria. This is a program that causes a computer to execute a method for determining whether or not a membrane has detached from a cell wall.
本開示のシアノバクテリアの外膜剥離の判定方法、シアノバクテリアの外膜剥離の判定装置、及び、プログラムによれば、シアノバクテリアの外膜が細胞壁から剥離しているか否かを簡便に判定することができる。
According to the method for determining outer membrane detachment of cyanobacteria, the apparatus for determining outer membrane detachment of cyanobacteria, and the program of the present disclosure, it is possible to easily determine whether the outer membrane of cyanobacteria has detached from the cell wall. Can be done.
(本開示の基礎となった知見)
シアノバクテリア及び藻類などの光合成微生物は、低環境負荷な次世代の物質生産系を実現するためのツールとして注目を集めている。中でも、シアノバクテリアを用いた物質生産においては、効率的に、かつ、簡便に、シアノバクテリアの細胞、及び、その培養の状態を評価及び管理する手法が求められている。 (Findings that formed the basis of this disclosure)
Photosynthetic microorganisms such as cyanobacteria and algae are attracting attention as tools for realizing next-generation material production systems with low environmental impact. In particular, in the production of substances using cyanobacteria, there is a need for a method to efficiently and easily evaluate and manage cyanobacterial cells and the state of their culture.
シアノバクテリア及び藻類などの光合成微生物は、低環境負荷な次世代の物質生産系を実現するためのツールとして注目を集めている。中でも、シアノバクテリアを用いた物質生産においては、効率的に、かつ、簡便に、シアノバクテリアの細胞、及び、その培養の状態を評価及び管理する手法が求められている。 (Findings that formed the basis of this disclosure)
Photosynthetic microorganisms such as cyanobacteria and algae are attracting attention as tools for realizing next-generation material production systems with low environmental impact. In particular, in the production of substances using cyanobacteria, there is a need for a method to efficiently and easily evaluate and manage cyanobacterial cells and the state of their culture.
そこで本発明者は、物質の生産に使用する光合成微生物として、シアノバクテリアに着目した。シアノバクテリア(藍色細菌又は藍藻とも呼ばれる)は、真正細菌の一群であり、光合成により水を分解して酸素を産生し、得たエネルギーにより空気中のCO2を固定する。なお、シアノバクテリアは、種によっては、空気中の窒素(N2)も固定できる。また、シアノバクテリアの特性として、生育が早く光利用効率が高いことが知られており、加えてその他の藻類種と比較して遺伝子操作が容易であるため、光合成微生物の中でもシアノバクテリアの利用に関して活発な研究開発が行われている。上述のように、シアノバクテリア(より具体的には、改変シアノバクテリア)による物質生産の例として、スクロース(非特許文献1)、イソブタノール(非特許文献2)、脂肪酸(非特許文献3)、アミノ酸(非特許文献4)、及び、タンパク質(非特許文献5)等の生産が報告されている。
Therefore, the present inventors focused on cyanobacteria as photosynthetic microorganisms used for substance production. Cyanobacteria (also called cyanobacteria or blue-green algae) are a group of eubacteria that decompose water through photosynthesis to produce oxygen, and use the energy obtained to fix CO2 in the air. Note that, depending on the species, cyanobacteria can also fix nitrogen (N 2 ) in the air. In addition, cyanobacteria are known to grow quickly and have high light utilization efficiency, and in addition, they are easier to genetically manipulate than other algae species. Active research and development is underway. As mentioned above, examples of substance production by cyanobacteria (more specifically, modified cyanobacteria) include sucrose (Non-Patent Document 1), isobutanol (Non-Patent Document 2), fatty acids (Non-Patent Document 3), Production of amino acids (Non-Patent Document 4), proteins (Non-Patent Document 5), etc. has been reported.
例えば、非特許文献1には、Synechococcus elongatusのスクロース生合成経路に関与する遺伝子が改変された遺伝子改変株によるスクロースの生産性が野生株よりも向上したことが開示されている。
For example, Non-Patent Document 1 discloses that a genetically modified strain of Synechococcus elongatus in which genes involved in the sucrose biosynthesis pathway have been modified has improved sucrose productivity compared to the wild strain.
また、例えば、非特許文献2には、Synechococcus elongatus PCC7942を遺伝子操作して作製された、リブロース-1,5-ビスリン酸カルボキシラーゼ/オキシダーゼ(Rubisco)を過剰発現させた遺伝子改変株によるイソブタノールの生産性が野生株よりも向上したことが開示されている。
For example, Non-Patent Document 2 describes the production of isobutanol using a genetically modified strain that overexpresses ribulose-1,5-bisphosphate carboxylase/oxidase (Rubisco), which was created by genetically engineering Synechococcus elongatus PCC7942. It has been disclosed that the sex of the strain was improved over that of the wild strain.
また、例えば、非特許文献3には、Synechocystis sp. PCC6803にアシル-アシル輸送タンパク質チオエステラーゼ遺伝子を導入した遺伝子改変株による脂肪酸の生産性が野生株よりも向上したことが開示されている。
For example, Non-Patent Document 3 discloses that a genetically modified strain of Synechocystis sp. PCC6803 in which an acyl-acyl transport protein thioesterase gene has been introduced has improved fatty acid productivity compared to the wild strain.
また、非特許文献4には、Synechocystis sp. PCC 6803株の野生株にランダム突然変異誘発及びアミノ酸類自体を使用した選択に供して単離されたトリプトファン過剰産生株によるトリプトファンの生産性が野生株よりも向上したことが開示されている。
In addition, Non-Patent Document 4 describes that the tryptophan productivity of a tryptophan overproducing strain isolated by subjecting the wild strain of Synechocystis sp. PCC 6803 to random mutagenesis and selection using amino acids itself It has been disclosed that this has been improved.
また、非特許文献5では、藻類の一種であるChlamydomonas reinhardtiiの葉緑体を遺伝子操作して、コレラ毒素(CtxB)のβサブユニットに融合した25kDaのPlasmodium falciparum表面タンパク質(Pfs25)からなるキメラタンパク質(CtxB-Pfs25)を細胞内で産生させた遺伝子改変藻類を、マラリア用の経口ワクチンとして使用可能なことが開示されています。
In addition, in Non-Patent Document 5, the chloroplast of Chlamydomonas reinhardtii, a type of algae, was genetically engineered to produce a chimeric protein consisting of a 25 kDa Plasmodium falciparum surface protein (Pfs25) fused to the β subunit of cholera toxin (CtxB). It has been disclosed that genetically modified algae that produce (CtxB-Pfs25) in cells can be used as an oral vaccine for malaria.
しかしながら、上述した従来技術では、光合成微生物の遺伝子改変株の細胞内で目的の物質が産生されても、細胞外に分泌されずに蓄積する、又は、細胞外に効果的に分泌されにくいため、細胞を破砕して目的の物質を回収する必要があり、物質の生産に手間がかかる。また、細胞内には様々な物質が存在するため、それらの物質を除去して、目的の物質を精製することが必要となる場合があり、目的の物質の回収率が低くなる。また、目的の物質の生産の度に、新たな遺伝子改変株を準備する必要があるため、手間がかかり、生産コストも嵩む。このように、上述した従来技術では、光合成微生物による物質の生産効率は未だ低いレベルであり、より生産効率の高い技術の開発が望まれている。
However, in the above-mentioned conventional technology, even if the target substance is produced within the cells of the genetically modified strain of the photosynthetic microorganism, it accumulates without being secreted outside the cell, or it is difficult to secrete it effectively outside the cell. It is necessary to collect the desired substance by crushing the cells, which takes time and effort to produce the substance. Furthermore, since various substances exist within cells, it may be necessary to remove these substances and purify the target substance, which lowers the recovery rate of the target substance. Furthermore, each time a target substance is produced, it is necessary to prepare a new genetically modified strain, which is time-consuming and increases production costs. As described above, in the conventional techniques described above, the production efficiency of substances by photosynthetic microorganisms is still at a low level, and there is a desire to develop a technique with higher production efficiency.
シアノバクテリアの細胞壁及び細胞膜の構造は、細胞内で産生された物質の透過性が低く、細胞膜及び細胞壁の構造を人為的に改変して物質の分泌生産能力を向上させることは容易ではない。特に、タンパク質などの分子量の大きい物質(高分子化合物ともいう)は、アミノ酸などの比較的分子量の小さい物質(低分子化合物ともいう)とは異なり、細胞外に分泌されにくい。
The structure of the cell wall and cell membrane of cyanobacteria has low permeability to substances produced within the cell, and it is not easy to artificially modify the structure of the cell membrane and cell wall to improve the ability to secrete and produce substances. In particular, substances with large molecular weights such as proteins (also referred to as high molecular weight compounds) are difficult to secrete outside cells, unlike substances with relatively small molecular weights such as amino acids (also referred to as low molecular weight compounds).
しかしながら、シアノバクテリアの外膜と細胞壁との接着に関与し、かつ、細胞表層の構造的安定性に寄与するslr1841遺伝子又はslr0688遺伝子を欠損させると、シアノバクテリア細胞の増殖能力が失われることが記載されている(非特許文献6:木幡光, Studies on molecular basis of cyanobacterial outer membrane function and its evolutionary relationship with primitive chloroplasts, 博士論文,[オンライン], 2018.03.27,インターネット:<URL: http://hdl.handle.net/10097/00122689>、及び、非特許文献7:児島征司, 葉緑体表層膜で機能する細菌由来の膜安定化機構と物質透過機構の解明と応用, 科研費, [オンライン], 2018.04.23, インターネット:<URL: https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H02117>)。
However, it has been reported that deletion of the slr1841 gene or slr0688 gene, which is involved in adhesion between the outer membrane and cell wall of cyanobacteria and contributes to the structural stability of the cell surface, results in loss of the growth ability of cyanobacterial cells. (Non-Patent Document 6: Hikaru Kobata, Studies on molecular basis of cyanobacterial outer membrane function and its evolutionary relationship with primitive chloroplasts, PhD thesis, [Online], 2018.03.27, Internet: <URL: http://hdl .handle.net/10097/00122689>, and Non-Patent Document 7: Seiji Kojima, Elucidation and application of membrane stabilization and substance permeation mechanisms derived from bacteria that function in the chloroplast surface membrane, Grants-in-Aid for Scientific Research, [Online] , 2018.04.23, Internet: <URL: https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H02117>).
上記課題を解決する技術として、特許文献1には、シアノバクテリアの外膜と細胞壁との結合に関与するタンパク質(以下、結合関連タンパク質ともいう)の機能が抑制又は喪失された改変シアノバクテリア及び当該改変シアノバクテリアによるタンパク質の製造方法が開示されている。特許文献1に記載の技術では、当該改変シアノバクテリアは、細胞の増殖能力を維持したまま、シアノバクテリアの外膜が細胞壁から剥離しているため、細胞を培養することで、細胞内で産生されたタンパク質が細胞外へ分泌され、効率良くタンパク質を製造することができる。
As a technique for solving the above problem, Patent Document 1 describes a modified cyanobacterium in which the function of a protein involved in binding between the outer membrane of cyanobacteria and the cell wall (hereinafter also referred to as binding-related protein) is suppressed or lost, and A method for producing proteins using modified cyanobacteria is disclosed. In the technology described in Patent Document 1, the outer membrane of the cyanobacterium is peeled off from the cell wall while the modified cyanobacterium maintains its ability to proliferate. The resulting protein is secreted to the outside of the cell, allowing for efficient protein production.
しかしながら、上記の従来技術では、改変シアノバクテリアの細胞の状態が効率的な物質生産に適した状態であるか否かを、細胞の電子顕微鏡観察、又は、煩雑な生化学的分析手法を用いて判定する必要があるため、手間がかかる。
However, in the above-mentioned conventional technology, it is difficult to determine whether or not the cell state of modified cyanobacteria is suitable for efficient substance production by observing cells with an electron microscope or by using complicated biochemical analysis methods. It is time-consuming because it requires a determination.
また、シアノバクテリアの外膜が細胞壁から剥離すると物質の生産性が向上することがわかっているが、外膜が剥離しているか否かについては、電子顕微鏡観察、及び、煩雑な生化学分析手法を用いて判定する必要があり、現時点で簡便な手法は開発されていない。
In addition, it is known that the productivity of substances improves when the outer membrane of cyanobacteria is detached from the cell wall, but whether or not the outer membrane is detached requires electron microscopy and complicated biochemical analysis techniques. It is necessary to make a determination using , and no simple method has been developed at this time.
そこで、本発明者は、シアノバクテリアの細胞の状態が効率的な物質生産に適した状態として、外膜が細胞壁から剥離しているか否かを簡便に判定する方法を鋭意検討した。その結果、シアノバクテリアの培養上清中の特定のアミノ酸の濃度に基づいて、シアノバクテリアの外膜が細胞壁から剥離しているか否かを簡便に判定することができることを見出した。したがって、本開示によれば、効率的な物質生産に適したシアノバクテリアであるか否かを判定することができるため、シアノバクテリアによる物質の生産性を向上することができる。
Therefore, the present inventors have intensively investigated a method for easily determining whether or not the outer membrane has peeled off from the cell wall, assuming that the state of the cyanobacterial cells is suitable for efficient substance production. As a result, they found that it is possible to easily determine whether the outer membrane of cyanobacteria has detached from the cell wall based on the concentration of a specific amino acid in the culture supernatant of cyanobacteria. Therefore, according to the present disclosure, it is possible to determine whether or not cyanobacteria are suitable for efficient substance production, and thus it is possible to improve the productivity of substances by cyanobacteria.
(本開示の概要)
本開示の一態様の概要は、以下の通りである。 (Summary of this disclosure)
An overview of one aspect of the present disclosure is as follows.
本開示の一態様の概要は、以下の通りである。 (Summary of this disclosure)
An overview of one aspect of the present disclosure is as follows.
本開示の一態様に係るシアノバクテリアの外膜剥離の判定方法は、シアノバクテリアの培養上清中のイソロイシン、ロイシン、チロシン、及びフェニルアラニンからなる群から選択される少なくとも1つのアミノ酸の濃度を測定する測定ステップと、前記測定ステップで測定された前記少なくとも1つのアミノ酸の濃度に基づいて、前記シアノバクテリアの外膜が細胞壁から剥離しているか否かを判定する判定ステップと、を含む。
A method for determining outer membrane detachment of cyanobacteria according to one aspect of the present disclosure includes measuring the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of cyanobacteria. The method includes a measuring step, and a determining step of determining whether the outer membrane of the cyanobacterium has peeled off from the cell wall based on the concentration of the at least one amino acid measured in the measuring step.
これにより、シアノバクテリアの外膜剥離の判定方法は、シアノバクテリアの培養上清を採取して培養上清中の上記の4つのアミノ酸からなる群から選択される少なくとも1つのアミノ酸の濃度を測定すればよいため、シアノバクテリアの外膜剥離を簡便に判定することができる。
Accordingly, the method for determining outer membrane detachment of cyanobacteria involves collecting the culture supernatant of cyanobacteria and measuring the concentration of at least one amino acid selected from the group consisting of the above four amino acids in the culture supernatant. Therefore, peeling of the outer membrane of cyanobacteria can be easily determined.
例えば、本開示の一態様に係るシアノバクテリアの外膜剥離の判定方法は、前記測定ステップでは、イソロイシン、ロイシン、チロシン、及び、フェニルアラニンの4つのアミノ酸の濃度を測定し、前記判定ステップでは、前記4つのアミノ酸の濃度に基づいて、前記シアノバクテリアの前記外膜が前記細胞壁から剥離しているか否かを判定してもよい。
For example, in the method for determining outer membrane detachment of cyanobacteria according to one aspect of the present disclosure, in the measuring step, the concentration of four amino acids, isoleucine, leucine, tyrosine, and phenylalanine, is measured; Based on the concentrations of the four amino acids, it may be determined whether the outer membrane of the cyanobacterium is detached from the cell wall.
これにより、シアノバクテリアの外膜剥離の判定方法は、シアノバクテリアの培養上清中の上記の4つのアミノ酸の濃度を測定し、それらのアミノ酸の濃度に基づいてシアノバクテリアの外膜剥離を判定するため、より精度良く、シアノバクテリアの外膜剥離を判定することができる。
As a result, the method for determining outer membrane detachment of cyanobacteria measures the concentration of the above four amino acids in the culture supernatant of cyanobacteria, and determines outer membrane detachment of cyanobacteria based on the concentration of these amino acids. Therefore, outer membrane detachment of cyanobacteria can be determined with higher accuracy.
例えば、本開示の一態様に係るシアノバクテリアの外膜剥離の判定方法は、前記判定ステップでは、前記少なくとも1つのアミノ酸の濃度の少なくとも1つが閾値以上である場合、前記シアノバクテリアの前記外膜が前記細胞壁から剥離していると判定し、前記少なくとも1つのアミノ酸の濃度の全てが前記閾値未満である場合、前記シアノバクテリアの前記外膜が前記細胞壁から剥離していないと判定してもよい。
For example, in the method for determining outer membrane detachment of cyanobacteria according to one aspect of the present disclosure, in the determination step, if at least one of the concentrations of the at least one amino acid is equal to or higher than a threshold value, the outer membrane of the cyanobacteria is removed. If it is determined that the outer membrane of the cyanobacterium has detached from the cell wall, and all of the concentrations of the at least one amino acid are below the threshold, it may be determined that the outer membrane of the cyanobacterium has not detached from the cell wall.
これにより、シアノバクテリアの外膜剥離の判定方法は、測定された少なくとも1つのアミノ酸のうち1つでも濃度が閾値を超えれば、シアノバクテリアの外膜が剥離していると判定するため、シアノバクテリアの培養状態によるブレが発生しても、精度良く、シアノバクテリアの外膜剥離を判定することができる。
As a result, the method for determining outer membrane detachment of cyanobacteria is that if the concentration of even one of the at least one amino acid measured exceeds a threshold value, it is determined that the outer membrane of cyanobacteria has detached. Even if fluctuations occur due to the culture conditions, it is possible to accurately determine whether the outer membrane of cyanobacteria has peeled off.
例えば、本開示の一態様に係るシアノバクテリアの外膜剥離の判定方法では、前記閾値は100nMであってもよい。
For example, in the method for determining outer membrane detachment of cyanobacteria according to one aspect of the present disclosure, the threshold value may be 100 nM.
これにより、シアノバクテリアの外膜剥離の判定方法は、外膜が細胞壁から剥離したシアノバクテリアの培養上清中に含まれる上記の4つのアミノ酸からなる群から選択される少なくとも1つのアミノ酸の濃度が100nMを超えるか否かで、シアノバクテリアの外膜剥離を定量的に簡便に判定することができる。
Accordingly, the method for determining outer membrane detachment of cyanobacteria is based on the determination of the concentration of at least one amino acid selected from the group consisting of the above four amino acids contained in the culture supernatant of cyanobacteria whose outer membrane has detached from the cell wall. Detachment of the outer membrane of cyanobacteria can be easily and quantitatively determined by whether or not it exceeds 100 nM.
また、本開示の一態様に係るシアノバクテリアの外膜剥離の判定装置は、シアノバクテリアの培養上清中のイソロイシン、ロイシン、チロシン、及びフェニルアラニンからなる群から選択される少なくとも1つのアミノ酸の濃度を測定する測定部と、前記測定部により測定された前記少なくとも1つのアミノ酸の濃度に基づいて、前記シアノバクテリアの外膜が細胞壁から剥離しているか否かを判定する判定部と、を備える。
In addition, the apparatus for determining outer membrane detachment of cyanobacteria according to one aspect of the present disclosure determines the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of cyanobacteria. The method includes a measuring section that performs measurement, and a determining section that determines whether or not the outer membrane of the cyanobacteria is peeled from the cell wall based on the concentration of the at least one amino acid measured by the measuring section.
これにより、シアノバクテリアの外膜剥離の判定装置は、シアノバクテリアの培養上清中の上記の4つのアミノ酸からなる群から選択される少なくとも1つのアミノ酸の濃度を測定すればよいため、シアノバクテリアの外膜剥離を簡便に判定することができる。
As a result, the apparatus for determining cyanobacterial outer membrane detachment only needs to measure the concentration of at least one amino acid selected from the group consisting of the above four amino acids in the cyanobacterial culture supernatant. Adventitial detachment can be easily determined.
また、本開示の一態様に係るプログラムは、シアノバクテリアの培養上清中のイソロイシン、ロイシン、チロシン、及びフェニルアラニンからなる群から選択される少なくとも1つのアミノ酸の濃度に基づいて、前記シアノバクテリアの外膜が細胞壁から剥離しているか否かを判定する方法を、コンピュータに実行させるためのプログラムである。
Further, the program according to one aspect of the present disclosure is configured to determine whether the cyanobacterium is out of the cyanobacteria based on the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of the cyanobacteria. This is a program that causes a computer to execute a method for determining whether or not a membrane has detached from a cell wall.
これにより、プログラムは、シアノバクテリアの培養上清中の上記の4つのアミノ酸からなる群から選択される少なくとも1つのアミノ酸の濃度に基づいて、シアノバクテリアの外膜が細胞壁から剥離しているか否かを、コンピュータに判定させるため、当該コンピュータは、簡便に、シアノバクテリアの外膜剥離を判定することができる。
Thereby, the program determines whether or not the outer membrane of cyanobacteria has detached from the cell wall, based on the concentration of at least one amino acid selected from the group consisting of the above four amino acids in the culture supernatant of cyanobacteria. Since the computer determines this, the computer can easily determine outer membrane detachment of cyanobacteria.
以下、実施の形態について、図面を参照しながら具体的に説明する。
Hereinafter, embodiments will be specifically described with reference to the drawings.
なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、材料、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
Note that all embodiments described below are comprehensive or specific examples. The numerical values, materials, steps, order of steps, etc. shown in the following embodiments are merely examples, and do not limit the present disclosure. Further, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the most significant concept will be described as arbitrary constituent elements.
また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化される場合がある。
Furthermore, each figure is not necessarily strictly illustrated. In each figure, substantially the same configurations are denoted by the same reference numerals, and overlapping explanations may be omitted or simplified.
また、以下において、数値範囲は、厳密な意味のみを表すのではなく、実質的に同等な範囲、例えば、タンパク質の量(例えば、数又は濃度等)又はその範囲を計測することなどを含む。
In addition, in the following, the numerical range does not represent only a strict meaning, but includes a substantially equivalent range, for example, measuring the amount of protein (for example, number or concentration, etc.) or the range thereof.
また、本明細書では、菌体と細胞とは、いずれも1つのシアノバクテリアの個体を表している。
Furthermore, in this specification, both a bacterial body and a cell represent one individual cyanobacterium.
(実施の形態)
[1.定義]
本明細書において、塩基配列及びアミノ酸配列の同一性は、BLAST(Basic Local Alignment Search Tool)アルゴリズムによって計算される。具体的には、NCBI(National Center for Biotechnology Information)(https://blast.ncbi.nlm.nih.gov/Blast.cgi)のウェブサイトで利用できるBLASTプログラムにてペアワイズ解析を行うことにより算出される。シアノバクテリアの遺伝子及び当該遺伝子がコードするタンパク質に関する情報は、例えば上述のNCBIデータベース及びCyanobase(http://genome.microbedb.jp/cyanobase/)において公開されている。これらのデータベースから、目的のタンパク質のアミノ酸配列及びそれらのタンパク質をコードする遺伝子の塩基配列を取得することができる。 (Embodiment)
[1. Definition]
In this specification, the identity of base sequences and amino acid sequences is calculated by the BLAST (Basic Local Alignment Search Tool) algorithm. Specifically, it was calculated by performing pairwise analysis using the BLAST program available on the website of NCBI (National Center for Biotechnology Information) (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Ru. Information regarding cyanobacterial genes and proteins encoded by the genes is published, for example, in the NCBI database mentioned above and Cyanobase (http://genome.microbedb.jp/cyanobase/). From these databases, the amino acid sequences of proteins of interest and the base sequences of genes encoding those proteins can be obtained.
[1.定義]
本明細書において、塩基配列及びアミノ酸配列の同一性は、BLAST(Basic Local Alignment Search Tool)アルゴリズムによって計算される。具体的には、NCBI(National Center for Biotechnology Information)(https://blast.ncbi.nlm.nih.gov/Blast.cgi)のウェブサイトで利用できるBLASTプログラムにてペアワイズ解析を行うことにより算出される。シアノバクテリアの遺伝子及び当該遺伝子がコードするタンパク質に関する情報は、例えば上述のNCBIデータベース及びCyanobase(http://genome.microbedb.jp/cyanobase/)において公開されている。これらのデータベースから、目的のタンパク質のアミノ酸配列及びそれらのタンパク質をコードする遺伝子の塩基配列を取得することができる。 (Embodiment)
[1. Definition]
In this specification, the identity of base sequences and amino acid sequences is calculated by the BLAST (Basic Local Alignment Search Tool) algorithm. Specifically, it was calculated by performing pairwise analysis using the BLAST program available on the website of NCBI (National Center for Biotechnology Information) (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Ru. Information regarding cyanobacterial genes and proteins encoded by the genes is published, for example, in the NCBI database mentioned above and Cyanobase (http://genome.microbedb.jp/cyanobase/). From these databases, the amino acid sequences of proteins of interest and the base sequences of genes encoding those proteins can be obtained.
[2.シアノバクテリアの外膜剥離の判定装置]
続いて、本実施の形態に係るシアノバクテリアの外膜剥離の判定装置(以下、単に、判定装置ともいう)について説明する。図1は、本実施の形態に係るシアノバクテリアの外膜剥離の判定装置の機能構成の一例を示すブロック図である。 [2. Device for determining outer membrane detachment of cyanobacteria]
Next, a cyanobacterial outer membrane exfoliation determination device (hereinafter also simply referred to as a determination device) according to the present embodiment will be described. FIG. 1 is a block diagram showing an example of the functional configuration of a cyanobacterial outer membrane exfoliation determination apparatus according to the present embodiment.
