WO2024024179A1 - Imaging assistance device, method, and program - Google Patents

Imaging assistance device, method, and program Download PDF

Info

Publication number
WO2024024179A1
WO2024024179A1 PCT/JP2023/014632 JP2023014632W WO2024024179A1 WO 2024024179 A1 WO2024024179 A1 WO 2024024179A1 JP 2023014632 W JP2023014632 W JP 2023014632W WO 2024024179 A1 WO2024024179 A1 WO 2024024179A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
imaging
subject
diagnostic
conditions
Prior art date
Application number
PCT/JP2023/014632
Other languages
French (fr)
Japanese (ja)
Inventor
潤 桝本
裕二 地曵
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024024179A1 publication Critical patent/WO2024024179A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the present disclosure relates to a photographic assisting device, method, and program.
  • CT Computer-aided diagnosis
  • MRI Magnetic Resonance Imaging
  • an MRI apparatus images a subject
  • a positioning image including at least a part of the subject is obtained prior to obtaining a diagnostic image
  • imaging conditions for the diagnostic image are determined based on the positioning image.
  • Techniques for setting for example, imaging parameters such as the direction of the imaging axis, imaging range, and magnetic strength
  • a positioning image is acquired and displayed, it is determined whether the positioning image includes the entire region of interest of the subject, and if the determination is negative, , a method has been proposed in which a photographing range for re-acquiring the positioning image is set using AI (Artificial Intelligence) or the like, and then the positioning image is re-acquired.
  • AI Artificial Intelligence
  • the last acquired positioning image is associated with the diagnostic image, and both the positioning image and the diagnostic image are displayed at the time of image interpretation, so that it is possible to understand the overall image and to understand the tomographic plane.
  • the location is specified, etc. Therefore, after resetting the imaging conditions using the positioning image, it is necessary to take another positioning image and confirm the imaging conditions before generating a diagnostic image.
  • obtaining the positioning image requires time for re-photographing and reconstructing the subject, which places a heavy burden on the patient, who is the subject, and also places a heavy burden on the technician who performs the photographing.
  • the present disclosure has been made in view of the above circumstances, and aims to reduce the burden required for retaking positioning images in an MRI apparatus.
  • a photographic assisting device includes at least one processor, The processor acquires a first image that includes at least a portion of the subject, the first image being acquired prior to the acquisition of the diagnostic image by the MRI apparatus; Setting imaging conditions of the MRI apparatus when acquiring a diagnostic image based on the first image, A diagnostic image is obtained by causing the MRI device to image the subject based on the imaging conditions, A second image including at least a portion of the subject, captured under the set imaging conditions, is derived from the diagnostic image.
  • a photographing auxiliary device may be such that, in the photographing auxiliary device according to the first aspect, the processor stores the diagnostic image and the second image in a storage.
  • the imaging conditions include the direction of the imaging axis of the subject, the imaging range of the subject, and the imaging in the MRI apparatus. It may include at least one of the parameters.
  • a photographing assisting device is a photographing assisting device according to any one of the first to third aspects, wherein the processor performs machine learning to derive photographing conditions from the first image.
  • the photographing conditions may be derived using the learned model.
  • a photographing assisting device is a photographing assisting device according to any one of the first to fourth aspects, wherein the processor performs machine learning to derive the second image from the diagnostic image.
  • the second image may be derived using the learned model.
  • a photography auxiliary device is a photography auxiliary device according to any one of the first to fifth aspects, wherein the processor derives the second image based on set photography conditions.
  • the image derivation conditions may be derived for the image derivation conditions.
  • the photographing assistance method acquires a first image that includes at least a part of the subject, which is acquired prior to acquiring a diagnostic image by an MRI apparatus, Setting imaging conditions of the MRI apparatus when acquiring a diagnostic image based on the first image, A diagnostic image is obtained by causing the MRI device to image the subject based on the imaging conditions, A second image including at least a portion of the subject, captured under the set imaging conditions, is derived from the diagnostic image.
  • the imaging assistance program includes a step of acquiring a first image including at least a part of the subject, which is acquired prior to acquiring a diagnostic image by an MRI apparatus; a procedure for setting imaging conditions of an MRI apparatus when acquiring a diagnostic image based on the first image; a procedure for obtaining a diagnostic image by causing an MRI apparatus to image a subject based on imaging conditions; The computer is caused to perform a procedure for deriving a second image including at least a portion of the subject, which is photographed under the set photographing conditions, from the diagnostic image.
  • Functional configuration diagram of the photographic assistance device according to this embodiment Diagram showing training data Flowchart showing processing performed in this embodiment
  • FIG. 1 is a diagram showing a schematic configuration of an MRI imaging system.
  • a console 1 including an imaging assistance device according to the present embodiment, an MRI apparatus 2, and an image storage server 3 are connected via a network 4 in a communicable state.
  • the console 1 is a computer that includes a photographic assistance device according to this embodiment, and has a photographic assistance program according to this embodiment installed therein.
  • the console 1 may be a workstation or a personal computer directly operated by a technician who operates the MRI apparatus 2 to perform diagnosis, or may be a server computer connected thereto via a network.
  • the imaging assistant program is stored in a storage device of a server computer connected to a network or in a network storage in a state that can be accessed from the outside, and is downloaded and installed on the console 1 used by the doctor in response to a request. Alternatively, it is recorded and distributed on a recording medium such as a DVD (Digital Versatile Disc) or a CD-ROM (Compact Disc Read Only Memory), and installed on the console 1 from the recording medium.
  • the MRI device 2 is a well-known imaging device that generates a three-dimensional MRI image representing the region of the subject H by photographing the region to be diagnosed.
  • the target site can be any organ of the subject H, such as the brain, heart, lungs, and liver.
  • the MRI apparatus 2 includes, for example, an annular gantry 2A and an imaging table 2B on which a subject H is placed. Moreover, a static magnetic field magnet, a high frequency magnetic field coil, and a gradient magnetic field coil (all not shown) are built into the MRI apparatus 2.
  • the MRI apparatus 2 has a function of collecting MR data of the subject H by driving a static magnetic field magnet, a high-frequency magnetic field coil, and a gradient magnetic field coil, and generates a three-dimensional MRI image consisting of a plurality of tomographic images by reconstructing the MR data.
  • the functions executed by the processing circuit are stored in a storage (not shown) of the MRI apparatus 2 as programs executable by a computer, and the processing circuit executes various programs by executing the programs stored in the storage. perform a function.
  • the image storage server 3 is a computer that stores and manages various data, and is equipped with a large-capacity external storage device and database management software.
  • the image storage server 3 communicates with other devices via a wired or wireless network 4 and sends and receives image data and the like.
  • various data including image data of MRI images generated by the MRI apparatus 2 is acquired via the network, and is stored and managed in a recording medium such as a large-capacity external storage device.
  • a recording medium such as a large-capacity external storage device.
  • the storage format of image data and communication between devices via the network 4 are based on protocols such as DICOM (Digital Imaging and Communication in Medicine).
  • FIG. 2 is a diagram showing the hardware configuration of the console 1 including the photographic assisting device according to this embodiment.
  • the console 1 includes a CPU (Central Processing Unit) 11, a nonvolatile storage 13, and a memory 16 as a temporary storage area.
  • the console 1 also includes a display 14 such as a liquid crystal display, an input device 15 such as a keyboard, a mouse, a touch panel, and a microphone for inputting voice, and a network I/F (InterFace) 17 connected to the network 4.
  • the CPU 11, storage 13, display 14, input device 15, memory 16, and network I/F 17 are connected to the bus 18.
  • the CPU 11 is an example of a processor in the present disclosure.
  • the storage 13 is realized by an HDD (Hard Disk Drive), an SSD (Solid State Drive), a flash memory, or the like.
  • a photography assistance program 12 is stored in a storage 13 as a storage medium.
  • the CPU 11 reads out the photography assistance program 12 from the storage 13, expands it into the memory 16, and executes the expanded photography assistance program 12.
  • FIG. 3 is a diagram showing the functional configuration of the photographic assistance device according to this embodiment.
  • the photographing assistant device 20 includes an image acquisition section 21, a photographing condition setting section 22, a derivation section 23, and a display control section 24.
  • the CPU 11 executes the photography assistance program 12, the CPU 11 functions as an image acquisition section 21, a photography condition setting section 22, a derivation section 23, and a display control section 24.
  • the image acquisition unit 21 acquires an MRI image for diagnosis by causing the MRI apparatus 2 to photograph the subject H based on instructions from the input device 15 by the operator.
  • the MRI image for diagnosis will be referred to as a diagnostic image G0 in the following description.
  • the imaging for acquiring the diagnostic image G0 will be referred to as main imaging in the following description.
  • the image acquisition unit 21 acquires a first image C1 for setting imaging conditions (hereinafter referred to as a condition setting image) that includes at least a part of the subject H. get.
  • the photographing for acquiring the condition setting image will be referred to as preliminary photographing.
  • the first condition setting image C1 is an example of the first image of the present disclosure.
  • the diagnostic image G0 is composed of a plurality of tomographic images including a desired region of the subject H.
