WO2024024297A1 - Alternating-current electric motor inspection device, and alternating-current electric motor inspection method - Google Patents

Alternating-current electric motor inspection device, and alternating-current electric motor inspection method Download PDF

Info

Publication number
WO2024024297A1
WO2024024297A1 PCT/JP2023/021527 JP2023021527W WO2024024297A1 WO 2024024297 A1 WO2024024297 A1 WO 2024024297A1 JP 2023021527 W JP2023021527 W JP 2023021527W WO 2024024297 A1 WO2024024297 A1 WO 2024024297A1
Authority
WO
WIPO (PCT)
Prior art keywords
wedge
acceleration
measuring device
motor
stator
Prior art date
Application number
PCT/JP2023/021527
Other languages
French (fr)
Japanese (ja)
Inventor
祐司 丸谷
淳一 四辻
啓司 山下
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024024297A1 publication Critical patent/WO2024024297A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids

Definitions

  • the present invention relates to an AC motor inspection device and an AC motor inspection method.
  • Patent Document 1 discloses a wedge measuring device that can be inserted into a gap between a stator, which is a stator, and a rotor, which is a rotor of a rotating electric machine.
  • This wedge measuring device consists of a measuring head that detects the pressed state of a wedge coil inserted into a slot, and a moving mechanism that can move this measuring head in the longitudinal direction (axial direction) and circumferential direction of the stator. .
  • Patent Document 2 discloses a wedge striking device for a rotating electrical machine that is inserted into a gap between a rotor and a stator of the rotating electrical machine and strikes a wedge of the rotating electrical machine. Further, Patent Document 2 discloses a wedge inspection system that inspects a wedge using a hitting input waveform when hitting a wedge using this wedge hitting device and a vibration waveform of the wedge.
  • Patent Document 1 discloses a technique for checking the looseness of a wedge without pulling out the rotor, but the wedge measuring device is not self-propelled, but is a mechanism that moves the measuring head in the axial direction of the motor. , which uses rails and moving wires parallel to the axis of the motor. Therefore, when attaching a wedge measuring device to an electric motor, first, parts of at least one end of both ends of the rail are removed, and the rail is inserted between the rotor and stator of the electric motor. After that, the complicated work of reattaching the component to the end of the rail from which the component was previously removed is required. Further, this rail serves not only as a guide for moving the wedge measuring device in a desired direction, but also as a role for holding the wedge measuring device.
  • the rail needs to be strong enough to withstand the load of the wedge measuring device. For this reason, there is a concern that as the rail bends under its own weight, the measurement position of the wedge slack measurement device on the rail may be misaligned, and it may not be possible to accurately check the wedge looseness. be.
  • Patent Document 2 also discloses a technique for checking the looseness of the wedge without pulling out the rotor.
  • This requires a fixed fulcrum that rotatably supports the striking arm, and furthermore, it is necessary to provide an energy supply section and an absorption section in addition to the striking arm and the striking section, making the mechanism of the wedge striking device complicated. is unavoidable.
  • the weight of the wedge striking device increases, and the adsorption state of the wedge striking device to the inner circumferential surface of the stator is not stable.As a result, the measurement data is also unstable, making it impossible to accurately check the wedge for looseness. There is a risk.
  • the present invention has been made in view of the above-mentioned problems, and its objects are to provide an inspection device for an AC motor that can accurately check the looseness of a wedge without pulling out the rotor, and The purpose is to provide an inspection method.
  • An inspection device for an AC motor includes: a striking device that strikes a wedge that fixes a stator of an AC motor; a first measuring device that measures the acceleration of the strike given by the striking device; a slackness measuring device comprising a second measuring device that measures the acceleration of the wedge; and a casing that houses the striking device, the first measuring device, and the second measuring device;
  • the impact device includes a leaf spring, a cam that rotates to push up the leaf spring and elastically deform it, a rotation imparting device that rotates the cam, and a stopper that transmits the impact from the leaf spring to the wedge.
  • the casing is connected to the casing via an elastic body, and includes a magnetic wheel that can be stored inside the casing, and a magnetic wheel that can be attracted to the inner circumferential surface of the stator. It is characterized by being equipped with an electromagnet.
  • the AC motor inspection device in the invention described in (1) above, includes a calculation device that calculates an acceleration ratio that is a ratio of the acceleration of the wedge to the acceleration of the impact given by the impact device to the wedge. , and a determination device that determines the degree of looseness of the wedge using the calculation result of the calculation device.
  • the method for inspecting an AC motor according to the present invention is such that the slack measuring device included in the inspection device for an AC motor according to the invention of (1) or (2) is connected to the rotor and the stator of the AC motor.
  • the wedge is inserted into a gap formed between the wedges, and the wedge is struck by the loosening measuring device, and the degree of loosening of the wedge is determined from the relationship between the acceleration of the wedge and the acceleration of the applied strike. It is something to do.
  • the method for determining the degree of loosening of the wedge includes applying a low-pass filter to the waveform of the acceleration of the impact applied to the wedge.
  • a step of obtaining a peak-held value A1 a step of obtaining a peak-held value A2 after applying a low-pass filter to the waveform of the acceleration of the wedge, and calculating the ratio of A2/A1 each time a strike is made to obtain an acceleration ratio.
  • the process involves performing multiple blows at each measurement point and calculating the average value after eliminating data related to the initial blows.The process is based on the average value of the obtained acceleration ratio.
  • the present invention is characterized by comprising the step of determining the degree of loosening of the wedge from the relationship between the acceleration ratio and the degree of loosening.
  • the AC motor inspection device and AC motor inspection method according to the present invention have the effect that the looseness of the wedge can be accurately inspected without pulling out the rotor.
  • FIG. 1 is a block diagram showing a schematic configuration of an inspection device according to an embodiment.
  • FIG. 2 is a diagram showing a state in which a slackness measuring device is inserted into a gap formed between a stator and a rotor of an AC motor.
  • FIG. 3 is a diagram showing a part of a cross section of a stator of an AC motor.
  • FIG. 4 is a side view showing a schematic configuration of the slackness measuring device according to the embodiment.
  • FIG. 5 is a top view showing a schematic configuration of the slackness measuring device according to the embodiment.
  • FIG. 6 is a diagram showing a state in which the leaf spring is elastically deformed by the cam.
  • FIG. 7 is a diagram showing a state in which the striking portion of the leaf spring strikes the abutment bit.
  • FIG. 8 is a side view showing a schematic configuration of the second measuring device.
  • FIG. 9 is a diagram showing the looseness measuring device in a state where the electromagnet is not activated.
  • FIG. 10 is a diagram showing the looseness measuring device with the electromagnet activated.
  • Embodiments of an AC motor inspection device and an AC motor inspection method according to the present invention will be described below. Note that the present invention is not limited to this embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of an inspection device 10 according to an embodiment.
  • the inspection device 10 is a device for inspecting an AC motor, specifically, checking the degree of looseness of a wedge provided in a stator of an AC motor, and is a loosening measuring device. 1, a control device 7, a calculation device 8, a determination device 9, etc.
  • the slackness measuring device 1 is a device that measures the slackness of the wedge by striking the wedge, and includes a striking device 2, a first measuring device 3, a second measuring device 4, and a suction device 5. It is equipped with such things as In addition, specific descriptions of the slackness measuring device 1, striking device 2, first measuring device 3, second measuring device 4, adsorption device 5, control device 7, calculating device 8, determining device 9, etc. This will be explained later.
  • FIG. 2 is a diagram showing a state in which the looseness measuring device 1 is inserted into a gap formed between the stator 110 and the rotor 120 of the AC motor 100.
  • the looseness is removed in the gap formed between the stator 110 and the rotor 120 of the AC motor 100 without pulling out the rotor 120 of the AC motor 100.
  • Insert measuring device 1. In the inspection device 10 according to the embodiment, the degree of loosening of a wedge 112 (see FIG. 3) provided on the stator 110, which will be described later, is inspected using the loosening measuring device 1 inserted into the gap.
  • FIG. 3 is a diagram showing a part of a cross section of the stator 110 of the AC motor 100.
  • a coil 113 is disposed within a slot 114 formed in an iron core 111.
  • the coil 113 is mechanically fixed by pressing the coil 113 with a wedge 112 installed at the opening of the slot 114.
  • the wedge 112 for example, one made of epoxy resin can be used. Note that in FIG. 3, the area above the iron core 111 and the wedge 112 is a part of the space between the stator 110 and the rotor 120.
  • the wedge 112 is caused by wear due to thermal deterioration of an insulator (not shown) that electrically insulates the iron core 111 and the coil 113 due to long-term use of the AC motor 100, or mechanical wear due to electromagnetic vibration. As a result, the coil 113 becomes insufficiently fixed. When the vibration of the coil 113 that occurs during operation of the AC motor 100 becomes large, the insulator (not shown) that electrically insulates the iron core 111 and the coil 113 is mechanically damaged, resulting in an electrical short circuit. There is a risk of Therefore, in the inspection device 10 according to the embodiment, the degree of loosening of the wedge 112 is inspected using the loosening measuring device 1.
  • FIG. 4 is a side view showing a schematic configuration of the looseness measuring device 1 according to the embodiment.
  • FIG. 5 is a top view showing a schematic configuration of the looseness measuring device 1 according to the embodiment.
  • the slack measuring device 1 according to the embodiment includes a striking device 2, a first measuring device 3, a second measuring device 4, a suction device 5, and a slack measuring device 1 for measuring the slack of these devices.
  • the device 1 includes a casing 6 that accommodates each component of the device 1 inside.
  • the housing 6 has a size that fits into the gap formed between the rotor 120 and the stator 110 of the AC motor 100, and the top plate portion 6a of the housing 6 is located on the rotor 120 side.
  • the body 6 is inserted into the gap so that the bottom plate portion 6b is located on the stator 110 side.
  • the striking device 2 is a device that strikes a wedge 112 provided on the stator 110.
  • the impact device 2 includes a leaf spring 21, a cam 22 that lifts and elastically deforms the leaf spring 21 by rotation, a rotation imparting device 23 such as a motor that rotates the cam 22, and a wedge of the impact given by the leaf spring 21. 112.
  • the plate spring 21 has one end in the longitudinal direction serving as a fixed end fixed on the fixed pedestal 25, and the other end in the longitudinal direction serving as a free end.
  • the abutting bit 24 is inserted into the bottom plate 6b of the casing 6 via the elastic body 26 to a position where the striking portion 21a of the leaf spring 21 can be struck through the opening 61 formed in the bottom plate 6b of the casing 6. edge of the opening 61).
  • the striking portion 21a and the contact bit 24 only need to be harder than the wedge 112.
  • various metal materials can be used, for example.
  • FIG. 6 is a diagram showing a state in which the leaf spring 21 is elastically deformed by the cam 22.
  • FIG. 7 is a diagram showing a state in which the striking part 21a of the leaf spring 21 strikes the contact bit 24.
  • the striking device 2 causes the rotation imparting device 23 to rotate the cam 22, thereby pushing up the cam contact portion 21b with the cam 22 and elastically deforming the leaf spring 21.
  • FIG. 7 by further rotating the cam 22 by the rotation imparting device 23 and releasing the cam contact portion 21b from the cam 22, an impact force due to the elastic force of the leaf spring 21 is generated, and the leaf spring The striking part 21a of 21 strikes the hitch 24.
  • the inner circumferential surface 111a of the iron core 111 and the inner circumferential surface 112a of the wedge 112, which form the inner circumferential surface 110a of the stator 110, are not necessarily in a fixed positional relationship. do not have. Therefore, in the case of a configuration in which the striking portion 21a of the leaf spring 21 directly strikes the wedge 112, the cam contact portion 21b of the leaf spring 21 is released from the cam 22, and the striking portion 21a of the leaf spring 21 strikes the wedge 112. There is concern that the distance traveled before hitting the ball will also vary greatly. Such large fluctuations in the moving distance cause variations in measurement results.
  • the striking part 21a of the leaf spring 21 does not directly contact the wedge 112 and give a strike, but instead hits the contacting part 24 that has been brought into contact with the wedge 112 in advance.
  • the striking portion 21a of the spring 21 gives a strike.
  • a structure is adopted in which the striking portion 21a strikes the wedge 112 via the contact bit 24. This makes it possible to suppress the influence of large fluctuations in the travel distance until the striking portion 21a of the leaf spring 21 strikes the wedge 112, as described above. Therefore, in the slackness measuring device 1 according to the embodiment, it is possible to apply a stable striking force to the wedge 112 by the striking device 2, and it is possible to suppress variations in measurement results caused by large fluctuations in the moving distance.
  • the first measuring device 3 included in the slack measuring device 1 is a device that measures the acceleration of the impact that the impact device 2 gives to the wedge 112, and is configured using, for example, an accelerometer.
  • An accelerometer included in the first measuring device 3 is attached near the striking part 21a of the leaf spring 21, and the acceleration of the striking part 21a is measured.
  • the second measuring device 4 included in the loosening measuring device 1 is a device that measures the acceleration (response acceleration) of the wedge 112, which is the object to be hit by the hitting device 2, and is, for example, an accelerometer. It is configured using
  • FIG. 8 is a side view showing a schematic configuration of the second measuring device 4.