続いて、本実施の形態に係るシアノバクテリアの外膜剥離の判定装置(以下、単に、判定装置ともいう)について説明する。図1は、本実施の形態に係るシアノバクテリアの外膜剥離の判定装置の機能構成の一例を示すブロック図である。 [2. Device for determining outer membrane detachment of cyanobacteria]
Next, a cyanobacterial outer membrane exfoliation determination device (hereinafter also simply referred to as a determination device) according to the present embodiment will be described. FIG. 1 is a block diagram showing an example of the functional configuration of a cyanobacterial outer membrane exfoliation determination apparatus according to the present embodiment.
図1に示されるように、判定装置100は、例えば、測定部110と、制御部120と、記憶部130と、入力受付部140と、表示部150とを備える。制御部120は、例えば、判定部122を備える。
As shown in FIG. 1, the determination device 100 includes, for example, a measurement section 110, a control section 120, a storage section 130, an input reception section 140, and a display section 150. The control unit 120 includes, for example, a determination unit 122.
測定部110は、例えば、シアノバクテリアの培養上清中のイソロイシン、ロイシン、チロシン、及びフェニルアラニンからなる群から選択される少なくとも1つのアミノ酸の濃度を測定する。測定部110は、培養上清中のアミノ酸の濃度を測定できればよく、従来公知のアミノ酸分析機であってもよい。測定部110は、例えば、液体クロマトグラフィー(HPLC)、液体クロマトグラフ質量分析計(LC/MS)、又は、液体クロマトグラフタンデム質量分析計(LC-MS/MS)等である。
The measurement unit 110 measures, for example, the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of cyanobacteria. The measurement unit 110 only needs to be able to measure the concentration of amino acids in the culture supernatant, and may be a conventionally known amino acid analyzer. The measurement unit 110 is, for example, a liquid chromatography (HPLC), a liquid chromatograph mass spectrometer (LC/MS), a liquid chromatograph tandem mass spectrometer (LC-MS/MS), or the like.
図示していないが、測定部110は、例えば、測定部110の動作を制御する制御部を備えており、制御部は、判定装置100の制御部120から出力される制御信号に従って、測定部110の動作を制御する。図1の例では、判定装置100は、測定部110を備えるが、測定部110を備えなくてもよい。この場合、測定部110は、測定装置であり、判定装置100は、測定装置と通信を介して接続される。
Although not shown, the measurement unit 110 includes, for example, a control unit that controls the operation of the measurement unit 110, and the control unit controls the measurement unit 110 according to a control signal output from the control unit 120 of the determination device 100. control the behavior of In the example of FIG. 1, the determination device 100 includes the measurement unit 110, but may not include the measurement unit 110. In this case, the measurement unit 110 is a measurement device, and the determination device 100 is connected to the measurement device via communication.
制御部120は、判定装置100の動作の制御を行うための情報処理を行う。制御部120は、例えば、マイクロコンピュータによって実現されるが、プロセッサ又は専用回路によって実現されてもよい。制御部120は、具体的には、判定部122を備える。判定部122は、プロセッサが上記情報処理を行うためのプログラムを実行することにより実現される。
The control unit 120 performs information processing to control the operation of the determination device 100. The control unit 120 is implemented, for example, by a microcomputer, but may also be implemented by a processor or a dedicated circuit. Specifically, the control unit 120 includes a determination unit 122. The determination unit 122 is realized by a processor executing a program for performing the above information processing.
判定部122は、測定部110により測定された少なくとも1つのアミノ酸の濃度に基づいて、シアノバクテリアの外膜が細胞壁から剥離しているか否かを判定する。例えば、判定部122の機能は、CPU(Central Processing Unit)が記憶部130に記憶されたプログラムを実行することにより実現される。判定部122の具体的な機能については、次項で説明する。
Based on the concentration of at least one amino acid measured by the measurement unit 110, the determination unit 122 determines whether the outer membrane of the cyanobacteria has peeled off from the cell wall. For example, the function of the determination unit 122 is realized by a CPU (Central Processing Unit) executing a program stored in the storage unit 130. The specific function of the determination unit 122 will be explained in the next section.
記憶部130は、制御部120が実行する制御プログラムなどが記憶される記憶装置である。記憶部130は、例えば、半導体メモリによって実現される。
The storage unit 130 is a storage device in which control programs executed by the control unit 120 and the like are stored. The storage unit 130 is realized by, for example, a semiconductor memory.
入力受付部140は、ユーザの操作入力を受け付ける。入力受付部140は、具体的には、マウス、マイクロフォン、又は、タッチパネルなどによって実現される。
The input accepting unit 140 accepts user operation input. Specifically, the input reception unit 140 is realized by a mouse, a microphone, a touch panel, or the like.
表示部150は、制御部120の制御に基づいてユーザに提示する情報を表示する表示装置である。表示部150は、液晶パネル又は有機EL(Electro Luminescence)パネルによって実現される。
The display unit 150 is a display device that displays information to be presented to the user based on the control of the control unit 120. The display unit 150 is realized by a liquid crystal panel or an organic EL (Electro Luminescence) panel.
[3.シアノバクテリアの外膜剥離の判定方法]
続いて、本実施の形態に係るシアノバクテリアの外膜剥離の判定方法について、図2A及び図2Bを参照しながら説明する。図2Aは、実施の形態に係るシアノバクテリアの外膜剥離の判定方法のフローの一例を示すフローチャートである。図2Bは、図2AのステップS02の詳細なフローを示すフローチャートである。 [3. Method for determining outer membrane detachment of cyanobacteria]
Next, a method for determining outer membrane detachment of cyanobacteria according to the present embodiment will be described with reference to FIGS. 2A and 2B. FIG. 2A is a flowchart illustrating an example of a flow of a method for determining outer membrane detachment of cyanobacteria according to an embodiment. FIG. 2B is a flowchart showing the detailed flow of step S02 in FIG. 2A.
続いて、本実施の形態に係るシアノバクテリアの外膜剥離の判定方法について、図2A及び図2Bを参照しながら説明する。図2Aは、実施の形態に係るシアノバクテリアの外膜剥離の判定方法のフローの一例を示すフローチャートである。図2Bは、図2AのステップS02の詳細なフローを示すフローチャートである。 [3. Method for determining outer membrane detachment of cyanobacteria]
Next, a method for determining outer membrane detachment of cyanobacteria according to the present embodiment will be described with reference to FIGS. 2A and 2B. FIG. 2A is a flowchart illustrating an example of a flow of a method for determining outer membrane detachment of cyanobacteria according to an embodiment. FIG. 2B is a flowchart showing the detailed flow of step S02 in FIG. 2A.
当該判定方法は、上記の判定装置により実施される。例えば、図2Aに示されるように、判定装置の測定部は、測定部に導入されたシアノバクテリアの培養上清中のイソロイシン、ロイシン、チロシン、及びフェニルアラニンからなる群から選択される少なくとも1つのアミノ酸濃度を測定する(S01)。培養上清は、本培養の開始後、所定の間隔(例えば、日単位)でサンプリングされてもよい。サンプリングは、ユーザにより手作業で行われてもよいし、自動で行われてもよい。イソロイシン、ロイシン、チロシン、及び、フェニルアラニンは、シアノバクテリアの外膜が剥離した細胞を培養する場合に特徴的に培養上清に分泌される。
The determination method is implemented by the determination device described above. For example, as shown in FIG. 2A, the measurement section of the determination device detects at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of cyanobacteria introduced into the measurement section. Measure the concentration (S01). The culture supernatant may be sampled at predetermined intervals (for example, on a daily basis) after the start of the main culture. Sampling may be performed manually by a user or may be performed automatically. Isoleucine, leucine, tyrosine, and phenylalanine are characteristically secreted into the culture supernatant when cyanobacterial cells from which the outer membrane has been peeled are cultured.
次に、判定装置の判定部は、計測部により計測された少なくとも1つのアミノ酸の濃度に基づいて、シアノバクテリアの外膜が細胞壁から剥離しているか否かを判定する(S02)。より具体的には、図2Bに示されるように、ステップS02では、判定部は、測定部により測定された少なくとも1つのアミノ酸の濃度の全てが閾値未満であるか否かを判定し(S11)、測定された少なくとも1つのアミノ酸の濃度の全てが閾値未満であると判定された場合(S11でYes)、シアノバクテリアの外膜が細胞壁から剥離していないと判定する(S12)。
Next, the determination unit of the determination device determines whether the outer membrane of the cyanobacteria has peeled off from the cell wall, based on the concentration of at least one amino acid measured by the measurement unit (S02). More specifically, as shown in FIG. 2B, in step S02, the determination unit determines whether all of the concentrations of at least one amino acid measured by the measurement unit are less than a threshold (S11). If it is determined that all of the measured concentrations of at least one amino acid are less than the threshold value (Yes in S11), it is determined that the outer membrane of the cyanobacteria has not peeled off from the cell wall (S12).
一方、判定部は、測定部により測定された少なくとも1つのアミノ酸の濃度のうち少なくとも1つが閾値以上である場合(S11でNo)、シアノバクテリアの外膜が細胞壁から剥離していると判定する(S13)。
On the other hand, if at least one of the concentrations of the at least one amino acid measured by the measurement unit is equal to or higher than the threshold (No in S11), the determination unit determines that the outer membrane of the cyanobacteria has detached from the cell wall ( S13).
なお、シアノバクテリアの外膜剥離の判定方法では、シアノバクテリアの培養上清中のイソロイシン、ロイシン、チロシン、及び、フェニルアラニンの濃度を測定する(言い換えると、定量する)ことにより、シアノバクテリアの外膜が細胞壁から剥離しているか否かを判定するが、測定対象とするアミノ酸及び生体分子(例えば、細胞内代謝産物)はこれらに限定されない。
In addition, in the method for determining outer membrane detachment of cyanobacteria, the outer membrane of cyanobacteria is determined by measuring (in other words, quantifying) the concentrations of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of cyanobacteria. However, the amino acids and biomolecules (for example, intracellular metabolites) to be measured are not limited to these.
なお、ステップS01で実行される測定方法は、アミノ酸又は生体分子を測定できる方法であればよく、例えば、液体クロマトグラフィー(HPLC)、液体クロマトグラフ質量分析計(LC/MS)、又は、液体クロマトグラフタンデム質量分析計(LC-MS/MS)等により実行される方法であってもよいまた、例えば、ステップS01で実行される測定方法は、特定のアミノ酸又は生体分子を検出するための酵素アッセイであってもよい。
Note that the measurement method executed in step S01 may be any method that can measure amino acids or biomolecules, such as liquid chromatography (HPLC), liquid chromatograph mass spectrometer (LC/MS), or liquid chromatography. For example, the measurement method performed in step S01 may be an enzyme assay for detecting a specific amino acid or biomolecule. It may be.
[4.シアノバクテリア]
シアノバクテリアは、藍藻又は藍色細菌とも呼ばれ、クロロフィルで光エネルギーを捕集し、得たエネルギーで水を電解して酸素を発生しながら光合成をおこなう原核生物の一群である。シアノバクテリアは、多様性に富んでおり、例えば、細胞形状ではSynechocystis sp. PCC 6803のような単細胞性の種及びAnabaena sp. PCC 7120のような多細胞が連なった糸状性の種がある。生育環境についても、Thermosynechococcus elongatusのような好熱性の種、Synechococcus elongatusのような海洋性の種、Synechocystisのような淡水性の種がある。また、Microcystis aeruginosaのようにガス小胞を持ち毒素を産生する種、及び、チラコイドを持たずに原形質膜に集光アンテナであるフィコビリソームと呼ばれるタンパク質を有するGloeobacter violaceusのように、独自の特徴をもつ種も多数挙げられる。 [4. cyanobacteria]
Cyanobacteria, also called blue-green algae or cyanobacteria, are a group of prokaryotes that perform photosynthesis while collecting light energy with chlorophyll and electrolyzing water to generate oxygen. Cyanobacteria are highly diverse, and include, for example, unicellular species such as Synechocystis sp.PCC 6803 and filamentous multicellular species such as Anabaena sp. PCC 7120. Regarding the growing environment, there are thermophilic species such as Thermosynechococcus elongatus, marine species such as Synechococcus elongatus, and freshwater species such as Synechocystis. In addition, species such as Microcystis aeruginosa, which has gas vesicles and produces toxins, and Gloeobacter violaceus, which does not have thylakoid but has a protein called phycobilisome, which is a light-harvesting antenna on its plasma membrane, have unique characteristics. There are many species that can be mentioned.
シアノバクテリアは、藍藻又は藍色細菌とも呼ばれ、クロロフィルで光エネルギーを捕集し、得たエネルギーで水を電解して酸素を発生しながら光合成をおこなう原核生物の一群である。シアノバクテリアは、多様性に富んでおり、例えば、細胞形状ではSynechocystis sp. PCC 6803のような単細胞性の種及びAnabaena sp. PCC 7120のような多細胞が連なった糸状性の種がある。生育環境についても、Thermosynechococcus elongatusのような好熱性の種、Synechococcus elongatusのような海洋性の種、Synechocystisのような淡水性の種がある。また、Microcystis aeruginosaのようにガス小胞を持ち毒素を産生する種、及び、チラコイドを持たずに原形質膜に集光アンテナであるフィコビリソームと呼ばれるタンパク質を有するGloeobacter violaceusのように、独自の特徴をもつ種も多数挙げられる。 [4. cyanobacteria]
Cyanobacteria, also called blue-green algae or cyanobacteria, are a group of prokaryotes that perform photosynthesis while collecting light energy with chlorophyll and electrolyzing water to generate oxygen. Cyanobacteria are highly diverse, and include, for example, unicellular species such as Synechocystis sp.
図3は、シアノバクテリアの細胞表層を模式的に示した図である。図3に示されるように、シアノバクテリアの細胞表層は、内側から順に、原形質膜(内膜1ともいう)、ペプチドグリカン2、及び細胞最外層を形成する脂質膜である外膜5で構成される。ペプチドグリカン2にはグルコサミン及びマンノサミンなどで構成される糖鎖3が共有結合しており、また、これらの共有結合型の糖鎖3にはピルビン酸が結合している(非特許文献8:Jurgens and Weckesser, 1986, J. Bacteriol., 168:568-573)。本明細書では、ペプチドグリカン2と共有結合型の糖鎖3とを含めて細胞壁4と呼ぶ。また、原形質膜(つまり、内膜1)と外膜5との間隙は、ペリプラズムと呼ばれ、タンパク質の分解又は立体構造の形成、脂質又は核酸の分解、若しくは、細胞外の栄養素の取り込み等に関与する様々な酵素が存在する。
FIG. 3 is a diagram schematically showing the cell surface layer of cyanobacteria. As shown in Figure 3, the cell surface layer of cyanobacteria is composed of, in order from the inside, a plasma membrane (also called inner membrane 1), peptidoglycan 2, and outer membrane 5, which is a lipid membrane that forms the outermost layer of the cell. Ru. Sugar chains 3 composed of glucosamine, mannosamine, etc. are covalently bonded to peptidoglycan 2, and pyruvate is bonded to these covalently bonded sugar chains 3 (Non-Patent Document 8: Jurgens and Weckesser, 1986, J. Bacteriol., 168:568-573). In this specification, the peptidoglycan 2 and the covalent sugar chain 3 are collectively referred to as a cell wall 4. In addition, the gap between the plasma membrane (that is, the inner membrane 1) and the outer membrane 5 is called the periplasm, and is used for protein decomposition or three-dimensional structure formation, lipid or nucleic acid decomposition, or the uptake of extracellular nutrients. There are various enzymes involved.
SLHドメイン保持型外膜タンパク質(例えば、図中のSlr1841)は、脂質膜(外膜5ともいう)に埋め込まれたC末端側領域と、脂質膜から突き出したN末端側のSLHドメイン7から成り、シアノバクテリア及びグラム陰性細菌の一群であるNegativicutes綱に属する細菌において広く分布している(非特許文献9:Kojima et al., 2016, Biosci. Biotech. Biochem., 10:1954-1959)。脂質膜(つまり、外膜5)に埋め込まれた領域は、親水性物質の外膜透過を可能にするためのチャネルを形成し、一方でSLHドメイン7は細胞壁4に結合する機能をもつ(非特許文献10:Kowata et al., 2017, J. Bacteriol., 199:e00371-17)。SLHドメイン7が細胞壁4に結合するためには、ペプチドグリカン2における共有結合型の糖鎖3がピルビン酸で修飾されている必要がある(非特許文献11:Kojima et al., 2016, J. Biol. Chem., 291:20198-20209)。SLHドメイン保持型外膜タンパク質6をコードする遺伝子の例としては、Synechocystis sp. PCC 6803が保持するslr1841若しくはslr1908、又はAnabaena sp. 90が保持するoprBなどが挙げられる。
The SLH domain-retaining outer membrane protein (for example, Slr1841 in the figure) consists of a C-terminal region embedded in the lipid membrane (also referred to as outer membrane 5) and an N-terminal SLH domain 7 that protrudes from the lipid membrane. It is widely distributed in cyanobacteria and bacteria belonging to the class Negativicutes, a group of Gram-negative bacteria (Non-Patent Document 9: Kojima et al., 2016, Biosci. Biotech. Biochem., 10:1954-1959). The region embedded in the lipid membrane (i.e. outer membrane 5) forms a channel to allow the passage of hydrophilic substances through the outer membrane, while the SLH domain 7 has the function of binding to the cell wall 4 (non-transparent membrane 5). Patent Document 10: Kowata et al., 2017, J. Bacteriol., 199:e00371-17). In order for SLH domain 7 to bind to cell wall 4, covalent sugar chain 3 in peptidoglycan 2 needs to be modified with pyruvate (Non-Patent Document 11: Kojima et al., 2016, J. Biol Chem., 291:20198-20209). Examples of genes encoding SLH domain-retaining outer membrane protein 6 include slr1841 or slr1908 held by Synechocystis sp. PCC 6803, or oprB held by Anabaena sp. 90.
ペプチドグリカン2における共有結合型の糖鎖3のピルビン酸修飾反応を触媒する酵素(以下、細胞壁-ピルビン酸修飾酵素9という)は、グラム陽性菌であるBacillus anthracisにおいて同定され、CsaBと命名されている(非特許文献12:Mesnage et al., 2000, EMBO J., 19:4473-4484)。ゲノム塩基配列が公開されているシアノバクテリアにおいて、多くの種がCsaBとアミノ酸配列の同一性が30%以上となる相同タンパク質をコードする遺伝子を保持している。例としては、Synechocystis sp. PCC 6803が保持するslr0688又はSynechococcus sp. 7502が保持するsynpcc7502_03092などが挙げられる。
The enzyme that catalyzes the pyruvate modification reaction of covalent sugar chain 3 in peptidoglycan 2 (hereinafter referred to as cell wall-pyruvate modification enzyme 9) was identified in the Gram-positive bacterium Bacillus anthracis and named CsaB. (Non-patent document 12: Mesnage et al., 2000, EMBO J., 19:4473-4484). Among cyanobacteria whose genome sequences have been published, many species possess genes encoding homologous proteins with amino acid sequence identity of 30% or more with CsaB. Examples include slr0688 held by Synechocystis sp. PCC 6803 or synpcc7502_03092 held by Synechococcus sp. 7502.
シアノバクテリアでは、光合成により固定されたCO2は多段階の酵素反応を経て各種アミノ酸に変換される。それらを原料として、シアノバクテリアの細胞質内でタンパク質が合成される。それらのタンパク質の中には、細胞質内で機能するタンパク質もあるし、細胞質からペリプラズムに輸送されてペリプラズム内で機能するタンパク質もある。しかしながら、細胞外にタンパク質を積極的に分泌するケースは、現在までシアノバクテリアにおいては報告されていない。
In cyanobacteria, CO2 fixed through photosynthesis is converted into various amino acids through multi-step enzymatic reactions. Using these as raw materials, proteins are synthesized within the cytoplasm of cyanobacteria. Some of these proteins function within the cytoplasm, while others are transported from the cytoplasm to the periplasm and function within the periplasm. However, no case of active secretion of proteins outside the cell has been reported in cyanobacteria to date.
シアノバクテリアは、高い光合成能力を有するため、必ずしも有機物を栄養分として外から取り込む必要がない。そのため、シアノバクテリアは、図3の有機物チャネルタンパク質8(例えば、Slr1270)のように、有機物を透過させるチャネルタンパク質を外膜5に非常にわずかにしか有していない。例えば、Synechocystis sp. PCC 6803では、有機物を透過させる有機物チャネルタンパク質8は、外膜5の総タンパク質量の約4%しか存在しない。一方、シアノバクテリアは、生育に必要な無機イオン類を高効率で細胞内に取り込むために、図3のSLHドメイン保持型外膜タンパク質6(例えば、Slr1841)のように、無機イオン類のみを透過させるイオンチャネルタンパク質を外膜5に多く有する。例えば、Synechocystis sp. PCC 6803では、無機イオンを透過させるイオンチャネルタンパク質は、外膜5の総タンパク質量の約80%を占める。
Because cyanobacteria have a high photosynthetic ability, they do not necessarily need to take in organic matter from the outside as nutrients. Therefore, cyanobacteria have very few channel proteins in their outer membrane 5 that allow organic substances to pass therethrough, such as the organic substance channel protein 8 (eg, Slr1270) in FIG. For example, in Synechocystis sp. PCC 6803, organic channel protein 8, which allows organic matter to pass through, is present in only about 4% of the total protein content of outer membrane 5. On the other hand, in order for cyanobacteria to take in inorganic ions necessary for growth into cells with high efficiency, only inorganic ions can pass through, as shown in SLH domain-retaining outer membrane protein 6 (e.g., Slr1841) shown in Figure 3. The outer membrane 5 contains many ion channel proteins that cause For example, in Synechocystis sp. PCC 6803, ion channel proteins that permeate inorganic ions account for about 80% of the total protein content of the outer membrane 5.
このように、シアノバクテリアでは、外膜5におけるタンパク質などの有機物を透過させるチャネルが非常に少ないため、菌体内で産生されたタンパク質を菌体外に積極的に分泌することが難しいと考えられている。また、シアノバクテリアの細胞壁及び細胞膜の構造はタンパク質透過性を左右するが、細胞膜及び細胞壁構造を人為的に改変してタンパク質分泌生産能力を向上させることは容易ではない。例えば、非特許文献6及び非特許文献7には、外膜と細胞壁との接着に関与し、細胞表層の構造的安定性に寄与するslr1841遺伝子あるいはslr0688遺伝子を欠損させると、細胞の増殖能力が失われることが記載されている。
In this way, cyanobacteria have very few channels in the outer membrane 5 that allow organic substances such as proteins to pass through, so it is thought that it is difficult to actively secrete proteins produced within the bacterium to the outside of the bacterium. There is. Furthermore, although the structure of the cell wall and cell membrane of cyanobacteria influences protein permeability, it is not easy to artificially modify the cell membrane and cell wall structure to improve protein secretion production ability. For example, Non-Patent Document 6 and Non-Patent Document 7 state that when the slr1841 gene or slr0688 gene, which is involved in adhesion between the outer membrane and the cell wall and contributes to the structural stability of the cell surface, is deleted, the proliferation ability of the cell is reduced. It is stated that it will be lost.
[5.改変シアノバクテリア]
続いて、本実施の形態に係るシアノバクテリア(以下、改変シアノバクテリアという)について図3を参照しながら説明する。また、以下では、改変シアノバクテリアを用いて生産する物質として、タンパク質を例に説明する。 [5. Modified cyanobacteria]
Next, the cyanobacteria (hereinafter referred to as modified cyanobacteria) according to the present embodiment will be described with reference to FIG. 3. Further, below, proteins will be explained as an example of substances produced using modified cyanobacteria.
続いて、本実施の形態に係るシアノバクテリア(以下、改変シアノバクテリアという)について図3を参照しながら説明する。また、以下では、改変シアノバクテリアを用いて生産する物質として、タンパク質を例に説明する。 [5. Modified cyanobacteria]
Next, the cyanobacteria (hereinafter referred to as modified cyanobacteria) according to the present embodiment will be described with reference to FIG. 3. Further, below, proteins will be explained as an example of substances produced using modified cyanobacteria.
本実施の形態に係る改変シアノバクテリアは、シアノバクテリアにおいて外膜5と細胞壁4との結合に関与するタンパク質(いわゆる、結合関連タンパク質)の機能が抑制又は喪失されている。より具体的には、例えば、改変シアノバクテリアは、シアノバクテリアにおいて外膜5と細胞壁4との結合に関与するタンパク質(つまり、結合関連タンパク質)の総量が、親株(つまり、親シアノバクテリア)における当該タンパク質の総量の30%以上70%以下に抑制されている。ここで、例えば、「結合関連タンパク質の総量が、親株における当該タンパク質の総量の30%に抑制されている」とは、親株における当該タンパク質の総量の70%が喪失し、30%が残存している状態のことを意味する。これにより、改変シアノバクテリアでは、外膜5と細胞壁4との結合(例えば、結合量及び結合力)が部分的に低減するため、外膜5が細胞壁4から部分的に脱離しやすくなる。そのため、改変シアノバクテリアは、菌体内で産生されたタンパク質を菌体外に分泌するタンパク質の分泌生産性が向上する。また、菌体を破砕してタンパク質を回収する必要がないため、タンパク質を回収した後も、改変シアノバクテリアを繰り返し使用してタンパク質を産生させることができる。なお、本明細書では、改変シアノバクテリアが菌体内でタンパク質を作り出すことを産生と言い、産生されたタンパク質を菌体外に分泌することを分泌生産と言う。
In the modified cyanobacteria according to this embodiment, the function of a protein involved in binding between the outer membrane 5 and the cell wall 4 (so-called binding-related protein) is suppressed or lost. More specifically, for example, the modified cyanobacteria is such that the total amount of proteins involved in binding between the outer membrane 5 and the cell wall 4 (i.e., binding-related proteins) is lower than that in the parent strain (i.e., parent cyanobacteria). The total amount of protein is suppressed to 30% or more and 70% or less. Here, for example, "the total amount of binding-related proteins is suppressed to 30% of the total amount of the protein in the parent strain" means that 70% of the total amount of the protein in the parent strain has been lost and 30% remains. It means the state of being. As a result, in the modified cyanobacteria, the bond between the outer membrane 5 and the cell wall 4 (for example, the amount of bond and the binding force) is partially reduced, so that the outer membrane 5 is easily partially detached from the cell wall 4. Therefore, the modified cyanobacteria has improved protein secretion productivity, which secretes proteins produced within the bacterial cells to the outside of the bacterial cells. Furthermore, since it is not necessary to crush the bacterial cells to recover proteins, the modified cyanobacteria can be repeatedly used to produce proteins even after the proteins are recovered. In this specification, the production of proteins by modified cyanobacteria within the bacterial cells is referred to as production, and the secretion of the produced proteins to the outside of the bacterial cells is referred to as secretory production.
