WO2024024167A1 - Heat pipe - Google Patents

Heat pipe Download PDF

Info

Publication number
WO2024024167A1
WO2024024167A1 PCT/JP2023/012223 JP2023012223W WO2024024167A1 WO 2024024167 A1 WO2024024167 A1 WO 2024024167A1 JP 2023012223 W JP2023012223 W JP 2023012223W WO 2024024167 A1 WO2024024167 A1 WO 2024024167A1
Authority
WO
WIPO (PCT)
Prior art keywords
wick
container
heat pipe
liquid
groove
Prior art date
Application number
PCT/JP2023/012223
Other languages
French (fr)
Japanese (ja)
Inventor
モハマド シャヘッド アハメド
剛 小川
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2024024167A1 publication Critical patent/WO2024024167A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure

Definitions

  • the present invention relates to a heat pipe.
  • This application claims priority based on Japanese Patent Application No. 2022-121422 filed in Japan on July 29, 2022, the contents of which are incorporated herein.
  • Patent Document 1 discloses a heat pipe having a container and a working fluid sealed in the container.
  • capillary force is applied to the liquid phase working fluid by forming grooves on the inner circumferential surface of the container. This capillary force transports the liquid phase working fluid from the condensing section to the evaporating section.
  • the present invention was made in consideration of these circumstances, and an object of the present invention is to provide a heat pipe that can achieve both heat transport performance and size reduction.
  • a heat pipe according to aspect 1 of the present invention includes a container in which a working fluid is sealed, a first wick that is in contact with an inner circumferential surface of the container and has water permeability, and a second wick that is in contact with the container, faces a steam flow path provided in the container, and has water permeability; and no groove is formed on the inner circumferential surface of the container.
  • the first wick is formed in a wavy shape in a cross-sectional view, and has a plurality of grooves extending in the longitudinal direction. Since the grooves have high permeability, the flow resistance of the liquid flowing through the grooves is small. Therefore, heat transport performance can be improved by transporting liquid using the grooves. Furthermore, the wall thickness of the container can be reduced compared to the case where grooves are formed on the inner circumferential surface of the container. Therefore, it is possible to provide a heat pipe that achieves both heat transport performance and size reduction.
  • the first wick includes a plurality of first convex portions that protrude toward the inner circumferential surface of the container, and a plurality of first convex portions that protrude toward the second wick. a plurality of second convex portions, all of the plurality of second convex portions may be in contact with the second wick.
  • the liquid carried from the condensing section to the evaporating section by the first wick is smoothly transferred to the second wick via the plurality of second convex sections.
  • the liquid can be stably supplied to the second wick, and the liquid can be stably evaporated from the surface of the second wick.
  • the second wick may be a sintered body of copper powder or fine copper wire.
  • the third aspect it is possible to realize a first wick that has water permeability and is waveform in cross-sectional view.
  • the container in the heat pipe according to any one of aspects 1 to 3, has a flat shape, and the second wick extends in the width direction of the container in the cross-sectional view. Good too.
  • the vapor flow path and the liquid flow path can be separated by the second wick. Therefore, even in a flat heat pipe whose steam flow path has a small cross-sectional area, it is possible to ensure heat transport performance.
  • FIG. 3 is a cross-sectional view of the heat pipe according to the first embodiment.
  • FIG. 3 is a cross-sectional view of a heat pipe according to a second embodiment.
  • the heat pipe 1A includes a container 10, a first wick 20, and a second wick 30.
  • the first wick 20 and the second wick 30 are housed in the container 10.
  • the first wick 20, the second wick 30, and the container 10 are fixed to each other.
  • the fixing method can be selected as appropriate, for example, the container 10 and the first wick 20 may be fixed by sintering, and the first wick 20 and the second wick 30 may be further fixed by sintering.
  • the container 10 has an elongated shape (not shown) extending in one direction.
  • a working fluid (not shown) is sealed inside the container 10 .
  • FIG. 1 is a cross-sectional view of a heat pipe 1A.
  • the container 10 has a flat shape and has a first wall 11 and a second wall 12 that are substantially parallel to each other.
  • the direction in which the first wall portion 11 and the second wall portion 12 extend is referred to as the width direction.
  • the direction perpendicular to both the longitudinal direction and the width direction is referred to as the thickness direction.
  • the direction along the X-axis is the width direction
  • the direction along the Y-axis is the thickness direction.
  • the thickness T (external dimension in the thickness direction) of the container 10 is, for example, 1 mm or less.
  • the working fluid enclosed in the container 10 is a well-known phase-changing substance. Inside the container 10, the working fluid undergoes a phase change between a gas phase and a liquid phase.
  • a gas phase working fluid may be referred to as a "steam,” and a liquid-phase working fluid may be referred to as a "liquid.”
  • the gas phase and the liquid phase are not particularly distinguished, they may be simply referred to as working fluid.
  • the container 10 is a sealed hollow container.
  • a steam flow path S1 is provided inside the container 10.
  • the steam flow path S1 is a space for steam to flow. Steam flows mainly along the longitudinal direction within the steam flow path S1. For example, both ends of the container 10 in the longitudinal direction are used as an evaporation section and a condensation section, respectively. In this case, the steam flows in the steam flow path S1 along the longitudinal direction from the evaporating section to the condensing section.
  • the container 10 has an inner peripheral surface 10a.
  • the inner circumferential surface 10a is smooth and has no grooves or the like.
  • the first wick 20 is formed in a wavy shape when viewed in cross section, and has a substantially uniform thickness.
  • the first wick 20 has a plurality of first protrusions 21 and a plurality of second protrusions 22. In the width direction, the first protrusions 21 and the second protrusions 22 are arranged alternately.
  • Each first convex portion 21 projects toward the inner circumferential surface 10a of the container 10. More specifically, each first convex portion 21 protrudes toward the inner circumferential surface 10a of the first wall portion 11.
  • Each second convex portion 22 projects toward the second wick 30. In other words, each second convex portion 22 protrudes toward the inner circumferential surface 10a of the second wall portion 12.
  • all the first convex parts 21 are in contact with the first wall part 11 (inner peripheral surface 10a), and all the second convex parts 22 are in contact with the second wick 30.
  • the first convex portion 21 and the second convex portion 22 extend along the longitudinal direction.
  • a portion between adjacent first convex portions 21 in the width direction is referred to as a first groove 23.
  • the portion between the second convex portions 22 adjacent to each other in the width direction is referred to as a second groove 24.
  • the plurality of first grooves 23 extend along the longitudinal direction and are open toward the first wall portion 11.
  • the plurality of second grooves 24 extend along the longitudinal direction and are open toward the second wick 30.
  • the first groove 23 and the second groove 24 function as a liquid flow path through which the liquid-phase working fluid flows in the longitudinal direction.
  • the widths of the first groove 23 and the second groove 24 are preferably set to such an extent that capillary force is generated in the liquid phase working fluid.
  • the average value of the widths of the first groove 23 and the second groove 24 may be about 0.1 mm.
  • the average value of the depths of the first groove 23 and the second groove 24 may be about 0.1 mm.
  • the cross-sectional shape of the first groove 23 and the second groove 24 is V-shaped.
  • the shapes of the first groove 23 and the second groove 24 may be changed as appropriate.
  • the cross-sectional shape of the first groove 23 and the second groove 24 may be U-shaped.
  • the second wick 30 is sheet-shaped and has a substantially uniform thickness along the width direction.
  • the second wick 30 faces the steam flow path S1.
  • the second wick 30 is formed linearly in a cross-sectional view and extends in the width direction.
  • the first wick 20 and the second wick 30 have water permeability. Further, the first wick 20 and the second wick 30 have a large number of pores that can generate capillary force in the liquid phase working fluid. Therefore, the liquid phase working fluid can flow through the first wick 20 and the second wick 30 by capillary force.
