WO2024024163A1 - Gob monitoring device and method for adjusting position of line sensor camera - Google Patents

Gob monitoring device and method for adjusting position of line sensor camera Download PDF

Info

Publication number
WO2024024163A1
WO2024024163A1 PCT/JP2023/011466 JP2023011466W WO2024024163A1 WO 2024024163 A1 WO2024024163 A1 WO 2024024163A1 JP 2023011466 W JP2023011466 W JP 2023011466W WO 2024024163 A1 WO2024024163 A1 WO 2024024163A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor camera
line sensor
gob
sections
images
Prior art date
Application number
PCT/JP2023/011466
Other languages
French (fr)
Japanese (ja)
Inventor
岳 鈴木
Original Assignee
東洋ガラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ガラス株式会社 filed Critical 東洋ガラス株式会社
Priority to KR1020237027253A priority Critical patent/KR20240015614A/en
Publication of WO2024024163A1 publication Critical patent/WO2024024163A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/005Controlling, regulating or measuring
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/14Transferring molten glass or gobs to glass blowing or pressing machines
    • C03B7/16Transferring molten glass or gobs to glass blowing or pressing machines using deflector chutes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources

Definitions

  • the present invention relates to a gob monitoring device and a method for adjusting the position of a line sensor camera that images gobs.
  • the molten glass extruded from an orifice provided under the spout is cut by a shear blade, and the gobs generated by the cutting are sent to a glass bottle forming machine via a gob distribution device.
  • a gob distribution device consisting of a scoop, trough, deflector, etc., and the gobs exiting the outlet of the deflector fall freely into the rough mold of a glass bottle forming machine. Injected.
  • the falling speed of the gob may suddenly decrease due to a malfunction of the gob cutting system or the shear blade cutting off foreign objects in the molten glass.
  • Such a decrease in the falling speed of the gob causes the gob to deviate from the timing when it should be fed into the rough mold, causing situations such as falling or adhering to other parts such as baffles during operation (gob feeding error).
  • gob feeding error There is a fear.
  • Patent Document 1 The invention disclosed in Patent Document 1 is a gob fall monitoring/warning system that issues an alarm when the time from when a gob is cut by a shear blade until before it enters a scoop is delayed in order to avoid gob insertion errors. be.
  • Patent Document 1 cannot cope with a gob insertion error caused by a gradual and continuous decrease in the falling speed of the gob due to an increase in the coefficient of friction in a scoop, trough, deflector, etc. through which the gob continuously passes.
  • Patent Document 2 proposes detecting the timing of arrival of the gob to the rough mold with a laser sensor placed between the outlet of the deflector and the rough mold. are doing.
  • the laser sensor as disclosed in Patent Document 2 may malfunction due to the laser light being blocked by oil smoke when swabbing a mold release agent onto a rough mold.
  • an object of the present invention is to provide a gob monitoring device and a method for adjusting the position of a line sensor camera that are less likely to cause malfunctions due to swabbing oil smoke.
  • the present invention has been made to solve at least part of the above-mentioned problems, and can be realized as the following aspects.
  • One aspect of the gob monitoring device is a line sensor camera that images the gob falling between the coarse mold and an outlet of a deflector that guides the gob distributed into a plurality of sections with a scoop to the coarse mold; a control device that detects gobs from a plurality of images captured by the line sensor camera and detects a delay in feeding the gobs into the rough mold; Equipped with The line sensor camera is arranged at a position where the falling gob in the plurality of sections is captured in the plurality of images.
  • One aspect of the gob monitoring device is a line sensor camera that images the gob falling between the coarse mold and an outlet of a deflector that guides the gob distributed into a plurality of sections with a scoop to the coarse mold; a control device that detects gobs from a plurality of images captured by the line sensor camera and detects a delay in feeding the gobs into the rough mold; Equipped with The field of view of the line sensor camera intersects the direction in which the plurality of sections are lined up, and the height of the plurality of sections from the rough mold is constant.
  • the plurality of sections include a plurality of the rough molds for each section
  • the line sensor camera may be placed at a position where a plurality of gobs falling at positions corresponding to the plurality of rough molds in each section are captured in the plurality of images without overlapping each other.
  • the control device inserts the gob into the rough mold based on the number of images from the start of imaging by the line sensor camera to the detection of the tip of the gob after a predetermined time after the molten glass is cut by the shear blade. Delays can be detected.
  • the gob monitoring device In any one aspect of the gob monitoring device, in the gob monitoring device according to claim 1 or claim 2, further including a plurality of other sections arranged next to each other in the direction in which the plurality of sections are arranged,
  • the line sensor camera is a first line sensor camera, further comprising a second line sensor camera that images the falling gob at positions corresponding to the other plurality of sections,
  • the control device can detect a gob from a plurality of images taken by the second line sensor camera, and can detect a delay in introducing the gob into a rough mold in the other plurality of sections.
  • One aspect of the method for adjusting the position of a line sensor camera according to the present invention is as follows: A method for adjusting the position of a line sensor camera that images gobs falling between the outlet of a deflector and the rough mold that guide gobs distributed into a plurality of sections by a scoop into a rough mold, the method comprising: three light sources installed at the same height directly below the deflector, which is the falling position of the gob to be imaged; After adjusting the position of the line sensor camera so that the light source at the center is imaged at the center of the field of view of the line sensor camera, the light source of the line sensor camera is adjusted so that the light sources at both ends are imaged within the field of view.
  • the method is characterized in that the line sensor camera is adjusted by rotating it around an axis.
  • An area sensor camera having a field of view that includes the center of the field of view of the line sensor camera is provided integrally with the line sensor camera, and before adjusting the position of the line sensor camera using the central light source, The positions of the line sensor camera and the area sensor camera can be adjusted such that the line sensor camera and the area sensor camera come within the field of view of the area sensor camera.
  • the gob monitoring device by detecting the light emission of the gob using a line sensor camera, it is possible to make it less susceptible to the influence of oil smoke from swabbing oil. Further, according to one aspect of the method for adjusting the position of a line sensor camera according to the present invention, it is possible to accurately and easily position the line sensor camera, which is less susceptible to the effects of swabbing oil smoke.
  • FIG. 1 is a front view schematically showing a gob monitoring device according to the present embodiment with some parts omitted.
  • FIG. 2 is a plan view schematically showing the monitoring range of the line sensor camera.
  • FIG. 3 is a diagram illustrating a plurality of images captured by the line sensor camera.
  • FIG. 4 is a diagram schematically showing a line sensor camera used in the method for adjusting the position of a line sensor camera according to this embodiment.
  • FIG. 5 is a diagram illustrating a method for adjusting the position of the line sensor camera according to this embodiment.
  • FIG. 6 is a front view of a line sensor camera according to a modification.
  • FIG. 1 is a front view schematically showing a gob monitoring device 1 according to the present embodiment with some parts omitted
  • FIG. 2 is a plan view schematically showing a monitoring range of a line sensor camera
  • 3 is a diagram illustrating a plurality of images 60 captured by a line sensor camera. 1, the second line sensor camera 52 and its monitoring range are omitted
  • FIG. 2 shows the fields of view A1 and A2 of the line sensor camera with shading
  • FIG. 3(b) a part of the plurality of images 60 is enlarged and the black and white are reversed to make it easier to see.
  • the glass bottle forming machine 100 includes a spout 10 in which molten glass 30 is accommodated, and a shear cutting device that uses a shear blade to cut the molten glass 30 that is extruded from an orifice provided below the spout 10. 12, a gob distribution device 11 that distributes and guides the cut gobs 32 to a plurality of rough molds 20, a rough mold 20 arranged in a plurality of sections, for example, Sc1 to Sc10 (sections Sc1 to Sc6 in FIG. 1), The gob monitoring device 1 monitors the fall of the gob 32.
  • the number of sections in the glass bottle forming machine 100 is not particularly limited as long as it is plural, and it may be less than 10 sections or more than 10 sections, for example, it may be 12 sections or 16 sections.
  • the number of line sensor cameras in the gob monitoring device 1 is not particularly limited, and can be changed within a range that can accurately image the gob 32 corresponding to the rough mold 20 of each section.
  • the gob 32 put into the rough mold 20 is formed into a parison, and then transferred to a finishing mold (not shown) and blow-molded into a glass bottle.
  • the molten glass 30 is at a high temperature, and the gob 32 that falls from the spout 10 and is thrown into the rough mold 20 emits light at a high temperature of, for example, 1100° C. to 1200° C. Therefore, in the image captured by the first line sensor camera 51, the gob 32 can be clearly identified as the detection bodies 62 and 64, as shown in FIG. 3A, for example. Further, since the first line sensor camera 51 takes an image using the light emitted from the gob 32, it is not easily affected by oil smoke caused by swabbing oil.
  • the first line sensor camera 51 images the gob 32 over a wide range of a plurality of sections (five sections Sc1 to Sc5 in this embodiment) without overlapping, the first line sensor camera 51 is located at a position far from the glass bottle molding machine 100. The effect of oil smoke caused by swabbing oil is reduced by installing the swabbing oil.
  • the shear cutting device 12 cuts the molten glass 30 to a predetermined length by moving a pair of shear blades forward and backward relative to each other using a drive mechanism (not shown).
  • the shear cutting device 12 is electrically connected to the control device 40 and transmits a cutting signal to the control device 40 every time the molten glass 30 is cut.
  • the gob distribution device 11 includes, for example, a swingable scoop 14, a plurality of troughs 16, and a plurality of deflectors 18.
  • the gob distribution device 11 can guide the hot gob 32 to the rough mold 20 of the plurality of sections Sc1 to Sc10 while sliding it.
  • the trough 16 and deflector 18 of section Sc1 are shown in FIG. 1, the plurality of troughs 16 and the plurality of deflectors 18 are provided in accordance with the number of rough molds 20 of the plurality of sections Sc1 to Sc10.
  • the scoop 14 can be swung by a drive mechanism (not shown) so as to distribute the gobs 32 to a plurality of troughs 16.
  • the gob monitoring device 1 is a first line that images gobs 32 falling between the coarse mold 20 and the exit 18a of the deflector 18 that guides the gobs 32 distributed into a plurality of sections Sc1 to Sc10 by the scoop 14 to the coarse mold 20.
  • a sensor camera 51 and a control device 40 that detects the gob 32 from a plurality of images 60 (FIG. 3) captured by the first line sensor camera 51 and detects a delay in putting the gob 32 into the rough mold 20. Be prepared.
  • the control device 40 is electrically connected to the shear cutting device 12, the first line sensor camera 51, and the second line sensor camera 52, and executes a detection process of the gob 32 based on a cutting signal from the shear cutting device 12, for example. Then, when a delay in the gob 32 is detected, a process is executed to output a warning signal.
  • the control device 40 may be connected to a warning light that emits light based on a warning signal or a display that displays the warning signal.
  • the control device 40 includes, for example, a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), an HDD (Hard Disk Drive), or an SSD (Solid State).
  • the CPU, storage device, etc. of the control device 40 may be not only one but a plurality of physically separated devices, for example, and in that case, they may be connected via a communication network.
  • the control device 40 includes, for example, a detection section 41, a measurement section 43, a calculation section 45, a determination section 47, and an output section 49. At least a part of the configuration of the control device 40 may be provided integrally with the first line sensor camera 51 and/or the second line sensor camera 52. Specific processing of each part of the control device 40 will be described later.
  • the first line sensor camera 51 is arranged at a position where the falling gob 32 in the plurality of sections Sc1 to Sc5 is captured in a plurality of images 60 (FIG. 3).
  • the first line sensor camera 51 and the second line sensor camera 52 have at least one row of line sensor camera elements, such as CCD imaging sensor elements.
  • line sensor camera elements such as CCD imaging sensor elements.
  • Using a line sensor camera enables higher resolution and faster processing than an area sensor camera.
  • the delay status of the gob 32 can be calculated with high accuracy from the captured image 60. Since a wide range can be monitored with one first line sensor camera 51, the gob monitoring device 1 is economically superior.
  • the first line sensor camera 51 it is less susceptible to the influence of oil smoke caused by swabbing oil as in the conventional case.
  • the first line sensor camera 51 and the second line sensor camera 52 detect the gobs 32 of adjacent sections in the width direction D (FIG. 2) of the field of view A1 so that it can be seen which sections Sc1 to Sc10 the gobs 32 are being detected. It is preferable to obtain images that do not overlap.
  • the field of view A1 of the first line sensor camera 51 intersects the direction X in which the plurality of sections Sc1 to Sc5 are lined up, and the height H1 from the rough mold 20 in the plurality of sections Sc1 to Sc5 is constant.
  • the aspect in which the field of view A1 intersects with the direction X in which the visual field A1 is lined up is a manner in which the width direction D of the visual field A1 intersects with the direction X in which the visual field A1 is lined up without being parallel or perpendicular to it, for example, the visual field A1 is lined up as shown in the plan view of FIG. This means that it is oblique to the direction X.
  • the field of view in the present invention is a range that can be imaged by a line sensor camera.
  • the field of view may be a range that can be directly imaged by a line sensor camera as in this embodiment, or may be a range that can be indirectly imaged through a mirror as in a modification described later. Since the field of view A1 intersects with the alignment direction It can be avoided. Furthermore, since the height H1 of the visual field A1 is constant, the timing at which the gob 32 is detected in the visual field A1 can be made constant.
  • the control device 40 detects the gob 32 from the plurality of images 60 (FIG. 3) captured by the second line sensor camera 52, and detects the delay in feeding the gob 32 into the rough mold 20 in the other plural sections Sc6 to Sc10. can be detected.
  • two line sensor cameras are used in this embodiment, the number is not limited to this, and depending on the monitoring range, for example, only one or three or more may be used.
  • the second line sensor camera 52 is also arranged at a position where the falling gobs 32 in the plural sections Sc6 to Sc10 are captured in a plurality of images.
  • the field of view A2 of the second line sensor camera 52 intersects the direction X in which the plurality of sections Sc6 to Sc10 are lined up, and the height H1 of the plurality of sections Sc6 to Sc10 from the rough mold 20 is constant. Note that if images can be taken so that adjacent gobs 32 in the front and back or left and right directions do not overlap, the range that the first line sensor camera 51 and the second line sensor camera 52 image is not limited to five sections each, but for example, six sections each. More than one section may be imaged, or a different number of sections may be imaged. Furthermore, if all sections can be imaged with one line sensor camera, the gob monitoring device 1 may be configured to include only one line sensor camera.
  • the plurality of sections Sc1 to Sc10 may each include a plurality of rough molds 20, and in that case, the first line sensor camera 51 and the second line sensor camera 52 may be provided for each section.
