WO2024024088A1 - Auxiliary power supply device - Google Patents

Auxiliary power supply device Download PDF

Info

Publication number
WO2024024088A1
WO2024024088A1 PCT/JP2022/029303 JP2022029303W WO2024024088A1 WO 2024024088 A1 WO2024024088 A1 WO 2024024088A1 JP 2022029303 W JP2022029303 W JP 2022029303W WO 2024024088 A1 WO2024024088 A1 WO 2024024088A1
Authority
WO
WIPO (PCT)
Prior art keywords
current value
conductive path
current
power supply
upper limit
Prior art date
Application number
PCT/JP2022/029303
Other languages
French (fr)
Japanese (ja)
Inventor
一輝 増田
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to PCT/JP2022/029303 priority Critical patent/WO2024024088A1/en
Priority to JP2022577247A priority patent/JPWO2024024088A1/ja
Publication of WO2024024088A1 publication Critical patent/WO2024024088A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering

Definitions

  • the present disclosure relates to an auxiliary power supply device.
  • the power supply control device of Patent Document 1 is connected to a power source and is configured to supply power to a plurality of loads through a plurality of electric wires, respectively. Each of the wires has a predetermined upper limit of allowable temperature.
  • the control unit of the power supply control device protects the electric wire by stopping power supply to the load when the temperature of the electric wire is equal to or higher than the upper limit temperature.
  • a configuration can be considered in which charging current is supplied to the power storage element via a branch part, and current is supplied to the load via another branch part.
  • the configuration of the power supply control device of Patent Document 1 is applied to each branch part with such a configuration, the charging time of the power storage element becomes longer by cutting off the charging current to the power storage element. It is difficult to apply the cutoff configuration to loads where it is not desired to cut off the current supply. Therefore, there is a need for a configuration that can control the current flowing through the main body without interrupting the current flowing through the branch portion.
  • the present disclosure discloses that by controlling the charging operation of the charging unit provided in the second conductive path branching from the first conductive path, the current flowing from the power path to the first conductive path can be suppressed to below the upper limit current value. purpose.
  • An auxiliary power supply device includes: An auxiliary power supply device used in a power supply system including a power supply unit, a power path that is a route through which power is supplied from the power supply unit, and a power storage unit, a first conductive path that is electrically connected to the power path and through which a current supplied from the power path flows; a second conductive path and a third conductive path branching from the first conductive path; a charging unit that is provided between the second conductive path and the power storage unit and performs at least a charging operation to supply charging current to the power storage unit based on the power supplied from the second conductive path; a control unit that controls the charging unit; has The control unit causes the charging unit to perform the charging operation so as to suppress a current flowing from the power path into the first conductive path to a maximum current value or less.
  • the technology according to the present disclosure suppresses the current flowing into the first conductive path from the power path to below the upper limit current value by controlling the charging operation of the charging unit provided in the second conductive path branching from the first conductive path. Can be done.
  • FIG. 1 is a block diagram schematically illustrating a power supply system including an auxiliary power supply device according to a first embodiment.
  • FIG. 2 is an explanatory diagram illustrating a state in which current flows from the power supply unit to the power storage unit and the load in the block diagram of FIG. 1.
  • FIG. 3 is an explanatory diagram illustrating changes in each current value with respect to elapsed time in the auxiliary power supply device of the first embodiment.
  • FIG. 4 is an explanatory diagram illustrating changes in each current value with respect to elapsed time in the auxiliary power supply device of the second embodiment.
  • FIG. 5 is a block diagram schematically illustrating a power supply system including the auxiliary power supply device of the third embodiment.
  • FIG. 6 is an explanatory diagram illustrating the cutoff characteristics of the fuse in the power supply system of the fourth embodiment.
  • An auxiliary power supply device used in a power supply system including a power supply unit, a power path that is a path through which power is supplied from the power supply unit, and a power storage unit, a first conductive path that is electrically connected to the power path and through which a current supplied from the power path flows; a second conductive path and a third conductive path branching from the first conductive path; a charging unit that is provided between the second conductive path and the power storage unit and performs at least a charging operation to supply charging current to the power storage unit based on the power supplied from the second conductive path; a control unit that controls the charging unit; has The control unit causes the charging unit to perform the charging operation so as to suppress the current flowing from the power path into the first conductive path to an upper limit current value or less.
  • the auxiliary power supply device includes a power supply unit, a power path that is a path through which power is supplied from the power supply unit, and a power storage unit, a first conductive path that is electrically connected to the power path and through
  • the auxiliary power supply device in [1] above controls the current flowing from the power path into the first conductive path to an upper limit current value by controlling the charging operation of the charging section provided in the second conductive path branching from the first conductive path. It can be kept below. Therefore, the current flowing into the first conductive path can be suppressed below the upper limit current value without controlling the current in the third conductive path branching from the first conductive path.
  • the auxiliary power supply device described in [1] has the following features.
  • the auxiliary power supply device includes a current sensor that detects the current value of the first conductive path.
  • the control unit controls the charging operation of the charging unit based on the detection result of the current sensor so that the current flowing from the power path to the first conductive path is equal to or less than the upper limit current value.
  • the current value of the first conductive path can be directly grasped by the current sensor, and the current flowing into the first conductive path can be set to the upper limit current value by controlling the charging operation of the charging section. It becomes easier to increase the accuracy of keeping the value below.
  • the auxiliary power supply device described in [1] has the following features.
  • the auxiliary power supply device includes a second current sensor that detects a current value of the second conductive path, and one or more third current sensors that are arranged to be able to detect a current flowing from the first conductive path to the third conductive path. and has.
  • the control unit controls the charging unit to control a current flowing from the power path to the first conductive path to be equal to or less than the upper limit current value, based on the detection result of the second current sensor and the detection result of the third current sensor. The above-mentioned charging operation is controlled.
  • the current flowing in the first conductive path is indirectly grasped using the second current sensor provided in the second conductive path and the third current sensor provided in the third conductive path. can do.
  • the auxiliary power supply device has the following features.
  • the control unit adjusts the current value of the second conductive path to the above on condition that the sum of a predetermined target current value smaller than the upper limit current value and the current value of the third conductive path is equal to or less than the upper limit current value.
  • a second control is performed to limit the current value of the second conductive path to a value lower than the target current value while suppressing the current flowing into the first conductive path to below the upper limit current value.
  • the first conductive path in a state where the sum of the predetermined target current value smaller than the upper limit current value and the current value of the third conductive path is equal to or less than the upper limit current value, the first conductive path is connected to the upper limit current value. It is permitted to flow a current of the target current value so as not to exceed the target current value. Therefore, when the conditions for such a state are met, by performing the first control (control that brings the current value of the second conductive path closer to the target current value), the second conductive path is supplied with the desired target current value. Can conduct current.
  • the first conductive path When the sum of the target current value and the current value of the third conductive path exceeds the upper limit current value, it is necessary to reduce the current value of the first conductive path so as not to exceed the upper limit current value. Therefore, by performing second control (control that limits the current value of the second conductive path to a value lower than the target current value and suppresses the current flowing into the first conductive path to below the upper limit current value), the first conductive path The current can be suppressed below the upper limit current value.
  • the auxiliary power supply device has the following features.
  • the control unit changes the current value of the first conductive path to the upper limit current value. Control is performed to increase the target current value so that it approaches the target current value.
  • the current value of the first conductive path is the upper limit.
  • the current value of the first conductive path can be kept below the upper limit current value. Charging current can be increased.
  • the auxiliary power supply device has the following features.
  • the power supply system includes a cutoff section that cuts off energization of the first conductive path when a current value of the power path reaches a cutoff current value.
  • the upper limit current value is less than the breaking current value.
  • the auxiliary power supply device has the following features.
  • the control unit changes the upper limit current value based on the current value of the first conductive path.
  • the auxiliary power supply device described in [7] has the following features.
  • a fuse is provided in the power path.
  • the above-mentioned fuse is based on the cut-off characteristic that determines the allowable time for each current value, and when a current of any value flows for more than the allowable time corresponding to the above-mentioned value in the above-mentioned cut-off characteristic, the above-mentioned first conductive conductor It operates to cut off the electricity to the road.
  • the control unit is configured to control, in the interrupting characteristic, the permissible time corresponding to the elapsed time while a predetermined elapsed time has elapsed since the current value of the first conductive path became a current value equal to or higher than a predetermined lower limit current value.
  • the upper limit current value is made smaller than the corresponding current value.
  • auxiliary power supply device [8] based on the cutoff characteristics of the fuse, when the current value of the first conductive path reaches one of the current values, how long (allowable time) will the current flow at that current value? This makes it possible to determine whether the energization of the first conductive path is interrupted. Therefore, when the current value of the first conductive path becomes a current value equal to or higher than a predetermined lower limit current value that causes the interruption characteristic, the permissible time corresponding to the elapsed time is By making the upper limit current value smaller than the corresponding current value, it is possible to prevent the fuse from interrupting the energization of the first conductive path.
  • the power supply system 10 shown in FIG. 1 includes a power supply section 20, a power path 30, a power storage section 40, loads 51 and 52, and an auxiliary power supply device 60.
  • the power supply system 10 is mounted on, for example, a vehicle.
  • the power supply system 10 is used as a power supply for operating loads 51 and 52 mounted on a vehicle.
  • the power supply unit 20 functions as a main power supply that continuously supplies power to the loads 51 and 52.
  • the power supply unit 20 is a DC power supply that generates a DC voltage.
  • the power supply section 20 is configured by a battery such as a lead battery, for example.
  • a high potential side terminal of the power supply unit 20 is electrically connected to the power path 30, and a low potential side terminal of the power supply unit 20 is electrically connected to ground.
  • the power supply section 20 applies a predetermined voltage to the power path 30.
  • the power path 30 is a path to which power is supplied from the power supply section. Note that in this specification, a voltage is a voltage with respect to ground unless otherwise specified.
  • to be electrically connected desirably refers to a configuration in which they are connected in a mutually conductive state (a state in which current can flow) so that the potentials of both objects to be connected are equalized.
  • the configuration is not limited to this.
  • “to be electrically connected” may refer to a configuration in which both connection objects are connected in a state where they can be electrically conductive, with an electrical component interposed between the two connection objects.