  • the material for the first wick 20 is preferably copper powder or a sintered body of fine copper wire.
  • the first wick 20 may be formed by sintering copper powder in a corrugated mold.
  • the first wick 20 may be formed by deforming a sheet-like sintered body of fine copper wire into a wave shape.
  • the first wick 20 may be formed using other methods.
  • a suitable material for the second wick 30 is a sintered body of copper powder.
  • At least a portion of the first wick 20 and the second wick 30 is impregnated with a liquid-phase working fluid.
  • the liquid-phase working fluid evaporates. This evaporation occurs, for example, on the surface of the second wick 30.
  • the working fluid that has evaporated into a gas phase travels through the vapor flow path S1 to a portion (condensation portion) of the heat pipe 1A that is remote from the heat source. In the condensing section, the gas phase working fluid is deprived of heat and condensed.
  • the working fluid that has condensed into a liquid phase returns to the evaporation section through the first groove 23 and the second groove 24.
  • the liquid (liquid-phase working fluid) that has reached the evaporator through the first groove 23 passes through the first wick 20 and heads toward the second wick 30 .
  • the liquid that has reached the evaporation section through the second groove 24 heads directly to the second wick 30. Then, the liquid evaporates again on the surface of the second wick 30.
  • the heat pipe 1A can continuously transport heat from the evaporation section to the condensation section. Thereby, the heat pipe 1A can cool the heat source.
  • the first wick 20 has a wavy shape when viewed in cross section. That is, the first wick 20 has a plurality of first grooves 23 and second grooves 24. These first grooves 23 and second grooves 24 function as a flow path (liquid flow path) for liquid-phase working fluid.
  • first grooves 23 and second grooves 24 function as a flow path (liquid flow path) for liquid-phase working fluid.
  • the liquid flow path is a groove
  • higher permeability can be obtained than when the liquid flow path is a pore.
  • the higher the permeability of the liquid flow path in the longitudinal direction the lower the flow resistance of the liquid, and the smoother the liquid can be returned from the condensing section to the evaporating section. This increases heat transport performance.
  • the direction in which steam flows and the direction in which liquid flows are generally opposite to each other.
  • vapor flows from the evaporator to the condensing part, but liquid flows from the condensing part to the evaporating part. Therefore, if the vapor flow path and the liquid flow path are in contact with each other, the flow of vapor and the flow of liquid may interfere with each other, resulting in a decrease in heat transport performance.
  • the cross-sectional area of the steam flow path S1 is also small, and a reduction in heat transport performance due to steam pressure loss becomes a significant issue. .
  • the vapor flow path S1 and the liquid flow path are separated by the second wick 30. This prevents vapor and liquid from interfering with their flow. Thereby, heat transport performance can be further improved.
  • heat pipes are sometimes used to cool internal components of small electronic devices (for example, smartphones, etc.). Therefore, there is a need for a heat pipe that has both heat transport performance and miniaturization.
  • no groove is formed in the inner circumferential surface 10a of the container 10. Therefore, compared to the case where grooves are formed on the inner circumferential surface 10a of the container 10, it is easier to achieve both thinness and strength of the container 10.
  • the first wick 20 has a first groove 23 and a second groove 24 that serve as liquid flow paths. Therefore, heat transport performance equivalent to that achieved by forming grooves in the container 10 can be achieved.
  • the heat pipe 1A of the present embodiment includes a container 10 in which a working fluid is sealed, a first wick 20 that is in contact with the inner peripheral surface 10a of the container 10 and has water permeability, and a first wick 20 that is in contact with the inner peripheral surface 10a of the container 10.
  • the first wick 20 is formed in a wave shape in a cross-sectional view perpendicular to the longitudinal direction of the container 10, and no groove is formed in the inner circumferential surface 10a of the container 10. According to this configuration, the first wick 20 has grooves 23 and 24 extending in the longitudinal direction.
  • the grooves 23 and 24 have high transmittance, the flow resistance of the liquid is reduced, and the heat transport performance can be improved.
  • the wall thickness of the container 10 can be reduced compared to the case where a groove is formed on the inner circumferential surface 10a of the container 10. Therefore, it is possible to provide a heat pipe 1A that achieves both heat transport performance and size reduction.
  • the first wick 20 also includes a plurality of first convex portions 21 that protrude toward the inner peripheral surface 10a of the container 10 and a plurality of second convex portions 22 that protrude toward the second wick 30. , all of the plurality of second convex portions 22 may be in contact with the second wick 30. According to this configuration, the liquid carried from the condensing section to the evaporating section by the first wick 20 is smoothly delivered to the second wick 30 via the plurality of second convex sections 22. Thereby, the liquid can be stably evaporated from the surface of the second wick 30.
  • the first wick 20 may be a sintered body of copper powder or fine copper wire. Thereby, it is possible to realize the first wick 20 which has water permeability and is waveform in cross-sectional view.
  • the container 10 of this embodiment has a flat shape, and the second wick 30 extends in the width direction of the container 10 (X-axis direction in FIG. 1) in a cross-sectional view.
  • the second wick 30 can separate the vapor flow path S1 and the liquid flow path (grooves 23, 24). Therefore, even in the flat heat pipe 1A in which the steam flow path S1 has a small cross-sectional area, it is possible to ensure heat transport performance.
  • the heat pipe 1B of this embodiment has a cylindrical shape. More specifically, the container 10, the first wick 20, and the second wick 30 each have a cylindrical shape.
  • the steam flow path S1 is located at the center of the heat pipe 1B and is surrounded by the second wick 30.
  • the direction intersecting the central axis O of the container 10 in a cross-sectional view is referred to as the radial direction, and the direction going around the central axis O is referred to as the circumferential direction.
  • the first wick 20 has a wavy shape when viewed in cross section.
  • the first wick 20 has a plurality of first protrusions 21 and a plurality of second protrusions 22.
  • the first convex portions 21 and the second convex portions 22 are arranged alternately in the circumferential direction.
  • the plurality of first convex portions 21 protrude radially outward and are in contact with the container 10.
  • the plurality of second convex portions 22 protrude radially inward and are in contact with the second wick 30.
  • the heat pipe 1B of the present embodiment includes a container 10 in which a working fluid is sealed, a first wick 20 that is in contact with the inner peripheral surface 10a of the container 10 and has water permeability, and 20, facing the steam flow path S1 provided in the container 10, and having water permeability.
  • the first wick 20 is formed in a wave shape in a cross-sectional view perpendicular to the longitudinal direction of the container 10, and no groove is formed in the inner circumferential surface 10a of the container 10. Therefore, the same effects as in the first embodiment can be obtained.
  • the first wick 20 has grooves 23 and 24 extending in the longitudinal direction, and the grooves 23 and 24 have high transmittance, the flow resistance of the liquid is reduced and the heat transport performance can be improved.
  • the wall thickness of the container 10 can be reduced compared to the case where a groove is formed on the inner circumferential surface 10a of the container 10. Therefore, it is possible to provide a heat pipe 1B that achieves both heat transport performance and size reduction.
  • first wick 20 and one second wick 30 were provided in the container 10.
  • two first wicks 20 and two second wicks 30 may be provided in the container 10.
  • a corrugated first wick 20 may be arranged so as to be in contact with the second wall portion 12.
  • the second wick 30 may be arranged so as to be in contact with the first wick 20 arranged on the second wall portion 12 side and to face the steam flow path S1.
  • all the first convex portions 21 are in contact with the inner circumferential surface 10a of the container 10, but some of the first convex portions 21 may not be in contact with the inner circumferential surface 10a. good. Similarly, some of the second convex portions 22 may not be in contact with the second wick 30.