  • the condition setting image is also composed of a plurality of tomographic images like the diagnostic image G0, but since it is an image used to set imaging conditions, the number of tomographic images is smaller than the diagnostic image G0. That is, the condition setting image consists of a tomographic image representing a narrower range of tomographic plane in the subject H than the diagnostic image G0. For example, if the target region is the brain of subject H, the diagnostic image G0 is acquired to include the entire tomographic plane of the brain, but the condition setting image is acquired to include the tomographic plane of a part of the brain. be obtained.
  • the imaging conditions include the direction in which the tomographic planes of the tomographic images included in the diagnostic image G0 are lined up (hereinafter referred to as the direction of the imaging axis), the range of the tomographic images (hereinafter referred to as the imaging range), and the imaging parameters at the time of main imaging. Can be mentioned. Imaging parameters include the strength of the magnetic field in the MRI apparatus 2 and the type of coil used. In the following description, only the direction of the photographing axis and the photographing range are set as photographing conditions.
  • the diagnostic image G0 needs to include a region of interest in the subject H that is the target of diagnosis.
  • a condition setting image is acquired prior to acquiring the diagnostic image G0, and imaging conditions for main imaging are set based on the condition setting image.
  • the condition setting image is acquired so as to include the center of the magnetic field according to the imaging conditions for preliminary imaging that have been initialized in advance.
  • the subject H may shift from the previously assumed position, and as a result, the region of interest of the subject H may not be sufficiently included in the condition setting image.
  • the photographing condition setting unit 22 sets photographing conditions for actual photographing based on the first condition setting image C1. Specifically, by increasing the resolution of the first condition setting image C1, the number of pixels (voxels) of the tomographic image is increased, and by using the high resolution first condition setting image C1. , determine the direction of the imaging axis to make the region of interest easier to see, and the imaging range that includes the entire region of interest. The direction of the imaging axis and the imaging range may be set by analyzing the high-resolution first condition setting image C1. Note that the process of increasing the resolution of the first condition setting image C1 may be performed by interpolation calculation or may be performed by a well-known super resolution technique. Furthermore, the first condition setting image C1 may be made to have a high resolution by using a learned model that has been subjected to machine learning to generate a high resolution image.
  • the imaging condition setting unit 22 may set the imaging conditions for the main imaging using, for example, the method described in the above-mentioned Japanese Patent Application Publication No. 2021-083730. In this case, the imaging condition setting unit 22 determines whether or not the entire region of interest is included in the first condition setting image C1, and if it is determined that the region of interest is not included, the imaging condition setting unit 22 The position of the region of interest is estimated based on the image C1. The determination of whether the region of interest is included is made by detecting anatomical feature points included in the first condition setting image C1, pattern matching with a model image such as a standard image of the subject H, etc. It can be carried out. Alternatively, it may be determined whether or not a region of interest is included using a trained model that has been subjected to machine learning to output the position of the region of interest for images that do not include part of the region of interest. .
  • the imaging condition setting unit 22 sets the initially set imaging conditions (the direction of the imaging axis and the imaging range) to include the entire region of interest. By changing the following, the shooting conditions for the actual shooting are set.
  • the imaging condition setting unit 22 displays the first condition setting image C1 on the display 14, and adjusts the direction of the imaging axis and the imaging range on the displayed first condition setting image C1 so as to include the region of interest.
  • the shooting conditions for the actual shooting may be set by receiving an operation from the operator to set the shooting conditions.
  • the image acquisition unit 21 causes the MRI apparatus 2 to perform the main imaging of the subject H according to the set imaging conditions, thereby diagnosing the subject H. Obtain image G0.
  • the deriving unit 23 pseudo-derives a second condition setting image C2, which includes at least a portion of the subject H, photographed under the photographing conditions set by the photographing condition setting unit 22, from the diagnostic image G0.
  • the second condition setting image C2 is an example of the second image of the present disclosure.
  • the derivation unit 23 determines the direction of the imaging axis and the imaging direction for deriving the second condition setting image C2 to include the region of interest based on the imaging conditions set by the imaging condition setting unit 22.
  • the range (hereinafter referred to as image derivation condition) is derived.
  • the image derivation conditions may be derived by extracting the region of interest from the diagnostic image G0.
  • the derivation unit 23 derives a second condition setting image C2 by extracting a tomographic image within a range based on the image derivation conditions from the diagnostic image G0.
  • the derivation unit 23 includes a learned model constructed by machine learning a neural network so as to derive the second condition setting image C2 from the diagnostic image G0, and uses the learned model to derive the second condition setting image C2.
  • the image C2 may be derived.
  • FIG. 4 is a diagram showing teacher data for learning a trained model for deriving the second condition setting image C2.
  • the teacher data 30 consists of a learning image 31 to be input to the neural network and correct answer data 32.
  • the learning image 31 is an MRI image
  • the correct data 32 is a condition setting image acquired prior to acquiring the learning image 31. More specifically, it is an image acquired immediately before acquiring the diagnostic images G0 of various subjects H, and is an image stored in the image storage server 3 together with the diagnostic images G0.
  • the learned model is constructed by using a large amount of such teacher data 30 and by machine learning a neural network so as to output a condition setting image when the diagnostic image G0 is input.
  • the derivation unit 23 displays the diagnostic image G0 on the display 14, and sets the range of tomographic planes to be included in the second condition setting image C2 from the diagnostic image G0 to the diagnostic image G0 according to instructions from the operator.
  • the second condition setting image C2 may be derived based on the range determined.
  • the display control unit 24 displays the diagnostic image G0, the first condition setting image C1, and the second condition setting image C2 acquired by photography on the display 14.
  • FIG. 5 is a flowchart showing the processing performed in this embodiment
  • FIG. 6 is a diagram schematically showing the processing performed in this embodiment.
  • the image acquisition unit 21 causes the MRI apparatus 2 to perform preliminary imaging, and acquires the first condition setting image C1 (step ST1).
  • the photographing condition setting unit 22 sets photographing conditions for main photographing based on the first condition setting image C1 (step ST2).
  • the image acquisition unit 21 causes the MRI apparatus 2 to perform main imaging according to the operator's instruction for main imaging, or without waiting for the instruction, and obtains the diagnostic image G0 (step ST3).
  • the derivation unit 23 derives the second condition setting image C2 based on the diagnostic image G0 (step ST4).
  • the display control unit 24 displays the diagnostic image G0 and the second condition setting image C2 for confirmation (image display: step ST5).
  • the diagnostic image G0 and the second condition setting image C2 are transmitted from the network I/F 17 to the image storage server 3 (image transmission: step ST6), and the process ends.
  • the diagnostic image G0 and the second condition setting image C2 are stored in the image storage server 3 in association with each other.
  • a positioning image that is, a condition setting image is acquired, and after setting the imaging conditions, the condition setting image is acquired again, and the main imaging is performed to obtain the diagnostic image G0. It is necessary to acquire the diagnostic image G0 and the condition setting image acquired immediately before acquiring the diagnostic image G0. However, since it takes time for the MRI apparatus 2 to take an image and reconstruct the image, the burden of re-imaging the condition setting image is large.
  • the second condition setting image C2 is derived from the diagnostic image G0 without acquiring the condition setting image again. Therefore, even if preliminary imaging is not performed again, it is possible to obtain the condition setting image obtained immediately before obtaining the diagnostic image G0, although it is a pseudo image. Therefore, the burden required for retaking positioning images in the MRI apparatus can be reduced.
  • condition setting image having a narrower cross-sectional plane range than the diagnostic image G0 is acquired, but the present invention is not limited to this.
  • a condition setting image having the same tomographic range as the diagnostic image G0 may be acquired.
  • the hardware structure of the processing unit (Processing Unit) that executes various processes is as follows.
  • the following various processors can be used.
  • the various processors listed above include circuits such as FPGA (Field Programmable Gate Array) after manufacturing.
  • Programmable logic devices (PLDs) which are processors whose configuration can be changed, and specialized electrical devices, which are processors with circuit configurations specifically designed to execute specific processes, such as ASICs (Application Specific Integrated Circuits). Includes circuits, etc.
  • One processing unit may be composed of one of these various types of processors, or a combination of two or more processors of the same type or different types (for example, a combination of multiple FPGAs or a combination of a CPU and an FPGA). ). Further, the plurality of processing units may be configured with one processor.
  • one processor is configured with a combination of one or more CPUs and software, There is a form in which this processor functions as a plurality of processing units.
  • processors that use a single IC (Integrated Circuit) chip, such as System On Chip (SoC), which implements the functions of an entire system including multiple processing units. be.
  • SoC System On Chip
  • various processing units are configured using one or more of the various processors described above as a hardware structure.
  • circuitry that is a combination of circuit elements such as semiconductor elements can be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