  • a fuse 32 is provided in the power path 30.
  • the fuse 32 corresponds to the "blocking section" of the present disclosure.
  • the fuse 32 cuts off the energization of the first conductive path 61 when the current value of the power path 30 reaches a cutoff current value.
  • the breaking current value is, for example, a fixed value.
  • the loads 51 and 52 are, for example, in-vehicle electrical equipment.
  • the loads 51 and 52 may be actuators such as motors, for example.
  • the loads 51 and 52 may be an ECU or actuator in an electric parking brake system, an ECU or actuator in a shift-by-wire control system, or the like.
  • it may be an in-vehicle electrical device other than these.
  • the power storage unit 40 functions as an auxiliary power source for the loads 51 and 52.
  • Power storage unit 40 is a DC power supply that outputs DC voltage, and is, for example, an electric double layer capacitor. Power storage unit 40 is charged and discharged via charging unit 64, which will be described later.
  • the auxiliary power supply device 60 supplies power supplied from the power supply section 20 to the power storage section 40 and the loads 51 and 52.
  • the auxiliary power supply device 60 includes a first conductive path 61 , a second conductive path 62 , a third conductive path 63 , a charging section 64 , a control section 65 , and a current sensor 66 .
  • One end of the first conductive path 61 is electrically connected to the power path 30.
  • the other end of the first conductive path 61 is electrically connected to the second conductive path 62 and the third conductive path 63.
  • the second conductive path 62 and the third conductive path 63 are branched from the first conductive path 61.
  • One end of the second conductive path 62 is electrically connected to the other end of the first conductive path 61 .
  • the other end of the second conductive path 62 is electrically connected to the charging section 64.
  • the third conductive path 63 includes a power source side conductive path 63A and load side conductive paths 63B and 63C.
  • the load side conductive paths 63B and 63C are branched from the power source side conductive path 63A.
  • One end of the power source side conductive path 63A is electrically connected to the other end of the first conductive path 61.
  • the other end of the power source side conductive path 63A is electrically connected to one end of the load side conductive path 63B and one end of the load side conductive path 63C.
  • the other end of the load-side conductive path 63B is electrically connected to the load 51.
  • a switch element 63D is provided on the load side conductive path 63B.
  • the switch element 63D is composed of a relay switch or a semiconductor switch such as a MOSFET.
  • the switch element 63D is switched by the control unit 65 between an on state in which the load-side conductive path 63B is allowed to be energized and an off state in which the energization is cut off.
  • the other end of the load-side conductive path 63C is electrically connected to the load 52.
  • a switch element 63E is provided on the load side conductive path 63C.
  • the switch element 63E is composed of a relay switch or a semiconductor switch such as a MOSFET.
  • the switch element 63E is switched by the control unit 65 between an on state in which the load-side conductive path 63C is allowed to be energized and an off state in which the energization is cut off.
  • the charging unit 64 is provided between the second conductive path 62 and the power storage unit 40. Charging unit 64 performs charging and discharging operations for power storage unit 40 . Charging unit 64 performs a charging operation of supplying charging current to power storage unit 40 based on the power supplied from second conductive path 62 . Charging section 64 operates under the control of control section 65, which will be described later.
  • the charging unit 64 is configured as, for example, a DCDC converter.
  • the charging unit 64 performs constant current operation and constant voltage operation. In constant current operation, the charging current is output as a target charging current (also referred to as a target current value) through feedback control. In constant voltage operation, the output voltage is output at the target charging voltage by feedback control. In constant voltage operation, the charging current is not necessarily constant.
  • charging section 64 performs a voltage conversion operation of increasing or decreasing the voltage output from power storage section 40 and applying it to second conductive path 62 .
  • the control unit 65 controls the operation of supplying power from the power supply unit 20 to the power storage unit 40 and the loads 51 and 52.
  • the control unit 65 is an information processing device having an information processing function, an arithmetic function, a control function, and the like.
  • the control unit 65 is mainly composed of, for example, a microcomputer, and includes an arithmetic unit such as a CPU (Central Processing Unit), a memory such as a ROM (Read Only Memory) or a RAM (Random Access Memory), an A/D converter, etc. have.
  • the control section 65 has a function of controlling the charging section 64 and the switch elements 63D and 63E.
  • the current sensor 66 detects the current value of the first conductive path 61.
  • the current value detected by the current sensor 66 is a value (specifically, an analog voltage value) that can specify the current value of the first conductive path 61.
  • the current sensor 66 is configured, for example, as a current detection circuit.
  • the first conductive path 61 is electrically connected to the power path 30 and has the same potential as the power path 30 . Accordingly, current sensor 66 may detect current in power path 30 .
  • the auxiliary power supply device 60 When supplying power from the power supply section 20 to the power storage section 40 and the loads 51, 52, the auxiliary power supply device 60 turns on the switch elements 63D, 63E as shown in FIG. A current flows through 63.
  • the current value of the current flowing into the first conductive path 61 from the power supply section 20 is assumed to be Iin.
  • the current flowing from the first conductive path 61 to the second conductive path 62 is assumed to be I2.
  • the current flowing from the first conductive path 61 to the third conductive path 63 is assumed to be I3.
  • the current of the first conductive path 61 is a superimposed current of the second conductive path 62 and the third conductive path 63. That is, Iin is the sum of I2 and I3.
  • the control unit 65 Based on the detection result of the current sensor 66, the control unit 65 causes the charging unit 64 to perform a charging operation so as to suppress the current flowing from the power path 30 into the first conductive path 61 to below the upper limit current value. Specifically, the control unit 65 performs first control and second control described below. The control unit 65 performs first control to bring the current value of the second conductive path 62 closer to the target current value on the condition that the sum of the target current value and the current value of the third conductive path 63 is less than or equal to the upper limit current value. conduct.
  • the target current value is a target current value of the current supplied to power storage unit 40 (current flowing through first conductive path 61). The target current value is smaller than the upper limit current value.
  • the current value I2 of the second conductive path 62 is Charging operation is performed to reach the target current value.
  • the current of the target current value is controlled so that the first conductive path 61 does not exceed the upper limit current value. It is allowed to flow. Therefore, when the conditions for such a state are satisfied, by performing the first control (control for bringing the current value I2 of the second conductive path 62 closer to the target current value), the second conductive path 62 is set to the desired target value. Current can be passed at the current value.
  • the control unit 65 controls the current value I2 of the second conductive path 62.
  • a second control is performed to suppress the current Iin flowing into the first conductive path 61 to below the upper limit current value while limiting the current Iin to a value lower than the target current value. For example, if the sum of the target current value and the current value I3 of the third conductive path 63 exceeds the upper limit current value, for example, as in the time T2 to T3 shown in FIG. 3, I2 is set lower than the target current value. While limiting, Iin is kept below the upper limit current value. Thereby, the current Iin flowing into the first conductive path 61 can be suppressed below the upper limit current value without controlling the current value I3 of the third conductive path 63.
  • the upper limit current value is less than the cutoff current value of the fuse 32, by suppressing the current flowing into the first conductive path 61 below the upper limit current value, it is possible to prevent the fuse 32 from being cut off.
  • the auxiliary power supply device 60 controls the current flowing into the first conductive path 61 from the power path 30 to an upper limit current value by controlling the charging operation of the charging unit 64 provided in the second conductive path 62 branching from the first conductive path 61. It can be kept below. Therefore, the current flowing into the first conductive path 61 can be suppressed below the upper limit current value without controlling the current in the third conductive path 63 branching from the first conductive path 61.
  • the auxiliary power supply device 60 includes a current sensor 66 that detects the current value of the first conductive path 61.
  • the current value of the first conductive path 61 can be directly grasped by the current sensor 66, and the accuracy of suppressing the current flowing into the first conductive path 61 below the upper limit current value is increased by controlling the charging operation of the charging section. It becomes easier to increase.
  • the current of the target current value is controlled so that the first conductive path does not exceed the upper limit current value. It is allowed to flow. Therefore, when the conditions for such a state are satisfied, the auxiliary power supply device 60 performs the first control (control that brings the current value of the second conductive path closer to the target current value) to increase the current value of the second conductive path. Current can be caused to flow at a desired target current value.
  • the auxiliary power supply device 60 performs second control (control that limits the current flowing into the first conductive path to below the upper limit current value while limiting the current value of the second conductive path to a value lower than the target current value). Accordingly, the current in the first conductive path can be suppressed to below the upper limit current value.
  • the upper limit current value of the auxiliary power supply device 60 is less than the cutoff current value, it is possible to prevent the fuse 32 from being cut off by suppressing the current flowing into the first conductive path 61 below the upper limit current value.
  • the power supply system 10 of the second embodiment differs from the first embodiment in the operation of the auxiliary power supply device 60, but is common in other respects. Note that the same components as in the first embodiment are given the same reference numerals, and detailed explanations will be omitted.
  • the auxiliary power supply device 60 turns on switch elements 63D and 63E as shown in FIG. 2 when supplying power from the power supply section 20 to the power storage section 40 and the loads 51 and 52. , current flows through each conductive path 61, 62, 63.
  • the control unit 65 Based on the detection result of the current sensor 66, the control unit 65 causes the charging unit 64 to perform a charging operation so as to suppress the current flowing from the power path 30 into the first conductive path 61 to below the upper limit current value. Specifically, the control unit 65 sets the current value Iin of the first conductive path 61 when the sum of the target current value smaller than the upper limit current value and the current value I3 of the third conductive path 63 is smaller than the upper limit current value. Control is performed to increase the target current value so that it approaches the upper limit current value. When the sum of the target current value and the current value I3 of the third conductive path 63 is smaller than the upper limit current value, for example, as in the time T21 to T22 shown in FIG. 4, the current value Iin of the first conductive path 61 The target current value is increased so that the current value approaches the upper limit current value.
  • the power supply system 210 of the third embodiment includes a second current sensor 266A, a third current sensor 266B, 266C, and a second conductive path 62 and a third conductive path 63 (specifically, load-side conductive paths 63B, 63C), respectively. ) is different from the first embodiment in that the current is detected, but is the same in other respects. Note that the same components as in the first embodiment are given the same reference numerals, and detailed explanations will be omitted.