Abstract

Provided is a heat pipe comprising: a container in which hydraulic fluid is sealed; a water-permeable first wick that is in contact with the inner periphery of the container; and a water-permeable second wick that is in contact with the first wick and faces a steam channel provided inside the container. The first wick is formed in a wave shape in a cross-sectional view perpendicular to the longitudinal direction of the container, and no grooves are formed on the inner periphery of the container.

Description

ヒートパイプheat pipe
 本発明は、ヒートパイプに関する。
 本願は、2022年7月29日に、日本に出願された特願2022-121422号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a heat pipe.
This application claims priority based on Japanese Patent Application No. 2022-121422 filed in Japan on July 29, 2022, the contents of which are incorporated herein.
 特許文献1には、コンテナおよびコンテナに封入された作動流体を有するヒートパイプが開示されている。このヒートパイプでは、コンテナの内周面に溝を形成することで、液相の作動流体に毛管力を作用させている。この毛管力により、液相の作動流体を、凝縮部から蒸発部へと輸送している。 Patent Document 1 discloses a heat pipe having a container and a working fluid sealed in the container. In this heat pipe, capillary force is applied to the liquid phase working fluid by forming grooves on the inner circumferential surface of the container. This capillary force transports the liquid phase working fluid from the condensing section to the evaporating section.
日本国特開2022-78819号公報Japanese Patent Application Publication No. 2022-78819
 特許文献1のように、溝を使って液相の作動流体を流動させることで、熱輸送性を確保できると考えられる。その一方で、コンテナの内周面に溝を形成すると、コンテナの強度が低下する。コンテナの強度を確保するために、コンテナの厚みを大きくすることも考えられるが、その場合はヒートパイプの小型化が難しくなる。 It is thought that heat transportability can be ensured by using grooves to flow a liquid-phase working fluid, as in Patent Document 1. On the other hand, forming grooves on the inner peripheral surface of the container reduces the strength of the container. In order to ensure the strength of the container, it may be possible to increase the thickness of the container, but in that case it would be difficult to downsize the heat pipe.
 本発明はこのような事情を考慮してなされ、熱輸送性能および小型化を両立することが可能なヒートパイプを提供することを目的とする。 The present invention was made in consideration of these circumstances, and an object of the present invention is to provide a heat pipe that can achieve both heat transport performance and size reduction.
 上記課題を解決するために、本発明の態様1に係るヒートパイプは、作動流体が封入されたコンテナと、前記コンテナの内周面に接し、透水性を有する第1ウイックと、前記第1ウイックに接し、前記コンテナ内に設けられた蒸気流路に面するとともに、透水性を有する第2ウイックと、を備え、前記第1ウイックは、前記コンテナの長手方向に直交する横断面視において波形に形成され、前記コンテナの前記内周面に溝が形成されていない。 In order to solve the above problems, a heat pipe according to aspect 1 of the present invention includes a container in which a working fluid is sealed, a first wick that is in contact with an inner circumferential surface of the container and has water permeability, and a second wick that is in contact with the container, faces a steam flow path provided in the container, and has water permeability; and no groove is formed on the inner circumferential surface of the container.
 上記態様1によれば、第1ウイックは横断面視において波形に形成されており、長手方向に延びる複数の溝を有する。溝は高い透過率を有するため、溝を流動する液体の流動抵抗は小さい。したがって、溝を用いて液体を輸送することで、熱輸送性能を高めることができる。そして、コンテナの内周面に溝を形成する場合と比較して、コンテナの肉厚を小さくすることができる。したがって、熱輸送性能および小型化を両立したヒートパイプを提供することができる。 According to the first aspect, the first wick is formed in a wavy shape in a cross-sectional view, and has a plurality of grooves extending in the longitudinal direction. Since the grooves have high permeability, the flow resistance of the liquid flowing through the grooves is small. Therefore, heat transport performance can be improved by transporting liquid using the grooves. Furthermore, the wall thickness of the container can be reduced compared to the case where grooves are formed on the inner circumferential surface of the container. Therefore, it is possible to provide a heat pipe that achieves both heat transport performance and size reduction.
 また、本発明の態様2は、態様1のヒートパイプにおいて、前記第1ウイックは、前記コンテナの前記内周面に向けて突出する複数の第1凸部と、前記第2ウイックに向けて突出する複数の第2凸部と、を有し、前記複数の第2凸部は全て前記第2ウイックに接してもよい。 Further, according to a second aspect of the present invention, in the heat pipe according to aspect 1, the first wick includes a plurality of first convex portions that protrude toward the inner circumferential surface of the container, and a plurality of first convex portions that protrude toward the second wick. a plurality of second convex portions, all of the plurality of second convex portions may be in contact with the second wick.
 上記態様2によれば、第1ウイックによって凝縮部から蒸発部に運ばれた液体が、複数の第2凸部を介して、円滑に第2ウイックに受け渡される。これにより、第2ウイックへと液体が安定して供給され、第2ウイックの表面から液体を安定して蒸発させることができる。 According to the second aspect, the liquid carried from the condensing section to the evaporating section by the first wick is smoothly transferred to the second wick via the plurality of second convex sections. Thereby, the liquid can be stably supplied to the second wick, and the liquid can be stably evaporated from the surface of the second wick.
 また、本発明の態様3は、態様1または2のヒートパイプにおいて、前記第2ウイックは、銅粉または銅細線の焼結体であってもよい。 Furthermore, according to a third aspect of the present invention, in the heat pipe of the first or second aspect, the second wick may be a sintered body of copper powder or fine copper wire.
 上記態様3によれば、透水性を有し、かつ横断面視において波形の第1ウイックを実現できる。 According to the third aspect, it is possible to realize a first wick that has water permeability and is waveform in cross-sectional view.
 また、本発明の態様4は、態様1から3のいずれか1つのヒートパイプにおいて、前記コンテナは偏平形状であり、前記第2ウイックは前記横断面視において前記コンテナの幅方向に延在してもよい。 Further, in a fourth aspect of the present invention, in the heat pipe according to any one of aspects 1 to 3, the container has a flat shape, and the second wick extends in the width direction of the container in the cross-sectional view. Good too.
 上記態様4によれば、第2ウイックによって、蒸気流路と液流路(第1ウイックの溝)とを分離できる。したがって、蒸気流路の断面積が小さい扁平型ヒートパイプにおいても、熱輸送性能を確保することが可能となる。 According to the fourth aspect, the vapor flow path and the liquid flow path (grooves of the first wick) can be separated by the second wick. Therefore, even in a flat heat pipe whose steam flow path has a small cross-sectional area, it is possible to ensure heat transport performance.
 本発明の上記態様によれば、熱輸送性能および小型化を両立することが可能なヒートパイプを提供できる。 According to the above aspect of the present invention, it is possible to provide a heat pipe that can achieve both heat transport performance and size reduction.
第1実施形態に係るヒートパイプの横断面図である。FIG. 3 is a cross-sectional view of the heat pipe according to the first embodiment. 第2実施形態に係るヒートパイプの横断面図である。FIG. 3 is a cross-sectional view of a heat pipe according to a second embodiment.
(第1実施形態)
 以下、第1実施形態のヒートパイプについて図面に基づいて説明する。
 図1に示すように、ヒートパイプ1Aは、コンテナ10と、第1ウイック20と、第2ウイック30と、を備える。第1ウイック20および第2ウイック30は、コンテナ10に収容されている。第1ウイック20、第2ウイック30、およびコンテナ10は、互いに固定されている。
(First embodiment)
Hereinafter, the heat pipe of the first embodiment will be explained based on the drawings.
As shown in FIG. 1, the heat pipe 1A includes a container 10, a first wick 20, and a second wick 30. The first wick 20 and the second wick 30 are housed in the container 10. The first wick 20, the second wick 30, and the container 10 are fixed to each other.
 固定の方法は適宜選択可能であるが、例えばコンテナ10と第1ウイック20とを焼結によって固定し、さらに第1ウイック20と第2ウイック30とを焼結によって固定してもよい。コンテナ10は一方向に延びる長尺状の形状(図示は省略する)を有する。コンテナ10内には、不図示の作動流体が封入されている。 Although the fixing method can be selected as appropriate, for example, the container 10 and the first wick 20 may be fixed by sintering, and the first wick 20 and the second wick 30 may be further fixed by sintering. The container 10 has an elongated shape (not shown) extending in one direction. A working fluid (not shown) is sealed inside the container 10 .