外膜5と細胞壁4との結合に関与するタンパク質は、例えば、SLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9の少なくとも1つであってもよい。本実施の形態では、改変シアノバクテリアは、例えば、SLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9の少なくとも1つのタンパク質の機能が抑制されている。例えば、改変シアノバクテリアでは、(i)SLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9の少なくとも1つの機能が抑制されてもよく、(ii)細胞壁4と結合するSLHドメイン保持型外膜タンパク質6の発現、及び、細胞壁4の表面の結合糖鎖のピルビン酸修飾反応を触媒する酵素(つまり、細胞壁-ピルビン酸修飾酵素9)の発現の少なくとも1つが抑制されてもよい。これにより、外膜5中のSLHドメイン保持型外膜タンパク質6のSLHドメイン7と細胞壁4の表面の共有結合型の糖鎖3との結合(つまり、結合量及び結合力)が低減する。そのため、これらの結合が弱まった部分において外膜5が細胞壁4から脱離しやすくなる。外膜5が細胞壁4から部分的に脱離することにより、改変シアノバクテリアの細胞内、特にペリプラズムに存在するタンパク質が細胞の外(外膜5の外)へ漏出しやすくなる。
The protein involved in the binding between the outer membrane 5 and the cell wall 4 may be, for example, at least one of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9. In the present embodiment, in the modified cyanobacteria, the function of at least one protein, for example, the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9, is suppressed. For example, in the modified cyanobacteria, (i) at least one function of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9 may be suppressed, and (ii) the SLH domain-retaining type that binds to the cell wall 4 may be suppressed. At least one of the expression of the outer membrane protein 6 and the expression of an enzyme that catalyzes the pyruvate modification reaction of sugar chains bound to the surface of the cell wall 4 (ie, the cell wall-pyruvate modifying enzyme 9) may be suppressed. This reduces the bond (that is, the bond amount and binding force) between the SLH domain 7 of the SLH domain-retaining outer membrane protein 6 in the outer membrane 5 and the covalent sugar chain 3 on the surface of the cell wall 4. Therefore, the outer membrane 5 easily detaches from the cell wall 4 in areas where these bonds are weakened. By partially detaching the outer membrane 5 from the cell wall 4, proteins present in the cells of the modified cyanobacteria, particularly in the periplasm, tend to leak out of the cells (outside the outer membrane 5).
上述したように、シアノバクテリアは、高い光合成能力を有するため、必ずしも有機物を栄養分として外から取り込む必要がない。そのため、シアノバクテリアの培養には、光、空気、水、及び、微量の無機物があればよく、シアノバクテリアは外膜5のイオンチャネルを通じて細胞内に無機物を取り込み、細胞内でタンパク質を産生する。特に、外膜5と細胞壁4との間の空隙のペリプラズムには種々のタンパク質が存在している。本実施の形態に係る改変シアノバクテリアでは、外膜5と細胞壁4との結合に関与するタンパク質の機能が抑制されている。その結果、外膜5が細胞壁4から部分的に剥離し易くなる。そして、外膜5の剥離部分から、ペリプラズム内のタンパク質が培養液中に漏出する。これにより、改変シアノバクテリアは、菌体内で産生されたタンパク質を菌体外に分泌するタンパク質の分泌生産性が向上する。
As mentioned above, cyanobacteria have a high photosynthetic ability, so they do not necessarily need to take in organic matter from the outside as nutrients. Therefore, cyanobacteria only need light, air, water, and a small amount of inorganic substances to cultivate cyanobacteria, and cyanobacteria take inorganic substances into cells through ion channels in the outer membrane 5 and produce proteins within the cells. In particular, various proteins are present in the periplasm, which is the space between the outer membrane 5 and the cell wall 4. In the modified cyanobacterium according to the present embodiment, the functions of proteins involved in binding between the outer membrane 5 and the cell wall 4 are suppressed. As a result, the outer membrane 5 is easily partially peeled off from the cell wall 4. Then, proteins within the periplasm leak into the culture solution from the peeled portion of the outer membrane 5. As a result, the modified cyanobacteria improves the productivity of protein secretion, which secretes proteins produced within the bacterial cells to the outside of the bacterial cells.
以下、SLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9の少なくとも1つの結合関連タンパク質の機能が抑制されることにより外膜5が部分的に細胞壁4から脱離するように改変されたシアノバクテリアについてより具体的に説明する。
Hereinafter, the outer membrane 5 is modified to partially detach from the cell wall 4 by suppressing the function of at least one binding-related protein of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9. The following cyanobacteria will be explained in more detail.
本実施の形態に係る改変シアノバクテリアの親微生物となる、SLHドメイン保持型外膜タンパク質6の発現及び細胞壁-ピルビン酸修飾酵素9の発現の少なくとも1つを抑制する前のシアノバクテリア(本明細書において、「親株」又は「親シアノバクテリア」という)の種類は、特に制限はなく、あらゆる種類のシアノバクテリアであってもよい。例えば、親シアノバクテリアは、Synechocystis属、Synechococcus属、Anabaena属、又は、Thermosynechococcus属であってもよく、中でも、Synechocystis sp. PCC 6803、Synechococcus sp. PCC 7942、又は、Thermosynechococcus elongatus BP-1であってもよい。なお、親株は、結合関連タンパク質の総量を30%以上70%以下に抑制する前のシアノバクテリアであれば、野生のものであってもよいし、改変したものであって、野生のものと同等の結合関連タンパク質を有するものであってもよい。
The cyanobacterium that is the parent microorganism of the modified cyanobacterium according to the present embodiment, which has not yet suppressed at least one of the expression of the SLH domain-retaining outer membrane protein 6 and the expression of the cell wall-pyruvate modifying enzyme 9 The type of the "parent strain" or "parent cyanobacteria") is not particularly limited and may be any type of cyanobacteria. For example, the parent cyanobacteria may be of the genus Synechocystis, Synechococcus, Anabaena, or Thermosynechococcus, among which Synechocystis sp. PCC 6803, Synechococcus sp. PCC 7942, or Thermosynechococcus elongatus BP-1. Good too. The parent strain may be a wild cyanobacterium, as long as the total amount of binding-related proteins has not been suppressed to 30% or more and 70% or less, or it may be a modified strain that is equivalent to the wild one. binding-related proteins.
これらの親シアノバクテリアにおけるSLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾反応を触媒する酵素(つまり、細胞壁-ピルビン酸修飾酵素9)のアミノ酸配列、それらの結合関連タンパク質をコードする遺伝子の塩基配列、及び、当該遺伝子の染色体DNA又はプラスミド上での位置は、上述のNCBIデータベース及びCyanobaseで確認することができる。
The amino acid sequences of the SLH domain-retaining outer membrane protein 6 and the enzyme that catalyzes the cell wall-pyruvate modification reaction (i.e., the cell wall-pyruvate modification enzyme 9) in these parent cyanobacteria, and the genes encoding their binding-related proteins. The base sequence and the position of the gene on the chromosomal DNA or plasmid can be confirmed in the NCBI database and Cyanobase mentioned above.
なお、本実施の形態に係る改変シアノバクテリアにおいて機能が抑制されるSLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9は、親シアノバクテリアが保有している限り、いずれの親シアノバクテリアのものであってもよく、それらをコードする遺伝子の存在場所(例えば、染色体DNA上又はプラスミド上)により制限されるものではない。
Note that the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvic acid modifying enzyme 9, whose functions are suppressed in the modified cyanobacteria according to the present embodiment, can be used in any parent cyanobacteria as long as they are possessed by the parent cyanobacteria. They are not limited by the location of the genes encoding them (for example, on chromosomal DNA or on plasmids).
例えば、SLHドメイン保持型外膜タンパク質6は、親シアノバクテリアがSynechocystis属の場合、Slr1841、Slr1908、又は、Slr0042等であってもよく、親シアノバクテリアがSynechococcus属の場合、NIES970_09470等であってもよく、親シアノバクテリアがAnabaena属の場合、Anacy_5815又はAnacy_3458等であってもよく、親シアノバクテリアがMicrocystis属の場合、A0A0F6U6F8_MICAE等であってもよく、親シアノバクテリアがCyanothece属の場合、A0A3B8XX12_9CYAN等であってもよく、親シアノバクテリアがLeptolyngbya属の場合、A0A1Q8ZE23_9CYAN等であってもよく、親シアノバクテリアがCalothrix属の場合、A0A1Z4R6U0_9CYANが挙げられ、親シアノバクテリアがNostoc属の場合、A0A1C0VG86_9NOSO等であってもよく、親シアノバクテリアがCrocosphaera属の場合、B1WRN6_CROS5等であってもよく、親シアノバクテリアがPleurocapsa属の場合、K9TAE4_9CYAN等であってもよい。
For example, the SLH domain-retaining outer membrane protein 6 may be Slr1841, Slr1908, or Slr0042 when the parent cyanobacterium belongs to the genus Synechocystis, or may be NIES970_09470 when the parent cyanobacterium belongs to the genus Synechococcus. Often, when the parent cyanobacteria is of the genus Anabaena, it may be Anacy_5815 or Anacy_3458, etc. When the parent cyanobacteria is of the genus Microcystis, it may be A0A0F6U6F8_MICAE, etc. When the parent cyanobacteria is of the genus Cyanothece, it may be A0A3B8XX12_9CYAN, etc. When the parent cyanobacterium belongs to the genus Leptolyngbya, it may be A0A1Q8ZE23_9CYAN, etc. When the parent cyanobacterium belongs to the genus Calothrix, it may be A0A1Z4R6U0_9CYAN, and when the parent cyanobacterium belongs to the genus Nostoc, it may be A0A1C0VG86_9NOSO, etc. When the parent cyanobacterium belongs to the genus Crocosphaera, it may be B1WRN6_CROS5, and when the parent cyanobacterium belongs to the genus Pleurocapsa, it may be K9TAE4_9CYAN.
より具体的には、SLHドメイン保持型外膜タンパク質6は、例えば、Synechocystis sp. PCC 6803のSlr1841(配列番号1)、Synechococcus sp. NIES-970のNIES970_09470(配列番号2)、又は、Anabaena cylindrica PCC 7122 のAnacy_3458(配列番号3)等であってもよい。また、これらのSLHドメイン保持型外膜タンパク質6とアミノ酸配列が50%以上同一であるタンパク質であってもよい。
More specifically, the SLH domain-retaining outer membrane protein 6 is, for example, Slr1841 (SEQ ID NO: 1) of Synechocystis sp. PCC 6803, NIES970_09470 (SEQ ID NO: 2) of Synechococcus sp. NIES-970, or Anabaena cylindrica PCC. Anacy_3458 (SEQ ID NO: 3) of 7122 may be used. Alternatively, it may be a protein that has an amino acid sequence that is 50% or more identical to these SLH domain-retaining outer membrane proteins 6.
これにより、改変シアノバクテリアでは、例えば、(i)上記の配列番号1~3で示されるいずれかのSLHドメイン保持型外膜タンパク質6又はこれらのいずれかのSLHドメイン保持型外膜タンパク質6とアミノ酸配列が50%以上同一であるタンパク質の機能が抑制されていてもよく、(ii)上記の配列番号1~3で示されるいずれかのSLHドメイン保持型外膜タンパク質6又はこれらのいずれかのSLHドメイン保持型外膜タンパク質6とアミノ酸配列が50%以上同一であるタンパク質の発現が抑制されていてもよい。そのため、改変シアノバクテリアでは、(i)外膜5中のSLHドメイン保持型外膜タンパク質6若しくはSLHドメイン保持型外膜タンパク質6と同等の機能を有するタンパク質の機能が抑制される、又は、(ii)外膜5中のSLHドメイン保持型外膜タンパク質6若しくはSLHドメイン保持型外膜タンパク質6と同等の機能を有するタンパク質の発現量が低減する。したがって、本実施の形態に係る改変シアノバクテリアでは、外膜5が細胞壁4と結合するための結合ドメイン(例えば、SLHドメイン7)が細胞壁4と結合する結合量及び結合力が低減するため、外膜5が細胞壁4から部分的に脱離しやすくなる。
As a result, in the modified cyanobacteria, for example, (i) any of the SLH domain-retaining outer membrane proteins 6 shown in SEQ ID NOs: 1 to 3 above or any of these SLH domain-retaining outer membrane proteins 6 and amino acids; The function of the protein whose sequence is 50% or more identical may be suppressed, and (ii) any of the SLH domain-retaining outer membrane proteins 6 shown in SEQ ID NOs: 1 to 3 above or any of these SLHs. Expression of a protein whose amino acid sequence is 50% or more identical to domain-retaining outer membrane protein 6 may be suppressed. Therefore, in the modified cyanobacteria, (i) the function of the SLH domain-retaining outer membrane protein 6 in the outer membrane 5 or a protein having a function equivalent to the SLH domain-retaining outer membrane protein 6 is suppressed, or (ii) ) The expression level of the SLH domain-retaining outer membrane protein 6 or a protein having the same function as the SLH domain-retaining outer membrane protein 6 in the outer membrane 5 is reduced. Therefore, in the modified cyanobacteria according to the present embodiment, the binding domain (for example, SLH domain 7) for binding the outer membrane 5 to the cell wall 4 has a reduced binding amount and binding force with the cell wall 4, so The membrane 5 is easily partially detached from the cell wall 4.
一般に、タンパク質のアミノ酸配列が30%以上同一であれば、タンパク質の立体構造の相同性が高いため、当該タンパク質と同等の機能を有する可能性が高いと言われている。そのため、機能が抑制されるSLHドメイン保持型外膜タンパク質6としては、例えば、上記の配列番号1~3で示されるSLHドメイン保持型外膜タンパク質6のいずれかのアミノ酸配列と、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、さらにより好ましくは80%以上、なお好ましくは90%以上の同一性を有するアミノ酸配列からなり、かつ、細胞壁4の共有結合型の糖鎖3と結合する機能を有するタンパク質又はポリペプチドであってもよい。
Generally, it is said that if the amino acid sequences of a protein are 30% or more identical, the protein has a high degree of homology in its three-dimensional structure and is therefore likely to have the same function as the protein in question. Therefore, the SLH domain-retaining outer membrane protein 6 whose function is suppressed is, for example, one of the amino acid sequences of the SLH domain-retaining outer membrane protein 6 shown in SEQ ID NOs: 1 to 3 above, and 40% or more of the amino acid sequence, Preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, even more preferably 90% or more, and the cell wall 4 is shared. It may be a protein or a polypeptide that has the function of binding to a bound sugar chain 3.
また、例えば、細胞壁-ピルビン酸修飾酵素9は、親シアノバクテリアがSynechocystis属の場合、Slr0688等であってもよく、親シアノバクテリアがSynechococcus属の場合、Syn7502_03092又はSynpcc7942_1529等であってもよく、親シアノバクテリアがAnabaena属の場合、ANA_C20348又はAnacy_1623等であってもよく、親シアノバクテリアがMicrocystis属の場合、CsaB (NCBIのアクセスID:TRU80220)等であってもよく、親シアノバクテリアがCyanothece属の場合、CsaB(NCBIのアクセスID:WP_107667006.1)等であってもよく、親シアノバクテリアがSpirulina属の場合、CsaB(NCBIのアクセスID:WP_026079530.1)等であってもよく、親シアノバクテリアがCalothrix属の場合、CsaB(NCBIのアクセスID:WP_096658142.1)等であってもよく、親シアノバクテリアがNostoc属の場合、CsaB(NCBIのアクセスID:WP_099068528.1)等であってもよく、親シアノバクテリアがCrocosphaera属の場合、CsaB(NCBIのアクセスID:WP_012361697.1)等であってもよく、親シアノバクテリアがPleurocapsa属の場合、CsaB(NCBIのアクセスID:WP_036798735)等であってもよい。
Furthermore, for example, the cell wall-pyruvate modifying enzyme 9 may be Slr0688, etc. when the parent cyanobacterium belongs to the genus Synechocystis, and when the parent cyanobacterium belongs to the genus Synechococcus, it may be Syn7502_03092 or Synpcc7942_1529, etc. If the cyanobacterium belongs to the genus Anabaena, it may be ANA_C20348 or Anacy_1623, and if the parent cyanobacterium belongs to the genus Microcystis, it may be CsaB (NCBI access ID: TRU80220), or if the parent cyanobacterium belongs to the genus Cyanothece. If the parent cyanobacterium belongs to the genus Spirulina, it may be CsaB (NCBI access ID: WP_026079530.1), etc. If the parent cyanobacterium belongs to the genus Calothrix, it may be CsaB (NCBI access ID: WP_096658142.1), etc., and if the parent cyanobacterium belongs to the genus Nostoc, it may be CsaB (NCBI access ID: WP_099068528.1), etc. , if the parent cyanobacteria belongs to the genus Crocosphaera, it may be CsaB (NCBI access ID: WP_012361697.1), and if the parent cyanobacterium belongs to the genus Pleurocapsa, it may be CsaB (NCBI access ID: WP_036798735), etc. Good too.
より具体的には、細胞壁-ピルビン酸修飾酵素9は、例えば、Synechocystis sp. PCC 6803のSlr0688(配列番号4)、Synechococcus sp. PCC 7942のSynpcc7942_1529(配列番号5)、又は、Anabaena cylindrica PCC 7122のAnacy_1623(配列番号6)等であってもよい。また、これらの細胞壁-ピルビン酸修飾酵素9とアミノ酸配列が50%以上同一であるタンパク質であってもよい。
More specifically, the cell wall-pyruvate modifying enzyme 9 is, for example, Slr0688 (SEQ ID NO: 4) of Synechocystis sp. PCC 6803, Synpcc7942_1529 (SEQ ID NO: 5) of Synechococcus sp. Anacy_1623 (SEQ ID NO: 6) or the like may be used. Further, it may be a protein having an amino acid sequence that is 50% or more identical to these cell wall-pyruvate modifying enzymes 9.
これにより、改変シアノバクテリアでは、例えば、(i)上記の配列番号4~6で示されるいずれかの細胞壁-ピルビン酸修飾酵素9若しくはこれらのいずれかの細胞壁-ピルビン酸修飾酵素9とアミノ酸配列が50%以上同一であるタンパク質の機能が抑制されている、又は、(ii)上記の配列番号4~6で示されるいずれかの細胞壁-ピルビン酸修飾酵素9若しくはこれらのいずれかの細胞壁-ピルビン酸修飾酵素9とアミノ酸配列が50%以上同一であるタンパク質の発現が抑制されている。そのため、改変シアノバクテリアでは、(i)細胞壁-ピルビン酸修飾酵素9若しくは当該酵素と同等の機能を有するタンパク質の機能が抑制される、又は、(ii)細胞壁-ピルビン酸修飾酵素9若しくは当該酵素と同等の機能を有するタンパク質の発現量が低減する。これにより、細胞壁4の表面の共有結合型の糖鎖3がピルビン酸で修飾されにくくなるため、細胞壁4の糖鎖3が外膜5中のSLHドメイン保持型外膜タンパク質6のSLHドメイン7と結合する結合量及び結合力が低減する。したがって、本実施の形態に係る改変シアノバクテリアでは、細胞壁4の表面の共有結合型の糖鎖3がピルビン酸で修飾されにくくなるため、細胞壁4と外膜5との結合力が弱まり、外膜5が細胞壁4から部分的に脱離しやすくなる。
As a result, in the modified cyanobacteria, for example, (i) any of the cell wall-pyruvate modifying enzymes 9 shown in SEQ ID NOs: 4 to 6 above or any of these cell wall-pyruvate modifying enzymes 9 and the amino acid sequence The function of a protein that is 50% or more identical is suppressed, or (ii) any of the cell wall-pyruvic acid modifying enzymes 9 shown in SEQ ID NOs: 4 to 6 above or any of these cell wall-pyruvic acid Expression of a protein whose amino acid sequence is 50% or more identical to modified enzyme 9 is suppressed. Therefore, in the modified cyanobacteria, (i) the function of the cell wall-pyruvate modifying enzyme 9 or a protein having an equivalent function to the enzyme is suppressed, or (ii) the function of the cell wall-pyruvate modifying enzyme 9 or the enzyme is suppressed. The expression level of proteins with equivalent functions decreases. This makes it difficult for the covalent sugar chains 3 on the surface of the cell wall 4 to be modified with pyruvate, so that the sugar chains 3 on the cell wall 4 interact with the SLH domain 7 of the SLH domain-retaining outer membrane protein 6 in the outer membrane 5. The amount of binding and the binding strength are reduced. Therefore, in the modified cyanobacteria according to the present embodiment, the covalently bonded sugar chains 3 on the surface of the cell wall 4 are difficult to be modified with pyruvate, so the binding force between the cell wall 4 and the outer membrane 5 is weakened, and the outer membrane 5 becomes easily partially detached from the cell wall 4.
また、上述したとおり、タンパク質のアミノ酸配列が30%以上同一であれば、当該タンパク質と同等の機能を有する可能性が高いと言われている。そのため、機能が抑制される細胞壁-ピルビン酸修飾酵素9としては、例えば、上記の配列番号4~6で示される細胞壁-ピルビン酸修飾酵素9のいずれかのアミノ酸配列と、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、さらにより好ましくは80%以上、なお好ましくは90%以上の同一性を有するアミノ酸配列からなり、かつ、細胞壁4のペプチドグリカン2の共有結合型の糖鎖3をピルビン酸で修飾する反応を触媒する機能を有するタンパク質又はポリペプチドであってもよい。
Additionally, as mentioned above, if the amino acid sequences of a protein are 30% or more identical, it is said that the protein is likely to have the same function as the protein. Therefore, the cell wall-pyruvate modifying enzyme 9 whose function is suppressed is, for example, an amino acid sequence of any one of the cell wall-pyruvate modifying enzymes 9 shown in SEQ ID NOs: 4 to 6 above, and 40% or more, preferably It consists of an amino acid sequence having an identity of 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, even more preferably 90% or more, and It may be a protein or polypeptide that has the function of catalyzing a reaction that modifies covalent sugar chain 3 with pyruvate.
なお、本明細書において、SLHドメイン保持型外膜タンパク質6の機能を抑制するとは、当該タンパク質の細胞壁4との結合能力を抑制すること、当該タンパク質の外膜5への輸送を抑制する若しくは喪失させること、又は、当該タンパク質が外膜5に埋め込まれて機能する能力を抑制することである。
In this specification, suppressing the function of the SLH domain-retaining outer membrane protein 6 refers to suppressing the ability of the protein to bind to the cell wall 4, or suppressing or losing the transport of the protein to the outer membrane 5. or suppress the ability of the protein to become embedded in the outer membrane 5 and function.
なお、細胞壁-ピルビン酸修飾酵素9の機能を抑制するとは、当該タンパク質が細胞壁4の共有結合型の糖鎖3をピルビン酸で修飾する機能を抑制することである。
Note that suppressing the function of the cell wall-pyruvic acid modifying enzyme 9 means suppressing the function of the protein to modify the covalent sugar chain 3 of the cell wall 4 with pyruvate.
これらのタンパク質の機能を抑制する手段としては、タンパク質の機能の抑制に通常使用される手段であれば特に限定されない。当該手段は、例えば、SLHドメイン保持型外膜タンパク質6をコードする遺伝子及び細胞壁-ピルビン酸修飾酵素9をコードする遺伝子を欠失若しくは不活性化させること、これらの遺伝子の転写を阻害すること、これらの遺伝子の転写産物の翻訳を阻害すること、又はこれらのタンパク質を特異的に阻害する阻害剤を投与することなどであってもよい。
The means for suppressing the functions of these proteins is not particularly limited as long as it is a means normally used for suppressing the functions of proteins. The means includes, for example, deleting or inactivating the gene encoding the SLH domain-retaining outer membrane protein 6 and the gene encoding the cell wall-pyruvate modifying enzyme 9, inhibiting the transcription of these genes, The method may include inhibiting the translation of transcription products of these genes, or administering an inhibitor that specifically inhibits these proteins.
本実施の形態では、改変シアノバクテリアは、外膜5と細胞壁4との結合に関与するタンパク質を発現させる遺伝子が欠失又は不活性化されていてもよい。これにより、改変シアノバクテリアでは、細胞壁4と外膜5との結合に関与するタンパク質の発現が抑制されるため、又は、当該タンパク質の機能が抑制されるため、細胞壁4と外膜5との結合(いわゆる、結合量及び結合力)が部分的に低減する。その結果、改変シアノバクテリアでは、外膜5が細胞壁4から部分的に脱離しやすくなるため、菌体内で産生されたタンパク質が外膜5の外、つまり、菌体外に漏出しやすくなる。そのため、本実施の形態に係る改変シアノバクテリアは、菌体内で産生されたタンパク質を菌体外に分泌するタンパク質の分泌生産性が向上する。また、菌体を破砕してタンパク質を回収する必要がないため、タンパク質を回収した後も、改変シアノバクテリアを繰り返し使用してタンパク質を産生させることができる。
In the present embodiment, the modified cyanobacteria may have a gene that expresses a protein involved in binding the outer membrane 5 and the cell wall 4 deleted or inactivated. As a result, in the modified cyanobacteria, the expression of the protein involved in the bond between the cell wall 4 and the outer membrane 5 is suppressed, or the function of the protein is suppressed, so that the bond between the cell wall 4 and the outer membrane 5 is suppressed. (so-called bond amount and bond strength) are partially reduced. As a result, in the modified cyanobacteria, the outer membrane 5 tends to partially detach from the cell wall 4, so that proteins produced within the bacterial body tend to leak out of the outer membrane 5, that is, to the outside of the bacterial body. Therefore, the modified cyanobacteria according to the present embodiment has improved protein secretion productivity for secreting proteins produced within the bacterial cells to the outside of the bacterial cells. Furthermore, since it is not necessary to crush the bacterial cells to recover proteins, the modified cyanobacteria can be repeatedly used to produce proteins even after the proteins are recovered.