  • the second measuring device 4 includes a contact member 41, resin members 42a, 42b, vibration-proof rubber 43a, 43b, 43c, 43d, an accelerometer 44, and the like.
  • the contact member 41 is disposed at a position corresponding to the wedge 112 through an opening 62 formed in the bottom plate portion 6b of the housing 6.
  • the contact member 41 has a convex shape with the side facing the wedge 112 protruding toward the wedge 112 side.
  • the contact member 41 is held by the two resin members 42a and 42b sandwiching and compressing the contact member 41.
  • the method of holding the contact member 41 by sandwiching and compressing the contact member 41 between resin members is not limited to the method of sandwiching the contact member 41 between two resin members 42a and 42b from opposing outsides as shown in FIG.
  • a method may be adopted in which a single resin member surrounding the contact member 41 is used and the resin member presses and holds the contact member 41 from the periphery.
  • the contact member 41 may be made of any material as long as it is harder than the wedge 112, and for example, various metal materials may be used.
  • the resin members 42a and 42b are placed on the bottom plate portion 6b of the housing 6 via anti-vibration rubbers 43a and 43b, respectively.
  • vibration-proof rubbers 43c and 43d are interposed between the top plate portion 6a of the housing 6 and the resin members 42a and 42b.
  • the accelerometer 44 includes an L-shaped plate member 441 and a sensor 442 that measures the vibration of the wedge 112 transmitted to the plate member 441 via the contact member 41.
  • the elongated portion 441a of the plate member 441 is attached to the upper surface of the contact member 41.
  • a sensor 442 is attached to the short portion 441b of the plate member 441.
  • the plate member 441 is not sandwiched or fixed between the resin members 42a, 42b or the vibration isolating rubbers 43a, 43b, 43c, and 43d, but is arranged to be able to vibrate.
  • a cut may be provided so that the vibration isolating rubbers 43c and 43d do not come into contact with the elongated portion 441a of the plate-like member 441.
  • the second measuring device 4 attaches an accelerometer 44 to the contact member 41 in contact with the wedge 112, and measures the vibration of the wedge 112 when a blow from the striking portion 21a is applied to the wedge 112 via the contact beam 24.
  • FIG. 9 is a diagram showing the looseness measuring device 1 in a state where the electromagnet 52 is not activated.
  • FIG. 10 is a diagram showing the looseness measuring device 1 with the electromagnet 52 activated.
  • the adsorption device 5 is provided with magnetic wheels 51 for movement and an electromagnet 52 that can adsorb the casing 6 to the inner circumferential surface 110a of the stator 110 when measuring looseness.
  • the magnetic wheel 51 is connected to the top plate 6a of the casing 6 via an elastic body 53 disposed inside the casing 6, and is connected to the top plate 6a of the casing 6 through a wheel opening (not shown) formed in the bottom plate 6b of the casing 6. It is configured to be able to be stored inside the housing 6.
  • the elastic body 53 that connects the housing 6 and the magnetic wheel 51 for example, a leaf spring or the like can be used.
  • the casing 6 is lifted off the inner peripheral surface 110a of the stator 110 by the elastic force of the elastic body 53, and the looseness measuring device 1 can be smoothly operated. It can be moved.
  • a method is adopted in which a wire is attached to the housing 6 and the wire is pulled from outside the AC motor 100. be able to.
  • the magnetic wheels 51 as wheels for moving the slack measuring device 1 in the longitudinal direction of the AC motor 100 (stator 110), the inner peripheral surface 110a of the stator 110 (the inner peripheral surface of the iron core 111 111a), the magnetic wheel 51 is attracted by magnetic force. This makes it possible to hold the slack measuring device 1 on the inner circumferential surface 110a of the stator 110 no matter what angle the loose measuring device 1 is at with respect to the inner circumferential surface 110a of the stator 110.
  • the slack measuring device 1 when the slack measuring device 1 is located in a gap formed between the stator 110 and the rotor 120 such that the inner circumferential surface 110a of the stator 110 is higher than the outer circumferential surface 120a of the rotor 120. There is. Even in this case, it is possible to move the slack measuring device 1 in the longitudinal direction of the AC motor 100 (stator 110) while holding the slack measuring device 1 on the inner peripheral surface 110a of the stator 110. Become.
  • the hammering device 2 hits the wedge 112, and the first measuring device 3 and the second measuring device 4 Perform measurements. Further, during impact and measurement, the magnetic wheel 51 is housed inside the housing 6, and the housing 6 is brought into close contact with the inner circumferential surface 110a of the stator 110 of the AC motor 100.
  • the slack measuring device 1 uses the magnetic force of the electromagnets 52 disposed on both sides of the housing 6 in the width direction perpendicular to the longitudinal direction to It is possible to bring the peripheral surface 111a) and the housing 6 into close contact with each other.
  • this electromagnet 52 is not operated except when measuring slackness (during impact and measurement), such as when moving the slackness measuring device 1.
  • the electromagnet 52 is operated only when measuring looseness (during impact and measurement) to magnetically attract the inner circumferential surface 110a of the stator 110.
  • the electromagnet 52 has, for example, distal ends 521a and 521b on both sides of a U-shaped yoke 52a facing the inner circumferential surface 110a of the stator 110, and a longitudinal direction of the yoke 52a.
  • An electromagnet having an excitation coil 52b in the center can be used. When such an electromagnet 52 is used, a current is applied to the excitation coil 52b while the loosening measuring device 1 is moved to a predetermined measurement position on the inner circumferential surface 110a of the stator 110.
  • the tips 521a and 521b of the yoke 52a attract the inner circumferential surface 110a of the stator 110 via the casing 6, and as a result, the casing 6 comes into close contact with the inner circumferential surface 110a of the stator 110 and is fixed. be done. Therefore, the adsorption state of the loosening measuring device 1 to the inner circumferential surface 110a of the stator 110 is stabilized, and as a result, it is possible to obtain stable measurement data, and the looseness of the wedge 112 can be checked with high accuracy.
  • a guide rail on which the magnetic wheel 51 is mounted and guides the movement of the magnetic wheel 51 is installed on the inner circumference of the stator 110. It may also be provided on the surface 110a.
  • the guide rail allows the magnet wheel 51 to be sufficiently attracted to the inner circumferential surface 110a of the stator 110 by magnetic force via the guide rail, and the abutting bit 24 of the striking device 2 to be directly attached to the wedge 112 without using the guide rail. It is sufficient if the structure is in contact with the .
  • the guide rail can be made lighter, it is possible to suppress the guide rail from bending under its own weight, and to prevent positional deviation from occurring in the measurement position of the wedge 112 measured by the slack measuring device 1 on the guide rail. Since this can be suppressed, the looseness of the wedge 112 can be checked with high accuracy.
  • the magnet wheel 51 is configured so that the slackness measuring device 1 can be moved along the axial direction of the AC motor 100. Therefore, when inspecting the wedge 112 at another position in the circumferential direction of the AC motor 100, the slackness measuring device 1 must be manually moved to the other position.
  • the magnetic wheels 51 are not limited to those configured so that the looseness measuring device 1 can be moved along the axial direction of the AC motor 100, but can also be configured so that the looseness measuring device 1 can be moved in the circumferential direction of the AC motor 100. may be configured.
  • the calculation device 8 calculates an acceleration ratio, which is the ratio of the acceleration of the wedge 112 to the acceleration of the impact given by the impact device 2 to the wedge 112, which is the object to be hit. Specifically, the calculation device 8 receives the data of the acceleration of the impact measured by the first measurement device 3 and the second measurement device 4, which is received by wire or wirelessly from the first measurement device 3 and the second measurement device 4. The acceleration ratio is calculated from the data of the acceleration of the wedge 112 (response acceleration) measured by the measuring device 4. The acceleration ratio data obtained by the calculation by the calculation device 8 is transmitted to the determination device 9 by wire or wirelessly.
  • the determination device 9 determines the degree of loosening of the wedge 112 based on the calculation result (acceleration ratio) received from the calculation device 8. If the wedge 112 is not loose, the vibration of the wedge 112 is small. On the other hand, if the wedge 112 is loose, the wedge 112 will not vibrate in the same manner as the blow, and the acceleration ratio will increase.
  • the relationship between the acceleration ratio and the loosening of the wedge 112 can be determined in advance by conducting a preliminary test. Furthermore, by accumulating measurement results for AC motors 100 that are similar in shape and structure, it is also possible to determine the degree of loosening of the wedge 112 without a preliminary test.
  • the control device 7 connects the impact device 2 (rotation imparting device 23), the first measuring device 3, the second measuring device 4, the adsorption device 5 (electromagnet 52), etc. of the loosening measuring device 1 with wired or The operation of each of these devices is controlled by wirelessly transmitting control signals.
  • a method for inspecting an AC motor 100 using the inspection device 10 involves inserting the looseness measuring device 1 into a gap formed between the stator 110 and the rotor 120 of the AC motor 100. Then, the slackness measuring device 1 gives a blow to the wedge 112 that fixes the coil 113 arranged in the slot 114 of the stator 110, and the ratio of the acceleration of the wedge 112, which is the object to be hit, to the acceleration of the given blow is calculated. The degree of loosening of the wedge 112 is determined from a certain acceleration ratio.
  • the cover of the AC motor 100 to be inspected is removed to expose the cross sections of the stator 110 and rotor 120 as shown in FIG.
  • the slack measuring device 1 is inserted into the gap formed between the inner peripheral surface 110a of the stator 110 and the outer peripheral surface 120a of the rotor 120.
  • the looseness measuring device 1 is moved in a direction parallel to the rotation axis of the AC motor 100, and stopped when it reaches a predetermined measuring position.
  • control device 7 controls the electromagnet 52 to operate the electromagnet 52 of the slack measuring device 1 at a predetermined measurement position, and attaches the housing to the inner circumferential surface 110a of the stator 110 (the inner circumferential surface 111a of the iron core 111). 6 is attracted and fixed by magnetic force. Note that in this state, the contact bit 24 is in contact with the wedge 112.
  • the rotation imparting device 23 is controlled by the control device 7, the rotation imparting device 23 rotates the cam 22, the cam contact portion 21b of the leaf spring 21 is lifted, the leaf spring 21 is elastically deformed, and then the leaf spring 21 is released. do.
  • the striking portion 21a of the leaf spring 21 released in this manner strikes the abutting bit 24 that has been in contact with the wedge 112 in advance, thereby applying a blow to the wedge 112 via the abutting bit 24.
  • the first measuring device 3 is controlled by the control device 7, and the acceleration of the impact applied to the wedge 112 is measured by the first measuring device 3.
  • the measurement result of the acceleration of the impact measured by the first measurement device 3 is transmitted to the calculation device 8 .
  • the calculation device 8 applies a low-pass filter to the waveform of the impact acceleration, which is data of the impact acceleration measured by the first measuring device 3, and then obtains a peak-held value A1.
  • the second measuring device 4 is controlled by the control device 7, and the acceleration of the wedge 112 (response acceleration) is measured by the second measuring device 4 from the vibration of the wedge 112. do.
  • the measurement result of the acceleration of the wedge 112 (response acceleration) measured by the second measurement device 4 is transmitted to the calculation device 8 .
  • the calculation device 8 applies a low-pass filter to the waveform of the acceleration (response acceleration) of the wedge 112, which is the data of the acceleration (response acceleration) of the wedge 112 measured by the second measuring device 4, and then peak-holds the waveform. Find the value A2. Then, by dividing the value A2 by the value A1 (A2/A1), the calculation device 8 calculates the acceleration ratio, which is the ratio of the acceleration of the wedge 112 (response acceleration) to the acceleration of the impact that the impact device 2 gives to the wedge 112. seek.
  • each acceleration by the loosening measuring device 1 is performed multiple times for one measurement point, and the average value of the respective acceleration ratios obtained for each impact is used to determine the degree of loosening of the wedge 112. It is preferable to use it as a material.
  • calculating the average value of each acceleration ratio obtained from multiple strikes we exclude each acceleration ratio obtained from the first few strikes of the multiple strikes, and calculate each acceleration for the remaining number of strikes. It is preferable to calculate the average value of only the ratios. For example, it is preferable to calculate the average value of each acceleration ratio obtained from the third and subsequent hits. This is due to the following reasons.
  • the initial suction state of the casing 6 to the inner circumferential surface 110a of the stator 110 may be unstable. Sometimes it happens. However, this is because a stable adsorption state can be achieved by hitting about two times.
  • the data of the acceleration ratio (average value of the acceleration ratio) calculated by the calculation device 8 is transmitted to the determination device 9.
  • the determination device 9 determines the acceleration ratio (average acceleration ratio) measured in advance or found based on past performance based on the acceleration ratio (average acceleration ratio) that is the calculation result of the calculation device 8.
  • the degree of looseness of the wedge 112 is determined from the relationship between the value) and the degree of looseness of the wedge 112.
  • the looseness of the wedge 112 can be accurately inspected without pulling out the rotor 120, which can lead to reductions in construction costs and construction period. Furthermore, in the inspection device 10 according to the embodiment, the striking force of the striking portion 21a of the leaf spring 21 is applied to the wedge 112 via the contacting bit 24 that is brought into contact with the wedge 112 in advance. Therefore, it is possible to apply a stable impact force to the wedge 112 to suppress variations in measurement results, and it is possible to improve the accuracy of determining the degree of looseness of the wedge 112.
  • the present invention can provide an AC motor inspection device and an AC motor inspection method that can accurately inspect the looseness of a wedge without pulling out the rotor.