(方向定義)
 本明細書では、コンテナ10が延びる方向を単に長手方向という。また、コンテナ10の長手方向に直交する断面を横断面という。図1はヒートパイプ1Aの横断面図である。
 本実施形態では、コンテナ10が扁平形状であり、互いに略平行な第1壁部11および第2壁部12を有している。横断面視において、第1壁部11および第2壁部12が延在する方向を、幅方向という。また、長手方向および幅方向の双方に直交する方向を厚さ方向という。図1において、X軸に沿う方向が幅方向であり、Y軸に沿う方向が厚さ方向である。コンテナ10の厚さT(厚さ方向における外形寸法)は、例えば1mm以下である。
(direction definition)
In this specification, the direction in which the container 10 extends is simply referred to as the longitudinal direction. Further, a cross section perpendicular to the longitudinal direction of the container 10 is referred to as a cross section. FIG. 1 is a cross-sectional view of a heat pipe 1A.
In this embodiment, the container 10 has a flat shape and has a first wall 11 and a second wall 12 that are substantially parallel to each other. In a cross-sectional view, the direction in which the first wall portion 11 and the second wall portion 12 extend is referred to as the width direction. Further, the direction perpendicular to both the longitudinal direction and the width direction is referred to as the thickness direction. In FIG. 1, the direction along the X-axis is the width direction, and the direction along the Y-axis is the thickness direction. The thickness T (external dimension in the thickness direction) of the container 10 is, for example, 1 mm or less.
 コンテナ10に封入される作動流体は、相変化する周知の物質である。コンテナ10の内部で、作動流体は気相と液相とに相変化する。例えば作動流体として、水(純水)、アルコール、アンモニア等を採用できる。本明細書では、気相の作動流体を「蒸気」と称し、液相の作動流体を「液体」と称する場合がある。また、気相と液相とを特に区別しない場合には、単に作動流体と称する場合がある。 The working fluid enclosed in the container 10 is a well-known phase-changing substance. Inside the container 10, the working fluid undergoes a phase change between a gas phase and a liquid phase. For example, water (pure water), alcohol, ammonia, etc. can be used as the working fluid. In this specification, a gas-phase working fluid may be referred to as a "steam," and a liquid-phase working fluid may be referred to as a "liquid." Further, when the gas phase and the liquid phase are not particularly distinguished, they may be simply referred to as working fluid.
 コンテナ10は、密閉された中空容器である。コンテナ10の内部には、蒸気流路S1が設けられている。蒸気流路S1は、蒸気が流動するための空間である。蒸気は、蒸気流路S1内を、主として長手方向に沿って流動する。例えば、長手方向におけるコンテナ10の両端部がそれぞれ、蒸発部および凝縮部として用いられる。この場合、蒸気は、蒸発部から凝縮部に向けて、長手方向に沿って蒸気流路S1内を流動する。コンテナ10は内周面10aを有している。内周面10aは平滑であり、溝等が形成されていない。 The container 10 is a sealed hollow container. A steam flow path S1 is provided inside the container 10. The steam flow path S1 is a space for steam to flow. Steam flows mainly along the longitudinal direction within the steam flow path S1. For example, both ends of the container 10 in the longitudinal direction are used as an evaporation section and a condensation section, respectively. In this case, the steam flows in the steam flow path S1 along the longitudinal direction from the evaporating section to the condensing section. The container 10 has an inner peripheral surface 10a. The inner circumferential surface 10a is smooth and has no grooves or the like.
 第1ウイック20は、横断面視において波形に形成され、厚さが略均一である。第1ウイック20は、複数の第1凸部21と、複数の第2凸部22と、を有している。幅方向において、第1凸部21および第2凸部22は交互に配置されている。各第1凸部21は、コンテナ10の内周面10aに向けて突出している。より具体的には、第1壁部11の内周面10aに向けて、各第1凸部21が突出している。各第2凸部22は、第2ウイック30に向けて突出している。言い換えると、第2壁部12の内周面10aに向けて、各第2凸部22が突出している。本実施形態では、全ての第1凸部21が第1壁部11(内周面10a)に接しており、全ての第2凸部22が第2ウイック30に接している。 The first wick 20 is formed in a wavy shape when viewed in cross section, and has a substantially uniform thickness. The first wick 20 has a plurality of first protrusions 21 and a plurality of second protrusions 22. In the width direction, the first protrusions 21 and the second protrusions 22 are arranged alternately. Each first convex portion 21 projects toward the inner circumferential surface 10a of the container 10. More specifically, each first convex portion 21 protrudes toward the inner circumferential surface 10a of the first wall portion 11. Each second convex portion 22 projects toward the second wick 30. In other words, each second convex portion 22 protrudes toward the inner circumferential surface 10a of the second wall portion 12. In this embodiment, all the first convex parts 21 are in contact with the first wall part 11 (inner peripheral surface 10a), and all the second convex parts 22 are in contact with the second wick 30.
 第1凸部21および第2凸部22は、長手方向に沿って延びている。幅方向において隣り合う第1凸部21同士の間の部分を、第1溝23と称する。幅方向において隣り合う第2凸部22同士の間の部分を、第2溝24と称する。複数の第1溝23は、長手方向に沿って延びており、第1壁部11に向けて開口している。複数の第2溝24は、長手方向に沿って延びており、第2ウイック30に向けて開口している。 The first convex portion 21 and the second convex portion 22 extend along the longitudinal direction. A portion between adjacent first convex portions 21 in the width direction is referred to as a first groove 23. The portion between the second convex portions 22 adjacent to each other in the width direction is referred to as a second groove 24. The plurality of first grooves 23 extend along the longitudinal direction and are open toward the first wall portion 11. The plurality of second grooves 24 extend along the longitudinal direction and are open toward the second wick 30.
 第1溝23および第2溝24は、液相の作動流体が長手方向に流動するための液流路として機能する。このため、第1溝23および第2溝24の幅は、液相の作動流体に毛管力を生じさせる程度に設定されることが好ましい。一例として、第1溝23および第2溝24の幅の平均値は0.1mm程度であってもよい。また、第1溝23および第2溝24の深さの平均値は0.1mm程度であってもよい。 The first groove 23 and the second groove 24 function as a liquid flow path through which the liquid-phase working fluid flows in the longitudinal direction. For this reason, the widths of the first groove 23 and the second groove 24 are preferably set to such an extent that capillary force is generated in the liquid phase working fluid. As an example, the average value of the widths of the first groove 23 and the second groove 24 may be about 0.1 mm. Moreover, the average value of the depths of the first groove 23 and the second groove 24 may be about 0.1 mm.
 図1の例では、第1溝23および第2溝24の横断面形状はV字状である。ただし、第1溝23および第2溝24の形状は適宜変更してもよい。例えば第1溝23および第2溝24の横断面形状はU字状であってもよい。 In the example of FIG. 1, the cross-sectional shape of the first groove 23 and the second groove 24 is V-shaped. However, the shapes of the first groove 23 and the second groove 24 may be changed as appropriate. For example, the cross-sectional shape of the first groove 23 and the second groove 24 may be U-shaped.
 第2ウイック30は、シート状であり、厚さが幅方向に沿って略均一である。第2ウイック30は、蒸気流路S1に面している。第2ウイック30は、横断面視において直線状に形成され、幅方向に延びている。 The second wick 30 is sheet-shaped and has a substantially uniform thickness along the width direction. The second wick 30 faces the steam flow path S1. The second wick 30 is formed linearly in a cross-sectional view and extends in the width direction.
 第1ウイック20および第2ウイック30は、透水性を有している。また、第1ウイック20および第2ウイック30は、液相の作動流体に毛管力を生じさせることが可能な多数の細孔を有している。このため、液相の作動流体は、毛管力によって第1ウイック20および第2ウイック30を通過するように流動することができる。第1ウイック20の材質としては、銅紛または銅細線の焼結体が好適である。例えば、銅紛を波形の型に入れた状態で焼結することで、第1ウイック20を形成してもよい。あるいは、シート状の銅細線の焼結体を、波形に変形加工することで、第1ウイック20を形成してもよい。その他の方法で第1ウイック20を形成してもよい。第2ウイック30の材質としては、銅紛の焼結体が好適である。 The first wick 20 and the second wick 30 have water permeability. Further, the first wick 20 and the second wick 30 have a large number of pores that can generate capillary force in the liquid phase working fluid. Therefore, the liquid phase working fluid can flow through the first wick 20 and the second wick 30 by capillary force. The material for the first wick 20 is preferably copper powder or a sintered body of fine copper wire. For example, the first wick 20 may be formed by sintering copper powder in a corrugated mold. Alternatively, the first wick 20 may be formed by deforming a sheet-like sintered body of fine copper wire into a wave shape. The first wick 20 may be formed using other methods. A suitable material for the second wick 30 is a sintered body of copper powder.