  • the auxiliary power supply device 260 includes a second current sensor 266A and third current sensors 266B and 266C.
  • the second current sensor 266A and the third current sensors 266B and 266C are configured, for example, as a current detection circuit.
  • the second current sensor 266A detects the current value of the second conductive path 62.
  • the current value detected by the second current sensor 266A is a value (specifically, an analog voltage value) that can specify the current value of the second conductive path 62.
  • the third current sensors 266B and 266C are arranged in the third conductive path 63 so as to be able to detect the current flowing from the first conductive path 61 to the third conductive path 63.
  • the third current sensor 266B detects the current value of the load-side conductive path 63B of the third conductive path 63.
  • the current value detected by the third current sensor 266B is a value (specifically, an analog voltage value) that can specify the current value of the load-side conductive path 63B.
  • the third current sensor 266C detects the current value of the load side conductive path 63C of the third conductive path 63.
  • the current value detected by the third current sensor 266C is a value (specifically, an analog voltage value) that can specify the current value of the load-side conductive path 63C.
  • the auxiliary power supply device 260 performs the same control as in the first embodiment or the same control as in the second embodiment based on the detection results of the second current sensor 266A and the third current sensors 266B and 266C. That is, the auxiliary power supply device 260 causes the charging unit 64 to perform a charging operation so as to suppress the current flowing from the power path 30 into the first conductive path 61 to below the upper limit current value. This produces the same effects as the first embodiment or the second embodiment.
  • the power supply system of the fourth embodiment differs from the first embodiment in the method of setting the upper limit current value, but is the same in other respects. Note that the same components as in the first embodiment are given the same reference numerals, and detailed explanations will be omitted.
  • the control unit 65 changes the upper limit current value based on the current value Iin of the first conductive path 61. By changing the upper limit current value, it becomes easier to appropriately change the state of the current in the first conductive path 61 depending on the loads 51, 52, etc. connected to the third conductive path 63.
  • the fuse 32 disconnects the first conductive path 61 when a current of any value flows for longer than the allowable time associated with any of the values in the interrupting characteristic, based on the interrupting characteristic that determines the allowable time for each current value. It operates to cut off the power supply.
  • the cutoff characteristic determines how much current value continues to flow for how long when the path (power path 30) is cut off. For example, as shown in FIG. 6, the larger the current value flowing through the fuse 32 is, the shorter the allowable time is set.
  • the control unit 65 controls the current value Iin of the first conductive path 61 to correspond to a permissible time corresponding to the elapsed time in the cutoff characteristic while a predetermined elapsed time has elapsed since the current value Iin of the first conductive path 61 became a current value equal to or higher than a predetermined lower limit current value. Control is performed to make the upper limit current value smaller than the current value.
  • the lower limit current value is, for example, the lower limit current value of the current value associated with the allowable time in the interrupting characteristic.
  • the lower limit current value is, for example, a reference value larger than the rated current of the fuse 32.
  • the control unit 65 includes a timer (not shown), and measures the time elapsed since the current value Iin of the first conductive path 61 reaches a predetermined lower limit current value. Assuming that the elapsed time is t1, it can be seen from the interruption characteristics shown in FIG. 6 that the current value (also referred to as fusing current value) corresponding to the allowable time t1 is Ia. Therefore, the upper limit current value is set to the current value Ib smaller than the fusing current value Ia while the elapsed time t1 elapses after the current value Iin of the first conductive path 61 becomes a current value equal to or higher than the lower limit current value. Thereby, it is possible to prevent the fuse 32 from cutting off the electricity to the first conductive path 61 .
  • the third conductive path 63 branches into two and is connected to the loads 51 and 52
  • a configuration in which the third conductive path 63 does not branch and is connected to one load is also possible.
  • the third conductive path 63 may be branched into three or more branches, and a load may be connected to each branch.
  • the third current sensors 266B and 266C are provided in the load side conductive paths 63B and 63C, respectively, but instead of these current sensors, a current sensor is provided in the power source side conductive path 63A. There may be. Even with such a configuration, the value of the current flowing through the third conductive path 63 can be detected, and the value of the current flowing through the first conductive path 61 can be determined together with the value of the current flowing through the second conductive path 62.
  • the control unit 65 sets the current value of the second conductive path 62 to the target current value on the condition that the sum of the target current value and the current value of the third conductive path 63 is equal to or less than the upper limit current value.
  • Control was performed to bring the value closer to the value.
  • the control unit 65 controls the current value Iin of the first conductive path 61 when the sum of the target current value and the current value I3 of the third conductive path 63 is smaller than the upper limit current value. Control may be performed to increase the target current value so that it approaches the upper limit current value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

In the present invention, by controlling the charging operation of a charging unit provided in a second conduction path that branches from a first conduction path, the current that flows from a power path into the first conduction path is kept to an upper limit current value or less. This auxiliary power supply (60) comprises: a first conduction path (61) over which current supplied from a power path (30) flows; a second conduction path (62) and a third conduction path (63) that branch from the first conduction path (61); a charging unit (64) that performs at least the charging operation of supplying a charging current to a power storage unit (40) on the basis of power supplied from the second conduction path (62); and a control unit (65) that controls the charging unit (64). The control unit (65) causes the charging unit (64) to perform the charging operation so as to keep the current that flows into the first conduction path (61) from the power path (30) to the upper limit current value or less.

Description

補助電源装置Auxiliary power supply
 本開示は、補助電源装置に関する。 The present disclosure relates to an auxiliary power supply device.
 1つの電線(基幹部)から分岐する複数の電線(分岐部)があり、分岐部のそれぞれから負荷に電源を供給する構成では、基幹部に各分岐部を流れる電流を重畳した電流が流れることになる。このような構成では、負荷の数や負荷に要求される電流値によっては基幹部の発熱が大きくなり、過熱を抑制するために基幹部の電線径を大きくする必要がある。 In a configuration where there are multiple wires (branch sections) branching from one wire (main section) and power is supplied to the load from each branch section, a current that is a superimposition of the current flowing through each branch section flows through the main section. become. In such a configuration, heat generation in the main body increases depending on the number of loads and the current value required by the loads, and it is necessary to increase the diameter of the electric wire in the main body in order to suppress overheating.
 そこで、特許文献1に開示される電源制御装置のような構成を適用することが考えられる。特許文献1の電源制御装置は、電源に接続され、複数の負荷にそれぞれ複数の電線を介して電力を供給する構成である。電線の各々は、許容される温度の上限が予め定められている。電源制御装置の制御部は、電線の温度が上限温度以上の場合に、負荷への電力供給を停止させて電線を保護する。 Therefore, it is conceivable to apply a configuration like the power supply control device disclosed in Patent Document 1. The power supply control device of Patent Document 1 is connected to a power source and is configured to supply power to a plurality of loads through a plurality of electric wires, respectively. Each of the wires has a predetermined upper limit of allowable temperature. The control unit of the power supply control device protects the electric wire by stopping power supply to the load when the temperature of the electric wire is equal to or higher than the upper limit temperature.
特開2016-12972号公報Japanese Patent Application Publication No. 2016-12972
 例えば、分岐部を介して蓄電素子へ充電電流を供給するとともに、他の分岐部を介して負荷に電流を供給する構成が考えられる。しかしながら、このような構成の各分岐部に、特許文献1の電源制御装置の構成を適用した場合、蓄電素子への充電電流を遮断することで、蓄電素子の充電時間が長くなってしまう。電流供給の遮断が望まれない負荷に対しては、遮断構成の適用が難しい。そこで、分岐部を流れる電流を遮断することなく、基幹部を流れる電流を制御し得る構成が求められている。 For example, a configuration can be considered in which charging current is supplied to the power storage element via a branch part, and current is supplied to the load via another branch part. However, when the configuration of the power supply control device of Patent Document 1 is applied to each branch part with such a configuration, the charging time of the power storage element becomes longer by cutting off the charging current to the power storage element. It is difficult to apply the cutoff configuration to loads where it is not desired to cut off the current supply. Therefore, there is a need for a configuration that can control the current flowing through the main body without interrupting the current flowing through the branch portion.
 本開示は、第1導電路から分岐する第2導電路に設けられる充電部の充電動作を制御することで、電力路から第1導電路に流れ込む電流を上限電流値以下に抑えることができることを目的とする。 The present disclosure discloses that by controlling the charging operation of the charging unit provided in the second conductive path branching from the first conductive path, the current flowing from the power path to the first conductive path can be suppressed to below the upper limit current value. purpose.
 本開示の一つである補助電源装置は、
 電源部と、前記電源部から電力を供給される経路である電力路と、蓄電部と、を有する電源システムに用いられる補助電源装置であって、
 前記電力路に電気的に接続され、前記電力路から供給される電流が流れる第1導電路と、
 前記第1導電路から分岐する第2導電路及び第3導電路と、
 前記第2導電路と前記蓄電部との間に設けられ、前記第2導電路から供給される電力に基づいて前記蓄電部に充電電流を供給する充電動作を少なくとも行う充電部と、
 前記充電部を制御する制御部と、
 を有し、
 前記制御部は、前記電力路から前記第1導電路に流れ込む電流を上限電流値以下に抑えるように前記充電部に前記充電動作を行わせる。
An auxiliary power supply device according to the present disclosure includes:
An auxiliary power supply device used in a power supply system including a power supply unit, a power path that is a route through which power is supplied from the power supply unit, and a power storage unit,
a first conductive path that is electrically connected to the power path and through which a current supplied from the power path flows;
a second conductive path and a third conductive path branching from the first conductive path;
a charging unit that is provided between the second conductive path and the power storage unit and performs at least a charging operation to supply charging current to the power storage unit based on the power supplied from the second conductive path;
a control unit that controls the charging unit;
has
The control unit causes the charging unit to perform the charging operation so as to suppress a current flowing from the power path into the first conductive path to a maximum current value or less.
 本開示に係る技術は、第1導電路から分岐する第2導電路に設けられる充電部の充電動作を制御することで、電力路から第1導電路に流れ込む電流を上限電流値以下に抑えることができる。 The technology according to the present disclosure suppresses the current flowing into the first conductive path from the power path to below the upper limit current value by controlling the charging operation of the charging unit provided in the second conductive path branching from the first conductive path. Can be done.