外膜5と細胞壁4との結合に関与するタンパク質を発現させる遺伝子は、例えば、SLHドメイン保持型外膜タンパク質6をコードする遺伝子及び細胞壁-ピルビン酸修飾酵素9をコードする遺伝子の少なくとも1つであってもよい。改変シアノバクテリアでは、SLHドメイン保持型外膜タンパク質6をコードする遺伝子、及び、細胞壁-ピルビン酸修飾酵素9をコードする遺伝子の少なくとも1つの遺伝子が欠失又は不活性化されている。そのため、改変シアノバクテリアでは、例えば、(i)SLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9の少なくとも1つの発現が抑制される、又は、(ii)SLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9の少なくとも1つの機能が抑制される。そのため、外膜5中のSLHドメイン保持型外膜タンパク質6のSLHドメイン7と、細胞壁4の表面の共有結合型の糖鎖3との結合(つまり、結合量及び結合力)が低減する。これにより、外膜5と細胞壁4との結合が弱まった部分において外膜5が細胞壁4から脱離しやすくなる。したがって、本実施の形態に係る改変シアノバクテリアによれば、外膜5と細胞壁4との結合が低減することにより外膜5が細胞壁4から部分的に脱離しやすくなるため、菌体内で産生されたタンパク質が菌体外に漏出しやすくなる。
The gene that expresses the protein involved in the binding between the outer membrane 5 and the cell wall 4 is, for example, at least one of the gene encoding the SLH domain-retaining outer membrane protein 6 and the gene encoding the cell wall-pyruvate modifying enzyme 9. There may be. In the modified cyanobacteria, at least one of the genes encoding SLH domain-retaining outer membrane protein 6 and the gene encoding cell wall-pyruvate modifying enzyme 9 has been deleted or inactivated. Therefore, in the modified cyanobacteria, for example, (i) the expression of at least one of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9 is suppressed, or (ii) the SLH domain-retaining outer membrane protein At least one function of cell wall-pyruvate modifying enzyme 6 and cell wall-pyruvate modifying enzyme 9 is suppressed. Therefore, the bond between the SLH domain 7 of the SLH domain-retaining outer membrane protein 6 in the outer membrane 5 and the covalent sugar chain 3 on the surface of the cell wall 4 (that is, the bond amount and binding force) is reduced. This makes it easier for the outer membrane 5 to detach from the cell wall 4 at the portion where the bond between the outer membrane 5 and the cell wall 4 is weakened. Therefore, according to the modified cyanobacterium according to the present embodiment, the binding between the outer membrane 5 and the cell wall 4 is reduced, making it easier for the outer membrane 5 to partially detach from the cell wall 4. This makes it easier for protein to leak out of the bacterial body.
本実施の形態では、シアノバクテリアにおけるSLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9の少なくとも1つの機能を抑制するために、例えば、SLHドメイン保持型外膜タンパク質6をコードする遺伝子及び細胞壁-ピルビン酸修飾酵素9をコードする遺伝子の少なくとも1つの転写を抑制してもよい。
In this embodiment, in order to suppress at least one function of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvate modifying enzyme 9 in cyanobacteria, for example, a gene encoding the SLH domain-retaining outer membrane protein 6 is used. and transcription of at least one gene encoding cell wall-pyruvate modifying enzyme 9 may be suppressed.
例えば、SLHドメイン保持型外膜タンパク質6をコードする遺伝子は、親シアノバクテリアがSynechocystis属の場合、slr1841、slr1908、又は、slr0042等であってもよく、Synechococcus属の場合、nies970_09470等であってもよく、親シアノバクテリアがAnabaena属の場合、anacy_5815又はanacy_3458等であってもよく、親シアノバクテリアがMicrocystis属の場合、A0A0F6U6F8_MICAE等であってもよく、親シアノバクテリアがCyanothece属の場合、A0A3B8XX12_9CYAN等であってもよく、親シアノバクテリアがLeptolyngbya属の場合、A0A1Q8ZE23_9CYAN等であってもよく、親シアノバクテリアがCalothrix属の場合、A0A1Z4R6U0_9CYAN等であってもよく、親シアノバクテリアがNostoc属の場合、A0A1C0VG86_9NOSO等であってもよく、親シアノバクテリアがCrocosphaera属の場合、B1WRN6_CROS5等であってもよく、親シアノバクテリアがPleurocapsa属の場合、K9TAE4_9CYAN等であってもよい。これらの遺伝子の塩基配列は、上述したNCBIデータベース又はCyanobaseから入手できる。
For example, the gene encoding SLH domain-retaining outer membrane protein 6 may be slr1841, slr1908, or slr0042 when the parent cyanobacterium belongs to the genus Synechocystis, and may be nies970_09470 when the parent cyanobacterium belongs to the genus Synechococcus. Often, when the parent cyanobacteria is of the genus Anabaena, it may be anacy_5815 or anacy_3458, etc. When the parent cyanobacteria is of the genus Microcystis, it may be A0A0F6U6F8_MICAE, etc. When the parent cyanobacteria is of the genus Cyanothece, it may be A0A3B8XX12_9CYAN, etc. If the parent cyanobacteria belongs to the genus Leptolyngbya, it may be A0A1Q8ZE23_9CYAN, etc. If the parent cyanobacterium belongs to the genus Calothrix, it may be A0A1Z4R6U0_9CYAN, and if the parent cyanobacterium belongs to the genus Nostoc, it may be A0A1C0VG86_9NOSO, etc. When the parent cyanobacterium belongs to the genus Crocosphaera, it may be B1WRN6_CROS5, and when the parent cyanobacterium belongs to the genus Pleurocapsa, it may be K9TAE4_9CYAN. The base sequences of these genes can be obtained from the NCBI database or Cyanobase mentioned above.
より具体的には、SLHドメイン保持型外膜タンパク質6をコードする遺伝子は、Synechocystis sp. PCC 6803のslr1841(配列番号7)、Synechococcus sp. NIES-970のnies970_09470(配列番号8)、Anabaena cylindrica PCC 7122 のanacy_3458(配列番号9)、又は、これらの遺伝子と塩基配列が50%以上同一である遺伝子であってもよい。
More specifically, the genes encoding SLH domain-retaining outer membrane protein 6 include slr1841 (SEQ ID NO: 7) of Synechocystis sp. PCC 6803, nies970_09470 (SEQ ID NO: 8) of Synechococcus sp. NIES-970, and Anabaena cylindrica PCC. 7122 anacy_3458 (SEQ ID NO: 9), or a gene whose base sequence is 50% or more identical to these genes.
これにより、改変シアノバクテリアでは、上記の配列番号7~9で示されるいずれかのSLHドメイン保持型外膜タンパク質6をコードする遺伝子又はこれらのいずれかの遺伝子の塩基配列と50%以上同一である遺伝子が欠失又は不活性化される。そのため、改変シアノバクテリアでは、(i)上記のいずれかのSLHドメイン保持型外膜タンパク質6若しくはこれらのいずれかのタンパク質と同等の機能を有するタンパク質の発現が抑制される、又は、(ii)上記のいずれかのSLHドメイン保持型外膜タンパク質6若しくはこれらのいずれかのタンパク質と同等の機能を有するタンパク質の機能が抑制される。したがって、本実施の形態に係る改変シアノバクテリアでは、外膜5が細胞壁4と結合するための結合ドメイン(例えばSLHドメイン7)が細胞壁4と結合する結合量及び結合力が低減するため、外膜5が細胞壁4から部分的に離脱しやすくなる。
As a result, in the modified cyanobacteria, the gene encoding any of the SLH domain-retaining outer membrane protein 6 shown in SEQ ID NOs: 7 to 9 above, or the base sequence of any of these genes, is 50% or more identical. Genes are deleted or inactivated. Therefore, in the modified cyanobacteria, (i) the expression of any of the above-mentioned SLH domain-retaining outer membrane protein 6 or a protein having a function equivalent to any of these proteins is suppressed, or (ii) the above-mentioned The function of any of the SLH domain-retaining outer membrane proteins 6 or a protein having a function equivalent to any of these proteins is suppressed. Therefore, in the modified cyanobacteria according to the present embodiment, the binding amount and binding force of the binding domain (for example, SLH domain 7) for binding the outer membrane 5 to the cell wall 4 with the cell wall 4 are reduced, 5 becomes easily partially detached from the cell wall 4.
上述したように、タンパク質のアミノ酸配列が30%以上同一であれば、当該タンパク質と同等の機能を有する可能性が高いと言われている。そのため、タンパク質をコードする遺伝子の塩基配列が30%以上同一であれば、当該タンパク質と同等の機能を有するタンパク質が発現される可能性が高いと考えられる。そのため、機能が抑制されるSLHドメイン保持型外膜タンパク質6をコードする遺伝子としては、例えば、上記の配列番号7~9で示されるSLHドメイン保持型外膜タンパク質6をコードする遺伝子のいずれかの塩基配列と、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、さらにより好ましくは80%以上、なお好ましくは90%以上の同一性を有する塩基配列からなる遺伝子であり、かつ、細胞壁4の共有結合型の糖鎖3と結合する機能を有するタンパク質又はポリペプチドをコードする遺伝子であってもよい。
As mentioned above, if the amino acid sequences of a protein are 30% or more identical, it is said that the protein is likely to have the same function as the protein. Therefore, if the base sequences of genes encoding proteins are 30% or more identical, it is considered that there is a high possibility that a protein having the same function as the protein will be expressed. Therefore, as a gene encoding the SLH domain-retaining outer membrane protein 6 whose function is suppressed, for example, any of the genes encoding the SLH domain-retaining outer membrane protein 6 shown in SEQ ID NOs: 7 to 9 above can be used. From a base sequence having an identity of 40% or more, preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, still more preferably 90% or more with the base sequence. It may also be a gene that encodes a protein or polypeptide that has the function of binding to the covalent sugar chain 3 of the cell wall 4.
また、例えば、細胞壁-ピルビン酸修飾酵素9をコードする遺伝子は、親シアノバクテリアがSynechocystis属の場合、slr0688等であってもよく、親シアノバクテリアがSynechococcus属の場合、syn7502_03092又はsynpcc7942_1529等であってもよく、親シアノバクテリアがAnabaena属の場合、ana_C20348又はanacy_1623等であってもよく、親シアノバクテリアがMicrocystis属の場合、csaB (NCBIのアクセスID:TRU80220)等であってもよく、親シアノバクテリアがCynahothece属の場合、csaB(NCBIのアクセスID:WP_107667006.1)等であってもよく、親シアノバクテリアがSpirulina属の場合、csaB(NCBIのアクセスID:WP_026079530.1)等であってもよく、親シアノバクテリアがCalothrix属の場合、csaB(NCBIのアクセスID:WP_096658142.1)等であってもよく、親シアノバクテリアがNostoc属の場合、csaB(NCBIのアクセスID:WP_099068528.1)等であってもよく、親シアノバクテリアがCrocosphaera属の場合、csaB(NCBIのアクセスID:WP_012361697.1)等であってもよく、親シアノバクテリアがPleurocapsa属の場合、csaB(NCBIのアクセスID:WP_036798735)等であってもよい。これらの遺伝子の塩基配列は、上述したNCBIデータベース又はCyanobaseから入手できる。
Furthermore, for example, the gene encoding cell wall-pyruvate modifying enzyme 9 may be slr0688, etc. when the parent cyanobacterium belongs to the genus Synechocystis, and may be syn7502_03092 or synpcc7942_1529, etc. when the parent cyanobacterium belongs to the genus Synechococcus. If the parent cyanobacterium belongs to the genus Anabaena, it may be ana_C20348 or anacy_1623, and if the parent cyanobacterium belongs to the genus Microcystis, it may be csaB (NCBI access ID: TRU80220), etc. If the parent cyanobacterium belongs to the genus Cynahothece, it may be csaB (NCBI access ID: WP_107667006.1), etc., and if the parent cyanobacterium belongs to the genus Spirulina, it may be csaB (NCBI access ID: WP_026079530.1), etc. , if the parent cyanobacteria belongs to the genus Calothrix, it may be csaB (NCBI access ID: WP_096658142.1), etc., and if the parent cyanobacteria belongs to the genus Nostoc, it may be csaB (NCBI access ID: WP_099068528.1), etc. If the parent cyanobacterium belongs to the genus Crocosphaera, it may be csaB (NCBI access ID: WP_012361697.1), and if the parent cyanobacterium belongs to the genus Pleurocapsa, it may be csaB (NCBI access ID: WP_036798735). etc. may be used. The base sequences of these genes can be obtained from the NCBI database or Cyanobase mentioned above.
より具体的には、細胞壁-ピルビン酸修飾酵素9をコードする遺伝子は、Synechocystis sp. PCC 6803のslr0688(配列番号10)、Synechococcus sp. PCC 7942のsynpcc7942_1529(配列番号11)、又は、Anabaena cylindrica PCC 7122 のanacy_1623(配列番号12)であってもよい。また、これらの遺伝子と塩基配列が50%以上同一である遺伝子であってもよい。
More specifically, the gene encoding cell wall-pyruvate modification enzyme 9 is slr0688 (SEQ ID NO: 10) of Synechocystis sp. PCC 6803, synpcc7942_1529 (SEQ ID NO: 11) of Synechococcus sp. PCC 7942, or Anabaena cylindrica PCC. Anacy_1623 (SEQ ID NO: 12) of 7122 may be used. Alternatively, the gene may have a base sequence that is 50% or more identical to these genes.
これにより、改変シアノバクテリアでは、上記の配列番号10~12で示されるいずれかの細胞壁-ピルビン酸修飾酵素9をコードする遺伝子又はこれらのいずれかの酵素をコードする遺伝子の塩基配列と50%以上同一である遺伝子が欠失又は不活性化される。そのため、改変シアノバクテリアでは、(i)上記のいずれかの細胞壁-ピルビン酸修飾酵素9若しくはこれらのいずれかの酵素と同等の機能を有するタンパク質の発現が抑制される、又は、(ii)上記のいずれかの細胞壁-ピルビン酸修飾酵素9若しくはこれらのいずれかの酵素と同等の機能を有するタンパク質の機能が抑制される。これにより、細胞壁4の表面の共有結合型の糖鎖3がピルビン酸で修飾されにくくなるため、細胞壁4の糖鎖3が外膜5中のSLHドメイン保持型外膜タンパク質6のSLHドメイン7と結合する結合量及び結合力が低減する。したがって、本実施の形態に係る改変シアノバクテリアでは、細胞壁4が外膜5と結合するための糖鎖3がピルビン酸で修飾される量が低減するため、細胞壁4と外膜5との結合力が弱まり、外膜5が細胞壁4から部分的に離脱しやすくなる。
As a result, in the modified cyanobacteria, the base sequence of the gene encoding any of the cell wall-pyruvic acid modifying enzymes 9 shown in SEQ ID NOs: 10 to 12 above or the gene encoding any of these enzymes is 50% or more. Genes that are identical are deleted or inactivated. Therefore, in the modified cyanobacteria, (i) the expression of any of the above cell wall-pyruvate modifying enzymes 9 or a protein having a function equivalent to any of these enzymes is suppressed, or (ii) the above-mentioned The function of any cell wall-pyruvate modifying enzyme 9 or a protein having a function equivalent to any of these enzymes is suppressed. This makes it difficult for the covalent sugar chains 3 on the surface of the cell wall 4 to be modified with pyruvate, so that the sugar chains 3 on the cell wall 4 interact with the SLH domain 7 of the SLH domain-retaining outer membrane protein 6 in the outer membrane 5. The amount of binding and the binding strength are reduced. Therefore, in the modified cyanobacteria according to the present embodiment, the amount of modification of sugar chains 3 with pyruvate for bonding the cell wall 4 to the outer membrane 5 is reduced, so that the binding strength between the cell wall 4 and the outer membrane 5 is reduced. is weakened, and the outer membrane 5 becomes easily partially detached from the cell wall 4.
上述したように、タンパク質をコードする遺伝子の塩基配列が30%以上同一であれば、当該タンパク質と同等の機能を有するタンパク質が発現される可能性が高いと考えられる。そのため、機能が抑制される細胞壁-ピルビン酸修飾酵素9をコードする遺伝子としては、例えば、上記の配列番号10~12で示される細胞壁-ピルビン酸修飾酵素9をコードする遺伝子のいずれかの塩基配列と、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、さらにより好ましくは80%以上、なお好ましくは90%以上の同一性を有する塩基配列からなり、かつ、細胞壁4のペプチドグリカン2の共有結合型の糖鎖3をピルビン酸で修飾する反応を触媒する機能を有するタンパク質又はポリペプチドをコードする遺伝子であってもよい。
As mentioned above, if the base sequences of genes encoding proteins are 30% or more identical, it is considered that there is a high possibility that a protein having the same function as the protein will be expressed. Therefore, as a gene encoding cell wall-pyruvate modifying enzyme 9 whose function is suppressed, for example, any of the base sequences of the genes encoding cell wall-pyruvate modifying enzyme 9 shown in SEQ ID NOs: 10 to 12 above. and a base sequence having an identity of 40% or more, preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, even more preferably 80% or more, still more preferably 90% or more, In addition, it may be a gene encoding a protein or polypeptide that has the function of catalyzing a reaction that modifies the covalent sugar chain 3 of the peptidoglycan 2 of the cell wall 4 with pyruvate.
[6.改変シアノバクテリアの作製方法]
続いて、本実施の形態に係る改変シアノバクテリアの作製方法について説明する。改変シアノバクテリアの作製方法は、シアノバクテリアにおいて外膜5と細胞壁4との結合に関与するタンパク質の機能を抑制させるステップを含む。 [6. Method for producing modified cyanobacteria]
Next, a method for producing modified cyanobacteria according to this embodiment will be explained. The method for producing a modified cyanobacterium includes the step of suppressing the function of a protein involved in bonding theouter membrane 5 and the cell wall 4 in the cyanobacterium.
続いて、本実施の形態に係る改変シアノバクテリアの作製方法について説明する。改変シアノバクテリアの作製方法は、シアノバクテリアにおいて外膜5と細胞壁4との結合に関与するタンパク質の機能を抑制させるステップを含む。 [6. Method for producing modified cyanobacteria]
Next, a method for producing modified cyanobacteria according to this embodiment will be explained. The method for producing a modified cyanobacterium includes the step of suppressing the function of a protein involved in bonding the
本実施の形態では、外膜5と細胞壁4との結合に関与するタンパク質は、例えば、SLHドメイン保持型外膜タンパク質6及び細胞壁-ピルビン酸修飾酵素9の少なくとも1つであってもよい。
In the present embodiment, the protein involved in the binding between the outer membrane 5 and the cell wall 4 may be, for example, at least one of the SLH domain-retaining outer membrane protein 6 and the cell wall-pyruvic acid modifying enzyme 9.
なお、タンパク質の機能を抑制する手段としては、特に限定されないが、例えば、SLHドメイン保持型外膜タンパク質6をコードする遺伝子及び細胞壁-ピルビン酸修飾酵素9をコードする遺伝子を欠失若しくは不活性化させること、これらの遺伝子の転写を阻害すること、これらの遺伝子の転写産物の翻訳を阻害すること、又はこれらのタンパク質を特異的に阻害する阻害剤を投与することなどであってもよい。
Means for suppressing protein function include, but are not particularly limited to, deletion or inactivation of the gene encoding the SLH domain-retaining outer membrane protein 6 and the gene encoding the cell wall-pyruvate modifying enzyme 9. It may be possible to inhibit the transcription of these genes, inhibit the translation of the transcripts of these genes, or administer an inhibitor that specifically inhibits these proteins.
上記遺伝子を欠失又は不活性化させる手段は、例えば、該当遺伝子の塩基配列上の1つ以上の塩基に対する突然変異の導入、該当塩基配列に対する他の塩基配列への置換若しくは他の塩基配列の挿入、又は、該当遺伝子の塩基配列の一部若しくは全部の削除などであってもよい。
Means for deleting or inactivating the above gene include, for example, introducing a mutation into one or more bases on the base sequence of the gene, replacing the base sequence with another base sequence, or replacing the base sequence with another base sequence. It may be insertion, or deletion of part or all of the base sequence of the gene.
上記遺伝子の転写を阻害する手段は、例えば、該当遺伝子のプロモーター領域に対する変異導入、他の塩基配列への置換若しくは他の塩基配列の挿入による当該プロモーターの不活性化、又は、CRISPR干渉法(非特許文献13:Yao et al., ACS Synth. Biol., 2016, 5:207-212)等であってもよい。上記の変異導入、又は塩基配列の置換若しくは挿入の具体的な手法は、例えば、紫外線照射、部位特異的変異導入、又は、相同組換え法などであってもよい。
Means for inhibiting the transcription of the above genes include, for example, introducing mutations into the promoter region of the gene, inactivating the promoter by substituting or inserting other base sequences, or CRISPR interference (non-transfer). Patent Document 13: Yao et al., ACS Synth. Biol., 2016, 5:207-212). Specific methods for the above-mentioned mutagenesis or base sequence substitution or insertion may be, for example, ultraviolet irradiation, site-specific mutagenesis, or homologous recombination.
また、上記遺伝子の転写産物の翻訳を阻害する手段は、例えば、RNA(ribonucleic acid)干渉法などであってもよい。
Further, the means for inhibiting the translation of the transcription product of the gene may be, for example, RNA (ribonucleic acid) interference.
以上のいずれかの手段を用いることにより、シアノバクテリアにおける外膜5と細胞壁4との結合に関与するタンパク質の機能を抑制させて、改変シアノバクテリアを作製してもよい。
By using any of the above means, the function of a protein involved in binding the outer membrane 5 and cell wall 4 in cyanobacteria may be suppressed to produce a modified cyanobacterium.
これにより、本作製方法で作製された改変シアノバクテリアは、細胞壁4と外膜5との結合(つまり、結合量及び結合力)が部分的に低減するため、外膜5が細胞壁4から部分的に脱離しやすくなる。そのため、改変シアノバクテリアでは、菌体内で産生されたタンパク質が外膜5の外に(つまり、菌体の外に)漏出しやすくなる。したがって、本実施の形態に係る改変シアノバクテリアの作製方法によれば、タンパク質の分泌生産性が向上した改変シアノバクテリアを提供することができる。
As a result, in the modified cyanobacteria produced by this production method, the bond between the cell wall 4 and the outer membrane 5 (that is, the amount of bond and binding force) is partially reduced, so that the outer membrane 5 is partially separated from the cell wall 4. It becomes easier to detach. Therefore, in the modified cyanobacteria, proteins produced within the bacterial cells tend to leak out of the outer membrane 5 (that is, out of the bacterial cells). Therefore, according to the method for producing modified cyanobacteria according to the present embodiment, modified cyanobacteria with improved protein secretion productivity can be provided.
また、本作製方法で作製された改変シアノバクテリアは、菌体内で産生されたタンパク質が菌体外に漏出するため、タンパク質の回収のために菌体を破砕する必要がない。例えば、改変シアノバクテリアを適切な条件で培養し、次いで培養液中に分泌されたタンパク質を回収すればよいため、改変シアノバクテリアを培養しながら培養液中のタンパク質を回収することも可能である。そのため、本作製方法により得られる改変シアノバクテリアを使用すれば、効率のよい微生物学的タンパク質生産を実施することができる。したがって、本実施の形態に係る改変シアノバクテリアの作製方法によれば、タンパク質を回収した後も繰り返し使用することができる利用効率の高い改変シアノバクテリアを提供することができる。
Furthermore, in the modified cyanobacteria produced by this production method, the proteins produced within the bacterial cells leak out of the bacterial cells, so there is no need to disrupt the bacterial cells to recover the proteins. For example, it is sufficient to culture the modified cyanobacteria under appropriate conditions and then collect the proteins secreted into the culture solution, so it is also possible to collect the proteins in the culture solution while culturing the modified cyanobacteria. Therefore, by using the modified cyanobacteria obtained by this production method, efficient microbial protein production can be carried out. Therefore, according to the method for producing a modified cyanobacterium according to the present embodiment, it is possible to provide a modified cyanobacterium with high utilization efficiency that can be used repeatedly even after protein recovery.
なお、本作製方法により作製される改変シアノバクテリアは、例えば、ペプチダーゼ又はフォスファターゼなどの、主として元来ペリプラズムに存在するタンパク質群を細胞外に分泌する。本実施の形態では、例えば、ペリプラズムに存在するタンパク質群のように元来シアノバクテリアの細胞内で産生されるタンパク質をコードする遺伝子を改変して、他のタンパク質をコードする遺伝子に置き換えることで、改変シアノバクテリアに所望のタンパク質を生産させることも可能である。したがって、本実施の形態に係る改変シアノバクテリアの作製方法によれば、所望のタンパク質を簡便に、かつ、効率よく産生可能な改変シアノバクテリアを提供することもできる。
Note that the modified cyanobacteria produced by this production method secretes, to the outside of the cell, a group of proteins that are originally present in the periplasm, such as peptidases or phosphatases. In this embodiment, for example, by modifying a gene encoding a protein originally produced within cyanobacterial cells, such as a group of proteins present in the periplasm, and replacing it with a gene encoding another protein, It is also possible to cause modified cyanobacteria to produce desired proteins. Therefore, according to the method for producing a modified cyanobacterium according to the present embodiment, it is also possible to provide a modified cyanobacterium that can easily and efficiently produce a desired protein.
