WO2024024294A1 - Estimation device, estimation method, estimation system, and estimation program - Google Patents

Estimation device, estimation method, estimation system, and estimation program Download PDF

Info

Publication number
WO2024024294A1
WO2024024294A1 PCT/JP2023/021364 JP2023021364W WO2024024294A1 WO 2024024294 A1 WO2024024294 A1 WO 2024024294A1 JP 2023021364 W JP2023021364 W JP 2023021364W WO 2024024294 A1 WO2024024294 A1 WO 2024024294A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
subject
estimation
health
behavior
Prior art date
Application number
PCT/JP2023/021364
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 ▲高▼▲崎▼
Original Assignee
一般社団法人持続可能社会推進機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般社団法人持続可能社会推進機構 filed Critical 一般社団法人持続可能社会推進機構
Publication of WO2024024294A1 publication Critical patent/WO2024024294A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance

Definitions

  • the present invention relates to an estimation device, an estimation method, an estimation system, and an estimation program, and in particular, the present invention is based on data regarding a subject's cognitive biases, cognitive characteristics, and decision-making characteristics (hereinafter referred to as "cognitive biases").
  • the present invention relates to an estimation device, an estimation method, an estimation system, and an estimation program for estimating data related to behavior.
  • the subject's cognitive bias affects the subject's behavior and outcomes regarding health, medical care, and lifestyle habits. Furthermore, the behavior of the subjects is thought to have an impact on outcomes related to health, medical care, and lifestyle habits.
  • the structure of cognitive bias is complex, as is the structure of target behavior toward health, medical care, and lifestyle habits, so it has been difficult to express it using existing models.
  • there are large individual differences in cognitive bias and behavior and existing uniform guidance and interventions are insufficient to encourage and maintain behavior in target subjects, or to improve and maintain outcomes.
  • the effectiveness of guidance and intervention by experts is extremely limited.
  • the target person's cognitive Modeling with bias in mind was unknown. Furthermore, it has not been known to consider and model the behavior of the target person in order to improve or maintain outcomes related to health, medical care, and lifestyle habits for the target person.
  • the estimation device of the present invention includes an input unit for inputting cognitive bias data regarding a target person's cognitive bias, and based on the cognitive bias data, behavioral data regarding the target person's behavior, attribute data of the target person, and by an estimation model including a neural network for estimating at least one of location data of the subject, health data of the subject, exercise data of the subject, lifestyle data of the subject, and medical data of the subject, outputting at least one of the behavior data, the attribute data, the location data, the health data, the exercise data, the lifestyle data, and the medical data estimated from the cognitive bias data input by the input unit; and an output section.
  • the estimation device of the present invention includes an input unit for inputting behavioral data regarding the behavior of the subject, and attribute data of the subject, position data of the subject, health data of the subject based on the behavioral data.
  • the behavioral data inputted by the input unit by an estimation model including a neural network for estimating at least one of the subject's exercise data, the subject's lifestyle data, and the subject's medical data.
  • an output unit that outputs at least one of the attribute data, the position data, the health data, the exercise data, the lifestyle data, and the medical data estimated from the data.
  • the present invention by estimating behavior-related data or outcomes based on data related to cognitive bias, it is possible to encourage or maintain a target's behavior regarding health, medical care, and lifestyle habits, and to improve health, medical care, and lifestyle habits. It is possible to improve or maintain a subject's outcomes regarding lifestyle habits.
  • FIG. 1 is a block diagram showing an example of the system configuration of an estimation system according to the present embodiment. It is a block diagram showing an example of the system configuration of a machine learning server of this embodiment.
  • FIG. 2 is a diagram schematically showing the configuration of various types of data associated with each other according to the present embodiment.
  • FIG. 2 is a diagram schematically showing the structure of various data of non-target person data associated with target person data of the present embodiment. It is a figure showing the generation process of the estimation model of this embodiment.
  • FIG. 2 is a diagram illustrating multimodal data fusion.
  • FIG. 1 is a block diagram showing an example of the configuration of an estimation device according to the present embodiment.
  • FIG. 3 is a diagram showing a process of transmitting learning data (teacher data) according to the present embodiment. It is a figure showing the output process of estimated data estimated by a learning model (estimation model) of this embodiment. It is a figure showing an example of cognitive bias data according to a target person, and behavioral data estimated from target person data.
  • FIG. 1 is a block diagram showing an example of the system configuration of the estimation system of this embodiment.
  • the estimation system 1 estimates behavior-related data based on cognitive bias-related data.
  • the estimation system 1 includes a machine learning server 4 and a computer (estimation device) 5 that are electrically connected via a network 2 and can communicate with each other.
  • FIG. 2 is a block diagram showing an example of the system configuration of the machine learning server of this embodiment.
  • the machine learning server 4 includes a processor (control device) 21, a storage device (for example, ROM, RAM, HDD, etc.) 22, an input section 23, and an output section 25.
  • a processor control device
  • storage device for example, ROM, RAM, HDD, etc.
  • the processor (control device) 21 is a control unit such as a CPU, MPU, or GPU, and includes a data acquisition unit 32, a machine learning unit 33, an estimation unit 35, and an identification unit 36.
  • the data acquisition section 32, machine learning section 33, estimation section 35, and identification section 36 are electrically connected by a bus (not shown) and can communicate with each other.
  • the storage device (storage unit) 22 includes cognitive bias data 38, behavioral data 39, target person data 40, non-target person data 41, a learning model storage unit 46, and an estimated data storage unit 47.
  • the cognitive bias data 38 is data (including feature data) indicating the psychological tendencies of the subject 6.
  • the cognitive bias data 38 includes at least one of a cognitive bias, a cognitive characteristic, and a decision-making characteristic of the subject 6 (including data on these feature amounts).
  • Cognitive bias data 38 includes, for example, value functions based on prospect theory, dual process theory, etc., loss aversion, endowment effect, status quo bias, ambiguity aversion, uncertainty avoidance, risk preferences (risk aversion), etc. ⁇ Risk love), reference point dependence, diminishing sensitivity, probability weighting function, mental accounting (psychological accounting), ignoring the denominator, time discounting/time preference, social preference (altruism, fairness, reciprocity, non-reciprocity)
  • the target person 6's data (including these feature data) regarding at least one of (fairness avoidance, etc.), framing, and heuristics (anchoring, availability, representativeness) is included.
  • Data regarding the value function, loss aversion, endowment effect, and status quo bias based on the value function is data that indicates the strength or weakness or asymmetry of reactions to gains and losses.
  • Data regarding ambiguity avoidance/uncertainty avoidance is data indicating the strength or weakness of avoidance toward ambiguity.
  • Data regarding risk appetite (risk aversion/risk love) shows the strength or asymmetry of the tendency to avoid risk when in a state of gain (risk aversion) and the tendency to downplay risk when in a state of loss (risk love). This is data showing.
  • the data regarding the reference point dependence is data indicating the relative rate of change from the standard (reference point) set by the subject 6 or the strength or weakness or asymmetry of the reaction to up and down.
  • the data regarding decreasing sensitivity is data indicating the strength of sensitivity with respect to time or frequency, based on the phenomenon that when the same event occurs repeatedly, the subject 6 gradually gets used to the event and the sensitivity decreases.
  • the data regarding the probability weighting function is data that shows the strength or weakness or asymmetry of the tendency to overestimate when the objective probability is low and underestimate when the objective probability is high.
  • Data related to mental accounting is data that shows the strength or weakness, or asymmetry, of the tendency for decisions made when using money to change depending on the source of the money and what it is used for.
  • Data regarding neglect of the denominator is data that shows the strength or weakness or asymmetry of a tendency to evaluate probability highly when the numerator is large, even when the numerator/denominator probabilities are the same.
  • Time discount/time preference data is data that shows the discount rate for time, which is how much lower the future value of rewards and gains (delayed rewards) is estimated than the present value (immediate rewards).
  • Subject 6 with a low time discount rate (time preference rate) is able to hold back until future rewards (strong self-control), and subject 6 with a high time discount rate (time preference rate) is able to hold back until future rewards. cannot (strong impulsiveness).
  • Data on social preferences are important for humans who care not only about their own material rewards but also about the rewards and/or intentions that lead to rewards for reference groups. This is data that shows trends. Data regarding framing changes the impression given depending on what is emphasized, and shows the degree to which it influences decision-making. Data related to heuristics is data that shows an intuitive decision-making process that does not necessarily lead to the correct answer, but can obtain an answer close to the correct answer to a certain level.
  • Cognitive bias data 38 includes quantitative data, text data, audio data, etc. (including these feature data) obtained by conducting questionnaires, psychological tests, sensitivity tests, games, etc. on the subject 6 regarding cognitive bias ). Further, the cognitive bias data 38 is quantitative data, text data, voice data, etc. (including feature amount data thereof) regarding cognitive bias in SNS, e-mail, blogs, etc.
  • the behavior data 39 includes data related to at least one of text, images, video, sounds (audio data, etc.), light, smell, and force for urging or maintaining behavior in the subject 6 (characteristic data of these) (including).
  • the behavior data 39 is quantitative data, text data, audio data, etc. (including feature data) regarding behaviors corresponding to each cognitive bias.
  • the behavioral data 39 is quantitative data, text data, audio data, etc. (including these feature data) obtained by administering behavioral questionnaires, psychological tests, sensitivity tests, games, etc. to the subject 6. be.
  • the behavior data 39 is quantitative data, text data, voice data, etc. (including feature amount data of these) related to behavior in SNS, e-mail, blogs, etc.
  • the behavior data 39 includes quantitative data, text data, voice data, etc.
  • the behavioral data 39 may be quantitative data such as messages that encourage or maintain the behavior of the target person 6 regarding health, medical care, or lifestyle habits, text data, voice data, etc., or may be obtained by natural language processing of these data. It is a feature quantity.
  • the behavior data 39 becomes label data (correct data) of the cognitive bias data 38 in machine learning.
  • the subject data 40 includes at least one of the subject 6's attribute data, location data, health data, exercise data, lifestyle data, and medical data (including feature amount data thereof).
  • the health data includes at least one of vital data and biomarker data (including their feature data).
  • the subject data 40 becomes label data (correct data) of the cognitive bias data 38 in machine learning.
  • the subject data 40 includes (1) the subject 6's weight, age, gender, address, diet, drinking, smoking, exercise, stress, medication, socio-economic factors (e.g. income, occupation, etc.), medical history, and family composition data, (2) location information of the subject 6 by GPS etc. (e.g. time, place, surrounding environment, etc.) and map information data, (3) physical activity of the subject 6 (e.g. number of steps, (4) Genetic information, test result information, prescription information, medical treatment of subject 6 at medical institutions
  • This data includes information (for example, surgery, procedure, etc.), medical examination results, and diagnostic information (disease name).
  • these data may be statistical values based on a plurality of data.
  • these data may be statistical values based on subject data at a plurality of times.
  • these data may be data (for example, food type, amount, calories, etc.) estimated by machine learning based on image data (for example, images of meals, etc.).
  • the subject data 40 includes time-series data 42 and non-time-series data 42 of at least one of attribute data, location data, health data, exercise data, lifestyle data, and medical data of the subject 6.
  • the identification unit 36 identifies time series data and non-time series data from at least one of attribute data, location data, health data, exercise data, lifestyle data, and medical data, which are the subject data 40.
  • the time-series data 42 is data that changes over time and can be obtained at multiple times.
  • Time data is associated with the time series data 42.
  • the non-time series data 43 is data that hardly changes with the passage of time (unchangeable data), or data that is substantially impossible to obtain or does not need to be obtained at a plurality of times.
  • the time series data 42 includes heart rate, electrocardiogram, oxygen saturation, sleep, blood pressure, blood sugar level, and the like.
  • the non-time series data 43 includes genetic information and the like.
  • the non-target person data 41 includes at least one of attribute data, location data, health data, exercise data, lifestyle data, and medical data (including these feature data) of non-target people other than the target person 6.
  • the health data includes at least one of vital data and biomarker data (including their feature data).
  • the non-target person data 41 includes (1) weight, age, gender, address, diet, drinking, smoking, exercise, stress, medication, and socio-economic factors (e.g., educational background, income, occupation, position, etc.) of the non-target person; ), past medical history, and family composition data; (2) location information (e.g., time, place, surrounding environment, etc.) of non-target individuals using GPS, and map information; (3) physical activity of non-target individuals. (e.g., number of steps, exercise, muscle strength, muscle mass, etc.), data on heart rate, electrocardiogram, oxygen saturation, blood pressure, blood sugar level, sleep, etc.
  • socio-economic factors e.g., educational background, income, occupation, position, etc.
  • This data includes prescription information, medical practice information (for example, surgery, procedure, etc.), medical examination results, and diagnostic information (disease name). Moreover, these data may be statistical values based on data of a plurality of non-target persons. Moreover, these data may be statistical values based on non-target person data at a plurality of times. Further, these data may be data (for example, food type, amount, calories, etc.) estimated by machine learning based on image data (for example, images of meals, etc.).
  • the non-target person data includes models that parametrically approximate input and output (for example, a value function or a probability weighting function expressed as a mathematical formula) that has been clarified by previous research.
  • the cognitive bias data 38, behavioral data 39, and target person data 40 of the target person 6 can be determined or estimated.
  • the non-target person data 41 includes time series data 44 and non-time series data of at least one of attribute data, location data, health data, exercise data, lifestyle data, and medical data.
  • the identification unit 36 identifies time series data and non-time series data from at least one of attribute data, location data, health data, exercise data, lifestyle data, and medical data, which are non-target person data 41.
  • the time-series data 44 is data that changes over time and can be obtained at multiple times.
  • Time data is associated with the time series data 44.
  • the non-time series data 45 is data that hardly changes over time (unchangeable data), or data that is substantially impossible to obtain or does not need to be obtained at a plurality of times.
  • the time series data 44 includes heart rate, electrocardiogram, oxygen saturation, sleep, blood pressure, blood sugar level, and the like.
  • the non-time series data 45 includes genetic information and the like.
  • FIG. 3 is a diagram schematically showing the structure of various associated data.
  • subject data such as subject ID 51, attribute data 52, location data 53, health data 54, exercise data 55, lifestyle data 56, and medical Data 57 and non-target person data 60 (including these feature amount data) are associated.
  • non-target person data 60 includes attribute data, location data, health data, exercise data, lifestyle data, and medical data of the non-target person.
  • FIG. 4 is a diagram schematically showing the structure of various data of non-target person data 60 associated with target person data 51 to 57. As shown in FIG. 4, non-target person data 60 includes a non-target person ID 61, attribute data 62, location data 63, health data 64, exercise data 65, lifestyle data 66, and medical data 67 (these feature amount data ) are associated.
  • the target person data 52 to 57 and the non-target person data 62 to 67 are classified into time series data and non-time series data.
  • FIG. 5 is a diagram showing the estimation model generation process of this embodiment.
  • step S1 the input unit 23 inputs various data (cognitive bias data 38, behavioral data 39, target person data 40, and non-target person data 41).
  • the input unit 23 executes a storage instruction for various data, associates the various data, and stores the data in the storage device 22 (step S2, step S3).
  • the data acquisition unit 32 acquires various data stored in the storage device 22 by executing the acquisition command (step S4).
  • the machine learning unit 33 generates a learning model (estimated model) using a neural network based on the acquired various data (including these feature amount data) by executing the estimated model generation command (step S5). .
  • the machine learning unit 33 inputs the cognitive bias data 58 (for example, B-1 to B-5 in FIG. 3) to the input layer, and inputs the behavioral data 59 associated with the cognitive bias data 58 (for example, C- in FIG. 3).
  • a learning model (estimated model) is generated by a neural network that inputs 1 to C-5) as correct values of the output layer.
  • the machine learning unit 33 inputs the cognitive bias data 58 (for example, B-1 to B-5 in FIG. 3) to the input layer, and the attribute data 52 associated with the cognitive bias data 58 (for example, B-1 to B-5 in FIG. 3).
  • E-11 to E-15 location data 53 (for example, E-21 to E-25 in FIG. 3), health data 54 (for example, E-31 to E-35 in FIG. 3), exercise data 55 (for example, , E-41 to E-45 in FIG. 3), lifestyle data 56 (for example, E-51 to E-55 in FIG. 3), and medical data 57 (for example, E-61 to E-65 in FIG. 3)
  • a learning model (estimated model) is generated by a neural network that inputs at least one of the above as the correct value of the output layer.
  • the intermediate layer of the neural network is provided with, for example, an Affine layer or a Convolution layer. Downsampling processing or the like may be performed as appropriate. Further, the number of layers, the number of neurons, and the activation function of the intermediate layer are optimally selected so that the estimation result is highly accurate.
  • the configuration of the neural network includes Feed Forward Neural Network (FFNN), Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), attention mechanism, etc. .
  • the machine learning unit 33 uses parameters (weights) initialized with predetermined values such as random numbers to calculate the value output to the output layer when the cognitive bias data 58 is input to the input layer and the correct answer of the output layer.
  • a loss function representing the deviation from the value (behavior data 59 or/and subject data 52 to 57) is calculated, and the differential value of the loss function is used as the slope to calculate the difference between the value output to the output layer and the correct value of the output layer.
  • a learning model (estimated model) is generated by changing parameters (weights) so that the deviation becomes smaller.
  • the machine learning unit 33 creates a learning model (estimated model ) is generated.
  • the learning model (estimated model) includes a neural network including at least one of a convolution layer, a recursive calculation layer, and an attention mechanism.
  • the learning model includes attribute data 52, location data 53, health data 54, exercise data 55, lifestyle data 56, and It may also include a neural network for estimating cognitive bias data and/or subject data (outcome data) of the subject 6 based on at least one subject data of the medical data 57 (including these feature data). .
  • the learning model (estimation model) includes attribute data 62, location data 63, health data 64, exercise data 65, lifestyle data 66, and medical data 67 (these feature amount data) of non-target persons other than the target person 6. It may also include a neural network for estimating cognitive bias data and/or subject data (outcome data) of the subject 6 based on at least one non-target subject data 60 (including the above).
  • the learning model (estimation model) includes attribute data 52, location data 53, health data 54, exercise data 55, and lifestyle data 56 of the subject 6. , and medical data 57 (including these feature data), cognitive bias data, attribute data, location data, health data, exercise data, lifestyle data, and It may also include a neural network for estimating at least one subject data (outcome data) of the medical data.
  • the estimated data becomes the label data (correct data), and the data associated with this data (cognitive bias data of subject 6 and subject data) becomes the input layer of the neural network.
  • a learning model (estimated model) is constructed based on input and learning. For example, by using a learning model (estimation model) learned from Subject 6's past sleep time, other subject data, and cognitive bias data, Subject 6's future sleep time (outcome data) can be estimated. Ru.
  • the learning process is similar to above.
  • the learning model (estimation model) includes attribute data 62, location data 63, health data 64, exercise data 65, lifestyle data 66, and medical data 67 (these feature amount data) of non-target persons other than the target person 6.
  • the estimated data becomes label data (correct data), and the data associated with this data (cognitive bias data of non-target people and data of non-target people) is input to the input layer of the neural network and the learning is performed.
  • a model (estimated model) may be constructed.
  • the cognitive bias data of the target person 6 is estimated by using the cognitive bias data of the non-target person or a learning model (estimated model) learned from the non-target person data.
  • the learning process is similar to above.
  • the learning model includes at least one of a convolution layer, a recursive calculation layer, and an attention mechanism, and connects target person data (or target person data and non-target person data).
  • This is an estimation model that is machine-learned by inputting the acquired data) into the input layer of a neural network.
  • Non-subject data includes statistical values based on data from multiple non-subjects and data on evidence obtained from previous research.
  • (1) a method of extracting feature amounts after concatenating the raw data of target person data and non-target person data;
  • methods such as (3) a method in which feature amounts are individually extracted from raw data of non-target person data and then the feature amounts are connected, and (3) a method in which these are combined.
  • image data it is also possible to extract feature amounts in the Convolution layer and then connect them with other data.
  • the learning model is based on the cognitive bias of the target person 6 or non-target person output from the intermediate layer or output layer of the neural network.
  • At least one of data, attribute data, location data, health data, exercise data, lifestyle data, medical data, and behavioral data may be input to the input layer of the neural network.
  • the data input to the input layer of the neural network is data m concat that is a concatenation of target person data it and non-target person data z 1 and z 2 .
  • the subject data it , time-series data output from at least one of Cell State (plays the role of long-term memory) and Hidden State (plays the role of short-term memory) of the neural network is used.
  • the non-target person data z 1 and z 2 data obtained by dimensionally compressing a plurality of non-target person data Modalities 1 and 2 using Autoencoders 1 and 2, respectively, is used.
  • cognitive bias data of the target person 6 and non-target person data may be connected and input to the input layer of the neural network.
  • the generated learning model (estimated model) is stored in the learning model storage unit 46 (step S6).
  • FIG. 7 is a block diagram showing an example of the configuration of the estimation device of this embodiment.
  • the computer (estimation device) 5 inputs cognitive bias data and outputs behavioral data and/or outcome data acquired by the learning model (estimation model).
  • the computer (estimation device) 5 includes a processor (control device) 210, a storage device (for example, ROM, RAM, HDD, etc.) 220, an input section 230, and an output section 250.
  • a processor control device
  • storage device for example, ROM, RAM, HDD, etc.
  • the processor (control device) 210 is a control unit such as a CPU, MPU, or GPU, and includes a data acquisition unit 320, an estimation unit 350, and an identification unit 360.
  • the data acquisition unit 320, the estimation unit 350, and the identification unit 360 are electrically connected by a bus (not shown) and can communicate with each other.
  • the storage device (storage unit) 220 includes cognitive bias data 380, behavioral data 390, subject data 400, and estimated data storage unit 470.
  • the input unit 230 inputs cognitive bias data 380 regarding the cognitive bias of the subject 6.
  • the input unit 230 inputs various data (cognitive bias data 380, behavior data 390, subject data 400).
  • the input unit 230 associates various types of data and stores them in the storage device 220 by executing a command to store various types of data.
  • the cognitive bias data 380, behavioral data 390, subject data 400 (attribute data, location data, health data, exercise data, lifestyle data, and medical data) and their feature data are the above cognitive bias data. 38, behavioral data 39, and subject data 40.
  • the identification unit 360 identifies time series data and non-time series data from at least one of cognitive bias data, attribute data, location data, health data, exercise data, lifestyle data, and medical data, which are the subject data 400. do.
  • the computer (estimation device) 5 transmits learning data (teacher data) to the machine learning server 4 via the network 2
  • the computer (estimation device) 5 outputs various data (cognitive bias data 380, etc.) to the machine learning server 4 in order to generate a learning model (estimation model).
  • FIG. 8 is a diagram showing the process of transmitting learning data (teacher data) in this embodiment.
  • the input unit 230 inputs various data (cognitive bias data 380, behavior data 390, subject data 400).
  • the input unit 230 associates various types of data and stores them in the storage device 220 by executing a command to store various types of data (step S20, step S30).
  • the data acquisition unit 320 acquires various data stored in the storage device 220 by executing the acquisition command.
  • the output unit 250 transmits various data to the machine learning server 4 via the network 2 by executing the transmission command (step S40).
  • the input unit 23 of the machine learning server 4 inputs various data (cognitive bias data 380, behavior data 390, and subject data 400) received from the estimation device 5.
  • the various input data (cognitive bias data 380, behavioral data 390, and subject data 400) are stored in the storage device 22 as cognitive bias data 38, behavioral data 39, and subject data 40, respectively.
  • the time series data and non-time series data are identified by the identification unit 36.
  • the data acquisition unit 32 of the machine learning server 4 acquires various data stored in the storage device 22, and the machine learning unit 33 of the machine learning server 4 executes the estimation model generation command to obtain the various acquired data.
  • a learning model (estimated model) is generated by a neural network based on the data (including these feature data).
  • the computer (estimation device) 5 has a function of outputting learning data (teacher data) to the machine learning server 4.
  • the cognitive bias data 380, the behavior data 390, and the subject data 400 are associated with each other and used as learning data by the machine learning unit 33 of the machine learning server 4. Further, the cognitive bias data 380, the behavior data 390, and the target person data 400 may be used as non-target person data 41 of the target person other than the target person 6.