According to the present invention, a processor acquires a first image including at least a part of a subject, which is acquired prior to the acquisition of a diagnostic image by an MRI device, presets an imaging condition for the MRI device in the acquisition of the diagnostic image on the basis of the first image, allows the MRI device to capture an image of the subject on the basis of the imaging condition to capture the diagnostic image, and induces a second image including at least a part of the subject, which is imaged under the preset imaging condition, from the diagnostic image.

Description

撮影補助装置、方法およびプログラムPhotography aids, methods and programs
 本開示は、撮影補助装置、方法およびプログラムに関する。 The present disclosure relates to a photographic assisting device, method, and program.
 近年、CT(Computed Tomography)装置およびMRI(Magnetic Resonance Imaging)装置等の医療機器の進歩により、より質の高い高解像度の医用画像を用いての画像診断が可能となってきている。また、医用画像を解析することで、病変の存在確率および位置情報等を導出し、これを読影医等の医師に提示するコンピュータ支援診断(CAD;Computer-Aided Diagnosis)が実用化されている。 In recent years, advances in medical equipment such as CT (Computed Tomography) devices and MRI (Magnetic Resonance Imaging) devices have made it possible to perform image diagnosis using higher quality, high resolution medical images. Furthermore, computer-aided diagnosis (CAD) has been put into practical use, which derives the probability of existence of a lesion, position information, etc. by analyzing medical images, and presents this to a doctor such as an image interpreter.
 一方、MRI装置によって被検体の撮像が行われる際に、診断画像の取得に先行して、被検体の少なくとも一部を含む位置決め用画像を取得し、位置決め用画像に基づいて診断画像の撮像条件(例えば撮影軸の方向、撮影範囲、磁気の強度等の撮影パラメータ)を設定する技術が知られている。例えば、特開2021-083730号公報には、位置決め用画像を取得して表示し、位置決め用画像に被検体の関心領域の全部が含まれているか否かを判定し、判定が否定されると、AI(Artificial Intelligence)等を用いて位置決め用画像を取得し直すための撮影範囲を設定した後に、位置決め用画像を取得し直す手法が提案されている。 On the other hand, when an MRI apparatus images a subject, a positioning image including at least a part of the subject is obtained prior to obtaining a diagnostic image, and imaging conditions for the diagnostic image are determined based on the positioning image. Techniques for setting (for example, imaging parameters such as the direction of the imaging axis, imaging range, and magnetic strength) are known. For example, Japanese Patent Laid-Open No. 2021-083730 discloses that a positioning image is acquired and displayed, it is determined whether the positioning image includes the entire region of interest of the subject, and if the determination is negative, , a method has been proposed in which a photographing range for re-acquiring the positioning image is set using AI (Artificial Intelligence) or the like, and then the positioning image is re-acquired.
 ところで、MRI装置により取得された診断画像については、最後に取得された位置決め用画像を診断画像と対応付けておき、読影時に位置決め画像および診断画像をともに表示させ、全体像の把握および断層面の位置の指定等が行われる。このため、位置決め用画像を用いて撮影条件を設定し直した後は、再度の位置決め用画像を撮影して撮影条件を確認した後に、診断画像の生成を行う必要がある。ここで、位置決め用画像の取得には、再度の被検体の撮影および再構成のための時間が必要であるため、被検体である患者の負担が大きく、また撮影を行う技師の負担も大きい。 By the way, regarding diagnostic images acquired by an MRI device, the last acquired positioning image is associated with the diagnostic image, and both the positioning image and the diagnostic image are displayed at the time of image interpretation, so that it is possible to understand the overall image and to understand the tomographic plane. The location is specified, etc. Therefore, after resetting the imaging conditions using the positioning image, it is necessary to take another positioning image and confirm the imaging conditions before generating a diagnostic image. Here, obtaining the positioning image requires time for re-photographing and reconstructing the subject, which places a heavy burden on the patient, who is the subject, and also places a heavy burden on the technician who performs the photographing.
 本開示は上記事情に鑑みなされたものであり、MRI装置における位置決め画像の再撮影に要する負担を軽減することを目的とする。 The present disclosure has been made in view of the above circumstances, and aims to reduce the burden required for retaking positioning images in an MRI apparatus.
 本開示による第1の態様に係る撮影補助装置は、少なくとも1つのプロセッサを備え、
 プロセッサは、MRI装置による診断画像の取得に先行して取得された、被検体の少なくとも一部が含まれた第1の画像を取得し、
 第1の画像に基づいて診断画像を取得する際のMRI装置の撮影条件を設定し、
 撮影条件に基づいてMRI装置に被検体の撮影を行わせることより診断画像を取得し、
 設定された撮影条件により撮影された、被検体の少なくとも一部を含む第2の画像を診断画像から導出する。
A photographic assisting device according to a first aspect of the present disclosure includes at least one processor,
The processor acquires a first image that includes at least a portion of the subject, the first image being acquired prior to the acquisition of the diagnostic image by the MRI apparatus;
Setting imaging conditions of the MRI apparatus when acquiring a diagnostic image based on the first image,
A diagnostic image is obtained by causing the MRI device to image the subject based on the imaging conditions,
A second image including at least a portion of the subject, captured under the set imaging conditions, is derived from the diagnostic image.
 本開示による第2の態様に係る撮影補助装置は、第1の態様に係る撮影補助装置において、プロセッサは、診断画像および第2の画像をストレージに保存するものであってもよい。 A photographing auxiliary device according to a second aspect of the present disclosure may be such that, in the photographing auxiliary device according to the first aspect, the processor stores the diagnostic image and the second image in a storage.
 本開示による第3の態様に係る撮影補助装置は、第1または第2の態様に係る撮影補助装置において、撮影条件は、被検体の撮影軸の方向、被検体の撮影範囲およびMRI装置における撮影パラメータの少なくとも一方を含むものであってもよい。 In the imaging auxiliary device according to the third aspect of the present disclosure, in the imaging auxiliary device according to the first or second aspect, the imaging conditions include the direction of the imaging axis of the subject, the imaging range of the subject, and the imaging in the MRI apparatus. It may include at least one of the parameters.
 本開示による第4の態様に係る撮影補助装置は、第1から第3のいずれか1つの態様に係る撮影補助装置において、プロセッサは、第1の画像から撮影条件を導出するように機械学習がなされた学習済みモデルを用いて、撮影条件を導出するものであってもよい。 A photographing assisting device according to a fourth aspect of the present disclosure is a photographing assisting device according to any one of the first to third aspects, wherein the processor performs machine learning to derive photographing conditions from the first image. The photographing conditions may be derived using the learned model.
 本開示による第5の態様に係る撮影補助装置は、第1から第4のいずれか1つの態様に係る撮影補助装置において、プロセッサは、診断画像から第2の画像を導出するように機械学習がなされた学習済みモデルを用いて、第2の画像を導出するものであってもよい。 A photographing assisting device according to a fifth aspect of the present disclosure is a photographing assisting device according to any one of the first to fourth aspects, wherein the processor performs machine learning to derive the second image from the diagnostic image. The second image may be derived using the learned model.
 本開示による第6の態様に係る撮影補助装置は、第1から第5のいずれか1つの態様に係る撮影補助装置において、プロセッサは、設定された撮影条件に基づいて第2の画像を導出するための画像導出条件を導出するものであってもよい。 A photography auxiliary device according to a sixth aspect of the present disclosure is a photography auxiliary device according to any one of the first to fifth aspects, wherein the processor derives the second image based on set photography conditions. The image derivation conditions may be derived for the image derivation conditions.
 本開示による撮影補助方法は、MRI装置による診断画像の取得に先行して取得された、被検体の少なくとも一部が含まれた第1の画像を取得し、
 第1の画像に基づいて診断画像を取得する際のMRI装置の撮影条件を設定し、
 撮影条件に基づいてMRI装置に被検体の撮影を行わせることより診断画像を取得し、
 設定された撮影条件により撮影された、被検体の少なくとも一部を含む第2の画像を診断画像から導出する。
The photographing assistance method according to the present disclosure acquires a first image that includes at least a part of the subject, which is acquired prior to acquiring a diagnostic image by an MRI apparatus,
Setting imaging conditions of the MRI apparatus when acquiring a diagnostic image based on the first image,
A diagnostic image is obtained by causing the MRI device to image the subject based on the imaging conditions,
A second image including at least a portion of the subject, captured under the set imaging conditions, is derived from the diagnostic image.
 本開示による撮影補助プログラムは、MRI装置による診断画像の取得に先行して取得された、被検体の少なくとも一部が含まれた第1の画像を取得する手順と、
 第1の画像に基づいて診断画像を取得する際のMRI装置の撮影条件を設定する手順と、
 撮影条件に基づいてMRI装置に被検体の撮影を行わせることより診断画像を取得する手順と、
 設定された撮影条件により撮影された、被検体の少なくとも一部を含む第2の画像を診断画像から導出する手順とをコンピュータに実行させる。
The imaging assistance program according to the present disclosure includes a step of acquiring a first image including at least a part of the subject, which is acquired prior to acquiring a diagnostic image by an MRI apparatus;
a procedure for setting imaging conditions of an MRI apparatus when acquiring a diagnostic image based on the first image;
a procedure for obtaining a diagnostic image by causing an MRI apparatus to image a subject based on imaging conditions;
The computer is caused to perform a procedure for deriving a second image including at least a portion of the subject, which is photographed under the set photographing conditions, from the diagnostic image.
 本開示によれば、MRI装置における位置決め画像の再撮影に要する負担を軽減できる。 According to the present disclosure, it is possible to reduce the burden required for retaking positioning images in an MRI apparatus.