[7.改変シアノバクテリアによるタンパク質の生産方法]
続いて、本実施の形態に係る改変シアノバクテリアによるタンパク質の生産方法について説明する。本実施の形態に係る改変シアノバクテリアによるタンパク質の生産方法は、上記の改変シアノバクテリアを培養するステップを含む。 [7. Protein production method using modified cyanobacteria]
Next, a method for producing proteins using the modified cyanobacteria according to the present embodiment will be explained. The method for producing proteins using modified cyanobacteria according to the present embodiment includes the step of culturing the modified cyanobacteria described above.
続いて、本実施の形態に係る改変シアノバクテリアによるタンパク質の生産方法について説明する。本実施の形態に係る改変シアノバクテリアによるタンパク質の生産方法は、上記の改変シアノバクテリアを培養するステップを含む。 [7. Protein production method using modified cyanobacteria]
Next, a method for producing proteins using the modified cyanobacteria according to the present embodiment will be explained. The method for producing proteins using modified cyanobacteria according to the present embodiment includes the step of culturing the modified cyanobacteria described above.
シアノバクテリアの培養は、一般に、BG-11培地(表2参照)を用いた液体培養又はその変法に基づいて実施することができる。そのため、改変シアノバクテリアの培養も同様に実施してもよい。また、タンパク質を生産するためのシアノバクテリアの培養期間としては、十分に菌体が増殖した条件でタンパク質が高濃度に蓄積するように行える期間であればよく、例えば、1~3日間であってもよく、4~7日間であってもよい。また、培養方法は、例えば、通気攪拌培養又は振盪培養であってもよい。
Cultivation of cyanobacteria can generally be carried out based on liquid culture using BG-11 medium (see Table 2) or a modified method thereof. Therefore, culturing of modified cyanobacteria may be carried out in the same manner. In addition, the culture period of cyanobacteria for protein production may be any period that allows the cells to grow sufficiently and the protein to accumulate at a high concentration, for example, 1 to 3 days. It may be for 4 to 7 days. Further, the culture method may be, for example, aeration agitation culture or shaking culture.
上記の条件で培養することにより、改変シアノバクテリアは、菌体内でタンパク質を産生し、当該タンパク質を培養液中に分泌する。培養液中に分泌されたタンパク質を回収する場合、培養液をろ過、又は遠心分離等することにより、培養液から細胞(いわゆる、菌体)等の固形分を除去し、培養上清を回収してもよい。本実施の形態に係る改変シアノバクテリアによるタンパク質の生産方法によれば、タンパク質が改変シアノバクテリアの細胞外に分泌されるので、タンパク質回収のために細胞を破砕する必要がない。そのため、タンパク質回収後に残った改変シアノバクテリアを繰り返し使用して、タンパク質を生産することができる。
By culturing under the above conditions, the modified cyanobacteria produce proteins within their cells and secrete the proteins into the culture solution. When recovering proteins secreted into a culture solution, solids such as cells (so-called bacterial bodies) are removed from the culture solution by filtration or centrifugation, and the culture supernatant is recovered. You can. According to the method for producing proteins using modified cyanobacteria according to the present embodiment, since proteins are secreted outside the cells of modified cyanobacteria, there is no need to disrupt cells for protein recovery. Therefore, the modified cyanobacteria remaining after protein recovery can be used repeatedly to produce proteins.
なお、培養液中に分泌されたタンパク質の回収方法は、上記の例に限られず、改変シアノバクテリアを培養しながら、培養液中のタンパク質を回収してもよい。例えば、タンパク質を透過させる透過膜を用いることにより、透過膜を透過したタンパク質を回収してもよい。この場合、透過膜を透過したタンパク質を栄養源として、乳酸菌などの有用微生物を培養してもよい。このように、改変シアノバクテリアを培養しながら培養液中のタンパク質を回収することができるため、培養液から改変シアノバクテリアの菌体を除去する処理が不要となる。そのため、より簡便に、かつ、効率良くタンパク質を生産することができる。
Note that the method for recovering proteins secreted into the culture solution is not limited to the above example, and proteins in the culture solution may be recovered while culturing the modified cyanobacteria. For example, by using a permeable membrane that allows proteins to permeate, the protein that has passed through the permeable membrane may be recovered. In this case, useful microorganisms such as lactic acid bacteria may be cultured using the protein that has passed through the permeable membrane as a nutrient source. In this way, proteins in the culture solution can be recovered while culturing the modified cyanobacteria, so that there is no need to remove the cells of the modified cyanobacteria from the culture solution. Therefore, proteins can be produced more easily and efficiently.
また、培養液からの菌体の回収処理及び菌体の破砕処理が不要となることにより、改変シアノバクテリアが受けるダメージ及びストレスを低減することができる。そのため、改変シアノバクテリアのタンパク質の分泌生産性が低減しにくくなり、より長く改変シアノバクテリアを使用することができる。
Moreover, since the recovery process of bacterial cells from the culture solution and the process of crushing the bacterial cells are not necessary, damage and stress to the modified cyanobacteria can be reduced. Therefore, the protein secretion productivity of the modified cyanobacteria is less likely to decrease, and the modified cyanobacteria can be used for a longer period of time.
以上のように、本実施の形態に係る改変シアノバクテリアを用いたタンパク質の生産方法によれば、食品成分原料若しくは化合物製造のための酵素、医療用分野における診断用酵素若しくは治療用酵素、又は農水畜産分野における飼料用酵素などを簡便に、かつ、効率よく得ることができる。
As described above, according to the method for producing proteins using modified cyanobacteria according to the present embodiment, enzymes for producing food ingredient raw materials or compounds, diagnostic enzymes or therapeutic enzymes in the medical field, or agricultural, agricultural, and agricultural Enzymes for feed in the livestock industry can be easily and efficiently obtained.
[実施例]
以下、実施例にて本開示のシアノバクテリアの外膜剥離の識別方法、及び、シアノバクテリアの外膜剥離の識別装置について具体的に説明するが、本開示は以下の実施例のみに何ら限定されるものではない。 [Example]
Hereinafter, a method for identifying outer membrane detachment of cyanobacteria and a device for identifying outer membrane detachment of cyanobacteria of the present disclosure will be specifically explained in Examples, but the present disclosure is in no way limited to the following Examples. It's not something you can do.
以下、実施例にて本開示のシアノバクテリアの外膜剥離の識別方法、及び、シアノバクテリアの外膜剥離の識別装置について具体的に説明するが、本開示は以下の実施例のみに何ら限定されるものではない。 [Example]
Hereinafter, a method for identifying outer membrane detachment of cyanobacteria and a device for identifying outer membrane detachment of cyanobacteria of the present disclosure will be specifically explained in Examples, but the present disclosure is in no way limited to the following Examples. It's not something you can do.
以下の実施例では、シアノバクテリアの外膜を細胞壁から部分的に脱離させる方法として、SLHドメイン保持型外膜タンパク質をコードするslr1841遺伝子の発現抑制(実施例1)、及び細胞壁-ピルビン酸修飾酵素をコードするslr0688遺伝子の発現抑制(実施例2)を行い、2種類の改変シアノバクテリアを作製した。そして、これらの改変シアノバクテリアのタンパク質の分泌生産性の測定と、分泌されたタンパク質の同定とを行った。なお、本実施例で使用したシアノバクテリア種は、Synechocystis sp. PCC 6803(以下、単に、「シアノバクテリア」と呼ぶ)である。
In the following examples, as a method for partially detaching the outer membrane of cyanobacteria from the cell wall, we will suppress the expression of the slr1841 gene encoding an SLH domain-retaining outer membrane protein (Example 1) and modify the cell wall with pyruvate. The expression of the slr0688 gene encoding the enzyme was suppressed (Example 2), and two types of modified cyanobacteria were produced. Then, we measured the protein secretion productivity of these modified cyanobacteria and identified the secreted proteins. The cyanobacterial species used in this example is Synechocystis sp. PCC 6803 (hereinafter simply referred to as "cyanobacteria").
(実施例1)
実施例1では、SLHドメイン保持型外膜タンパク質をコードするslr1841遺伝子の発現が抑制された改変シアノバクテリアを作製した。 (Example 1)
In Example 1, a modified cyanobacterium in which the expression of the slr1841 gene encoding the SLH domain-retaining outer membrane protein was suppressed was produced.
実施例1では、SLHドメイン保持型外膜タンパク質をコードするslr1841遺伝子の発現が抑制された改変シアノバクテリアを作製した。 (Example 1)
In Example 1, a modified cyanobacterium in which the expression of the slr1841 gene encoding the SLH domain-retaining outer membrane protein was suppressed was produced.
(1)slr1841遺伝子の発現が抑制されたシアノバクテリア改変株の構築
遺伝子発現抑制法として、CRISPR(Clustered Regularly Interspaced Short Palindromic Repeat)干渉法を用いた。本方法では、dCas9タンパク質をコードする遺伝子(以下、dCas9遺伝子という)と、slr1841_sgRNA(single-guide Ribonucleic Acid)遺伝子とを、シアノバクテリアの染色体DNAに導入することにより、slr1841遺伝子の発現を抑制することができる。また、slr1841_sgRNAの転写活性を制御することにより、slr1841遺伝子の抑制の程度をコントロールすることができる。 (1) Construction of a modified cyanobacterial strain in which slr1841 gene expression is suppressed CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) interference method was used as a method for suppressing gene expression. In this method, the expression of the slr1841 gene is suppressed by introducing the gene encoding the dCas9 protein (hereinafter referred to as the dCas9 gene) and the slr1841_sgRNA (single-guide Ribonucleic Acid) gene into the chromosomal DNA of cyanobacteria. Can be done. Furthermore, by controlling the transcriptional activity of slr1841_sgRNA, the degree of suppression of the slr1841 gene can be controlled.
遺伝子発現抑制法として、CRISPR(Clustered Regularly Interspaced Short Palindromic Repeat)干渉法を用いた。本方法では、dCas9タンパク質をコードする遺伝子(以下、dCas9遺伝子という)と、slr1841_sgRNA(single-guide Ribonucleic Acid)遺伝子とを、シアノバクテリアの染色体DNAに導入することにより、slr1841遺伝子の発現を抑制することができる。また、slr1841_sgRNAの転写活性を制御することにより、slr1841遺伝子の抑制の程度をコントロールすることができる。 (1) Construction of a modified cyanobacterial strain in which slr1841 gene expression is suppressed CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) interference method was used as a method for suppressing gene expression. In this method, the expression of the slr1841 gene is suppressed by introducing the gene encoding the dCas9 protein (hereinafter referred to as the dCas9 gene) and the slr1841_sgRNA (single-guide Ribonucleic Acid) gene into the chromosomal DNA of cyanobacteria. Can be done. Furthermore, by controlling the transcriptional activity of slr1841_sgRNA, the degree of suppression of the slr1841 gene can be controlled.
本方法による遺伝子発現抑制の仕組みは次の通りである。
The mechanism of gene expression suppression using this method is as follows.
まず、ヌクレアーゼ活性を欠損したCas9タンパク質(dCas9)と、slr1841遺伝子の塩基配列に相補的に結合するsgRNA(slr1841_sgRNA)とが、複合体を形成する。
First, a Cas9 protein lacking nuclease activity (dCas9) and sgRNA (slr1841_sgRNA) that binds complementary to the base sequence of the slr1841 gene form a complex.
次に、この複合体がシアノバクテリアの染色体DNA上のslr1841遺伝子を認識し、slr1841遺伝子と特異的に結合する。この結合が立体障害となることにより、slr1841遺伝子の転写が阻害される。その結果、シアノバクテリアのslr1841遺伝子の発現が抑制される。また、slr1841_sgRNAの転写活性を制御することにより、slr1841遺伝子の抑制の程度をコントロールすることができる。
Next, this complex recognizes the slr1841 gene on the cyanobacterial chromosomal DNA and specifically binds to the slr1841 gene. This binding causes steric hindrance, which inhibits transcription of the slr1841 gene. As a result, the expression of the cyanobacterial slr1841 gene is suppressed. Furthermore, by controlling the transcriptional activity of slr1841_sgRNA, the degree of suppression of the slr1841 gene can be controlled.
以下、上記の2つの遺伝子の各々をシアノバクテリアの染色体DNAに導入する方法を具体的に説明する。
Hereinafter, a method for introducing each of the above two genes into the chromosomal DNA of cyanobacteria will be specifically explained.
(1-1)dCas9遺伝子の導入
Synechocystis LY07株(以下、LY07株ともいう)(非特許文献13参照)の染色体DNAを鋳型として、dCas9遺伝子及びdCas9遺伝子の発現制御のためのオペレーター遺伝子、並びに、遺伝子導入の目印となるスペクチノマイシン耐性マーカー遺伝子を、表1に記載のプライマーpsbA1-Fw(配列番号13)及びpsbA1-Rv(配列番号14)を用いてPCR(Polymerase chain reaction)法により増幅した。なお、LY07株では、上記の3つの遺伝子が連結した状態で染色体DNA上のpsbA1遺伝子に挿入されているため、1つのDNA断片としてPCR法により増幅することができる。ここでは、得られたDNA断片を「psbA1::dCas9カセット」と表記する。In-Fusion PCRクローニング法(登録商標)を用いて、psbA1::dCas9カセットをpUC19プラスミドに挿入し、pUC19-dCas9プラスミドを得た。 (1-1) Introduction of dCas9 gene Using the chromosomal DNA of Synechocystis LY07 strain (hereinafter also referred to as LY07 strain) (see Non-Patent Document 13) as a template, the dCas9 gene and an operator gene for controlling the expression of the dCas9 gene, and The spectinomycin resistance marker gene, which serves as a marker for gene introduction, was amplified by the PCR (polymerase chain reaction) method using the primers psbA1-Fw (SEQ ID NO: 13) and psbA1-Rv (SEQ ID NO: 14) listed in Table 1. . In the LY07 strain, the three genes mentioned above are inserted into the psbA1 gene on the chromosomal DNA in a linked state, so they can be amplified as one DNA fragment by PCR. Here, the obtained DNA fragment is referred to as "psbA1::dCas9 cassette." The psbA1::dCas9 cassette was inserted into the pUC19 plasmid using the In-Fusion PCR cloning method (registered trademark) to obtain the pUC19-dCas9 plasmid.
Synechocystis LY07株(以下、LY07株ともいう)(非特許文献13参照)の染色体DNAを鋳型として、dCas9遺伝子及びdCas9遺伝子の発現制御のためのオペレーター遺伝子、並びに、遺伝子導入の目印となるスペクチノマイシン耐性マーカー遺伝子を、表1に記載のプライマーpsbA1-Fw(配列番号13)及びpsbA1-Rv(配列番号14)を用いてPCR(Polymerase chain reaction)法により増幅した。なお、LY07株では、上記の3つの遺伝子が連結した状態で染色体DNA上のpsbA1遺伝子に挿入されているため、1つのDNA断片としてPCR法により増幅することができる。ここでは、得られたDNA断片を「psbA1::dCas9カセット」と表記する。In-Fusion PCRクローニング法(登録商標)を用いて、psbA1::dCas9カセットをpUC19プラスミドに挿入し、pUC19-dCas9プラスミドを得た。 (1-1) Introduction of dCas9 gene Using the chromosomal DNA of Synechocystis LY07 strain (hereinafter also referred to as LY07 strain) (see Non-Patent Document 13) as a template, the dCas9 gene and an operator gene for controlling the expression of the dCas9 gene, and The spectinomycin resistance marker gene, which serves as a marker for gene introduction, was amplified by the PCR (polymerase chain reaction) method using the primers psbA1-Fw (SEQ ID NO: 13) and psbA1-Rv (SEQ ID NO: 14) listed in Table 1. . In the LY07 strain, the three genes mentioned above are inserted into the psbA1 gene on the chromosomal DNA in a linked state, so they can be amplified as one DNA fragment by PCR. Here, the obtained DNA fragment is referred to as "psbA1::dCas9 cassette." The psbA1::dCas9 cassette was inserted into the pUC19 plasmid using the In-Fusion PCR cloning method (registered trademark) to obtain the pUC19-dCas9 plasmid.
得られたpUC19-dCas9プラスミド1μgとシアノバクテリア培養液(菌体濃度OD730=0.5程度)を混合し、自然形質転換によりpUC19-dCas9プラスミドをシアノバクテリアの細胞内に導入した。形質転換された細胞を20μg/mLのスペクチノマイシンを含むBG-11寒天培地上で生育させることにより、選抜した。選抜された細胞では、染色体DNA上のpsbA1遺伝子と、pUC19-dCas9プラスミド上のpsbA1上流断片領域及びpsbA1下流断片領域との間で相同組み換えが起こっている。これにより、psbA1遺伝子領域にdCas9カセットが挿入されたSynechocystis dCas9株を得た。なお、用いたBG-11培地の組成は表2の通りである。
1 μg of the obtained pUC19-dCas9 plasmid was mixed with a cyanobacterial culture solution (bacterial cell concentration OD730 = approximately 0.5), and the pUC19-dCas9 plasmid was introduced into cyanobacterial cells by natural transformation. Transformed cells were selected by growing on BG-11 agar medium containing 20 μg/mL spectinomycin. In the selected cells, homologous recombination occurs between the psbA1 gene on the chromosomal DNA and the psbA1 upstream fragment region and psbA1 downstream fragment region on the pUC19-dCas9 plasmid. As a result, a Synechocystis dCas9 strain in which the dCas9 cassette was inserted into the psbA1 gene region was obtained. The composition of the BG-11 medium used is shown in Table 2.
(1-2)slr1841_sgRNA遺伝子の導入
CRISPR干渉法では、sgRNA遺伝子上のprotospacerと呼ばれる領域に、標的配列と相補的な約20塩基の配列を導入することにより、sgRNAが標的遺伝子に特異的に結合する。本実施例で用いたprotospacer配列は表3に示される。 (1-2) Introduction of slr1841_sgRNA gene In CRISPR interference, sgRNA specifically binds to the target gene by introducing a sequence of approximately 20 bases complementary to the target sequence into a region called protospacer on the sgRNA gene. do. The protospacer sequences used in this example are shown in Table 3.
CRISPR干渉法では、sgRNA遺伝子上のprotospacerと呼ばれる領域に、標的配列と相補的な約20塩基の配列を導入することにより、sgRNAが標的遺伝子に特異的に結合する。本実施例で用いたprotospacer配列は表3に示される。 (1-2) Introduction of slr1841_sgRNA gene In CRISPR interference, sgRNA specifically binds to the target gene by introducing a sequence of approximately 20 bases complementary to the target sequence into a region called protospacer on the sgRNA gene. do. The protospacer sequences used in this example are shown in Table 3.
Synechocystis LY04株、LY05株、又は、LY07株では、sgRNA遺伝子(protospacer領域を除く)とカナマイシン耐性マーカー遺伝子とが連結した形で、染色体DNA上のslr2030-slr2031遺伝子に挿入されている(非特許文献13参照)。従って、当該sgRNA遺伝子をPCR法により増幅する際に用いるプライマーにslr1841遺伝子(配列番号7)と相補的なprotospacer配列(配列番号21)を付与することにより、slr1841を特異的に認識するsgRNA (slr1841_sgRNA)を容易に得ることができる。また、slr1841_sgRNAの転写活性を制御することにより、slr1841遺伝子の抑制の程度をコントロールすることができる。
In Synechocystis LY04, LY05, or LY07 strains, the sgRNA gene (excluding the protospacer region) and the kanamycin resistance marker gene are inserted into the slr2030-slr2031 genes on the chromosomal DNA (Non-patent Document (see 13). Therefore, by adding a protospacer sequence (SEQ ID NO: 21) complementary to the slr1841 gene (SEQ ID NO: 7) to the primers used when amplifying the sgRNA gene by PCR method, we created an sgRNA (slr1841_sgRNA) that specifically recognizes slr1841. ) can be easily obtained. Furthermore, by controlling the transcriptional activity of slr1841_sgRNA, the degree of suppression of the slr1841 gene can be controlled.
まず、LY07株の染色体DNAを鋳型とし、表1に記載のプライマーslr2030-Fw(配列番号15)及びsgRNA_slr1841-Rv(配列番号16)のセット、並びに、sgRNA_slr1841-Fw(配列番号17)及びslr2031-Rv(配列番号18)のセットを用いて2つのDNA断片をPCR法により増幅した。
First, using the chromosomal DNA of the LY07 strain as a template, a set of primers slr2030-Fw (SEQ ID NO: 15) and sgRNA_slr1841-Rv (SEQ ID NO: 16) listed in Table 1, as well as sgRNA_slr1841-Fw (SEQ ID NO: 17) and slr2031- Two DNA fragments were amplified by PCR using a set of Rv (SEQ ID NO: 18).
続いて、上記のDNA断片の混合溶液を鋳型として、表1に記載のプライマーslr2030-Fw(配列番号15)とslr2031-Rv(配列番号18)とを用いてPCR法により増幅することにより、(i)slr2030遺伝子断片、(ii)slr1841_sgRNA、(iii)カナマイシン耐性マーカー遺伝子、(iv)slr2031遺伝子断片が順に連結したDNA断片(slr2030-2031::slr1841_sgRNA)を得た。In-Fusion PCRクローニング法(登録商標)を用いて、slr2030-2031::slr1841_sgRNAをpUC19プラスミドに挿入し、pUC19-slr1841_sgRNAプラスミドを得た。
Next, by using the mixed solution of the above DNA fragments as a template and using the primers slr2030-Fw (SEQ ID NO: 15) and slr2031-Rv (SEQ ID NO: 18) listed in Table 1 by PCR method, ( A DNA fragment (slr2030-2031::slr1841_sgRNA) was obtained in which i) slr2030 gene fragment, (ii) slr1841_sgRNA, (iii) kanamycin resistance marker gene, and (iv) slr2031 gene fragment were linked in this order. Using the In-Fusion PCR cloning method (registered trademark), slr2030-2031::slr1841_sgRNA was inserted into the pUC19 plasmid to obtain the pUC19-slr1841_sgRNA plasmid.
上記(1-1)と同様の方法でpUC19-slr1841_sgRNAプラスミドをSynechocystis dCas9株に導入し、形質転換された細胞を30μg/mLカナマイシンを含むBG-11寒天培地上で選抜した。これにより、染色体DNA上のslr2030-slr2031遺伝子にslr1841_sgRNAが挿入された形質転換体Synechocystis dCas9 slr1841_sgRNA株(以下、slr1841抑制株ともいう)を得た。
The pUC19-slr1841_sgRNA plasmid was introduced into the Synechocystis dCas9 strain in the same manner as in (1-1) above, and the transformed cells were selected on a BG-11 agar medium containing 30 μg/mL kanamycin. As a result, a transformant Synechocystis dCas9 slr1841_sgRNA strain (hereinafter also referred to as slr1841 suppressed strain) in which slr1841_sgRNA was inserted into the slr2030-slr2031 gene on the chromosomal DNA was obtained.
(1-3)slr1841遺伝子の抑制
上記dCas9遺伝子及びslr1841_sgRNA遺伝子は、アンヒドロテトラサイクリン(aTc)の存在下で発現誘導されるようにプロモーター配列が設計されている。本実施例では、培地中に終濃度1 μg/mL aTc を添加することによりslr1841遺伝子の発現を抑制した。 (1-3) Suppression of slr1841 gene The promoter sequences of the above dCas9 gene and slr1841_sgRNA gene are designed so that their expression is induced in the presence of anhydrotetracycline (aTc). In this example, expression of the slr1841 gene was suppressed by adding aTc at a final concentration of 1 μg/mL to the medium.
上記dCas9遺伝子及びslr1841_sgRNA遺伝子は、アンヒドロテトラサイクリン(aTc)の存在下で発現誘導されるようにプロモーター配列が設計されている。本実施例では、培地中に終濃度1 μg/mL aTc を添加することによりslr1841遺伝子の発現を抑制した。 (1-3) Suppression of slr1841 gene The promoter sequences of the above dCas9 gene and slr1841_sgRNA gene are designed so that their expression is induced in the presence of anhydrotetracycline (aTc). In this example, expression of the slr1841 gene was suppressed by adding aTc at a final concentration of 1 μg/mL to the medium.
以上のようにして、実施例1では、細胞の増殖能力を損なわせることなく、シアノバクテリアにおいて外膜と細胞壁との結合に関与するタンパク質の総量が、親株(Synechocystis dCas9株、後述の比較例1)における当該タンパク質の量と比較して、30%程度に抑制された改変シアノバクテリアSynechocystis dCas9 slr1841_sgRNA株(いわゆる、slr1841抑制株)を得た。ここで、外膜と細胞壁との結合に関与するタンパク質は、slr1841、slr1908及びslr0042である。
As described above, in Example 1, the total amount of proteins involved in bonding the outer membrane and cell wall in cyanobacteria was adjusted to the parent strain (Synechocystis dCas9 strain, Comparative Example 1 described below) without impairing the cell growth ability. We obtained a modified cyanobacterium Synechocystis dCas9 slr1841_sgRNA strain (so-called slr1841 suppressed strain) in which the amount of the protein was suppressed to about 30% compared to the amount of the protein in . Here, the proteins involved in the binding between the outer membrane and the cell wall are slr1841, slr1908, and slr0042.
(実施例2)
実施例2では、下記の手順により、細胞壁-ピルビン酸修飾酵素をコードするslr0688遺伝子の発現が抑制された改変シアノバクテリアを得た。 (Example 2)
In Example 2, a modified cyanobacterium in which the expression of the slr0688 gene encoding a cell wall-pyruvate modifying enzyme was suppressed was obtained by the following procedure.