図1は、第1実施形態の補助電源装置を含む電源システムを概略的に例示するブロック図である。FIG. 1 is a block diagram schematically illustrating a power supply system including an auxiliary power supply device according to a first embodiment. 図2は、図1のブロック図において電源部から蓄電部及び負荷に電流が流れる状態を例示する説明図である。FIG. 2 is an explanatory diagram illustrating a state in which current flows from the power supply unit to the power storage unit and the load in the block diagram of FIG. 1. 図3は、第1実施形態の補助電源装置において、経過時間に対する各電流値の変化を説明する説明図である。FIG. 3 is an explanatory diagram illustrating changes in each current value with respect to elapsed time in the auxiliary power supply device of the first embodiment. 図4は、第2実施形態の補助電源装置において、経過時間に対する各電流値の変化を説明する説明図である。FIG. 4 is an explanatory diagram illustrating changes in each current value with respect to elapsed time in the auxiliary power supply device of the second embodiment. 図5は、第3実施形態の補助電源装置を含む電源システムを概略的に例示するブロック図である。FIG. 5 is a block diagram schematically illustrating a power supply system including the auxiliary power supply device of the third embodiment. 図6は、第4実施形態の電源システムにおけるヒューズの遮断特性を説明する説明図である。FIG. 6 is an explanatory diagram illustrating the cutoff characteristics of the fuse in the power supply system of the fourth embodiment.
 以下では、本開示の実施形態が列記されて例示される。なお、以下で例示される〔1〕~〔8〕の特徴は、矛盾しない範囲でどのように組み合わされてもよい。 Below, embodiments of the present disclosure are listed and illustrated. Note that the features [1] to [8] exemplified below may be combined in any manner as long as there is no contradiction.
 〔1〕電源部と、前記電源部から電力を供給される経路である電力路と、蓄電部と、を有する電源システムに用いられる補助電源装置であって、
 前記電力路に電気的に接続され、前記電力路から供給される電流が流れる第1導電路と、
 前記第1導電路から分岐する第2導電路及び第3導電路と、
 前記第2導電路と前記蓄電部との間に設けられ、前記第2導電路から供給される電力に基づいて前記蓄電部に充電電流を供給する充電動作を少なくとも行う充電部と、
 前記充電部を制御する制御部と、
 を有し、
 前記制御部は、前記電力路から前記第1導電路に流れ込む電流を上限電流値以下に抑えるように前記充電部に前記充電動作を行わせる
 補助電源装置。
[1] An auxiliary power supply device used in a power supply system including a power supply unit, a power path that is a path through which power is supplied from the power supply unit, and a power storage unit,
a first conductive path that is electrically connected to the power path and through which a current supplied from the power path flows;
a second conductive path and a third conductive path branching from the first conductive path;
a charging unit that is provided between the second conductive path and the power storage unit and performs at least a charging operation to supply charging current to the power storage unit based on the power supplied from the second conductive path;
a control unit that controls the charging unit;
has
The control unit causes the charging unit to perform the charging operation so as to suppress the current flowing from the power path into the first conductive path to an upper limit current value or less. The auxiliary power supply device.
 上記の〔1〕の補助電源装置は、第1導電路から分岐する第2導電路に設けられる充電部の充電動作を制御することで、電力路から第1導電路に流れ込む電流を上限電流値以下に抑えることができる。そのため、第1導電路から分岐する第3導電路の電流を制御することなく、第1導電路に流れ込む電流を上限電流値以下に抑えることができる。 The auxiliary power supply device in [1] above controls the current flowing from the power path into the first conductive path to an upper limit current value by controlling the charging operation of the charging section provided in the second conductive path branching from the first conductive path. It can be kept below. Therefore, the current flowing into the first conductive path can be suppressed below the upper limit current value without controlling the current in the third conductive path branching from the first conductive path.
 〔2〕〔1〕に記載の補助電源装置において、以下の特徴を有する。補助電源装置は、上記第1導電路の電流値を検出する電流センサを有する。上記制御部は、上記電流センサの検出結果に基づき、上記電力路から上記第1導電路に流れ込む電流を上記上限電流値以下とするように上記充電部の上記充電動作を制御する。 [2] The auxiliary power supply device described in [1] has the following features. The auxiliary power supply device includes a current sensor that detects the current value of the first conductive path. The control unit controls the charging operation of the charging unit based on the detection result of the current sensor so that the current flowing from the power path to the first conductive path is equal to or less than the upper limit current value.
 上記の〔2〕の補助電源装置では、電流センサによって第1導電路の電流値を直接的に把握することができ、充電部の充電動作の制御により第1導電路に流れ込む電流を上限電流値以下に抑える精度を高め易くなる。 In the above auxiliary power supply device [2], the current value of the first conductive path can be directly grasped by the current sensor, and the current flowing into the first conductive path can be set to the upper limit current value by controlling the charging operation of the charging section. It becomes easier to increase the accuracy of keeping the value below.
 〔3〕〔1〕に記載の補助電源装置において、以下の特徴を有する。補助電源装置は、上記第2導電路の電流値を検出する第2電流センサと、上記第1導電路から上記第3導電路に流れ込む電流を検出可能に配置された1以上の第3電流センサと、を有する。上記制御部は、上記第2電流センサの検出結果及び上記第3電流センサの検出結果に基づき、上記電力路から上記第1導電路に流れ込む電流を上記上限電流値以下とするように上記充電部の上記充電動作を制御する。 [3] The auxiliary power supply device described in [1] has the following features. The auxiliary power supply device includes a second current sensor that detects a current value of the second conductive path, and one or more third current sensors that are arranged to be able to detect a current flowing from the first conductive path to the third conductive path. and has. The control unit controls the charging unit to control a current flowing from the power path to the first conductive path to be equal to or less than the upper limit current value, based on the detection result of the second current sensor and the detection result of the third current sensor. The above-mentioned charging operation is controlled.
 上記の〔3〕の補助電源装置では、第2導電路に設けられる第2電流センサ、及び第3導電路に設けられる第3電流センサを用いて第1導電路に流れる電流を間接的に把握することができる。 In the auxiliary power supply device of [3] above, the current flowing in the first conductive path is indirectly grasped using the second current sensor provided in the second conductive path and the third current sensor provided in the third conductive path. can do.
 〔4〕〔1〕から〔3〕のいずれかに記載の補助電源装置において、以下の特徴を有する。上記制御部は、上記上限電流値より小さい所定の目標電流値と上記第3導電路の電流値との和が上記上限電流値以下であることを条件として上記第2導電路の電流値を上記目標電流値に近づける第1制御を行い、上記目標電流値と上記第3導電路の電流値との和が上記上限電流値を超える状態で上記充電部に上記充電動作を行わせる場合は上記第2導電路の電流値を上記目標電流値よりも低い値に制限しつつ上記第1導電路に流れ込む電流を上記上限電流値以下に抑える第2制御を行う。 [4] The auxiliary power supply device according to any one of [1] to [3] has the following features. The control unit adjusts the current value of the second conductive path to the above on condition that the sum of a predetermined target current value smaller than the upper limit current value and the current value of the third conductive path is equal to or less than the upper limit current value. When performing the first control to approach the target current value and causing the charging unit to perform the charging operation in a state where the sum of the target current value and the current value of the third conductive path exceeds the upper limit current value, A second control is performed to limit the current value of the second conductive path to a value lower than the target current value while suppressing the current flowing into the first conductive path to below the upper limit current value.
 上記の〔4〕の補助電源装置では、上限電流値より小さい所定の目標電流値と第3導電路の電流値との和が上限電流値以下となる状態では、第1導電路が上限電流値以上とならないように目標電流値の電流を流すことが許容される。そのため、このような状態となる条件が満たされる場合に、第1制御(第2導電路の電流値を目標電流値に近づける制御)を行うことで、第2導電路に所望の目標電流値で電流を流すことができる。目標電流値と第3導電路の電流値との和が上限電流値を超える場合には、上限電流値を超えないように第1導電路の電流値を低減する必要がある。そこで、第2制御(第2導電路の電流値を目標電流値よりも低い値に制限しつつ第1導電路に流れ込む電流を上限電流値以下に抑える制御)を行うことで、第1導電路の電流を上限電流値以下に抑えることができる。 In the above auxiliary power supply device [4], in a state where the sum of the predetermined target current value smaller than the upper limit current value and the current value of the third conductive path is equal to or less than the upper limit current value, the first conductive path is connected to the upper limit current value. It is permitted to flow a current of the target current value so as not to exceed the target current value. Therefore, when the conditions for such a state are met, by performing the first control (control that brings the current value of the second conductive path closer to the target current value), the second conductive path is supplied with the desired target current value. Can conduct current. When the sum of the target current value and the current value of the third conductive path exceeds the upper limit current value, it is necessary to reduce the current value of the first conductive path so as not to exceed the upper limit current value. Therefore, by performing second control (control that limits the current value of the second conductive path to a value lower than the target current value and suppresses the current flowing into the first conductive path to below the upper limit current value), the first conductive path The current can be suppressed below the upper limit current value.
 〔5〕〔1〕から〔4〕のいずれかに記載の補助電源装置において、以下の特徴を有する。上記制御部は、上記上限電流値より小さい所定の目標電流値と上記第3導電路の電流値との和が上記上限電流値より小さい場合に、上記第1導電路の電流値を上記上限電流値に近づけるように上記目標電流値を大きくする制御を行う。 [5] The auxiliary power supply device according to any one of [1] to [4] has the following features. When the sum of a predetermined target current value smaller than the upper limit current value and the current value of the third conductive path is smaller than the upper limit current value, the control unit changes the current value of the first conductive path to the upper limit current value. Control is performed to increase the target current value so that it approaches the target current value.
 上記の〔5〕の補助電源装置では、上限電流値より小さい所定の目標電流値と第3導電路の電流値との和が上限電流値より小さい状態では、第1導電路の電流値が上限電流値以上にならない範囲で目標電流値を大きくする余地がある。そこで、このような場合に、第2導電路の電流値を目標電流値に近づけるように目標電流値を大きくする制御を行うことで、第1導電路の電流値を上限電流値以下に抑えつつ充電電流を大きくすることができる。 In the above auxiliary power supply device [5], when the sum of the predetermined target current value that is smaller than the upper limit current value and the current value of the third conductive path is smaller than the upper limit current value, the current value of the first conductive path is the upper limit. There is room to increase the target current value within a range that does not exceed the current value. Therefore, in such a case, by performing control to increase the target current value so that the current value of the second conductive path approaches the target current value, the current value of the first conductive path can be kept below the upper limit current value. Charging current can be increased.