  • the learning model (estimated model) stored in the learning model storage unit 46 of the machine learning server 4 is used as the learning model (estimated model);
  • the learning model (estimated model) By storing the learning model (estimation model) in the storage device 220 of the computer (estimation device) 5 via the network 2, even if the learning model (estimation model) stored in the computer (estimation device) 5 is used. good.
  • the cognitive bias data 380 of the subject 6 and the non-time series data of the subject data are sent from the computer (estimation device) 5 to the machine learning server 4 in advance, the computer (estimation device) 5
  • the time series data of the subject data of the subject 6 is transmitted to the machine learning server 4.
  • the computer (estimation device) 5 inputs the new cognitive bias data 380 and the new non-time series data of the subject data.
  • the non-time-series data is sent to the machine learning server 4.
  • the machine learning server 4 that has received the various data updates the learning model (estimated model) using the machine learning unit 33 based on the new data.
  • FIG. 9 is a diagram showing the output process of estimated data estimated by the learning model (estimation model) of this embodiment.
  • the input unit 230 inputs various data (subject data 400).
  • the input unit 230 associates various types of data and stores them in the storage device 220 by executing a command to store various types of data (step S20, step S30).
  • target person data 400 (attribute data, location data, health data, exercise data, lifestyle data, and medical data) and their feature data are similar to the above-mentioned target person data 40, but the machine learning server This data is different from the learning data (teacher data) by the machine learning unit 33 of No. 4.
  • the data acquisition unit 320 acquires various data stored in the storage device 220 by executing the acquisition command.
  • the estimation unit 350 transmits various data to the machine learning server 4 via the network 2 by executing the estimation command (step S400).
  • the input unit 23 of the machine learning server 4 inputs various data (target person data 400) received from the estimation device 5.
  • the estimation unit 35 of the machine learning server 4 estimates behavioral data using a learning model (estimation model) based on the various acquired data (including these feature data) by executing the estimation command.
  • the estimation unit 35 also includes at least one of attribute data, location data, health data, exercise data, lifestyle data, and medical data of the subject 6.
  • the behavioral data of the subject 6 may be estimated based on the subject data 40.
  • the estimation unit 35 also includes at least one of attribute data, location data, health data, exercise data, lifestyle data, and medical data of the subject 6. Based on the subject data 40, at least one of cognitive bias data, attribute data, location data, health data, exercise data, lifestyle data, and medical data of the subject 6 may be estimated as outcome data.
  • the estimation unit 35 also collects attribute data, location data, health data, exercise data, lifestyle data, and medical information of non-target persons other than the target person 6.
  • the behavior data of the target person 6 may be estimated based on at least one non-target person data 41 of the data.
  • the estimation unit 35 also collects attribute data, location data, health data, exercise data, lifestyle data, and medical information of non-target persons other than the target person 6. Based on at least one non-target person data 41 of the data, at least one of the target person 6's cognitive bias data, attribute data, location data, health data, exercise data, lifestyle data, and medical data is used as outcome data. It may be estimated.
  • the estimation unit 35 reads the learning model (estimated model) from the learning model storage unit 46, inputs the cognitive bias data 380 into the input layer of the neural network of the learning model (estimated model), and inputs the estimated estimation data (behavior data, At least one of cognitive bias data, attribute data, location data, health data, exercise data, lifestyle data, and medical data is obtained from the output layer.
  • the estimated data is stored in the estimated data storage section 47.
  • the estimation data is transmitted by the output unit 25 of the machine learning server 4 to the computer (estimation device) 5 via the network 2.
  • the input unit 230 of the computer (estimation device) 5 receives the estimation data by executing the reception command (step S50).
  • the input unit 230 stores the estimated data in the estimated data storage unit 470.
  • the output unit 250 By executing the estimated data output command, the output unit 250 generates a learning model (estimation model) including a neural network for estimating behavioral data that urges or maintains behavior in the subject 6 based on the cognitive bias data. Accordingly, behavioral data estimated from the cognitive bias data input by the input unit 230 is output (step S60). Furthermore, the output unit 250 outputs other estimated data by executing the estimated data output command (step S60).
  • a learning model estimation model including a neural network for estimating behavioral data that urges or maintains behavior in the subject 6 based on the cognitive bias data. Accordingly, behavioral data estimated from the cognitive bias data input by the input unit 230 is output (step S60). Furthermore, the output unit 250 outputs other estimated data by executing the estimated data output command (step S60).
  • the output estimation data is displayed on the display of a communication terminal (tablet, wearable terminal, etc.) electrically connected to the computer (estimation device) 5 or on the display of the computer (estimation device) 5.
  • a communication terminal tablet, wearable terminal, etc.
  • FIG. 10 is a diagram illustrating an example of cognitive bias data according to a subject and behavioral data and outcome data estimated from the subject data.
  • the input unit 230 inputs cognitive bias data regarding the cognitive bias of subject 7. is input, and the output unit 250 uses an estimation model including a neural network for estimating behavioral data that urges or maintains behavior in the target person 7 based on the cognitive bias data and the target person data. Outputs behavioral data (such as messages emphasizing numerical targets for improving hypertension) and outcome data (estimated blood pressure, etc.) estimated from the input cognitive bias data and subject data.
  • the output unit 250 outputs data regarding sounds, lights, odors, and forces that encourage or maintain medication or exercise at a predetermined time to a speaker, a light emitting device, an odor mixture generator, and a driver. It may also be output to a device (for example, a massage device or a motor).
  • a device for example, a massage device or a motor.
  • the blood pressure data is acquired from the wearable terminal as time-series data, and new behavioral data and future blood pressure values (outcome data) are estimated according to the acquisition time of the blood pressure data.
  • the output unit 250 Output data (such as audio that emphasizes the benefits of restricting calorie intake) and outcome data (such as estimated body weight).
  • outcome data such as estimated body weight
  • the output unit 250 outputs data regarding sounds, lights, odors, and forces for suppressing meals and snacks to speakers, light emitting devices, odor mixture generators, and driving devices (e.g., It may also be output to a massage device, motor, etc.
  • the output unit 250 outputs behavioral data. (e.g., a message emphasizing the risk of high stress) and outcome data (e.g., an estimated depression scale).
  • behavioral data e.g., a message emphasizing the risk of high stress
  • outcome data e.g., an estimated depression scale
  • the output unit 250 outputs data related to stress-reducing music, light, smell, and force at a predetermined time to a speaker, a light emitting device, an odor mixture generator, and a drive device (for example, a massage device). or a motor), etc.
  • the output The unit 250 outputs behavioral data (such as a message proposing an immediately executable method for resolving sleep deprivation) and outcome data (such as estimated sleep time and quality).
  • behavioral data such as a message proposing an immediately executable method for resolving sleep deprivation
  • outcome data such as estimated sleep time and quality
  • the output unit 250 outputs data regarding sleep-inducing music, light, smell, and force at a predetermined time to a speaker, a light emitting device, an odor mixture generator, and (for example, a massage device or a motor). You can also output it to
  • the computer (estimation device) 5 outputs behavior data and/or outcome data estimated by the learning model (estimation model).
  • the behavior of the target person regarding health, medical care, and lifestyle habits that are affected by cognitive bias is modeled, and the behavior of the target person regarding health, medical care, and lifestyle habits is encouraged and maintained. It is possible to construct a learning model (estimation model) for
  • the target person's outcomes regarding health, medical care, and lifestyle habits that are affected by cognitive bias are modeled, and the target person's outcomes regarding health, medical care, and lifestyle habits are improved or maintained.
  • a learning model estimation model
  • estimated data (behavioral data, cognitive bias data, attribute data, location data, health data, exercise data) of the subject based on the subject's own subject data may be used. , lifestyle data, and medical data), highly accurate estimation data that matches the characteristics of the subject can be output.
  • the accuracy is improved by taking into account the general characteristics of the person other than the target person. It is possible to output highly estimated data.
  • step S1 the input unit 23 inputs various data (behavior data 39, target person data 40, and non-target person data 41).
  • the input unit 23 executes a storage instruction for various data, associates the various data, and stores the data in the storage device 22 (step S2, step S3).
  • the data acquisition unit 32 acquires various data stored in the storage device 22 by executing the acquisition command (step S4).
  • the machine learning unit 33 generates a learning model (estimated model) using a neural network based on the acquired various data (including these feature amount data) by executing the estimated model generation command (step S5). .
  • the machine learning unit 33 inputs the behavioral data 59 (for example, C-1 to C-5 in FIG. 3) to the input layer, and inputs the subject data (for example, C-1 to C-5 in FIG. 3) associated with the behavioral data 59 to the input layer. C-5) to the input layer, attribute data 52 (for example, E-11 to E-15 in FIG. 3) associated with behavior data 59, and position data 53 (for example, E-21 to E in FIG. -25), health data 54 (for example, E-31 to E-35 in Figure 3), exercise data 55 (for example, E-41 to E-45 in Figure 3), lifestyle data 56 (for example, E-51 to E-55) and medical data 57 (for example, E-61 to E-65 in FIG. 3) are inputted as correct values of the output layer. generate.
  • attribute data 52 for example, E-11 to E-15 in FIG. 3 associated with behavior data 59
  • position data 53 for example, E-21 to E in FIG. -25
  • health data 54 for example, E-31 to E-35 in
  • the machine learning unit 33 uses parameters (weights) initialized with predetermined values such as random numbers to determine the value output to the output layer when the behavioral data 59 is input to the input layer and the correct value of the output layer. (Target person data 52 to 57) A loss function representing the deviation from the output layer is calculated, and the differential value of the loss function is used as the slope, so that the deviation between the value output to the output layer and the correct value of the output layer becomes small. A learning model (estimated model) is generated by changing parameters (weights).
  • the machine learning unit 33 generates a learning model (estimated model) using a neural network that inputs the behavior data 59 into the input layer and inputs the subject data 52 to 57 as correct values in the output layer.
  • the learning model (estimated model) includes a neural network including at least one of a convolution layer, a recursive calculation layer, and an attention mechanism.
  • the learning model includes attribute data 52, location data 53, health data 54, exercise data 55, lifestyle data 56, and medical data of the subject 6 in addition to or separately from the behavioral data 59.
  • the neural network may include a neural network for estimating the subject data (outcome data) of the subject 6 based on at least one subject data of 57 (including these feature data).
  • the learning model (estimation model) includes attribute data 62, location data 63, health data 64, exercise data 65, lifestyle data 66, and medical data 67 (these feature amount data) of non-target persons other than the target person 6.
  • the neural network may include a neural network for estimating target person data (outcome data) of the target person 6 based on at least one non-target person data 60 (including the above).
  • the learning model also includes attribute data 52, location data 53, health data 54, exercise data 55, lifestyle data 56, and Based on at least one subject data of the medical data 57 (including these feature data), behavioral data, attribute data, location data, health data, exercise data, lifestyle data, and medical data of the subject 6 are determined. It may also include a neural network for estimating at least one subject data (outcome data).
  • the estimated data (especially time series data) becomes the label data (correct data), and the data associated with this data (behavior data of subject 6 and subject data) is input to the input layer of the neural network.
  • a learning model (estimation model) that has been trained using the following methods is constructed. For example, by using a learning model (estimation model) learned from Subject 6's past sleep time, other subject data, and cognitive bias data, Subject 6's future sleep time (outcome data) can be estimated. Ru.
  • the learning process is similar to above.
  • the learning model (estimation model) includes attribute data 62, location data 63, health data 64, exercise data 65, lifestyle data 66, and medical data 67 (these feature amount data) of non-target persons other than the target person 6.
  • At least one subject data (outcome data) of the subject 6's attribute data, location data, health data, exercise data, lifestyle data, and medical data is based on at least one non-target subject data 60 of may include a neural network for estimating.
  • the estimated data becomes label data (correct data), and the data associated with this data (behavior data of non-target people and data of non-target people) is input to the input layer of the neural network to learn the learning model.
  • (estimation model) may be constructed.
  • the outcome data of the target person 6 is estimated by using a learning model (estimation model) learned from the non-target person's behavior data and the non-target person data.
  • the learning process is similar to above.
  • non-subject data is a model that parametrically approximates the quantitative data and inputs and outputs clarified by previous research for each variable, and is based on the data quantified by the evidence of previous research.
  • Behavioral data and subject data (outcome data) of the subject 6 may be determined or estimated from the subject data.
  • the learning model includes at least one of a convolution layer, a recursive calculation layer, and an attention mechanism, and connects target person data (or target person data and non-target person data).
  • This is an estimation model that is machine-learned by inputting the acquired data) into the input layer of a neural network.
  • Non-subject data includes statistical values based on data from multiple non-subjects and data on evidence obtained from previous research.
  • the computer (estimation device) 5 inputs behavioral data and outputs outcome data acquired by a learning model (estimation model).
  • the computer (estimation device) 5 transmits learning data (teacher data) to the machine learning server 4 via the network 2
  • the computer (estimation device) 5 outputs various data (cognitive bias data 380, etc.) to the machine learning server 4 in order to generate a learning model (estimation model).
  • step S10 the input unit 230 inputs various data (behavior data 390 and subject data 400).
  • the input unit 230 associates various types of data and stores them in the storage device 220 by executing a command to store various types of data (step S20, step S30).
  • the data acquisition unit 320 acquires various data stored in the storage device 220 by executing the acquisition command.
  • the output unit 250 transmits various data to the machine learning server 4 via the network 2 by executing the transmission command (step S40).
  • the input unit 23 of the machine learning server 4 inputs various data (behavior data 390 and subject data 400) received from the estimation device 5.
  • the input various data (behavior data 390 and subject data 400) are stored in the storage device 22 as behavior data 39 and subject data 40, respectively.
  • the time series data and non-time series data are identified by the identification unit 36.
  • the data acquisition unit 32 of the machine learning server 4 acquires various data stored in the storage device 22, and the machine learning unit 33 of the machine learning server 4 executes the estimation model generation command to obtain the various acquired data.
  • a learning model (estimated model) is generated by a neural network based on the data (including these feature data).
  • the computer (estimation device) 5 has a function of outputting learning data (teacher data) to the machine learning server 4.
  • the behavior data 390 and the subject data 400 (correct data) are associated with each other and used as learning data by the machine learning unit 33 of the machine learning server 4. Further, the behavior data 390 and the target person data 400 may be used as non-target person data 41 of the target person other than the target person 6.
  • the computer (estimation device) 5 since the behavioral data 390 of the target person 6 and the non-time series data of the target person data are sent from the computer (estimation device) 5 to the machine learning server 4 in advance, the computer (estimation device) 5 The time series data of the subject data of the person 6 is transmitted to the machine learning server 4. Note that when new behavior data 390 and new non-time series data of the subject data are input from the input unit 230, the computer (estimation device) 5 inputs the new behavior data 390 and new non-time series data of the subject data. Send the time series data to the machine learning server 4. The machine learning server 4 that has received the various data updates the learning model (estimated model) using the machine learning unit 33 based on the new data.
  • FIG. 9 is a diagram showing the output process of estimated data estimated by the learning model (estimation model) of this embodiment.
  • the input unit 230 inputs various data (subject data 400).
  • the input unit 230 associates various types of data and stores them in the storage device 220 by executing a command to store various types of data (step S20, step S30).
  • the data acquisition unit 320 acquires various data stored in the storage device 220 by executing the acquisition command.
  • the estimation unit 350 transmits various data to the machine learning server 4 via the network 2 by executing the estimation command (step S400).
  • the input unit 23 of the machine learning server 4 inputs various data (target person data 400) received from the estimation device 5.
  • the estimation unit 35 of the machine learning server 4 calculates subject data (outcome data) using a learning model (estimation model) based on the various acquired data (including these feature data). Estimate.
  • the estimating unit 35 also collects at least one of the target person's attribute data, location data, health data, exercise data, lifestyle data, and medical data of the target person 6.
  • the subject data (outcome data) of the subject 6 may be estimated based on the data 40.
  • the estimating unit 35 also collects at least one of the target person's attribute data, location data, health data, exercise data, lifestyle data, and medical data of the target person 6. Based on the data 40, at least one of attribute data, location data, health data, exercise data, lifestyle data, and medical data of the subject 6 may be estimated as outcome data.
  • the estimation unit 35 may collect attribute data, location data, health data, exercise data, lifestyle data, and medical data of non-target persons other than the target person 6.
  • the outcome data of the subject 6 may be estimated based on at least one non-target subject data 41.
  • the estimation unit 35 may collect attribute data, location data, health data, exercise data, lifestyle data, and medical data of non-target persons other than the target person 6. Based on at least one subject data 41, at least one of cognitive bias data, attribute data, location data, health data, exercise data, lifestyle data, and medical data of the subject 6 is estimated as outcome data. Good too.
  • the estimation unit 35 reads the learning model (estimated model) from the learning model storage unit 46, inputs the behavior data 390 to the input layer of the neural network of the learning model (estimated model), and inputs the estimated estimation data (attribute data, position data, health data, exercise data, lifestyle data, and medical data) from the output layer.
  • the estimated data is stored in the estimated data storage section 47.
  • the estimation data is transmitted by the output unit 25 of the machine learning server 4 to the computer (estimation device) 5 via the network 2.
  • the input unit 230 of the computer (estimation device) 5 receives the estimation data by executing the reception command (step S50).
  • the input unit 230 stores the estimated data in the estimated data storage unit 470.
  • the output unit 250 By executing the estimated data output command, the output unit 250 outputs information input from the input unit 230 using a learning model (estimation model) including a neural network for estimating outcome data for the subject 6 based on behavioral data. Outcome data estimated from the behavior data is output (step S60). Furthermore, the output unit 250 outputs other estimated data by executing the estimated data output command (step S60).
  • a learning model estimation model
  • the output unit 250 outputs other estimated data by executing the estimated data output command (step S60).
  • the outcomes for health, medical care, and lifestyle habits that are affected by the behavior of the target person are modeled, and the outcomes for health, medical care, and lifestyle habits are modeled to improve or maintain the outcomes for health, medical care, and lifestyle habits.
  • a learning model estimation model
  • estimated data In addition to or apart from behavioral data, estimated data (behavioral data, cognitive bias data, attribute data, location data, health data, exercise data, lifestyle data, (at least one of habit data and medical data), highly accurate estimation data that matches the characteristics of the subject can be output.
  • the estimated data of the target person is estimated based on non-target person data other than the target person in addition to or separately from the behavioral data, highly accurate estimation takes into account the general characteristics of the other person. Data can be output.
  • the computer (estimation device) 5 may be a laptop computer, a desktop computer, a tablet terminal, a smartphone, or a wearable terminal.
  • the computer (estimation device) 5 is electrically connected to other communication terminals (laptop computer, desktop computer, tablet terminal, smartphone, wearable terminal, etc.), and the input unit 230 is connected to other communication terminals (laptop computer, desktop computer, tablet terminal, smartphone, wearable terminal, etc.).
  • the output unit 250 may output various data to other communication terminals.
  • the machine learning server 4 can also serve as the estimation device of the present invention.
  • the functions of the input unit 23, output unit 25, data acquisition unit 32, estimation unit 35, identification unit 36, and estimated data storage unit 47 of the machine learning server 4 are the functions of the input unit 230 of the computer (estimation device) 5, They correspond to the functions of the output section 250, the data acquisition section 320, the estimation section 350, the identification section 360, and the estimated data storage section 470, respectively.
  • the machine learning server 4 generates the learning model (estimated model), but the computer (estimation device) 5 may generate the learning model (estimated model).
  • the behavioral data may include data regarding incentives for encouraging the target person to take action.
  • the behavioral data may be data regarding coupons, points, money, and special rights that can be used at a predetermined location.
  • the present embodiment also includes a step of inputting cognitive bias data regarding the target person's cognitive bias, and based on the cognitive bias data, behavioral data regarding the target person's behavior, attribute data of the target person, by an estimation model including a neural network for estimating at least one of location data of the subject, health data of the subject, exercise data of the subject, lifestyle data of the subject, and medical data of the subject, outputting at least one of the behavior data, the attribute data, the location data, the health data, the exercise data, the lifestyle data, and the medical data estimated from the cognitive bias data input by the input unit;
  • the method includes the steps of:
  • the present embodiment also includes a step of inputting behavioral data regarding the behavior of the subject, and based on the behavioral data, attribute data of the subject, location data of the subject, health data of the subject, Estimated from the behavioral data input by the input unit by an estimation model including a neural network for estimating at least one of the subject's exercise data, the subject's lifestyle data, and the subject's medical data. and outputting at least one of the attribute data, the location data, the health data, the exercise data, the lifestyle data, and the medical data.
  • the present embodiment also includes cognitive bias data regarding the target person's cognitive bias, behavioral data regarding the target person's behavior labeled with the cognitive bias data, attribute data of the target person, and location data of the target person.
  • Machine learning for causing a neural network to perform machine learning using at least one of the subject's health data, the subject's exercise data, the subject's lifestyle data, and the subject's medical data as training data.
  • an input unit for inputting cognitive bias data regarding the cognitive bias of the subject; and the behavioral data and the attributes estimated from the cognitive bias data input by the input unit by an estimation model including the neural network.
  • an output unit that outputs at least one of data, the location data, the health data, the exercise data, the lifestyle data, and the medical data.
  • the present embodiment also includes behavioral data regarding the behavior of the subject, attribute data of the subject labeled with the behavioral data, location data of the subject, health data of the subject, and a machine learning unit for causing a neural network to perform machine learning using at least one of exercise data, lifestyle data of the subject, and medical data of the subject as training data; the attribute data, the position data, the health data, the exercise data, the lifestyle data estimated from the behavioral data input by the input unit, using an input unit to input, and an estimation model including the neural network; and an output unit that outputs at least one of the medical data.
  • the present embodiment also includes an estimation program executed by a computer in which a processor estimates the behavior of a target person, wherein the computer labels cognitive bias data regarding the cognitive bias of the target person and the cognitive bias data.
  • cognitive bias data regarding the behavior of the subject, attribute data of the subject, location data of the subject, health data of the subject, exercise data of the subject, lifestyle data of the subject, and an acquisition function for acquiring at least one of medical data of a person; the cognitive bias data; the behavior data; the attribute data; the location data; the health data; the exercise data; the lifestyle data;
  • the estimation program includes a machine learning function for causing a neural network to perform machine learning using at least one of the data as training data.
  • the present embodiment also includes an estimation program executed by a computer in which a processor estimates the behavior of a target person, wherein the computer generates behavior data regarding the behavior of the target person, and the behavior data labeled with the behavior data.
  • a processor estimates the behavior of a target person, wherein the computer generates behavior data regarding the behavior of the target person, and the behavior data labeled with the behavior data.
  • Acquire at least one of attribute data of the subject, location data of the subject, health data of the subject, exercise data of the subject, lifestyle data of the subject, and medical data of the subject.
  • the acquisition function, the behavior data, the attribute data, the location data, the health data, the exercise data, the lifestyle data, and at least one of the medical data are used as teacher data to cause a neural network to perform machine learning. It includes a machine learning function for, and an estimation program that realizes.
  • the present invention by estimating behavioral data and/or outcome data regarding a subject's behavior, it is useful as an estimation device, etc. that promotes and maintains improvements in the subject's behavior and outcomes regarding health, medical care, and lifestyle habits. It is.