  • the plurality of gobs 32 falling at positions corresponding to the plurality of rough molds 20 are arranged at positions where they are captured in a plurality of images without overlapping each other.
  • the first line sensor camera 51 and the second line sensor camera 52 are arranged at positions that do not overlap in the field of view A1.
  • the first line sensor camera 51 and the second line sensor camera 52 are arranged at a position away from the rough mold 20 to be monitored, and so that the field of view A1 is oblique with respect to the line-up direction X. .
  • This arrangement makes the first line sensor camera 51 and the second line sensor camera 52 less susceptible to the influence of oil smoke.
  • installation and movement of a swabbing robot or collaborative robot can be allowed. .
  • the swabbing robot is a device that automatically sprays a mold release agent such as oil onto a rough mold etc. employed in the glass bottle molding machine 100, and moves back and forth along the direction X in which it lines up in front of the rough mold 20. It's a robot.
  • the plurality of images 60 shown in (a) of FIG. 3 is an image obtained by arranging images 601, 602, . It is.
  • the gobs 32 are displayed in the order of imaging from the bottom, so the gobs 32 are gradually displayed from the bottom to the top in the image 60.
  • the images 60 may be displayed after being rearranged in the order of shooting.
  • the control device 40 displays images from the start of imaging by the first line sensor camera 51 and the second line sensor camera 52 until the tips 62a and 64a of the gob 32 are detected after a predetermined time after cutting the molten glass 30 with the shear blade.
  • the delay in charging the gob 32 into the rough mold 20 is detected based on the number of 601....
  • the detection unit 41 detects detection objects 62 and 64 corresponding to the falling gob 32 from among the plurality of images 60.
  • the detection unit 41 detects at least the tips 62a and 64a of the detection bodies 62 and 64.
  • the detection unit 41 can, for example, binarize the plurality of images 60 and identify the clarified white parts as the detection objects 62 and 64.
  • the measurement unit 43 measures the number of images 601...690...693 captured by the first line sensor camera 51 until the tips 62a, 64a detected in each section are captured, and similarly measures the number of images 601...690...693 captured by the second line sensor camera 52. The number of images taken by the user is also counted.
  • the calculation unit 45 calculates the time from cutting by the shear blade until the tips 62a and 64a are imaged, based on the number of measured images. This time is close to the time it takes for the gob 32 to be put into the rough mold 20.
  • the determination unit 47 determines whether there is a delay in feeding the gob 32 into the rough mold 20 from the calculated time, and outputs the determination result.
  • the output unit 49 can output signals to each part of the glass bottle molding machine 100 based on the determination result. For example, if it is determined that there is a delay in the gob 32, a warning signal can be output to the display. Further, by continuously observing the calculated time, the operator can check changes in the length of the gob. For example, when the temperature of the gob is higher than the set temperature range, the viscosity of the glass decreases and the gob becomes longer (elongates).
  • the operator can take measures such as lowering the temperature of the molten glass 30. Furthermore, by transmitting the measured data to peripheral devices, it is possible to send alarms to peripheral devices to prevent trouble.
  • the gob monitoring device 1 by detecting the light emission of the gob 32 using the first line sensor camera 51 and the second line sensor camera 52, it is possible to make it less susceptible to the influence of oil smoke. . Furthermore, unlike conventional laser sensors, the line sensor camera is not adjacent to the rough mold 20 but is placed apart from it, so malfunctions due to oil stains are less likely to occur and maintenance is easy.
  • Gob Monitoring Method A gob monitoring method using the gob monitoring device 1 will be described with reference to FIGS. 1 to 3.
  • a cutting signal is output from the shear cutting device 12 to the control device 40, and when the cutting signal is input to the control device 40, the first line sensor camera 51 and the second line sensor camera
  • the control device 40 instructs the camera 52 to take an image. Imaging may be started after a delay time corresponding to a preset falling path of the gob 32 has elapsed from the cutting signal.
  • a plurality of images 60 captured by the first line sensor camera 51 according to a command from the control device 40 are output to the control device 40.
  • the detection unit 41 detects detection objects 62 and 64 corresponding to the gob 32 from the plurality of acquired images 60.
  • the plurality of images 60 shown in (a) of FIG. 3 are a plurality of lines from an image 601 for one line ((b) of FIG. 3) obtained by the first imaging immediately after the start of imaging until the end of imaging.
  • the images 602, 603, . . . in the order in which they were taken they are represented as one continuous image.
  • FIG. 3A two detection bodies 62 and 64 are imaged in a portion corresponding to the first section Sc1.
  • the detection object 62 is an image of the gob 32 falling into the A cavity (Acav) of the rough mold 20 of the first section Sc1
  • the detection object 64 is an image of the gob 32 falling into the B cavity (Bcav) of the rough mold 20 of the first section Sc1. This is an image of the gob 32 that moves. Since the gob 32 emits light at a high temperature, parts brighter than the surroundings can be detected as detection bodies 62 and 64.
  • the measurement unit 43 measures the number of images (for example, the number of captured lines is 3) from when the tip 62a is detected until when the tip 64a is detected. Since the first line sensor camera 51 captures images at fixed time intervals (for example, 0.1 ms), based on the measurement results of the measurement unit 43,
  • the output unit 49 outputs a warning signal to, for example, a display, flashes a warning lamp, and sounds a siren when the delay time exceeds a threshold value. Then, by checking the warning displayed on the display, the operator sprays, for example, lubricant on the trough 16 and deflector 18 corresponding to the rough mold 20 that is experiencing a delay, to prevent gob insertion errors at an early stage. be able to.
  • the delay time is calculated using the imaging time interval, but the invention is not limited to this, and the determination may be made simply based on the number of images (the number of imaged lines) corresponding to the delay in falling of the gob 32. However, the determination may be made by calculating the angle corresponding to the delay in falling of the gob 32 by converting it into an angle corresponding to the operation cycle of the molding machine.
  • the determination may be made simply based on the number of images (the number of imaged lines) corresponding to the delay in falling of the gob 32. However, the determination may be made by calculating the angle corresponding to the delay in falling of the gob 32 by converting it into an angle corresponding to the operation cycle of the molding machine.
  • FIG. 4 is a diagram schematically showing the first line sensor camera 51 used in the method for adjusting the position of a line sensor camera according to the present embodiment
  • FIG. 5 is a diagram schematically showing the method for adjusting the position of the line sensor camera according to the present embodiment.
  • FIG. 4A is a sectional view of the first line sensor camera 51 viewed from the side
  • FIG. 4B is a front view of the first line sensor camera 51 viewed from the lens 513 side.
  • FIGS. 4 and 5 are views of the rough mold 20 viewed from the front, and (b) and (d) are a plurality of images 60 taken in the field of view A1 in (a) and (c). .
  • the first line sensor camera 51 will be described in FIGS. 4 and 5, since the second line sensor camera 52 has a similar configuration, the same adjustment method can be implemented.
  • the first line sensor camera 51 is provided integrally with the area sensor camera 53.
  • the first line sensor camera 51 detects the gob 32 falling between the outlet 18a of the deflector 18 and the rough mold 20, which guides the gob 32 distributed into the plurality of sections Sc1 to Sc5 by the scoop 14 to the rough mold 20. It is used to image.
  • the line sensor camera element 510 receives the detection light incident from the lens 513 of the first line sensor camera 51, and the half mirror 512 reflects the detection light in a direction perpendicular to the optical axis O.
  • Sensor element 530 receives the light.
  • the area sensor camera 53 has a field of view A3 that includes the center of the field of view A1 of the first line sensor camera 51.
  • the first line sensor camera 51 is rotatably supported on a gonio stage 54, and the first line sensor camera 51 is rotatable around the optical axis O by the gonio stage 54.
  • the field of view A1 and the field of view A3 are shown shaded.
  • the centers of the visual field A1 and the visual field A3 are set at the same position.
  • the visual field A3 is shorter in the direction X than the visual field A1, and wider in the height direction than the visual field A1.
  • the method for adjusting the position of the first line sensor camera 51 is to arrange three light sources 55, 56, and 57 installed at the same height H1 directly below the deflector 18, which is the fall position of the gob 32 to be imaged, and After adjusting the position of the first line sensor camera 51 so that the light source 55 is imaged at the center of the field of view A1 of the first line sensor camera 51, the position of the first line sensor camera 51 is adjusted so that the light sources 56 and 57 at both ends are imaged at the center of the field of view A1.
  • the first line sensor camera 51 is rotated around the optical axis O of the first line sensor camera 51 for adjustment.
  • the central light source 55 is installed directly below the deflector 18 through which the gob 32 that falls into the section Sc3 at the center of Acav among the plurality of sections Sc1 to Sc5 passes.
  • the light sources 56 and 57 are respectively arranged directly below the deflectors 18 and 18 through which the gob 32 that falls into the sections Sc1 and Sc5 at both ends of the plurality of sections Sc1 to Sc5 of Acav passes.
  • the light sources 55, 56, 57 are fixed to the glass bottle molding machine 100 via a support 58.
  • the light sources 55, 56, and 57 are each fixed to the support 58 with, for example, LED spot illumination directed toward the first line sensor camera 51 side.
  • the position of the first line sensor camera 51 is adjusted so that the central light source 55 is imaged at the center of the field of view A1 of the first line sensor camera 51.
  • the visual field A1 for the line is narrow. Therefore, before adjusting the position of the first line sensor camera 51 using the central light source 55, the first line sensor camera 51 must be adjusted so that the central light source 55 enters the field of view A3 of the area sensor camera 53 explained in FIG. and adjust the position of the area sensor camera 53.
  • the position of the first line sensor camera 51 is adjusted using a support (not shown) that supports the goniometer stage 54.
  • the first line sensor camera 51 and the area sensor camera 53 can be rotated together by a goniometer stage 54.
  • the position of the first line sensor camera 51 can be easily adjusted.
  • the light source 55 is not within the field of view A1
  • the light source 55 is captured within the wide field of view A3 of the area sensor camera 53, and then the light source 55 is captured in the center of the field of view A3.
  • the height of the 1-line sensor camera 51 and the position in the line direction X are adjusted. Since the center of the visual field A1, the center of the visual field A3, and the optical axis O coincide, the first line sensor camera 51 can be adjusted to an accurate position in the height direction of the visual field A1 and the alignment direction X.
  • the first line sensor camera 51 is rotated around the optical axis O using the goniometer stage 54 so that the light sources 56 and 57 at both ends are imaged within the field of view A1.
  • the field of view A1 was off from the light sources 56 and 57 as shown in FIG. 5(a), so only the detection object 65 corresponding to the light source 55 is captured in the plurality of images 60 as shown in FIG. 5(b).
  • the first line sensor camera 51 (field of view A1) is rotated as shown in FIG. 5C, detection objects 66 and 67 corresponding to the light sources 56 and 57 are imaged near both ends of the field of view A1.
  • the rotation of the first line sensor camera 51 by the goniometer stage 54 is stopped and the first line sensor camera 51 is positioned.
  • the position adjustment work is completed and the gob 32 can be monitored at an appropriate position.
  • the method for adjusting the position of a line sensor camera according to the present embodiment it is possible to accurately and easily position the first line sensor camera 51, which is less susceptible to the influence of oil smoke.
  • FIG. 6 is a front view of a first line sensor camera 51a according to a modification.
  • the gob monitoring device 1 according to the embodiment described above can employ a first line sensor camera 51a according to a modification instead of the first line sensor camera 51.
  • the second line sensor camera 52 can have the same configuration as the first line sensor camera 51a, and the other configurations are the same as the gob monitoring device 1, so a description thereof will be omitted here.
  • the first line sensor camera 51a includes at least a camera body 51b and a mirror 51c.
  • the camera body 51b is a line sensor camera having at least one row of line sensor camera elements (for example, CCD elements), and the first line sensor camera 51 in the above embodiment can be applied thereto.
  • the camera body 51b may or may not be provided with the goniometer stage 54 (FIG. 4).
  • the camera main body 51b has the same field of view A1 as the first line sensor camera 51 in the above embodiment through the mirror 51c.
  • the mirror 51c includes a reflective surface that can reflect the field of view A1 toward the camera body 51b.
  • the first line sensor camera 51a may further include an adjustment device 51d, a fixing base 51e, and a fixing rod 51f.
  • the mirror 51c is attached to the adjustment device 51d so that the direction of the reflective surface can be changed with respect to the camera body 51b.
  • the adjustment device 51d is fixed at a predetermined position on the fixed base 51e.
  • a camera body 51b and an adjustment device 51d are fixed to a fixed base 51e at predetermined positions.
  • the camera body 51b is fixed to a fixed base 51e so that the optical axis O faces vertically downward
  • the adjustment device 51d is fixed at a position where the reflective surface of the mirror 51c is approximately 45 degrees with respect to the optical axis O.
  • the optical axis O is directed horizontally.
  • the adjustment device 51d may include, for example, a goniometer stage capable of changing the angle Q of the reflective surface of the mirror 51c with respect to the optical axis O, a rotation stage capable of rotating the mirror 51c around the optical axis O along the field of view A1, or the like. Can be done.
  • the fixed base 51e can rotate around the fixed rod 51f.
  • the reflective surface of the mirror 51c can be adjusted so that the first line sensor camera 51a maintains the field of view A1 (field of view A2 in the case of the second line sensor camera 52) (see FIG. 2).
  • the fixing rod 51f can fix the fixing base 51 so that the height position of the fixing base 51e can be adjusted. According to the first line sensor camera 51a according to the modification, even if the ceiling is low and there is no space to install the camera, the position of the field of view A1 can be adjusted by embedding everything other than the mirror 51c in the ceiling.
  • the present invention may omit some configurations or may combine embodiments and modifications as long as the features and effects described in this application are achieved.
  • the present invention includes configurations that are substantially the same as those described in the embodiments (configurations that have the same functions, methods, and results, or configurations that have the same objectives and effects). Further, the present invention includes a configuration in which non-essential parts of the configuration described in the embodiments are replaced. Further, the present invention includes a configuration that has the same effects or a configuration that can achieve the same objective as the configuration described in the embodiment. Further, the present invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
  • Line sensor camera element 512 ...half mirror, 513...lens, 51b...camera body, 51c...mirror, 51d...adjusting device, 51e...fixing base, 51f...fixing rod, 52...second line sensor camera, 53...area sensor camera, 530...area sensor Element, 54... Goniometer stage, 55, 56, 57... Light source, 58... Support, 60... Multiple images, 601, 602, 603, 604, 690, 691, 692, 693, 694...
  • Image 62, 64, 65, 66, 67...Detection object, 62a, 64a...Tip, 100...Glass bottle molding machine, A1, A2, A3...Field of view, D...Width direction, H1...Height, O...Optical axis, Q...Angle, Sc1 ⁇ Sc10...1st section to 10th section, X...line direction