 〔6〕〔1〕から〔5〕のいずれかに記載の補助電源装置において、以下の特徴を有する。上記電源システムは、上記電力路の電流値が遮断電流値に達した場合に上記第1導電路の通電を遮断する遮断部を有するものである。上記上限電流値は、上記遮断電流値未満である。 [6] The auxiliary power supply device according to any one of [1] to [5] has the following features. The power supply system includes a cutoff section that cuts off energization of the first conductive path when a current value of the power path reaches a cutoff current value. The upper limit current value is less than the breaking current value.
 上記の〔6〕の補助電源装置では、上限電流値が遮断電流値未満であるため、第1導電路に流れ込む電流を上限電流値以下に抑えることで遮断部を遮断させないようにすることができる。 In the above auxiliary power supply device [6], since the upper limit current value is less than the cutoff current value, it is possible to prevent the cutoff part from being cut off by suppressing the current flowing into the first conductive path below the upper limit current value. .
 〔7〕〔1〕から〔5〕のいずれかに記載の補助電源装置において、以下の特徴を有する。上記制御部は、上記第1導電路の電流値に基づいて上記上限電流値を変化させる。 [7] The auxiliary power supply device according to any one of [1] to [5] has the following features. The control unit changes the upper limit current value based on the current value of the first conductive path.
 上記の〔7〕の補助電源装置では、上限電流値を変化させることで、第3導電路に接続される負荷などに応じて第1導電路の電流の状態を適切に変化させ易くなる。 In the auxiliary power supply device of [7] above, by changing the upper limit current value, it becomes easier to appropriately change the state of the current in the first conductive path depending on the load connected to the third conductive path.
 〔8〕〔7〕に記載の補助電源装置において、以下の特徴を有する。上記電源システムは、上記電力路にヒューズが設けられるものである。上記ヒューズは、電流値毎に許容時間を定めた遮断特性に基づき、いずれかの値の電流が上記遮断特性において当該いずれかの値に対応付けられた許容時間以上流れた場合に上記第1導電路の通電を遮断するように動作する。上記制御部は、上記第1導電路の電流値が所定の下限電流値以上の電流値となってから所定の経過時間が経過する間、上記遮断特性において上記経過時間に相当する上記許容時間に対応する電流値よりも上記上限電流値を小さくする。 [8] The auxiliary power supply device described in [7] has the following features. In the power supply system, a fuse is provided in the power path. The above-mentioned fuse is based on the cut-off characteristic that determines the allowable time for each current value, and when a current of any value flows for more than the allowable time corresponding to the above-mentioned value in the above-mentioned cut-off characteristic, the above-mentioned first conductive conductor It operates to cut off the electricity to the road. The control unit is configured to control, in the interrupting characteristic, the permissible time corresponding to the elapsed time while a predetermined elapsed time has elapsed since the current value of the first conductive path became a current value equal to or higher than a predetermined lower limit current value. The upper limit current value is made smaller than the corresponding current value.
 上記の〔8〕の補助電源装置では、ヒューズの遮断特性に基づいて、第1導電路の電流値がいずれかの電流値となった場合にその電流値でどの程度の時間(許容時間)流れることで第1導電路の通電が遮断されるか把握することができる。そのため、第1導電路の電流値が、遮断特性が生じるような所定の下限電流値以上の電流値となった場合に、所定の経過時間が経過する間、その経過時間に相当する許容時間に対応する電流値よりも上限電流値を小さくすることで、ヒューズにより第1導電路の通電を遮断させないようにすることができる。 In the above auxiliary power supply device [8], based on the cutoff characteristics of the fuse, when the current value of the first conductive path reaches one of the current values, how long (allowable time) will the current flow at that current value? This makes it possible to determine whether the energization of the first conductive path is interrupted. Therefore, when the current value of the first conductive path becomes a current value equal to or higher than a predetermined lower limit current value that causes the interruption characteristic, the permissible time corresponding to the elapsed time is By making the upper limit current value smaller than the corresponding current value, it is possible to prevent the fuse from interrupting the energization of the first conductive path.
 <第1実施形態>
〔電源システムの構成〕
 図1に示される電源システム10は、電源部20と、電力路30と、蓄電部40と、負荷51,52と、補助電源装置60と、を備えている。電源システム10は、例えば車両に搭載される。電源システム10は、車両に搭載された負荷51,52を動作させるための電源として使用される。
<First embodiment>
[Power system configuration]
The power supply system 10 shown in FIG. 1 includes a power supply section 20, a power path 30, a power storage section 40, loads 51 and 52, and an auxiliary power supply device 60. The power supply system 10 is mounted on, for example, a vehicle. The power supply system 10 is used as a power supply for operating loads 51 and 52 mounted on a vehicle.
 電源部20は、負荷51,52に継続的に電力を供給する主電源として機能する。電源部20は、直流電圧を生じる直流電源である。電源部20は、例えば鉛バッテリなどのバッテリによって構成される。電源部20の高電位側の端子は、電力路30に電気的に接続され、電源部20の低電位側の端子はグラウンドに電気的に接続されている。電源部20は、電力路30に対して所定電圧を印加する。電力路30は、電源部から電力を供給される経路である。なお、本明細書において、電圧とは、特に限定がない限り、グラウンドを基準とする電圧である。 The power supply unit 20 functions as a main power supply that continuously supplies power to the loads 51 and 52. The power supply unit 20 is a DC power supply that generates a DC voltage. The power supply section 20 is configured by a battery such as a lead battery, for example. A high potential side terminal of the power supply unit 20 is electrically connected to the power path 30, and a low potential side terminal of the power supply unit 20 is electrically connected to ground. The power supply section 20 applies a predetermined voltage to the power path 30. The power path 30 is a path to which power is supplied from the power supply section. Note that in this specification, a voltage is a voltage with respect to ground unless otherwise specified.
 本開示において、「電気的に接続される」とは、接続対象の両方の電位が等しくなるように互いに導通した状態(電流を流せる状態)で接続される構成であることが望ましい。ただし、この構成に限定されない。例えば、「電気的に接続される」とは、両接続対象の間に電気部品が介在しつつ両接続対象が導通し得る状態で接続された構成であってもよい。 In the present disclosure, "to be electrically connected" desirably refers to a configuration in which they are connected in a mutually conductive state (a state in which current can flow) so that the potentials of both objects to be connected are equalized. However, the configuration is not limited to this. For example, "to be electrically connected" may refer to a configuration in which both connection objects are connected in a state where they can be electrically conductive, with an electrical component interposed between the two connection objects.
 電力路30には、ヒューズ32が設けられている。ヒューズ32は、本開示の「遮断部」に相当する。ヒューズ32は、電力路30の電流値が遮断電流値に達した場合に第1導電路61の通電を遮断する。遮断電流値は、例えば固定値である。 A fuse 32 is provided in the power path 30. The fuse 32 corresponds to the "blocking section" of the present disclosure. The fuse 32 cuts off the energization of the first conductive path 61 when the current value of the power path 30 reaches a cutoff current value. The breaking current value is, for example, a fixed value.
 負荷51,52は、例えば車載用の電気機器である。負荷51,52は、例えばモータなどのアクチュエータであってもよい。或いは、負荷51,52は、電動パーキングブレーキシステムにおけるECUやアクチュエータ、シフトバイワイヤ制御システムにおけるECUやアクチュエータなどであってもよい。或いは、これら以外の車載用の電気機器であってもよい。 The loads 51 and 52 are, for example, in-vehicle electrical equipment. The loads 51 and 52 may be actuators such as motors, for example. Alternatively, the loads 51 and 52 may be an ECU or actuator in an electric parking brake system, an ECU or actuator in a shift-by-wire control system, or the like. Alternatively, it may be an in-vehicle electrical device other than these.
 蓄電部40は、負荷51,52に対する補助電源として機能する。蓄電部40は、直流電圧を出力する直流電源であり、例えば電気二重層キャパシタである。蓄電部40は、後述する充電部64を介して充電及び放電がなされる。 The power storage unit 40 functions as an auxiliary power source for the loads 51 and 52. Power storage unit 40 is a DC power supply that outputs DC voltage, and is, for example, an electric double layer capacitor. Power storage unit 40 is charged and discharged via charging unit 64, which will be described later.
 補助電源装置60は、電源部20から供給される電力を蓄電部40及び負荷51,52に供給する。補助電源装置60は、第1導電路61と、第2導電路62と、第3導電路63と、充電部64と、制御部65と、電流センサ66と、を有している。 The auxiliary power supply device 60 supplies power supplied from the power supply section 20 to the power storage section 40 and the loads 51 and 52. The auxiliary power supply device 60 includes a first conductive path 61 , a second conductive path 62 , a third conductive path 63 , a charging section 64 , a control section 65 , and a current sensor 66 .
 第1導電路61は、電力路30から供給される電流が流れる。第1導電路61の一端は、電力路30に電気的に接続されている。第1導電路61の他端は、第2導電路62及び第3導電路63に電気的に接続されている。 A current supplied from the power path 30 flows through the first conductive path 61. One end of the first conductive path 61 is electrically connected to the power path 30. The other end of the first conductive path 61 is electrically connected to the second conductive path 62 and the third conductive path 63.
 第2導電路62及び第3導電路63は、第1導電路61から分岐している。第2導電路62の一端は、第1導電路61の他端に電気的に接続されている。第2導電路62の他端は、充電部64に電気的に接続されている。 The second conductive path 62 and the third conductive path 63 are branched from the first conductive path 61. One end of the second conductive path 62 is electrically connected to the other end of the first conductive path 61 . The other end of the second conductive path 62 is electrically connected to the charging section 64.