本開示の実施形態による撮影補助装置を適用したMRI撮影システムの概略構成を示す図A diagram showing a schematic configuration of an MRI imaging system to which an imaging auxiliary device according to an embodiment of the present disclosure is applied. 本実施形態による撮影補助装置のハードウェア構成を示す図A diagram showing the hardware configuration of the photographic assistance device according to the present embodiment 本実施形態による撮影補助装置の機能構成図Functional configuration diagram of the photographic assistance device according to this embodiment 教師データを示す図Diagram showing training data 本実施形態において行われる処理を示すフローチャートFlowchart showing processing performed in this embodiment 本実施形態において行われる処理を模式的に示す図A diagram schematically showing the processing performed in this embodiment
 以下、図面を参照して本開示の実施形態について説明する。まず、本実施形態による撮影補助装置を適用したMRI撮影システムの構成について説明する。図1は、MRI撮影システムの概略構成を示す図である。図1に示すMRI撮影システムは、本実施形態による撮影補助装置を内包するコンソール1、MRI装置2、および画像保管サーバ3が、ネットワーク4を経由して通信可能な状態で接続されている。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. First, the configuration of an MRI imaging system to which the imaging auxiliary device according to the present embodiment is applied will be described. FIG. 1 is a diagram showing a schematic configuration of an MRI imaging system. In the MRI imaging system shown in FIG. 1, a console 1 including an imaging assistance device according to the present embodiment, an MRI apparatus 2, and an image storage server 3 are connected via a network 4 in a communicable state.
 コンソール1は、本実施形態による撮影補助装置を内包するコンピュータであり、本実施形態の撮影補助プログラムがインストールされている。コンソール1は、MRI装置2を操作して診断を行う技師が直接操作するワークステーションあるいはパーソナルコンピュータでもよいし、それらとネットワークを介して接続されたサーバコンピュータでもよい。撮影補助プログラムは、ネットワークに接続されたサーバコンピュータの記憶装置、あるいはネットワークストレージに、外部からアクセス可能な状態で記憶され、要求に応じて医師が使用するコンソール1にダウンロードされ、インストールされる。または、DVD(Digital Versatile Disc)あるいはCD-ROM(Compact Disc Read Only Memory)等の記録媒体に記録されて配布され、その記録媒体からコンソール1にインストール
される。
The console 1 is a computer that includes a photographic assistance device according to this embodiment, and has a photographic assistance program according to this embodiment installed therein. The console 1 may be a workstation or a personal computer directly operated by a technician who operates the MRI apparatus 2 to perform diagnosis, or may be a server computer connected thereto via a network. The imaging assistant program is stored in a storage device of a server computer connected to a network or in a network storage in a state that can be accessed from the outside, and is downloaded and installed on the console 1 used by the doctor in response to a request. Alternatively, it is recorded and distributed on a recording medium such as a DVD (Digital Versatile Disc) or a CD-ROM (Compact Disc Read Only Memory), and installed on the console 1 from the recording medium.
 MRI装置2は、被検体Hの診断対象となる部位を撮影することにより、その部位を表す3次元のMRI画像を生成する周知の撮影装置である。対象部位としては、被検体Hの脳、心臓、肺および肝臓等の任意の臓器とすることができる。 The MRI device 2 is a well-known imaging device that generates a three-dimensional MRI image representing the region of the subject H by photographing the region to be diagnosed. The target site can be any organ of the subject H, such as the brain, heart, lungs, and liver.
 MRI装置2は、例えば円環状のガントリ2Aおよび被検体Hを載置する撮影台2Bを備える。また、MRI装置2の内部には、静磁場磁石、高周波磁場コイルおよび傾斜磁場コイル(いずれも不図示)が内蔵されている。MRI装置2は、静磁場磁石、高周波磁場コイルおよび傾斜磁場コイルを駆動して被検体HのMRデータを収集する機能、MRデータを再構成することにより複数の断層画像からなる3次元のMRI画像を生成する機能、生成されたMRI画像の画像データをコンソール1に送信する機能、およびネットワーク4を介して画像保管サーバ3に送信する機能を実行するための各種処理回路を備える。なお、処理回路が実行する機能は、コンピュータにより実行可能なプログラムとして、MRI装置2が有するストレージ(不図示)に記憶されており、処理回路はストレージに記憶されたプログラムを実行することにより、各種機能を実行する。 The MRI apparatus 2 includes, for example, an annular gantry 2A and an imaging table 2B on which a subject H is placed. Moreover, a static magnetic field magnet, a high frequency magnetic field coil, and a gradient magnetic field coil (all not shown) are built into the MRI apparatus 2. The MRI apparatus 2 has a function of collecting MR data of the subject H by driving a static magnetic field magnet, a high-frequency magnetic field coil, and a gradient magnetic field coil, and generates a three-dimensional MRI image consisting of a plurality of tomographic images by reconstructing the MR data. , a function of transmitting the image data of the generated MRI image to the console 1 , and a function of transmitting the image data of the generated MRI image to the image storage server 3 via the network 4 . Note that the functions executed by the processing circuit are stored in a storage (not shown) of the MRI apparatus 2 as programs executable by a computer, and the processing circuit executes various programs by executing the programs stored in the storage. perform a function.
 画像保管サーバ3は、各種データを保存して管理するコンピュータであり、大容量外部記憶装置およびデータベース管理用ソフトウェアを備えている。画像保管サーバ3は、有線あるいは無線のネットワーク4を介して他の装置と通信を行い、画像データ等を送受信する。具体的にはMRI装置2で生成されたMRI画像の画像データを含む各種データをネットワーク経由で取得し、大容量外部記憶装置等の記録媒体に保存して管理する。なお、画像データの格納形式およびネットワーク4経由での各装置間の通信は、DICOM(Digital Imaging and Communication in Medicine)等のプロトコルに基づいている。 The image storage server 3 is a computer that stores and manages various data, and is equipped with a large-capacity external storage device and database management software. The image storage server 3 communicates with other devices via a wired or wireless network 4 and sends and receives image data and the like. Specifically, various data including image data of MRI images generated by the MRI apparatus 2 is acquired via the network, and is stored and managed in a recording medium such as a large-capacity external storage device. Note that the storage format of image data and communication between devices via the network 4 are based on protocols such as DICOM (Digital Imaging and Communication in Medicine).
 次いで、本実施形態による撮影補助装置について説明する。図2は、本実施形態による撮影補助装置を内包するコンソール1のハードウェア構成を示す図である。図2に示すように、コンソール1は、CPU(Central Processing Unit)11、不揮発性のストレージ13、および一時記憶領域としてのメモリ16を含む。また、コンソール1は、液晶ディスプレイ等のディスプレイ14、キーボード、マウス、タッチパネル、音声入力するためのマイク等の入力デバイス15、およびネットワーク4に接続されるネットワークI/F(InterFace)17を含む。CPU11、ストレージ13、ディスプレイ14、入力デバイス15、メモリ16およびネットワークI/F17は、バス18に接続される。なお、CPU11は、本開示におけるプロセッサの一例である。 Next, a photographic assisting device according to this embodiment will be explained. FIG. 2 is a diagram showing the hardware configuration of the console 1 including the photographic assisting device according to this embodiment. As shown in FIG. 2, the console 1 includes a CPU (Central Processing Unit) 11, a nonvolatile storage 13, and a memory 16 as a temporary storage area. The console 1 also includes a display 14 such as a liquid crystal display, an input device 15 such as a keyboard, a mouse, a touch panel, and a microphone for inputting voice, and a network I/F (InterFace) 17 connected to the network 4. The CPU 11, storage 13, display 14, input device 15, memory 16, and network I/F 17 are connected to the bus 18. Note that the CPU 11 is an example of a processor in the present disclosure.
 ストレージ13は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、およびフラッシュメモリ等によって実現される。記憶媒体としてのストレージ13には、撮影補助プログラム12が記憶される。CPU11は、ストレージ13から撮影補助プログラム12を読み出してメモリ16に展開し、展開した撮影補助プログラム12を実行する。 The storage 13 is realized by an HDD (Hard Disk Drive), an SSD (Solid State Drive), a flash memory, or the like. A photography assistance program 12 is stored in a storage 13 as a storage medium. The CPU 11 reads out the photography assistance program 12 from the storage 13, expands it into the memory 16, and executes the expanded photography assistance program 12.
 次いで、本実施形態による撮影補助装置の機能的な構成を説明する。図3は、本実施形態による撮影補助装置の機能的な構成を示す図である。図3に示すように撮影補助装置20は、画像取得部21、撮影条件設定部22、導出部23および表示制御部24を備える。そして、CPU11が撮影補助プログラム12を実行することにより、CPU11は、画像取得部21、撮影条件設定部22、導出部23および表示制御部24として機能する。 Next, the functional configuration of the photographic assisting device according to this embodiment will be explained. FIG. 3 is a diagram showing the functional configuration of the photographic assistance device according to this embodiment. As shown in FIG. 3, the photographing assistant device 20 includes an image acquisition section 21, a photographing condition setting section 22, a derivation section 23, and a display control section 24. When the CPU 11 executes the photography assistance program 12, the CPU 11 functions as an image acquisition section 21, a photography condition setting section 22, a derivation section 23, and a display control section 24.
 画像取得部21は、操作者による入力デバイス15からの指示により、MRI装置2に被検体Hの撮影を行わせることにより診断用のMRI画像を取得する。診断用のMRI画像を以降の説明においては診断画像G0と称する。また、診断画像G0を取得するための撮影を、以降の説明においては本撮影と称する。また、画像取得部21は、診断画像G0の取得に先行して、被検体Hの少なくとも一部が含まれた撮影条件設定用の第1の画像(以下、条件設定用画像とする)C1を取得する。条件設定用画像を取得するための撮影を、以降の説明においては予備撮影と称する。第1の条件設定用画像C1が本開示の第1の画像の一例である。 The image acquisition unit 21 acquires an MRI image for diagnosis by causing the MRI apparatus 2 to photograph the subject H based on instructions from the input device 15 by the operator. The MRI image for diagnosis will be referred to as a diagnostic image G0 in the following description. Further, the imaging for acquiring the diagnostic image G0 will be referred to as main imaging in the following description. Furthermore, prior to acquiring the diagnostic image G0, the image acquisition unit 21 acquires a first image C1 for setting imaging conditions (hereinafter referred to as a condition setting image) that includes at least a part of the subject H. get. In the following description, the photographing for acquiring the condition setting image will be referred to as preliminary photographing. The first condition setting image C1 is an example of the first image of the present disclosure.