Abstract

Provided is an estimation device that estimates action data and/or outcome data regarding the actions of a subject to make it possible to promote or maintain improvement in the action or outcome of the subject with respect to health, medical care, and lifestyle habit. The estimation device of the present invention comprises: an input unit for inputting cognitive bias data concerning a cognitive bias of the subject; and an output unit that uses an estimation model including a neural network for estimating, on the basis of the cognitive bias data, at least one of action data concerning an action of the subject, attribute data of the subject, position data of the subject, health data of the subject, exercise data of the subject, lifestyle habit data of the subject, and medical care data of the subject, to output at least one of the action data, the attribute data, the position data, the health data, the exercise data, the lifestyle habit data, and the medical care data that have been estimated from the cognitive bias data input by means of the input unit.

Description

推定装置、推定方法、推定システム、及び推定プログラムEstimation device, estimation method, estimation system, and estimation program
 本発明は、推定装置、推定方法、推定システム、及び推定プログラムに関し、特に、対象者の認知のバイアス、認知の特性、及び意思決定の特性(以下、「認知バイアス」と呼ぶ)に関するデータに基づいて行動に関するデータを推定するための推定装置、推定方法、推定システム、及び推定プログラムに関する。 The present invention relates to an estimation device, an estimation method, an estimation system, and an estimation program, and in particular, the present invention is based on data regarding a subject's cognitive biases, cognitive characteristics, and decision-making characteristics (hereinafter referred to as "cognitive biases"). The present invention relates to an estimation device, an estimation method, an estimation system, and an estimation program for estimating data related to behavior.
 近年、ユーザの健康を適切に管理できる健康管理装置、健康管理システム、及び健康管理方法が提供されている(特許文献1参照)。 In recent years, health management devices, health management systems, and health management methods that can appropriately manage a user's health have been provided (see Patent Document 1).
 また、認知バイアスがかかった消費者の選択行動を、商品および消費者の特徴量まで考慮して、予測精度の高い学習可能なモデルが提案されている(特許文献2参照)。 In addition, a learnable model with high prediction accuracy has been proposed that takes into account the consumer's selection behavior, which is subject to cognitive bias, and takes into account the characteristic amounts of the product and the consumer (see Patent Document 2).
特開2018-49393号公報JP 2018-49393 Publication 特開2016-115316号公報Japanese Patent Application Publication No. 2016-115316
 対象者の認知バイアスは、健康や医療や生活習慣に対する対象者の行動やアウトカムに影響を与えていると考えられる。また、対象者の行動が健康や医療や生活習慣に関するアウトカムに影響を与えていると考えられる。しかしながら、認知バイアスの構造は複雑であり、健康や医療や生活習慣に対する対象者の行動の構造も複雑であるため、既存のモデルで表現することが困難であった。また、認知のバイアスや行動の個人差が大きく、既存の画一的な指導や介入では、対象者に行動を促したり維持したり、アウトカムを改善したり維持したりするには不十分であり、専門家による指導や介入の効果は極めて限定的となっている。さらに、認知バイアスにより影響を受ける健康や医療や生活習慣に対する対象者の行動やアウトカムを個人ごとにモデル化したり、行動により影響を受ける健康や医療や生活習慣に関するアウトカムを個人ごとにモデル化したりしても、複雑なモデルとなり、学習アルゴリズムまで構築することは知られていなかった。 It is thought that the subject's cognitive bias affects the subject's behavior and outcomes regarding health, medical care, and lifestyle habits. Furthermore, the behavior of the subjects is thought to have an impact on outcomes related to health, medical care, and lifestyle habits. However, the structure of cognitive bias is complex, as is the structure of target behavior toward health, medical care, and lifestyle habits, so it has been difficult to express it using existing models. In addition, there are large individual differences in cognitive bias and behavior, and existing uniform guidance and interventions are insufficient to encourage and maintain behavior in target subjects, or to improve and maintain outcomes. However, the effectiveness of guidance and intervention by experts is extremely limited. Furthermore, we can model for each individual the target person's behavior and outcomes related to health, medical care, and lifestyle habits that are affected by cognitive biases, and model the outcomes related to health, medical care, and lifestyle habits that are influenced by behavior for each individual person. However, it was not known that it would be a complex model and that a learning algorithm could be constructed.
 さらに、対象者に健康や医療や生活習慣に関する行動を促したり維持したりするために、又は対象者に健康や医療や生活習慣に関するアウトカムを改善したり維持したりするために、対象者の認知バイアスを考慮してモデル化することは、知られていなかった。また、対象者に健康や医療や生活習慣に関するアウトカムを改善したり維持したりするために、対象者の行動を考慮してモデル化することは、知られていなかった。 Furthermore, in order to encourage or maintain behavior related to health, medical care, or lifestyle habits in the target person, or to improve or maintain outcomes related to health, medical care, or lifestyle habits, the target person's cognitive Modeling with bias in mind was unknown. Furthermore, it has not been known to consider and model the behavior of the target person in order to improve or maintain outcomes related to health, medical care, and lifestyle habits for the target person.
 本発明の推定装置は、対象者の認知バイアスに関する認知バイアスデータを入力する入力部と、前記認知バイアスデータに基づいて、前記対象者の行動に関する行動データ、前記対象者の属性データ、前記対象者の位置データ、前記対象者の健康データ、前記対象者の運動データ、前記対象者の生活習慣データ、及び前記対象者の医療データの少なくとも1つを推定するためのニューラルネットワークを含む推定モデルにより、前記入力部により入力された前記認知バイアスデータから推定された前記行動データ、前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つを出力する出力部と、を備える。 The estimation device of the present invention includes an input unit for inputting cognitive bias data regarding a target person's cognitive bias, and based on the cognitive bias data, behavioral data regarding the target person's behavior, attribute data of the target person, and by an estimation model including a neural network for estimating at least one of location data of the subject, health data of the subject, exercise data of the subject, lifestyle data of the subject, and medical data of the subject, outputting at least one of the behavior data, the attribute data, the location data, the health data, the exercise data, the lifestyle data, and the medical data estimated from the cognitive bias data input by the input unit; and an output section.
 また、本発明の推定装置は、対象者の行動に関する行動データを入力する入力部と、前記行動データに基づいて、前記対象者の属性データ、前記対象者の位置データ、前記対象者の健康データ、前記対象者の運動データ、前記対象者の生活習慣データ、及び前記対象者の医療データの少なくとも1つを推定するためのニューラルネットワークを含む推定モデルにより、前記入力部により入力された前記行動データから推定された前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つを出力する出力部と、を備える。 Further, the estimation device of the present invention includes an input unit for inputting behavioral data regarding the behavior of the subject, and attribute data of the subject, position data of the subject, health data of the subject based on the behavioral data. , the behavioral data inputted by the input unit by an estimation model including a neural network for estimating at least one of the subject's exercise data, the subject's lifestyle data, and the subject's medical data. an output unit that outputs at least one of the attribute data, the position data, the health data, the exercise data, the lifestyle data, and the medical data estimated from the data.
 本発明によれば、認知バイアスに関するデータに基づいて行動に関するデータ又はアウトカムを推定することで、健康や医療や生活習慣に対する対象者の行動を促したり維持したりすることができ、健康や医療や生活習慣に対する対象者のアウトカムを改善したり維持したりすることができる。 According to the present invention, by estimating behavior-related data or outcomes based on data related to cognitive bias, it is possible to encourage or maintain a target's behavior regarding health, medical care, and lifestyle habits, and to improve health, medical care, and lifestyle habits. It is possible to improve or maintain a subject's outcomes regarding lifestyle habits.
 また、本発明によれば、行動に関するデータに基づいてアウトカムに関するデータを推定することで、健康や医療や生活習慣に関する対象者のアウトカムを改善したり維持したりすることができる。 Furthermore, according to the present invention, by estimating outcome-related data based on behavior-related data, it is possible to improve or maintain a subject's outcomes regarding health, medical care, and lifestyle habits.
本実施形態の推定システムのシステム構成の例を示すブロック図である。FIG. 1 is a block diagram showing an example of the system configuration of an estimation system according to the present embodiment. 本実施形態の機械学習サーバのシステム構成の例を示すブロック図である。It is a block diagram showing an example of the system configuration of a machine learning server of this embodiment. 本実施形態の関連付けられた各種データの構成を模式的に示した図である。FIG. 2 is a diagram schematically showing the configuration of various types of data associated with each other according to the present embodiment. 本実施形態の対象者データに関連付けられた非対象者データの各種データの構成を模式的に示した図である。FIG. 2 is a diagram schematically showing the structure of various data of non-target person data associated with target person data of the present embodiment. 本実施形態の推定モデルの生成プロセスを示す図である。It is a figure showing the generation process of the estimation model of this embodiment. マルチモーダルデータフュージョンについて説明する図である。FIG. 2 is a diagram illustrating multimodal data fusion. 本実施形態の推定装置の構成の例を示すブロック図である。FIG. 1 is a block diagram showing an example of the configuration of an estimation device according to the present embodiment. 本実施形態の学習用データ(教師データ)の送信プロセスを示す図である。FIG. 3 is a diagram showing a process of transmitting learning data (teacher data) according to the present embodiment. 本実施形態の学習モデル(推定モデル)により推定された推定データの出力プロセスを示す図である。It is a figure showing the output process of estimated data estimated by a learning model (estimation model) of this embodiment. 対象者に応じた認知バイアスデータ及び対象者データから推定された行動データの例を示す図である。It is a figure showing an example of cognitive bias data according to a target person, and behavioral data estimated from target person data.
(第1の実施形態)
 第1の実施形態では、対象者の認知バイアスに関する認知バイアスデータに基づいて行動に関する行動データ又はアウトカムを推定する推定システムについて説明する。
(First embodiment)
In the first embodiment, an estimation system for estimating behavioral data or outcomes regarding behavior based on cognitive bias data regarding cognitive biases of a subject will be described.
 本発明の実施形態の推定システムについて、図面を用いて説明する。図1は、本実施形態の推定システムのシステム構成の例を示すブロック図である。推定システム1は、認知バイアスに関するデータに基づいて行動に関するデータを推定する。 An estimation system according to an embodiment of the present invention will be explained using the drawings. FIG. 1 is a block diagram showing an example of the system configuration of the estimation system of this embodiment. The estimation system 1 estimates behavior-related data based on cognitive bias-related data.
 図1に示すように、推定システム1は、ネットワーク2を介して電気的に接続され、相互に通信可能な機械学習サーバ4及びコンピュータ(推定装置)5を備える。              As shown in FIG. 1, the estimation system 1 includes a machine learning server 4 and a computer (estimation device) 5 that are electrically connected via a network 2 and can communicate with each other.                           
 図2は、本実施形態の機械学習サーバのシステム構成の例を示すブロック図である。図2に示すように、機械学習サーバ4は、プロセッサ(制御装置)21、記憶装置(例えば、ROMやRAMやHDD等)22、入力部23、及び出力部25を備える。 FIG. 2 is a block diagram showing an example of the system configuration of the machine learning server of this embodiment. As shown in FIG. 2, the machine learning server 4 includes a processor (control device) 21, a storage device (for example, ROM, RAM, HDD, etc.) 22, an input section 23, and an output section 25.
 プロセッサ(制御装置)21は、CPUやMPUやGPU等の制御部であり、データ取得部32、機械学習部33、推定部35、及び識別部36を備える。データ取得部32、機械学習部33、推定部35、及び識別部36はバス(図示せず)により電気的に接続され、相互に通信可能である。 The processor (control device) 21 is a control unit such as a CPU, MPU, or GPU, and includes a data acquisition unit 32, a machine learning unit 33, an estimation unit 35, and an identification unit 36. The data acquisition section 32, machine learning section 33, estimation section 35, and identification section 36 are electrically connected by a bus (not shown) and can communicate with each other.
 記憶装置(記憶部)22は、認知バイアスデータ38、行動データ39、対象者データ40、非対象者データ41、学習モデル格納部46、推定データ格納部47を含む。 The storage device (storage unit) 22 includes cognitive bias data 38, behavioral data 39, target person data 40, non-target person data 41, a learning model storage unit 46, and an estimated data storage unit 47.
 認知バイアスデータ38は、対象者6の心理的傾向を示すデータ(特徴量データを含む)である。認知バイアスデータ38には、対象者6の認知のバイアス、認知の特性、及び意思決定の特性の少なくとも1つが含まれる(これらの特徴量データを含む)。 The cognitive bias data 38 is data (including feature data) indicating the psychological tendencies of the subject 6. The cognitive bias data 38 includes at least one of a cognitive bias, a cognitive characteristic, and a decision-making characteristic of the subject 6 (including data on these feature amounts).
 認知バイアスデータ38は、例えば、プロスペクト理論や二重過程理論等による、価値関数、価値関数に基づく損失回避性・保有効果・現状維持バイアス、曖昧回避性・不確実回避性、リスク選好(リスク回避・リスク愛好)、参照点依存性、感応度逓減性、確率加重関数、メンタルアカウンティング(心理会計)、分母の無視、時間割引・時間選好、社会的選好(利他主義、公平性、互恵主義、不公平回避等)、フレーミング、及びヒューリスティクス(アンカリング、利用可能性、代表性)の少なくとも1つに関する対象者6のデータ(これらの特徴量データを含む)を含む。 Cognitive bias data 38 includes, for example, value functions based on prospect theory, dual process theory, etc., loss aversion, endowment effect, status quo bias, ambiguity aversion, uncertainty avoidance, risk preferences (risk aversion), etc.・Risk love), reference point dependence, diminishing sensitivity, probability weighting function, mental accounting (psychological accounting), ignoring the denominator, time discounting/time preference, social preference (altruism, fairness, reciprocity, non-reciprocity) The target person 6's data (including these feature data) regarding at least one of (fairness avoidance, etc.), framing, and heuristics (anchoring, availability, representativeness) is included.
 価値関数、価値関数に基づく損失回避性・保有効果・現状維持バイアスに関するデータは、利得と損失に対する反応の強弱又は非対称性を示すデータである。曖昧回避性・不確実回避性に関するデータは、曖昧なものに対する回避性の強弱を示すデータである。リスク選好(リスク回避・リスク愛好)に関するデータは、利得を得ている状態ではリスクを避ける傾向(リスク回避)、損失を被っている状態ではリスクを軽視する傾向(リスク愛好)の強弱又は非対称性を示すデータである。参照点依存性に関するデータは、対象者6が設定した基準(参照点)からの相対的な変化率又は上下に対する反応の強弱又は非対称性を示すデータである。感応度逓減性に関するデータは、同じ出来事が繰り返し起こると対象者6が徐々にその出来事に慣れて感応度が逓減するという現象に基づく、時間又は頻度に対する感応度の強弱を示すデータである。 Data regarding the value function, loss aversion, endowment effect, and status quo bias based on the value function is data that indicates the strength or weakness or asymmetry of reactions to gains and losses. Data regarding ambiguity avoidance/uncertainty avoidance is data indicating the strength or weakness of avoidance toward ambiguity. Data regarding risk appetite (risk aversion/risk love) shows the strength or asymmetry of the tendency to avoid risk when in a state of gain (risk aversion) and the tendency to downplay risk when in a state of loss (risk love). This is data showing. The data regarding the reference point dependence is data indicating the relative rate of change from the standard (reference point) set by the subject 6 or the strength or weakness or asymmetry of the reaction to up and down. The data regarding decreasing sensitivity is data indicating the strength of sensitivity with respect to time or frequency, based on the phenomenon that when the same event occurs repeatedly, the subject 6 gradually gets used to the event and the sensitivity decreases.
 確率加重関数に関するデータは、客観的確率が低いときには過大評価をし、客観的確率が高いときには過小評価するという傾向の強弱又は非対称性を示すデータである。メンタルアカウンティング(心理会計)に関するデータは、お金を使用するときの意思決定が、お金の出処や何に使うかにより変化する傾向の強弱又は非対称性を示すデータである。分母の無視に関するデータは、分子/分母の確率は同じ場合であっても、分子が大きいと確率を高く評価する傾向の強弱又は非対称性を示すデータである。 The data regarding the probability weighting function is data that shows the strength or weakness or asymmetry of the tendency to overestimate when the objective probability is low and underestimate when the objective probability is high. Data related to mental accounting is data that shows the strength or weakness, or asymmetry, of the tendency for decisions made when using money to change depending on the source of the money and what it is used for. Data regarding neglect of the denominator is data that shows the strength or weakness or asymmetry of a tendency to evaluate probability highly when the numerator is large, even when the numerator/denominator probabilities are the same.
 時間割引・時間選好に関するデータは、報酬や利得の将来価値(遅延報酬)を現在価値(即時報酬)よりどれだけ低く見積もるかに関する時間に対する割引率を示すデータ。時間割引率(時間選好率)が低い対象者6は将来の報酬まで我慢することができ(自制心が強い)、時間割引率(時間選好率)が高い対象者6は将来の報酬まで我慢することができない(衝動性が強い)。 Time discount/time preference data is data that shows the discount rate for time, which is how much lower the future value of rewards and gains (delayed rewards) is estimated than the present value (immediate rewards). Subject 6 with a low time discount rate (time preference rate) is able to hold back until future rewards (strong self-control), and subject 6 with a high time discount rate (time preference rate) is able to hold back until future rewards. cannot (strong impulsiveness).
 社会的選好(利他主義、公平性、互恵主義、不公平回避等)に関するデータは、自分自身の物質的な見返りだけでなく、準拠集団の見返り又は/及び見返りにつながる意図も気にする人間の傾向を示すデータである。フレーミングに関するデータは、何を強調するかによって与える印象を変え、意思決定に影響を及ぼす程度を示すデータである。ヒューリスクティクスに関するデータは、必ずしも正しい答えを導けるとは限らないが、ある程度のレベルで正解に近い解を得ることができる直感的な意思決定プロセスを示すデータである。 Data on social preferences (altruism, fairness, reciprocity, inequity avoidance, etc.) are important for humans who care not only about their own material rewards but also about the rewards and/or intentions that lead to rewards for reference groups. This is data that shows trends. Data regarding framing changes the impression given depending on what is emphasized, and shows the degree to which it influences decision-making. Data related to heuristics is data that shows an intuitive decision-making process that does not necessarily lead to the correct answer, but can obtain an answer close to the correct answer to a certain level.
 認知バイアスデータ38は、認知バイアスに関するアンケート、心理テスト、感性テスト、及びゲーム等を対象者6に実施することで取得された定量データ、テキストデータ、及び音声データ等(これらの特徴量データを含む)である。また、認知バイアスデータ38は、SNSや電子メールやブログ等における認知バイアスに関する定量データ、テキストデータ、及び音声データ等(これらの特徴量データを含む)である。 Cognitive bias data 38 includes quantitative data, text data, audio data, etc. (including these feature data) obtained by conducting questionnaires, psychological tests, sensitivity tests, games, etc. on the subject 6 regarding cognitive bias ). Further, the cognitive bias data 38 is quantitative data, text data, voice data, etc. (including feature amount data thereof) regarding cognitive bias in SNS, e-mail, blogs, etc.
 行動データ39は、対象者6に行動を促したり維持したりするためのテキスト、画像、映像、音(音声データ等)、光、匂い、及び力の少なくとも1つに関するデータ(これらの特徴量データを含む)を含む。行動データ39は、それぞれの認知バイアスに対応する行動に関する定量データ、テキストデータ、及び音声データ等(これらの特徴量データを含む)である。行動データ39は、行動に関するアンケート、心理テスト、感性テスト、及びゲーム等を対象者6に実施することで取得された定量データ、テキストデータ、及び音声データ等(これらの特徴量データを含む)である。また、行動データ39は、SNSや電子メールやブログ等における行動に関する定量データ、テキストデータ、及び音声データ等(これらの特徴量データを含む)である。また、行動データ39は、健康診断や医療機関における行動に関する定量データ、テキストデータ、及び音声データ等(これらの特徴量データを含む)である。例えば、行動データ39は、健康や医療や生活習慣に関する対象者6の行動を促したり維持したりするメッセージ等の定量データ、テキストデータ、及び音声データ等やこれらを自然言語処理することにより得られた特徴量である。行動データ39は、機械学習における認知バイアスデータ38のラベルデータ(正解データ)となる。 The behavior data 39 includes data related to at least one of text, images, video, sounds (audio data, etc.), light, smell, and force for urging or maintaining behavior in the subject 6 (characteristic data of these) (including). The behavior data 39 is quantitative data, text data, audio data, etc. (including feature data) regarding behaviors corresponding to each cognitive bias. The behavioral data 39 is quantitative data, text data, audio data, etc. (including these feature data) obtained by administering behavioral questionnaires, psychological tests, sensitivity tests, games, etc. to the subject 6. be. Further, the behavior data 39 is quantitative data, text data, voice data, etc. (including feature amount data of these) related to behavior in SNS, e-mail, blogs, etc. Furthermore, the behavior data 39 includes quantitative data, text data, voice data, etc. (including feature amount data of these) regarding health checkups and behavior at medical institutions. For example, the behavioral data 39 may be quantitative data such as messages that encourage or maintain the behavior of the target person 6 regarding health, medical care, or lifestyle habits, text data, voice data, etc., or may be obtained by natural language processing of these data. It is a feature quantity. The behavior data 39 becomes label data (correct data) of the cognitive bias data 38 in machine learning.
 対象者データ40は、対象者6の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データ(これらの特徴量データを含む)の少なくとも1つを含む。健康データは、バイタルデータ及びバイオマーカーデータ(これらの特徴量データを含む)の少なくとも1つを含む。対象者データ40は、機械学習における認知バイアスデータ38のラベルデータ(正解データ)となる。 The subject data 40 includes at least one of the subject 6's attribute data, location data, health data, exercise data, lifestyle data, and medical data (including feature amount data thereof). The health data includes at least one of vital data and biomarker data (including their feature data). The subject data 40 becomes label data (correct data) of the cognitive bias data 38 in machine learning.
 例えば、対象者データ40は、(1)対象者6の体重、年齢、性別、住所、食事、飲酒、喫煙、運動、ストレス、服薬、社会経済因子(例えば、収入、職業等)、既往歴、及び家族構成のデータ、(2)GPS等による対象者6の位置情報(例えば、時間、場所、周辺の環境等)及び地図情報のデータ、(3)対象者6の身体活動(例えば、歩数、運動、筋力、筋量等)、心拍、心電図、酸素飽和度、血圧、血糖度、及び睡眠等のデータ、(4)医療機関における対象者6の遺伝子情報、検査結果情報、処方情報、医療行為情報(例えば、手術、手技等)、健康診断結果、及び診断情報(病名)等のデータである。また、これらのデータは、複数のデータに基づく統計値であってもよい。また、これらのデータは、複数の時刻における対象者データに基づく統計値であってもよい。また、これらのデータは、画像データ(例えば、食事の画像等)に基づいて機械学習により推定されたデータ(例えば、食品の種類、量、及びカロリー等)であってもよい。 For example, the subject data 40 includes (1) the subject 6's weight, age, gender, address, diet, drinking, smoking, exercise, stress, medication, socio-economic factors (e.g. income, occupation, etc.), medical history, and family composition data, (2) location information of the subject 6 by GPS etc. (e.g. time, place, surrounding environment, etc.) and map information data, (3) physical activity of the subject 6 (e.g. number of steps, (4) Genetic information, test result information, prescription information, medical treatment of subject 6 at medical institutions This data includes information (for example, surgery, procedure, etc.), medical examination results, and diagnostic information (disease name). Moreover, these data may be statistical values based on a plurality of data. Moreover, these data may be statistical values based on subject data at a plurality of times. Further, these data may be data (for example, food type, amount, calories, etc.) estimated by machine learning based on image data (for example, images of meals, etc.).
 また、図2に示すように、対象者データ40は、対象者6の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つのうち、時系列データ42及び非時系列データ43を含む。識別部36は、対象者データ40である属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つのうち、時系列データ及び非時系列データを識別する。 Further, as shown in FIG. 2, the subject data 40 includes time-series data 42 and non-time-series data 42 of at least one of attribute data, location data, health data, exercise data, lifestyle data, and medical data of the subject 6. Contains time series data 43. The identification unit 36 identifies time series data and non-time series data from at least one of attribute data, location data, health data, exercise data, lifestyle data, and medical data, which are the subject data 40.
 時系列データ42は、時間の経過に応じて変化するデータであって、複数の時間において取得可能なデータである。時系列データ42には、時間データが関連付けられている。非時系列データ43は、時間の経過に応じて殆ど変化しないデータ(不変データ)であるか、複数の時間において実質的に取得不可能又は取得不要なデータである。 The time-series data 42 is data that changes over time and can be obtained at multiple times. Time data is associated with the time series data 42. The non-time series data 43 is data that hardly changes with the passage of time (unchangeable data), or data that is substantially impossible to obtain or does not need to be obtained at a plurality of times.
 例えば、時系列データ42は、心拍、心電図、酸素飽和度、睡眠、血圧、及び血糖度等を含む。非時系列データ43は、遺伝子情報等を含む。 For example, the time series data 42 includes heart rate, electrocardiogram, oxygen saturation, sleep, blood pressure, blood sugar level, and the like. The non-time series data 43 includes genetic information and the like.
 非対象者データ41は、対象者6以外の非対象者の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データ(これらの特徴量データを含む)の少なくとも1つを含む。健康データは、バイタルデータ及びバイオマーカーデータ(これらの特徴量データを含む)の少なくとも1つを含む。 The non-target person data 41 includes at least one of attribute data, location data, health data, exercise data, lifestyle data, and medical data (including these feature data) of non-target people other than the target person 6. . The health data includes at least one of vital data and biomarker data (including their feature data).
 例えば、非対象者データ41は、(1)非対象者の体重、年齢、性別、住所、食事、飲酒、喫煙、運動、ストレス、服薬、社会経済因子(例えば、学歴、収入、職業、役職等)、既往歴、及び家族構成のデータ、(2)GPS等による非対象者の位置情報(例えば、時間、場所、周辺の環境等)及び地図情報のデータ、(3)非対象者の身体活動(例えば、歩数、運動、筋力、筋量等)、心拍、心電図、酸素飽和度、血圧、血糖度、及び睡眠等のデータ、(4)医療機関における非対象者の遺伝子情報、検査結果情報、処方情報、医療行為情報(例えば、手術、手技等)、健康診断結果、及び診断情報(病名)等のデータである。また、これらのデータは、複数の非対象者のデータに基づく統計値であってもよい。また、これらのデータは、複数の時刻における非対象者データに基づく統計値であってもよい。また、これらのデータは、画像データ(例えば、食事の画像等)に基づいて機械学習により推定されたデータ(例えば、食品の種類、量、及びカロリー等)であってもよい。 For example, the non-target person data 41 includes (1) weight, age, gender, address, diet, drinking, smoking, exercise, stress, medication, and socio-economic factors (e.g., educational background, income, occupation, position, etc.) of the non-target person; ), past medical history, and family composition data; (2) location information (e.g., time, place, surrounding environment, etc.) of non-target individuals using GPS, and map information; (3) physical activity of non-target individuals. (e.g., number of steps, exercise, muscle strength, muscle mass, etc.), data on heart rate, electrocardiogram, oxygen saturation, blood pressure, blood sugar level, sleep, etc. (4) Genetic information and test result information of non-target persons at medical institutions, This data includes prescription information, medical practice information (for example, surgery, procedure, etc.), medical examination results, and diagnostic information (disease name). Moreover, these data may be statistical values based on data of a plurality of non-target persons. Moreover, these data may be statistical values based on non-target person data at a plurality of times. Further, these data may be data (for example, food type, amount, calories, etc.) estimated by machine learning based on image data (for example, images of meals, etc.).