Abstract

The present invention provides a gob monitoring device that is less likely to malfunction due to swabbing oil smoke and a method for adjusting the position of a line sensor camera. The gob monitoring device 1 according to the present invention comprises a first line sensor camera 51 that captures images of gobs 32 that fall between an outlet 18a of a deflector 18 that guides gobs 32 distributed between a plurality of sections Sc1 to Sc5 in a scoop 14 to a rough mold 20 and the rough mold 20 and a control device 40 that detects the gobs 32 from the plurality of images 60 captured by the first line sensor camera 51 and detects delays in introduction of the gobs 32 into the rough mold 20. The first line sensor camera 51 is arranged at a position where a plurality of images of the falling gobs 32 are captured in the plurality of sections Sc 1 to Sc5.

Description

ゴブ監視装置及びラインセンサカメラの位置調整方法How to adjust the position of gob monitoring device and line sensor camera
 本発明は、ゴブ監視装置及びゴブを撮像するラインセンサカメラの位置調整方法に関する。 The present invention relates to a gob monitoring device and a method for adjusting the position of a line sensor camera that images gobs.
 一般に、ガラスびん生産工程において、スパウト下に設けられたオリフィスから押し出された溶融ガラスをシヤーブレードにより切断し、その切断によって生成したゴブを、ゴブ分配装置を介してガラスびん成形機に送り込むシステムが知られている。このようなシステムでは、高温のゴブがスクープ、トラフ、デフレクタ等により構成されるゴブ分配装置を介して滑り落ち、デフレクタの出口から出たゴブが自由落下しながらガラスびん成形機の粗型内に投入される。 Generally, in the glass bottle production process, there is a system in which the molten glass extruded from an orifice provided under the spout is cut by a shear blade, and the gobs generated by the cutting are sent to a glass bottle forming machine via a gob distribution device. Are known. In such systems, hot gobs slide through a gob distribution device consisting of a scoop, trough, deflector, etc., and the gobs exiting the outlet of the deflector fall freely into the rough mold of a glass bottle forming machine. Injected.
 ゴブの落下速度は、ゴブを切断するシステムの誤動作や溶融ガラスの異物をシヤーブレードで切断することなどにより突発的に低下することがある。このようなゴブの落下速度の低下は、ゴブが粗型に投入されるべきタイミングを逸脱し、動作中のバッフルなど別の部品上に落下・付着するなどの事態(ゴブ投入エラー)を発生させる恐れがある。ゴブ投入エラーが発生した場合、部品の交換や成形機の調整など、復旧までに時間を要し、ガラスびんの生産が長時間停止することになる。 The falling speed of the gob may suddenly decrease due to a malfunction of the gob cutting system or the shear blade cutting off foreign objects in the molten glass. Such a decrease in the falling speed of the gob causes the gob to deviate from the timing when it should be fed into the rough mold, causing situations such as falling or adhering to other parts such as baffles during operation (gob feeding error). There is a fear. When a gob feeding error occurs, it takes time to replace parts and adjust the molding machine, leading to a long halt in glass bottle production.
 特許文献1に開示された発明は、ゴブ投入エラーを回避するために、ゴブがシヤーブレードにより切断されてからスクープに入る前までの時間が遅くなった場合に警報するゴブ落下監視・警報システムである。一方で、ゴブが連続的に通過するスクープ、トラフ、デフレクタ等における摩擦係数の増加によりゴブの落下速度が徐々にそして継続的に低下することによるゴブ投入エラーには特許文献1では対応できない。 The invention disclosed in Patent Document 1 is a gob fall monitoring/warning system that issues an alarm when the time from when a gob is cut by a shear blade until before it enters a scoop is delayed in order to avoid gob insertion errors. be. On the other hand, Patent Document 1 cannot cope with a gob insertion error caused by a gradual and continuous decrease in the falling speed of the gob due to an increase in the coefficient of friction in a scoop, trough, deflector, etc. through which the gob continuously passes.
 特許文献2に開示された発明は、特許文献1の課題を解決するために、デフレクタの出口と粗型の間に配置されたレーザーセンサでゴブの粗型への到着タイミングを検出することを提案している。 In order to solve the problem of Patent Document 1, the invention disclosed in Patent Document 2 proposes detecting the timing of arrival of the gob to the rough mold with a laser sensor placed between the outlet of the deflector and the rough mold. are doing.
特開平7-10550号公報Japanese Unexamined Patent Publication No. 7-10550 国際公開第2013/014782号International Publication No. 2013/014782
 しかしながら、特許文献2に開示されるようなレーザーセンサは粗型への離型剤スワビング実施時の油煙によりレーザー光が遮られることで誤動作を生じることがある。 However, the laser sensor as disclosed in Patent Document 2 may malfunction due to the laser light being blocked by oil smoke when swabbing a mold release agent onto a rough mold.
 そこで、本発明は、スワビングオイルの油煙による誤動作を起こしにくいゴブ監視装置及びラインセンサカメラの位置調整方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a gob monitoring device and a method for adjusting the position of a line sensor camera that are less likely to cause malfunctions due to swabbing oil smoke.
 本発明は前述の課題の少なくとも一部を解決するためになされたものであり、以下の態様として実現することができる。 The present invention has been made to solve at least part of the above-mentioned problems, and can be realized as the following aspects.
 [1]本発明に係るゴブ監視装置の一態様は、
 スクープで複数のセクションに振り分けられたゴブを粗型に導くデフレクタの出口と前記粗型との間を落下するゴブを撮像するラインセンサカメラと、
 前記ラインセンサカメラで撮像された複数の画像からゴブを検出し、ゴブが前記粗型に投入される遅れを検出する制御装置と、
を備え、
 前記複数のセクションにおいて落下するゴブが前記複数の画像に撮像される位置に前記ラインセンサカメラが配置されることを特徴とする。
[1] One aspect of the gob monitoring device according to the present invention is
a line sensor camera that images the gob falling between the coarse mold and an outlet of a deflector that guides the gob distributed into a plurality of sections with a scoop to the coarse mold;
a control device that detects gobs from a plurality of images captured by the line sensor camera and detects a delay in feeding the gobs into the rough mold;
Equipped with
The line sensor camera is arranged at a position where the falling gob in the plurality of sections is captured in the plurality of images.
 [2]本発明に係るゴブ監視装置の一態様は、
 スクープで複数のセクションに振り分けられたゴブを粗型に導くデフレクタの出口と前記粗型との間を落下するゴブを撮像するラインセンサカメラと、
 前記ラインセンサカメラで撮像された複数の画像からゴブを検出し、ゴブが前記粗型に投入される遅れを検出する制御装置と、
を備え、
 前記ラインセンサカメラの視野は、前記複数のセクションが並ぶ方向に交差し、かつ、前記複数のセクションにおける前記粗型からの高さが一定であることを特徴とする。
[2] One aspect of the gob monitoring device according to the present invention is
a line sensor camera that images the gob falling between the coarse mold and an outlet of a deflector that guides the gob distributed into a plurality of sections with a scoop to the coarse mold;
a control device that detects gobs from a plurality of images captured by the line sensor camera and detects a delay in feeding the gobs into the rough mold;
Equipped with
The field of view of the line sensor camera intersects the direction in which the plurality of sections are lined up, and the height of the plurality of sections from the rough mold is constant.
 [3]前記ゴブ監視装置のいずれかの一態様において、
 前記複数のセクションは、前記セクションごとに前記粗型を複数備え、
 前記ラインセンサカメラは、前記セクションごとの複数の前記粗型に対応する位置に落下する複数のゴブが互いに重ならずに前記複数の画像に撮像される位置に配置されることができる。
[3] In any one aspect of the gob monitoring device,
The plurality of sections include a plurality of the rough molds for each section,
The line sensor camera may be placed at a position where a plurality of gobs falling at positions corresponding to the plurality of rough molds in each section are captured in the plurality of images without overlapping each other.
 [4]前記ゴブ監視装置のいずれかの一態様において、
 請求項1または請求項2に記載のゴブ監視装置において、
 制御装置は、溶融ガラスをシヤーブレードにより切断してから所定時間後に前記ラインセンサカメラによる撮像の開始からゴブの先端を検出するまでの前記画像の数に基づいてゴブが前記粗型に投入される遅れを検出することができる。
[4] In any one aspect of the gob monitoring device,
In the gob monitoring device according to claim 1 or claim 2,
The control device inserts the gob into the rough mold based on the number of images from the start of imaging by the line sensor camera to the detection of the tip of the gob after a predetermined time after the molten glass is cut by the shear blade. Delays can be detected.
 [5]前記ゴブ監視装置のいずれかの一態様において、
 請求項1または請求項2に記載のゴブ監視装置において、
 前記複数のセクションの並ぶ方向の隣に並ぶ他の複数のセクションをさらに含み、
 前記ラインセンサカメラは、第1ラインセンサカメラであり、
 前記他の複数のセクションに対応する位置に落下するゴブを撮像する第2ラインセンサカメラをさらに含み、
 前記制御装置は、前記第2ラインセンサカメラで撮像された複数の画像からゴブを検出し、ゴブが前記他の複数のセクションにおける粗型に投入される遅れを検出することができる。
[5] In any one aspect of the gob monitoring device,
In the gob monitoring device according to claim 1 or claim 2,
further including a plurality of other sections arranged next to each other in the direction in which the plurality of sections are arranged,
The line sensor camera is a first line sensor camera,
further comprising a second line sensor camera that images the falling gob at positions corresponding to the other plurality of sections,
The control device can detect a gob from a plurality of images taken by the second line sensor camera, and can detect a delay in introducing the gob into a rough mold in the other plurality of sections.
 [6]本発明に係るラインセンサカメラの位置調整方法の一態様は、
 スクープで複数のセクションに振り分けられたゴブを粗型に導くデフレクタの出口と前記粗型との間を落下するゴブを撮像するラインセンサカメラの位置調整方法であって、
 撮像対象となるゴブの落下位置である前記デフレクタの直下に同一高さで設置された3つの光源を配置し、
 中央の前記光源が前記ラインセンサカメラの視野の中心で撮像されるように前記ラインセンサカメラの位置を調整した後、両端の前記光源が前記視野内で撮像されるように前記ラインセンサカメラの光軸の周りに前記ラインセンサカメラを回転させて調整することを特徴とする。
[6] One aspect of the method for adjusting the position of a line sensor camera according to the present invention is as follows:
A method for adjusting the position of a line sensor camera that images gobs falling between the outlet of a deflector and the rough mold that guide gobs distributed into a plurality of sections by a scoop into a rough mold, the method comprising:
three light sources installed at the same height directly below the deflector, which is the falling position of the gob to be imaged;
After adjusting the position of the line sensor camera so that the light source at the center is imaged at the center of the field of view of the line sensor camera, the light source of the line sensor camera is adjusted so that the light sources at both ends are imaged within the field of view. The method is characterized in that the line sensor camera is adjusted by rotating it around an axis.
 [7]前記ラインセンサカメラの位置調整方法の一態様において、
 前記ラインセンサカメラの視野の中心が入る視野を有するエリアセンサカメラが前記ラインセンサカメラと一体に設けられ、中央の前記光源を用いて前記ラインセンサカメラの位置を調整する前に、中央の前記光源が前記エリアセンサカメラの視野に入るように前記ラインセンサカメラ及び前記エリアセンサカメラの位置を調整することができる。
[7] In one aspect of the method for adjusting the position of the line sensor camera,
An area sensor camera having a field of view that includes the center of the field of view of the line sensor camera is provided integrally with the line sensor camera, and before adjusting the position of the line sensor camera using the central light source, The positions of the line sensor camera and the area sensor camera can be adjusted such that the line sensor camera and the area sensor camera come within the field of view of the area sensor camera.
 本発明に係るゴブ監視装置の一態様によれば、ラインセンサカメラを用いてゴブの発光を検出することでスワビングオイルの油煙による影響を受けにくくすることができる。また、本発明に係るラインセンサカメラの位置調整方法の一態様によれば、スワビングオイルの油煙による影響を受けにくいラインセンサカメラを正確かつ容易に位置決めすることができる。 According to one aspect of the gob monitoring device according to the present invention, by detecting the light emission of the gob using a line sensor camera, it is possible to make it less susceptible to the influence of oil smoke from swabbing oil. Further, according to one aspect of the method for adjusting the position of a line sensor camera according to the present invention, it is possible to accurately and easily position the line sensor camera, which is less susceptible to the effects of swabbing oil smoke.