 ここで、診断画像G0は被検体Hの所望とされる部位を含む複数の断層画像からなる。条件設定用画像も診断画像G0と同様に複数の断層画像からなるが、撮影条件を設定するために使用される画像であるため、診断画像G0よりも断層画像の数が少ない。すなわち、条件設定用画像は診断画像G0よりも被検体Hにおける狭い範囲の断層面を表す断層画像からなる。例えば、対象部位が被検体Hの脳である場合、診断画像G0は脳の全体の断層面を含むように取得されるが、条件設定画像は脳の一部の範囲の断層面を含むように取得される。 Here, the diagnostic image G0 is composed of a plurality of tomographic images including a desired region of the subject H. The condition setting image is also composed of a plurality of tomographic images like the diagnostic image G0, but since it is an image used to set imaging conditions, the number of tomographic images is smaller than the diagnostic image G0. That is, the condition setting image consists of a tomographic image representing a narrower range of tomographic plane in the subject H than the diagnostic image G0. For example, if the target region is the brain of subject H, the diagnostic image G0 is acquired to include the entire tomographic plane of the brain, but the condition setting image is acquired to include the tomographic plane of a part of the brain. be obtained.
 撮影条件としては、診断画像G0に含まれる断層画像の断層面が並ぶ方向(以下、撮影軸の方向とする)、断層画像の範囲(以下撮影範囲とする)、および本撮影時における撮影パラメータが挙げられる。撮影パラメータとしては、MRI装置2における磁場の強度および使用するコイルの種類等が挙げられる。以降の説明においては、撮影条件として撮影軸の方向および撮影範囲のみを設定するものとして説明する。 The imaging conditions include the direction in which the tomographic planes of the tomographic images included in the diagnostic image G0 are lined up (hereinafter referred to as the direction of the imaging axis), the range of the tomographic images (hereinafter referred to as the imaging range), and the imaging parameters at the time of main imaging. Can be mentioned. Imaging parameters include the strength of the magnetic field in the MRI apparatus 2 and the type of coil used. In the following description, only the direction of the photographing axis and the photographing range are set as photographing conditions.
 ここで、診断画像G0には被検体Hにおける診断の対象となる関心領域が含まれる必要がある。本実施形態においては、診断画像G0の取得に先行して条件設定用画像を取得し、条件設定用画像に基づいて本撮影用の撮影条件を設定する。 Here, the diagnostic image G0 needs to include a region of interest in the subject H that is the target of diagnosis. In this embodiment, a condition setting image is acquired prior to acquiring the diagnostic image G0, and imaging conditions for main imaging are set based on the condition setting image.
 条件設定用画像に基づいて本撮影用の撮影条件を設定する場合には、関心領域が条件設定用画像に含まれていることが重要となるが、予備撮影時の被検体Hの状態によっては、条件設定用画像に関心領域の一部または全部が含まれていないことがあり得る。 When setting imaging conditions for main imaging based on the condition setting image, it is important that the region of interest is included in the condition setting image, but depending on the condition of the subject H at the time of preliminary imaging, , it is possible that part or all of the region of interest is not included in the condition setting image.
条件設定用画像は、予め初期設定された予備撮影用の撮影条件により磁場中心を含むように取得されるが、例えば、被検体Hが磁場中心からずれた位置に配置された場合等には、予め想定していた位置から被検体Hがずれてしまい、その結果、条件設定用画像に被検体Hの関心領域が十分に含まれなくなることがあり得る。 The condition setting image is acquired so as to include the center of the magnetic field according to the imaging conditions for preliminary imaging that have been initialized in advance. The subject H may shift from the previously assumed position, and as a result, the region of interest of the subject H may not be sufficiently included in the condition setting image.
 本実施形態においては、撮影条件設定部22が、第1の条件設定用画像C1に基づいて本撮影用の撮影条件を設定する。具体的には、第1の条件設定用画像C1を高解像度化することにより、断層画像の画素数(ボクセル数)を多くし、高解像度化された第1の条件設定用画像C1を用いて、関心領域を見やすくするための撮影軸の方向および関心領域の全部を含む撮影範囲を決定する。撮影軸の方向および撮影範囲の設定は、高解像度化された第1の条件設定用画像C1を解析することにより行えばよい。なお、第1の条件設定用画像C1の高解像度化の処理は、補間演算により行ってもよく、周知の超解像度技術により行ってもよい。また、高解像度画像を生成するように機械学習がなされた学習済みモデルを用いることにより、第1の条件設定用画像C1を高解像度化するようにしてもよい。 In the present embodiment, the photographing condition setting unit 22 sets photographing conditions for actual photographing based on the first condition setting image C1. Specifically, by increasing the resolution of the first condition setting image C1, the number of pixels (voxels) of the tomographic image is increased, and by using the high resolution first condition setting image C1. , determine the direction of the imaging axis to make the region of interest easier to see, and the imaging range that includes the entire region of interest. The direction of the imaging axis and the imaging range may be set by analyzing the high-resolution first condition setting image C1. Note that the process of increasing the resolution of the first condition setting image C1 may be performed by interpolation calculation or may be performed by a well-known super resolution technique. Furthermore, the first condition setting image C1 may be made to have a high resolution by using a learned model that has been subjected to machine learning to generate a high resolution image.
 なお、撮影条件設定部22は、例えば上記特開2021-083730号公報に記載された手法を用いて本撮影用の撮影条件を設定するものであってもよい。この場合、撮影条件設定部22は、第1の条件設定用画像C1に関心領域の全部が含まれているか否かを判定し、含まれていないと判定された場合に、第1の条件設定用画像C1に基づいて、関心領域の位置を推定する。関心領域が含まれているか否かの判定は、第1の条件設定用画像C1に含まれる解剖学的特徴点の検出、標準的な被検体Hの画像等のモデル画像とのパターンマッチング等により行うことができる。また、関心領域の一部が含まれていない画像に対して関心領域の位置を出力するように機械学習がなされた学習済みモデルを用いて関心領域が含まれるか否かを判定してもよい。 Note that the imaging condition setting unit 22 may set the imaging conditions for the main imaging using, for example, the method described in the above-mentioned Japanese Patent Application Publication No. 2021-083730. In this case, the imaging condition setting unit 22 determines whether or not the entire region of interest is included in the first condition setting image C1, and if it is determined that the region of interest is not included, the imaging condition setting unit 22 The position of the region of interest is estimated based on the image C1. The determination of whether the region of interest is included is made by detecting anatomical feature points included in the first condition setting image C1, pattern matching with a model image such as a standard image of the subject H, etc. It can be carried out. Alternatively, it may be determined whether or not a region of interest is included using a trained model that has been subjected to machine learning to output the position of the region of interest for images that do not include part of the region of interest. .
 そして、撮影条件設定部22は、第1の条件設定用画像C1に含まれる関心領域の位置に基づいて、初期設定された撮影条件(撮影軸の方向および撮影範囲)を関心領域の全部を含むように変更することにより本撮影用の撮影条件を設定する。 Then, based on the position of the region of interest included in the first condition setting image C1, the imaging condition setting unit 22 sets the initially set imaging conditions (the direction of the imaging axis and the imaging range) to include the entire region of interest. By changing the following, the shooting conditions for the actual shooting are set.
なお、撮影条件設定部22は、第1の条件設定用画像C1をディスプレイ14に表示し、表示した第1の条件設定用画像C1上で、関心領域を含むように撮影軸の方向および撮影範囲を設定する操作を操作者から受け付けることにより、本撮影の撮影条件を設定してもよい。 The imaging condition setting unit 22 displays the first condition setting image C1 on the display 14, and adjusts the direction of the imaging axis and the imaging range on the displayed first condition setting image C1 so as to include the region of interest. The shooting conditions for the actual shooting may be set by receiving an operation from the operator to set the shooting conditions.
 本実施形態においては、撮影条件設定部22が本撮影用の撮影条件を設定すると、画像取得部21が、設定された撮影条件に従ってMRI装置2に被検体Hの本撮影を行わせることにより診断画像G0を取得する。 In this embodiment, when the imaging condition setting unit 22 sets the imaging conditions for main imaging, the image acquisition unit 21 causes the MRI apparatus 2 to perform the main imaging of the subject H according to the set imaging conditions, thereby diagnosing the subject H. Obtain image G0.
 導出部23は、撮影条件設定部22が設定した撮影条件により撮影された、被検体Hの少なくとも一部を含む第2の条件設定用画像C2を診断画像G0から疑似的に導出する。第2の条件設定用画像C2が本開示の第2の画像の一例である。 The deriving unit 23 pseudo-derives a second condition setting image C2, which includes at least a portion of the subject H, photographed under the photographing conditions set by the photographing condition setting unit 22, from the diagnostic image G0. The second condition setting image C2 is an example of the second image of the present disclosure.
 具体的には、導出部23は、撮影条件設定部22が設定した撮影条件に基づいて、関心領域を含むように、第2の条件設定用画像C2を導出するための撮影軸の方向および撮影範囲(以下、画像導出条件とする)を導出する。この際、診断画像G0から関心領域を抽出することにより、画像導出条件を導出してもよい。そして、導出部23は、画像導出条件に基づく範囲の断層画像を診断画像G0から抽出することにより、第2の条件設定用画像C2を導出する。 Specifically, the derivation unit 23 determines the direction of the imaging axis and the imaging direction for deriving the second condition setting image C2 to include the region of interest based on the imaging conditions set by the imaging condition setting unit 22. The range (hereinafter referred to as image derivation condition) is derived. At this time, the image derivation conditions may be derived by extracting the region of interest from the diagnostic image G0. Then, the derivation unit 23 derives a second condition setting image C2 by extracting a tomographic image within a range based on the image derivation conditions from the diagnostic image G0.
 なお、導出部23は、診断画像G0から第2の条件設定用画像C2を導出するようにニューラルネットワークを機械学習することにより構築された学習済みモデルを備え、学習済みモデルにより第2の条件設定用画像C2を導出するようにしてもよい。 Note that the derivation unit 23 includes a learned model constructed by machine learning a neural network so as to derive the second condition setting image C2 from the diagnostic image G0, and uses the learned model to derive the second condition setting image C2. The image C2 may be derived.