Abstract

An alternating-current electric motor inspection device of the present invention includes a slackness measuring device comprising an impacting device for imparting an impact to a wedge that fixes a stator of the alternating-current electric motor, a first measuring device for measuring an acceleration of the impact imparted by the impacting device, a second measuring device for measuring an acceleration of the wedge, and a housing accommodating the impacting device, the first measuring device and the second measuring device, wherein: the impacting device comprises a leaf spring, a cam which rotates, thereby pushing the leaf spring up and causing the same to deform elastically, a rotation imparting device for causing the cam to rotate, and a flatter for transmitting the impact imparted from the leaf spring to the wedge; and the housing is provided with a magnet wheel which is connected to the housing by way of a resilient body and which is capable of being accommodated inside the housing, and an electromagnet capable of magnetically attracting the housing to an inner peripheral surface of the stator.

Description

交流電動機の点検装置、及び、交流電動機の点検方法AC motor inspection device and AC motor inspection method
 本発明は、交流電動機の点検装置、及び、交流電動機の点検方法に関する。 The present invention relates to an AC motor inspection device and an AC motor inspection method.
 従来、交流電動機において、固定子のスロットに挿入されたコイルを機械的に固定する楔が緩んでいるか否かについて点検する技術が知られている。例えば、特許文献1には、回転電機の固定子であるステータと回転子であるロータとの隙間に装入可能な楔計測装置が開示されている。この楔計測装置は、スロット内に挿入された楔のコイルの押しつけ状態を検出する計測ヘッドと、この計測ヘッドをステータの長手方向(軸方向)及び円周方向に移動可能な移動機構とからなる。また、特許文献2には、回転電機の回転子と固定子との隙間に挿入されて回転電機のウェッジ(楔)を打撃する回転電機のウェッジ打撃装置が開示されている。さらに、特許文献2には、このウェッジ打撃装置を用いてウェッジを打撃した時の打撃入力波形、及び、ウェッジの振動波形を用いて、ウェッジの検査を行うウェッジの検査システムが開示されている。 Conventionally, in an AC motor, a technique is known to check whether a wedge that mechanically fixes a coil inserted into a slot of a stator is loose. For example, Patent Document 1 discloses a wedge measuring device that can be inserted into a gap between a stator, which is a stator, and a rotor, which is a rotor of a rotating electric machine. This wedge measuring device consists of a measuring head that detects the pressed state of a wedge coil inserted into a slot, and a moving mechanism that can move this measuring head in the longitudinal direction (axial direction) and circumferential direction of the stator. . Further, Patent Document 2 discloses a wedge striking device for a rotating electrical machine that is inserted into a gap between a rotor and a stator of the rotating electrical machine and strikes a wedge of the rotating electrical machine. Further, Patent Document 2 discloses a wedge inspection system that inspects a wedge using a hitting input waveform when hitting a wedge using this wedge hitting device and a vibration waveform of the wedge.
特開平1-214244号公報Japanese Patent Application Publication No. 1-214244 特許第6250241号公報Patent No. 6250241
 特許文献1には、回転子の引き抜きを行わずに楔の緩みを点検する技術が開示されているが、楔計測装置が自走式ではなく、計測ヘッドを電動機の軸方向に移動させる機構として、電動機の軸に平行なレールおよび移動用ワイヤを使用するものである。このため、電動機に楔計測装置を装着する際には、まず、レールの両端部のうち少なくとも一端部の部品を外して、電動機のロータとステータとの間にレールを挿入する。そして、その後に、先に部品を外したレール端部に部品を再装着する、という煩雑な作業を必須とする。また、このレールは、楔計測装置を所望の方向へ移動させるガイドの役割とともに、楔計測装置を保持する役割も兼ねている。そのため、楔計測装置の荷重に耐えるべく、レールを頑丈なものとする必要がある。このため、レールが自重で撓むことによって、レール上の楔計測装置による楔の緩み測定の測定位置に位置ずれが発生することも懸念され、楔の緩みを精度よく点検することができないおそれがある。 Patent Document 1 discloses a technique for checking the looseness of a wedge without pulling out the rotor, but the wedge measuring device is not self-propelled, but is a mechanism that moves the measuring head in the axial direction of the motor. , which uses rails and moving wires parallel to the axis of the motor. Therefore, when attaching a wedge measuring device to an electric motor, first, parts of at least one end of both ends of the rail are removed, and the rail is inserted between the rotor and stator of the electric motor. After that, the complicated work of reattaching the component to the end of the rail from which the component was previously removed is required. Further, this rail serves not only as a guide for moving the wedge measuring device in a desired direction, but also as a role for holding the wedge measuring device. Therefore, the rail needs to be strong enough to withstand the load of the wedge measuring device. For this reason, there is a concern that as the rail bends under its own weight, the measurement position of the wedge slack measurement device on the rail may be misaligned, and it may not be possible to accurately check the wedge looseness. be.
 また、特許文献2にも、回転子の引き抜きを行わずに楔の緩みを点検する技術が開示されている。これは、打撃腕を回転可能に支持する固定された支点を必要とし、さらに、エネルギー供給部や吸収部を打撃腕や打撃部以外に備える必要があり、ウェッジ打撃装置の機構が複雑となることが避けられない。このため、ウェッジ打撃装置の重量が増加し、固定子の内周面に対するウェッジ打撃装置の吸着状態も安定せず、その結果、測定データも不安定となり楔の緩みを精度よく点検することができないおそれがある。 Further, Patent Document 2 also discloses a technique for checking the looseness of the wedge without pulling out the rotor. This requires a fixed fulcrum that rotatably supports the striking arm, and furthermore, it is necessary to provide an energy supply section and an absorption section in addition to the striking arm and the striking section, making the mechanism of the wedge striking device complicated. is unavoidable. As a result, the weight of the wedge striking device increases, and the adsorption state of the wedge striking device to the inner circumferential surface of the stator is not stable.As a result, the measurement data is also unstable, making it impossible to accurately check the wedge for looseness. There is a risk.
 本発明は、上記課題に鑑みてなされたものであって、その目的は、回転子の引き抜きを行わずに楔の緩みを精度よく点検することができる交流電動機の点検装置、及び、交流電動機の点検方法を提供することである。 The present invention has been made in view of the above-mentioned problems, and its objects are to provide an inspection device for an AC motor that can accurately check the looseness of a wedge without pulling out the rotor, and The purpose is to provide an inspection method.
 上述した課題を解決し、目的を達成するために、
(1)本発明に係る交流電動機の点検装置は、交流電動機の固定子を固定する楔に打撃を与える打撃装置と、前記打撃装置が与える打撃の加速度を測定する第一の測定装置と、前記楔の加速度を測定する第二の測定装置と、前記打撃装置、前記第一の測定装置、及び、前記第二の測定装置を収納する筐体と、を備えた緩み測定装置を有し、前記打撃装置は、板バネ、回転することによって前記板バネを押し上げて弾性変形させるカム、前記カムを回転させる回転付与装置、及び、前記板バネから与えられる打撃を前記楔に伝える当てビシを備えており、前記筐体は、弾性体を介して前記筐体に接続されており、前記筐体の内部に格納可能な磁石車輪、及び、前記筐体を前記固定子の内周面に吸着可能な電磁石を備える、ことを特徴とするものである。
In order to solve the above-mentioned problems and achieve the objectives,
(1) An inspection device for an AC motor according to the present invention includes: a striking device that strikes a wedge that fixes a stator of an AC motor; a first measuring device that measures the acceleration of the strike given by the striking device; a slackness measuring device comprising a second measuring device that measures the acceleration of the wedge; and a casing that houses the striking device, the first measuring device, and the second measuring device; The impact device includes a leaf spring, a cam that rotates to push up the leaf spring and elastically deform it, a rotation imparting device that rotates the cam, and a stopper that transmits the impact from the leaf spring to the wedge. The casing is connected to the casing via an elastic body, and includes a magnetic wheel that can be stored inside the casing, and a magnetic wheel that can be attracted to the inner circumferential surface of the stator. It is characterized by being equipped with an electromagnet.
(2)本発明に係る交流電動機の点検装置は、上記(1)の発明において、前記打撃装置が前記楔に与える打撃の加速度に対する前記楔の加速度の比である加速度比を計算する計算装置と、前記計算装置の計算結果を用いて前記楔の緩み度合いを判定する判定装置と、を有することを特徴とするものである。 (2) The AC motor inspection device according to the present invention, in the invention described in (1) above, includes a calculation device that calculates an acceleration ratio that is a ratio of the acceleration of the wedge to the acceleration of the impact given by the impact device to the wedge. , and a determination device that determines the degree of looseness of the wedge using the calculation result of the calculation device.
(3)本発明に係る交流電動機の点検方法は、上記(1)または(2)の発明の交流電動機の点検装置が有する前記緩み測定装置を、前記交流電動機の回転子と前記固定子との間に形成された隙間に入れ、前記緩み測定装置によって前記楔に打撃を与えて、その与えた打撃の加速度に対する前記楔の加速度との関係から、前記楔の緩み度合を判定することを特徴とするものである。 (3) The method for inspecting an AC motor according to the present invention is such that the slack measuring device included in the inspection device for an AC motor according to the invention of (1) or (2) is connected to the rotor and the stator of the AC motor. The wedge is inserted into a gap formed between the wedges, and the wedge is struck by the loosening measuring device, and the degree of loosening of the wedge is determined from the relationship between the acceleration of the wedge and the acceleration of the applied strike. It is something to do.
(4)本発明に係る交流電動機の点検方法は、上記(3)の発明において、前記楔の緩み度合を判定する方法が、前記楔に与えた打撃の加速度の波形にローパスフィルタをかけた後にピークホールドした値A1を求める工程と、前記楔の加速度の波形にローパスフィルタをかけた後にピークホールドした値A2を求める工程と、A2/A1の比を打撃する毎に計算して加速度比を求める工程と、測定箇所ごとに複数回の打撃を実施し、その初期の打撃に係るデータを排除した上で平均値を計算する工程と、求められた加速度比の平均値をもとに、予め用意された加速度比と緩み度合との関係から前記楔の緩み度合を判定する工程と、を有することを特徴とするものである。 (4) In the method for inspecting an AC motor according to the present invention, in the invention described in (3) above, the method for determining the degree of loosening of the wedge includes applying a low-pass filter to the waveform of the acceleration of the impact applied to the wedge. A step of obtaining a peak-held value A1, a step of obtaining a peak-held value A2 after applying a low-pass filter to the waveform of the acceleration of the wedge, and calculating the ratio of A2/A1 each time a strike is made to obtain an acceleration ratio. The process involves performing multiple blows at each measurement point and calculating the average value after eliminating data related to the initial blows.The process is based on the average value of the obtained acceleration ratio. The present invention is characterized by comprising the step of determining the degree of loosening of the wedge from the relationship between the acceleration ratio and the degree of loosening.
 本発明に係る交流電動機の点検装置、及び、交流電動機の点検方法は、回転子の引き抜きを行わずに楔の緩みを精度よく点検することができるという効果を奏する。 The AC motor inspection device and AC motor inspection method according to the present invention have the effect that the looseness of the wedge can be accurately inspected without pulling out the rotor.
図1は、実施形態に係る点検装置の概略構成を示したブロック図である。FIG. 1 is a block diagram showing a schematic configuration of an inspection device according to an embodiment. 図2は、交流電動機の固定子と回転子との間に形成された隙間に緩み測定装置を挿入した状態を示した図である。FIG. 2 is a diagram showing a state in which a slackness measuring device is inserted into a gap formed between a stator and a rotor of an AC motor. 図3は、交流電動機の固定子の断面の一部を示した図である。FIG. 3 is a diagram showing a part of a cross section of a stator of an AC motor. 図4は、実施形態に係る緩み測定装置の概略構成を示した側面図である。FIG. 4 is a side view showing a schematic configuration of the slackness measuring device according to the embodiment. 図5は、実施形態に係る緩み測定装置の概略構成を示した上面図である。FIG. 5 is a top view showing a schematic configuration of the slackness measuring device according to the embodiment. 図6は、カムによって板バネを弾性変形させた状態を示した図である。FIG. 6 is a diagram showing a state in which the leaf spring is elastically deformed by the cam. 図7は、板バネの打撃部が当てビシに打撃を与えた状態を示した図である。FIG. 7 is a diagram showing a state in which the striking portion of the leaf spring strikes the abutment bit. 図8は、第二の測定装置の概略構成を示した側面図である。FIG. 8 is a side view showing a schematic configuration of the second measuring device. 図9は、電磁石を作動させていない状態の緩み測定装置を示した図である。FIG. 9 is a diagram showing the looseness measuring device in a state where the electromagnet is not activated. 図10は、電磁石を作動させた状態の緩み測定装置を示した図である。FIG. 10 is a diagram showing the looseness measuring device with the electromagnet activated.
 以下に、本発明に係る交流電動機の点検装置、及び、交流電動機の点検方法の実施形態について説明する。なお、本実施形態により本発明が限定されるものではない。 Embodiments of an AC motor inspection device and an AC motor inspection method according to the present invention will be described below. Note that the present invention is not limited to this embodiment.