図1は、本実施形態に係るゴブ監視装置の一部を省略して模式的に示す正面図である。FIG. 1 is a front view schematically showing a gob monitoring device according to the present embodiment with some parts omitted. 図2は、ラインセンサカメラの監視範囲を模式的に示す平面図である。FIG. 2 is a plan view schematically showing the monitoring range of the line sensor camera. 図3は、ラインセンサカメラで撮像された複数の画像を説明する図である。FIG. 3 is a diagram illustrating a plurality of images captured by the line sensor camera. 図4は、本実施形態に係るラインセンサカメラの位置調整方法に用いるラインセンサカメラを模式的に示す図である。FIG. 4 is a diagram schematically showing a line sensor camera used in the method for adjusting the position of a line sensor camera according to this embodiment. 図5は、本実施形態に係るラインセンサカメラの位置調整方法を説明する図である。FIG. 5 is a diagram illustrating a method for adjusting the position of the line sensor camera according to this embodiment. 図6は、変形例に係るラインセンサカメラの正面図である。FIG. 6 is a front view of a line sensor camera according to a modification.
 以下、本発明の好適な実施形態について、図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail using the drawings. Note that the embodiments described below do not unduly limit the content of the present invention described in the claims. Furthermore, not all of the configurations described below are essential components of the present invention.
 1.ゴブ監視装置
 図1~図3を用いて、本実施形態に係るゴブ監視装置1について詳細に説明する。図1は、本実施形態に係るゴブ監視装置1の一部を省略して模式的に示す正面図であり、図2は、ラインセンサカメラの監視範囲を模式的に示す平面図であり、図3は、ラインセンサカメラで撮像された複数の画像60を説明する図である。なお、図1では第2ラインセンサカメラ52及びその監視範囲を省略して示し、図2ではラインセンサカメラの視野A1,A2を網掛けで示し、図3の(a)は複数の画像60を示し、図3の(b)は複数の画像60の一部を拡大すると共に見やすくするために白と黒を反転して示す。
1. Gob Monitoring Device A gob monitoring device 1 according to the present embodiment will be described in detail using FIGS. 1 to 3. FIG. 1 is a front view schematically showing a gob monitoring device 1 according to the present embodiment with some parts omitted, and FIG. 2 is a plan view schematically showing a monitoring range of a line sensor camera. 3 is a diagram illustrating a plurality of images 60 captured by a line sensor camera. 1, the second line sensor camera 52 and its monitoring range are omitted, FIG. 2 shows the fields of view A1 and A2 of the line sensor camera with shading, and FIG. In FIG. 3(b), a part of the plurality of images 60 is enlarged and the black and white are reversed to make it easier to see.
 図1及び図2に示すように、ガラスびん成形機100は、溶融ガラス30が収容されるスパウト10と、スパウト10下に設けたオリフィスから押し出される溶融ガラス30をシヤーブレードで切断するシヤー切断装置12と、切断されたゴブ32を複数の粗型20に振り分けて導くゴブ分配装置11と、複数のセクション例えばSc1~Sc10(図1ではセクションSc1~Sc6)に配置された粗型20と、ゴブ32の落下を監視するゴブ監視装置1と、を備える。ガラスびん成形機100におけるセクションの数は、複数であれば特に制限はなく、10セクションより少なくてもよいし、10セクションより多くてもよく、例えば、12セクションや16セクションなどであってもよい。また、ゴブ監視装置1におけるラインセンサカメラの数も特に制限はなく、各セクションの粗型20に対応したゴブ32を正確に撮像できる範囲で変更可能である。粗型20に投入されたゴブ32は、パリソンに成形された後、図示しない仕上型へ移送されてガラスびんにブロー成形される。 As shown in FIGS. 1 and 2, the glass bottle forming machine 100 includes a spout 10 in which molten glass 30 is accommodated, and a shear cutting device that uses a shear blade to cut the molten glass 30 that is extruded from an orifice provided below the spout 10. 12, a gob distribution device 11 that distributes and guides the cut gobs 32 to a plurality of rough molds 20, a rough mold 20 arranged in a plurality of sections, for example, Sc1 to Sc10 (sections Sc1 to Sc6 in FIG. 1), The gob monitoring device 1 monitors the fall of the gob 32. The number of sections in the glass bottle forming machine 100 is not particularly limited as long as it is plural, and it may be less than 10 sections or more than 10 sections, for example, it may be 12 sections or 16 sections. . Further, the number of line sensor cameras in the gob monitoring device 1 is not particularly limited, and can be changed within a range that can accurately image the gob 32 corresponding to the rough mold 20 of each section. The gob 32 put into the rough mold 20 is formed into a parison, and then transferred to a finishing mold (not shown) and blow-molded into a glass bottle.
 溶融ガラス30は、高温であり、スパウト10から落下して粗型20に投入されるゴブ32は例えば1100℃~1200℃と高温で発光している。そのため、第1ラインセンサカメラ51で撮像した画像には、例えば図3の(a)のようにゴブ32を検出体62,64のように明確に識別することができる。また、第1ラインセンサカメラ51は、ゴブ32の発光を利用して撮像するため、スワビングオイルによる油煙によって影響を受けにくい。しかも、第1ラインセンサカメラ51は複数のセクション(本実施形態では5つのセクションSc1~Sc5)の広い範囲に渡ってゴブ32が重ならないように撮像するため、ガラスびん成形機100から離れた位置に設置されることでスワビングオイルによる油煙の影響がより少ない。 The molten glass 30 is at a high temperature, and the gob 32 that falls from the spout 10 and is thrown into the rough mold 20 emits light at a high temperature of, for example, 1100° C. to 1200° C. Therefore, in the image captured by the first line sensor camera 51, the gob 32 can be clearly identified as the detection bodies 62 and 64, as shown in FIG. 3A, for example. Further, since the first line sensor camera 51 takes an image using the light emitted from the gob 32, it is not easily affected by oil smoke caused by swabbing oil. Moreover, since the first line sensor camera 51 images the gob 32 over a wide range of a plurality of sections (five sections Sc1 to Sc5 in this embodiment) without overlapping, the first line sensor camera 51 is located at a position far from the glass bottle molding machine 100. The effect of oil smoke caused by swabbing oil is reduced by installing the swabbing oil.
 シヤー切断装置12は、一対のシヤーブレードを図示しない駆動機構により互いに進退させ、溶融ガラス30を一定の長さに切断する。シヤー切断装置12は、制御装置40と電気的に接続され、溶融ガラス30を切断するたびに切断時信号を制御装置40に送信する。 The shear cutting device 12 cuts the molten glass 30 to a predetermined length by moving a pair of shear blades forward and backward relative to each other using a drive mechanism (not shown). The shear cutting device 12 is electrically connected to the control device 40 and transmits a cutting signal to the control device 40 every time the molten glass 30 is cut.
 ゴブ分配装置11は、例えば揺動可能なスクープ14と、複数のトラフ16と、複数のデフレクタ18とを備える。ゴブ分配装置11は、高温のゴブ32を滑らせながら複数のセクションSc1~Sc10の粗型20に導くことができる。図1ではセクションSc1のトラフ16及びデフレクタ18しか記載していないが、複数のトラフ16及び複数のデフレクタ18は、複数のセクションSc1~Sc10の粗型20の数に合わせて設けられる。スクープ14は、図示しない駆動機構により複数のトラフ16にゴブ32を分配するように揺動することができる。 The gob distribution device 11 includes, for example, a swingable scoop 14, a plurality of troughs 16, and a plurality of deflectors 18. The gob distribution device 11 can guide the hot gob 32 to the rough mold 20 of the plurality of sections Sc1 to Sc10 while sliding it. Although only the trough 16 and deflector 18 of section Sc1 are shown in FIG. 1, the plurality of troughs 16 and the plurality of deflectors 18 are provided in accordance with the number of rough molds 20 of the plurality of sections Sc1 to Sc10. The scoop 14 can be swung by a drive mechanism (not shown) so as to distribute the gobs 32 to a plurality of troughs 16.
 ゴブ監視装置1は、スクープ14で複数のセクションSc1~Sc10に振り分けられたゴブ32を粗型20に導くデフレクタ18の出口18aと粗型20との間を落下するゴブ32を撮像する第1ラインセンサカメラ51と、第1ラインセンサカメラ51で撮像された複数の画像60(図3)からゴブ32を検出し、ゴブ32が粗型20に投入される遅れを検出する制御装置40と、を備える。 The gob monitoring device 1 is a first line that images gobs 32 falling between the coarse mold 20 and the exit 18a of the deflector 18 that guides the gobs 32 distributed into a plurality of sections Sc1 to Sc10 by the scoop 14 to the coarse mold 20. A sensor camera 51 and a control device 40 that detects the gob 32 from a plurality of images 60 (FIG. 3) captured by the first line sensor camera 51 and detects a delay in putting the gob 32 into the rough mold 20. Be prepared.
 制御装置40は、シヤー切断装置12と第1ラインセンサカメラ51及び第2ラインセンサカメラ52に電気的に接続され、例えばシヤー切断装置12からの切断時信号に基づいてゴブ32の検出処理を実行し、ゴブ32の遅延が検出された場合に警告信号を出力する処理を実行する。制御装置40は、警告信号に基づいて発光する警告灯や警告信号を表示するディスプレイが接続されてもよい。制御装置40は、例えば、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサ、HDD(Hard Disk Drive)、SSD(Solid State Drive)、ROM(Read-Only Memory)、RAM(Random Access Memory)等の記憶装置、キーボード、マウス、タッチパッド等の入力装置、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等の表示装置、I/Oボード等のデジタル入出力ボード等で構成される。制御装置40のCPUや記憶装置等は1つだけでなく複数の例えば物理的に分離された装置であってもよく、その場合、通信ネットワークを介して接続してもよい。制御装置40は、例えば、検出部41と、計測部43と、算出部45と、判定部47と、出力部49とを含む。制御装置40の少なくとも一部の構成が第1ラインセンサカメラ51及び/または第2ラインセンサカメラ52と一体に設けられてもよい。制御装置40の各部の具体的な処理については後述する。 The control device 40 is electrically connected to the shear cutting device 12, the first line sensor camera 51, and the second line sensor camera 52, and executes a detection process of the gob 32 based on a cutting signal from the shear cutting device 12, for example. Then, when a delay in the gob 32 is detected, a process is executed to output a warning signal. The control device 40 may be connected to a warning light that emits light based on a warning signal or a display that displays the warning signal. The control device 40 includes, for example, a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), an HDD (Hard Disk Drive), or an SSD (Solid State). Drive), ROM (Read-Only Memory), RAM (Random Access It is composed of a memory device such as a keyboard, a mouse, an input device such as a touch pad, a display device such as a liquid crystal display, an organic EL (Electro Luminescence) display, and a digital input/output board such as an I/O board. The CPU, storage device, etc. of the control device 40 may be not only one but a plurality of physically separated devices, for example, and in that case, they may be connected via a communication network. The control device 40 includes, for example, a detection section 41, a measurement section 43, a calculation section 45, a determination section 47, and an output section 49. At least a part of the configuration of the control device 40 may be provided integrally with the first line sensor camera 51 and/or the second line sensor camera 52. Specific processing of each part of the control device 40 will be described later.
 図2の実施形態では、第1ラインセンサカメラ51は、複数のセクションSc1~Sc5において落下するゴブ32が複数の画像60(図3)に撮像される位置に配置される。第1ラインセンサカメラ51及び第2ラインセンサカメラ52は、少なくとも1列のラインセンサカメラ素子例えばCCDイメージングセンサ素子を有する。ラインセンサカメラを用いることでエリアセンサカメラよりも高解像度で高速な処理が可能となる。また、ラインセンサカメラを用いることでゴブ32の遅延状況を撮像された画像60から精度良く演算することができる。1台の第1ラインセンサカメラ51で広い範囲を監視できるので経済的に優れたゴブ監視装置1となる。また、第1ラインセンサカメラ51を用いることにより、従来のようなスワビングオイルによる油煙による影響を受けにくい。第1ラインセンサカメラ51及び第2ラインセンサカメラ52は、いずれのセクションSc1~Sc10のゴブ32を検出しているかわかるように視野A1の幅方向D(図2)で隣接するセクションのゴブ32と重ならない画像を得ることが好ましい。 In the embodiment of FIG. 2, the first line sensor camera 51 is arranged at a position where the falling gob 32 in the plurality of sections Sc1 to Sc5 is captured in a plurality of images 60 (FIG. 3). The first line sensor camera 51 and the second line sensor camera 52 have at least one row of line sensor camera elements, such as CCD imaging sensor elements. Using a line sensor camera enables higher resolution and faster processing than an area sensor camera. Further, by using a line sensor camera, the delay status of the gob 32 can be calculated with high accuracy from the captured image 60. Since a wide range can be monitored with one first line sensor camera 51, the gob monitoring device 1 is economically superior. Furthermore, by using the first line sensor camera 51, it is less susceptible to the influence of oil smoke caused by swabbing oil as in the conventional case. The first line sensor camera 51 and the second line sensor camera 52 detect the gobs 32 of adjacent sections in the width direction D (FIG. 2) of the field of view A1 so that it can be seen which sections Sc1 to Sc10 the gobs 32 are being detected. It is preferable to obtain images that do not overlap.