 なお、非対象者データ41は、各変数に対して先行研究によって明らかにされた定量的データ(例えば、男性を基準とした場合の女性のオッズ比(男性のほうが女性より2倍リスクを取りやすい等)や回帰分析によって得られた年齢に対する回帰式の係数(年齢が1歳上がると1%ずつリスクを取らなくなる(係数=-0.01)))を含む。また、非対象者データは、先行研究によって明らかにされた、入力と出力をパラメトリック近似したモデル(例えば、価値関数や確率加重関数を数式として表したもの等)を含む。 In addition, non-target data 41 includes quantitative data clarified by previous research for each variable (for example, the odds ratio for women based on men (men are twice as likely to take risks than women). etc.) and the coefficient of the regression equation for age obtained through regression analysis (as your age increases by 1 year, you will take 1% less risk (coefficient = -0.01))). In addition, the non-target person data includes models that parametrically approximate input and output (for example, a value function or a probability weighting function expressed as a mathematical formula) that has been clarified by previous research.
 非対象者データ41から、対象者6の認知バイアスデータ38や行動データ39や対象者データ40を決定又は推定することができる。 From the non-target person data 41, the cognitive bias data 38, behavioral data 39, and target person data 40 of the target person 6 can be determined or estimated.
 また、図2に示すように、非対象者データ41は、属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つのうち、時系列データ44及び非時系列データ45を含む。識別部36は、非対象者データ41である属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つのうち、時系列データ及び非時系列データを識別する。 As shown in FIG. 2, the non-target person data 41 includes time series data 44 and non-time series data of at least one of attribute data, location data, health data, exercise data, lifestyle data, and medical data. Contains 45. The identification unit 36 identifies time series data and non-time series data from at least one of attribute data, location data, health data, exercise data, lifestyle data, and medical data, which are non-target person data 41.
 時系列データ44は、時間の経過に応じて変化するデータであって、複数の時間において取得可能なデータである。時系列データ44には、時間データが関連付けられている。非時系列データ45は、時間の経過に応じて殆ど変化しないデータ(不変データ)であるか、複数の時間において実質的に取得不可能又は取得不要なデータである。 The time-series data 44 is data that changes over time and can be obtained at multiple times. Time data is associated with the time series data 44. The non-time series data 45 is data that hardly changes over time (unchangeable data), or data that is substantially impossible to obtain or does not need to be obtained at a plurality of times.
 例えば、時系列データ44は、心拍、心電図、酸素飽和度、睡眠、血圧、及び血糖度等を含む。非時系列データ45は、遺伝子情報等を含む。 For example, the time series data 44 includes heart rate, electrocardiogram, oxygen saturation, sleep, blood pressure, blood sugar level, and the like. The non-time series data 45 includes genetic information and the like.
 図3は、関連付けられた各種データの構成を模式的に示した図である。図3に示すように、認知バイアスデータ58及び行動データ59に加え、対象者データである対象者ID51、属性データ52、位置データ53、健康データ54、運動データ55、生活習慣データ56、及び医療データ57と非対象者データ60(これらの特徴量データを含む)が関連付けられている。 FIG. 3 is a diagram schematically showing the structure of various associated data. As shown in FIG. 3, in addition to cognitive bias data 58 and behavioral data 59, subject data such as subject ID 51, attribute data 52, location data 53, health data 54, exercise data 55, lifestyle data 56, and medical Data 57 and non-target person data 60 (including these feature amount data) are associated.
 なお、非対象者データ60は、非対象者の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データを含む。図4は、対象者データ51~57に関連付けられた非対象者データ60の各種データの構成を模式的に示した図である。図4に示すように、非対象者データ60である非対象者ID61、属性データ62、位置データ63、健康データ64、運動データ65、生活習慣データ66、及び医療データ67(これらの特徴量データを含む)が関連付けられている。 Note that the non-target person data 60 includes attribute data, location data, health data, exercise data, lifestyle data, and medical data of the non-target person. FIG. 4 is a diagram schematically showing the structure of various data of non-target person data 60 associated with target person data 51 to 57. As shown in FIG. 4, non-target person data 60 includes a non-target person ID 61, attribute data 62, location data 63, health data 64, exercise data 65, lifestyle data 66, and medical data 67 (these feature amount data ) are associated.
 対象者データ52~57、及び非対象者データ62~67は、時系列データと非時系列データに分類される。 The target person data 52 to 57 and the non-target person data 62 to 67 are classified into time series data and non-time series data.
 次に、推定モデルの生成について説明する。図5は、本実施形態の推定モデルの生成プロセスを示す図である。 Next, generation of the estimation model will be explained. FIG. 5 is a diagram showing the estimation model generation process of this embodiment.
 図5に示すように、ステップS1において、入力部23が各種データ(認知バイアスデータ38、行動データ39、対象者データ40、及び非対象者データ41)を入力する。入力部23は、各種データの格納命令を実行し、各種データを関連付けて記憶装置22に格納する(ステップS2,ステップS3)。 As shown in FIG. 5, in step S1, the input unit 23 inputs various data (cognitive bias data 38, behavioral data 39, target person data 40, and non-target person data 41). The input unit 23 executes a storage instruction for various data, associates the various data, and stores the data in the storage device 22 (step S2, step S3).
 データ取得部32が、取得命令を実行することで、記憶装置22に格納されている各種データを取得する(ステップS4)。機械学習部33が、推定モデル生成命令を実行することで、取得された各種データ(これらの特徴量データを含む)に基づいて、ニューラルネットワークにより学習モデル(推定モデル)を生成する(ステップS5)。 The data acquisition unit 32 acquires various data stored in the storage device 22 by executing the acquisition command (step S4). The machine learning unit 33 generates a learning model (estimated model) using a neural network based on the acquired various data (including these feature amount data) by executing the estimated model generation command (step S5). .
 機械学習部33は、認知バイアスデータ58(例えば、図3のB-1~B-5)を入力層に入力し、認知バイアスデータ58に関連付けられた行動データ59(例えば、図3のC-1~C-5)を出力層の正解値として入力するニューラルネットワークにより学習モデル(推定モデル)を生成する。 The machine learning unit 33 inputs the cognitive bias data 58 (for example, B-1 to B-5 in FIG. 3) to the input layer, and inputs the behavioral data 59 associated with the cognitive bias data 58 (for example, C- in FIG. 3). A learning model (estimated model) is generated by a neural network that inputs 1 to C-5) as correct values of the output layer.
 また、機械学習部33は、認知バイアスデータ58(例えば、図3のB-1~B-5)を入力層に入力し、認知バイアスデータ58に関連付けられた属性データ52(例えば、図3のE-11~E-15)、位置データ53(例えば、図3のE-21~E-25)、健康データ54(例えば、図3のE-31~E-35)、運動データ55(例えば、図3のE-41~E-45)、生活習慣データ56(例えば、図3のE-51~E-55)、及び医療データ57(例えば、図3のE-61~E-65)の少なくとも1つを出力層の正解値として入力するニューラルネットワークにより学習モデル(推定モデル)を生成する。 Further, the machine learning unit 33 inputs the cognitive bias data 58 (for example, B-1 to B-5 in FIG. 3) to the input layer, and the attribute data 52 associated with the cognitive bias data 58 (for example, B-1 to B-5 in FIG. 3). E-11 to E-15), location data 53 (for example, E-21 to E-25 in FIG. 3), health data 54 (for example, E-31 to E-35 in FIG. 3), exercise data 55 (for example, , E-41 to E-45 in FIG. 3), lifestyle data 56 (for example, E-51 to E-55 in FIG. 3), and medical data 57 (for example, E-61 to E-65 in FIG. 3) A learning model (estimated model) is generated by a neural network that inputs at least one of the above as the correct value of the output layer.
 ニューラルネットワークの中間層には、例えば、Affine層又はConvolution層等が設けられる。適宜、ダウンサンプリング処理等が行われてもよい。また、中間層の層数、ニューロン数、及び活性化関数は、推定結果が高精度となるように、最適なものが選択される。ニューラルネットワークの構成として、Feed Forward Neural Network(FFNN)やRecurrent Neural Network(RNN)やLong Short Term Memory(LSTM)やアテンション機構等が含まれる。 The intermediate layer of the neural network is provided with, for example, an Affine layer or a Convolution layer. Downsampling processing or the like may be performed as appropriate. Further, the number of layers, the number of neurons, and the activation function of the intermediate layer are optimally selected so that the estimation result is highly accurate. The configuration of the neural network includes Feed Forward Neural Network (FFNN), Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), attention mechanism, etc. .
 機械学習部33は、乱数等の所定の値で初期化されたパラメータ(重み)を用いて、認知バイアスデータ58が入力層に入力された際に出力層に出力された値と出力層の正解値(行動データ59又は/及び対象者データ52~57)との乖離を表すロス関数を算出し、ロス関数の微分値を勾配として、出力層に出力された値と出力層の正解値との乖離が小さくなるように、パラメータ(重み)を変化させることで、学習モデル(推定モデル)を生成する。 The machine learning unit 33 uses parameters (weights) initialized with predetermined values such as random numbers to calculate the value output to the output layer when the cognitive bias data 58 is input to the input layer and the correct answer of the output layer. A loss function representing the deviation from the value (behavior data 59 or/and subject data 52 to 57) is calculated, and the differential value of the loss function is used as the slope to calculate the difference between the value output to the output layer and the correct value of the output layer. A learning model (estimated model) is generated by changing parameters (weights) so that the deviation becomes smaller.
 このように、機械学習部33は、認知バイアスデータ58を入力層に入力し、行動データ59又は/及び対象者データ52~57を出力層の正解値として入力するニューラルネットワークにより学習モデル(推定モデル)を生成する。学習モデル(推定モデル)は、畳み込み層、再帰演算層、及びアテンション機構の少なくとも1つを含むニューラルネットワークを備える。 In this way, the machine learning unit 33 creates a learning model (estimated model ) is generated. The learning model (estimated model) includes a neural network including at least one of a convolution layer, a recursive calculation layer, and an attention mechanism.
 学習モデル(推定モデル)は、認知バイアスデータ58に加えて又は認知バイアスデータ58とは別に、対象者6の属性データ52、位置データ53、健康データ54、運動データ55、生活習慣データ56、及び医療データ57(これらの特徴量データを含む)の少なくとも1つの対象者データに基づいて対象者6の認知バイアスデータ又は/及び対象者データ(アウトカムデータ)を推定するためのニューラルネットワークを含んでもよい。 The learning model (estimated model) includes attribute data 52, location data 53, health data 54, exercise data 55, lifestyle data 56, and It may also include a neural network for estimating cognitive bias data and/or subject data (outcome data) of the subject 6 based on at least one subject data of the medical data 57 (including these feature data). .
 また、学習モデル(推定モデル)は、対象者6以外の非対象者の属性データ62、位置データ63、健康データ64、運動データ65、生活習慣データ66、及び医療データ67(これらの特徴量データを含む)の少なくとも1つの非対象者データ60に基づいて対象者6の認知バイアスデータ又は/及び対象者データ(アウトカムデータ)を推定するためのニューラルネットワークを含んでもよい。 In addition, the learning model (estimation model) includes attribute data 62, location data 63, health data 64, exercise data 65, lifestyle data 66, and medical data 67 (these feature amount data) of non-target persons other than the target person 6. It may also include a neural network for estimating cognitive bias data and/or subject data (outcome data) of the subject 6 based on at least one non-target subject data 60 (including the above).
 また、学習モデル(推定モデル)は、認知バイアスデータ58に加えて又は認知バイアスデータ58とは別に、対象者6の属性データ52、位置データ53、健康データ54、運動データ55、生活習慣データ56、及び医療データ57(これらの特徴量データを含む)の少なくとも1つの対象者データに基づいて、対象者6の認知バイアスデータ、属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つの対象者データ(アウトカムデータ)を推定するためのニューラルネットワークを含んでもよい。 In addition to or separately from the cognitive bias data 58, the learning model (estimation model) includes attribute data 52, location data 53, health data 54, exercise data 55, and lifestyle data 56 of the subject 6. , and medical data 57 (including these feature data), cognitive bias data, attribute data, location data, health data, exercise data, lifestyle data, and It may also include a neural network for estimating at least one subject data (outcome data) of the medical data.
 この場合、推定されるデータ(特に、時系列データ)がラベルデータ(正解データ)となり、当該データに関連付けられたデータ(対象者6の認知バイアスデータや対象者データ)がニューラルネットワークの入力層に入力されて学習した学習モデル(推定モデル)が構築される。例えば、対象者6の過去の睡眠時間、その他の対象者データ、及び認知バイアスデータにより学習した学習モデル(推定モデル)を用いることで、対象者6の将来の睡眠時間(アウトカムデータ)が推定される。学習プロセスは、上記と同様である。 In this case, the estimated data (especially time series data) becomes the label data (correct data), and the data associated with this data (cognitive bias data of subject 6 and subject data) becomes the input layer of the neural network. A learning model (estimated model) is constructed based on input and learning. For example, by using a learning model (estimation model) learned from Subject 6's past sleep time, other subject data, and cognitive bias data, Subject 6's future sleep time (outcome data) can be estimated. Ru. The learning process is similar to above.
 また、学習モデル(推定モデル)は、対象者6以外の非対象者の属性データ62、位置データ63、健康データ64、運動データ65、生活習慣データ66、及び医療データ67(これらの特徴量データを含む)の少なくとも1つの非対象者データ60に基づいて、対象者6の認知バイアスデータ、属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つの対象者データ(アウトカムデータ)を推定するためのニューラルネットワークを含んでもよい。 In addition, the learning model (estimation model) includes attribute data 62, location data 63, health data 64, exercise data 65, lifestyle data 66, and medical data 67 (these feature amount data) of non-target persons other than the target person 6. at least one subject data of the subject 6's cognitive bias data, attribute data, location data, health data, exercise data, lifestyle data, and medical data. It may also include a neural network for estimating (outcome data).
 この場合、推定されるデータがラベルデータ(正解データ)となり、当該データに関連付けられたデータ(非対象者の認知バイアスデータや非対象者データ)がニューラルネットワークの入力層に入力されて学習した学習モデル(推定モデル)が構築されてもよい。例えば、非対象者の認知バイアスデータや非対象者データにより学習した学習モデル(推定モデル)を用いることで、対象者6の認知バイアスデータが推定される。学習プロセスは、上記と同様である。 In this case, the estimated data becomes label data (correct data), and the data associated with this data (cognitive bias data of non-target people and data of non-target people) is input to the input layer of the neural network and the learning is performed. A model (estimated model) may be constructed. For example, the cognitive bias data of the target person 6 is estimated by using the cognitive bias data of the non-target person or a learning model (estimated model) learned from the non-target person data. The learning process is similar to above.
 また、非対象者データは、各変数に対して先行研究によって明らかにされた定量的データ(例えば、男性を基準とした場合の女性のオッズ比(男性のほうが女性より2倍リスクを取りやすい等)や回帰分析によって得られた年齢に対する回帰式の係数(年齢が1歳上がると1%ずつリスクを取らなくなる(係数=-0.01)))や入力と出力をパラメトリック近似したモデル(例えば、価値関数や確率加重関数を数式として表したもの等)であり、先行研究のエビデンスで定量化されたデータに基づいて、非対象者データから、対象者6の認知バイアスデータや行動データや対象者データ(アウトカムデータ)が決定又は推定されてもよい。 In addition, non-target data includes quantitative data clarified by previous studies for each variable (for example, the odds ratio of women based on men (men are twice as likely to take risks than women, etc.). ), the coefficient of the regression equation for age obtained through regression analysis (for each year that your age increases, you will take 1% less risk (coefficient = -0.01)), and the model that parametrically approximates the input and output (for example, (e.g. value function or probability weighting function expressed as a mathematical formula), and based on data quantified by evidence from previous research, cognitive bias data and behavioral data of target person 6 and target person data are calculated from non-target person data. Data (outcome data) may be determined or estimated.
 以上のように、学習モデル(推定モデル)は、畳み込み層、再帰演算層、及びアテンション機構の少なくとも1つを含み、対象者データ(又は、対象者データと非対象者データとを連結(Concatenation)したデータ)をニューラルネットワークの入力層に入力することにより機械学習した推定モデルである。非対象者データには、複数の非対象者のデータに基づく統計値や先行研究で得られたエビデンスに関するデータを含む。 As described above, the learning model (estimation model) includes at least one of a convolution layer, a recursive calculation layer, and an attention mechanism, and connects target person data (or target person data and non-target person data). This is an estimation model that is machine-learned by inputting the acquired data) into the input layer of a neural network. Non-subject data includes statistical values based on data from multiple non-subjects and data on evidence obtained from previous research.
 対象者データと非対象者データとを連結(Concatenation)する場合、(1)対象者データ及び非対象者データの生データを連結してから特徴量を抽出する方法、(2)対象者データ及び非対象者データの生データから個別に特徴量を抽出してから特徴量を連結する方法、(3)これらの組み合わせた方法等がある。例えば、画像データの場合、Convolution層で特徴量を抽出してから、他のデータと連結することも可能である。 When concatenating target person data and non-target person data, (1) a method of extracting feature amounts after concatenating the raw data of target person data and non-target person data; There are methods such as (3) a method in which feature amounts are individually extracted from raw data of non-target person data and then the feature amounts are connected, and (3) a method in which these are combined. For example, in the case of image data, it is also possible to extract feature amounts in the Convolution layer and then connect them with other data.
 また、再帰演算層(RNNやLSTM)及びアテンション機構を含むニューラルネットワークの場合、学習モデル(推定モデル)は、ニューラルネットワークの中間層又は出力層から出力された対象者6又は非対象者の認知バイアスデータ、属性データ、位置データ、健康データ、運動データ、生活習慣データ、医療データ、及び行動データの少なくとも1つがニューラルネットワークの入力層に入力されてもよい。 In addition, in the case of a neural network that includes a recursive calculation layer (RNN or LSTM) and an attention mechanism, the learning model (estimated model) is based on the cognitive bias of the target person 6 or non-target person output from the intermediate layer or output layer of the neural network. At least one of data, attribute data, location data, health data, exercise data, lifestyle data, medical data, and behavioral data may be input to the input layer of the neural network.
 次に、図6を用いて、対象者データと非対象者データとを連結(Concatenation)したデータをニューラルネットワークの入力層に入力することにより機械学習するマルチモーダルデータフュージョンについて説明する。図6に示すように、ニューラルネットワークの入力層に入力されるデータは、対象者データiと非対象者データz,zとを連結したデータmconcatである。対象者データiとして、ニューラルネットワークのCell State(長期記憶の役割を果たす)及びHidden State(短期記憶の役割を果たす)の少なくとも1つから出力された時系列データが用いられる。非対象者データz,zとして、複数の非対象者のデータModality1,2をそれぞれAutoencoder1,2により次元圧縮したデータが用いられる。 Next, using FIG. 6, a description will be given of multimodal data fusion in which machine learning is performed by inputting concatenated data of target person data and non-target person data to the input layer of a neural network. As shown in FIG. 6, the data input to the input layer of the neural network is data m concat that is a concatenation of target person data it and non-target person data z 1 and z 2 . As the subject data it , time-series data output from at least one of Cell State (plays the role of long-term memory) and Hidden State (plays the role of short-term memory) of the neural network is used. As the non-target person data z 1 and z 2 , data obtained by dimensionally compressing a plurality of non-target person data Modalities 1 and 2 using Autoencoders 1 and 2, respectively, is used.
 なお、対象者データ以外にも、対象者6の認知バイアスデータと非対象者データとが連結されてニューラルネットワークの入力層に入力されてもよい。 In addition to the target person data, cognitive bias data of the target person 6 and non-target person data may be connected and input to the input layer of the neural network.
 生成された学習モデル(推定モデル)は、学習モデル格納部46に格納される(ステップS6)。 The generated learning model (estimated model) is stored in the learning model storage unit 46 (step S6).
 次に、図7を用いて、コンピュータ(推定装置)5の説明をする。図7は、本実施形態の推定装置の構成の例を示すブロック図である。コンピュータ(推定装置)5は、認知バイアスデータを入力し、学習モデル(推定モデル)により取得された行動データ又は/及びアウトカムデータを出力する。 Next, the computer (estimation device) 5 will be explained using FIG. FIG. 7 is a block diagram showing an example of the configuration of the estimation device of this embodiment. The computer (estimation device) 5 inputs cognitive bias data and outputs behavioral data and/or outcome data acquired by the learning model (estimation model).
 図7に示すように、コンピュータ(推定装置)5は、プロセッサ(制御装置)210、記憶装置(例えば、ROMやRAMやHDD等)220、入力部230、及び出力部250を備える。 As shown in FIG. 7, the computer (estimation device) 5 includes a processor (control device) 210, a storage device (for example, ROM, RAM, HDD, etc.) 220, an input section 230, and an output section 250.
 プロセッサ(制御装置)210は、CPUやMPUやGPU等の制御部であり、データ取得部320、推定部350、及び識別部360を備える。データ取得部320、推定部350、及び識別部360はバス(図示せず)により電気的に接続され、相互に通信可能である。 The processor (control device) 210 is a control unit such as a CPU, MPU, or GPU, and includes a data acquisition unit 320, an estimation unit 350, and an identification unit 360. The data acquisition unit 320, the estimation unit 350, and the identification unit 360 are electrically connected by a bus (not shown) and can communicate with each other.
 記憶装置(記憶部)220は、認知バイアスデータ380、行動データ390、対象者データ400、及び推定データ格納部470を含む。 The storage device (storage unit) 220 includes cognitive bias data 380, behavioral data 390, subject data 400, and estimated data storage unit 470.
 入力部230は、対象者6の認知バイアスに関する認知バイアスデータ380を入力する。入力部230は、各種データ(認知バイアスデータ380、行動データ390、対象者データ400)を入力する。入力部230は、各種データの格納命令を実行することで、各種データを関連付けて記憶装置220に格納する。ここで、認知バイアスデータ380、行動データ390、対象者データ400(属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データ)及びこれらの特徴量データは、上記の認知バイアスデータ38、行動データ39、対象者データ40と同様である。 The input unit 230 inputs cognitive bias data 380 regarding the cognitive bias of the subject 6. The input unit 230 inputs various data (cognitive bias data 380, behavior data 390, subject data 400). The input unit 230 associates various types of data and stores them in the storage device 220 by executing a command to store various types of data. Here, the cognitive bias data 380, behavioral data 390, subject data 400 (attribute data, location data, health data, exercise data, lifestyle data, and medical data) and their feature data are the above cognitive bias data. 38, behavioral data 39, and subject data 40.
 識別部360は、対象者データ400である認知バイアスデータ、属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つのうち、時系列データ及び非時系列データを識別する。 The identification unit 360 identifies time series data and non-time series data from at least one of cognitive bias data, attribute data, location data, health data, exercise data, lifestyle data, and medical data, which are the subject data 400. do.
 次に、コンピュータ(推定装置)5がネットワーク2を介して機械学習サーバ4に学習用データ(教師データ)を送信するプロセスについて説明する。コンピュータ(推定装置)5は、学習モデル(推定モデル)を生成するために、機械学習サーバ4に各種データ(認知バイアスデータ380等)を出力する。 Next, a process in which the computer (estimation device) 5 transmits learning data (teacher data) to the machine learning server 4 via the network 2 will be described. The computer (estimation device) 5 outputs various data (cognitive bias data 380, etc.) to the machine learning server 4 in order to generate a learning model (estimation model).
 図8は、本実施形態の学習用データ(教師データ)の送信プロセスを示す図である。図8に示すように、ステップS10において、入力部230が各種データ(認知バイアスデータ380、行動データ390、対象者データ400)を入力する。入力部230は、各種データの格納命令を実行することで、各種データを関連付けて記憶装置220に格納する(ステップS20,ステップS30)。 FIG. 8 is a diagram showing the process of transmitting learning data (teacher data) in this embodiment. As shown in FIG. 8, in step S10, the input unit 230 inputs various data (cognitive bias data 380, behavior data 390, subject data 400). The input unit 230 associates various types of data and stores them in the storage device 220 by executing a command to store various types of data (step S20, step S30).
 データ取得部320が、取得命令を実行することで、記憶装置220に格納されている各種データを取得する。出力部250が、送信命令を実行することで、各種データを機械学習サーバ4にネットワーク2を介して送信する(ステップS40)。 The data acquisition unit 320 acquires various data stored in the storage device 220 by executing the acquisition command. The output unit 250 transmits various data to the machine learning server 4 via the network 2 by executing the transmission command (step S40).
 機械学習サーバ4の入力部23が、推定装置5から受信した各種データ(認知バイアスデータ380、行動データ390、及び対象者データ400)を入力する。入力された各種データ(認知バイアスデータ380、行動データ390、及び対象者データ400)は、それぞれ認知バイアスデータ38、行動データ39、及び対象者データ40として、記憶装置22に格納される。時系列データ及び非時系列データは、識別部36により識別される。 The input unit 23 of the machine learning server 4 inputs various data (cognitive bias data 380, behavior data 390, and subject data 400) received from the estimation device 5. The various input data (cognitive bias data 380, behavioral data 390, and subject data 400) are stored in the storage device 22 as cognitive bias data 38, behavioral data 39, and subject data 40, respectively. The time series data and non-time series data are identified by the identification unit 36.
 機械学習サーバ4のデータ取得部32が、記憶装置22に格納されている各種データを取得し、機械学習サーバ4の機械学習部33が、推定モデル生成命令を実行することで、取得された各種データ(これらの特徴量データを含む)に基づいて、ニューラルネットワークにより学習モデル(推定モデル)を生成する。 The data acquisition unit 32 of the machine learning server 4 acquires various data stored in the storage device 22, and the machine learning unit 33 of the machine learning server 4 executes the estimation model generation command to obtain the various acquired data. A learning model (estimated model) is generated by a neural network based on the data (including these feature data).
 このように、コンピュータ(推定装置)5は、機械学習サーバ4に学習用データ(教師データ)を出力する機能を有する。認知バイアスデータ380、行動データ390、及び対象者データ400がそれぞれ関連付けられることで、機械学習サーバ4の機械学習部33による学習用データとして用いられる。また、認知バイアスデータ380、行動データ390、及び対象者データ400は、対象者6以外の対象者の非対象者データ41として用いられてもよい。 In this way, the computer (estimation device) 5 has a function of outputting learning data (teacher data) to the machine learning server 4. The cognitive bias data 380, the behavior data 390, and the subject data 400 are associated with each other and used as learning data by the machine learning unit 33 of the machine learning server 4. Further, the cognitive bias data 380, the behavior data 390, and the target person data 400 may be used as non-target person data 41 of the target person other than the target person 6.