 図4は第2の条件設定用画像C2を導出する学習済みモデルを学習するための教師データを示す図である。図4に示すように教師データ30は、ニューラルネットワークに入力する学習用画像31と、正解データ32とからなる。学習用画像31はMRI画像であり、正解データ32は、学習用画像31を取得するのに先行して取得された条件設定用画像である。より具体的には、様々な被検体Hの診断画像G0を取得する直前に取得された画像であり、診断画像G0と一緒に画像保管サーバ3に保管されている画像である。学習済みモデルはこのような教師データ30を多数用いることにより、診断画像G0が入力されると条件設定用画像を出力するように、ニューラルネットワークを機械学習することにより構築される。 FIG. 4 is a diagram showing teacher data for learning a trained model for deriving the second condition setting image C2. As shown in FIG. 4, the teacher data 30 consists of a learning image 31 to be input to the neural network and correct answer data 32. The learning image 31 is an MRI image, and the correct data 32 is a condition setting image acquired prior to acquiring the learning image 31. More specifically, it is an image acquired immediately before acquiring the diagnostic images G0 of various subjects H, and is an image stored in the image storage server 3 together with the diagnostic images G0. The learned model is constructed by using a large amount of such teacher data 30 and by machine learning a neural network so as to output a condition setting image when the diagnostic image G0 is input.
なお、導出部23は、診断画像G0をディスプレイ14に表示し、操作者の指示により診断画像G0から第2の条件設定用画像C2に含めるべき断層面の範囲を診断画像G0に設定し、設定された範囲に基づいて第2の条件設定用画像C2を導出するようにしてもよい。 Note that the derivation unit 23 displays the diagnostic image G0 on the display 14, and sets the range of tomographic planes to be included in the second condition setting image C2 from the diagnostic image G0 to the diagnostic image G0 according to instructions from the operator. The second condition setting image C2 may be derived based on the range determined.
 表示制御部24は、撮影により取得された診断画像G0、第1の条件設定用画像C1および第2の条件設定用画像C2をディスプレイ14に表示する。 The display control unit 24 displays the diagnostic image G0, the first condition setting image C1, and the second condition setting image C2 acquired by photography on the display 14.
 次いで、本実施形態において行われる処理について説明する。図5は本実施形態において行われる処理を示すフローチャート、図6は本実施形態において行われる処理を模式的に示す図である。まず、操作者の予備撮影の指示により、画像取得部21がMRI装置2に予備撮影を実行させ、第1の条件設定用画像C1を取得する(ステップST1)。次いで、撮影条件設定部22が、第1の条件設定用画像C1に基づいて、本撮影用の撮影条件を設定する(ステップST2)。 Next, the processing performed in this embodiment will be explained. FIG. 5 is a flowchart showing the processing performed in this embodiment, and FIG. 6 is a diagram schematically showing the processing performed in this embodiment. First, in response to an operator's instruction for preliminary imaging, the image acquisition unit 21 causes the MRI apparatus 2 to perform preliminary imaging, and acquires the first condition setting image C1 (step ST1). Next, the photographing condition setting unit 22 sets photographing conditions for main photographing based on the first condition setting image C1 (step ST2).
 続いて、操作者による本撮影の指示により、あるいは指示を待たずに、画像取得部21がMRI装置2に本撮影を実行させ、診断画像G0を取得する(ステップST3)。そして、導出部23が診断画像G0に基づいて第2の条件設定用画像C2を導出する(ステップST4)。そして、表示制御部24が確認のために診断画像G0および第2の条件設定用画像C2を表示する(画像表示:ステップST5)。続いて、操作者による確認後、ネットワークI/F17から診断画像G0および第2の条件設定用画像C2が画像保管サーバ3に送信され(画像送信:ステップST6)、処理を終了する。診断画像G0および第2の条件設定用画像C2は対応付けられて画像保管サーバ3に保管される。 Subsequently, the image acquisition unit 21 causes the MRI apparatus 2 to perform main imaging according to the operator's instruction for main imaging, or without waiting for the instruction, and obtains the diagnostic image G0 (step ST3). Then, the derivation unit 23 derives the second condition setting image C2 based on the diagnostic image G0 (step ST4). Then, the display control unit 24 displays the diagnostic image G0 and the second condition setting image C2 for confirmation (image display: step ST5). Subsequently, after confirmation by the operator, the diagnostic image G0 and the second condition setting image C2 are transmitted from the network I/F 17 to the image storage server 3 (image transmission: step ST6), and the process ends. The diagnostic image G0 and the second condition setting image C2 are stored in the image storage server 3 in association with each other.
 ここで、MRI装置による撮影を行う場合、位置決め用画像、すなわち条件設定用画像を取得し、撮影条件を設定した後、条件設定用画像を再度取得した上で、本撮影を行って診断画像G0を取得し、診断画像G0と、診断画像G0を取得した直前に取得した条件設定用画像とを保存する必要がある。しかしながら、MRI装置2による撮影および画像の再構成には時間を要するため、条件設定用画像の再撮影に要する負担が大きい。 Here, when performing imaging with an MRI apparatus, a positioning image, that is, a condition setting image is acquired, and after setting the imaging conditions, the condition setting image is acquired again, and the main imaging is performed to obtain the diagnostic image G0. It is necessary to acquire the diagnostic image G0 and the condition setting image acquired immediately before acquiring the diagnostic image G0. However, since it takes time for the MRI apparatus 2 to take an image and reconstruct the image, the burden of re-imaging the condition setting image is large.
 本実施形態によれば、再度の条件設定用画像の取得を行うことなく、診断画像G0から第2の条件設定用画像C2を導出するようにした。このため、再度予備撮影を行わなくても、疑似的ではあるものの診断画像G0を取得した直前に取得した条件設定用画像を取得することができる。したがって、MRI装置における位置決め画像の再撮影に要する負担を軽減することができる。 According to this embodiment, the second condition setting image C2 is derived from the diagnostic image G0 without acquiring the condition setting image again. Therefore, even if preliminary imaging is not performed again, it is possible to obtain the condition setting image obtained immediately before obtaining the diagnostic image G0, although it is a pseudo image. Therefore, the burden required for retaking positioning images in the MRI apparatus can be reduced.
 また、上記実施形態においては、診断画像G0よりも断層面の範囲が狭い条件設定用画像を取得しているが、これに限定されるものではない。診断画像G0と同一の断層面の範囲を有する条件設定用画像を取得するようにしてもよい。 Furthermore, in the embodiment described above, a condition setting image having a narrower cross-sectional plane range than the diagnostic image G0 is acquired, but the present invention is not limited to this. A condition setting image having the same tomographic range as the diagnostic image G0 may be acquired.
 また、上記実施形態において、例えば、画像取得部21、撮影条件設定部22、導出部23および表示制御部24といった各種の処理を実行する処理部(Processing Unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(Processor)を用いることができる。上記各種のプロセッサには、上述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device :PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。 Further, in the above embodiment, the hardware structure of the processing unit (Processing Unit) that executes various processes, such as the image acquisition unit 21, the imaging condition setting unit 22, the derivation unit 23, and the display control unit 24, is as follows. The following various processors can be used. As mentioned above, in addition to the CPU, which is a general-purpose processor that executes software (programs) and functions as various processing units, the various processors listed above include circuits such as FPGA (Field Programmable Gate Array) after manufacturing. Programmable logic devices (PLDs), which are processors whose configuration can be changed, and specialized electrical devices, which are processors with circuit configurations specifically designed to execute specific processes, such as ASICs (Application Specific Integrated Circuits). Includes circuits, etc.
 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせまたはCPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。 One processing unit may be composed of one of these various types of processors, or a combination of two or more processors of the same type or different types (for example, a combination of multiple FPGAs or a combination of a CPU and an FPGA). ). Further, the plurality of processing units may be configured with one processor.
 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントおよびサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアとの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。 As an example of configuring a plurality of processing units with one processor, firstly, as typified by computers such as a client and a server, one processor is configured with a combination of one or more CPUs and software, There is a form in which this processor functions as a plurality of processing units. Second, there are processors that use a single IC (Integrated Circuit) chip, such as System On Chip (SoC), which implements the functions of an entire system including multiple processing units. be. In this way, various processing units are configured using one or more of the various processors described above as a hardware structure.
 さらに、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(Circuitry)を用いることができる。 Furthermore, as the hardware structure of these various processors, more specifically, an electric circuit (Circuitry) that is a combination of circuit elements such as semiconductor elements can be used.
   1  コンソール
   2  MRI装置
   3  画像保管サーバ
   4  ネットワーク
   11  CPU
   12  撮影補助プログラム
   13  ストレージ
   14  ディスプレイ
   15  入力デバイス
   16  メモリ
   17  ネットワークI/F
   18  バス
   20  撮影補助装置
   21  画像取得部
   22  撮影条件設定部
   23  導出部
   24  表示制御部
   30  教師データ
   31  学習用データ
   32  正解データ
   C1  第1の条件設定用画像
   C2  第2の条件設定用画像
   G0  診断画像
1 Console 2 MRI device 3 Image storage server 4 Network 11 CPU
12 Shooting assistance program 13 Storage 14 Display 15 Input device 16 Memory 17 Network I/F
18 Bus 20 Photography auxiliary device 21 Image acquisition unit 22 Photography condition setting unit 23 Derivation unit 24 Display control unit 30 Teacher data 31 Learning data 32 Correct data C1 First condition setting image C2 Second condition setting image G0 Diagnosis image