 第1ラインセンサカメラ51の視野A1は、複数のセクションSc1~Sc5が並ぶ方向Xに交差し、かつ、複数のセクションSc1~Sc5における粗型20からの高さH1が一定である。視野A1が並ぶ方向Xと交差する態様とは、視野A1の幅方向Dが並ぶ方向Xに平行でもなく直交もしないで交差する態様であり、例えば図2の平面図のように視野A1が並ぶ方向Xに対して斜めになるということである。本発明における視野とは、ラインセンサカメラによって撮像し得る範囲である。視野は、本実施形態のようにラインセンサカメラで直接撮像し得る範囲であってもよいし、後述する変形例のようにミラーを介して間接的に撮像し得る範囲であってもよい。視野A1が並ぶ方向Xと交差するため第1ラインセンサカメラ51を粗型20から離した位置に設置することができ、従来のように並ぶ方向Xに沿ったセンサのような油煙による油汚れを避けることができる。また、視野A1の高さH1が一定であるので、視野A1でゴブ32を検出するタイミングを一定にすることができる。 The field of view A1 of the first line sensor camera 51 intersects the direction X in which the plurality of sections Sc1 to Sc5 are lined up, and the height H1 from the rough mold 20 in the plurality of sections Sc1 to Sc5 is constant. The aspect in which the field of view A1 intersects with the direction X in which the visual field A1 is lined up is a manner in which the width direction D of the visual field A1 intersects with the direction X in which the visual field A1 is lined up without being parallel or perpendicular to it, for example, the visual field A1 is lined up as shown in the plan view of FIG. This means that it is oblique to the direction X. The field of view in the present invention is a range that can be imaged by a line sensor camera. The field of view may be a range that can be directly imaged by a line sensor camera as in this embodiment, or may be a range that can be indirectly imaged through a mirror as in a modification described later. Since the field of view A1 intersects with the alignment direction It can be avoided. Furthermore, since the height H1 of the visual field A1 is constant, the timing at which the gob 32 is detected in the visual field A1 can be made constant.
 図2に示すように、複数のセクションSc1~Sc5の並ぶ方向Xの隣に並ぶ他の複数のセクションSc6~Sc10をさらに含むことができる。他の複数のセクションSc6~Sc10に対応する位置に落下するゴブ32を撮像する第2ラインセンサカメラ52をさらに含むことができる。制御装置40は、第2ラインセンサカメラ52で撮像された複数の画像60(図3)からゴブ32を検出し、ゴブ32が他の複数のセクションSc6~Sc10における粗型20に投入される遅れを検出することができる。本実施形態では2つのラインセンサカメラを用いたがこれに限らず、監視範囲に応じて例えば1つだけでもよいし3つ以上であってもよい。 As shown in FIG. 2, it is possible to further include a plurality of other sections Sc6 to Sc10 that are lined up next to each other in the direction X in which the plurality of sections Sc1 to Sc5 are lined up. It may further include a second line sensor camera 52 that images the falling gob 32 at positions corresponding to the other plurality of sections Sc6 to Sc10. The control device 40 detects the gob 32 from the plurality of images 60 (FIG. 3) captured by the second line sensor camera 52, and detects the delay in feeding the gob 32 into the rough mold 20 in the other plural sections Sc6 to Sc10. can be detected. Although two line sensor cameras are used in this embodiment, the number is not limited to this, and depending on the monitoring range, for example, only one or three or more may be used.
 第2ラインセンサカメラ52も第1ラインセンサカメラ51と同様に、複数のセクションSc6~Sc10において落下するゴブ32が複数の画像に撮像される位置に配置される。第2ラインセンサカメラ52の視野A2は、複数のセクションSc6~Sc10が並ぶ方向Xに交差し、かつ、複数のセクションSc6~Sc10における粗型20からの高さH1が一定である。なお、前後又は左右で隣り合うゴブ32が重ならないように撮像できれば、第1ラインセンサカメラ51及び第2ラインセンサカメラ52が撮像する範囲は、それぞれ5つのセクションに限るものではなく、例えばそれぞれ6セクション以上を撮像対象としてもよいし、それぞれ異なる数のセクションを撮像対象としてもよい。また、1台のラインセンサカメラで全てのセクションを撮像対象とできる場合には、ゴブ監視装置1が1台のラインセンサカメラだけを備える構成でもよい。 Similarly to the first line sensor camera 51, the second line sensor camera 52 is also arranged at a position where the falling gobs 32 in the plural sections Sc6 to Sc10 are captured in a plurality of images. The field of view A2 of the second line sensor camera 52 intersects the direction X in which the plurality of sections Sc6 to Sc10 are lined up, and the height H1 of the plurality of sections Sc6 to Sc10 from the rough mold 20 is constant. Note that if images can be taken so that adjacent gobs 32 in the front and back or left and right directions do not overlap, the range that the first line sensor camera 51 and the second line sensor camera 52 image is not limited to five sections each, but for example, six sections each. More than one section may be imaged, or a different number of sections may be imaged. Furthermore, if all sections can be imaged with one line sensor camera, the gob monitoring device 1 may be configured to include only one line sensor camera.
 また、図2に示すように、複数のセクションSc1~Sc10は、セクションごとに粗型20を複数備えてもよく、その場合、第1ラインセンサカメラ51及び第2ラインセンサカメラ52は、セクションごとの複数の粗型20に対応する位置に落下する複数のゴブ32が互いに重ならずに複数の画像に撮像される位置に配置される。具体的には、図2に示すように、1セクションに2つの粗型20が配置される場合に、一点鎖線で示すように別のセクションのゴブ32だけでなく同じセクションの他のゴブ32も視野A1の中で重ならない位置に第1ラインセンサカメラ51及び第2ラインセンサカメラ52が配置される。そのため、第1ラインセンサカメラ51及び第2ラインセンサカメラ52は、監視対象の粗型20から離れた位置であって、かつ、並ぶ方向Xに対して視野A1が斜めになるように配置される。このような配置によって第1ラインセンサカメラ51及び第2ラインセンサカメラ52が油煙の影響を受けにくくなる。また、第1ラインセンサカメラ51及び第2ラインセンサカメラ52と粗型20との間に比較的広いスペースを設けることができるので、図示しないスワビングロボットや協働ロボットの設置や移動を許容できる。また、2つのラインセンサカメラが互いに面対称となる位置に配置されて互いの視野A1、A2が交差するので、例えばスワビングロボットが第1ラインセンサカメラ51側に移動していても第2ラインセンサカメラ52による監視は継続することができる。なお、スワビングロボットは、ガラスびん成形機100に採用される粗型等にオイルなどの離型剤を自動でスプレーする装置であり、粗型20の手前を並ぶ方向Xに沿って往復移動するロボットである。 Further, as shown in FIG. 2, the plurality of sections Sc1 to Sc10 may each include a plurality of rough molds 20, and in that case, the first line sensor camera 51 and the second line sensor camera 52 may be provided for each section. The plurality of gobs 32 falling at positions corresponding to the plurality of rough molds 20 are arranged at positions where they are captured in a plurality of images without overlapping each other. Specifically, as shown in FIG. 2, when two rough molds 20 are arranged in one section, not only the gob 32 of another section but also the other gob 32 of the same section as shown by the dashed line The first line sensor camera 51 and the second line sensor camera 52 are arranged at positions that do not overlap in the field of view A1. Therefore, the first line sensor camera 51 and the second line sensor camera 52 are arranged at a position away from the rough mold 20 to be monitored, and so that the field of view A1 is oblique with respect to the line-up direction X. . This arrangement makes the first line sensor camera 51 and the second line sensor camera 52 less susceptible to the influence of oil smoke. Furthermore, since a relatively large space can be provided between the first line sensor camera 51 and the second line sensor camera 52 and the rough mold 20, installation and movement of a swabbing robot or collaborative robot (not shown) can be allowed. . In addition, since the two line sensor cameras are arranged in plane-symmetrical positions and their fields of view A1 and A2 intersect, for example, even if the swabbing robot moves toward the first line sensor camera 51, the second line sensor camera Monitoring by the sensor camera 52 can continue. Note that the swabbing robot is a device that automatically sprays a mold release agent such as oil onto a rough mold etc. employed in the glass bottle molding machine 100, and moves back and forth along the direction X in which it lines up in front of the rough mold 20. It's a robot.
 図3の(a)に示す複数の画像60は、例えば第1ラインセンサカメラ51によって撮像された図3の(b)に示すような1ライン分の画像601,602…を撮像順に並べた画像である。図3の画像60では撮像順に下から並べて表示しているため、ゴブ32が画像60における下から上に向かって徐々に表示されていくが、例えば制御装置40を用いて上から下に向かって撮影順に並べ替えてから画像60を表示してもよい。 The plurality of images 60 shown in (a) of FIG. 3 is an image obtained by arranging images 601, 602, . It is. In the image 60 of FIG. 3, the gobs 32 are displayed in the order of imaging from the bottom, so the gobs 32 are gradually displayed from the bottom to the top in the image 60. The images 60 may be displayed after being rearranged in the order of shooting.
 制御装置40は、溶融ガラス30をシヤーブレードにより切断してから所定時間後に第1ラインセンサカメラ51及び第2ラインセンサカメラ52による撮像の開始からゴブ32の先端62a,64aを検出するまでの画像601…の数に基づいてゴブ32が粗型20に投入される遅れを検出する。検出部41は、複数の画像60の中から落下するゴブ32に対応する検出体62,64を検出する。検出部41は、少なくとも検出体62,64の先端62a,64aを検出する。検出部41は、複数の画像60を例えば二値化して明確化した白い部分を検出体62,64として識別することができる。計測部43は、各セクションにおいて検出された先端62a,64aが撮像されるまでに第1ラインセンサカメラ51が撮像した画像601…690…693の数を計測し、同様に第2ラインセンサカメラ52が撮像した画像についても画像の数を計測する。算出部45は、計測された画像の数に基づいて、シヤーブレードによる切断から先端62a,64aが撮像されるまでの時間を算出する。この時間はゴブ32が粗型20に投入されるまでの時間に近い値となる。判定部47は、算出された時間からゴブ32が粗型20に投入される遅れの有無を判定し、判定結果を出力する。遅れが小さければそのまま継続して生産を実行することができ、遅れが大きくなれば操作者への通知、粗型20の動作の停止、粗型20への投入前にゴブ32を排除するなどの処理を実行する。出力部49は、判定結果に基づいてガラスびん成形機100の各部へ信号を出力することができる。例えば、ゴブ32の遅延があると判定された場合にディスプレイへ警告信号を出力することができる。また、算出された時間を継続して観察することで、ゴブの長さの変化を操作者が確認できる。例えばゴブの温度が設定温度域よりも高い場合、ガラスの粘性が低くなりゴブは長くなる(伸びる)。算出された時間の経過観察からゴブの長さの変化を確認した場合、操作者は溶融ガラス30の温度を下げるなどの対応ができる。更に測定したデータを周辺装置に転送することで、トラブル防止のために周辺装置に警報などの働き掛けができる。 The control device 40 displays images from the start of imaging by the first line sensor camera 51 and the second line sensor camera 52 until the tips 62a and 64a of the gob 32 are detected after a predetermined time after cutting the molten glass 30 with the shear blade. The delay in charging the gob 32 into the rough mold 20 is detected based on the number of 601.... The detection unit 41 detects detection objects 62 and 64 corresponding to the falling gob 32 from among the plurality of images 60. The detection unit 41 detects at least the tips 62a and 64a of the detection bodies 62 and 64. The detection unit 41 can, for example, binarize the plurality of images 60 and identify the clarified white parts as the detection objects 62 and 64. The measurement unit 43 measures the number of images 601...690...693 captured by the first line sensor camera 51 until the tips 62a, 64a detected in each section are captured, and similarly measures the number of images 601...690...693 captured by the second line sensor camera 52. The number of images taken by the user is also counted. The calculation unit 45 calculates the time from cutting by the shear blade until the tips 62a and 64a are imaged, based on the number of measured images. This time is close to the time it takes for the gob 32 to be put into the rough mold 20. The determination unit 47 determines whether there is a delay in feeding the gob 32 into the rough mold 20 from the calculated time, and outputs the determination result. If the delay is small, production can be continued as it is; if the delay is large, the operator is notified, the operation of the rough mold 20 is stopped, the gob 32 is removed before feeding into the rough mold 20, etc. Execute processing. The output unit 49 can output signals to each part of the glass bottle molding machine 100 based on the determination result. For example, if it is determined that there is a delay in the gob 32, a warning signal can be output to the display. Further, by continuously observing the calculated time, the operator can check changes in the length of the gob. For example, when the temperature of the gob is higher than the set temperature range, the viscosity of the glass decreases and the gob becomes longer (elongates). If a change in the length of the gob is confirmed by observing the progress of the calculated time, the operator can take measures such as lowering the temperature of the molten glass 30. Furthermore, by transmitting the measured data to peripheral devices, it is possible to send alarms to peripheral devices to prevent trouble.