 図1は、実施形態に係る点検装置10の概略構成を示したブロック図である。図1に示すように、実施形態に係る点検装置10は、交流電動機の点検、具体的には、交流電動機の固定子に設けられた楔の緩み度合を点検する装置であって、緩み測定装置1、制御装置7、計算装置8、及び、判定装置9などを有している。また、緩み測定装置1は、前記楔に打撃を与えて当該楔の緩みを測定する装置であって、打撃装置2、第一の測定装置3、第二の測定装置4、及び、吸着装置5などを備えている。なお、緩み測定装置1、打撃装置2、第一の測定装置3、第二の測定装置4、吸着装置5、制御装置7、計算装置8、及び、判定装置9などについての具体的な説明は後述する。 FIG. 1 is a block diagram showing a schematic configuration of an inspection device 10 according to an embodiment. As shown in FIG. 1, the inspection device 10 according to the embodiment is a device for inspecting an AC motor, specifically, checking the degree of looseness of a wedge provided in a stator of an AC motor, and is a loosening measuring device. 1, a control device 7, a calculation device 8, a determination device 9, etc. The slackness measuring device 1 is a device that measures the slackness of the wedge by striking the wedge, and includes a striking device 2, a first measuring device 3, a second measuring device 4, and a suction device 5. It is equipped with such things as In addition, specific descriptions of the slackness measuring device 1, striking device 2, first measuring device 3, second measuring device 4, adsorption device 5, control device 7, calculating device 8, determining device 9, etc. This will be explained later.
 図2は、交流電動機100の固定子110と回転子120との間に形成された隙間に緩み測定装置1を挿入した状態を示した図である。図2に示すように、実施形態に係る点検装置10においては、交流電動機100の回転子120を引き抜かずに、交流電動機100の固定子110と回転子120との間に形成された隙間に緩み測定装置1を挿入する。そして、実施形態に係る点検装置10では、前記隙間に挿入した緩み測定装置1を用いて、固定子110に設けられた後述する楔112(図3参照)の緩み度合を点検する。 FIG. 2 is a diagram showing a state in which the looseness measuring device 1 is inserted into a gap formed between the stator 110 and the rotor 120 of the AC motor 100. As shown in FIG. 2, in the inspection device 10 according to the embodiment, the looseness is removed in the gap formed between the stator 110 and the rotor 120 of the AC motor 100 without pulling out the rotor 120 of the AC motor 100. Insert measuring device 1. In the inspection device 10 according to the embodiment, the degree of loosening of a wedge 112 (see FIG. 3) provided on the stator 110, which will be described later, is inspected using the loosening measuring device 1 inserted into the gap.
 図3は、交流電動機100の固定子110の断面の一部を示した図である。図3に示すように、交流電動機100の固定子110においては、鉄心111に形成されたスロット114内にコイル113が配置されている。そして、スロット114の開口部に設置された楔112によってコイル113を押し付けて、コイル113が機械的に固定されている。楔112としては、例えば、エポキシ樹脂製のものを用いることができる。なお、図3において、鉄心111と楔112の上方は、固定子110と回転子120との隙間の空間の一部である。 FIG. 3 is a diagram showing a part of a cross section of the stator 110 of the AC motor 100. As shown in FIG. 3, in the stator 110 of the AC motor 100, a coil 113 is disposed within a slot 114 formed in an iron core 111. The coil 113 is mechanically fixed by pressing the coil 113 with a wedge 112 installed at the opening of the slot 114. As the wedge 112, for example, one made of epoxy resin can be used. Note that in FIG. 3, the area above the iron core 111 and the wedge 112 is a part of the space between the stator 110 and the rotor 120.
 ここで、楔112は、交流電動機100の長期間の使用に伴う、鉄心111とコイル113とを電気的に絶縁している不図示の絶縁物の熱劣化による摩耗や、電磁振動による機械的摩耗などによって緩むため、コイル113の固定が不十分となる。そして、交流電動機100の動作中に発生するコイル113の振動が大きくなると、鉄心111とコイル113とを電気的に絶縁している不図示の絶縁物を機械的に損傷して電気的短絡が発生するおそれがある。そのため、実施形態に係る点検装置10では、緩み測定装置1を用いて楔112の緩み度合を点検する。 Here, the wedge 112 is caused by wear due to thermal deterioration of an insulator (not shown) that electrically insulates the iron core 111 and the coil 113 due to long-term use of the AC motor 100, or mechanical wear due to electromagnetic vibration. As a result, the coil 113 becomes insufficiently fixed. When the vibration of the coil 113 that occurs during operation of the AC motor 100 becomes large, the insulator (not shown) that electrically insulates the iron core 111 and the coil 113 is mechanically damaged, resulting in an electrical short circuit. There is a risk of Therefore, in the inspection device 10 according to the embodiment, the degree of loosening of the wedge 112 is inspected using the loosening measuring device 1.
 図4は、実施形態に係る緩み測定装置1の概略構成を示した側面図である。図5は、実施形態に係る緩み測定装置1の概略構成を示した上面図である。図4及び図5に示すように、実施形態に係る緩み測定装置1は、打撃装置2と、第一の測定装置3と、第二の測定装置4と、吸着装置5と、これらの緩み測定装置1の各構成要素を内部に収容する筐体6とを備えている。筐体6は、交流電動機100の回転子120と固定子110との間に形成された隙間に入るサイズとなっており、筐体6の天板部6aが回転子120側に位置し、筐体6の底板部6bが固定子110側に位置するように前記隙間に挿入される。 FIG. 4 is a side view showing a schematic configuration of the looseness measuring device 1 according to the embodiment. FIG. 5 is a top view showing a schematic configuration of the looseness measuring device 1 according to the embodiment. As shown in FIGS. 4 and 5, the slack measuring device 1 according to the embodiment includes a striking device 2, a first measuring device 3, a second measuring device 4, a suction device 5, and a slack measuring device 1 for measuring the slack of these devices. The device 1 includes a casing 6 that accommodates each component of the device 1 inside. The housing 6 has a size that fits into the gap formed between the rotor 120 and the stator 110 of the AC motor 100, and the top plate portion 6a of the housing 6 is located on the rotor 120 side. The body 6 is inserted into the gap so that the bottom plate portion 6b is located on the stator 110 side.
 打撃装置2は、固定子110に設けられた楔112に打撃を与える装置である。打撃装置2は、板バネ21と、回転することにより板バネ21を持ち上げて弾性変形させるカム22と、カム22を回転させるモータなどの回転付与装置23と、板バネ21から与えられる打撃を楔112に伝える当てビシ24と、を備えている。板バネ21は、長手方向の一端側が固定台座25上に固定された固定端となっており、長手方向の他端側が自由端となっている。筐体6の底板部6bに形成された開口部61を介して、板バネ21の当てビシ24と対向する側の面には、当てビシ24に対応する位置で当てビシ24側に突出した凸形状の打撃部21aが設けられている。また、板バネ21の自由端側の先端部分には、カム22の外周に形成されたカム面と接触可能なカム接触部21bが設けられている。当てビシ24は、筐体6の底板部6bに形成された開口部61を介して板バネ21の打撃部21aが打撃可能な位置に、弾性体26を介して筐体6の底板部6b(開口部61の縁)と接続されている。なお、打撃部21a及び当てビシ24は、楔112よりも硬ければよい。打撃部21a及び当てビシ24の材質としては、例えば、各種の金属材料を用いることができる。 The striking device 2 is a device that strikes a wedge 112 provided on the stator 110. The impact device 2 includes a leaf spring 21, a cam 22 that lifts and elastically deforms the leaf spring 21 by rotation, a rotation imparting device 23 such as a motor that rotates the cam 22, and a wedge of the impact given by the leaf spring 21. 112. The plate spring 21 has one end in the longitudinal direction serving as a fixed end fixed on the fixed pedestal 25, and the other end in the longitudinal direction serving as a free end. On the surface of the leaf spring 21 on the side opposite to the abutting bead 24 through the opening 61 formed in the bottom plate portion 6b of the housing 6, there is a convex protruding toward the abutting bead 24 at a position corresponding to the abutting bead 24. A shaped striking portion 21a is provided. Further, a cam contact portion 21b that can come into contact with a cam surface formed on the outer periphery of the cam 22 is provided at the tip portion on the free end side of the leaf spring 21. The abutting bit 24 is inserted into the bottom plate 6b of the casing 6 via the elastic body 26 to a position where the striking portion 21a of the leaf spring 21 can be struck through the opening 61 formed in the bottom plate 6b of the casing 6. edge of the opening 61). Note that the striking portion 21a and the contact bit 24 only need to be harder than the wedge 112. As the material of the striking part 21a and the contact bit 24, various metal materials can be used, for example.
 図6は、カム22によって板バネ21を弾性変形させた状態を示した図である。図7は、板バネ21の打撃部21aが当てビシ24に打撃を与えた状態を示した図である。図6に示すように、打撃装置2は、回転付与装置23によってカム22を回転させることにより、カム接触部21bをカム22によって押し上げて板バネ21を弾性変形させる。そして、図7に示すように、さらに回転付与装置23によってカム22を回転させて、カム22からカム接触部21bを解放することにより、板バネ21の弾性力による打撃力が発生し、板バネ21の打撃部21aが当てビシ24に打撃を与える。 FIG. 6 is a diagram showing a state in which the leaf spring 21 is elastically deformed by the cam 22. FIG. 7 is a diagram showing a state in which the striking part 21a of the leaf spring 21 strikes the contact bit 24. As shown in FIG. As shown in FIG. 6, the striking device 2 causes the rotation imparting device 23 to rotate the cam 22, thereby pushing up the cam contact portion 21b with the cam 22 and elastically deforming the leaf spring 21. Then, as shown in FIG. 7, by further rotating the cam 22 by the rotation imparting device 23 and releasing the cam contact portion 21b from the cam 22, an impact force due to the elastic force of the leaf spring 21 is generated, and the leaf spring The striking part 21a of 21 strikes the hitch 24.
 ここで、図3に示したような、固定子110の内周面110aを形成する鉄心111の内周面111aと楔112の内周面112aとは、必ずしも一定の位置関係にあるとは限らない。そのため、板バネ21の打撃部21aが楔112を直に打撃する構成の場合には、板バネ21のカム接触部21bがカム22から解放されて、板バネ21の打撃部21aが楔112を打撃するまでの移動距離も大きく変動することが懸念される。このような前記移動距離の大きな変動は、測定結果のばらつきの原因となる。 Here, as shown in FIG. 3, the inner circumferential surface 111a of the iron core 111 and the inner circumferential surface 112a of the wedge 112, which form the inner circumferential surface 110a of the stator 110, are not necessarily in a fixed positional relationship. do not have. Therefore, in the case of a configuration in which the striking portion 21a of the leaf spring 21 directly strikes the wedge 112, the cam contact portion 21b of the leaf spring 21 is released from the cam 22, and the striking portion 21a of the leaf spring 21 strikes the wedge 112. There is concern that the distance traveled before hitting the ball will also vary greatly. Such large fluctuations in the moving distance cause variations in measurement results.
 そのため、実施形態に係る緩み測定装置1においては、板バネ21の打撃部21aが、楔112に直に接触して打撃を与えるのではなく、予め楔112に接触させた当てビシ24に、板バネ21の打撃部21aが打撃を与える。そして、打撃部21aが当てビシ24を介して楔112に打撃を与える構造を採用している。これにより、上述したような、板バネ21の打撃部21aが楔112を打撃するまでの移動距離の大きな変動の影響を抑制することができる。よって、実施形態に係る緩み測定装置1では、打撃装置2によって安定した打撃力を楔112に与えることが可能となり、前記移動距離の大きな変動に起因した測定結果のばらつきを抑制することができる。 Therefore, in the slackness measuring device 1 according to the embodiment, the striking part 21a of the leaf spring 21 does not directly contact the wedge 112 and give a strike, but instead hits the contacting part 24 that has been brought into contact with the wedge 112 in advance. The striking portion 21a of the spring 21 gives a strike. A structure is adopted in which the striking portion 21a strikes the wedge 112 via the contact bit 24. This makes it possible to suppress the influence of large fluctuations in the travel distance until the striking portion 21a of the leaf spring 21 strikes the wedge 112, as described above. Therefore, in the slackness measuring device 1 according to the embodiment, it is possible to apply a stable striking force to the wedge 112 by the striking device 2, and it is possible to suppress variations in measurement results caused by large fluctuations in the moving distance.
 実施形態に係る緩み測定装置1が備える第一の測定装置3は、楔112に対して打撃装置2が与える打撃の加速度を測定する装置であり、例えば、加速度計を用いて構成される。 The first measuring device 3 included in the slack measuring device 1 according to the embodiment is a device that measures the acceleration of the impact that the impact device 2 gives to the wedge 112, and is configured using, for example, an accelerometer.
 第一の測定装置3が有する加速度計を板バネ21の打撃部21a付近に取り付け、打撃部21aの加速度を測定する。 An accelerometer included in the first measuring device 3 is attached near the striking part 21a of the leaf spring 21, and the acceleration of the striking part 21a is measured.
 実施形態に係る緩み測定装置1が備える第二の測定装置4は、打撃装置2から打撃を受けた被打撃物である楔112の加速度(応答の加速度)を測定する装置であり、例えば加速度計を用いて構成される。 The second measuring device 4 included in the loosening measuring device 1 according to the embodiment is a device that measures the acceleration (response acceleration) of the wedge 112, which is the object to be hit by the hitting device 2, and is, for example, an accelerometer. It is configured using