 第3導電路63は、電源部側導電路63Aと、負荷側導電路63B,63Cと、を具備している。負荷側導電路63B,63Cは、電源部側導電路63Aから分岐している。電源部側導電路63Aの一端は、第1導電路61の他端に電気的に接続されている。電源部側導電路63Aの他端は、負荷側導電路63Bの一端及び負荷側導電路63Cの一端に電気的に接続されている。 The third conductive path 63 includes a power source side conductive path 63A and load side conductive paths 63B and 63C. The load side conductive paths 63B and 63C are branched from the power source side conductive path 63A. One end of the power source side conductive path 63A is electrically connected to the other end of the first conductive path 61. The other end of the power source side conductive path 63A is electrically connected to one end of the load side conductive path 63B and one end of the load side conductive path 63C.
 負荷側導電路63Bの他端は、負荷51に電気的に接続されている。負荷側導電路63Bには、スイッチ素子63Dが設けられている。スイッチ素子63Dは、リレースイッチや、MOSFET等の半導体スイッチで構成されている。スイッチ素子63Dは、制御部65によって負荷側導電路63Bの通電を許可するオン状態と、通電を遮断するオフ状態とに切り替えられる。 The other end of the load-side conductive path 63B is electrically connected to the load 51. A switch element 63D is provided on the load side conductive path 63B. The switch element 63D is composed of a relay switch or a semiconductor switch such as a MOSFET. The switch element 63D is switched by the control unit 65 between an on state in which the load-side conductive path 63B is allowed to be energized and an off state in which the energization is cut off.
 負荷側導電路63Cの他端は、負荷52に電気的に接続されている。負荷側導電路63Cには、スイッチ素子63Eが設けられている。スイッチ素子63Eは、リレースイッチや、MOSFET等の半導体スイッチで構成されている。スイッチ素子63Eは、制御部65によって負荷側導電路63Cの通電を許可するオン状態と、通電を遮断するオフ状態とに切り替えられる。 The other end of the load-side conductive path 63C is electrically connected to the load 52. A switch element 63E is provided on the load side conductive path 63C. The switch element 63E is composed of a relay switch or a semiconductor switch such as a MOSFET. The switch element 63E is switched by the control unit 65 between an on state in which the load-side conductive path 63C is allowed to be energized and an off state in which the energization is cut off.
 充電部64は、第2導電路62と蓄電部40との間に設けられている。充電部64は、蓄電部40に対する充電動作及び放電動作を行う。充電部64は、第2導電路62から供給される電力に基づいて蓄電部40に充電電流を供給する充電動作を行う。充電部64は、後述する制御部65の制御に基づいて動作する。充電部64は、例えばDCDCコンバータとして構成される。充電部64は、定電流動作や定電圧動作を行う。定電流動作では、フィードバック制御により充電電流を目標充電電流(目標電流値ともいう)で出力する。定電圧動作では、フィードバック制御により出力電圧を目標充電電圧で出力する。定電圧動作では、充電電流が一定とは限らない。充電部64は、放電動作として、蓄電部40から出力される電圧を昇圧又は降圧して第2導電路62に印加する電圧変換動作を行う。 The charging unit 64 is provided between the second conductive path 62 and the power storage unit 40. Charging unit 64 performs charging and discharging operations for power storage unit 40 . Charging unit 64 performs a charging operation of supplying charging current to power storage unit 40 based on the power supplied from second conductive path 62 . Charging section 64 operates under the control of control section 65, which will be described later. The charging unit 64 is configured as, for example, a DCDC converter. The charging unit 64 performs constant current operation and constant voltage operation. In constant current operation, the charging current is output as a target charging current (also referred to as a target current value) through feedback control. In constant voltage operation, the output voltage is output at the target charging voltage by feedback control. In constant voltage operation, the charging current is not necessarily constant. As a discharging operation, charging section 64 performs a voltage conversion operation of increasing or decreasing the voltage output from power storage section 40 and applying it to second conductive path 62 .
 制御部65は、電源部20から蓄電部40及び負荷51,52に電力を供給する動作を制御する。制御部65は、情報処理機能、演算機能、制御機能などを有する情報処理装置である。制御部65は、例えばマイクロコンピュータを主体として構成されており、CPU(Central Processing Unit)などの演算装置、ROM(Read Only Memory)又はRAM(Random Access Memory)などのメモリ、A/D変換器等を有している。制御部65は、充電部64及びスイッチ素子63D,63Eを制御する機能を有する。 The control unit 65 controls the operation of supplying power from the power supply unit 20 to the power storage unit 40 and the loads 51 and 52. The control unit 65 is an information processing device having an information processing function, an arithmetic function, a control function, and the like. The control unit 65 is mainly composed of, for example, a microcomputer, and includes an arithmetic unit such as a CPU (Central Processing Unit), a memory such as a ROM (Read Only Memory) or a RAM (Random Access Memory), an A/D converter, etc. have. The control section 65 has a function of controlling the charging section 64 and the switch elements 63D and 63E.
 電流センサ66は、第1導電路61の電流値を検出する。電流センサ66が検出する電流値は、第1導電路61の電流値を特定できる値(具体的にはアナログ電圧値)である。電流センサ66は、例えば電流検出回路として構成されている。第1導電路61は、電力路30に電気的に接続され、電力路30と同電位とされる導電路である。従って、電流センサ66は、電力路30の電流を検出し得る。 The current sensor 66 detects the current value of the first conductive path 61. The current value detected by the current sensor 66 is a value (specifically, an analog voltage value) that can specify the current value of the first conductive path 61. The current sensor 66 is configured, for example, as a current detection circuit. The first conductive path 61 is electrically connected to the power path 30 and has the same potential as the power path 30 . Accordingly, current sensor 66 may detect current in power path 30 .
〔補助電源装置の動作〕
 補助電源装置60は、電源部20から蓄電部40及び負荷51,52に電力を供給する場合に、図2に示すように、スイッチ素子63D,63Eをオン状態とし、各導電路61,62,63に電流が流れる。電源部20から第1導電路61に流れ込む電流の電流値をIinとする。第1導電路61から第2導電路62に流れ込む電流をI2とする。第1導電路61から第3導電路63に流れ込む電流をI3とする。第1導電路61の電流は、第2導電路62と第3導電路63とを重畳したものとなる。すなわち、Iinは、I2とI3を足し合わせた値となる。
[Auxiliary power supply operation]
When supplying power from the power supply section 20 to the power storage section 40 and the loads 51, 52, the auxiliary power supply device 60 turns on the switch elements 63D, 63E as shown in FIG. A current flows through 63. The current value of the current flowing into the first conductive path 61 from the power supply section 20 is assumed to be Iin. The current flowing from the first conductive path 61 to the second conductive path 62 is assumed to be I2. The current flowing from the first conductive path 61 to the third conductive path 63 is assumed to be I3. The current of the first conductive path 61 is a superimposed current of the second conductive path 62 and the third conductive path 63. That is, Iin is the sum of I2 and I3.
 制御部65は、電流センサ66の検出結果に基づき、電力路30から第1導電路61に流れ込む電流を上限電流値以下に抑えるように充電部64に充電動作を行わせる。具体的には、制御部65は、以下で説明する第1制御及び第2制御を行う。制御部65は、目標電流値と第3導電路63の電流値との和が上限電流値以下であることを条件として、第2導電路62の電流値を目標電流値に近づける第1制御を行う。目標電流値は、蓄電部40に供給される電流(第1導電路61を流れる電流)の目標電流値である。目標電流値は、上限電流値より小さい。目標電流値と第3導電路63の電流値I3との和が上限電流値以下である状態の場合、例えば、図3に示す時間T1~T2のように第2導電路62の電流値I2が目標電流値となるように充電動作を行う。 Based on the detection result of the current sensor 66, the control unit 65 causes the charging unit 64 to perform a charging operation so as to suppress the current flowing from the power path 30 into the first conductive path 61 to below the upper limit current value. Specifically, the control unit 65 performs first control and second control described below. The control unit 65 performs first control to bring the current value of the second conductive path 62 closer to the target current value on the condition that the sum of the target current value and the current value of the third conductive path 63 is less than or equal to the upper limit current value. conduct. The target current value is a target current value of the current supplied to power storage unit 40 (current flowing through first conductive path 61). The target current value is smaller than the upper limit current value. When the sum of the target current value and the current value I3 of the third conductive path 63 is less than or equal to the upper limit current value, for example, the current value I2 of the second conductive path 62 is Charging operation is performed to reach the target current value.
 上限電流値より小さい目標電流値と第3導電路の電流値I3との和が上限電流値以下となる状態では、第1導電路61が上限電流値以上とならないように目標電流値の電流を流すことが許容される。そのため、このような状態となる条件が満たされる場合に、第1制御(第2導電路62の電流値I2を目標電流値に近づける制御)を行うことで、第2導電路62に所望の目標電流値で電流を流すことができる。 In a state where the sum of the target current value smaller than the upper limit current value and the current value I3 of the third conductive path is less than the upper limit current value, the current of the target current value is controlled so that the first conductive path 61 does not exceed the upper limit current value. It is allowed to flow. Therefore, when the conditions for such a state are satisfied, by performing the first control (control for bringing the current value I2 of the second conductive path 62 closer to the target current value), the second conductive path 62 is set to the desired target value. Current can be passed at the current value.
 制御部65は、目標電流値と第3導電路63の電流値I3との和が上限電流値を超える状態で充電部64に充電動作を行わせる場合、第2導電路62の電流値I2を目標電流値よりも低い値に制限しつつ、第1導電路61に流れ込む電流Iinを上限電流値以下に抑える第2制御を行う。例えば、目標電流値と第3導電路63の電流値I3との和が上限電流値を超える状態の場合、例えば、図3に示す時間T2~T3のように、I2を目標電流値よりも低く制限しつつ、Iinを上限電流値以下に抑えている。これにより、第3導電路63の電流値I3を制御することなく、第1導電路61に流れ込む電流Iinを上限電流値以下に抑えることができる。 When the control unit 65 causes the charging unit 64 to perform a charging operation in a state where the sum of the target current value and the current value I3 of the third conductive path 63 exceeds the upper limit current value, the control unit 65 controls the current value I2 of the second conductive path 62. A second control is performed to suppress the current Iin flowing into the first conductive path 61 to below the upper limit current value while limiting the current Iin to a value lower than the target current value. For example, if the sum of the target current value and the current value I3 of the third conductive path 63 exceeds the upper limit current value, for example, as in the time T2 to T3 shown in FIG. 3, I2 is set lower than the target current value. While limiting, Iin is kept below the upper limit current value. Thereby, the current Iin flowing into the first conductive path 61 can be suppressed below the upper limit current value without controlling the current value I3 of the third conductive path 63.