 次に、機械学習サーバ4における学習モデル(推定モデル)を使って推定された行動データ及びその他の各種データをコンピュータ(推定装置)5が出力する機能について説明する。 Next, a function of the computer (estimation device) 5 to output behavior data and other various data estimated using the learning model (estimation model) in the machine learning server 4 will be explained.
 なお、本実施形態では、学習モデル(推定モデル)は、機械学習サーバ4の学習モデル格納部46に格納されている学習モデル(推定モデル)を用いるが、学習モデル格納部46に格納されている学習モデル(推定モデル)を、ネットワーク2を介してコンピュータ(推定装置)5の記憶装置220に格納することで、コンピュータ(推定装置)5に格納されている学習モデル(推定モデル)を用いてもよい。 Note that in this embodiment, the learning model (estimated model) stored in the learning model storage unit 46 of the machine learning server 4 is used as the learning model (estimated model); By storing the learning model (estimation model) in the storage device 220 of the computer (estimation device) 5 via the network 2, even if the learning model (estimation model) stored in the computer (estimation device) 5 is used. good.
 本実施形態では、対象者6の認知バイアスデータ380及び対象者データの非時系列データが予めコンピュータ(推定装置)5から機械学習サーバ4に送信されているため、コンピュータ(推定装置)5は、対象者6の対象者データの時系列データを機械学習サーバ4に送信する。なお、新たな認知バイアスデータ380及び対象者データの新たな非時系列データが入力部230から入力された場合は、コンピュータ(推定装置)5は、新たな認知バイアスデータ380及び対象者データの新たな非時系列データを機械学習サーバ4に送信する。各種データを受信した機械学習サーバ4は、機械学習部33により、新たなデータに基づいて学習モデル(推定モデル)を更新する。 In this embodiment, since the cognitive bias data 380 of the subject 6 and the non-time series data of the subject data are sent from the computer (estimation device) 5 to the machine learning server 4 in advance, the computer (estimation device) 5 The time series data of the subject data of the subject 6 is transmitted to the machine learning server 4. Note that when new cognitive bias data 380 and new non-time series data of the subject data are input from the input unit 230, the computer (estimation device) 5 inputs the new cognitive bias data 380 and the new non-time series data of the subject data. The non-time-series data is sent to the machine learning server 4. The machine learning server 4 that has received the various data updates the learning model (estimated model) using the machine learning unit 33 based on the new data.
 図9は、本実施形態の学習モデル(推定モデル)により推定された推定データの出力プロセスを示す図である。図9に示すように、ステップS10において、入力部230が各種データ(対象者データ400)を入力する。入力部230は、各種データの格納命令を実行することで、各種データを関連付けて記憶装置220に格納する(ステップS20,ステップS30)。 FIG. 9 is a diagram showing the output process of estimated data estimated by the learning model (estimation model) of this embodiment. As shown in FIG. 9, in step S10, the input unit 230 inputs various data (subject data 400). The input unit 230 associates various types of data and stores them in the storage device 220 by executing a command to store various types of data (step S20, step S30).
 なお、対象者データ400(属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データ)及びこれらの特徴量データは、上記の対象者データ40と同様であるが、機械学習サーバ4の機械学習部33による学習用データ(教師データ)とは別のデータである。 Note that the target person data 400 (attribute data, location data, health data, exercise data, lifestyle data, and medical data) and their feature data are similar to the above-mentioned target person data 40, but the machine learning server This data is different from the learning data (teacher data) by the machine learning unit 33 of No. 4.
 データ取得部320が、取得命令を実行することで、記憶装置220に格納されている各種データを取得する。推定部350が、推定命令を実行することで、各種データを機械学習サーバ4にネットワーク2を介して送信する(ステップS400)。 The data acquisition unit 320 acquires various data stored in the storage device 220 by executing the acquisition command. The estimation unit 350 transmits various data to the machine learning server 4 via the network 2 by executing the estimation command (step S400).
 機械学習サーバ4の入力部23が、推定装置5から受信した各種データ(対象者データ400)を入力する。 The input unit 23 of the machine learning server 4 inputs various data (target person data 400) received from the estimation device 5.
 機械学習サーバ4の推定部35が、推定命令を実行することで、取得された各種データ(これらの特徴量データを含む)に基づいて、学習モデル(推定モデル)により行動データを推定する。 The estimation unit 35 of the machine learning server 4 estimates behavioral data using a learning model (estimation model) based on the various acquired data (including these feature data) by executing the estimation command.
 また、推定部35が、認知バイアスデータ38に加えて又は認知バイアスデータ38とは別に、対象者6の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つの対象者データ40に基づいて対象者6の行動データを推定してもよい。 In addition to or separately from the cognitive bias data 38, the estimation unit 35 also includes at least one of attribute data, location data, health data, exercise data, lifestyle data, and medical data of the subject 6. The behavioral data of the subject 6 may be estimated based on the subject data 40.
 また、推定部35が、認知バイアスデータ38に加えて又は認知バイアスデータ38とは別に、対象者6の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つの対象者データ40に基づいて、対象者6の認知バイアスデータ、属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つを、アウトカムデータとして推定してもよい。 In addition to or separately from the cognitive bias data 38, the estimation unit 35 also includes at least one of attribute data, location data, health data, exercise data, lifestyle data, and medical data of the subject 6. Based on the subject data 40, at least one of cognitive bias data, attribute data, location data, health data, exercise data, lifestyle data, and medical data of the subject 6 may be estimated as outcome data.
 また、推定部35が、認知バイアスデータ38に加えて又は認知バイアスデータ38とは別に、対象者6以外の非対象者の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つの非対象者データ41に基づいて対象者6の行動データを推定してもよい。 In addition to or separately from the cognitive bias data 38, the estimation unit 35 also collects attribute data, location data, health data, exercise data, lifestyle data, and medical information of non-target persons other than the target person 6. The behavior data of the target person 6 may be estimated based on at least one non-target person data 41 of the data.
 また、推定部35が、認知バイアスデータ38に加えて又は認知バイアスデータ38とは別に、対象者6以外の非対象者の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つの非対象者データ41に基づいて、対象者6の認知バイアスデータ、属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つを、アウトカムデータとして推定してもよい。 In addition to or separately from the cognitive bias data 38, the estimation unit 35 also collects attribute data, location data, health data, exercise data, lifestyle data, and medical information of non-target persons other than the target person 6. Based on at least one non-target person data 41 of the data, at least one of the target person 6's cognitive bias data, attribute data, location data, health data, exercise data, lifestyle data, and medical data is used as outcome data. It may be estimated.
 推定部35は、学習モデル格納部46から学習モデル(推定モデル)を読み出し、認知バイアスデータ380を学習モデル(推定モデル)のニューラルネットワークの入力層に入力し、推定された推定データ(行動データ、認知バイアスデータ、属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つ)を出力層から取得する。推定データは、推定データ格納部47に格納される。 The estimation unit 35 reads the learning model (estimated model) from the learning model storage unit 46, inputs the cognitive bias data 380 into the input layer of the neural network of the learning model (estimated model), and inputs the estimated estimation data (behavior data, At least one of cognitive bias data, attribute data, location data, health data, exercise data, lifestyle data, and medical data is obtained from the output layer. The estimated data is stored in the estimated data storage section 47.
 推定データは、機械学習サーバ4の出力部25により、ネットワーク2を介してコンピュータ(推定装置)5に送信される。コンピュータ(推定装置)5の入力部230は、受信命令を実行することで、推定データを受信する(ステップS50)。入力部230は、推定データを推定データ格納部470に格納する。 The estimation data is transmitted by the output unit 25 of the machine learning server 4 to the computer (estimation device) 5 via the network 2. The input unit 230 of the computer (estimation device) 5 receives the estimation data by executing the reception command (step S50). The input unit 230 stores the estimated data in the estimated data storage unit 470.
 出力部250は、推定データ出力命令を実行することで、認知バイアスデータに基づいて対象者6に行動を促したり維持したりする行動データを推定するためのニューラルネットワークを含む学習モデル(推定モデル)により、入力部230により入力された認知バイアスデータから推定された行動データを出力する(ステップS60)。また、出力部250は、推定データ出力命令を実行することで、その他の推定データを出力する(ステップS60)。 By executing the estimated data output command, the output unit 250 generates a learning model (estimation model) including a neural network for estimating behavioral data that urges or maintains behavior in the subject 6 based on the cognitive bias data. Accordingly, behavioral data estimated from the cognitive bias data input by the input unit 230 is output (step S60). Furthermore, the output unit 250 outputs other estimated data by executing the estimated data output command (step S60).
 出力された推定データは、コンピュータ(推定装置)5に電気的に接続された通信端末(タブレットやウェアラブル端末等)のディスプレイやコンピュータ(推定装置)5のディスプレイに表示される。 The output estimation data is displayed on the display of a communication terminal (tablet, wearable terminal, etc.) electrically connected to the computer (estimation device) 5 or on the display of the computer (estimation device) 5.
 図10は、対象者に応じた認知バイアスデータ及び対象者データから推定された行動データ及びアウトカムデータの例を示す図である。 FIG. 10 is a diagram illustrating an example of cognitive bias data according to a subject and behavioral data and outcome data estimated from the subject data.
 例えば、対象者7について、認知バイアスデータとして、自制的傾向のデータが取得され、対象者データとして、高血圧のデータが取得された場合、入力部230が、対象者7の認知バイアスに関する認知バイアスデータを入力し、出力部250が、認知バイアスデータ及び対象者データに基づいて対象者7に行動を促したり維持したりする行動データを推定するためのニューラルネットワークを含む推定モデルにより、入力部230により入力された認知バイアスデータ及び対象者データから推定された行動データ(高血圧改善に関する数値目標を強調するメッセージ等)及びアウトカムデータ(推定血圧等)を出力する。また、行動データとして、出力部250が、服薬や運動を促したり維持したりする音、光、匂い、及び力に関するデータを、所定の時間に、スピーカー、発光装置、匂い調合発生装置、及び駆動装置(例えば、マッサージ装置やモータ)等に出力してもよい。 For example, when data on self-control tendency is acquired as cognitive bias data for subject 7, and data on hypertension is acquired as subject data, the input unit 230 inputs cognitive bias data regarding the cognitive bias of subject 7. is input, and the output unit 250 uses an estimation model including a neural network for estimating behavioral data that urges or maintains behavior in the target person 7 based on the cognitive bias data and the target person data. Outputs behavioral data (such as messages emphasizing numerical targets for improving hypertension) and outcome data (estimated blood pressure, etc.) estimated from the input cognitive bias data and subject data. In addition, as behavioral data, the output unit 250 outputs data regarding sounds, lights, odors, and forces that encourage or maintain medication or exercise at a predetermined time to a speaker, a light emitting device, an odor mixture generator, and a driver. It may also be output to a device (for example, a massage device or a motor).
 なお、血圧データは、時系列データとしてウェアラブル端末から取得され、血圧データの取得時間に応じて、新たな行動データや将来の血圧値(アウトカムデータ)が推定される。 Note that the blood pressure data is acquired from the wearable terminal as time-series data, and new behavioral data and future blood pressure values (outcome data) are estimated according to the acquisition time of the blood pressure data.
 同様に、対象者8について、認知バイアスデータとして、リスク愛好傾向のデータが取得され、対象者データとして、高カロリーのデータ(例えば、食事の写真画像)が取得された場合、出力部250が行動データ(摂取カロリーを制限することのメリットを強調する音声等)及びアウトカムデータ(推定体重等)を出力する。また、行動データとして、出力部250が、食事や間食を抑制する音、光、匂い、及び力に関するデータを、所定の時間に、スピーカー、発光装置、匂い調合発生装置、及び駆動装置(例えば、マッサージ装置やモータ)等に出力してもよい。 Similarly, for subject 8, if data on risk-loving tendencies is acquired as cognitive bias data and high-calorie data (for example, a photographic image of a meal) is acquired as subject data, the output unit 250 Output data (such as audio that emphasizes the benefits of restricting calorie intake) and outcome data (such as estimated body weight). In addition, as behavior data, the output unit 250 outputs data regarding sounds, lights, odors, and forces for suppressing meals and snacks to speakers, light emitting devices, odor mixture generators, and driving devices (e.g., It may also be output to a massage device, motor, etc.
 同様に、対象者9について、認知バイアスデータとして、リスク回避傾向のデータが取得され、対象者データとして、高ストレスのデータ(例えば、SNSのコメント)が取得された場合、出力部250が行動データ(高ストレスのリスクを強調するメッセージ等)及びアウトカムデータ(推定鬱病スケール等)を出力する。また、行動データとして、出力部250が、ストレスを軽減する音楽、光、匂い、及び力に関するデータを、所定の時間に、スピーカー、発光装置、匂い調合発生装置、及び駆動装置(例えば、マッサージ装置やモータ)等に出力してもよい。 Similarly, when data on risk aversion tendency is acquired as cognitive bias data and high stress data (e.g. comments on SNS) is acquired as subject data regarding subject 9, the output unit 250 outputs behavioral data. (e.g., a message emphasizing the risk of high stress) and outcome data (e.g., an estimated depression scale). In addition, as behavior data, the output unit 250 outputs data related to stress-reducing music, light, smell, and force at a predetermined time to a speaker, a light emitting device, an odor mixture generator, and a drive device (for example, a massage device). or a motor), etc.
 同様に、対象者10について、認知バイアスデータとして、衝動的傾向のデータが取得され、対象者データとして、睡眠不足のデータ(例えば、ウェアラブル端末により計測された睡眠時間)が取得された場合、出力部250が行動データ(すぐに実行可能な睡眠不足解消方法を提案するメッセージ等)及びアウトカムデータ(睡眠の推定時間や推定質等)を出力する。また、行動データとして、出力部250が、睡眠誘導する音楽、光、匂い、及び力に関するデータを、所定の時間に、スピーカー、発光装置、匂い調合発生装置、及び(例えば、マッサージ装置やモータ)等に出力してもよい。 Similarly, for the subject 10, if data on impulsive tendency is acquired as cognitive bias data and data on sleep deprivation (for example, sleep time measured by a wearable terminal) is acquired as subject data, the output The unit 250 outputs behavioral data (such as a message proposing an immediately executable method for resolving sleep deprivation) and outcome data (such as estimated sleep time and quality). In addition, as behavioral data, the output unit 250 outputs data regarding sleep-inducing music, light, smell, and force at a predetermined time to a speaker, a light emitting device, an odor mixture generator, and (for example, a massage device or a motor). You can also output it to
 このように、コンピュータ(推定装置)5は、学習モデル(推定モデル)により推定された行動データ又は/及びアウトカムデータを出力する。 In this way, the computer (estimation device) 5 outputs behavior data and/or outcome data estimated by the learning model (estimation model).
 以上のように、本実施形態によれば、認知バイアスにより影響を受ける健康や医療や生活習慣に対する対象者の行動をモデル化し、健康や医療や生活習慣に対する対象者の行動を促したり維持したりするための学習モデル(推定モデル)を構築することができる。 As described above, according to the present embodiment, the behavior of the target person regarding health, medical care, and lifestyle habits that are affected by cognitive bias is modeled, and the behavior of the target person regarding health, medical care, and lifestyle habits is encouraged and maintained. It is possible to construct a learning model (estimation model) for
 また、本実施形態によれば、認知バイアスにより影響を受ける健康や医療や生活習慣に対する対象者のアウトカムをモデル化し、健康や医療や生活習慣に対する対象者のアウトカムを改善したり維持したりするための学習モデル(推定モデル)を構築することができる。 Further, according to the present embodiment, the target person's outcomes regarding health, medical care, and lifestyle habits that are affected by cognitive bias are modeled, and the target person's outcomes regarding health, medical care, and lifestyle habits are improved or maintained. A learning model (estimation model) can be constructed.
 また、認知バイアスデータに加えて又は認知バイアスデータとは別に、対象者自身の対象者データに基づいて対象者の推定データ(行動データ、認知バイアスデータ、属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つ)を推定するため、対象者自身の特性に合致した精度の高い推定データを出力することができる。 Additionally, in addition to or separately from cognitive bias data, estimated data (behavioral data, cognitive bias data, attribute data, location data, health data, exercise data) of the subject based on the subject's own subject data may be used. , lifestyle data, and medical data), highly accurate estimation data that matches the characteristics of the subject can be output.
 さらに、認知バイアスデータに加えて又は認知バイアスデータとは別に、対象者以外の非対象者データに基づいて対象者の推定データを推定するため、対象者以外の一般的な特性を考慮した精度の高い推定データを出力することができる。 Furthermore, in order to estimate the target person's estimated data based on non-target person data other than the target person in addition to or separately from the cognitive bias data, the accuracy is improved by taking into account the general characteristics of the person other than the target person. It is possible to output highly estimated data.
 このように、精度の高い推定データを対象者に提示することで、対象者に行動を促したり維持したりするナッジやアウトカムを改善したり維持したりするナッジを効果的に起こすことが期待される。 In this way, by presenting highly accurate estimation data to subjects, it is expected that nudges that encourage or maintain behavior in subjects, as well as nudges that improve or maintain outcomes, can be effectively generated. Ru.
 健康や医療や生活習慣(例えば、健康増進、疾病の予防・治療)について、最適なアウトカムを得るためには、対象者自身の行動を医学的に好ましい方向に促すことが必要である。 In order to obtain optimal outcomes regarding health, medical care, and lifestyle habits (e.g., health promotion, disease prevention and treatment), it is necessary to encourage the target person's own behavior in a medically favorable direction.
 しかし、既存の健康や医療や生活習慣に関するガイドラインは、匿名化された集団データの統計値に基づいているため、対象者個別のデータのばらつきは、誤差として統計上は処理されおり、既存の指導や介入では、対象者自身の特性に合致した精度の高い指導や介入を行うことは困難であった。また、既存の専門家による指導や介入は、対象者を観察する時間や場所等の制約から、対象者の限定的なデータに基づいて、集団データに基づくガイドラインや専門家の経験に照らすことにより行われていたため、対象者自身の特性に合致した精度の高い指導や介入を行うことは困難であった。 However, existing guidelines regarding health, medical care, and lifestyle habits are based on statistical values of anonymized population data, so variations in data for individual subjects are statistically treated as errors, and existing guidelines It has been difficult to provide highly accurate guidance and interventions that match the characteristics of the target person. In addition, existing guidance and interventions by experts are based on limited data on subjects due to constraints such as time and place to observe subjects, and are based on guidelines based on group data and in light of experts' experience. Therefore, it was difficult to provide highly accurate guidance and intervention that matched the characteristics of the target person.
 本実施形態によれば、時間や場所の制約なしに、対象者の対象者データに基づいて、対象者自身の特性に合致した精度の高い指導や介入を行うことができ、対象者にとって最適なアウトカムをもたらす行動を促したり維持したりすることができる。 According to this embodiment, it is possible to provide highly accurate guidance and intervention that matches the characteristics of the target person based on the target person's data without restrictions on time or place, and provides the optimal guidance and intervention for the target person. It can encourage and maintain behaviors that lead to outcomes.
(第2の実施形態)
 第2の実施形態では、対象者の行動に関するデータに基づいてアウトカムを推定する推定システムについて説明する。上記の第1の実施形態と同様の部分については説明を省略する。
(Second embodiment)
In the second embodiment, an estimation system for estimating an outcome based on data regarding a subject's behavior will be described. Description of parts similar to those in the first embodiment described above will be omitted.
 推定モデルの生成について説明する。図5に示すように、ステップS1において、入力部23が各種データ(行動データ39、対象者データ40、及び非対象者データ41)を入力する。入力部23は、各種データの格納命令を実行し、各種データを関連付けて記憶装置22に格納する(ステップS2,ステップS3)。 The generation of the estimation model will be explained. As shown in FIG. 5, in step S1, the input unit 23 inputs various data (behavior data 39, target person data 40, and non-target person data 41). The input unit 23 executes a storage instruction for various data, associates the various data, and stores the data in the storage device 22 (step S2, step S3).
 データ取得部32が、取得命令を実行することで、記憶装置22に格納されている各種データを取得する(ステップS4)。機械学習部33が、推定モデル生成命令を実行することで、取得された各種データ(これらの特徴量データを含む)に基づいて、ニューラルネットワークにより学習モデル(推定モデル)を生成する(ステップS5)。 The data acquisition unit 32 acquires various data stored in the storage device 22 by executing the acquisition command (step S4). The machine learning unit 33 generates a learning model (estimated model) using a neural network based on the acquired various data (including these feature amount data) by executing the estimated model generation command (step S5). .
 機械学習部33は、行動データ59(例えば、図3のC-1~C-5)を入力層に入力し、行動データ59に関連付けられた対象者データ(例えば、図3のC-1~C-5)を入力層に入力し、行動データ59に関連付けられた属性データ52(例えば、図3のE-11~E-15)、位置データ53(例えば、図3のE-21~E-25)、健康データ54(例えば、図3のE-31~E-35)、運動データ55(例えば、図3のE-41~E-45)、生活習慣データ56(例えば、図3のE-51~E-55)、及び医療データ57(例えば、図3のE-61~E-65)の少なくとも1つを出力層の正解値として入力するニューラルネットワークにより学習モデル(推定モデル)を生成する。 The machine learning unit 33 inputs the behavioral data 59 (for example, C-1 to C-5 in FIG. 3) to the input layer, and inputs the subject data (for example, C-1 to C-5 in FIG. 3) associated with the behavioral data 59 to the input layer. C-5) to the input layer, attribute data 52 (for example, E-11 to E-15 in FIG. 3) associated with behavior data 59, and position data 53 (for example, E-21 to E in FIG. -25), health data 54 (for example, E-31 to E-35 in Figure 3), exercise data 55 (for example, E-41 to E-45 in Figure 3), lifestyle data 56 (for example, E-51 to E-55) and medical data 57 (for example, E-61 to E-65 in FIG. 3) are inputted as correct values of the output layer. generate.
 機械学習部33は、乱数等の所定の値で初期化されたパラメータ(重み)を用いて、行動データ59が入力層に入力された際に出力層に出力された値と出力層の正解値(対象者データ52~57)との乖離を表すロス関数を算出し、ロス関数の微分値を勾配として、出力層に出力された値と出力層の正解値との乖離が小さくなるように、パラメータ(重み)を変化させることで、学習モデル(推定モデル)を生成する。 The machine learning unit 33 uses parameters (weights) initialized with predetermined values such as random numbers to determine the value output to the output layer when the behavioral data 59 is input to the input layer and the correct value of the output layer. (Target person data 52 to 57) A loss function representing the deviation from the output layer is calculated, and the differential value of the loss function is used as the slope, so that the deviation between the value output to the output layer and the correct value of the output layer becomes small. A learning model (estimated model) is generated by changing parameters (weights).
 このように、機械学習部33は、行動データ59を入力層に入力し、対象者データ52~57を出力層の正解値として入力するニューラルネットワークにより学習モデル(推定モデル)を生成する。学習モデル(推定モデル)は、畳み込み層、再帰演算層、及びアテンション機構の少なくとも1つを含むニューラルネットワークを備える。 In this way, the machine learning unit 33 generates a learning model (estimated model) using a neural network that inputs the behavior data 59 into the input layer and inputs the subject data 52 to 57 as correct values in the output layer. The learning model (estimated model) includes a neural network including at least one of a convolution layer, a recursive calculation layer, and an attention mechanism.
 学習モデル(推定モデル)は、行動データ59に加えて又は行動データ59とは別に、対象者6の属性データ52、位置データ53、健康データ54、運動データ55、生活習慣データ56、及び医療データ57(これらの特徴量データを含む)の少なくとも1つの対象者データに基づいて対象者6の対象者データ(アウトカムデータ)を推定するためのニューラルネットワークを含んでもよい。 The learning model (estimated model) includes attribute data 52, location data 53, health data 54, exercise data 55, lifestyle data 56, and medical data of the subject 6 in addition to or separately from the behavioral data 59. The neural network may include a neural network for estimating the subject data (outcome data) of the subject 6 based on at least one subject data of 57 (including these feature data).
 また、学習モデル(推定モデル)は、対象者6以外の非対象者の属性データ62、位置データ63、健康データ64、運動データ65、生活習慣データ66、及び医療データ67(これらの特徴量データを含む)の少なくとも1つの非対象者データ60に基づいて対象者6の対象者データ(アウトカムデータ)を推定するためのニューラルネットワークを含んでもよい。 In addition, the learning model (estimation model) includes attribute data 62, location data 63, health data 64, exercise data 65, lifestyle data 66, and medical data 67 (these feature amount data) of non-target persons other than the target person 6. The neural network may include a neural network for estimating target person data (outcome data) of the target person 6 based on at least one non-target person data 60 (including the above).
 また、学習モデル(推定モデル)は、行動データ59に加えて又は行動データ59とは別に、対象者6の属性データ52、位置データ53、健康データ54、運動データ55、生活習慣データ56、及び医療データ57(これらの特徴量データを含む)の少なくとも1つの対象者データに基づいて、対象者6の行動データ、属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つの対象者データ(アウトカムデータ)を推定するためのニューラルネットワークを含んでもよい。 The learning model (estimated model) also includes attribute data 52, location data 53, health data 54, exercise data 55, lifestyle data 56, and Based on at least one subject data of the medical data 57 (including these feature data), behavioral data, attribute data, location data, health data, exercise data, lifestyle data, and medical data of the subject 6 are determined. It may also include a neural network for estimating at least one subject data (outcome data).
 この場合、推定されるデータ(特に、時系列データ)がラベルデータ(正解データ)となり、当該データに関連付けられたデータ(対象者6の行動データや対象者データ)がニューラルネットワークの入力層に入力されて学習した学習モデル(推定モデル)が構築される。例えば、対象者6の過去の睡眠時間、その他の対象者データ、及び認知バイアスデータにより学習した学習モデル(推定モデル)を用いることで、対象者6の将来の睡眠時間(アウトカムデータ)が推定される。学習プロセスは、上記と同様である。 In this case, the estimated data (especially time series data) becomes the label data (correct data), and the data associated with this data (behavior data of subject 6 and subject data) is input to the input layer of the neural network. A learning model (estimation model) that has been trained using the following methods is constructed. For example, by using a learning model (estimation model) learned from Subject 6's past sleep time, other subject data, and cognitive bias data, Subject 6's future sleep time (outcome data) can be estimated. Ru. The learning process is similar to above.
 また、学習モデル(推定モデル)は、対象者6以外の非対象者の属性データ62、位置データ63、健康データ64、運動データ65、生活習慣データ66、及び医療データ67(これらの特徴量データを含む)の少なくとも1つの非対象者データ60に基づいて、対象者6の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つの対象者データ(アウトカムデータ)を推定するためのニューラルネットワークを含んでもよい。 In addition, the learning model (estimation model) includes attribute data 62, location data 63, health data 64, exercise data 65, lifestyle data 66, and medical data 67 (these feature amount data) of non-target persons other than the target person 6. At least one subject data (outcome data) of the subject 6's attribute data, location data, health data, exercise data, lifestyle data, and medical data is based on at least one non-target subject data 60 of may include a neural network for estimating.