 図8は、第二の測定装置4の概略構成を示した側面図である。図8に示すように、第二の測定装置4は、接触部材41、樹脂部材42a,42b、防振ゴム43a,43b,43c,43d、及び、加速度計44などによって構成されている。接触部材41は、筐体6の底板部6bに形成された開口部62を介して楔112に対応する位置に配置されている。接触部材41は、楔112と対向する側が楔112側に突出した凸形状となっている。接触部材41は、2つの樹脂部材42a,42bが挟み込み圧迫することによって保持されている。樹脂部材で接触部材41を挟み込んで圧迫することにより保持する方法としては、図8に示されるように接触部材41を相対する外側から2つの樹脂部材42a,42bで挟み込む方法に限るものではない。例えば、接触部材41を取り囲む1つの樹脂部材を用いて、当該樹脂部材が接触部材41を周囲から圧迫して保持する方法でもよい。接触部材41の材質は、楔112よりも硬いものであればよく、例えば、各種の金属材料を用いることができる。樹脂部材42a,42bは、それぞれ防振ゴム43a,43bを介して筐体6の底板部6bに載置されている。また、筐体6の天板部6aと樹脂部材42a,42bとの間には防振ゴム43c,43dが介在している。加速度計44は、L字状の板状部材441と、接触部材41を介して板状部材441に伝わった楔112の振動を測定するセンサ442とによって構成されている。板状部材441の長尺部441aは、接触部材41の上面に取り付けられている。板状部材441の短尺部441bには、センサ442が取り付けられている。また、板状部材441は、樹脂部材42a,42bや防振ゴム43a,43b,43c,43dに挟まれたり固定されたりしておらず、振動可能に配置されている。このため、例えば、防振ゴム43c,43dが板状部材441の長尺部441aに接触しないような切り込みを備えていてもよい。第二の測定装置4は、加速度計44を楔112に接する接触部材41に取り付け、打撃部21aの打撃が当てビシ24を介して楔112に加えられた時の楔112の振動を測定する。 FIG. 8 is a side view showing a schematic configuration of the second measuring device 4. As shown in FIG. 8, the second measuring device 4 includes a contact member 41, resin members 42a, 42b, vibration- proof rubber 43a, 43b, 43c, 43d, an accelerometer 44, and the like. The contact member 41 is disposed at a position corresponding to the wedge 112 through an opening 62 formed in the bottom plate portion 6b of the housing 6. The contact member 41 has a convex shape with the side facing the wedge 112 protruding toward the wedge 112 side. The contact member 41 is held by the two resin members 42a and 42b sandwiching and compressing the contact member 41. The method of holding the contact member 41 by sandwiching and compressing the contact member 41 between resin members is not limited to the method of sandwiching the contact member 41 between two resin members 42a and 42b from opposing outsides as shown in FIG. For example, a method may be adopted in which a single resin member surrounding the contact member 41 is used and the resin member presses and holds the contact member 41 from the periphery. The contact member 41 may be made of any material as long as it is harder than the wedge 112, and for example, various metal materials may be used. The resin members 42a and 42b are placed on the bottom plate portion 6b of the housing 6 via anti-vibration rubbers 43a and 43b, respectively. Moreover, vibration- proof rubbers 43c and 43d are interposed between the top plate portion 6a of the housing 6 and the resin members 42a and 42b. The accelerometer 44 includes an L-shaped plate member 441 and a sensor 442 that measures the vibration of the wedge 112 transmitted to the plate member 441 via the contact member 41. The elongated portion 441a of the plate member 441 is attached to the upper surface of the contact member 41. A sensor 442 is attached to the short portion 441b of the plate member 441. Further, the plate member 441 is not sandwiched or fixed between the resin members 42a, 42b or the vibration isolating rubbers 43a, 43b, 43c, and 43d, but is arranged to be able to vibrate. For this reason, for example, a cut may be provided so that the vibration isolating rubbers 43c and 43d do not come into contact with the elongated portion 441a of the plate-like member 441. The second measuring device 4 attaches an accelerometer 44 to the contact member 41 in contact with the wedge 112, and measures the vibration of the wedge 112 when a blow from the striking portion 21a is applied to the wedge 112 via the contact beam 24.
 図9は、電磁石52を作動させていない状態の緩み測定装置1を示した図である。図10は、電磁石52を作動させた状態の緩み測定装置1を示した図である。図9及び図10に示すように、吸着装置5は、移動用の磁石車輪51、及び、緩み測定時に筐体6を固定子110の内周面110aに吸着可能な電磁石52が設けられている。磁石車輪51は、筐体6内に配置された弾性体53を介して筐体6の天板部6aに接続され、筐体6の底板部6bに形成された不図示の車輪用開口部から筐体6の内部に格納可能に構成されている。筐体6と磁石車輪51とを接続する弾性体53としては、例えば、板バネなどを使用することができる。弾性体53を介して筐体6と磁石車輪51とを接続することにより、弾性体53の弾性力によって固定子110の内周面110aから筐体6を浮かして、緩み測定装置1をスムーズに移動させることができる。なお、緩み測定装置1を交流電動機100(固定子110)の長手方向に移動させるには、例えば、筐体6にワイヤを取り付けて、そのワイヤを交流電動機100の外部から引っ張る方法などを採用することができる。 FIG. 9 is a diagram showing the looseness measuring device 1 in a state where the electromagnet 52 is not activated. FIG. 10 is a diagram showing the looseness measuring device 1 with the electromagnet 52 activated. As shown in FIGS. 9 and 10, the adsorption device 5 is provided with magnetic wheels 51 for movement and an electromagnet 52 that can adsorb the casing 6 to the inner circumferential surface 110a of the stator 110 when measuring looseness. . The magnetic wheel 51 is connected to the top plate 6a of the casing 6 via an elastic body 53 disposed inside the casing 6, and is connected to the top plate 6a of the casing 6 through a wheel opening (not shown) formed in the bottom plate 6b of the casing 6. It is configured to be able to be stored inside the housing 6. As the elastic body 53 that connects the housing 6 and the magnetic wheel 51, for example, a leaf spring or the like can be used. By connecting the casing 6 and the magnetic wheel 51 via the elastic body 53, the casing 6 is lifted off the inner peripheral surface 110a of the stator 110 by the elastic force of the elastic body 53, and the looseness measuring device 1 can be smoothly operated. It can be moved. Note that in order to move the slack measuring device 1 in the longitudinal direction of the AC motor 100 (stator 110), for example, a method is adopted in which a wire is attached to the housing 6 and the wire is pulled from outside the AC motor 100. be able to.
 また、交流電動機100(固定子110)の長手方向に緩み測定装置1を移動させるための車輪として、磁石車輪51を採用することによって、固定子110の内周面110a(鉄心111の内周面111a)に磁石車輪51が磁力で吸着する。これにより、固定子110の内周面110aに対して緩み測定装置1がどのような角度の場合にも、固定子110の内周面110aに緩み測定装置1を保持することが可能となる。例えば、固定子110の内周面110aが回転子120の外周面120aよりも上方となるような、固定子110と回転子120との間に形成された隙間に緩み測定装置1が位置する場合がある。この場合でも、固定子110の内周面110aに緩み測定装置1を保持しつつ、緩み測定装置1を交流電動機100(固定子110)の長手方向に緩み測定装置1を移動させることが可能となる。 Moreover, by employing the magnetic wheels 51 as wheels for moving the slack measuring device 1 in the longitudinal direction of the AC motor 100 (stator 110), the inner peripheral surface 110a of the stator 110 (the inner peripheral surface of the iron core 111 111a), the magnetic wheel 51 is attracted by magnetic force. This makes it possible to hold the slack measuring device 1 on the inner circumferential surface 110a of the stator 110 no matter what angle the loose measuring device 1 is at with respect to the inner circumferential surface 110a of the stator 110. For example, when the slack measuring device 1 is located in a gap formed between the stator 110 and the rotor 120 such that the inner circumferential surface 110a of the stator 110 is higher than the outer circumferential surface 120a of the rotor 120. There is. Even in this case, it is possible to move the slack measuring device 1 in the longitudinal direction of the AC motor 100 (stator 110) while holding the slack measuring device 1 on the inner peripheral surface 110a of the stator 110. Become.
 実施形態に係る緩み測定装置1においては、所定の測定位置に緩み測定装置1を移動させた後に、打撃装置2による楔112の打撃と、第一の測定装置3及び第二の測定装置4による測定とを実施する。また、打撃時及び測定時には、磁石車輪51を筐体6の内部に格納して、交流電動機100の固定子110の内周面110aに筐体6を密着させる。 In the slackness measuring device 1 according to the embodiment, after the slackness measuring device 1 is moved to a predetermined measurement position, the hammering device 2 hits the wedge 112, and the first measuring device 3 and the second measuring device 4 Perform measurements. Further, during impact and measurement, the magnetic wheel 51 is housed inside the housing 6, and the housing 6 is brought into close contact with the inner circumferential surface 110a of the stator 110 of the AC motor 100.
 ここで、実施形態に係る緩み測定装置1は、筐体6の長手方向と直交する幅方向の両側にそれぞれ配置された電磁石52の磁力によって、固定子110の内周面110a(鉄心111の内周面111a)と筐体6とを密着させることが可能となっている。この電磁石52は、図9に示すように、緩み測定装置1を移動させるときなどの緩み測定時(打撃時及び測定時)以外には作動させない。そして、電磁石52は、図10に示すように、緩み測定時(打撃時及び測定時)にのみ作動させて、固定子110の内周面110aを磁力によって吸着するものである。 Here, the slack measuring device 1 according to the embodiment uses the magnetic force of the electromagnets 52 disposed on both sides of the housing 6 in the width direction perpendicular to the longitudinal direction to It is possible to bring the peripheral surface 111a) and the housing 6 into close contact with each other. As shown in FIG. 9, this electromagnet 52 is not operated except when measuring slackness (during impact and measurement), such as when moving the slackness measuring device 1. As shown in FIG. 10, the electromagnet 52 is operated only when measuring looseness (during impact and measurement) to magnetically attract the inner circumferential surface 110a of the stator 110.
 電磁石52としては、例えば、図9に示すような、コの字型のヨーク52aの両側の先端部521a,521bを、固定子110の内周面110aと対向する部位とし、ヨーク52aの長手方向の中央部に励磁用コイル52bを備えた電磁石を用いることができる。このような電磁石52を用いた場合には、固定子110の内周面110a上における所定の測定位置に緩み測定装置1を移動させた状態で、励磁用コイル52bに電流を流す。これにより、筐体6を介してヨーク52aの先端部521a,521bが固定子110の内周面110aを吸着し、その結果、固定子110の内周面110aに筐体6が密着して固定される。そのため、固定子110の内周面110aに対する緩み測定装置1の吸着状態が安定し、その結果、安定した測定データを得ることが可能となり、楔112の緩みを精度よく点検することができる。 As shown in FIG. 9, the electromagnet 52 has, for example, distal ends 521a and 521b on both sides of a U-shaped yoke 52a facing the inner circumferential surface 110a of the stator 110, and a longitudinal direction of the yoke 52a. An electromagnet having an excitation coil 52b in the center can be used. When such an electromagnet 52 is used, a current is applied to the excitation coil 52b while the loosening measuring device 1 is moved to a predetermined measurement position on the inner circumferential surface 110a of the stator 110. As a result, the tips 521a and 521b of the yoke 52a attract the inner circumferential surface 110a of the stator 110 via the casing 6, and as a result, the casing 6 comes into close contact with the inner circumferential surface 110a of the stator 110 and is fixed. be done. Therefore, the adsorption state of the loosening measuring device 1 to the inner circumferential surface 110a of the stator 110 is stabilized, and as a result, it is possible to obtain stable measurement data, and the looseness of the wedge 112 can be checked with high accuracy.
 なお、交流電動機100の固定子110の長手方向に沿って緩み測定装置1をスムーズに移動させるために、磁石車輪51を載せて磁石車輪51の移動をガイドするガイドレールを固定子110の内周面110aに設けてもよい。このようにガイドレールを設けることによって、磁石車輪51の接する部位を平滑とすることが可能となるため、固定子110の長手方向へ緩み測定装置1を移動させる動作を、よりスムーズに実施することが可能となる。また、ガイドレールは、固定子110の内周面110aにガイドレールを介して磁石車輪51が十分に磁力によって吸着するとともに、ガイドレールを介さずに打撃装置2の当てビシ24が楔112に直に接する構造を備えていればよい。 Note that in order to smoothly move the slack measuring device 1 along the longitudinal direction of the stator 110 of the AC motor 100, a guide rail on which the magnetic wheel 51 is mounted and guides the movement of the magnetic wheel 51 is installed on the inner circumference of the stator 110. It may also be provided on the surface 110a. By providing the guide rail in this way, it is possible to make the part in contact with the magnet wheel 51 smooth, so that the movement of the slack measuring device 1 in the longitudinal direction of the stator 110 can be carried out more smoothly. becomes possible. Further, the guide rail allows the magnet wheel 51 to be sufficiently attracted to the inner circumferential surface 110a of the stator 110 by magnetic force via the guide rail, and the abutting bit 24 of the striking device 2 to be directly attached to the wedge 112 without using the guide rail. It is sufficient if the structure is in contact with the .
 また、交流電動機100の長手方向に緩み測定装置1を移動させるために、ガイドレールを用意する場合も、磁石車輪51を採用することによって、ガイドレールに緩み測定装置1の荷重を担わせる必要がない。そのため、ガイドレールの構造を簡素化し、軽量化することができ、作業性を改善するという効果を得ることが可能である。また、ガイドレールを軽量化することができるため、ガイドレールが自重で撓むことを抑制し、ガイドレール上の緩み測定装置1による楔112の緩み測定の測定位置に位置ずれが発生することも抑制できるため、楔112の緩みを精度よく点検することができる。 Furthermore, when preparing a guide rail to move the slack measuring device 1 in the longitudinal direction of the AC motor 100, by adopting the magnetic wheels 51, it is not necessary to have the guide rail carry the load of the slack measuring device 1. do not have. Therefore, it is possible to simplify the structure of the guide rail, reduce its weight, and improve workability. In addition, since the guide rail can be made lighter, it is possible to suppress the guide rail from bending under its own weight, and to prevent positional deviation from occurring in the measurement position of the wedge 112 measured by the slack measuring device 1 on the guide rail. Since this can be suppressed, the looseness of the wedge 112 can be checked with high accuracy.
 ここで、磁石車輪51は、交流電動機100の軸方向に沿って緩み測定装置1が移動可能に構成されている。そのため、交流電動機100の周方向の別の位置について、楔112の点検を実施する場合には、手動で緩み測定装置1を前記別の位置に移動させて行うことになる。なお、磁石車輪51は、交流電動機100の軸方向に沿って緩み測定装置1を移動可能に構成したものに限定されず、交流電動機100の周方向にも緩み測定装置1を移動可能なように構成してもよい。 Here, the magnet wheel 51 is configured so that the slackness measuring device 1 can be moved along the axial direction of the AC motor 100. Therefore, when inspecting the wedge 112 at another position in the circumferential direction of the AC motor 100, the slackness measuring device 1 must be manually moved to the other position. Note that the magnetic wheels 51 are not limited to those configured so that the looseness measuring device 1 can be moved along the axial direction of the AC motor 100, but can also be configured so that the looseness measuring device 1 can be moved in the circumferential direction of the AC motor 100. may be configured.