 上限電流値がヒューズ32の遮断電流値未満であるため、第1導電路61に流れ込む電流を上限電流値以下に抑えることで、ヒューズ32を遮断させないようにすることができる。第3導電路63の電流を制御することなく、第1導電路61に流れ込む電流を上限電流値以下に抑えることで、第3導電路63の通電を遮断する必要もなく、第3導電路63の電力供給を継続して負荷51,52の動作を継続させることができる。 Since the upper limit current value is less than the cutoff current value of the fuse 32, by suppressing the current flowing into the first conductive path 61 below the upper limit current value, it is possible to prevent the fuse 32 from being cut off. By suppressing the current flowing into the first conductive path 61 below the upper limit current value without controlling the current in the third conductive path 63, there is no need to cut off the current flow to the third conductive path 63, and the third conductive path 63 It is possible to continue the operation of the loads 51 and 52 by continuing the power supply.
 次の説明は、本構成の効果の一例に関する。
 補助電源装置60は、第1導電路61から分岐する第2導電路62に設けられる充電部64の充電動作を制御することで、電力路30から第1導電路61に流れ込む電流を上限電流値以下に抑えることができる。そのため、第1導電路61から分岐する第3導電路63の電流を制御することなく、第1導電路61に流れ込む電流を上限電流値以下に抑えることができる。
The following description relates to an example of the effect of this configuration.
The auxiliary power supply device 60 controls the current flowing into the first conductive path 61 from the power path 30 to an upper limit current value by controlling the charging operation of the charging unit 64 provided in the second conductive path 62 branching from the first conductive path 61. It can be kept below. Therefore, the current flowing into the first conductive path 61 can be suppressed below the upper limit current value without controlling the current in the third conductive path 63 branching from the first conductive path 61.
 更に、補助電源装置60は、第1導電路61の電流値を検出する電流センサ66を有する。これにより、電流センサ66によって第1導電路61の電流値を直接的に把握することができ、充電部の充電動作の制御により第1導電路61に流れ込む電流を上限電流値以下に抑える精度を高め易くなる。 Furthermore, the auxiliary power supply device 60 includes a current sensor 66 that detects the current value of the first conductive path 61. As a result, the current value of the first conductive path 61 can be directly grasped by the current sensor 66, and the accuracy of suppressing the current flowing into the first conductive path 61 below the upper limit current value is increased by controlling the charging operation of the charging section. It becomes easier to increase.
 上限電流値より小さい所定の目標電流値と第3導電路の電流値との和が上限電流値以下となる状態では、第1導電路が上限電流値以上とならないように目標電流値の電流を流すことが許容される。そのため、補助電源装置60は、このような状態となる条件が満たされる場合に、第1制御(第2導電路の電流値を目標電流値に近づける制御)を行うことで、第2導電路に所望の目標電流値で電流を流すことができる。目標電流値と第3導電路の電流値との和が上限電流値を超える場合には、上限電流値を超えないように第1導電路の電流値を低減する必要がある。そこで、補助電源装置60は、第2制御(第2導電路の電流値を目標電流値よりも低い値に制限しつつ第1導電路に流れ込む電流を上限電流値以下に抑える制御)を行うことで、第1導電路の電流を上限電流値以下に抑えることができる。 In a state where the sum of a predetermined target current value smaller than the upper limit current value and the current value of the third conductive path is less than the upper limit current value, the current of the target current value is controlled so that the first conductive path does not exceed the upper limit current value. It is allowed to flow. Therefore, when the conditions for such a state are satisfied, the auxiliary power supply device 60 performs the first control (control that brings the current value of the second conductive path closer to the target current value) to increase the current value of the second conductive path. Current can be caused to flow at a desired target current value. When the sum of the target current value and the current value of the third conductive path exceeds the upper limit current value, it is necessary to reduce the current value of the first conductive path so as not to exceed the upper limit current value. Therefore, the auxiliary power supply device 60 performs second control (control that limits the current flowing into the first conductive path to below the upper limit current value while limiting the current value of the second conductive path to a value lower than the target current value). Accordingly, the current in the first conductive path can be suppressed to below the upper limit current value.
 更に、補助電源装置60は、上限電流値が遮断電流値未満であるため、第1導電路61に流れ込む電流を上限電流値以下に抑えることでヒューズ32を遮断させないようにすることができる。 Further, since the upper limit current value of the auxiliary power supply device 60 is less than the cutoff current value, it is possible to prevent the fuse 32 from being cut off by suppressing the current flowing into the first conductive path 61 below the upper limit current value.
 <第2実施形態>
 第2実施形態の電源システム10は、補助電源装置60の動作の点で第1実施形態と異なり、その他の点では共通する。なお、第1実施形態と同一の構成については同一の符号を付し、詳しい説明を省略する。
<Second embodiment>
The power supply system 10 of the second embodiment differs from the first embodiment in the operation of the auxiliary power supply device 60, but is common in other respects. Note that the same components as in the first embodiment are given the same reference numerals, and detailed explanations will be omitted.
 補助電源装置60は、第1実施形態と同様に、電源部20から蓄電部40及び負荷51,52に電力を供給する場合に、図2に示すように、スイッチ素子63D,63Eをオン状態とし、各導電路61,62,63に電流が流れる。 Similar to the first embodiment, the auxiliary power supply device 60 turns on switch elements 63D and 63E as shown in FIG. 2 when supplying power from the power supply section 20 to the power storage section 40 and the loads 51 and 52. , current flows through each conductive path 61, 62, 63.
 制御部65は、電流センサ66の検出結果に基づき、電力路30から第1導電路61に流れ込む電流を上限電流値以下に抑えるように充電部64に充電動作を行わせる。具体的には、制御部65は、上限電流値より小さい目標電流値と第3導電路63の電流値I3との和が上限電流値より小さい場合に、第1導電路61の電流値Iinを上限電流値に近づけるように目標電流値を大きくする制御を行う。目標電流値と第3導電路63の電流値I3との和が上限電流値より小さい状態となる場合、例えば、図4に示す時間T21~T22のように、第1導電路61の電流値Iinを上限電流値に近づけるように目標電流値を大きくしている。 Based on the detection result of the current sensor 66, the control unit 65 causes the charging unit 64 to perform a charging operation so as to suppress the current flowing from the power path 30 into the first conductive path 61 to below the upper limit current value. Specifically, the control unit 65 sets the current value Iin of the first conductive path 61 when the sum of the target current value smaller than the upper limit current value and the current value I3 of the third conductive path 63 is smaller than the upper limit current value. Control is performed to increase the target current value so that it approaches the upper limit current value. When the sum of the target current value and the current value I3 of the third conductive path 63 is smaller than the upper limit current value, for example, as in the time T21 to T22 shown in FIG. 4, the current value Iin of the first conductive path 61 The target current value is increased so that the current value approaches the upper limit current value.
 目標電流値と第3導電路63の電流値との和が上限電流値より小さい状態では、第1導電路61の電流値が上限電流値以上にならない範囲で目標電流値を大きくする余地がある。そこで、このような場合に、第2導電路62の電流値を目標電流値に近づけるように目標電流値を大きくする制御を行うことで、第1導電路61の電流値を上限電流値以下に抑えつつ充電電流を大きくすることができる。 In a state where the sum of the target current value and the current value of the third conductive path 63 is smaller than the upper limit current value, there is room to increase the target current value within a range where the current value of the first conductive path 61 does not exceed the upper limit current value. . Therefore, in such a case, by performing control to increase the target current value so that the current value of the second conductive path 62 approaches the target current value, the current value of the first conductive path 61 can be made below the upper limit current value. It is possible to increase the charging current while suppressing the charging current.
 <第3実施形態>
 第3実施形態の電源システム210は、第2電流センサ266A、第3電流センサ266B,266Cを備え、それぞれ第2導電路62、第3導電路63(具体的には負荷側導電路63B,63C)の電流を検出する点で第1実施形態と異なり、その他の点では共通する。なお、第1実施形態と同一の構成については同一の符号を付し、詳しい説明を省略する。
<Third embodiment>
The power supply system 210 of the third embodiment includes a second current sensor 266A, a third current sensor 266B, 266C, and a second conductive path 62 and a third conductive path 63 (specifically, load-side conductive paths 63B, 63C), respectively. ) is different from the first embodiment in that the current is detected, but is the same in other respects. Note that the same components as in the first embodiment are given the same reference numerals, and detailed explanations will be omitted.
 補助電源装置260は、図5に示すように、第2電流センサ266A、第3電流センサ266B,266Cを備えている。第2電流センサ266A、第3電流センサ266B,266Cは、例えば電流検出回路として構成されている。第2電流センサ266Aは、第2導電路62の電流値を検出する。第2電流センサ266Aが検出する電流値は、第2導電路62の電流値を特定できる値(具体的にはアナログ電圧値)である。第3電流センサ266B,266Cは、第1導電路61から第3導電路63に流れ込む電流を検出可能に第3導電路63に配置されている。第3電流センサ266Bは、第3導電路63の負荷側導電路63Bの電流値を検出する。第3電流センサ266Bが検出する電流値は、負荷側導電路63Bの電流値を特定できる値(具体的にはアナログ電圧値)である。第3電流センサ266Cは、第3導電路63の負荷側導電路63Cの電流値を検出する。第3電流センサ266Cが検出する電流値は、負荷側導電路63Cの電流値を特定できる値(具体的にはアナログ電圧値)である。 As shown in FIG. 5, the auxiliary power supply device 260 includes a second current sensor 266A and third current sensors 266B and 266C. The second current sensor 266A and the third current sensors 266B and 266C are configured, for example, as a current detection circuit. The second current sensor 266A detects the current value of the second conductive path 62. The current value detected by the second current sensor 266A is a value (specifically, an analog voltage value) that can specify the current value of the second conductive path 62. The third current sensors 266B and 266C are arranged in the third conductive path 63 so as to be able to detect the current flowing from the first conductive path 61 to the third conductive path 63. The third current sensor 266B detects the current value of the load-side conductive path 63B of the third conductive path 63. The current value detected by the third current sensor 266B is a value (specifically, an analog voltage value) that can specify the current value of the load-side conductive path 63B. The third current sensor 266C detects the current value of the load side conductive path 63C of the third conductive path 63. The current value detected by the third current sensor 266C is a value (specifically, an analog voltage value) that can specify the current value of the load-side conductive path 63C.