 次に、以上のように構成されたヒートパイプ1Aの作用について説明する。 Next, the operation of the heat pipe 1A configured as above will be explained.
 第1ウイック20および第2ウイック30には、少なくとも一部分において、液相の作動流体が含浸している。ヒートパイプ1Aのうち、熱源に接した部分(蒸発部)では、液相の作動流体が蒸発する。この蒸発は、例えば第2ウイック30の表面で生じる。蒸発して気相となった作動流体は、蒸気流路S1を通じて、ヒートパイプ1Aのうち熱源から離れた部分(凝縮部)へと向かう。凝縮部において、気相の作動流体は熱を奪われて凝縮する。 At least a portion of the first wick 20 and the second wick 30 is impregnated with a liquid-phase working fluid. In the portion of the heat pipe 1A that is in contact with the heat source (evaporation portion), the liquid-phase working fluid evaporates. This evaporation occurs, for example, on the surface of the second wick 30. The working fluid that has evaporated into a gas phase travels through the vapor flow path S1 to a portion (condensation portion) of the heat pipe 1A that is remote from the heat source. In the condensing section, the gas phase working fluid is deprived of heat and condensed.
 凝縮して液相となった作動流体は、第1溝23および第2溝24を通じて、蒸発部へと戻る。第1溝23を通じて蒸発部に到達した液体(液相の作動流体)は、第1ウイック20を透過し、第2ウイック30へと向かう。第2溝24を通じて蒸発部に到達した液体は、そのまま第2ウイック30へと向かう。そして、第2ウイック30の表面において、液体は再び蒸発する。この作用を繰り返すことで、ヒートパイプ1Aは、熱を蒸発部から凝縮部へと継続して輸送することができる。これにより、ヒートパイプ1Aは熱源を冷却することができる。 The working fluid that has condensed into a liquid phase returns to the evaporation section through the first groove 23 and the second groove 24. The liquid (liquid-phase working fluid) that has reached the evaporator through the first groove 23 passes through the first wick 20 and heads toward the second wick 30 . The liquid that has reached the evaporation section through the second groove 24 heads directly to the second wick 30. Then, the liquid evaporates again on the surface of the second wick 30. By repeating this action, the heat pipe 1A can continuously transport heat from the evaporation section to the condensation section. Thereby, the heat pipe 1A can cool the heat source.
 ここで、ヒートパイプ1Aの熱輸送性能を高めるうえでは、作動流体をコンテナ10内で円滑に循環させることが求められる。本実施形態では、第1ウイック20が横断面視において波形である。すなわち、第1ウイック20が複数の第1溝23および第2溝24を有している。これらの第1溝23および第2溝24が、液相の作動流体の流路(液流路)として機能する。このように、液流路が溝である場合には、液流路が細孔である場合と比較して、高い透過率(permeability)が得られる。長手方向における液流路の透過率が高いほど、液体の流動抵抗が小さくなり、液体を凝縮部から蒸発部へと円滑に戻すことができる。これにより熱輸送性能が高まる。 Here, in order to improve the heat transport performance of the heat pipe 1A, it is required to circulate the working fluid smoothly within the container 10. In this embodiment, the first wick 20 has a wavy shape when viewed in cross section. That is, the first wick 20 has a plurality of first grooves 23 and second grooves 24. These first grooves 23 and second grooves 24 function as a flow path (liquid flow path) for liquid-phase working fluid. In this way, when the liquid flow path is a groove, higher permeability can be obtained than when the liquid flow path is a pore. The higher the permeability of the liquid flow path in the longitudinal direction, the lower the flow resistance of the liquid, and the smoother the liquid can be returned from the condensing section to the evaporating section. This increases heat transport performance.
 また、ヒートパイプにおいては、一般的に、蒸気が流れる向きと、液体が流れる向きと、が互いに逆となる。本実施形態においても、蒸気は蒸発部から凝縮部に向かって流れるが、液体は凝縮部から蒸発部に向かって流れる。このため、仮に蒸気の流路と液体の流路とが接している場合、蒸気の流れと液体の流れとが互いに阻害し合い、熱輸送性能が低下する場合がある。特に、厚さの小さい(例えば厚みTが1mm以下の)偏平型ヒートパイプにおいては、蒸気流路S1の断面積も小さくなり、蒸気の圧損に起因する熱輸送性能の低下が顕著な課題となる。 Furthermore, in a heat pipe, the direction in which steam flows and the direction in which liquid flows are generally opposite to each other. Also in this embodiment, vapor flows from the evaporator to the condensing part, but liquid flows from the condensing part to the evaporating part. Therefore, if the vapor flow path and the liquid flow path are in contact with each other, the flow of vapor and the flow of liquid may interfere with each other, resulting in a decrease in heat transport performance. In particular, in a flat heat pipe with a small thickness (for example, thickness T of 1 mm or less), the cross-sectional area of the steam flow path S1 is also small, and a reduction in heat transport performance due to steam pressure loss becomes a significant issue. .
 本実施形態では、蒸気流路S1と液流路(第1溝23および第2溝24)とが、第2ウイック30によって分離されている。このため、蒸気および液体が互いに流動を阻害することが抑制される。これにより、熱輸送性能をさらに高めることができる。 In this embodiment, the vapor flow path S1 and the liquid flow path (the first groove 23 and the second groove 24) are separated by the second wick 30. This prevents vapor and liquid from interfering with their flow. Thereby, heat transport performance can be further improved.
 また、近年では、小型電子機器(例えばスマートフォン等)の内部部品を冷却するためにヒートパイプが用いられる場合がある。このため、熱輸送性能と小型化を両立したヒートパイプが求められる。本実施形態では、コンテナ10の内周面10aに溝が形成されていない。このため、コンテナ10の内周面10aに溝を形成する場合と比較して、コンテナ10の薄さおよび強度を両立しやすい。さらに、液流路となる第1溝23および第2溝24を第1ウイック20が有している。このため、コンテナ10に溝を形成するのと同等の熱輸送性能を実現することができる。 Additionally, in recent years, heat pipes are sometimes used to cool internal components of small electronic devices (for example, smartphones, etc.). Therefore, there is a need for a heat pipe that has both heat transport performance and miniaturization. In this embodiment, no groove is formed in the inner circumferential surface 10a of the container 10. Therefore, compared to the case where grooves are formed on the inner circumferential surface 10a of the container 10, it is easier to achieve both thinness and strength of the container 10. Furthermore, the first wick 20 has a first groove 23 and a second groove 24 that serve as liquid flow paths. Therefore, heat transport performance equivalent to that achieved by forming grooves in the container 10 can be achieved.
 以上説明したように、本実施形態のヒートパイプ1Aは、作動流体が封入されたコンテナ10と、コンテナ10の内周面10aに接し、透水性を有する第1ウイック20と、第1ウイック20に接し、コンテナ10内に設けられた蒸気流路S1に面するとともに、透水性を有する第2ウイック30と、を備える。そして、第1ウイック20は、コンテナ10の長手方向に直交する横断面視において波形に形成され、コンテナ10の内周面10aに溝が形成されていない。この構成によれば、第1ウイック20が長手方向に延びる溝23、24を有することとなる。溝23、24は高い透過率を有するため、液体の流動抵抗が小さくなり、熱輸送性能を高めることができる。そして、コンテナ10の内周面10aに溝を形成する場合と比較して、コンテナ10の肉厚を小さくすることができる。したがって、熱輸送性能および小型化を両立したヒートパイプ1Aを提供することができる。 As explained above, the heat pipe 1A of the present embodiment includes a container 10 in which a working fluid is sealed, a first wick 20 that is in contact with the inner peripheral surface 10a of the container 10 and has water permeability, and a first wick 20 that is in contact with the inner peripheral surface 10a of the container 10. A second wick 30 that is in contact with, faces the steam flow path S1 provided in the container 10, and has water permeability. The first wick 20 is formed in a wave shape in a cross-sectional view perpendicular to the longitudinal direction of the container 10, and no groove is formed in the inner circumferential surface 10a of the container 10. According to this configuration, the first wick 20 has grooves 23 and 24 extending in the longitudinal direction. Since the grooves 23 and 24 have high transmittance, the flow resistance of the liquid is reduced, and the heat transport performance can be improved. In addition, the wall thickness of the container 10 can be reduced compared to the case where a groove is formed on the inner circumferential surface 10a of the container 10. Therefore, it is possible to provide a heat pipe 1A that achieves both heat transport performance and size reduction.