 このように、ゴブ監視装置1の一態様によれば、第1ラインセンサカメラ51及び第2ラインセンサカメラ52を用いてゴブ32の発光を検出することで油煙による影響を受けにくくすることができる。また、従来のレーザーセンサのように粗型20に隣接せずラインセンサカメラが離間して配置しているので、油汚れによる誤動作が発生しにくく、しかもメンテナンスが容易となる。 As described above, according to one aspect of the gob monitoring device 1, by detecting the light emission of the gob 32 using the first line sensor camera 51 and the second line sensor camera 52, it is possible to make it less susceptible to the influence of oil smoke. . Furthermore, unlike conventional laser sensors, the line sensor camera is not adjacent to the rough mold 20 but is placed apart from it, so malfunctions due to oil stains are less likely to occur and maintenance is easy.
 2.ゴブ監視方法
 図1~図3を用いてゴブ監視装置1を用いたゴブ監視方法について説明する。
2. Gob Monitoring Method A gob monitoring method using the gob monitoring device 1 will be described with reference to FIGS. 1 to 3.
 シヤー切断装置12が溶融ガラス30を切断すると切断時信号が制御装置40にシヤー切断装置12から出力され、その切断時信号が制御装置40に入力すると第1ラインセンサカメラ51及び第2ラインセンサカメラ52に対して制御装置40が撮像を指令する。切断時信号から予め設定したゴブ32の落下経路に相当する遅延時間が経過した後に撮像を開始してもよい。 When the shear cutting device 12 cuts the molten glass 30, a cutting signal is output from the shear cutting device 12 to the control device 40, and when the cutting signal is input to the control device 40, the first line sensor camera 51 and the second line sensor camera The control device 40 instructs the camera 52 to take an image. Imaging may be started after a delay time corresponding to a preset falling path of the gob 32 has elapsed from the cutting signal.
 制御装置40からの指令により第1ラインセンサカメラ51が撮像した複数の画像60は、制御装置40へ出力される。検出部41は取得した複数の画像60からゴブ32に対応する検出体62,64を検出する。 A plurality of images 60 captured by the first line sensor camera 51 according to a command from the control device 40 are output to the control device 40. The detection unit 41 detects detection objects 62 and 64 corresponding to the gob 32 from the plurality of acquired images 60.
 図3の(a)に示す複数の画像60は、撮像を開始した直後の第1回目の撮像により得られた1ライン分の画像601(図3の(b))から撮像終了まで複数のライン分の画像602,603…を撮像した順に並べることで連続する一つの画像のように表している。図3の(a)では第1セクションSc1に対応する部分で2つの検出体62,64が撮像されている。検出体62は第1セクションSc1の粗型20のAキャビティ(Acav)に落下するゴブ32を撮像したものであり、検出体64は第1セクションSc1の粗型20のBキャビティ(Bcav)に落下するゴブ32を撮像したものである。ゴブ32は高温で発光しているため周囲より明るい部分を検出体62,64として検出することができる。 The plurality of images 60 shown in (a) of FIG. 3 are a plurality of lines from an image 601 for one line ((b) of FIG. 3) obtained by the first imaging immediately after the start of imaging until the end of imaging. By arranging the images 602, 603, . . . in the order in which they were taken, they are represented as one continuous image. In FIG. 3A, two detection bodies 62 and 64 are imaged in a portion corresponding to the first section Sc1. The detection object 62 is an image of the gob 32 falling into the A cavity (Acav) of the rough mold 20 of the first section Sc1, and the detection object 64 is an image of the gob 32 falling into the B cavity (Bcav) of the rough mold 20 of the first section Sc1. This is an image of the gob 32 that moves. Since the gob 32 emits light at a high temperature, parts brighter than the surroundings can be detected as detection bodies 62 and 64.
 検出部41は、画像691で検出体62の先端62aを検出し、画像694で検出体64の先端64aを検出する。検出部41の検出結果に基づいて、計測部43は先端62aが検出されてから先端64aが検出されるまでの画像の数(例えば撮像したライン数は3ライン)を計測する。第1ラインセンサカメラ51は一定の時間間隔(例えば0.1ms)で撮像するので、計測部43の計測結果に基づいて、算出部45はBcavのゴブ32がAcavのゴブ32より遅れる時間(0.1ms×3ライン=0.3ms)を算出する。判定部47は、算出部45が算出した遅れ時間があらかじめ設定したしきい値を超えたか否かを判定する。出力部49は、遅れ時間がしきい値を超えた場合に警告信号を例えばディスプレイに出力するとともに警告ランプを点滅させてサイレンを鳴らす。そして、操作者はディスプレイに表示された警告を確認することで遅れが生じている粗型20に対応するトラフ16やデフレクタ18に対して例えば潤滑剤を噴霧してゴブ投入エラーを早期に防止することができる。 The detection unit 41 detects the tip 62a of the detection object 62 in the image 691, and detects the tip 64a of the detection object 64 in the image 694. Based on the detection result of the detection unit 41, the measurement unit 43 measures the number of images (for example, the number of captured lines is 3) from when the tip 62a is detected until when the tip 64a is detected. Since the first line sensor camera 51 captures images at fixed time intervals (for example, 0.1 ms), based on the measurement results of the measurement unit 43, the calculation unit 45 calculates the time (0 .1ms×3 lines=0.3ms). The determining unit 47 determines whether the delay time calculated by the calculating unit 45 exceeds a preset threshold. The output unit 49 outputs a warning signal to, for example, a display, flashes a warning lamp, and sounds a siren when the delay time exceeds a threshold value. Then, by checking the warning displayed on the display, the operator sprays, for example, lubricant on the trough 16 and deflector 18 corresponding to the rough mold 20 that is experiencing a delay, to prevent gob insertion errors at an early stage. be able to.
 本実施形態では、撮像の時間間隔を用いて遅れ時間を算出したが、これに限らず、単にゴブ32の落下が遅れている分の画像の数(撮像したライン数)で判定してもよいし、成形機の動作周期に対応する角度で換算してゴブ32の落下が遅れている分の角度を算出して判定してもよい。また、図3では同じセクションSc1における2つの粗型20に落下する2つのゴブ32を対比したが、これに限らず、各セクションに適切なしきい値を設定しておき、そのしきい値を超えて各先端62a,64aが検出された場合にそのゴブ32が粗型20に投入されるタイミングに遅れを生じていると判定してもよい。 In this embodiment, the delay time is calculated using the imaging time interval, but the invention is not limited to this, and the determination may be made simply based on the number of images (the number of imaged lines) corresponding to the delay in falling of the gob 32. However, the determination may be made by calculating the angle corresponding to the delay in falling of the gob 32 by converting it into an angle corresponding to the operation cycle of the molding machine. In addition, in FIG. 3, two gobs 32 falling on two rough molds 20 in the same section Sc1 are compared, but the present invention is not limited to this, and an appropriate threshold value can be set for each section, and if the threshold value is exceeded, When the tips 62a and 64a are detected, it may be determined that there is a delay in the timing at which the gob 32 is introduced into the rough mold 20.
 3.ラインセンサカメラの位置調整方法
 図4及び図5を用いてラインセンサカメラの位置調整方法について説明する。図4は、本実施形態に係るラインセンサカメラの位置調整方法に用いる第1ラインセンサカメラ51を模式的に示す図であり、図5は、本実施形態に係るラインセンサカメラの位置調整方法を説明する図である。図4の(a)は第1ラインセンサカメラ51を側面から見た断面図であり、(b)は第1ラインセンサカメラ51をレンズ513側から見た正面図である。図5の(a),(c)は粗型20を正面から見た図であり(b),(d)は(a),(c)の視野A1で撮像された複数の画像60である。図4及び図5では第1ラインセンサカメラ51について説明するが、第2ラインセンサカメラ52も同様の構成であるため同様の調整方法を実施することができる。
3. Method for adjusting the position of the line sensor camera A method for adjusting the position of the line sensor camera will be described using FIGS. 4 and 5. FIG. 4 is a diagram schematically showing the first line sensor camera 51 used in the method for adjusting the position of a line sensor camera according to the present embodiment, and FIG. 5 is a diagram schematically showing the method for adjusting the position of the line sensor camera according to the present embodiment. FIG. FIG. 4A is a sectional view of the first line sensor camera 51 viewed from the side, and FIG. 4B is a front view of the first line sensor camera 51 viewed from the lens 513 side. (a) and (c) of FIG. 5 are views of the rough mold 20 viewed from the front, and (b) and (d) are a plurality of images 60 taken in the field of view A1 in (a) and (c). . Although the first line sensor camera 51 will be described in FIGS. 4 and 5, since the second line sensor camera 52 has a similar configuration, the same adjustment method can be implemented.
 図4に示すように、第1ラインセンサカメラ51はエリアセンサカメラ53と一体に設けられる。第1ラインセンサカメラ51は、上述した通り、スクープ14で複数のセクションSc1~Sc5に振り分けられたゴブ32を粗型20に導くデフレクタ18の出口18aと粗型20との間を落下するゴブ32を撮像するものである。第1ラインセンサカメラ51のレンズ513から入射する検出光をラインセンサカメラ素子510が受光し、かつ、ハーフミラー512で検出光を光軸Oに直交する方向に反射させてエリアセンサカメラ53のエリアセンサ素子530が受光する。エリアセンサカメラ53は、第1ラインセンサカメラ51の視野A1の中心が入る視野A3を有する。第1ラインセンサカメラ51はゴニオステージ54上に回転可能に支持され、ゴニオステージ54によって第1ラインセンサカメラ51は光軸Oの周りに回転可能である。 As shown in FIG. 4, the first line sensor camera 51 is provided integrally with the area sensor camera 53. As described above, the first line sensor camera 51 detects the gob 32 falling between the outlet 18a of the deflector 18 and the rough mold 20, which guides the gob 32 distributed into the plurality of sections Sc1 to Sc5 by the scoop 14 to the rough mold 20. It is used to image. The line sensor camera element 510 receives the detection light incident from the lens 513 of the first line sensor camera 51, and the half mirror 512 reflects the detection light in a direction perpendicular to the optical axis O. Sensor element 530 receives the light. The area sensor camera 53 has a field of view A3 that includes the center of the field of view A1 of the first line sensor camera 51. The first line sensor camera 51 is rotatably supported on a gonio stage 54, and the first line sensor camera 51 is rotatable around the optical axis O by the gonio stage 54.
 図5の(a)及び(c)には視野A1と視野A3が網掛けされて示される。視野A1と視野A3の中心は同じ位置に設定される。視野A3は、視野A1より並ぶ方向Xに短く、かつ、視野A1より高さ方向に広い。 In (a) and (c) of FIG. 5, the field of view A1 and the field of view A3 are shown shaded. The centers of the visual field A1 and the visual field A3 are set at the same position. The visual field A3 is shorter in the direction X than the visual field A1, and wider in the height direction than the visual field A1.
 第1ラインセンサカメラ51の位置調整方法は、撮像対象となるゴブ32の落下位置であるデフレクタ18の直下に同一高さH1で設置された3つの光源55,56,57を配置し、中央の光源55が第1ラインセンサカメラ51の視野A1の中心で撮像されるように第1ラインセンサカメラ51の位置を調整した後、両端の光源56,57が視野A1内で撮像されるように第1ラインセンサカメラ51の光軸Oの周りに第1ラインセンサカメラ51を回転させて調整する。 The method for adjusting the position of the first line sensor camera 51 is to arrange three light sources 55, 56, and 57 installed at the same height H1 directly below the deflector 18, which is the fall position of the gob 32 to be imaged, and After adjusting the position of the first line sensor camera 51 so that the light source 55 is imaged at the center of the field of view A1 of the first line sensor camera 51, the position of the first line sensor camera 51 is adjusted so that the light sources 56 and 57 at both ends are imaged at the center of the field of view A1. The first line sensor camera 51 is rotated around the optical axis O of the first line sensor camera 51 for adjustment.