 計算装置8は、被打撃物である楔112に対して打撃装置2が与える打撃の加速度に対する楔112の加速度の比である加速度比を計算する。具体的に、計算装置8は、第一の測定装置3及び第二の測定装置4から有線または無線で受信した、第一の測定装置3で測定された打撃の加速度のデータ、及び、第二の測定装置4で測定された楔112の加速度(応答の加速度)のデータから、加速度比を計算する。計算装置8の計算で得られた加速度比のデータは、有線または無線で判定装置9に送信される。 The calculation device 8 calculates an acceleration ratio, which is the ratio of the acceleration of the wedge 112 to the acceleration of the impact given by the impact device 2 to the wedge 112, which is the object to be hit. Specifically, the calculation device 8 receives the data of the acceleration of the impact measured by the first measurement device 3 and the second measurement device 4, which is received by wire or wirelessly from the first measurement device 3 and the second measurement device 4. The acceleration ratio is calculated from the data of the acceleration of the wedge 112 (response acceleration) measured by the measuring device 4. The acceleration ratio data obtained by the calculation by the calculation device 8 is transmitted to the determination device 9 by wire or wirelessly.
 判定装置9は、計算装置8から受信した計算結果(加速度比)をもとに、楔112の緩み度合いを判定する。楔112の緩みがない場合には、楔112の振動は小さい。一方、楔112に緩みが生じている場合、打撃を受けた際の楔112は、与えられた打撃の通りには振動せず、加速度比は大きくなる。加速度比と楔112の緩みとの関係は、予め予備試験を実施して求めておくことができる。また、形状や構造が類似する交流電動機100に対する測定結果を蓄積することによって、予備試験なしで楔112の緩み度合を判定することも可能である。 The determination device 9 determines the degree of loosening of the wedge 112 based on the calculation result (acceleration ratio) received from the calculation device 8. If the wedge 112 is not loose, the vibration of the wedge 112 is small. On the other hand, if the wedge 112 is loose, the wedge 112 will not vibrate in the same manner as the blow, and the acceleration ratio will increase. The relationship between the acceleration ratio and the loosening of the wedge 112 can be determined in advance by conducting a preliminary test. Furthermore, by accumulating measurement results for AC motors 100 that are similar in shape and structure, it is also possible to determine the degree of loosening of the wedge 112 without a preliminary test.
 制御装置7は、緩み測定装置1が備える、打撃装置2(回転付与装置23)、第一の測定装置3、第二の測定装置4、及び、吸着装置5(電磁石52)などに、有線または無線で制御信号を送信することによって、これら各装置の動作を制御する。 The control device 7 connects the impact device 2 (rotation imparting device 23), the first measuring device 3, the second measuring device 4, the adsorption device 5 (electromagnet 52), etc. of the loosening measuring device 1 with wired or The operation of each of these devices is controlled by wirelessly transmitting control signals.
 実施形態に係る点検装置10を用いた交流電動機100の点検方法は、交流電動機100の固定子110と回転子120との間に形成された隙間に緩み測定装置1を入れる。そして、緩み測定装置1が、固定子110のスロット114内に配置されたコイル113を固定する楔112に打撃を与え、その与えた打撃の加速度に対する被打撃物である楔112の加速度の比である加速度比から、楔112の緩み度合いを判定するものである。 A method for inspecting an AC motor 100 using the inspection device 10 according to the embodiment involves inserting the looseness measuring device 1 into a gap formed between the stator 110 and the rotor 120 of the AC motor 100. Then, the slackness measuring device 1 gives a blow to the wedge 112 that fixes the coil 113 arranged in the slot 114 of the stator 110, and the ratio of the acceleration of the wedge 112, which is the object to be hit, to the acceleration of the given blow is calculated. The degree of loosening of the wedge 112 is determined from a certain acceleration ratio.
 具体的には、まず、点検を実施する交流電動機100のカバーなどを外し、図2に示すような固定子110及び回転子120の断面が見える状態にする。次に、固定子110の内周面110aと回転子120の外周面120aとの間に形成された隙間に緩み測定装置1を挿入する。そして、交流電動機100の回転軸と平行な方向に緩み測定装置1を移動させ、所定の測定位置に到着したら停止させる。次に、制御装置7によって電磁石52を制御して、所定の測定位置で緩み測定装置1の電磁石52を作動させ、固定子110の内周面110a(鉄心111の内周面111a)に筐体6を磁力によって吸着させて固定する。なお、この状態では、当てビシ24が楔112に接触している。 Specifically, first, the cover of the AC motor 100 to be inspected is removed to expose the cross sections of the stator 110 and rotor 120 as shown in FIG. Next, the slack measuring device 1 is inserted into the gap formed between the inner peripheral surface 110a of the stator 110 and the outer peripheral surface 120a of the rotor 120. Then, the looseness measuring device 1 is moved in a direction parallel to the rotation axis of the AC motor 100, and stopped when it reaches a predetermined measuring position. Next, the control device 7 controls the electromagnet 52 to operate the electromagnet 52 of the slack measuring device 1 at a predetermined measurement position, and attaches the housing to the inner circumferential surface 110a of the stator 110 (the inner circumferential surface 111a of the iron core 111). 6 is attracted and fixed by magnetic force. Note that in this state, the contact bit 24 is in contact with the wedge 112.
 次いで、緩み測定装置1の打撃装置2による楔112の緩み測定を開始する。具体的には、制御装置7によって回転付与装置23を制御して、回転付与装置23によりカム22を回転させ、板バネ21のカム接触部21bを持ち上げて板バネ21を弾性変形させた後に解放する。このように解放された板バネ21の打撃部21aが、予め楔112に接触している当てビシ24を打撃することによって、当てビシ24を介して楔112に打撃が与えられる。 Then, measurement of the looseness of the wedge 112 by the impact device 2 of the looseness measuring device 1 is started. Specifically, the rotation imparting device 23 is controlled by the control device 7, the rotation imparting device 23 rotates the cam 22, the cam contact portion 21b of the leaf spring 21 is lifted, the leaf spring 21 is elastically deformed, and then the leaf spring 21 is released. do. The striking portion 21a of the leaf spring 21 released in this manner strikes the abutting bit 24 that has been in contact with the wedge 112 in advance, thereby applying a blow to the wedge 112 via the abutting bit 24.
 また、打撃装置2による打撃と合わせて、制御装置7によって第一の測定装置3を制御し、楔112に与えた打撃の加速度を第一の測定装置3によって測定する。第一の測定装置3が測定した打撃の加速度の測定結果は、計算装置8に送信される。計算装置8では、第一の測定装置3で測定された打撃の加速度のデータである打撃の加速度の波形にローパスフィルタをかけた後、ピークホールドした値A1を求める。また、第一の測定装置3による測定と同時に、制御装置7によって第二の測定装置4を制御し、楔112の振動から楔112の加速度(応答の加速度)を第二の測定装置4によって測定する。第二の測定装置4が測定した楔112の加速度(応答の加速度)の測定結果は、計算装置8に送信される。計算装置8では、第二の測定装置4で測定された楔112の加速度(応答の加速度)のデータである楔112の加速度(応答の加速度)の波形にローパスフィルタをかけた後、ピークホールドした値A2を求める。そして、計算装置8は、値A2を値A1で除すること(A2/A1)によって、打撃装置2が楔112に与える打撃の加速度に対する楔112の加速度(応答の加速度)の比である加速度比を求める。 In addition to the impact by the impact device 2, the first measuring device 3 is controlled by the control device 7, and the acceleration of the impact applied to the wedge 112 is measured by the first measuring device 3. The measurement result of the acceleration of the impact measured by the first measurement device 3 is transmitted to the calculation device 8 . The calculation device 8 applies a low-pass filter to the waveform of the impact acceleration, which is data of the impact acceleration measured by the first measuring device 3, and then obtains a peak-held value A1. Further, at the same time as the measurement by the first measuring device 3, the second measuring device 4 is controlled by the control device 7, and the acceleration of the wedge 112 (response acceleration) is measured by the second measuring device 4 from the vibration of the wedge 112. do. The measurement result of the acceleration of the wedge 112 (response acceleration) measured by the second measurement device 4 is transmitted to the calculation device 8 . The calculation device 8 applies a low-pass filter to the waveform of the acceleration (response acceleration) of the wedge 112, which is the data of the acceleration (response acceleration) of the wedge 112 measured by the second measuring device 4, and then peak-holds the waveform. Find the value A2. Then, by dividing the value A2 by the value A1 (A2/A1), the calculation device 8 calculates the acceleration ratio, which is the ratio of the acceleration of the wedge 112 (response acceleration) to the acceleration of the impact that the impact device 2 gives to the wedge 112. seek.
 なお、緩み測定装置1による打撃及び各加速度の測定は、一つに測定箇所について複数回実施し、各打撃に対して得られたそれぞれの加速度比の平均値を、楔112の緩み度合いの判定材料とすることが好ましい。ここで、複数回の打撃で得られたそれぞれの加速度比の平均値を求めるにあたり、複数回のうちの初めの数回の打撃で得られた各加速度比を除いた残りの回数分の各加速度比のみの平均値を求めることが好ましい。例えば、3回目以降の打撃で得られた各加速度比の平均値を求めることが好ましい。これは、以下の理由による。固定子110の内周面110aの表面粗さのバラつきなどに起因して、固定子110の内周面110a(鉄心111の内周面111a)に対する筐体6の当初の吸着状態が不安定となっていることがある。しかしながら、2回程度の打撃により、安定した吸着状態が実現するからである。 Note that the impact and measurement of each acceleration by the loosening measuring device 1 are performed multiple times for one measurement point, and the average value of the respective acceleration ratios obtained for each impact is used to determine the degree of loosening of the wedge 112. It is preferable to use it as a material. Here, in calculating the average value of each acceleration ratio obtained from multiple strikes, we exclude each acceleration ratio obtained from the first few strikes of the multiple strikes, and calculate each acceleration for the remaining number of strikes. It is preferable to calculate the average value of only the ratios. For example, it is preferable to calculate the average value of each acceleration ratio obtained from the third and subsequent hits. This is due to the following reasons. Due to variations in the surface roughness of the inner circumferential surface 110a of the stator 110, the initial suction state of the casing 6 to the inner circumferential surface 110a of the stator 110 (inner circumferential surface 111a of the iron core 111) may be unstable. Sometimes it happens. However, this is because a stable adsorption state can be achieved by hitting about two times.
 計算装置8で計算した加速度比(加速度比の平均値)のデータは、判定装置9に送信される。判定装置9は、計算装置8の計算結果である加速度比(加速度比の平均値)をもとに、事前に測定した、あるいは、過去の実績に基づいて知見した、加速度比(加速度比の平均値)と楔112の緩み度合いとの関係から楔112の緩み度合いを判定する。 The data of the acceleration ratio (average value of the acceleration ratio) calculated by the calculation device 8 is transmitted to the determination device 9. The determination device 9 determines the acceleration ratio (average acceleration ratio) measured in advance or found based on past performance based on the acceleration ratio (average acceleration ratio) that is the calculation result of the calculation device 8. The degree of looseness of the wedge 112 is determined from the relationship between the value) and the degree of looseness of the wedge 112.
 これにより、実施形態に係る点検装置10においては、回転子120の引き抜きを行わずに楔112の緩みを精度よく点検することができ、工事費用の削減及び工事期間の削減に繋げることができる。また、実施形態に係る点検装置10においては、板バネ21の打撃部21aの打撃力を、予め楔112に接触させた当てビシ24を介して楔112に与える。そのため、安定した打撃力を楔112に与えて測定結果のばらつきを抑えることができ、楔112の緩み度合の判定精度を向上させることができる。 Thereby, in the inspection device 10 according to the embodiment, the looseness of the wedge 112 can be accurately inspected without pulling out the rotor 120, which can lead to reductions in construction costs and construction period. Furthermore, in the inspection device 10 according to the embodiment, the striking force of the striking portion 21a of the leaf spring 21 is applied to the wedge 112 via the contacting bit 24 that is brought into contact with the wedge 112 in advance. Therefore, it is possible to apply a stable impact force to the wedge 112 to suppress variations in measurement results, and it is possible to improve the accuracy of determining the degree of looseness of the wedge 112.
 本発明は、回転子の引き抜きを行わずに楔の緩みを精度よく点検することができる交流電動機の点検装置、及び、交流電動機の点検方法を提供することができる。 The present invention can provide an AC motor inspection device and an AC motor inspection method that can accurately inspect the looseness of a wedge without pulling out the rotor.
1 緩み測定装置
2 打撃装置
3 第一の測定装置
4 第二の測定装置
5 吸着装置
6 筐体
6a 天板部
6b 底板部
7 制御装置
8 計算装置
9 判定装置
10 点検装置
21 板バネ
21a 打撃部
21b カム接触部
22 カム
23 回転付与装置
24 当てビシ
25 固定台座
26 弾性体
41 接触部材
42a,42b 樹脂部材
43a,43b,43c,43d 防振ゴム
44 加速度計
51 磁石車輪
52 電磁石
52a ヨーク
52b 励磁用コイル
53 弾性体
61 開口部
62 開口部
100 交流電動機
110 固定子
110a 内周面
111 鉄心
112 楔
120 回転子
120a 外周面
441 板状部材
441a 長尺部
441b 短尺部
442 センサ
521a,521b 先端部
1 Looseness measuring device 2 Impact device 3 First measuring device 4 Second measuring device 5 Adsorption device 6 Housing 6a Top plate portion 6b Bottom plate portion 7 Control device 8 Calculation device 9 Judgment device 10 Inspection device 21 Leaf spring 21a Impact portion 21b Cam contact portion 22 Cam 23 Rotation imparting device 24 Abutment bit 25 Fixed base 26 Elastic body 41 Contact members 42a, 42b Resin members 43a, 43b, 43c, 43d Vibration isolating rubber 44 Accelerometer 51 Magnetic wheel 52 Electromagnet 52a Yoke 52b For excitation Coil 53 Elastic body 61 Opening 62 Opening 100 AC motor 110 Stator 110a Inner peripheral surface 111 Iron core 112 Wedge 120 Rotor 120a Outer peripheral surface 441 Plate member 441a Long part 441b Short part 442 Sensors 521a, 521b Tip part