 また、第1ウイック20は、コンテナ10の内周面10aに向けて突出する複数の第1凸部21と、第2ウイック30に向けて突出する複数の第2凸部22と、を有し、複数の第2凸部22は全て第2ウイック30に接してもよい。この構成によれば、第1ウイック20によって凝縮部から蒸発部に運ばれた液体が、複数の第2凸部22を介して、円滑に第2ウイック30に受け渡される。これにより、第2ウイック30の表面から液体を安定して蒸発させることができる。 The first wick 20 also includes a plurality of first convex portions 21 that protrude toward the inner peripheral surface 10a of the container 10 and a plurality of second convex portions 22 that protrude toward the second wick 30. , all of the plurality of second convex portions 22 may be in contact with the second wick 30. According to this configuration, the liquid carried from the condensing section to the evaporating section by the first wick 20 is smoothly delivered to the second wick 30 via the plurality of second convex sections 22. Thereby, the liquid can be stably evaporated from the surface of the second wick 30.
 また、第1ウイック20は、銅粉または銅細線の焼結体であってもよい。これにより、透水性を有し、かつ横断面視において波形の第1ウイック20を実現できる。 Furthermore, the first wick 20 may be a sintered body of copper powder or fine copper wire. Thereby, it is possible to realize the first wick 20 which has water permeability and is waveform in cross-sectional view.
 また、本実施形態のコンテナ10は偏平形状であり、第2ウイック30は横断面視においてコンテナ10の幅方向(図1のX軸方向)に延在している。この構成によれば、第2ウイック30によって、蒸気流路S1と液流路(溝23、24)とを分離できる。したがって、蒸気流路S1の断面積が小さい扁平型のヒートパイプ1Aにおいても、熱輸送性能を確保することが可能となる。 Further, the container 10 of this embodiment has a flat shape, and the second wick 30 extends in the width direction of the container 10 (X-axis direction in FIG. 1) in a cross-sectional view. According to this configuration, the second wick 30 can separate the vapor flow path S1 and the liquid flow path (grooves 23, 24). Therefore, even in the flat heat pipe 1A in which the steam flow path S1 has a small cross-sectional area, it is possible to ensure heat transport performance.
(第2実施形態)
 次に、本発明に係る第2実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
(Second embodiment)
Next, a second embodiment according to the present invention will be described, which has the same basic configuration as the first embodiment. Therefore, similar configurations will be given the same reference numerals and their explanations will be omitted, and only the different points will be explained.
 図2に示すように、本実施形態のヒートパイプ1Bは、円筒形状を有している。より具体的には、コンテナ10、第1ウイック20、および第2ウイック30がそれぞれ円筒形状を有している。蒸気流路S1は、ヒートパイプ1Bの中心部に位置し、第2ウイック30によって囲まれている。本実施形態では、横断面視においてコンテナ10の中心軸線Oに交差する方向を径方向といい、中心軸線Oまわりに周回する方向を周方向という。 As shown in FIG. 2, the heat pipe 1B of this embodiment has a cylindrical shape. More specifically, the container 10, the first wick 20, and the second wick 30 each have a cylindrical shape. The steam flow path S1 is located at the center of the heat pipe 1B and is surrounded by the second wick 30. In this embodiment, the direction intersecting the central axis O of the container 10 in a cross-sectional view is referred to as the radial direction, and the direction going around the central axis O is referred to as the circumferential direction.
 第1ウイック20は、横断面視において波形である。第1ウイック20は複数の第1凸部21および複数の第2凸部22を有している。第1凸部21および第2凸部22は、周方向において交互に配置されている。複数の第1凸部21は、径方向外側に向けて突出しており、コンテナ10に接している。複数の第2凸部22は、径方向内側に向けて突出しており、第2ウイック30に接している。 The first wick 20 has a wavy shape when viewed in cross section. The first wick 20 has a plurality of first protrusions 21 and a plurality of second protrusions 22. The first convex portions 21 and the second convex portions 22 are arranged alternately in the circumferential direction. The plurality of first convex portions 21 protrude radially outward and are in contact with the container 10. The plurality of second convex portions 22 protrude radially inward and are in contact with the second wick 30.
 本実施形態のヒートパイプ1Bも、第1実施形態と同様に、作動流体が封入されたコンテナ10と、コンテナ10の内周面10aに接し、透水性を有する第1ウイック20と、第1ウイック20に接し、コンテナ10内に設けられた蒸気流路S1に面するとともに、透水性を有する第2ウイック30と、を備える。そして、第1ウイック20は、コンテナ10の長手方向に直交する横断面視において波形に形成され、コンテナ10の内周面10aに溝が形成されていない。したがって、第1実施形態と同様の効果が得られる。すなわち、第1ウイック20が長手方向に延びる溝23、24を有し、溝23、24は高い透過率を有するため、液体の流動抵抗が小さくなり、熱輸送性能を高めることができる。そして、コンテナ10の内周面10aに溝を形成する場合と比較して、コンテナ10の肉厚を小さくすることができる。したがって、熱輸送性能および小型化を両立したヒートパイプ1Bを提供することができる。 Similarly to the first embodiment, the heat pipe 1B of the present embodiment includes a container 10 in which a working fluid is sealed, a first wick 20 that is in contact with the inner peripheral surface 10a of the container 10 and has water permeability, and 20, facing the steam flow path S1 provided in the container 10, and having water permeability. The first wick 20 is formed in a wave shape in a cross-sectional view perpendicular to the longitudinal direction of the container 10, and no groove is formed in the inner circumferential surface 10a of the container 10. Therefore, the same effects as in the first embodiment can be obtained. That is, since the first wick 20 has grooves 23 and 24 extending in the longitudinal direction, and the grooves 23 and 24 have high transmittance, the flow resistance of the liquid is reduced and the heat transport performance can be improved. In addition, the wall thickness of the container 10 can be reduced compared to the case where a groove is formed on the inner circumferential surface 10a of the container 10. Therefore, it is possible to provide a heat pipe 1B that achieves both heat transport performance and size reduction.
 なお、本発明の技術的範囲は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 Note that the technical scope of the present invention is not limited to the above embodiments, and various changes can be made without departing from the spirit of the present invention.
 例えば、前記第1実施形態では、コンテナ10内に第1ウイック20および第2ウイック30がそれぞれ1つ設けられていた。しかしながら、コンテナ10内に第1ウイック20および第2ウイック30が2つずつ設けられてもよい。この場合、図1に示される第1ウイック20に加えて、第2壁部12に接するように波形の第1ウイック20を配置してもよい。さらに、第2壁部12側に配置した第1ウイック20に接し、かつ蒸気流路S1に面するように、第2ウイック30を配置してもよい。 For example, in the first embodiment, one first wick 20 and one second wick 30 were provided in the container 10. However, two first wicks 20 and two second wicks 30 may be provided in the container 10. In this case, in addition to the first wick 20 shown in FIG. 1, a corrugated first wick 20 may be arranged so as to be in contact with the second wall portion 12. Furthermore, the second wick 30 may be arranged so as to be in contact with the first wick 20 arranged on the second wall portion 12 side and to face the steam flow path S1.
 また、前記実施形態では、全ての第1凸部21がコンテナ10の内周面10aに接していると説明したが、一部の第1凸部21が内周面10aに接していなくてもよい。同様に、一部の第2凸部22が第2ウイック30に接していなくてもよい。 Further, in the embodiment described above, all the first convex portions 21 are in contact with the inner circumferential surface 10a of the container 10, but some of the first convex portions 21 may not be in contact with the inner circumferential surface 10a. good. Similarly, some of the second convex portions 22 may not be in contact with the second wick 30.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。 In addition, the components in the embodiments described above can be replaced with well-known components as appropriate without departing from the spirit of the present invention, and the embodiments and modifications described above may be combined as appropriate.
1A、1B…ヒートパイプ 10…コンテナ 10a…内周面 20…第1ウイック 21…第1凸部 22…第2凸部 30…第2ウイック S1…蒸気流路 1A, 1B... Heat pipe 10... Container 10a... Inner peripheral surface 20... First wick 21... First convex part 22... Second convex part 30... Second wick S1... Steam flow path