 中央の光源55は、複数のセクションSc1~Sc5の内、Acavの中央にあるセクションSc3に落下するゴブ32が通過するデフレクタ18の直下に設置する。光源56,57は、Acavの複数のセクションSc1~Sc5の両端にあるセクションSc1,Sc5に落下するゴブ32が通過するデフレクタ18,18の直下にそれぞれ配置される。光源55,56,57は、支持具58を介してガラスびん成形機100に固定される。光源55,56,57は、例えばLEDのスポット照明を第1ラインセンサカメラ51側に向けて支持具58にそれぞれ固定される。 The central light source 55 is installed directly below the deflector 18 through which the gob 32 that falls into the section Sc3 at the center of Acav among the plurality of sections Sc1 to Sc5 passes. The light sources 56 and 57 are respectively arranged directly below the deflectors 18 and 18 through which the gob 32 that falls into the sections Sc1 and Sc5 at both ends of the plurality of sections Sc1 to Sc5 of Acav passes. The light sources 55, 56, 57 are fixed to the glass bottle molding machine 100 via a support 58. The light sources 55, 56, and 57 are each fixed to the support 58 with, for example, LED spot illumination directed toward the first line sensor camera 51 side.
 本実施形態に係る位置調整方法では、まず、中央の光源55が第1ラインセンサカメラ51の視野A1の中心で撮像されるように第1ラインセンサカメラ51の位置を調整するが、撮像する1ライン分の視野A1は狭い。そのため、中央の光源55を用いて第1ラインセンサカメラ51の位置を調整する前に、中央の光源55が図4で説明したエリアセンサカメラ53の視野A3に入るように第1ラインセンサカメラ51及びエリアセンサカメラ53の位置を調整する。第1ラインセンサカメラ51の位置調整は、ゴニオステージ54を支持する図示しない支持具により行う。第1ラインセンサカメラ51とエリアセンサカメラ53とはゴニオステージ54により一体に回転可能である。視野A3が視野A1より高さ方向に広いエリアセンサカメラ53を用いて第1ラインセンサカメラ51の位置を調整することにより、容易に第1ラインセンサカメラ51の位置を調整できる。具体的な調整としては、光源55が視野A1に入っていない場合に、まず、エリアセンサカメラ53の広い視野A3内で光源55を捉え、さらに視野A3の中心に光源55が撮像さるように第1ラインセンサカメラ51の高さ及び並ぶ方向Xの位置を調整する。視野A1の中心と視野A3の中心と光軸Oとは一致しているため、視野A1の高さ方向及び並ぶ方向Xにおける正確な位置に第1ラインセンサカメラ51を調整できる。 In the position adjustment method according to the present embodiment, first, the position of the first line sensor camera 51 is adjusted so that the central light source 55 is imaged at the center of the field of view A1 of the first line sensor camera 51. The visual field A1 for the line is narrow. Therefore, before adjusting the position of the first line sensor camera 51 using the central light source 55, the first line sensor camera 51 must be adjusted so that the central light source 55 enters the field of view A3 of the area sensor camera 53 explained in FIG. and adjust the position of the area sensor camera 53. The position of the first line sensor camera 51 is adjusted using a support (not shown) that supports the goniometer stage 54. The first line sensor camera 51 and the area sensor camera 53 can be rotated together by a goniometer stage 54. By adjusting the position of the first line sensor camera 51 using the area sensor camera 53 whose field of view A3 is wider than the field of view A1 in the height direction, the position of the first line sensor camera 51 can be easily adjusted. As a specific adjustment, when the light source 55 is not within the field of view A1, first, the light source 55 is captured within the wide field of view A3 of the area sensor camera 53, and then the light source 55 is captured in the center of the field of view A3. The height of the 1-line sensor camera 51 and the position in the line direction X are adjusted. Since the center of the visual field A1, the center of the visual field A3, and the optical axis O coincide, the first line sensor camera 51 can be adjusted to an accurate position in the height direction of the visual field A1 and the alignment direction X.
 次に、両端の光源56,57が視野A1内で撮像されるようにゴニオステージ54を用いて第1ラインセンサカメラ51を光軸Oの周りに回転させる。調整当初は図5の(a)のように視野A1が光源56,57から外れていたため、図5の(b)のように複数の画像60には光源55に対応する検出体65しか撮像されないが、図5の(c)のように第1ラインセンサカメラ51(視野A1)を回転させていくと視野A1の両端付近に光源56,57に対応する検出体66,67が撮像される。この位置でゴニオステージ54による第1ラインセンサカメラ51の回転を止めて位置決めする。 Next, the first line sensor camera 51 is rotated around the optical axis O using the goniometer stage 54 so that the light sources 56 and 57 at both ends are imaged within the field of view A1. At the beginning of the adjustment, the field of view A1 was off from the light sources 56 and 57 as shown in FIG. 5(a), so only the detection object 65 corresponding to the light source 55 is captured in the plurality of images 60 as shown in FIG. 5(b). However, as the first line sensor camera 51 (field of view A1) is rotated as shown in FIG. 5C, detection objects 66 and 67 corresponding to the light sources 56 and 57 are imaged near both ends of the field of view A1. At this position, the rotation of the first line sensor camera 51 by the goniometer stage 54 is stopped and the first line sensor camera 51 is positioned.
 その後、光源55,56,57及び支持具58をガラスびん成形機100から取り除けば、位置調整作業は完了し、適切な位置でゴブ32の監視を実行できる。このように本実施形態に係るラインセンサカメラの位置調整方法によれば、油煙による影響を受けにくい第1ラインセンサカメラ51を正確かつ容易に位置決めすることができる。 Thereafter, by removing the light sources 55, 56, 57 and the support 58 from the glass bottle molding machine 100, the position adjustment work is completed and the gob 32 can be monitored at an appropriate position. As described above, according to the method for adjusting the position of a line sensor camera according to the present embodiment, it is possible to accurately and easily position the first line sensor camera 51, which is less susceptible to the influence of oil smoke.
 4.変形例
 図6を用いて、ゴブ監視装置1の変形例に係る第1ラインセンサカメラ51aについて説明する。図6は、変形例に係る第1ラインセンサカメラ51aの正面図である。上記実施形態に係るゴブ監視装置1は、上記第1ラインセンサカメラ51に替えて、変形例に係る第1ラインセンサカメラ51aを採用できる。なお、第2ラインセンサカメラ52は第1ラインセンサカメラ51aと同じ構成を採用でき、また、他の構成はゴブ監視装置1と同じ構成であるため、ここでの説明は省略する。
4. Modification Example A first line sensor camera 51a according to a modification example of the gob monitoring device 1 will be described with reference to FIG. FIG. 6 is a front view of a first line sensor camera 51a according to a modification. The gob monitoring device 1 according to the embodiment described above can employ a first line sensor camera 51a according to a modification instead of the first line sensor camera 51. Note that the second line sensor camera 52 can have the same configuration as the first line sensor camera 51a, and the other configurations are the same as the gob monitoring device 1, so a description thereof will be omitted here.
 図6に示すように、第1ラインセンサカメラ51aは、少なくともカメラ本体51bと、ミラー51cとを含む。カメラ本体51bは、少なくとも1列のラインセンサカメラ素子(例えばCCD素子)を有するラインセンサカメラであって、上記実施形態における第1ラインセンサカメラ51を適用できる。カメラ本体51bはゴニオステージ54(図4)を備えてもよいし、備えなくてもよい。カメラ本体51bは、ミラー51cを介することで上記実施形態における第1ラインセンサカメラ51と同様の視野A1を有する。ミラー51cは、カメラ本体51bに対して視野A1を反射可能な反射面を備えている。 As shown in FIG. 6, the first line sensor camera 51a includes at least a camera body 51b and a mirror 51c. The camera body 51b is a line sensor camera having at least one row of line sensor camera elements (for example, CCD elements), and the first line sensor camera 51 in the above embodiment can be applied thereto. The camera body 51b may or may not be provided with the goniometer stage 54 (FIG. 4). The camera main body 51b has the same field of view A1 as the first line sensor camera 51 in the above embodiment through the mirror 51c. The mirror 51c includes a reflective surface that can reflect the field of view A1 toward the camera body 51b.
 第1ラインセンサカメラ51aは、調整装置51d、固定台51e及び固定ロッド51fをさらに含むことができる。ミラー51cは、カメラ本体51bに対して反射面の向きを変更可能に調整装置51dに取り付けられる。調整装置51dは、固定台51eの所定の位置に固定される。固定台51eにはカメラ本体51b及び調整装置51dがあらかじめ定められた位置に固定される。図示の例では、カメラ本体51bは光軸Oが鉛直方向下方に向くように固定台51eに固定され、調整装置51dはミラー51cの反射面が光軸Oに対して略45度の位置に固定されて光軸Oが水平方向に向かう。 The first line sensor camera 51a may further include an adjustment device 51d, a fixing base 51e, and a fixing rod 51f. The mirror 51c is attached to the adjustment device 51d so that the direction of the reflective surface can be changed with respect to the camera body 51b. The adjustment device 51d is fixed at a predetermined position on the fixed base 51e. A camera body 51b and an adjustment device 51d are fixed to a fixed base 51e at predetermined positions. In the illustrated example, the camera body 51b is fixed to a fixed base 51e so that the optical axis O faces vertically downward, and the adjustment device 51d is fixed at a position where the reflective surface of the mirror 51c is approximately 45 degrees with respect to the optical axis O. The optical axis O is directed horizontally.
 調整装置51dは、光軸Oに対しするミラー51cの反射面の角度Qを変更可能な例えばゴニオステージや視野A1に沿った光軸Oの周りにミラー51cを回転可能な回転ステージ等を備えることができる。固定台51eは、固定ロッド51fを軸として回転することができる。調整装置51dと固定台51eの回転調整によりミラー51cの反射面は第1ラインセンサカメラ51aが視野A1(第2ラインセンサカメラ52の場合は視野A2)(図2参照)を保つように調整できる。固定ロッド51fは、固定台51eの高さ位置が調節可能に固定台51を固定できる。変形例に係る第1ラインセンサカメラ51aによれば、天井が低くカメラを設置するスペースがなくても、ミラー51c以外を天井に埋め込むことで視野A1の位置を調節することができる。 The adjustment device 51d may include, for example, a goniometer stage capable of changing the angle Q of the reflective surface of the mirror 51c with respect to the optical axis O, a rotation stage capable of rotating the mirror 51c around the optical axis O along the field of view A1, or the like. Can be done. The fixed base 51e can rotate around the fixed rod 51f. By adjusting the rotation of the adjustment device 51d and the fixed base 51e, the reflective surface of the mirror 51c can be adjusted so that the first line sensor camera 51a maintains the field of view A1 (field of view A2 in the case of the second line sensor camera 52) (see FIG. 2). . The fixing rod 51f can fix the fixing base 51 so that the height position of the fixing base 51e can be adjusted. According to the first line sensor camera 51a according to the modification, even if the ceiling is low and there is no space to install the camera, the position of the field of view A1 can be adjusted by embedding everything other than the mirror 51c in the ceiling.
 本発明は、本願に記載の特徴や効果を有する範囲で一部の構成を省略したり、各実施形態や変形例を組み合わせたりしてもよい。 The present invention may omit some configurations or may combine embodiments and modifications as long as the features and effects described in this application are achieved.
 本発明は、実施の形態で説明した構成と実質的に同一の構成(機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。 The present invention includes configurations that are substantially the same as those described in the embodiments (configurations that have the same functions, methods, and results, or configurations that have the same objectives and effects). Further, the present invention includes a configuration in which non-essential parts of the configuration described in the embodiments are replaced. Further, the present invention includes a configuration that has the same effects or a configuration that can achieve the same objective as the configuration described in the embodiment. Further, the present invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
 1…ゴブ監視装置、10…スパウト、11…ゴブ分配装置、12…シヤー切断装置、14…スクープ、16…トラフ、18…デフレクタ、18a…出口、20…粗型、30…溶融ガラス、32…ゴブ、40…制御装置、41…検出部、43…計測部、45…算出部、47…判定部、49…出力部、51,51a…第1ラインセンサカメラ、510…ラインセンサカメラ素子、512…ハーフミラー、513…レンズ、51b…カメラ本体、51c…ミラー、51d…調整装置、51e…固定台、51f…固定ロッド、52…第2ラインセンサカメラ、53…エリアセンサカメラ、530…エリアセンサ素子、54…ゴニオステージ、55,56,57…光源、58…支持具、60…複数の画像、601,602,603,604,690,691,692,693,694…画像、62,64,65,66,67…検出体、62a,64a…先端、100…ガラスびん成形機、A1,A2,A3…視野、D…幅方向、H1…高さ、O…光軸、Q…角度、Sc1~Sc10…第1セクション~第10セクション、X…並ぶ方向
 