 この場合、推定されるデータがラベルデータ(正解データ)となり、当該データに関連付けられたデータ(非対象者の行動データや非対象者データ)がニューラルネットワークの入力層に入力されて学習した学習モデル(推定モデル)が構築されてもよい。例えば、非対象者の行動データや非対象者データにより学習した学習モデル(推定モデル)を用いることで、対象者6のアウトカムデータが推定される。学習プロセスは、上記と同様である。 In this case, the estimated data becomes label data (correct data), and the data associated with this data (behavior data of non-target people and data of non-target people) is input to the input layer of the neural network to learn the learning model. (estimation model) may be constructed. For example, the outcome data of the target person 6 is estimated by using a learning model (estimation model) learned from the non-target person's behavior data and the non-target person data. The learning process is similar to above.
 また、非対象者データは、各変数に対して先行研究によって明らかにされた定量的データや入力と出力をパラメトリック近似したモデルであり、先行研究のエビデンスで定量化されたデータに基づいて、非対象者データから、対象者6の行動データや対象者データ(アウトカムデータ)が決定又は推定されてもよい。 In addition, non-subject data is a model that parametrically approximates the quantitative data and inputs and outputs clarified by previous research for each variable, and is based on the data quantified by the evidence of previous research. Behavioral data and subject data (outcome data) of the subject 6 may be determined or estimated from the subject data.
 以上のように、学習モデル(推定モデル)は、畳み込み層、再帰演算層、及びアテンション機構の少なくとも1つを含み、対象者データ(又は、対象者データと非対象者データとを連結(Concatenation)したデータ)をニューラルネットワークの入力層に入力することにより機械学習した推定モデルである。非対象者データには、複数の非対象者のデータに基づく統計値や先行研究で得られたエビデンスに関するデータを含む。 As described above, the learning model (estimation model) includes at least one of a convolution layer, a recursive calculation layer, and an attention mechanism, and connects target person data (or target person data and non-target person data). This is an estimation model that is machine-learned by inputting the acquired data) into the input layer of a neural network. Non-subject data includes statistical values based on data from multiple non-subjects and data on evidence obtained from previous research.
 次に、図7を用いて、コンピュータ(推定装置)5の説明をする。コンピュータ(推定装置)5は、行動データを入力し、学習モデル(推定モデル)により取得されたアウトカムデータを出力する。 Next, the computer (estimation device) 5 will be explained using FIG. The computer (estimation device) 5 inputs behavioral data and outputs outcome data acquired by a learning model (estimation model).
 次に、コンピュータ(推定装置)5がネットワーク2を介して機械学習サーバ4に学習用データ(教師データ)を送信するプロセスについて説明する。コンピュータ(推定装置)5は、学習モデル(推定モデル)を生成するために、機械学習サーバ4に各種データ(認知バイアスデータ380等)を出力する。 Next, a process in which the computer (estimation device) 5 transmits learning data (teacher data) to the machine learning server 4 via the network 2 will be described. The computer (estimation device) 5 outputs various data (cognitive bias data 380, etc.) to the machine learning server 4 in order to generate a learning model (estimation model).
 図8に示すように、ステップS10において、入力部230が各種データ(行動データ390及び対象者データ400)を入力する。入力部230は、各種データの格納命令を実行することで、各種データを関連付けて記憶装置220に格納する(ステップS20,ステップS30)。 As shown in FIG. 8, in step S10, the input unit 230 inputs various data (behavior data 390 and subject data 400). The input unit 230 associates various types of data and stores them in the storage device 220 by executing a command to store various types of data (step S20, step S30).
 データ取得部320が、取得命令を実行することで、記憶装置220に格納されている各種データを取得する。出力部250が、送信命令を実行することで、各種データを機械学習サーバ4にネットワーク2を介して送信する(ステップS40)。 The data acquisition unit 320 acquires various data stored in the storage device 220 by executing the acquisition command. The output unit 250 transmits various data to the machine learning server 4 via the network 2 by executing the transmission command (step S40).
 機械学習サーバ4の入力部23が、推定装置5から受信した各種データ(行動データ390及び対象者データ400)を入力する。入力された各種データ(行動データ390及び対象者データ400)は、それぞれ行動データ39、及び対象者データ40として、記憶装置22に格納される。時系列データ及び非時系列データは、識別部36により識別される。 The input unit 23 of the machine learning server 4 inputs various data (behavior data 390 and subject data 400) received from the estimation device 5. The input various data (behavior data 390 and subject data 400) are stored in the storage device 22 as behavior data 39 and subject data 40, respectively. The time series data and non-time series data are identified by the identification unit 36.
 機械学習サーバ4のデータ取得部32が、記憶装置22に格納されている各種データを取得し、機械学習サーバ4の機械学習部33が、推定モデル生成命令を実行することで、取得された各種データ(これらの特徴量データを含む)に基づいて、ニューラルネットワークにより学習モデル(推定モデル)を生成する。 The data acquisition unit 32 of the machine learning server 4 acquires various data stored in the storage device 22, and the machine learning unit 33 of the machine learning server 4 executes the estimation model generation command to obtain the various acquired data. A learning model (estimated model) is generated by a neural network based on the data (including these feature data).
 このように、コンピュータ(推定装置)5は、機械学習サーバ4に学習用データ(教師データ)を出力する機能を有する。行動データ390及び対象者データ400(正解データ)が関連付けられることで、機械学習サーバ4の機械学習部33による学習用データとして用いられる。また、行動データ390及び対象者データ400は、対象者6以外の対象者の非対象者データ41として用いられてもよい。 In this way, the computer (estimation device) 5 has a function of outputting learning data (teacher data) to the machine learning server 4. The behavior data 390 and the subject data 400 (correct data) are associated with each other and used as learning data by the machine learning unit 33 of the machine learning server 4. Further, the behavior data 390 and the target person data 400 may be used as non-target person data 41 of the target person other than the target person 6.
 次に、機械学習サーバ4における学習モデル(推定モデル)を使って推定されたアウトカム及びその他の各種データをコンピュータ(推定装置)5が出力する機能について説明する。 Next, the function of the computer (estimation device) 5 to output the outcome and other various data estimated using the learning model (estimation model) in the machine learning server 4 will be explained.
 本実施形態では、対象者6の行動データ390及び対象者データの非時系列データが予めコンピュータ(推定装置)5から機械学習サーバ4に送信されているため、コンピュータ(推定装置)5は、対象者6の対象者データの時系列データを機械学習サーバ4に送信する。なお、新たな行動データ390及び対象者データの新たな非時系列データが入力部230から入力された場合は、コンピュータ(推定装置)5は、新たな行動データ390及び対象者データの新たな非時系列データを機械学習サーバ4に送信する。各種データを受信した機械学習サーバ4は、機械学習部33により、新たなデータに基づいて学習モデル(推定モデル)を更新する。 In this embodiment, since the behavioral data 390 of the target person 6 and the non-time series data of the target person data are sent from the computer (estimation device) 5 to the machine learning server 4 in advance, the computer (estimation device) 5 The time series data of the subject data of the person 6 is transmitted to the machine learning server 4. Note that when new behavior data 390 and new non-time series data of the subject data are input from the input unit 230, the computer (estimation device) 5 inputs the new behavior data 390 and new non-time series data of the subject data. Send the time series data to the machine learning server 4. The machine learning server 4 that has received the various data updates the learning model (estimated model) using the machine learning unit 33 based on the new data.
 図9は、本実施形態の学習モデル(推定モデル)により推定された推定データの出力プロセスを示す図である。図9に示すように、ステップS10において、入力部230が各種データ(対象者データ400)を入力する。入力部230は、各種データの格納命令を実行することで、各種データを関連付けて記憶装置220に格納する(ステップS20,ステップS30)。 FIG. 9 is a diagram showing the output process of estimated data estimated by the learning model (estimation model) of this embodiment. As shown in FIG. 9, in step S10, the input unit 230 inputs various data (subject data 400). The input unit 230 associates various types of data and stores them in the storage device 220 by executing a command to store various types of data (step S20, step S30).
 データ取得部320が、取得命令を実行することで、記憶装置220に格納されている各種データを取得する。推定部350が、推定命令を実行することで、各種データを機械学習サーバ4にネットワーク2を介して送信する(ステップS400)。 The data acquisition unit 320 acquires various data stored in the storage device 220 by executing the acquisition command. The estimation unit 350 transmits various data to the machine learning server 4 via the network 2 by executing the estimation command (step S400).
 機械学習サーバ4の入力部23が、推定装置5から受信した各種データ(対象者データ400)を入力する。 The input unit 23 of the machine learning server 4 inputs various data (target person data 400) received from the estimation device 5.
 機械学習サーバ4の推定部35が、推定命令を実行することで、取得された各種データ(これらの特徴量データを含む)に基づいて、学習モデル(推定モデル)により対象者データ(アウトカムデータ)を推定する。 By executing the estimation command, the estimation unit 35 of the machine learning server 4 calculates subject data (outcome data) using a learning model (estimation model) based on the various acquired data (including these feature data). Estimate.
 また、推定部35が、行動データ39に加えて又は行動データ39とは別に、対象者6の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つの対象者データ40に基づいて対象者6の対象者データ(アウトカムデータ)を推定してもよい。 In addition to or separately from the behavioral data 39, the estimating unit 35 also collects at least one of the target person's attribute data, location data, health data, exercise data, lifestyle data, and medical data of the target person 6. The subject data (outcome data) of the subject 6 may be estimated based on the data 40.
 また、推定部35が、行動データ39に加えて又は行動データ39とは別に、対象者6の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つの対象者データ40に基づいて、対象者6の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つを、アウトカムデータとして推定してもよい。 In addition to or separately from the behavioral data 39, the estimating unit 35 also collects at least one of the target person's attribute data, location data, health data, exercise data, lifestyle data, and medical data of the target person 6. Based on the data 40, at least one of attribute data, location data, health data, exercise data, lifestyle data, and medical data of the subject 6 may be estimated as outcome data.
 また、推定部35が、行動データ39に加えて又は行動データ39とは別に、対象者6以外の非対象者の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つの非対象者データ41に基づいて対象者6のアウトカムデータを推定してもよい。 Further, in addition to or separately from the behavioral data 39, the estimation unit 35 may collect attribute data, location data, health data, exercise data, lifestyle data, and medical data of non-target persons other than the target person 6. The outcome data of the subject 6 may be estimated based on at least one non-target subject data 41.
 また、推定部35が、行動データ39に加えて又は行動データ39とは別に、対象者6以外の非対象者の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つの対象者データ41に基づいて、対象者6の認知バイアスデータ、属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つを、アウトカムデータとして推定してもよい。 Further, in addition to or separately from the behavioral data 39, the estimation unit 35 may collect attribute data, location data, health data, exercise data, lifestyle data, and medical data of non-target persons other than the target person 6. Based on at least one subject data 41, at least one of cognitive bias data, attribute data, location data, health data, exercise data, lifestyle data, and medical data of the subject 6 is estimated as outcome data. Good too.
 推定部35は、学習モデル格納部46から学習モデル(推定モデル)を読み出し、行動データ390を学習モデル(推定モデル)のニューラルネットワークの入力層に入力し、推定された推定データ(属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つ)を出力層から取得する。推定データは、推定データ格納部47に格納される。 The estimation unit 35 reads the learning model (estimated model) from the learning model storage unit 46, inputs the behavior data 390 to the input layer of the neural network of the learning model (estimated model), and inputs the estimated estimation data (attribute data, position data, health data, exercise data, lifestyle data, and medical data) from the output layer. The estimated data is stored in the estimated data storage section 47.
 推定データは、機械学習サーバ4の出力部25により、ネットワーク2を介してコンピュータ(推定装置)5に送信される。コンピュータ(推定装置)5の入力部230は、受信命令を実行することで、推定データを受信する(ステップS50)。入力部230は、推定データを推定データ格納部470に格納する。 The estimation data is transmitted by the output unit 25 of the machine learning server 4 to the computer (estimation device) 5 via the network 2. The input unit 230 of the computer (estimation device) 5 receives the estimation data by executing the reception command (step S50). The input unit 230 stores the estimated data in the estimated data storage unit 470.
 出力部250は、推定データ出力命令を実行することで、行動データに基づいて対象者6にアウトカムデータを推定するためのニューラルネットワークを含む学習モデル(推定モデル)により、入力部230により入力された行動データから推定されたアウトカムデータを出力する(ステップS60)。また、出力部250は、推定データ出力命令を実行することで、その他の推定データを出力する(ステップS60)。 By executing the estimated data output command, the output unit 250 outputs information input from the input unit 230 using a learning model (estimation model) including a neural network for estimating outcome data for the subject 6 based on behavioral data. Outcome data estimated from the behavior data is output (step S60). Furthermore, the output unit 250 outputs other estimated data by executing the estimated data output command (step S60).
 以上のように、本実施形態によれば、対象者の行動により影響を受ける健康や医療や生活習慣に対するアウトカムをモデル化し、健康や医療や生活習慣に対するアウトカムを改善したり維持したりするための学習モデル(推定モデル)を構築することができる。 As described above, according to the present embodiment, the outcomes for health, medical care, and lifestyle habits that are affected by the behavior of the target person are modeled, and the outcomes for health, medical care, and lifestyle habits are modeled to improve or maintain the outcomes for health, medical care, and lifestyle habits. A learning model (estimation model) can be constructed.
 また、行動データに加えて又は行動データとは別に、対象者自身の対象者データに基づいて対象者の推定データ(行動データ、認知バイアスデータ、属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つ)を推定するため、対象者自身の特性に合致した精度の高い推定データを出力することができる。 In addition to or apart from behavioral data, estimated data (behavioral data, cognitive bias data, attribute data, location data, health data, exercise data, lifestyle data, (at least one of habit data and medical data), highly accurate estimation data that matches the characteristics of the subject can be output.
 さらに、行動データに加えて又は行動データとは別に、対象者以外の非対象者データに基づいて対象者の推定データを推定するため、対象者以外の一般的な特性を考慮した精度の高い推定データを出力することができる。 Furthermore, since the estimated data of the target person is estimated based on non-target person data other than the target person in addition to or separately from the behavioral data, highly accurate estimation takes into account the general characteristics of the other person. Data can be output.
 このように、精度の高い推定データを対象者に提示することで、対象者にアウトカムを改善したり維持したりするナッジを効果的に起こすことが期待される。 In this way, by presenting highly accurate estimation data to subjects, it is expected to effectively nudge subjects to improve or maintain outcomes.
 以上、本発明にかかる実施形態について説明したが、本発明はこれらに限定されるものではなく、請求項に記載された範囲内において変更・変形することが可能である。 Although the embodiments according to the present invention have been described above, the present invention is not limited to these, and can be modified and modified within the scope of the claims.
 コンピュータ(推定装置)5は、ラップトップ・コンピュータ、デスクトップ・コンピュータの他、タブレット端末、スマートフォン、及びウェアラブル端末であってもよい。 The computer (estimation device) 5 may be a laptop computer, a desktop computer, a tablet terminal, a smartphone, or a wearable terminal.
 また、コンピュータ(推定装置)5は、他の通信端末(ラップトップ・コンピュータ、デスクトップ・コンピュータ、タブレット端末、スマートフォン、及びウェアラブル端末等)に電気的に接続され、入力部230は、他の通信端末から各種データを入力してもよく、出力部250は、他の通信端末へ各種データを出力してもよい。 Further, the computer (estimation device) 5 is electrically connected to other communication terminals (laptop computer, desktop computer, tablet terminal, smartphone, wearable terminal, etc.), and the input unit 230 is connected to other communication terminals (laptop computer, desktop computer, tablet terminal, smartphone, wearable terminal, etc.). Various data may be input from the terminal, and the output unit 250 may output various data to other communication terminals.
 また、機械学習サーバ4も本発明の推定装置になりうる。この場合、機械学習サーバ4の入力部23、出力部25、データ取得部32、推定部35、識別部36、及び推定データ格納部47の機能は、コンピュータ(推定装置)5の入力部230、出力部250、データ取得部320、推定部350、識別部360、及び推定データ格納部470の機能にそれぞれ対応する。 Furthermore, the machine learning server 4 can also serve as the estimation device of the present invention. In this case, the functions of the input unit 23, output unit 25, data acquisition unit 32, estimation unit 35, identification unit 36, and estimated data storage unit 47 of the machine learning server 4 are the functions of the input unit 230 of the computer (estimation device) 5, They correspond to the functions of the output section 250, the data acquisition section 320, the estimation section 350, the identification section 360, and the estimated data storage section 470, respectively.
 また、本実施形態では、機械学習サーバ4が学習モデル(推定モデル)を生成するが、コンピュータ(推定装置)5が学習モデル(推定モデル)を生成してもよい。 Further, in this embodiment, the machine learning server 4 generates the learning model (estimated model), but the computer (estimation device) 5 may generate the learning model (estimated model).
 また、行動データは、対象者に行動を促すためのインセンティブに関するデータを含んでもよい。例えば、行動データは、所定の場所で使用可能なクーポンやポイント、金銭、及び特別な権利の付与に関するデータであってもよい。 Furthermore, the behavioral data may include data regarding incentives for encouraging the target person to take action. For example, the behavioral data may be data regarding coupons, points, money, and special rights that can be used at a predetermined location.
 また、本実施形態には、対象者の認知バイアスに関する認知バイアスデータを入力するステップと、前記認知バイアスデータに基づいて、前記対象者の行動に関する行動データ、前記対象者の属性データ、前記対象者の位置データ、前記対象者の健康データ、前記対象者の運動データ、前記対象者の生活習慣データ、及び前記対象者の医療データの少なくとも1つを推定するためのニューラルネットワークを含む推定モデルにより、前記入力部により入力された前記認知バイアスデータから推定された前記行動データ、前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つを出力するステップと、を備えることを特徴とする推定方法が含まれる。 The present embodiment also includes a step of inputting cognitive bias data regarding the target person's cognitive bias, and based on the cognitive bias data, behavioral data regarding the target person's behavior, attribute data of the target person, by an estimation model including a neural network for estimating at least one of location data of the subject, health data of the subject, exercise data of the subject, lifestyle data of the subject, and medical data of the subject, outputting at least one of the behavior data, the attribute data, the location data, the health data, the exercise data, the lifestyle data, and the medical data estimated from the cognitive bias data input by the input unit; The method includes the steps of:
 また、本実施形態には、対象者の行動に関する行動データを入力するステップと、前記行動データに基づいて、前記対象者の属性データ、前記対象者の位置データ、前記対象者の健康データ、前記対象者の運動データ、前記対象者の生活習慣データ、及び前記対象者の医療データの少なくとも1つを推定するためのニューラルネットワークを含む推定モデルにより、前記入力部により入力された前記行動データから推定された前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つを出力するステップと、を備えることを特徴とする推定装置が含まれる。 The present embodiment also includes a step of inputting behavioral data regarding the behavior of the subject, and based on the behavioral data, attribute data of the subject, location data of the subject, health data of the subject, Estimated from the behavioral data input by the input unit by an estimation model including a neural network for estimating at least one of the subject's exercise data, the subject's lifestyle data, and the subject's medical data. and outputting at least one of the attribute data, the location data, the health data, the exercise data, the lifestyle data, and the medical data.
 また、本実施形態には、対象者の認知バイアスに関する認知バイアスデータと、前記認知バイアスデータにラベル付けされた前記対象者の行動に関する行動データ、前記対象者の属性データ、前記対象者の位置データ、前記対象者の健康データ、前記対象者の運動データ、前記対象者の生活習慣データ、及び前記対象者の医療データの少なくとも1つとを、教師データとして、ニューラルネットワークに機械学習させるための機械学習部と、前記対象者の認知バイアスに関する認知バイアスデータを入力する入力部と、前記ニューラルネットワークを含む推定モデルにより、前記入力部により入力された前記認知バイアスデータから推定された前記行動データ、前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つを出力する出力部と、を備えることを特徴とする推定システムが含まれる。 The present embodiment also includes cognitive bias data regarding the target person's cognitive bias, behavioral data regarding the target person's behavior labeled with the cognitive bias data, attribute data of the target person, and location data of the target person. , Machine learning for causing a neural network to perform machine learning using at least one of the subject's health data, the subject's exercise data, the subject's lifestyle data, and the subject's medical data as training data. an input unit for inputting cognitive bias data regarding the cognitive bias of the subject; and the behavioral data and the attributes estimated from the cognitive bias data input by the input unit by an estimation model including the neural network. and an output unit that outputs at least one of data, the location data, the health data, the exercise data, the lifestyle data, and the medical data.
 また、本実施形態には、対象者の行動に関する行動データと、前記行動データにラベル付けされた前記対象者の属性データ、前記対象者の位置データ、前記対象者の健康データ、前記対象者の運動データ、前記対象者の生活習慣データ、及び前記対象者の医療データの少なくとも1つとを、教師データとして、ニューラルネットワークに機械学習させるための機械学習部と、前記対象者の行動に関する行動データを入力する入力部と、前記ニューラルネットワークを含む推定モデルにより、前記入力部により入力された前記行動データから推定された前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つを出力する出力部と、を備えることを特徴とする推定システムが含まれる。 The present embodiment also includes behavioral data regarding the behavior of the subject, attribute data of the subject labeled with the behavioral data, location data of the subject, health data of the subject, and a machine learning unit for causing a neural network to perform machine learning using at least one of exercise data, lifestyle data of the subject, and medical data of the subject as training data; the attribute data, the position data, the health data, the exercise data, the lifestyle data estimated from the behavioral data input by the input unit, using an input unit to input, and an estimation model including the neural network; and an output unit that outputs at least one of the medical data.
 また、本実施形態には、プロセッサが対象者の行動を推定するコンピュータで実行される推定プログラムであって、前記コンピュータは、対象者の認知バイアスに関する認知バイアスデータと、前記認知バイアスデータにラベル付けされた前記対象者の行動に関する行動データ、前記対象者の属性データ、前記対象者の位置データ、前記対象者の健康データ、前記対象者の運動データ、前記対象者の生活習慣データ、及び前記対象者の医療データの少なくとも1つとを、取得する取得機能と、前記認知バイアスデータと、前記行動データ、前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つとを、教師データとして、ニューラルネットワークに機械学習させるための機械学習機能と、を実現させることを特徴とする推定プログラムが含まれる。 The present embodiment also includes an estimation program executed by a computer in which a processor estimates the behavior of a target person, wherein the computer labels cognitive bias data regarding the cognitive bias of the target person and the cognitive bias data. behavioral data regarding the behavior of the subject, attribute data of the subject, location data of the subject, health data of the subject, exercise data of the subject, lifestyle data of the subject, and an acquisition function for acquiring at least one of medical data of a person; the cognitive bias data; the behavior data; the attribute data; the location data; the health data; the exercise data; the lifestyle data; The estimation program includes a machine learning function for causing a neural network to perform machine learning using at least one of the data as training data.
 また、本実施形態には、プロセッサが対象者の行動を推定するコンピュータで実行される推定プログラムであって、前記コンピュータは、対象者の行動に関する行動データと、前記行動データにラベル付けされた前記対象者の属性データ、前記対象者の位置データ、前記対象者の健康データ、前記対象者の運動データ、前記対象者の生活習慣データ、及び前記対象者の医療データの少なくとも1つとを、取得する取得機能と、前記行動データと、前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つとを、教師データとして、ニューラルネットワークに機械学習させるための機械学習機能と、を実現させることを特徴とする推定プログラムが含まれる。 The present embodiment also includes an estimation program executed by a computer in which a processor estimates the behavior of a target person, wherein the computer generates behavior data regarding the behavior of the target person, and the behavior data labeled with the behavior data. Acquire at least one of attribute data of the subject, location data of the subject, health data of the subject, exercise data of the subject, lifestyle data of the subject, and medical data of the subject. The acquisition function, the behavior data, the attribute data, the location data, the health data, the exercise data, the lifestyle data, and at least one of the medical data are used as teacher data to cause a neural network to perform machine learning. It includes a machine learning function for, and an estimation program that realizes.
 本発明によれば、対象者の行動に関する行動データ又は/及びアウトカムデータを推定することで、健康や医療や生活習慣に対する対象者の行動やアウトカム改善を促したり維持したりする推定装置等として有用である。 According to the present invention, by estimating behavioral data and/or outcome data regarding a subject's behavior, it is useful as an estimation device, etc. that promotes and maintains improvements in the subject's behavior and outcomes regarding health, medical care, and lifestyle habits. It is.
1…推定システム
2…ネットワーク
4…機械学習サーバ
5…推定装置
22…記憶装置
23…入力部
25…出力部
32…データ取得部
33…機械学習部
35…推定部
36…識別部
38…認知バイアスデータ
39…行動データ
40…対象者データ
41…非対象者データ
41…対象者データ
42…時系列データ
43…非時系列データ
44…時系列データ
45…非時系列データ
46…学習モデル格納部
47…推定データ格納部
58…認知バイアスデータ
59…行動データ
60…非対象者データ
220…記憶装置
230…入力部
250…出力部
320…データ取得部
350…推定部
360…識別部
380…認知バイアスデータ
390…行動データ
400…対象者データ
470…推定データ格納部
1...Estimation system 2...Network 4...Machine learning server 5...Estimation device 22...Storage device 23...Input unit 25...Output unit 32...Data acquisition unit 33...Machine learning unit 35...Estimation unit 36...Identification unit 38...Cognitive bias Data 39...behavior data 40...target person data 41...non-target person data 41...target person data 42...time series data 43...non-time series data 44...time series data 45...non-time series data 46...learning model storage unit 47 ... Estimated data storage section 58 ... Cognitive bias data 59 ... Behavioral data 60 ... Non-target person data 220 ... Storage device 230 ... Input section 250 ... Output section 320 ... Data acquisition section 350 ... Estimation section 360 ... Identification section 380 ... Cognitive bias data 390...Behavior data 400...Target data 470...Estimated data storage unit