Claims (4)

  1.  作動流体が封入されたコンテナと、
     前記コンテナの内周面に接し、透水性を有する第1ウイックと、
     前記第1ウイックに接し、前記コンテナ内に設けられた蒸気流路に面するとともに、透水性を有する第2ウイックと、を備え、
     前記第1ウイックは、前記コンテナの長手方向に直交する横断面視において波形に形成され、
     前記コンテナの前記内周面に溝が形成されていない、ヒートパイプ。
    a container containing a working fluid;
    a first wick that is in contact with the inner peripheral surface of the container and has water permeability;
    a second wick that is in contact with the first wick, faces a steam flow path provided in the container, and has water permeability;
    The first wick is formed in a wave shape in a cross-sectional view perpendicular to the longitudinal direction of the container,
    A heat pipe in which a groove is not formed on the inner circumferential surface of the container.
  2.  前記第1ウイックは、前記コンテナの前記内周面に向けて突出する複数の第1凸部と、前記第2ウイックに向けて突出する複数の第2凸部と、を有し、
     前記複数の第2凸部は全て前記第2ウイックに接している、請求項1に記載のヒートパイプ。
    The first wick has a plurality of first convex portions that protrude toward the inner circumferential surface of the container, and a plurality of second convex portions that protrude toward the second wick,
    The heat pipe according to claim 1, wherein all of the plurality of second convex portions are in contact with the second wick.
  3.  前記第2ウイックは、銅粉または銅細線の焼結体である、請求項1または2に記載のヒートパイプ。 The heat pipe according to claim 1 or 2, wherein the second wick is a sintered body of copper powder or fine copper wire.
  4.  前記コンテナは偏平形状であり、
     前記第2ウイックは前記横断面視において前記コンテナの幅方向に延在している、請求項1から3のいずれか1項に記載のヒートパイプ。
    The container has a flat shape,
    The heat pipe according to any one of claims 1 to 3, wherein the second wick extends in the width direction of the container in the cross-sectional view.
PCT/JP2023/012223 2022-07-29 2023-03-27 Heat pipe WO2024024167A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022121422 2022-07-29
JP2022-121422 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024024167A1 true WO2024024167A1 (en) 2024-02-01