Claims (8)

  1.  少なくとも1つのプロセッサを備え、
     前記プロセッサは、
     MRI装置による診断画像の取得に先行して取得された、被検体の少なくとも一部が含まれた第1の画像を取得し、
     前記第1の画像に基づいて前記診断画像を取得する際の前記MRI装置の撮影条件を設定し、
     前記撮影条件に基づいて前記MRI装置に前記被検体の撮影を行わせることより前記診断画像を取得し、
     前記設定された撮影条件により撮影された、前記被検体の少なくとも一部を含む第2の画像を前記診断画像から導出する撮影補助装置。
    comprising at least one processor;
    The processor includes:
    Obtaining a first image that includes at least a portion of the subject and that is obtained prior to obtaining a diagnostic image by the MRI device;
    setting imaging conditions for the MRI apparatus when acquiring the diagnostic image based on the first image;
    Obtaining the diagnostic image by causing the MRI apparatus to image the subject based on the imaging conditions,
    A photographing auxiliary device that derives, from the diagnostic image, a second image photographed under the set photographing conditions and including at least a portion of the subject.
  2.  前記プロセッサは、前記診断画像および前記第2の画像をストレージに保存する請求項1に記載の撮影補助装置。 The photographing auxiliary device according to claim 1, wherein the processor stores the diagnostic image and the second image in a storage.
  3.  前記撮影条件は、前記被検体の撮影軸の方向、前記被検体の撮影範囲および前記MRI装置における撮影パラメータの少なくとも一方を含む請求項1または2に記載の撮影補助装置。 The imaging auxiliary device according to claim 1 or 2, wherein the imaging conditions include at least one of a direction of an imaging axis of the subject, an imaging range of the subject, and imaging parameters of the MRI apparatus.
  4.  前記プロセッサは、前記第1の画像から前記撮影条件を導出するように機械学習がなされた学習済みモデルを用いて、前記撮影条件を導出する請求項1または2に記載の撮影補助装置。 The photographing assistance device according to claim 1 or 2, wherein the processor derives the photographing conditions using a learned model that has been subjected to machine learning to derive the photographing conditions from the first image.
  5.  前記プロセッサは、前記診断画像から前記第2の画像を導出するように機械学習がなされた学習済みモデルを用いて、前記第2の画像を導出する請求項1または2に記載の撮影補助装置。 The imaging assistant device according to claim 1 or 2, wherein the processor derives the second image using a learned model that has been subjected to machine learning so as to derive the second image from the diagnostic image.
  6.   前記プロセッサは、前記設定された撮影条件に基づいて前記第2の画像を導出するための画像導出条件を導出する、請求項1または2に記載の撮影補助装置。 The photographing auxiliary device according to claim 1 or 2, wherein the processor derives image derivation conditions for deriving the second image based on the set photographing conditions.
  7.  MRI装置による診断画像の取得に先行して取得された、被検体の少なくとも一部が含まれた第1の画像を取得し、
     前記第1の画像に基づいて前記診断画像を取得する際の前記MRI装置の撮影条件を設定し、
     前記撮影条件に基づいて前記MRI装置に前記被検体の撮影を行わせることより前記診断画像を取得し、
     前記設定された撮影条件により撮影された、前記被検体の少なくとも一部を含む第2の画像を前記診断画像から導出する撮影補助方法。
    Obtaining a first image that includes at least a portion of the subject and that is obtained prior to obtaining a diagnostic image by the MRI device;
    setting imaging conditions of the MRI apparatus when acquiring the diagnostic image based on the first image;
    Obtaining the diagnostic image by causing the MRI apparatus to image the subject based on the imaging conditions,
    A photographing auxiliary method for deriving a second image photographed under the set photographing conditions and including at least a part of the subject from the diagnostic image.
  8.  MRI装置による診断画像の取得に先行して取得された、被検体の少なくとも一部が含まれた第1の画像を取得する手順と、
     前記第1の画像に基づいて前記診断画像を取得する際の前記MRI装置の撮影条件を設定する手順と、
     前記撮影条件に基づいて前記MRI装置に前記被検体の撮影を行わせることより前記診断画像を取得する手順と、
     前記設定された撮影条件により撮影された、前記被検体の少なくとも一部を含む第2の画像を前記診断画像から導出する手順とをコンピュータに実行させる撮影補助プログラム。
    a step of acquiring a first image that includes at least a portion of the subject, the first image being acquired prior to the acquisition of a diagnostic image by the MRI apparatus;
    a step of setting imaging conditions of the MRI apparatus when acquiring the diagnostic image based on the first image;
    a step of obtaining the diagnostic image by causing the MRI apparatus to image the subject based on the imaging conditions;
    A photographing assistant program that causes a computer to execute a procedure of deriving a second image photographed under the set photographing conditions and including at least a part of the subject from the diagnostic image.
PCT/JP2023/014632 2022-07-29 2023-04-10 Imaging assistance device, method, and program WO2024024179A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-121982 2022-07-29
JP2022121982 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024179A1 true WO2024024179A1 (en) 2024-02-01