実施例2では、下記の手順により、細胞壁-ピルビン酸修飾酵素をコードするslr0688遺伝子の発現が抑制された改変シアノバクテリアを得た。 (Example 2)
In Example 2, a modified cyanobacterium in which the expression of the slr0688 gene encoding a cell wall-pyruvate modifying enzyme was suppressed was obtained by the following procedure.
(2)slr0688遺伝子の発現が抑制されたシアノバクテリア改変株の構築
上記(1-2)と同様の手順により、slr0688遺伝子(配列番号4)と相補的なprotospacer配列(配列番号22)を含むsgRNA遺伝子をSynechocystis dCas9株に導入し、Synechocystis dCas9 slr0688_sgRNA株を得た。なお、表1に記載のプライマーslr2030-Fw(配列番号15)及びsgRNA_slr0688-Rv(配列番号19)のセット、並びに、sgRNA_slr0688-Fw(配列番号20)及びslr2031-Rv(配列番号18)のセットを用いたことと、(i)slr2030遺伝子断片、(ii)slr0688_sgRNA、(iii)カナマイシン耐性マーカー遺伝子、(iv)slr2031遺伝子断片が順に連結したDNA断片(slr2030-2031::slr0688_sgRNA)をIn-Fusion PCRクローニング法(登録商標)を用いて、pUC19プラスミドに挿入し、pUC19-slr0688_sgRNAプラスミドを得たこと以外は、上記(1-2)と同様の条件で行った。また、slr0688_sgRNAの転写活性を制御することにより、slr0688遺伝子の抑制の程度をコントロールすることができる。 (2) Construction of a modified cyanobacterial strain in which the expression of the slr0688 gene is suppressed By the same procedure as in (1-2) above, sgRNA containing the protospacer sequence (SEQ ID NO: 22) complementary to the slr0688 gene (SEQ ID NO: 4) The gene was introduced into Synechocystis dCas9 strain to obtain Synechocystis dCas9 slr0688_sgRNA strain. In addition, the set of primers slr2030-Fw (SEQ ID NO: 15) and sgRNA_slr0688-Rv (SEQ ID NO: 19) and the set of sgRNA_slr0688-Fw (SEQ ID NO: 20) and slr2031-Rv (SEQ ID NO: 18) listed in Table 1 were used. In-Fusion PCR was performed on a DNA fragment (slr2030-2031::slr0688_sgRNA) in which (i) slr2030 gene fragment, (ii) slr0688_sgRNA, (iii) kanamycin resistance marker gene, and (iv) slr2031 gene fragment were linked in this order. The procedure was carried out under the same conditions as in (1-2) above, except that the cloning method (registered trademark) was used to insert into the pUC19 plasmid to obtain the pUC19-slr0688_sgRNA plasmid. Furthermore, by controlling the transcriptional activity of slr0688_sgRNA, the degree of suppression of the slr0688 gene can be controlled.
上記(1-2)と同様の手順により、slr0688遺伝子(配列番号4)と相補的なprotospacer配列(配列番号22)を含むsgRNA遺伝子をSynechocystis dCas9株に導入し、Synechocystis dCas9 slr0688_sgRNA株を得た。なお、表1に記載のプライマーslr2030-Fw(配列番号15)及びsgRNA_slr0688-Rv(配列番号19)のセット、並びに、sgRNA_slr0688-Fw(配列番号20)及びslr2031-Rv(配列番号18)のセットを用いたことと、(i)slr2030遺伝子断片、(ii)slr0688_sgRNA、(iii)カナマイシン耐性マーカー遺伝子、(iv)slr2031遺伝子断片が順に連結したDNA断片(slr2030-2031::slr0688_sgRNA)をIn-Fusion PCRクローニング法(登録商標)を用いて、pUC19プラスミドに挿入し、pUC19-slr0688_sgRNAプラスミドを得たこと以外は、上記(1-2)と同様の条件で行った。また、slr0688_sgRNAの転写活性を制御することにより、slr0688遺伝子の抑制の程度をコントロールすることができる。 (2) Construction of a modified cyanobacterial strain in which the expression of the slr0688 gene is suppressed By the same procedure as in (1-2) above, sgRNA containing the protospacer sequence (SEQ ID NO: 22) complementary to the slr0688 gene (SEQ ID NO: 4) The gene was introduced into Synechocystis dCas9 strain to obtain Synechocystis dCas9 slr0688_sgRNA strain. In addition, the set of primers slr2030-Fw (SEQ ID NO: 15) and sgRNA_slr0688-Rv (SEQ ID NO: 19) and the set of sgRNA_slr0688-Fw (SEQ ID NO: 20) and slr2031-Rv (SEQ ID NO: 18) listed in Table 1 were used. In-Fusion PCR was performed on a DNA fragment (slr2030-2031::slr0688_sgRNA) in which (i) slr2030 gene fragment, (ii) slr0688_sgRNA, (iii) kanamycin resistance marker gene, and (iv) slr2031 gene fragment were linked in this order. The procedure was carried out under the same conditions as in (1-2) above, except that the cloning method (registered trademark) was used to insert into the pUC19 plasmid to obtain the pUC19-slr0688_sgRNA plasmid. Furthermore, by controlling the transcriptional activity of slr0688_sgRNA, the degree of suppression of the slr0688 gene can be controlled.
さらに、上記(1-3)と同様の手順により、slr0688遺伝子の発現を抑制した。
Furthermore, the expression of the slr0688 gene was suppressed by the same procedure as in (1-3) above.
以上のようにして、実施例2では、細胞の増殖能力を損なわせることなく、シアノバクテリアにおいて外膜と細胞壁との結合に関与するタンパク質の量が、親株(Synechocystis dCas9株、後述の比較例1)における当該タンパク質の量と比較して、50%程度に抑制された改変シアノバクテリアSynechocystis dCas9 slr0688_sgRNA株(以下、slr0688抑制株ともいう)を得た。ここで、外膜と細胞壁との結合に関与するタンパク質は、slr0688である。
As described above, in Example 2, the amount of proteins involved in bonding the outer membrane and cell wall in cyanobacteria was determined from the parent strain (Synechocystis dCas9 strain, Comparative Example 1 described below) without impairing the cell growth ability. ), a modified cyanobacterial Synechocystis dCas9 slr0688_sgRNA strain (hereinafter also referred to as slr0688 suppressed strain) was obtained, in which the amount of the protein was suppressed to about 50%. Here, the protein involved in binding the outer membrane and the cell wall is slr0688.
(比較例1)
比較例1では、実施例1の(1-1)と同様の手順により、Synechocystis dCas9株を得た。 (Comparative example 1)
In Comparative Example 1, Synechocystis dCas9 strain was obtained by the same procedure as in Example 1 (1-1).
比較例1では、実施例1の(1-1)と同様の手順により、Synechocystis dCas9株を得た。 (Comparative example 1)
In Comparative Example 1, Synechocystis dCas9 strain was obtained by the same procedure as in Example 1 (1-1).
続いて、実施例1、実施例2及び比較例1で得られた菌株について、それぞれ、細胞表層の状態の観察及びタンパク質の分泌生産性試験を行った。以下、詳細について説明する。
Subsequently, the cell surface conditions of the bacterial strains obtained in Example 1, Example 2, and Comparative Example 1 were observed and protein secretion productivity tests were conducted. The details will be explained below.
(3)菌株の細胞表層の状態の観察
実施例1で得られた改変シアノバクテリアSynechocystis dCas9 slr1841_sgRNA株(いわゆる、slr1841抑制株)、実施例2で得られた改変シアノバクテリアSynechocystis dCas9 slr0688_sgRNA株(いわゆる、slr0688抑制株)、及び、比較例1で得られた改変シアノバクテリアSynechocystis dCas9株(以下、Control株という)のそれぞれの超薄切片を作製し、電子顕微鏡を用いて細胞表層の状態(言い換えると、外膜構造)を観察した。 (3) Observation of cell surface state of bacterial strains The modified cyanobacterium Synechocystis dCas9 slr1841_sgRNA strain obtained in Example 1 (so-called slr1841 suppressed strain), the modified cyanobacterium Synechocystis dCas9 slr0688_sgRNA strain obtained in Example 2 (so-called, slr0688 suppressed strain) and the modified cyanobacterium Synechocystis dCas9 strain obtained in Comparative Example 1 (hereinafter referred to as Control strain), ultrathin sections were prepared, and the state of the cell surface layer (in other words, Adventitial structure) was observed.
実施例1で得られた改変シアノバクテリアSynechocystis dCas9 slr1841_sgRNA株(いわゆる、slr1841抑制株)、実施例2で得られた改変シアノバクテリアSynechocystis dCas9 slr0688_sgRNA株(いわゆる、slr0688抑制株)、及び、比較例1で得られた改変シアノバクテリアSynechocystis dCas9株(以下、Control株という)のそれぞれの超薄切片を作製し、電子顕微鏡を用いて細胞表層の状態(言い換えると、外膜構造)を観察した。 (3) Observation of cell surface state of bacterial strains The modified cyanobacterium Synechocystis dCas9 slr1841_sgRNA strain obtained in Example 1 (so-called slr1841 suppressed strain), the modified cyanobacterium Synechocystis dCas9 slr0688_sgRNA strain obtained in Example 2 (so-called, slr0688 suppressed strain) and the modified cyanobacterium Synechocystis dCas9 strain obtained in Comparative Example 1 (hereinafter referred to as Control strain), ultrathin sections were prepared, and the state of the cell surface layer (in other words, Adventitial structure) was observed.
(3-1)菌株の培養
初発菌体濃度OD730 = 0.05となるように、実施例1のslr1841抑制株を、1 μg/mL aTcを含むBG-11培地(表2参照)12 mLに接種し、光量100 μmol/m2/s、30℃の条件下で5日間振盪培養した。なお、実施例2のslr0688抑制株及び比較例1のControl株も実施例1と同様の条件で培養した。 (3-1) Culture of the strain The slr1841 suppressed strain from Example 1 was inoculated into 12 mL of BG-11 medium (see Table 2) containing 1 μg/mL aTc so that the initial cell concentration was OD730 = 0.05. The cells were cultured with shaking for 5 days at a light intensity of 100 μmol/m 2 /s and a temperature of 30°C. Note that the slr0688 suppressed strain of Example 2 and the Control strain of Comparative Example 1 were also cultured under the same conditions as in Example 1.
初発菌体濃度OD730 = 0.05となるように、実施例1のslr1841抑制株を、1 μg/mL aTcを含むBG-11培地(表2参照)12 mLに接種し、光量100 μmol/m2/s、30℃の条件下で5日間振盪培養した。なお、実施例2のslr0688抑制株及び比較例1のControl株も実施例1と同様の条件で培養した。 (3-1) Culture of the strain The slr1841 suppressed strain from Example 1 was inoculated into 12 mL of BG-11 medium (see Table 2) containing 1 μg/mL aTc so that the initial cell concentration was OD730 = 0.05. The cells were cultured with shaking for 5 days at a light intensity of 100 μmol/m 2 /s and a temperature of 30°C. Note that the slr0688 suppressed strain of Example 2 and the Control strain of Comparative Example 1 were also cultured under the same conditions as in Example 1.
(3-2)菌株の超薄切片の作製
上記(3-1)で得られた培養液を、室温にて2,500 gで10分間遠心分離し、実施例1のslr1841抑制株の細胞を回収した。次いで、細胞を-175℃の液体プロパンで急速凍結した後、2%グルタルアルデヒド及び1%タンニン酸を含むエタノール溶液を用いて-80℃で2日間固定した。固定後の細胞をエタノールにより脱水処理し、脱水した細胞を酸化プロピレンに浸透させたあと、樹脂(Quetol-651)溶液中に沈めた。その後60℃で48時間静置し、樹脂を硬化させて、細胞を樹脂で包埋した。樹脂中の細胞を、ウルトラミクロトーム(Ultracut)を用いて70 nmの厚さに薄切し、超薄切片を作成した。この超薄切片を、2%酢酸ウラン及び1%クエン酸鉛溶液を用いて染色して、実施例1のslr1841抑制株の透過型電子顕微鏡の試料を準備した。なお、実施例2のslr0688抑制株及び比較例1のControl株についてもそれぞれ同様の操作を行い、透過型電子顕微鏡の試料を準備した。 (3-2) Preparation of ultrathin sections of the bacterial strain The culture solution obtained in (3-1) above was centrifuged at 2,500 g for 10 minutes at room temperature to collect cells of the slr1841 suppressed strain of Example 1. . Cells were then quickly frozen in liquid propane at -175°C, and then fixed at -80°C for 2 days using an ethanol solution containing 2% glutaraldehyde and 1% tannic acid. The fixed cells were dehydrated with ethanol, the dehydrated cells were permeated with propylene oxide, and then submerged in a resin (Quetol-651) solution. Thereafter, the resin was left to stand at 60°C for 48 hours to harden the resin, and the cells were embedded in the resin. The cells in the resin were sliced into 70 nm thick sections using an ultramicrotome (Ultracut) to create ultrathin sections. This ultrathin section was stained with a 2% uranium acetate and 1% lead citrate solution to prepare a transmission electron microscopy sample of the slr1841 suppressed strain of Example 1. Note that the same operation was performed for the slr0688 suppressed strain of Example 2 and the Control strain of Comparative Example 1, respectively, to prepare samples for transmission electron microscopy.
上記(3-1)で得られた培養液を、室温にて2,500 gで10分間遠心分離し、実施例1のslr1841抑制株の細胞を回収した。次いで、細胞を-175℃の液体プロパンで急速凍結した後、2%グルタルアルデヒド及び1%タンニン酸を含むエタノール溶液を用いて-80℃で2日間固定した。固定後の細胞をエタノールにより脱水処理し、脱水した細胞を酸化プロピレンに浸透させたあと、樹脂(Quetol-651)溶液中に沈めた。その後60℃で48時間静置し、樹脂を硬化させて、細胞を樹脂で包埋した。樹脂中の細胞を、ウルトラミクロトーム(Ultracut)を用いて70 nmの厚さに薄切し、超薄切片を作成した。この超薄切片を、2%酢酸ウラン及び1%クエン酸鉛溶液を用いて染色して、実施例1のslr1841抑制株の透過型電子顕微鏡の試料を準備した。なお、実施例2のslr0688抑制株及び比較例1のControl株についてもそれぞれ同様の操作を行い、透過型電子顕微鏡の試料を準備した。 (3-2) Preparation of ultrathin sections of the bacterial strain The culture solution obtained in (3-1) above was centrifuged at 2,500 g for 10 minutes at room temperature to collect cells of the slr1841 suppressed strain of Example 1. . Cells were then quickly frozen in liquid propane at -175°C, and then fixed at -80°C for 2 days using an ethanol solution containing 2% glutaraldehyde and 1% tannic acid. The fixed cells were dehydrated with ethanol, the dehydrated cells were permeated with propylene oxide, and then submerged in a resin (Quetol-651) solution. Thereafter, the resin was left to stand at 60°C for 48 hours to harden the resin, and the cells were embedded in the resin. The cells in the resin were sliced into 70 nm thick sections using an ultramicrotome (Ultracut) to create ultrathin sections. This ultrathin section was stained with a 2% uranium acetate and 1% lead citrate solution to prepare a transmission electron microscopy sample of the slr1841 suppressed strain of Example 1. Note that the same operation was performed for the slr0688 suppressed strain of Example 2 and the Control strain of Comparative Example 1, respectively, to prepare samples for transmission electron microscopy.
(3-3)電子顕微鏡による観察
透過型電子顕微鏡(JEOL JEM-1400Plus)を用いて、加速電圧100 kV下で、上記(3-2)で得られた超薄切片の観察を行った。観察結果を図4~図9に示す。 (3-3) Observation using an electron microscope The ultrathin section obtained in (3-2) above was observed using a transmission electron microscope (JEOL JEM-1400Plus) at an accelerating voltage of 100 kV. The observation results are shown in FIGS. 4 to 9.
透過型電子顕微鏡(JEOL JEM-1400Plus)を用いて、加速電圧100 kV下で、上記(3-2)で得られた超薄切片の観察を行った。観察結果を図4~図9に示す。 (3-3) Observation using an electron microscope The ultrathin section obtained in (3-2) above was observed using a transmission electron microscope (JEOL JEM-1400Plus) at an accelerating voltage of 100 kV. The observation results are shown in FIGS. 4 to 9.
まず、実施例1のslr1841抑制株について説明する。図4は、実施例1のslr1841抑制株のTEM(Transmission Electron Microscope)像である。図5は、図4の破線領域Aの拡大像である。図5の(a)は、図4の破線領域Aの拡大TEM像であり、図5の(b)は、図5の(a)の拡大TEM像を描写した図である。
First, the slr1841 suppressed strain of Example 1 will be explained. FIG. 4 is a TEM (Transmission Electron Microscope) image of the slr1841 suppressed strain of Example 1. FIG. 5 is an enlarged image of the broken line area A in FIG. 5(a) is an enlarged TEM image of the broken line area A in FIG. 4, and FIG. 5(b) is a diagram depicting the enlarged TEM image of FIG. 5(a).
図3に示されるように、実施例1のslr1841抑制株では、外膜が細胞壁から部分的に剥離し(つまり、外膜が部分的に剥がれ落ち)、かつ、外膜が部分的に撓んでいた。
As shown in Figure 3, in the slr1841 suppressed strain of Example 1, the outer membrane was partially peeled off from the cell wall (that is, the outer membrane was partially peeled off), and the outer membrane was partially bent. there was.
細胞表層の状態をより詳細に確認するために、破線領域Aを拡大観察したところ、図5の(a)及び図5の(b)に示されるように、外膜が部分的に剥がれ落ちた部分(図中の一点破線領域a1及びa2)を確認できた。また、一点破線領域a1の傍に外膜が大きく撓んだ部分を確認できた。この部分は、外膜と細胞壁との結合が弱められた部分であり、培養液が外膜からペリプラズム内に浸透したため、外膜が外側に膨張されて、撓んだと考えられる。
In order to confirm the condition of the cell surface layer in more detail, we enlarged the area A shown by the broken line and found that the outer membrane had partially peeled off, as shown in Figures 5(a) and 5(b). The parts (dot-dashed line areas a1 and a2 in the figure) could be confirmed. Further, a portion where the adventitia was largely bent was confirmed near the dotted line area a1. This region is a region where the bond between the outer membrane and the cell wall is weakened, and it is thought that the culture solution permeated from the outer membrane into the periplasm, causing the outer membrane to swell outward and become bent.
続いて、実施例2のslr0688抑制株について説明する。図6は、実施例2のslr0688抑制株のTEM像である。図7は、図6の破線領域Bの拡大像である。図7の(a)は、図6の破線領域Bの拡大TEM像であり、図7の(b)は、図7の(a)の拡大TEM像を描写した図である。
Next, the slr0688 suppressed strain of Example 2 will be explained. FIG. 6 is a TEM image of the slr0688 suppressed strain of Example 2. FIG. 7 is an enlarged image of the broken line area B in FIG. 7(a) is an enlarged TEM image of the broken line area B in FIG. 6, and FIG. 7(b) is a diagram depicting the enlarged TEM image of FIG. 7(a).
図6に示されるように、実施例2のslr0688抑制株では、外膜が細胞壁から部分的に剥離し、かつ、外膜が部分的に撓んでいた。また、slr0688抑制株では、外膜が部分的に細胞壁から脱離していることが確認できた。
As shown in FIG. 6, in the slr0688-inhibited strain of Example 2, the outer membrane was partially detached from the cell wall, and the outer membrane was partially bent. Furthermore, in the slr0688 suppressed strain, it was confirmed that the outer membrane was partially detached from the cell wall.
細胞表層の状態をより詳細に確認するために、破線領域Bを拡大観察したところ、図7の(a)及び図7の(b)に示されるように、外膜が大きく撓んだ部分(図中の一点破線領域b1)、及び、外膜が部分的に剥がれ落ちた部分(図中の一点破線領域b2及びb3)を確認できた。また、一点破線領域b1、b2及びb3それぞれの近傍に外膜が細胞壁から脱離している部分を確認できた。
In order to confirm the state of the cell surface layer in more detail, we enlarged and observed the broken line area B. As shown in FIGS. The dotted line area b1 in the figure and the parts where the outer membrane had partially peeled off (dot and dot line areas b2 and b3 in the figure) were confirmed. In addition, parts where the outer membrane was detached from the cell wall were confirmed near each of the dotted line areas b1, b2, and b3.
続いて、比較例1のControl株について説明する。図8は、比較例1のControl株のTEM像である。図9は、図8の破線領域Cの拡大像である。図9の(a)は、図8の破線領域Cの拡大TEM像であり、図9の(b)は、図9の(a)の拡大TEM像を描写した図である。
Next, the Control strain of Comparative Example 1 will be explained. FIG. 8 is a TEM image of the Control strain of Comparative Example 1. FIG. 9 is an enlarged image of the broken line area C in FIG. 9(a) is an enlarged TEM image of the broken line area C in FIG. 8, and FIG. 9(b) is a diagram depicting the enlarged TEM image of FIG. 9(a).
図8及び図9に示されるように、比較例1のControl株の細胞表層は整っており、内膜、細胞壁、外膜、及びS層が順に積層された状態を保っていた。つまり、Control株では、実施例1及び2のように外膜が細胞壁から脱離した部分、外膜が細胞壁から剥離した(つまり、剥がれ落ちた)部分、及び、外膜が撓んだ部分は見られなかった。
As shown in FIGS. 8 and 9, the cell surface layer of the Control strain of Comparative Example 1 was well-organized, and the inner membrane, cell wall, outer membrane, and S layer remained laminated in this order. In other words, in the Control strain, as in Examples 1 and 2, the parts where the outer membrane detached from the cell wall, the parts where the outer membrane peeled off from the cell wall (that is, the parts fell off), and the parts where the outer membrane bent were I couldn't see it.
(4)タンパク質の分泌生産性試験
実施例1のslr1841抑制株、実施例2のslr0688抑制株、及び、比較例1のControl株をそれぞれ培養し、細胞外に分泌されたタンパク質量(以下、分泌タンパク質量ともいう)を測定した。培養液中のタンパク質量により、上記の菌株それぞれのタンパク質の分泌生産性を評価した。なお、タンパク質の分泌生産性とは、細胞内で産生されたタンパク質を細胞外に分泌することにより、タンパク質を生産する能力をいう。以下、具体的な方法について説明する。 (4) Protein secretion productivity test The slr1841 suppressed strain of Example 1, the slr0688 suppressed strain of Example 2, and the Control strain of Comparative Example 1 were cultured, and the amount of protein secreted outside the cells (hereinafter referred to as secreted (also referred to as protein amount) was measured. The protein secretion productivity of each of the above bacterial strains was evaluated based on the amount of protein in the culture solution. Note that protein secretion productivity refers to the ability to produce proteins by secreting proteins produced within the cells to the outside of the cells. A specific method will be explained below.
実施例1のslr1841抑制株、実施例2のslr0688抑制株、及び、比較例1のControl株をそれぞれ培養し、細胞外に分泌されたタンパク質量(以下、分泌タンパク質量ともいう)を測定した。培養液中のタンパク質量により、上記の菌株それぞれのタンパク質の分泌生産性を評価した。なお、タンパク質の分泌生産性とは、細胞内で産生されたタンパク質を細胞外に分泌することにより、タンパク質を生産する能力をいう。以下、具体的な方法について説明する。 (4) Protein secretion productivity test The slr1841 suppressed strain of Example 1, the slr0688 suppressed strain of Example 2, and the Control strain of Comparative Example 1 were cultured, and the amount of protein secreted outside the cells (hereinafter referred to as secreted (also referred to as protein amount) was measured. The protein secretion productivity of each of the above bacterial strains was evaluated based on the amount of protein in the culture solution. Note that protein secretion productivity refers to the ability to produce proteins by secreting proteins produced within the cells to the outside of the cells. A specific method will be explained below.
(4-1)菌株の培養
実施例1のslr1841抑制株を上記(3-1)と同様の方法で培養した。培養は、独立して3回行った。なお、実施例2及び比較例1の菌株についても実施例1の菌株と同様の条件で培養した。 (4-1) Culture of strain The slr1841 suppressed strain of Example 1 was cultured in the same manner as in (3-1) above. Culturing was performed independently three times. The strains of Example 2 and Comparative Example 1 were also cultured under the same conditions as the strains of Example 1.
実施例1のslr1841抑制株を上記(3-1)と同様の方法で培養した。培養は、独立して3回行った。なお、実施例2及び比較例1の菌株についても実施例1の菌株と同様の条件で培養した。 (4-1) Culture of strain The slr1841 suppressed strain of Example 1 was cultured in the same manner as in (3-1) above. Culturing was performed independently three times. The strains of Example 2 and Comparative Example 1 were also cultured under the same conditions as the strains of Example 1.
(4-2)細胞外に分泌されたタンパク質の定量
上記(4-1)で得られた培養液を、室温にて2,500 gで10分間遠心分離し、培養上清を得た。得られた培養上清を、ポアサイズ0.22 μmのメンブレンフィルターを用いてろ過し、実施例1のslr1841抑制株の細胞を完全に除去した。ろ過後の培養上清に含まれる総タンパク質量をBCA(Bicinchoninic acid)法により定量した。この一連の操作を、独立して培養した3つの培養液のそれぞれについて行い、実施例1のslr1841抑制株の細胞外に分泌されたタンパク質量の平均値及び標準偏差を求めた。なお、実施例2及び比較例1の菌株についても、それぞれ、同様の条件で3つの培養液のタンパク質の定量を行い、3つの培養液中のタンパク質量の平均値及び標準偏差を求めた。 (4-2) Quantification of extracellularly secreted proteins The culture solution obtained in (4-1) above was centrifuged at 2,500 g for 10 minutes at room temperature to obtain a culture supernatant. The obtained culture supernatant was filtered using a membrane filter with a pore size of 0.22 μm to completely remove the cells of the slr1841 suppressed strain of Example 1. The total amount of protein contained in the culture supernatant after filtration was quantified by the BCA (Bicinchoninic acid) method. This series of operations was performed for each of the three independently cultured cultures, and the average value and standard deviation of the amount of protein secreted extracellularly of the slr1841 suppressed strain of Example 1 was determined. In addition, for the strains of Example 2 and Comparative Example 1, the protein in the three culture solutions was quantified under the same conditions, and the average value and standard deviation of the protein amounts in the three culture solutions were determined.