Family

ID=89705876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012223 WO2024024167A1 (en) 2022-07-29 2023-03-27 Heat pipe

Country Status (1)

Country Link
WO (1) WO2024024167A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224368A (en) * 1975-07-31 1977-02-23 Toyo Seisakusho:Kk A heat pipe
US20060169439A1 (en) * 2005-01-28 2006-08-03 Chu-Wan Hong Heat pipe with wick structure of screen mesh
WO2019131790A1 (en) * 2017-12-28 2019-07-04 古河電気工業株式会社 Heat pipe
US20210293488A1 (en) * 2020-03-18 2021-09-23 Kelvin Thermal Technologies, Inc. Deformed Mesh Thermal Ground Plane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224368A (en) * 1975-07-31 1977-02-23 Toyo Seisakusho:Kk A heat pipe
US20060169439A1 (en) * 2005-01-28 2006-08-03 Chu-Wan Hong Heat pipe with wick structure of screen mesh
WO2019131790A1 (en) * 2017-12-28 2019-07-04 古河電気工業株式会社 Heat pipe
US20210293488A1 (en) * 2020-03-18 2021-09-23 Kelvin Thermal Technologies, Inc. Deformed Mesh Thermal Ground Plane

Similar Documents

Publication Publication Date Title
JP6564879B2 (en) Vapor chamber
US6293333B1 (en) Micro channel heat pipe having wire cloth wick and method of fabrication
US7137442B2 (en) Vapor chamber
JP2018503058A (en) High performance two-phase cooling system
US3811496A (en) Heat transfer device
WO2018073992A1 (en) Heat exchanger, evaporating body, and device
JP6216838B1 (en) Heat dissipation module and manufacturing method thereof
CN218744851U (en) Vapor chamber, heat sink device, and electronic device
EP3575727B1 (en) Loop-type heat pipe
US20220099383A1 (en) High performance two-phase cooling apparatus
WO2021256126A1 (en) Vapor chamber
US11105562B2 (en) Loop-type heat pipe
JP6433848B2 (en) Heat exchangers, vaporizers, and electronics
JP2017072340A (en) heat pipe
WO2024024167A1 (en) Heat pipe
JP6615383B2 (en) heat pipe
JP2004218887A (en) Cooling device of electronic element
JP2009041825A (en) Evaporator of loop heat pipe
JP2010025407A (en) Heat pipe container and heat pipe
WO2022004616A1 (en) Heat transfer device
JP7123576B2 (en) heat pipe
US20200378686A1 (en) Loop-type heat pipe
JP2018170317A (en) Electronic equipment, heat exchanger, and evaporator
WO2022102163A1 (en) Heat pipe
JP6539694B2 (en) heat pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845907

Country of ref document: EP

Kind code of ref document: A1