Claims (17)

  1.  対象者の認知バイアスに関する認知バイアスデータを入力する入力部と、
     前記認知バイアスデータに基づいて、前記対象者の行動に関する行動データ、前記対象者の属性データ、前記対象者の位置データ、前記対象者の健康データ、前記対象者の運動データ、前記対象者の生活習慣データ、及び前記対象者の医療データの少なくとも1つを推定するためのニューラルネットワークを含む推定モデルにより、前記入力部により入力された前記認知バイアスデータから推定された前記行動データ、前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つを出力する出力部と、
     を備えることを特徴とする推定装置。
    an input unit for inputting cognitive bias data regarding the subject's cognitive bias;
    Based on the cognitive bias data, behavioral data regarding the subject's behavior, attribute data of the subject, location data of the subject, health data of the subject, exercise data of the subject, life of the subject the behavioral data and the attribute data estimated from the cognitive bias data input by the input unit by an estimation model including a neural network for estimating at least one of habit data and medical data of the subject; an output unit that outputs at least one of the location data, the health data, the exercise data, the lifestyle data, and the medical data;
    An estimation device comprising:
  2.  対象者の行動に関する行動データを入力する入力部と、
     前記行動データに基づいて、前記対象者の属性データ、前記対象者の位置データ、前記対象者の健康データ、前記対象者の運動データ、前記対象者の生活習慣データ、及び前記対象者の医療データの少なくとも1つを推定するためのニューラルネットワークを含む推定モデルにより、前記入力部により入力された前記行動データから推定された前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つを出力する出力部と、
     を備えることを特徴とする推定装置。
    an input unit for inputting behavioral data regarding the target person's behavior;
    Based on the behavioral data, the subject's attribute data, the subject's location data, the subject's health data, the subject's exercise data, the subject's lifestyle data, and the subject's medical data. The attribute data, the position data, the health data, the exercise data, and the lifestyle habits estimated from the behavioral data input by the input unit using an estimation model including a neural network for estimating at least one of the following: an output unit that outputs at least one of data and the medical data;
    An estimation device comprising:
  3.  前記認知バイアスデータは、前記対象者の心理的傾向を示すデータであることを特徴とする請求項1に記載の推定装置。 The estimation device according to claim 1, wherein the cognitive bias data is data indicating a psychological tendency of the subject.
  4.  前記行動データは、前記対象者の行動に関するテキスト、画像、映像、音、光、匂い、及び力の少なくとも1つに関するデータを含むことを特徴とする請求項1又は請求項2に記載の推定装置。 The estimation device according to claim 1 or 2, wherein the behavior data includes data regarding at least one of text, image, video, sound, light, smell, and force regarding the subject's behavior. .
  5.  前記行動データは、前記対象者に行動を促すためのインセンティブに関するデータを含むことを特徴とする請求項1又は請求項2に記載の推定装置。 The estimation device according to claim 1 or 2, wherein the behavior data includes data regarding an incentive for encouraging the target person to take action.
  6.  前記推定モデルは、前記対象者の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つの対象者データに基づいて前記対象者の前記行動データを推定するためのニューラルネットワークを含むことを特徴とする請求項1に記載の推定装置。 The estimation model is for estimating the behavioral data of the subject based on at least one subject data of the subject's attribute data, location data, health data, exercise data, lifestyle data, and medical data. The estimation device according to claim 1, comprising a neural network.
  7.  前記推定モデルは、前記対象者以外の非対象者の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つの非対象者データに基づいて前記対象者の前記行動データを推定するためのニューラルネットワークを含むことを特徴とする請求項1又は請求項6に記載の推定装置。 The estimation model estimates the behavior of the target person based on at least one non-target person data of attribute data, location data, health data, exercise data, lifestyle data, and medical data of the non-target person other than the target person. 7. The estimation device according to claim 1, further comprising a neural network for estimating data.
  8.  前記推定モデルは、前記対象者の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つの対象者データに基づいて、前記対象者の前記認知バイアスデータ、前記行動データ、前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つを推定するためのニューラルネットワークを含むことを特徴とする請求項1又は請求項2に記載の推定装置。 The estimation model calculates the cognitive bias data and the behavior of the subject based on at least one subject data of the subject's attribute data, location data, health data, exercise data, lifestyle data, and medical data. Claim 1 or claim 1, further comprising a neural network for estimating at least one of data, the attribute data, the location data, the health data, the exercise data, the lifestyle data, and the medical data. The estimation device according to item 2.
  9.  前記推定モデルは、前記対象者以外の非対象者の属性データ、位置データ、健康データ、運動データ、生活習慣データ、及び医療データの少なくとも1つの非対象者データに基づいて、前記対象者の前記認知バイアスデータ、前記行動データ、前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つの対象者データを推定するためのニューラルネットワークを含むことを特徴とする請求項8に記載の推定装置。 The estimation model is based on at least one non-target person data of non-target people other than the target person, such as attribute data, location data, health data, exercise data, lifestyle data, and medical data. comprising a neural network for estimating at least one subject data of cognitive bias data, the behavior data, the attribute data, the location data, the health data, the exercise data, the lifestyle data, and the medical data. The estimating device according to claim 8, characterized in that:
  10.  前記推定モデルは、畳み込み層、再帰演算層、及びアテンション機構の少なくとも1つを含む前記ニューラルネットワークを備え、前記対象者データと前記非対象者データとを連結して前記ニューラルネットワークの入力層に入力することにより機械学習した推定モデルであることを特徴とする請求項9に記載の推定装置。 The estimation model includes the neural network including at least one of a convolution layer, a recursive calculation layer, and an attention mechanism, and connects the target person data and the non-target person data and inputs the connected data to the input layer of the neural network. 10. The estimation device according to claim 9, wherein the estimation model is machine learned by performing machine learning.
  11.  前記認知バイアスデータ、前記行動データ、前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つのうち、時系列データ及び非時系列データを識別する識別部を備え、
     前記推定モデルは、畳み込み層、再帰演算層、及びアテンション機構の少なくとも1つを含み、前記時系列データと前記非時系列データとを連結して前記ニューラルネットワークの入力層に入力することにより機械学習した推定モデルであることを特徴とする請求項1又は請求項2に記載の推定装置。
    Identifying time series data and non-time series data from at least one of the cognitive bias data, the behavior data, the attribute data, the location data, the health data, the exercise data, the lifestyle data, and the medical data. Equipped with an identification section to
    The estimation model includes at least one of a convolution layer, a recursive calculation layer, and an attention mechanism, and performs machine learning by connecting the time series data and the non-time series data and inputting the resultant data to the input layer of the neural network. The estimating device according to claim 1 or 2, wherein the estimating model is an estimating model.
  12.  対象者の認知バイアスに関する認知バイアスデータを入力するステップと、
     前記認知バイアスデータに基づいて、前記対象者の行動に関する行動データ、前記対象者の属性データ、前記対象者の位置データ、前記対象者の健康データ、前記対象者の運動データ、前記対象者の生活習慣データ、及び前記対象者の医療データの少なくとも1つを推定するためのニューラルネットワークを含む推定モデルにより、前記入力部により入力された前記認知バイアスデータから推定された前記行動データ、前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つを出力するステップと、
     を備えることを特徴とする推定方法。
    inputting cognitive bias data regarding the subject's cognitive bias;
    Based on the cognitive bias data, behavioral data regarding the subject's behavior, attribute data of the subject, location data of the subject, health data of the subject, exercise data of the subject, life of the subject the behavioral data and the attribute data estimated from the cognitive bias data input by the input unit by an estimation model including a neural network for estimating at least one of habit data and medical data of the subject; outputting at least one of the location data, the health data, the exercise data, the lifestyle data, and the medical data;
    An estimation method comprising:
  13.  対象者の行動に関する行動データを入力するステップと、
     前記行動データに基づいて、前記対象者の属性データ、前記対象者の位置データ、前記対象者の健康データ、前記対象者の運動データ、前記対象者の生活習慣データ、及び前記対象者の医療データの少なくとも1つを推定するためのニューラルネットワークを含む推定モデルにより、前記入力部により入力された前記行動データから推定された前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つを出力するステップと、
     を備えることを特徴とする推定装置。
    entering behavioral data regarding the subject's behavior;
    Based on the behavioral data, the subject's attribute data, the subject's location data, the subject's health data, the subject's exercise data, the subject's lifestyle data, and the subject's medical data. The attribute data, the position data, the health data, the exercise data, and the lifestyle habits estimated from the behavior data input by the input unit using an estimation model including a neural network for estimating at least one of the following: outputting at least one of data and the medical data;
    An estimation device comprising:
  14.  対象者の認知バイアスに関する認知バイアスデータと、
     前記認知バイアスデータにラベル付けされた前記対象者の行動に関する行動データ、前記対象者の属性データ、前記対象者の位置データ、前記対象者の健康データ、前記対象者の運動データ、前記対象者の生活習慣データ、及び前記対象者の医療データの少なくとも1つとを、
     教師データとして、ニューラルネットワークに機械学習させるための機械学習部と、
     前記対象者の認知バイアスに関する認知バイアスデータを入力する入力部と、
     前記ニューラルネットワークを含む推定モデルにより、前記入力部により入力された前記認知バイアスデータから推定された前記行動データ、前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つを出力する出力部と、
     を備えることを特徴とする推定システム。
    Cognitive bias data regarding the subject's cognitive bias,
    Behavioral data regarding the behavior of the subject labeled in the cognitive bias data, attribute data of the subject, location data of the subject, health data of the subject, exercise data of the subject, lifestyle data and at least one of the medical data of the subject,
    A machine learning section that uses the neural network for machine learning as training data,
    an input unit for inputting cognitive bias data regarding the subject's cognitive bias;
    The behavior data, the attribute data, the position data, the health data, the exercise data, the lifestyle data, which are estimated from the cognitive bias data input by the input unit, by the estimation model including the neural network; an output unit that outputs at least one of the medical data;
    An estimation system comprising:
  15.  対象者の行動に関する行動データと、
     前記行動データにラベル付けされた前記対象者の属性データ、前記対象者の位置データ、前記対象者の健康データ、前記対象者の運動データ、前記対象者の生活習慣データ、及び前記対象者の医療データの少なくとも1つとを、
     教師データとして、ニューラルネットワークに機械学習させるための機械学習部と、
     前記対象者の行動に関する行動データを入力する入力部と、
     前記ニューラルネットワークを含む推定モデルにより、前記入力部により入力された前記行動データから推定された前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つを出力する出力部と、
     を備えることを特徴とする推定システム。
    Behavioral data regarding the behavior of the target person,
    Attribute data of the subject labeled in the behavioral data, location data of the subject, health data of the subject, exercise data of the subject, lifestyle data of the subject, and medical care of the subject. at least one of the data,
    A machine learning section that uses the neural network for machine learning as training data,
    an input unit for inputting behavioral data regarding the behavior of the subject;
    At least one of the attribute data, the position data, the health data, the exercise data, the lifestyle data, and the medical data estimated from the behavior data input by the input unit by the estimation model including the neural network. an output section that outputs one;
    An estimation system comprising:
  16.  プロセッサが対象者の行動を推定するコンピュータで実行される推定プログラムであって、
     前記コンピュータは、
     対象者の認知バイアスに関する認知バイアスデータと、
     前記認知バイアスデータにラベル付けされた前記対象者の行動に関する行動データ、前記対象者の属性データ、前記対象者の位置データ、前記対象者の健康データ、前記対象者の運動データ、前記対象者の生活習慣データ、及び前記対象者の医療データの少なくとも1つとを、
     取得する取得機能と、
     前記認知バイアスデータと、
     前記行動データ、前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つとを、
     教師データとして、ニューラルネットワークに機械学習させるための機械学習機能と、
     を実現させることを特徴とする推定プログラム。
    An estimation program executed on a computer in which a processor estimates the behavior of a subject,
    The computer includes:
    Cognitive bias data regarding the subject's cognitive bias,
    Behavioral data regarding the behavior of the subject labeled in the cognitive bias data, attribute data of the subject, location data of the subject, health data of the subject, exercise data of the subject, lifestyle data and at least one of the medical data of the subject,
    an acquisition function to acquire;
    the cognitive bias data;
    At least one of the behavioral data, the attribute data, the location data, the health data, the exercise data, the lifestyle data, and the medical data,
    As training data, a machine learning function for making the neural network perform machine learning,
    An estimation program characterized by realizing the following.
  17.  プロセッサが対象者の行動を推定するコンピュータで実行される推定プログラムであって、
     前記コンピュータは、
     対象者の行動に関する行動データと、
     前記行動データにラベル付けされた前記対象者の属性データ、前記対象者の位置データ、前記対象者の健康データ、前記対象者の運動データ、前記対象者の生活習慣データ、及び前記対象者の医療データの少なくとも1つとを、
     取得する取得機能と、
     前記行動データと、
     前記属性データ、前記位置データ、前記健康データ、前記運動データ、前記生活習慣データ、及び前記医療データの少なくとも1つとを、
     教師データとして、ニューラルネットワークに機械学習させるための機械学習機能と、
     を実現させることを特徴とする推定プログラム。
    An estimation program executed on a computer in which a processor estimates the behavior of a subject,
    The computer includes:
    Behavioral data regarding the behavior of the target person,
    Attribute data of the subject labeled in the behavioral data, location data of the subject, health data of the subject, exercise data of the subject, lifestyle data of the subject, and medical care of the subject. at least one of the data,
    an acquisition function to acquire;
    The behavioral data;
    At least one of the attribute data, the location data, the health data, the exercise data, the lifestyle data, and the medical data,
    As training data, a machine learning function for making the neural network perform machine learning,
    An estimation program characterized by realizing the following.
PCT/JP2023/021364 2022-07-26 2023-06-08 Estimation device, estimation method, estimation system, and estimation program WO2024024294A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022118904 2022-07-26
JP2022-118904 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024024294A1 true WO2024024294A1 (en) 2024-02-01