Claims (4)

  1.  交流電動機の固定子を固定する楔に打撃を与える打撃装置と、
     前記打撃装置が与える打撃の加速度を測定する第一の測定装置と、
     前記楔の加速度を測定する第二の測定装置と、
     前記打撃装置、前記第一の測定装置、及び、前記第二の測定装置を収納する筐体と、
     を備えた緩み測定装置を有し、
     前記打撃装置は、板バネ、回転することによって前記板バネを押し上げて弾性変形させるカム、前記カムを回転させる回転付与装置、及び、前記板バネから与えられる打撃を前記楔に伝える当てビシを備えており、
     前記筐体は、弾性体を介して前記筐体に接続されており、前記筐体の内部に格納可能な磁石車輪、及び、前記筐体を前記固定子の内周面に吸着可能な電磁石を備える、
     ことを特徴とする交流電動機の点検装置。
    a striking device that strikes a wedge that fixes a stator of an AC motor;
    a first measuring device that measures the acceleration of the impact given by the impact device;
    a second measuring device that measures the acceleration of the wedge;
    a casing that houses the striking device, the first measuring device, and the second measuring device;
    It has a looseness measuring device with
    The impact device includes a leaf spring, a cam that rotates to push up the leaf spring and elastically deform it, a rotation imparting device that rotates the cam, and a stopper that transmits the impact from the leaf spring to the wedge. and
    The casing is connected to the casing via an elastic body, and includes a magnetic wheel that can be stored inside the casing, and an electromagnet that can attract the casing to the inner peripheral surface of the stator. prepare,
    An inspection device for an AC motor, characterized by:
  2.  前記打撃装置が前記楔に与える打撃の加速度に対する前記楔の加速度の比である加速度比を計算する計算装置と、
     前記計算装置の計算結果を用いて前記楔の緩み度合いを判定する判定装置と、
     を有することを特徴とする請求項1に記載の交流電動機の点検装置。
    a calculation device that calculates an acceleration ratio that is a ratio of the acceleration of the wedge to the acceleration of the impact applied by the impact device to the wedge;
    a determination device that determines the degree of looseness of the wedge using the calculation result of the calculation device;
    The AC motor inspection device according to claim 1, further comprising:
  3.  請求項1または2に記載の交流電動機の点検装置が有する前記緩み測定装置を、前記交流電動機の回転子と前記固定子との間に形成された隙間に入れ、前記緩み測定装置によって前記楔に打撃を与えて、その与えた打撃の加速度に対する前記楔の加速度との関係から、前記楔の緩み度合を判定することを特徴とする交流電動機の点検方法。 The slackness measuring device included in the AC motor inspection device according to claim 1 or 2 is inserted into a gap formed between the rotor and the stator of the AC motor, and the slackness measuring device is inserted into the wedge. A method for inspecting an AC motor, comprising applying a blow and determining the degree of loosening of the wedge from the relationship between the acceleration of the wedge and the acceleration of the applied blow.
  4.  前記楔の緩み度合を判定する方法が、
     前記楔に与えた打撃の加速度の波形にローパスフィルタをかけた後にピークホールドした値A1を求める工程と、
     前記楔の加速度の波形にローパスフィルタをかけた後にピークホールドした値A2を求める工程と、
     A2/A1の比を打撃する毎に計算して加速度比を求める工程と、
     測定箇所ごとに複数回の打撃を実施し、その初期の打撃に係るデータを排除した上で平均値を計算する工程と、
     求められた加速度比の平均値をもとに、予め用意された加速度比と緩み度合との関係から前記楔の緩み度合を判定する工程と、
     を有することを特徴とする請求項3に記載の交流電動機の点検方法。
    The method for determining the degree of loosening of the wedge includes:
    calculating a peak-held value A1 after applying a low-pass filter to the waveform of the acceleration of the impact applied to the wedge;
    a step of applying a low-pass filter to the waveform of the acceleration of the wedge and then obtaining a peak-held value A2;
    calculating the ratio of A2/A1 every time a strike is made to obtain an acceleration ratio;
    A step of performing a plurality of blows at each measurement point and calculating an average value after excluding data related to the initial blows;
    a step of determining the degree of loosening of the wedge from the relationship between the acceleration ratio and the degree of loosening prepared in advance, based on the average value of the determined acceleration ratio;
    4. The method for inspecting an AC motor according to claim 3, further comprising:
PCT/JP2023/021527 2022-07-28 2023-06-09 Alternating-current electric motor inspection device, and alternating-current electric motor inspection method WO2024024297A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-120103 2022-07-28
JP2022120103A JP2024017459A (en) 2022-07-28 2022-07-28 AC motor inspection device and AC motor inspection method