上記(4-1)で得られた培養液を、室温にて2,500 gで10分間遠心分離し、培養上清を得た。得られた培養上清を、ポアサイズ0.22 μmのメンブレンフィルターを用いてろ過し、実施例1のslr1841抑制株の細胞を完全に除去した。ろ過後の培養上清に含まれる総タンパク質量をBCA(Bicinchoninic acid)法により定量した。この一連の操作を、独立して培養した3つの培養液のそれぞれについて行い、実施例1のslr1841抑制株の細胞外に分泌されたタンパク質量の平均値及び標準偏差を求めた。なお、実施例2及び比較例1の菌株についても、それぞれ、同様の条件で3つの培養液のタンパク質の定量を行い、3つの培養液中のタンパク質量の平均値及び標準偏差を求めた。 (4-2) Quantification of extracellularly secreted proteins The culture solution obtained in (4-1) above was centrifuged at 2,500 g for 10 minutes at room temperature to obtain a culture supernatant. The obtained culture supernatant was filtered using a membrane filter with a pore size of 0.22 μm to completely remove the cells of the slr1841 suppressed strain of Example 1. The total amount of protein contained in the culture supernatant after filtration was quantified by the BCA (Bicinchoninic acid) method. This series of operations was performed for each of the three independently cultured cultures, and the average value and standard deviation of the amount of protein secreted extracellularly of the slr1841 suppressed strain of Example 1 was determined. In addition, for the strains of Example 2 and Comparative Example 1, the protein in the three culture solutions was quantified under the same conditions, and the average value and standard deviation of the protein amounts in the three culture solutions were determined.
結果を図10に示す。図10は、実施例1、実施例2及び比較例1の改変シアノバクテリアの培養上清中のタンパク質量(n=3、エラーバー=SD)を示すグラフである。
The results are shown in Figure 10. FIG. 10 is a graph showing the amount of protein in the culture supernatants of the modified cyanobacteria of Example 1, Example 2, and Comparative Example 1 (n=3, error bar=SD).
図10に示されるように、実施例1のslr1841抑制株及び実施例2のslr0688抑制株のいずれも、比較例1のControl株と比較して培養上清中に分泌されたタンパク質量(mg/L)が約25倍向上していた。
As shown in FIG. 10, both the slr1841 suppressed strain of Example 1 and the slr0688 suppressed strain of Example 2 secreted more protein (mg/ L) was improved by about 25 times.
データの記載を省略するが、培養液の吸光度(730nm)を測定し、菌体乾燥重量1gあたりの分泌タンパク質量(mg protein/g cell dry weight)を算出したところ、実施例1のslr1841抑制株及び実施例2のslr0688抑制株のいずれも、菌体乾燥重量1gあたりの分泌タンパク質量(mg protein/g cell dry weight)は、比較例1のControl株と比較して、約36倍向上していた。
Although the data are omitted, the absorbance (730 nm) of the culture solution was measured and the amount of secreted protein per 1 g of bacterial cell dry weight (mg protein/g cell dry weight) was calculated. In both of the slr0688 suppressed strain of Example 2, the amount of secreted protein per gram of bacterial cell dry weight (mg protein/g cell dry weight) was approximately 36 times higher than that of the Control strain of Comparative Example 1. Ta.
また、図10に示されるように、SLHドメイン保持型外膜タンパク質をコードする遺伝子(slr1841)の発現を抑制した実施例1のslr1841抑制株よりも、細胞壁-ピルビン酸修飾酵素をコードする遺伝子(slr0688)の発現を抑制した実施例2のslr0688抑制株の方が、培養上清中に分泌されたタンパク質量が多かった。これは、外膜中のSLHドメイン保持型外膜タンパク質(Slr1841)の数よりも細胞壁表面の共有結合型の糖鎖の数の方が多いことが関係していると考えられる。つまり、実施例2のslr0688抑制株の方が、実施例1のslr1841抑制株よりも外膜と細胞壁との結合量及び結合力がより低下したため、分泌されたタンパク質量が実施例1のslr1841抑制株よりも多くなったと考えられる。
Furthermore, as shown in FIG. 10, the gene encoding the cell wall-pyruvate modifying enzyme ( The slr0688 suppressed strain of Example 2, in which the expression of slr0688) was suppressed, had a higher amount of protein secreted into the culture supernatant. This is thought to be related to the fact that the number of covalently bonded sugar chains on the cell wall surface is greater than the number of SLH domain-retaining outer membrane proteins (Slr1841) in the outer membrane. In other words, in the slr0688 suppressed strain of Example 2, the binding amount and binding strength between the outer membrane and the cell wall were lower than in the slr1841 suppressed strain of Example 1, so the amount of secreted protein was lower than that of the slr1841 suppressed strain of Example 1. It is thought that the amount exceeded that of stocks.
以上の結果より、外膜と細胞壁との結合に関連するタンパク質の機能を抑制することにより、シアノバクテリアの外膜と細胞壁との結合が部分的に弱められ、外膜が細胞壁から部分的に脱離することが確認できた。外膜と細胞壁との結合が弱まることにより、シアノバクテリアの細胞内で産生されたタンパク質が細胞外に漏出しやすくなることも確認できた。したがって、本実施の形態に係る改変シアノバクテリア及びその作製方法によれば、タンパク質の分泌生産性が大きく向上する改変シアノバクテリアが得られることが示された。
From the above results, by suppressing the function of proteins related to the bond between the outer membrane and the cell wall, the bond between the outer membrane and the cell wall of cyanobacteria is partially weakened, and the outer membrane partially detaches from the cell wall. I was able to confirm that it was released. It was also confirmed that by weakening the bond between the outer membrane and the cell wall, proteins produced within the cyanobacterial cell can more easily leak out of the cell. Therefore, it was shown that the modified cyanobacteria and the method for producing the same according to the present embodiment can provide modified cyanobacteria with greatly improved protein secretion productivity.
(5)分泌されたタンパク質の同定
続いて、上記(4-2)で得られた培養上清中に含まれる分泌タンパク質を、LC-MS/MSにより同定した。方法を以下に説明する。 (5) Identification of secreted proteins Next, secreted proteins contained in the culture supernatant obtained in (4-2) above were identified by LC-MS/MS. The method will be explained below.
続いて、上記(4-2)で得られた培養上清中に含まれる分泌タンパク質を、LC-MS/MSにより同定した。方法を以下に説明する。 (5) Identification of secreted proteins Next, secreted proteins contained in the culture supernatant obtained in (4-2) above were identified by LC-MS/MS. The method will be explained below.
(5-1)試料調製
培養上清の液量に対して8倍量の冷アセトンを加え、20℃で2時間静置後、20,000 gで15分間遠心分離し、タンパク質の沈殿物を得た。この沈殿物に100 mM Tris pH 8.5、0.5%ドデカン酸ナトリウム(SDoD)を加え、密閉式超音波破砕機によってタンパク質を溶解した。タンパク質濃度1 μg/mLに調整後、終濃度10 mMのジチオスレイトール(DTT)を添加して50℃で30分間静置した。続いて、終濃度30 mMのヨードアセトアミド(IAA)を添加し、室温(遮光)で30分間静置した。IAAの反応を止めるために、終濃度60 mMのシステインを添加して室温で10分間静置した。トリプシン400 ngを添加して37℃で一晩静置し、タンパク質をペプチド断片化した。5% TFA(Trifluoroacetic Acid)を加えた後、室温にて15,000 gで10分間遠心分離し、上清を得た。この作業によりSDoDが除去された。C18スピンカラムを用いて脱塩後、遠心エバポレーターにより試料を乾固した。その後、3%アセトニトリル、0.1% formic acidを加え、密閉式超音波破砕機を用いて試料を溶解した。ペプチド濃度200 ng/μLになるように調整した。 (5-1)Sample preparation Add 8 times the amount of cold acetone to the culture supernatant, leave it at 20°C for 2 hours, and centrifuge at 20,000 g for 15 minutes to obtain a protein precipitate. . 100 mM Tris pH 8.5, 0.5% sodium dodecanoate (SDoD) was added to this precipitate, and the protein was dissolved using a closed ultrasonicator. After adjusting the protein concentration to 1 μg/mL, dithiothreitol (DTT) with a final concentration of 10 mM was added and left at 50°C for 30 minutes. Subsequently, iodoacetamide (IAA) was added at a final concentration of 30 mM, and the mixture was allowed to stand at room temperature (protected from light) for 30 minutes. To stop the IAA reaction, cysteine was added at a final concentration of 60 mM, and the mixture was allowed to stand at room temperature for 10 minutes. 400 ng of trypsin was added and left standing at 37°C overnight to fragment the protein into peptide fragments. After adding 5% TFA (Trifluoroacetic Acid), the mixture was centrifuged at 15,000 g for 10 minutes at room temperature to obtain a supernatant. This work removed SDoD. After desalting using a C18 spin column, the sample was dried using a centrifugal evaporator. Thereafter, 3% acetonitrile and 0.1% formic acid were added, and the sample was dissolved using a closed ultrasonic crusher. The peptide concentration was adjusted to 200 ng/μL.
培養上清の液量に対して8倍量の冷アセトンを加え、20℃で2時間静置後、20,000 gで15分間遠心分離し、タンパク質の沈殿物を得た。この沈殿物に100 mM Tris pH 8.5、0.5%ドデカン酸ナトリウム(SDoD)を加え、密閉式超音波破砕機によってタンパク質を溶解した。タンパク質濃度1 μg/mLに調整後、終濃度10 mMのジチオスレイトール(DTT)を添加して50℃で30分間静置した。続いて、終濃度30 mMのヨードアセトアミド(IAA)を添加し、室温(遮光)で30分間静置した。IAAの反応を止めるために、終濃度60 mMのシステインを添加して室温で10分間静置した。トリプシン400 ngを添加して37℃で一晩静置し、タンパク質をペプチド断片化した。5% TFA(Trifluoroacetic Acid)を加えた後、室温にて15,000 gで10分間遠心分離し、上清を得た。この作業によりSDoDが除去された。C18スピンカラムを用いて脱塩後、遠心エバポレーターにより試料を乾固した。その後、3%アセトニトリル、0.1% formic acidを加え、密閉式超音波破砕機を用いて試料を溶解した。ペプチド濃度200 ng/μLになるように調整した。 (5-1)
(5-2)LC-MS/MS分析
上記(5-1)で得られた試料をLC-MS/MS装置(UltiMate 3000 RSLCnano LC System) を用いて以下の条件で解析を実施した。 (5-2) LC-MS/MS Analysis The sample obtained in (5-1) above was analyzed using an LC-MS/MS device (UltiMate 3000 RSLCnano LC System) under the following conditions.
上記(5-1)で得られた試料をLC-MS/MS装置(UltiMate 3000 RSLCnano LC System) を用いて以下の条件で解析を実施した。 (5-2) LC-MS/MS Analysis The sample obtained in (5-1) above was analyzed using an LC-MS/MS device (UltiMate 3000 RSLCnano LC System) under the following conditions.
試料注入量:200 ng
カラム:CAPCELL CORE MP 75 μm × 250 mm
溶媒:A溶媒は0.1%ギ酸水溶液、B溶媒は0.1%ギ酸+80%アセトニトリル
グラジエントプログラム:試料注入4分後にB溶媒8%、27分後にB溶媒44%、28分後にB溶媒80%、34分後に測定終了
(5-3)データ解析
得られたデータは以下の条件で解析し、タンパク質及びペプチドの同定ならびに定量値の算出を行った。 Sample injection amount: 200 ng
Column: CAPCELL CORE MP 75 μm × 250 mm
Solvent: A solvent is 0.1% formic acid aqueous solution, B solvent is 0.1% formic acid + 80% acetonitrile Gradient program: B solvent 8% after 4 minutes of sample injection, B solvent 44% after 27 minutes, B solvent 80% after 28 minutes, 34 Measurement ended after 5-3 minutes. (5-3) Data analysis The obtained data was analyzed under the following conditions, and proteins and peptides were identified and quantitative values were calculated.
カラム:CAPCELL CORE MP 75 μm × 250 mm
溶媒:A溶媒は0.1%ギ酸水溶液、B溶媒は0.1%ギ酸+80%アセトニトリル
グラジエントプログラム:試料注入4分後にB溶媒8%、27分後にB溶媒44%、28分後にB溶媒80%、34分後に測定終了
(5-3)データ解析
得られたデータは以下の条件で解析し、タンパク質及びペプチドの同定ならびに定量値の算出を行った。 Sample injection amount: 200 ng
Column: CAPCELL CORE MP 75 μm × 250 mm
Solvent: A solvent is 0.1% formic acid aqueous solution, B solvent is 0.1% formic acid + 80% acetonitrile Gradient program: B solvent 8% after 4 minutes of sample injection, B solvent 44% after 27 minutes, B solvent 80% after 28 minutes, 34 Measurement ended after 5-3 minutes. (5-3) Data analysis The obtained data was analyzed under the following conditions, and proteins and peptides were identified and quantitative values were calculated.
ソフトウェア:Scaffold DIA
データベース:UniProtKB/Swiss Prot database ( Synechocystis sp. PCC 6803)
Fragmentation:HCD
Precursor Tolerance:8 ppm
Fragment Tolerance:10 ppm
Data Acquisition Type:Overlapping DIA
Peptide Length:8-70
Peptide Charge:2-8
Max Missed Cleavages:1
Fixed Modification:Carbamidomethylation
Peptide FDR:1%以下
同定されたタンパク質のうち相対定量値が最も大きかったものから順に10種類のタンパク質を表4に示す。 Software: Scaffold DIA
Database: UniProtKB/Swiss Prot database ( Synechocystis sp. PCC 6803)
Fragmentation: HCD
Precursor Tolerance: 8 ppm
Fragment Tolerance: 10 ppm
Data Acquisition Type: Overlapping DIA
Peptide Length: 8-70
Peptide Charge: 2-8
Max Missed Cleavages: 1
Fixed Modification: Carbamidomethylation
Peptide FDR: 1% or less Among the identified proteins, 10 types of proteins are shown in Table 4 in order of the highest relative quantitative value.
データベース:UniProtKB/Swiss Prot database ( Synechocystis sp. PCC 6803)
Fragmentation:HCD
Precursor Tolerance:8 ppm
Fragment Tolerance:10 ppm
Data Acquisition Type:Overlapping DIA
Peptide Length:8-70
Peptide Charge:2-8
Max Missed Cleavages:1
Fixed Modification:Carbamidomethylation
Peptide FDR:1%以下
同定されたタンパク質のうち相対定量値が最も大きかったものから順に10種類のタンパク質を表4に示す。 Software: Scaffold DIA
Database: UniProtKB/Swiss Prot database ( Synechocystis sp. PCC 6803)
Fragmentation: HCD
Precursor Tolerance: 8 ppm
Fragment Tolerance: 10 ppm
Data Acquisition Type: Overlapping DIA
Peptide Length: 8-70
Peptide Charge: 2-8
Max Missed Cleavages: 1
Fixed Modification: Carbamidomethylation
Peptide FDR: 1% or less Among the identified proteins, 10 types of proteins are shown in Table 4 in order of the highest relative quantitative value.
10種類のタンパク質は、全て、実施例1のslr1841抑制株及び実施例2のslr0688抑制株の培養上清のそれぞれに含まれていた。これらのタンパク質の全てにおいて、ペリプラズム(外膜と内膜との間隙を指す)移行シグナルが保持されていた。この結果により、実施例1及び実施例2の改変株では、外膜が細胞壁から部分的に脱離することによってペリプラズム内のタンパク質が外膜の外(つまり、菌体外)に漏出しやすくなることが確認できた。したがって、本実施の形態に係る改変シアノバクテリアは、タンパク質の分泌生産性が大幅に向上していることが示された。
All 10 types of proteins were contained in the culture supernatants of the slr1841 suppressed strain of Example 1 and the slr0688 suppressed strain of Example 2, respectively. All of these proteins retained periplasmic (referring to the space between the outer and inner membrane) translocation signals. This result shows that in the modified strains of Examples 1 and 2, the outer membrane partially detaches from the cell wall, making it easier for proteins in the periplasm to leak out of the outer membrane (i.e., outside the bacterial cell). This was confirmed. Therefore, it was shown that the modified cyanobacterium according to the present embodiment has significantly improved protein secretion productivity.
(6)シアノバクテリアの外膜剥離の判定
(6-1)シアノバクテリアの培養
シアノバクテリアSynechocystis sp. PCC 6803の野生株として比較例1のControl株を用い、外膜剥離型のSynechocystis sp. PCC 6803変異株として、上記(4)のタンパク質の分泌産生試験により外膜が剥離していることが確認された実施例2のslr0688抑制株を用いた。以下では、これらのシアノバクテリアを、それぞれ、シアノバクテリア野生株、外膜剥離型シアノバクテリアと呼ぶ。これらの2種類のシアノバクテリアを、初発菌体濃度OD730 = 0.1となるように、125mL容三角フラスコ中の1 μg/mLのaTcを含むBG-11培地(表2参照)12 mLに接種し、光量100 μmol/m2/s、30℃の条件下で3日間振盪培養した。 (6) Determination of outer membrane detachment of cyanobacteria (6-1) Cultivation of cyanobacteria Using the Control strain of Comparative Example 1 as a wild strain of cyanobacterium Synechocystis sp.PCC 6803, outer membrane detachment type Synechocystis sp. PCC 6803 was used. As a mutant strain, the slr0688 suppressed strain of Example 2, which was confirmed to have exfoliated outer membrane by the protein secretion production test described in (4) above, was used. Hereinafter, these cyanobacteria will be referred to as cyanobacteria wild strain and outer membrane-exfoliating cyanobacteria, respectively. These two types of cyanobacteria were inoculated into 12 mL of BG-11 medium (see Table 2) containing 1 μg/mL aTc in a 125 mL Erlenmeyer flask at an initial bacterial concentration OD730 = 0.1. The cells were cultured with shaking for 3 days at a light intensity of 100 μmol/m 2 /s and at 30°C.
(6-1)シアノバクテリアの培養
シアノバクテリアSynechocystis sp. PCC 6803の野生株として比較例1のControl株を用い、外膜剥離型のSynechocystis sp. PCC 6803変異株として、上記(4)のタンパク質の分泌産生試験により外膜が剥離していることが確認された実施例2のslr0688抑制株を用いた。以下では、これらのシアノバクテリアを、それぞれ、シアノバクテリア野生株、外膜剥離型シアノバクテリアと呼ぶ。これらの2種類のシアノバクテリアを、初発菌体濃度OD730 = 0.1となるように、125mL容三角フラスコ中の1 μg/mLのaTcを含むBG-11培地(表2参照)12 mLに接種し、光量100 μmol/m2/s、30℃の条件下で3日間振盪培養した。 (6) Determination of outer membrane detachment of cyanobacteria (6-1) Cultivation of cyanobacteria Using the Control strain of Comparative Example 1 as a wild strain of cyanobacterium Synechocystis sp.
培養3日後の培養液を、室温にて2,500 gで10分間遠心分離し、培養上清を、Millex-GV Syringe Filter Unit, 0.22 μm (Millipore) でろ過した。このろ過上清をLC-MS/MSによるアミノ酸分析に供した。
After 3 days of culture, the culture solution was centrifuged at 2,500 g for 10 minutes at room temperature, and the culture supernatant was filtered through Millex-GV Syringe Filter Unit, 0.22 μm (Millipore). This filtered supernatant was subjected to amino acid analysis by LC-MS/MS.
(6-2)LC-MS/MSによるアミノ酸分析
続いて、上記(6-1)で得られた2種類のシアノバクテリアの培養上清中に含まれるイソロイシン、ロイシン、チロシン、及び、フェニルアラニンを、LC-MS/MSにより測定した。方法を以下に説明する。 (6-2) Amino acid analysis by LC-MS/MS Next, isoleucine, leucine, tyrosine, and phenylalanine contained in the culture supernatant of the two types of cyanobacteria obtained in (6-1) above were analyzed. Measured by LC-MS/MS. The method will be explained below.
続いて、上記(6-1)で得られた2種類のシアノバクテリアの培養上清中に含まれるイソロイシン、ロイシン、チロシン、及び、フェニルアラニンを、LC-MS/MSにより測定した。方法を以下に説明する。 (6-2) Amino acid analysis by LC-MS/MS Next, isoleucine, leucine, tyrosine, and phenylalanine contained in the culture supernatant of the two types of cyanobacteria obtained in (6-1) above were analyzed. Measured by LC-MS/MS. The method will be explained below.
(6-2-1)試料調製
上記(6-1)で得られたシアノバクテリア野生株の培養上清1 mLを凍結乾燥させた後、APDSタグ(登録商標)ワコー用ホウ酸緩衝液195μLに溶解した。これにAPDS(3-アミノピリジル-N-ヒドロキシスクシンイミジルカルバメート)タグ試薬 100 mgを5 mL acetonitrileに溶解した溶液5 μLを添加し、よく混合した後、55-60℃で5-15分間加熱した。なお、外膜剥離型シアノバクテリアの培養上清についても同様の処理を行った。 (6-2-1) Sample preparation After lyophilizing 1 mL of the culture supernatant of the cyanobacterial wild strain obtained in (6-1) above, it was added to 195 μL of borate buffer for APDS tag (registered trademark) Wako. Dissolved. Add 5 μL of a solution of 100 mg of APDS (3-aminopyridyl-N-hydroxysuccinimidyl carbamate) tag reagent dissolved in 5 mL acetonitrile to this, mix well, and incubate at 55-60℃ for 5-15 minutes. Heated. The culture supernatant of outer membrane-exfoliating cyanobacteria was also treated in the same manner.
上記(6-1)で得られたシアノバクテリア野生株の培養上清1 mLを凍結乾燥させた後、APDSタグ(登録商標)ワコー用ホウ酸緩衝液195μLに溶解した。これにAPDS(3-アミノピリジル-N-ヒドロキシスクシンイミジルカルバメート)タグ試薬 100 mgを5 mL acetonitrileに溶解した溶液5 μLを添加し、よく混合した後、55-60℃で5-15分間加熱した。なお、外膜剥離型シアノバクテリアの培養上清についても同様の処理を行った。 (6-2-1) Sample preparation After lyophilizing 1 mL of the culture supernatant of the cyanobacterial wild strain obtained in (6-1) above, it was added to 195 μL of borate buffer for APDS tag (registered trademark) Wako. Dissolved. Add 5 μL of a solution of 100 mg of APDS (3-aminopyridyl-N-hydroxysuccinimidyl carbamate) tag reagent dissolved in 5 mL acetonitrile to this, mix well, and incubate at 55-60℃ for 5-15 minutes. Heated. The culture supernatant of outer membrane-exfoliating cyanobacteria was also treated in the same manner.
(6-2-2)LC-MS/MS分析
上記(6-2-1)で得られた試料をLC-MS/MS装置(UltiMate 3000 RSLCnano LC System) を用いて以下の条件で解析を実施した。 (6-2-2) LC-MS/MS analysis The sample obtained in (6-2-1) above was analyzed using an LC-MS/MS device (UltiMate 3000 RSLCnano LC System) under the following conditions. did.
上記(6-2-1)で得られた試料をLC-MS/MS装置(UltiMate 3000 RSLCnano LC System) を用いて以下の条件で解析を実施した。 (6-2-2) LC-MS/MS analysis The sample obtained in (6-2-1) above was analyzed using an LC-MS/MS device (UltiMate 3000 RSLCnano LC System) under the following conditions. did.
試料注入量:10 μL
カラム:Tosoh TSKgel ODS-100V 2.0mmI.D×15cm
移動相:A溶液は APDSタグ(登録商標)ワコー用溶離液、B溶液は、 60% acetonitrile
溶出タイムテーブル(B溶液%):
0 min, 6%; 0.05-1.70 min, 8%; 1.71 min, 12%; 4.95 min, 30%; 5.95 min, 60%; 6.70 min, 95%; 6.71 min, 6%; 12.0 min, 6%
流速:0.3 mL/min
カラム温度:40℃
イオン化モード:ESI positive
(6-3)結果
図11は、2種類のシアノバクテリアの培養上清のLC-MS/MSによるアミノ酸分析の結果を示す図である。図11には、外膜剥離型シアノバクテリアの培養上清、及び、シアノバクテリア野生株の培養上清のTIC(トータルイオンクロマトグラム)が示されており、Aはチロシン由来のピーク、Bはイソロイシン由来のピーク、Cはロイシン由来のピーク、Dはフェニルアラニン由来のピークである。図11に示されるように、A~Dのピークは、シアノバクテリア野生株の培養上清ではほぼ検出されず、外膜剥離型シアノバクテリアの培養上清で検出されていることから、外膜が細胞壁から剥離しているシアノバクテリアを培養すると、特徴的に培養上清に分泌されることが確認できた。 Sample injection volume: 10 μL
Column: Tosoh TSKgel ODS-100V 2.0mmI.D×15cm
Mobile phase: Solution A is APDS tag (registered trademark) eluent for Wako, solution B is 60% acetonitrile
Elution timetable (B solution %):
0 min, 6%; 0.05-1.70 min, 8%; 1.71 min, 12%; 4.95 min, 30%; 5.95 min, 60%; 6.70 min, 95%; 6.71 min, 6%; 12.0 min, 6%
Flow rate: 0.3 mL/min
Column temperature: 40℃
Ionization mode: ESI positive
(6-3) Results FIG. 11 is a diagram showing the results of amino acid analysis by LC-MS/MS of culture supernatants of two types of cyanobacteria. Figure 11 shows the TIC (total ion chromatogram) of the culture supernatant of outer membrane exfoliating cyanobacteria and the culture supernatant of cyanobacteria wild strain, where A is the peak derived from tyrosine and B is the peak derived from isoleucine. C is a peak derived from leucine, and D is a peak derived from phenylalanine. As shown in Figure 11, the peaks A to D are almost not detected in the culture supernatant of wild-type cyanobacteria, but are detected in the culture supernatant of outer membrane-exfoliating cyanobacteria. When cyanobacteria that had detached from the cell wall were cultured, it was confirmed that they were characteristically secreted into the culture supernatant.