Family

ID=89706145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021364 WO2024024294A1 (en) 2022-07-26 2023-06-08 Estimation device, estimation method, estimation system, and estimation program

Country Status (1)

Country Link
WO (1) WO2024024294A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122829A (en) * 2007-11-13 2009-06-04 Sony Corp Information processing apparatus, information processing method, and program
JP2020201898A (en) * 2019-06-13 2020-12-17 株式会社Mealthy Lifestyle disease preventive improvement support system
JP2021531098A (en) * 2018-07-27 2021-11-18 ユニバーシティー オブ マイアミUniversity Of Miami Systems and methods for determining eye condition using AI
JP2021189707A (en) * 2020-05-29 2021-12-13 コニカミノルタ株式会社 Medical diagnosis support system, medical diagnosis support program, and medical diagnosis support method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122829A (en) * 2007-11-13 2009-06-04 Sony Corp Information processing apparatus, information processing method, and program
JP2021531098A (en) * 2018-07-27 2021-11-18 ユニバーシティー オブ マイアミUniversity Of Miami Systems and methods for determining eye condition using AI
JP2020201898A (en) * 2019-06-13 2020-12-17 株式会社Mealthy Lifestyle disease preventive improvement support system
JP2021189707A (en) * 2020-05-29 2021-12-13 コニカミノルタ株式会社 Medical diagnosis support system, medical diagnosis support program, and medical diagnosis support method

Similar Documents

Publication Publication Date Title
Spiegelhalter The art of statistics: Learning from data
Liu et al. Physician voice characteristics and patient satisfaction in online health consultation
US11404170B2 (en) Method and system for patients data collection and analysis
Valentine et al. Judging a man by the width of his face: The role of facial ratios and dominance in mate choice at speed-dating events
Burnette et al. Forgiveness results from integrating information about relationship value and exploitation risk
JP6151441B2 (en) Target optimization system
US20210256542A1 (en) Methods of predicting emotional response to sensory stimuli based on individual traits
US11620489B2 (en) Prospective media content generation using neural network modeling
Piccoli et al. Comparing group dehumanization and intra-sexual competition among normally ovulating women and hormonal contraceptive users
Talukder et al. Continued use intention of wearable health technologies among the elderly: an enablers and inhibitors perspective
JP2010170534A (en) Health support system and health support method
AlSlaity et al. Mobile applications for health and wellness: a systematic review
JP2023547875A (en) Personalized cognitive intervention systems and methods
Foxall Brain, emotion, and contingency in the explanation of consumer behaviour
Lindner Molecular politics, wearables, and the aretaic shift in biopolitical governance
Furey Production and maternal report of 16-and 18-month-olds' vocabulary in low-and middle-income families
JP2011128922A (en) Beauty support system and beauty support method
WO2024024294A1 (en) Estimation device, estimation method, estimation system, and estimation program
JP7133207B2 (en) Information processing device and program
Chatzimina et al. Employing conversational agents in palliative care: a feasibility study and preliminary assessment
JP6450986B1 (en) HEALTHCARE SUPPORT SERVER, HEALTHCARE SUPPORT METHOD, AND COMPUTER-READABLE PROGRAM
Miller et al. Dating and sexualities across the life course: The interactive effects of aging and gender
KR20230114847A (en) Depression diagnosis system using artificial intelligence chatbot and method thereof
Annuar et al. Celebrity endorsements in organ donation advertisements: Altruism as a moderator
EP3674915A1 (en) Method and system for automatic optimization of user's behavioural changes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846030

Country of ref document: EP

Kind code of ref document: A1