Publications (1)

Publication Number Publication Date
WO2024024297A1 true WO2024024297A1 (en) 2024-02-01

Family

ID=89706119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021527 WO2024024297A1 (en) 2022-07-28 2023-06-09 Alternating-current electric motor inspection device, and alternating-current electric motor inspection method

Country Status (2)

Country Link
JP (1) JP2024017459A (en)
WO (1) WO2024024297A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6250241B1 (en) * 2016-04-08 2017-12-20 三菱電機株式会社 Rotating electric machine wedge impact device and rotating electric machine wedge inspection system
KR20210006731A (en) * 2019-07-09 2021-01-19 한국전력공사 The wedge binding intensity measurement device of the generator stator and measurement method thereof
JP2021148735A (en) * 2020-03-23 2021-09-27 Jfeスチール株式会社 Device and method for hitting sound inspection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6250241B1 (en) * 2016-04-08 2017-12-20 三菱電機株式会社 Rotating electric machine wedge impact device and rotating electric machine wedge inspection system
KR20210006731A (en) * 2019-07-09 2021-01-19 한국전력공사 The wedge binding intensity measurement device of the generator stator and measurement method thereof
JP2021148735A (en) * 2020-03-23 2021-09-27 Jfeスチール株式会社 Device and method for hitting sound inspection

Also Published As

Publication number Publication date
JP2024017459A (en) 2024-02-08

Similar Documents

Publication Publication Date Title
JP2936005B2 (en) Generator stator wedge impact test equipment
US5295388A (en) Apparatus and method for inpact testing for electric generator stator wedge tightness
US7743675B2 (en) Apparatus for impact testing for electric generator stator wedge tightness
EP2738537B1 (en) Electrodynamic modal test impactor system and method
JP6250241B1 (en) Rotating electric machine wedge impact device and rotating electric machine wedge inspection system
CN110199183B (en) Wedge loosening inspection device for rotating electric machine
US7621189B2 (en) Apparatus and method for generating and sensing torsional vibrations using magnetostriction
JP7319606B2 (en) Inspection device, inspection system, inspection method, program, and storage medium
KR101965492B1 (en) Rotate type shock sensor tester and method of measuring impact force thereof
US20150247825A1 (en) Sonic Lumber Tester
WO2024024297A1 (en) Alternating-current electric motor inspection device, and alternating-current electric motor inspection method
JP2017201258A (en) Fatigue test method, and fatigue test device
KR101812949B1 (en) Cylindrical auto impact hammaring apparatus
JP3420327B2 (en) Touch signal probe
JP6333896B2 (en) Exciter
JP3356620B2 (en) Probe positioning actuator
EP3971565A1 (en) Device for inspecting wedge looseness of rotary electric machine, system for inspecting wedge looseness of rotary electric machine, and method for inspecting wedge looseness of rotary electric machine
US5493894A (en) System and method for impact testing wedge tightness in an electrical generator
JP2002131174A (en) Device and method for evaluating property of vibration isolator
WO2014109365A1 (en) Panel inspection device and inspection method
KR20200085088A (en) Natural frequency measurement system of structures using the Lorentz force
JPH0972798A (en) Friction force measuring device
JP2002188983A (en) Testing machine for hardness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846033

Country of ref document: EP

Kind code of ref document: A1