DESCRIPTION OF SYMBOLS 1... Gob monitoring device, 10... Spout, 11... Gob distribution device, 12... Shear cutting device, 14... Scoop, 16... Trough, 18... Deflector, 18a... Outlet, 20... Rough mold, 30... Molten glass, 32... Gob, 40... Control device, 41... Detection section, 43... Measurement section, 45... Calculation section, 47... Judgment section, 49... Output section, 51, 51a... First line sensor camera, 510... Line sensor camera element, 512 ...half mirror, 513...lens, 51b...camera body, 51c...mirror, 51d...adjusting device, 51e...fixing base, 51f...fixing rod, 52...second line sensor camera, 53...area sensor camera, 530...area sensor Element, 54... Goniometer stage, 55, 56, 57... Light source, 58... Support, 60... Multiple images, 601, 602, 603, 604, 690, 691, 692, 693, 694... Image, 62, 64, 65, 66, 67...Detection object, 62a, 64a...Tip, 100...Glass bottle molding machine, A1, A2, A3...Field of view, D...Width direction, H1...Height, O...Optical axis, Q...Angle, Sc1 ~Sc10...1st section to 10th section, X...line direction

Claims (7)

  1.  スクープで複数のセクションに振り分けられたゴブを粗型に導くデフレクタの出口と前記粗型との間を落下するゴブを撮像するラインセンサカメラと、
     前記ラインセンサカメラで撮像された複数の画像からゴブを検出し、ゴブが前記粗型に投入される遅れを検出する制御装置と、
    を備え、
     前記複数のセクションにおいて落下するゴブが前記複数の画像に撮像される位置に前記ラインセンサカメラが配置されることを特徴とする、ゴブ監視装置。
    a line sensor camera that images the gob falling between the coarse mold and an outlet of a deflector that guides the gob distributed into a plurality of sections with a scoop to the coarse mold;
    a control device that detects gobs from a plurality of images captured by the line sensor camera and detects a delay in feeding the gobs into the rough mold;
    Equipped with
    The gob monitoring device is characterized in that the line sensor camera is disposed at a position where the falling gobs in the plurality of sections are captured in the plurality of images.
  2.  スクープで複数のセクションに振り分けられたゴブを粗型に導くデフレクタの出口と前記粗型との間を落下するゴブを撮像するラインセンサカメラと、
     前記ラインセンサカメラで撮像された複数の画像からゴブを検出し、ゴブが前記粗型に投入される遅れを検出する制御装置と、
    を備え、
     前記ラインセンサカメラの視野は、前記複数のセクションが並ぶ方向に交差し、かつ、前記複数のセクションにおける前記粗型からの高さが一定であることを特徴とする、ゴブ監視装置。
    a line sensor camera that images the gob falling between the coarse mold and an outlet of a deflector that guides the gob distributed into a plurality of sections with a scoop to the coarse mold;
    a control device that detects gobs from a plurality of images captured by the line sensor camera and detects a delay in feeding the gobs into the rough mold;
    Equipped with
    The gob monitoring device is characterized in that the field of view of the line sensor camera intersects a direction in which the plurality of sections are lined up, and the height of the plurality of sections from the rough mold is constant.
  3.  請求項1または請求項2に記載のゴブ監視装置において、
     前記複数のセクションは、前記セクションごとに前記粗型を複数備え、
     前記ラインセンサカメラは、前記セクションごとの複数の前記粗型に対応する位置に落下する複数のゴブが互いに重ならずに前記複数の画像に撮像される位置に配置されることを特徴とする、ゴブ監視装置。
    In the gob monitoring device according to claim 1 or claim 2,
    The plurality of sections include a plurality of the rough molds for each section,
    The line sensor camera is characterized in that the line sensor camera is arranged at a position where the plurality of gobs falling at positions corresponding to the plurality of rough molds in each section are captured in the plurality of images without overlapping each other. Gob monitoring device.
  4.  請求項1または請求項2に記載のゴブ監視装置において、
     制御装置は、溶融ガラスをシヤーブレードにより切断してから所定時間後に前記ラインセンサカメラによる撮像の開始からゴブの先端を検出するまでの前記画像の数に基づいてゴブが前記粗型に投入される遅れを検出することを特徴とする、ゴブ監視装置。
    In the gob monitoring device according to claim 1 or claim 2,
    The control device inserts the gob into the rough mold based on the number of images from the start of imaging by the line sensor camera to the detection of the tip of the gob after a predetermined time after the molten glass is cut by the shear blade. A gob monitoring device characterized by detecting delays.
  5.  請求項1または請求項2に記載のゴブ監視装置において、
     前記複数のセクションの並ぶ方向の隣に並ぶ他の複数のセクションをさらに含み、
     前記ラインセンサカメラは、第1ラインセンサカメラであり、
     前記他の複数のセクションに対応する位置に落下するゴブを撮像する第2ラインセンサカメラをさらに含み、
     前記制御装置は、前記第2ラインセンサカメラで撮像された複数の画像からゴブを検出し、ゴブが前記他の複数のセクションにおける粗型に投入される遅れを検出することを特徴とする、ゴブ監視装置。
    In the gob monitoring device according to claim 1 or claim 2,
    further including a plurality of other sections arranged next to each other in the direction in which the plurality of sections are arranged,
    The line sensor camera is a first line sensor camera,
    further comprising a second line sensor camera that images the falling gob at positions corresponding to the other plurality of sections,
    The control device detects a gob from a plurality of images taken by the second line sensor camera, and detects a delay in putting the gob into a rough mold in the other plurality of sections. Monitoring equipment.
  6.  スクープで複数のセクションに振り分けられたゴブを粗型に導くデフレクタの出口と前記粗型との間を落下するゴブを撮像するラインセンサカメラの位置調整方法であって、
     撮像対象となるゴブの落下位置である前記デフレクタの直下に同一高さで設置された3つの光源を配置し、
     中央の前記光源が前記ラインセンサカメラの視野の中心で撮像されるように前記ラインセンサカメラの位置を調整した後、両端の前記光源が前記視野内で撮像されるように前記ラインセンサカメラの光軸の周りに前記ラインセンサカメラを回転させて調整することを特徴とする、ラインセンサカメラの位置調整方法。
    A method for adjusting the position of a line sensor camera that images gobs falling between the outlet of a deflector and the rough mold that guide gobs distributed into a plurality of sections by a scoop into a rough mold, the method comprising:
    three light sources installed at the same height directly below the deflector, which is the falling position of the gob to be imaged;
    After adjusting the position of the line sensor camera so that the light source at the center is imaged at the center of the field of view of the line sensor camera, the light source of the line sensor camera is adjusted so that the light sources at both ends are imaged within the field of view. A method for adjusting the position of a line sensor camera, the method comprising adjusting the line sensor camera by rotating it around an axis.
  7.  請求項6に記載のラインセンサカメラの位置調整方法において、
     前記ラインセンサカメラの視野の中心が入る視野を有するエリアセンサカメラが前記ラ
    インセンサカメラと一体に設けられ、中央の前記光源を用いて前記ラインセンサカメラの位置を調整する前に、中央の前記光源が前記エリアセンサカメラの視野に入るように前記ラインセンサカメラ及び前記エリアセンサカメラの位置を調整することを特徴とする、ラインセンサカメラの位置調整方法。
     
    The method for adjusting the position of a line sensor camera according to claim 6,
    An area sensor camera having a field of view that includes the center of the field of view of the line sensor camera is provided integrally with the line sensor camera, and before adjusting the position of the line sensor camera using the central light source, A method for adjusting the position of a line sensor camera, the method comprising adjusting the positions of the line sensor camera and the area sensor camera so that the line sensor camera and the area sensor camera enter the field of view of the area sensor camera.
PCT/JP2023/011466 2022-07-26 2023-03-23 Gob monitoring device and method for adjusting position of line sensor camera WO2024024163A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237027253A KR20240015614A (en) 2022-07-26 2023-03-23 How to adjust the position of Gove monitoring device and line sensor camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-118472 2022-07-26
JP2022118472 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024024163A1 true WO2024024163A1 (en) 2024-02-01

Family

ID=89705863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011466 WO2024024163A1 (en) 2022-07-26 2023-03-23 Gob monitoring device and method for adjusting position of line sensor camera

Country Status (2)

Country Link
KR (1) KR20240015614A (en)
WO (1) WO2024024163A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506364A (en) * 2008-10-21 2012-03-15 セントリュム フォール テクニシェ インフォルマティカ ベー.フェー. Method for filling a mold and system for filling a mold
JP2015189593A (en) * 2014-03-27 2015-11-02 Necエンジニアリング株式会社 glass product manufacturing apparatus and glass product manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676471B2 (en) 1993-06-28 1997-11-17 東洋ガラス株式会社 Gob fall monitoring / alarm system
WO2013014782A1 (en) 2011-07-28 2013-01-31 東洋ガラス株式会社 Method and device for monitoring gob arrival timing in i.s. molding machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506364A (en) * 2008-10-21 2012-03-15 セントリュム フォール テクニシェ インフォルマティカ ベー.フェー. Method for filling a mold and system for filling a mold
JP2015189593A (en) * 2014-03-27 2015-11-02 Necエンジニアリング株式会社 glass product manufacturing apparatus and glass product manufacturing method

Also Published As

Publication number Publication date
KR20240015614A (en) 2024-02-05

Similar Documents

Publication Publication Date Title
JP6675420B2 (en) Laser processing equipment
US9764910B2 (en) Automotive milling machine, as well as method for discharging milled material
CA2636383C (en) A tracking method and a measurement system with laser tracker
EP1503206B1 (en) Systems and methods for identifying foreign objects, debris and defects during fabrication of a composite structure
EP1497069B1 (en) An arrangement for controlling a welding operation ; method of monitoring a welding area and a method of controlling a welding operation using such method
US20170248453A1 (en) Sensor Unit for Measuring the Mass Flow of the Solid Phase of Biogenic Multi-Phase Flows and Fluidic Parameters of the Gaseous Phase
ES2356618T3 (en) METHOD OF CONTROL OF QUALITY FUNDED DROPS OF GLASS AND QUALITY CONTROL DEVICE IN A METHOD OF MOLDING OF GLASS ITEMS.
CN109834385B (en) Laser processing apparatus for warning contamination of protection window in laser processing
JP6554355B2 (en) Belt conveyor monitoring system
PT1692659E (en) Systems and methods for determining defect characteristics of a composite structure
CN101652626A (en) Geometry measurement instrument and method for measuring geometry
US5583337A (en) Apparatus and method for inspecting hot glass containers
KR20200123825A (en) Method and apparatus for measuring tubular strands
CN103350200A (en) Continuous casting billet laser sizing system
WO2024024163A1 (en) Gob monitoring device and method for adjusting position of line sensor camera
JP2006349432A (en) Slider inspection device of pantograph
JP5171849B2 (en) Apparatus for measuring thickness and method therefor
JP6903737B2 (en) Equipment and methods for determining secondary image angle and / or viewing angle
CN101311706A (en) Image checking device and image checking mehtod
EP3081925B1 (en) Optical inspection device
JP2010520060A5 (en)
JP3393056B2 (en) Inspection device for indexable chips
CN105807570A (en) Self-adaptive trench focusing and leveling device and method thereof
KR101446984B1 (en) Apparatus for inspecting defect
EP3627141B1 (en) Sorting machine and method for detecting impurities or unwanted products in a flow of granular products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845903

Country of ref document: EP

Kind code of ref document: A1