Family

ID=89705933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014632 WO2024024179A1 (en) 2022-07-29 2023-04-10 Imaging assistance device, method, and program

Country Status (1)

Country Link
WO (1) WO2024024179A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291356A (en) * 2008-06-04 2009-12-17 Fujifilm Corp X-ray imaging apparatus and method
WO2017195797A1 (en) * 2016-05-09 2017-11-16 東芝メディカルシステムズ株式会社 Medical image diagnostic device
JP2019146789A (en) * 2018-02-27 2019-09-05 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging apparatus
US20200211208A1 (en) * 2018-12-27 2020-07-02 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for image fusion
US20200218922A1 (en) * 2018-12-17 2020-07-09 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for determining a region of interest of a subject
US20210080531A1 (en) * 2019-09-17 2021-03-18 GE Precision Healthcare LLC Systems and methods for generating localizer scan settings from calibration images
JP2021083730A (en) * 2019-11-28 2021-06-03 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging device
CN112932522A (en) * 2021-02-03 2021-06-11 上海联影医疗科技股份有限公司 Medical image acquisition method and device and computer equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291356A (en) * 2008-06-04 2009-12-17 Fujifilm Corp X-ray imaging apparatus and method
WO2017195797A1 (en) * 2016-05-09 2017-11-16 東芝メディカルシステムズ株式会社 Medical image diagnostic device
JP2019146789A (en) * 2018-02-27 2019-09-05 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging apparatus
US20200218922A1 (en) * 2018-12-17 2020-07-09 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for determining a region of interest of a subject
US20200211208A1 (en) * 2018-12-27 2020-07-02 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for image fusion
US20210080531A1 (en) * 2019-09-17 2021-03-18 GE Precision Healthcare LLC Systems and methods for generating localizer scan settings from calibration images
JP2021083730A (en) * 2019-11-28 2021-06-03 キヤノンメディカルシステムズ株式会社 Magnetic resonance imaging device
CN112932522A (en) * 2021-02-03 2021-06-11 上海联影医疗科技股份有限公司 Medical image acquisition method and device and computer equipment

Similar Documents

Publication Publication Date Title
JP7129869B2 (en) Disease area extraction device, method and program
CN106485691B (en) Information processing apparatus, information processing system, and information processing method
CN102125432B (en) Medical image diagnostic apparatus and medical image display apparatus
US11139068B2 (en) Methods, systems, and computer readable media for smart image protocoling
JP6967983B2 (en) Image processing equipment, image processing methods, and programs
US20230316550A1 (en) Image processing device, method, and program
DE112014006964T5 (en) Systems and methods for anatomy-based registration of medical images required in various image modalities
JP2020032045A (en) Learning device, method, and program for discriminator for discriminating infraction region and discriminator for discriminating infraction region, and infraction region discrimination device, method, and program
JP7023162B2 (en) Forecasting device, forecasting method, and forecasting program
WO2019216125A1 (en) Learning device, method, and program for classifier for classifying infarct region, classifier for classifying infarct region, and device, method and program for classifying infarct region
WO2024024179A1 (en) Imaging assistance device, method, and program
JP7210175B2 (en) Medical information processing device, medical information processing system and medical information processing program
JP6956514B2 (en) X-ray CT device and medical information management device
JP2020039702A (en) Medical image extraction device, medical image extraction method, and computer program
WO2020217807A1 (en) Image orientation setting device, method, and program
US11176413B2 (en) Apparatus, method, and program for training discriminator discriminating disease region, discriminator discriminating disease region, disease region discrimination apparatus, and disease region discrimination program
JP7404857B2 (en) Image judgment device, image judgment method and program
WO2020246192A1 (en) Correction instructed region displaying device, method and program
JP2004057237A (en) Magnetic resonance imaging apparatus
JP7309703B2 (en) Image diagnosis support device, image diagnosis support method, and image diagnosis support program
JP6877569B2 (en) Misalignment detectors, methods and programs
JP2021175454A (en) Medical image processing apparatus, method and program
JPWO2020090445A1 (en) Area modifiers, methods and programs
JP7170850B2 (en) Pseudo-angio image generator, method and program
JP7361930B2 (en) Medical image processing device, method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845919

Country of ref document: EP

Kind code of ref document: A1