カラム:Tosoh TSKgel ODS-100V 2.0mmI.D×15cm
移動相:A溶液は APDSタグ(登録商標)ワコー用溶離液、B溶液は、 60% acetonitrile
溶出タイムテーブル(B溶液%):
0 min, 6%; 0.05-1.70 min, 8%; 1.71 min, 12%; 4.95 min, 30%; 5.95 min, 60%; 6.70 min, 95%; 6.71 min, 6%; 12.0 min, 6%
流速:0.3 mL/min
カラム温度:40℃
イオン化モード:ESI positive
(6-3)結果
図11は、2種類のシアノバクテリアの培養上清のLC-MS/MSによるアミノ酸分析の結果を示す図である。図11には、外膜剥離型シアノバクテリアの培養上清、及び、シアノバクテリア野生株の培養上清のTIC(トータルイオンクロマトグラム)が示されており、Aはチロシン由来のピーク、Bはイソロイシン由来のピーク、Cはロイシン由来のピーク、Dはフェニルアラニン由来のピークである。図11に示されるように、A~Dのピークは、シアノバクテリア野生株の培養上清ではほぼ検出されず、外膜剥離型シアノバクテリアの培養上清で検出されていることから、外膜が細胞壁から剥離しているシアノバクテリアを培養すると、特徴的に培養上清に分泌されることが確認できた。 Sample injection volume: 10 μL
Column: Tosoh TSKgel ODS-100V 2.0mmI.D×15cm
Mobile phase: Solution A is APDS tag (registered trademark) eluent for Wako, solution B is 60% acetonitrile
Elution timetable (B solution %):
0 min, 6%; 0.05-1.70 min, 8%; 1.71 min, 12%; 4.95 min, 30%; 5.95 min, 60%; 6.70 min, 95%; 6.71 min, 6%; 12.0 min, 6%
Flow rate: 0.3 mL/min
Column temperature: 40℃
Ionization mode: ESI positive
(6-3) Results FIG. 11 is a diagram showing the results of amino acid analysis by LC-MS/MS of culture supernatants of two types of cyanobacteria. Figure 11 shows the TIC (total ion chromatogram) of the culture supernatant of outer membrane exfoliating cyanobacteria and the culture supernatant of cyanobacteria wild strain, where A is the peak derived from tyrosine and B is the peak derived from isoleucine. C is a peak derived from leucine, and D is a peak derived from phenylalanine. As shown in Figure 11, the peaks A to D are almost not detected in the culture supernatant of wild-type cyanobacteria, but are detected in the culture supernatant of outer membrane-exfoliating cyanobacteria. When cyanobacteria that had detached from the cell wall were cultured, it was confirmed that they were characteristically secreted into the culture supernatant.
また、上記の4つのアミノ酸の濃度の測定結果を表5に示す。表5に示される通り、外膜剥離型シアノバクテリアの培養上清には、イソロイシン、ロイシン、チロシン、及び、フェニルアラニンがおおよそ130nM以上320nM以下の濃度で存在することが確認された。一方、シアノバクテリア野生株の培養上清には、これらの4つのアミノ酸がほとんど存在しないことが確認された。
Table 5 also shows the measurement results of the concentrations of the four amino acids mentioned above. As shown in Table 5, it was confirmed that isoleucine, leucine, tyrosine, and phenylalanine were present in the culture supernatant of outer membrane-exfoliating cyanobacteria at a concentration of approximately 130 nM or more and 320 nM or less. On the other hand, it was confirmed that these four amino acids were hardly present in the culture supernatant of the cyanobacterial wild strain.
したがって、培養上清中のこれら4種類のアミノ酸からなる群から選択される少なくとも1つのアミノ酸を定量すれば、外膜が細胞壁から剥離しているかどうかを簡便に判定することができることが確認された。表5の結果から、各アミノ酸の濃度が100nMを超えていれば、シアノバクテリアの外膜が細胞壁から剥離していると判定してもよいと考えられる。本開示のシアノバクテリアの外膜剥離の判定方法を適用することにより、シアノバクテリアの細胞を採取して電子顕微鏡観察等の煩雑な手法で外膜の状態を確認する必要がなくなるため、迅速かつ簡便に、物質生産に適した状態の細胞を選択して物質生産に適用することが可能となる。
Therefore, it was confirmed that by quantifying at least one amino acid selected from the group consisting of these four types of amino acids in the culture supernatant, it is possible to easily determine whether the outer membrane has detached from the cell wall. . From the results in Table 5, it can be considered that if the concentration of each amino acid exceeds 100 nM, it may be determined that the outer membrane of the cyanobacterium is detached from the cell wall. By applying the method for determining outer membrane detachment of cyanobacteria of the present disclosure, there is no need to collect cyanobacterial cells and confirm the state of the outer membrane using complicated methods such as electron microscopy, which is quick and easy. In addition, it becomes possible to select cells in a state suitable for substance production and apply them to substance production.
(7)考察
本実施例では、本開示の改変シアノバクテリアは、菌体内(ここでは、ペリプラズム内)に存在するタンパク質を菌体外に分泌することを確認できた。本開示の改変シアノバクテリアは、例えば、上記で同定されたタンパク質(つまり、元来菌体内で産生されるタンパク質)の代わりに他のタンパク質を産生するように遺伝子改変することが可能であるため、所望のタンパク質を効率よく生産可能となる。また、シアノバクテリアは、光合成能が高いため、光、水、空気、及び微量の無機物を与えて培養することにより、必要な時に必要なタンパク質を簡便に得ることができるため、タンパク質の生産のために複雑な装置を用いる必要がない。また、タンパク質は、例えばサプリメントなどへの加工の際にその機能が失われやすい。そのため、本開示の改変シアノバクテリアによれば、タンパク質の機能を維持した状態でタンパク質を提供することが可能となる。以上の利点により、本開示の改変シアノバクテリアは、様々な分野での応用が期待される。 (7) Discussion In this example, it was confirmed that the modified cyanobacteria of the present disclosure secretes proteins present inside the bacterial cells (in the periplasm in this case) to the outside of the bacterial cells. The modified cyanobacteria of the present disclosure can, for example, be genetically modified to produce other proteins instead of the proteins identified above (i.e., proteins originally produced within the bacterial body), Desired proteins can be efficiently produced. In addition, cyanobacteria have a high photosynthetic ability, so by culturing them with light, water, air, and small amounts of inorganic substances, they can easily obtain the necessary proteins when needed. There is no need to use complicated equipment. Furthermore, proteins tend to lose their functions when processed into, for example, supplements. Therefore, according to the modified cyanobacteria of the present disclosure, it is possible to provide proteins while maintaining their functions. Due to the above advantages, the modified cyanobacteria of the present disclosure are expected to be applied in various fields.
本実施例では、本開示の改変シアノバクテリアは、菌体内(ここでは、ペリプラズム内)に存在するタンパク質を菌体外に分泌することを確認できた。本開示の改変シアノバクテリアは、例えば、上記で同定されたタンパク質(つまり、元来菌体内で産生されるタンパク質)の代わりに他のタンパク質を産生するように遺伝子改変することが可能であるため、所望のタンパク質を効率よく生産可能となる。また、シアノバクテリアは、光合成能が高いため、光、水、空気、及び微量の無機物を与えて培養することにより、必要な時に必要なタンパク質を簡便に得ることができるため、タンパク質の生産のために複雑な装置を用いる必要がない。また、タンパク質は、例えばサプリメントなどへの加工の際にその機能が失われやすい。そのため、本開示の改変シアノバクテリアによれば、タンパク質の機能を維持した状態でタンパク質を提供することが可能となる。以上の利点により、本開示の改変シアノバクテリアは、様々な分野での応用が期待される。 (7) Discussion In this example, it was confirmed that the modified cyanobacteria of the present disclosure secretes proteins present inside the bacterial cells (in the periplasm in this case) to the outside of the bacterial cells. The modified cyanobacteria of the present disclosure can, for example, be genetically modified to produce other proteins instead of the proteins identified above (i.e., proteins originally produced within the bacterial body), Desired proteins can be efficiently produced. In addition, cyanobacteria have a high photosynthetic ability, so by culturing them with light, water, air, and small amounts of inorganic substances, they can easily obtain the necessary proteins when needed. There is no need to use complicated equipment. Furthermore, proteins tend to lose their functions when processed into, for example, supplements. Therefore, according to the modified cyanobacteria of the present disclosure, it is possible to provide proteins while maintaining their functions. Due to the above advantages, the modified cyanobacteria of the present disclosure are expected to be applied in various fields.
また、「(3-3)電子顕微鏡による観察」により、外膜と細胞壁との結合に関連するタンパク質をコードする遺伝子の発現を抑制した改変株では、外膜と細胞壁との結合が弱まることにより外膜が部分的に剥がれ落ちていたこと、及び、外膜が部分的に膨張していたことを確認できた。これは、外膜と細胞壁との結合が弱まることにより、外膜が細胞壁から部分的に脱離した箇所に、浸透圧により細胞外から培養液が流入しやすくなり、流入した培養液により外膜が部分的に膨張したと考えられる。そして、培養液のタンパク質濃度とペリプラズム内のタンパク質濃度との差が大きいため、外膜からペリプラズムに流入する培養液は止まることがなく、内圧に耐えられなくなった外膜は、破裂して、剥がれ落ちた(つまり、剥離した)と考えられる。
In addition, in "(3-3) Observation using an electron microscope," it was found that in modified strains in which the expression of genes encoding proteins related to the bond between the outer membrane and the cell wall was suppressed, the bond between the outer membrane and the cell wall was weakened. It was confirmed that the outer membrane had partially peeled off and that the outer membrane had partially expanded. This is due to the weakening of the bond between the outer membrane and the cell wall, which makes it easier for culture fluid to flow in from outside the cell due to osmotic pressure to areas where the outer membrane has partially detached from the cell wall, and the inflowing culture fluid causes the outer membrane to is thought to have partially expanded. Since there is a large difference between the protein concentration of the culture solution and the protein concentration in the periplasm, the culture solution flowing from the outer membrane into the periplasm never stops, and the outer membrane, which can no longer withstand the internal pressure, ruptures and peels off. It is thought that it has fallen off (in other words, it has peeled off).
また、表3には、LC-MS/MS分析で同定された全てのタンパク質のうち、相対定量値が最も大きい順に10種類だけ記載した。そして、「(5-3)データ解析」では、表3に記載の10種類の全てのタンパク質が実施例1のslr1841抑制株及び実施例2のslr0688株のそれぞれの培養上清に含まれていたと記載したが、LC-MS/MS分析で同定された他の全てのタンパク質についても同様に、実施例1及び実施例2の培養上清のそれぞれに含まれていることを確認した。そして、分泌されたタンパク質は、元来ペリプラズム内に存在するタンパク質と、細胞質からペリプラズムに輸送されてペリプラズム内で機能するタンパク質とを含むことが確認された。
In addition, in Table 3, among all the proteins identified by LC-MS/MS analysis, only 10 proteins are listed in order of the highest relative quantitative value. In "(5-3) Data analysis," all 10 types of proteins listed in Table 3 were found to be contained in the culture supernatants of the slr1841 suppressed strain in Example 1 and the slr0688 strain in Example 2. Although described, all other proteins identified by LC-MS/MS analysis were similarly confirmed to be contained in each of the culture supernatants of Example 1 and Example 2. It was confirmed that the secreted proteins include proteins that originally exist in the periplasm and proteins that are transported from the cytoplasm to the periplasm and function within the periplasm.
また、表5には、LC-MS/MS分析で外膜剥離型シアノバクテリアの培養上清に特徴的に含まれる4つのアミノ酸の濃度を記載した。シアノバクテリア野生株の培養上清には、これらの4つのアミノ酸がほとんど存在していなかった。したがって、培養上清中のこれらの4つのアミノ酸のいずれかの濃度が閾値(例えば、100nM)を超える場合、シアノバクテリアの外膜が細胞壁から剥離していると判定してもよいことが確認された。
Table 5 also lists the concentrations of four amino acids characteristically contained in the culture supernatant of outer membrane-exfoliating cyanobacteria as determined by LC-MS/MS analysis. These four amino acids were hardly present in the culture supernatant of the cyanobacterial wild strain. Therefore, it was confirmed that if the concentration of any of these four amino acids in the culture supernatant exceeds a threshold value (e.g., 100 nM), it can be determined that the outer membrane of cyanobacteria has detached from the cell wall. Ta.
(他の実施の形態)
以上、本開示に係るシアノバクテリアの外膜剥離の判定方法、シアノバクテリアの外膜剥離の判定装置及びプログラムについて、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。 (Other embodiments)
Above, the method for determining outer membrane detachment of cyanobacteria, the apparatus for determining outer membrane detachment of cyanobacteria, and the program according to the present disclosure have been described based on the embodiments, but the present disclosure is limited to these embodiments. It is not something that will be done. Unless departing from the spirit of the present disclosure, various modifications to the embodiments that can be thought of by those skilled in the art and other forms constructed by combining some of the constituent elements of the embodiments are also within the scope of the present disclosure. included.
以上、本開示に係るシアノバクテリアの外膜剥離の判定方法、シアノバクテリアの外膜剥離の判定装置及びプログラムについて、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。 (Other embodiments)
Above, the method for determining outer membrane detachment of cyanobacteria, the apparatus for determining outer membrane detachment of cyanobacteria, and the program according to the present disclosure have been described based on the embodiments, but the present disclosure is limited to these embodiments. It is not something that will be done. Unless departing from the spirit of the present disclosure, various modifications to the embodiments that can be thought of by those skilled in the art and other forms constructed by combining some of the constituent elements of the embodiments are also within the scope of the present disclosure. included.
上記の実施の形態では、シアノバクテリアにおける外膜と細胞壁との結合に関与するタンパク質の総量が、親株における当該タンパク質の総量の30%以上70%以下に抑制させることにより、外膜と細胞膜との結合を弱めて菌体内で産生されたタンパク質を菌体外に漏出させる例について説明したが、本開示は、これに限られない。例えば、シアノバクテリアに外力を加えることにより、外膜と細胞壁との結合を弱めてもよく、外膜を脆弱化させてもよい。また、シアノバクテリアの培養液に酵素又は薬剤に添加することにより、外膜を脆弱化させてもよい。
In the above embodiment, the total amount of proteins involved in the binding between the outer membrane and the cell wall in cyanobacteria is suppressed to 30% or more and 70% or less of the total amount of the protein in the parent strain, so that the outer membrane and the cell wall are bonded together. Although an example has been described in which the binding is weakened and a protein produced within the bacterial cell leaks out of the bacterial cell, the present disclosure is not limited thereto. For example, by applying an external force to cyanobacteria, the bond between the outer membrane and the cell wall may be weakened, or the outer membrane may be weakened. Alternatively, the outer membrane may be weakened by adding an enzyme or a drug to the culture solution of cyanobacteria.
本開示によれば、シアノバクテリアの外膜が細胞壁から剥離しているか否かを簡便に判定することができるため、シアノバクテリアが物質生産に適した状態であるか、及び、培養過程でも物質生産に適した状態を維持しているか否かを迅速に把握することができる。したがって、本開示によれば、物質生産に適した状態のシアノバクテリアを選択して使用することができるため、物質生産性を確実に向上させることが可能となる。
According to the present disclosure, it is possible to easily determine whether or not the outer membrane of cyanobacteria has peeled off from the cell wall, so it is possible to easily determine whether the cyanobacteria are in a state suitable for substance production, and whether the cyanobacteria are in a state suitable for substance production even during the culture process. It is possible to quickly determine whether or not a suitable state is being maintained. Therefore, according to the present disclosure, it is possible to select and use cyanobacteria in a state suitable for material production, thereby making it possible to reliably improve material productivity.
1 内膜
2 ペプチドグリカン
3 糖鎖
4 細胞壁
5 外膜
6 SLHドメイン保持型外膜タンパク質
7 SLHドメイン
8 有機物チャネルタンパク質
9 細胞壁-ピルビン酸修飾酵素 1Inner membrane 2 Peptidoglycan 3 Sugar chain 4 Cell wall 5 Outer membrane 6 SLH domain-retaining outer membrane protein 7 SLH domain 8 Organic channel protein 9 Cell wall-pyruvate modifying enzyme
2 ペプチドグリカン
3 糖鎖
4 細胞壁
5 外膜
6 SLHドメイン保持型外膜タンパク質
7 SLHドメイン
8 有機物チャネルタンパク質
9 細胞壁-ピルビン酸修飾酵素 1
Claims (7)
- シアノバクテリアの培養上清中のイソロイシン、ロイシン、チロシン、及びフェニルアラニンからなる群から選択される少なくとも1つのアミノ酸の濃度を測定する測定ステップと、
前記測定ステップで測定された前記少なくとも1つのアミノ酸の濃度に基づいて、前記シアノバクテリアの外膜が細胞壁から剥離しているか否かを判定する判定ステップと、
を含む、
シアノバクテリアの外膜剥離の判定方法。 a measuring step of measuring the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of cyanobacteria;
a determining step of determining whether the outer membrane of the cyanobacterium has peeled off from the cell wall, based on the concentration of the at least one amino acid measured in the measuring step;
including,
Method for determining outer membrane detachment of cyanobacteria. - 前記測定ステップでは、イソロイシン、ロイシン、チロシン、及び、フェニルアラニンの4つのアミノ酸の濃度を測定し、
前記判定ステップでは、前記4つのアミノ酸の濃度に基づいて、前記シアノバクテリアの前記外膜が前記細胞壁から剥離しているか否かを判定する、
請求項1に記載のシアノバクテリアの外膜剥離の判定方法。 In the measurement step, the concentration of four amino acids, isoleucine, leucine, tyrosine, and phenylalanine, is measured,
In the determination step, it is determined whether the outer membrane of the cyanobacterium has peeled off from the cell wall, based on the concentrations of the four amino acids.
The method for determining outer membrane detachment of cyanobacteria according to claim 1. - 前記判定ステップでは、前記少なくとも1つのアミノ酸の濃度の少なくとも1つが閾値以上である場合、前記シアノバクテリアの前記外膜が前記細胞壁から剥離していると判定し、前記少なくとも1つのアミノ酸の濃度の全てが前記閾値を下回る場合、前記シアノバクテリアの前記外膜が前記細胞壁から剥離していないと判定する、
請求項1に記載のシアノバクテリアの外膜剥離の判定方法。 In the determination step, if at least one of the concentrations of the at least one amino acid is equal to or higher than a threshold value, it is determined that the outer membrane of the cyanobacterium is detached from the cell wall, and all of the concentrations of the at least one amino acid are determined to be detached from the cell wall. is below the threshold, determining that the outer membrane of the cyanobacterium has not peeled off from the cell wall;
The method for determining outer membrane detachment of cyanobacteria according to claim 1. - 前記閾値は100nMである、
請求項3に記載のシアノバクテリアの外膜剥離の判定方法。 the threshold value is 100 nM;
The method for determining outer membrane detachment of cyanobacteria according to claim 3. - シアノバクテリアの培養上清中のイソロイシン、ロイシン、チロシン、及びフェニルアラニンからなる群から選択される少なくとも1つのアミノ酸の濃度を測定する測定部と、
前記測定部により測定された前記少なくとも1つのアミノ酸の濃度に基づいて、前記シアノバクテリアの外膜が細胞壁から剥離しているか否かを判定する判定部と、
を備える、
シアノバクテリアの外膜剥離の判定装置。 a measurement unit that measures the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of cyanobacteria;
a determining unit that determines whether the outer membrane of the cyanobacterium has peeled off from the cell wall, based on the concentration of the at least one amino acid measured by the measuring unit;
Equipped with
Device for determining outer membrane detachment of cyanobacteria. - シアノバクテリアの培養上清中のイソロイシン、ロイシン、チロシン、及びフェニルアラニンからなる群から選択される少なくとも1つのアミノ酸の濃度に基づいて、前記シアノバクテリアの外膜が細胞壁から剥離しているか否かを判定する方法を、コンピュータに実行させるための、
プログラム。 Based on the concentration of at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine in the culture supernatant of the cyanobacteria, determining whether the outer membrane of the cyanobacteria is detached from the cell wall. to make the computer execute the method
program. - シアノバクテリアの培養上清中のアミノ酸の濃度に基づいて、前記シアノバクテリアの外膜が細胞壁から剥離しているか否かを判定する判定ステップを含む、シアノバクテリアの外膜剥離の判定方法であって、
前記アミノ酸は、イソロイシン、ロイシン、チロシン、及び、フェニルアラニンからなる群から選択される少なくとも1つのアミノ酸である、
シアノバクテリアの外膜剥離の判定方法。 A method for determining outer membrane detachment of cyanobacteria, comprising a determination step of determining whether or not the outer membrane of the cyanobacteria has detached from the cell wall, based on the concentration of amino acids in the culture supernatant of the cyanobacteria. ,
The amino acid is at least one amino acid selected from the group consisting of isoleucine, leucine, tyrosine, and phenylalanine.
Method for determining outer membrane detachment of cyanobacteria.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022118748 | 2022-07-26 | ||
JP2022-118748 | 2022-07-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024024427A1 true WO2024024427A1 (en) | 2024-02-01 |
Family
ID=89706149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/024903 WO2024024427A1 (en) | 2022-07-26 | 2023-07-05 | Method for determining outer membrane detachment in cyanobacterium, device for determining outer membrane detachment in cyanobacterium, and program |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024024427A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021100640A1 (en) * | 2019-11-21 | 2021-05-27 | パナソニックIpマネジメント株式会社 | Modified cyanobacteria, method for manufacturing modified cyanobacteria, and method for manufacturing protein |
-
2023
- 2023-07-05 WO PCT/JP2023/024903 patent/WO2024024427A1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021100640A1 (en) * | 2019-11-21 | 2021-05-27 | パナソニックIpマネジメント株式会社 | Modified cyanobacteria, method for manufacturing modified cyanobacteria, and method for manufacturing protein |
Non-Patent Citations (1)
Title |
---|
KUSAMA SHOKO, KOJIMA SEIJI, KIMURA KEN, SHIMAKAWA GINGA, MIYAKE CHIKAHIRO, TANAKA KENYA, OKUMURA YASUAKI, NAKANISHI SHUJI: "Order-of-magnitude enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer membrane deprivation", NATURE COMMUNICATIONS, NATURE PUBLISHING GROUP, UK, vol. 13, no. 1, 1 January 2022 (2022-01-01), UK, XP093134345, ISSN: 2041-1723, DOI: 10.1038/s41467-022-30764-z * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Expression of genes in cyanobacteria: adaptation of endogenous plasmids as platforms for high-level gene expression in Synechococcus sp. PCC 7002 | |
Lassak et al. | Molecular analysis of the crenarchaeal flagellum | |
WO2021100640A1 (en) | Modified cyanobacteria, method for manufacturing modified cyanobacteria, and method for manufacturing protein | |
JP7450189B2 (en) | Method for producing plant growth promoter, plant growth promoter, and method for promoting plant growth | |
WO2021100642A1 (en) | Modified cyanobacterium, modified cyanobacterium production method, and protein production method | |
CN109536427B (en) | Lactobacillus engineering bacterium with improved acid stress resistance | |
US20240084285A1 (en) | Method for producing target dna sequence and cloning vector | |
JP2022134906A (en) | Methods for producing biofilms, biofilms and methods for producing organic materials | |
JP2024045256A (en) | Method for producing crop | |
WO2024024427A1 (en) | Method for determining outer membrane detachment in cyanobacterium, device for determining outer membrane detachment in cyanobacterium, and program | |
HUE028023T2 (en) | The removal of arsenic using a dissimilatory arsenic reductase | |
CN113166741A (en) | Multiple deterministic assembly of DNA libraries | |
Zedler et al. | Self-assembly of nanofilaments in cyanobacteria for protein co-localization | |
KR102358538B1 (en) | Method for gene editing in microalgae using particle bombardment | |
KR102211740B1 (en) | Novel promoter HASP1 of Phaeodactylum tricornutum and signal peptide thereof and uses thereof | |
WO2022186216A1 (en) | Modified cyanobacteria, method for producing modified cyanobacteria, and method for producing protein | |
WO2023195367A1 (en) | Method for determining outer membrane detachment in cyanobacterium, device for determining outer membrane detachment in cyanobacterium, and program | |
WO2023248690A1 (en) | Agent for inducing plant disease resistance, method for inducing plant disease resistance, and method for producing agent for inducing plant disease resistance | |
JP4378986B2 (en) | Production method of cadaverine by yeast | |
Ramos et al. | Cloning and expression of the inorganic pyrophosphatase gene from the amino acid producer Brevibacterium lactofermentum ATCC 13869 | |
US11873523B2 (en) | Aconitic acid exporter (aexA) increases organic acid production in Aspergillus | |
JP2022134907A (en) | Methods for producing biofilms, biofilms and methods for producing organic materials | |
JP2024010288A (en) | Method for producing dried bacterial cell, and dried bacterial cell | |
KR102093372B1 (en) | Escherichia genus producing recombinant protein and uses thereof | |
JP2023182951A (en) | Method for enhancing sugar content of tomato fruit, agent for enhancing sugar content of tomato fruit, and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23846160 Country of ref document: EP Kind code of ref document: A1 |