 第2電流センサ266Aによって検出される第2導電路62の電流と、第3電流センサ266B,266Cによって検出される第3導電路63(負荷側導電路63B,63C)の電流と、を足し合わせた電流は、第1導電路61の電流となる。そのため、第2電流センサ266A及び第3電流センサ266B,266Cを用いて第1導電路61に流れる電流を間接的に把握することができる。 Add the current in the second conductive path 62 detected by the second current sensor 266A and the current in the third conductive path 63 (load-side conductive paths 63B, 63C) detected by the third current sensors 266B, 266C. The current thus generated becomes the current of the first conductive path 61. Therefore, the current flowing through the first conductive path 61 can be indirectly grasped using the second current sensor 266A and the third current sensors 266B and 266C.
 補助電源装置260は、第2電流センサ266A、第3電流センサ266B,266Cの検出結果に基づき、第1実施形態と同様の制御又は第2実施形態と同様の制御を行う。すなわち、補助電源装置260は、電力路30から第1導電路61に流れ込む電流を上限電流値以下に抑えるように充電部64に充電動作を行わせる。これにより、第1実施形態又は第2実施形態と同様の効果を奏する。 The auxiliary power supply device 260 performs the same control as in the first embodiment or the same control as in the second embodiment based on the detection results of the second current sensor 266A and the third current sensors 266B and 266C. That is, the auxiliary power supply device 260 causes the charging unit 64 to perform a charging operation so as to suppress the current flowing from the power path 30 into the first conductive path 61 to below the upper limit current value. This produces the same effects as the first embodiment or the second embodiment.
 <第4実施形態>
 第4実施形態の電源システムは、上限電流値の設定方法の点で第1実施形態と異なり、その他の点では共通する。なお、第1実施形態と同一の構成については同一の符号を付し、詳しい説明を省略する。
<Fourth embodiment>
The power supply system of the fourth embodiment differs from the first embodiment in the method of setting the upper limit current value, but is the same in other respects. Note that the same components as in the first embodiment are given the same reference numerals, and detailed explanations will be omitted.
 制御部65は、第1導電路61の電流値Iinに基づいて上限電流値を変化させる。上限電流値を変化させることで、第3導電路63に接続される負荷51,52などに応じて第1導電路61の電流の状態を適切に変化させ易くなる。 The control unit 65 changes the upper limit current value based on the current value Iin of the first conductive path 61. By changing the upper limit current value, it becomes easier to appropriately change the state of the current in the first conductive path 61 depending on the loads 51, 52, etc. connected to the third conductive path 63.
 ヒューズ32は、電流値毎に許容時間を定めた遮断特性に基づき、いずれかの値の電流が遮断特性において当該いずれかの値に対応付けられた許容時間以上流れた場合に第1導電路61の通電を遮断するように動作する。遮断特性は、どの程度の電流値がどの程度の時間継続して流れた場合に経路(電力路30)を遮断するかを定めたものである。例えば、図6に示すように、ヒューズ32を流れる電流値が大きいほど許容時間が短く定められている。 The fuse 32 disconnects the first conductive path 61 when a current of any value flows for longer than the allowable time associated with any of the values in the interrupting characteristic, based on the interrupting characteristic that determines the allowable time for each current value. It operates to cut off the power supply. The cutoff characteristic determines how much current value continues to flow for how long when the path (power path 30) is cut off. For example, as shown in FIG. 6, the larger the current value flowing through the fuse 32 is, the shorter the allowable time is set.
 制御部65は、第1導電路61の電流値Iinが所定の下限電流値以上の電流値となってから所定の経過時間が経過する間、遮断特性において経過時間に相当する許容時間に対応する電流値よりも上限電流値を小さくする制御を行う。下限電流値とは、例えば遮断特性において許容時間と対応付けられる電流値の下限電流値である。下限電流値は、例えばヒューズ32の定格電流よりも大きい基準値である。例えば、制御部65は、図示しないタイマーを備えており、第1導電路61の電流値Iinが所定の下限電流値となってからの経過時間を計時する。経過時間をt1とすると、図6に示す遮断特性から、許容時間t1に対応する電流値(溶断電流値ともいう)がIaであることが分かる。そのため、第1導電路61の電流値Iinが下限電流値以上の電流値となってから経過時間t1が経過する間、上限電流値を溶断電流値Iaより小さい電流値Ibに設定する。これにより、ヒューズ32により第1導電路61の通電を遮断させないようにすることができる。 The control unit 65 controls the current value Iin of the first conductive path 61 to correspond to a permissible time corresponding to the elapsed time in the cutoff characteristic while a predetermined elapsed time has elapsed since the current value Iin of the first conductive path 61 became a current value equal to or higher than a predetermined lower limit current value. Control is performed to make the upper limit current value smaller than the current value. The lower limit current value is, for example, the lower limit current value of the current value associated with the allowable time in the interrupting characteristic. The lower limit current value is, for example, a reference value larger than the rated current of the fuse 32. For example, the control unit 65 includes a timer (not shown), and measures the time elapsed since the current value Iin of the first conductive path 61 reaches a predetermined lower limit current value. Assuming that the elapsed time is t1, it can be seen from the interruption characteristics shown in FIG. 6 that the current value (also referred to as fusing current value) corresponding to the allowable time t1 is Ia. Therefore, the upper limit current value is set to the current value Ib smaller than the fusing current value Ia while the elapsed time t1 elapses after the current value Iin of the first conductive path 61 becomes a current value equal to or higher than the lower limit current value. Thereby, it is possible to prevent the fuse 32 from cutting off the electricity to the first conductive path 61 .
 <他の実施形態>
 本開示は、上記記述及び図面によって説明した実施形態に限定されるものではない。例えば、上述又は後述の実施形態の特徴は、矛盾しない範囲であらゆる組み合わせが可能である。また、上述又は後述の実施形態のいずれの特徴も、必須のものとして明示されていなければ省略することもできる。更に、上述した実施形態は、次のように変更されてもよい。
<Other embodiments>
The present disclosure is not limited to the embodiments described above and illustrated in the drawings. For example, the features of the embodiments described above or below can be combined in any combination without contradicting each other. Furthermore, any feature of the embodiments described above or below may be omitted unless explicitly stated as essential. Furthermore, the embodiment described above may be modified as follows.
 上記第1~第4実施形態では、電源システム10に2つの負荷51,52が設けられる構成を例示したが、1つ又は3つ以上の数の負荷が設けられる構成であってもよい。具体的には、第3導電路63が2つに分岐して負荷51,52に接続される構成を例示したが、第3導電路63が分岐せずに1つの負荷に接続される構成や、第3導電路63が3つ以上に分岐してそれぞれに負荷が接続される構成であってもよい。分岐した導電路にそれぞれ電流センサを設けることで、各電流センサで検出される電流値の和が第3導電路63に流れる電流として把握することができる。 In the first to fourth embodiments described above, a configuration in which two loads 51 and 52 are provided in the power supply system 10 is illustrated, but a configuration in which one or three or more loads are provided may be used. Specifically, although a configuration in which the third conductive path 63 branches into two and is connected to the loads 51 and 52 is illustrated, a configuration in which the third conductive path 63 does not branch and is connected to one load is also possible. , the third conductive path 63 may be branched into three or more branches, and a load may be connected to each branch. By providing a current sensor on each of the branched conductive paths, the sum of the current values detected by the respective current sensors can be understood as the current flowing through the third conductive path 63.
 上記第3実施形態では、第3電流センサ266B,266Cがそれぞれ負荷側導電路63B,63Cに設けられていたが、これらの電流センサの代わりに電源部側導電路63Aに電流センサを設ける構成であってもよい。このような構成であっても、第3導電路63を流れる電流値を検出でき、第2導電路62を流れる電流値と合わせて第1導電路61を流れる電流値を把握することができる。 In the third embodiment, the third current sensors 266B and 266C are provided in the load side conductive paths 63B and 63C, respectively, but instead of these current sensors, a current sensor is provided in the power source side conductive path 63A. There may be. Even with such a configuration, the value of the current flowing through the third conductive path 63 can be detected, and the value of the current flowing through the first conductive path 61 can be determined together with the value of the current flowing through the second conductive path 62.
 上記第1実施形態では、制御部65が、目標電流値と第3導電路63の電流値との和が上限電流値以下であることを条件として、第2導電路62の電流値を目標電流値に近づける制御(第1制御)を行った。しかしながら、制御部65は、このような制御の代わりに、目標電流値と第3導電路63の電流値I3との和が上限電流値より小さい場合に、第1導電路61の電流値Iinを上限電流値に近づけるように目標電流値を大きくする制御を行ってもよい。 In the first embodiment, the control unit 65 sets the current value of the second conductive path 62 to the target current value on the condition that the sum of the target current value and the current value of the third conductive path 63 is equal to or less than the upper limit current value. Control (first control) was performed to bring the value closer to the value. However, instead of such control, the control unit 65 controls the current value Iin of the first conductive path 61 when the sum of the target current value and the current value I3 of the third conductive path 63 is smaller than the upper limit current value. Control may be performed to increase the target current value so that it approaches the upper limit current value.
 なお、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、請求の範囲によって示された範囲内又は請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。 It should be noted that the embodiments disclosed herein are illustrative in all respects and should not be considered restrictive. The scope of the present invention is not limited to the embodiments disclosed herein, and is intended to include all modifications within the scope indicated by the claims or within the range equivalent to the claims. be done.
10…電源システム
20…電源部
30…電力路
32…ヒューズ(遮断部)
40…蓄電部
51,52…負荷
60…補助電源装置
61…第1導電路
62…第2導電路
63…第3導電路
63A…電源部側導電路
63B,63C…負荷側導電路
63D,63E…スイッチ素子
64…充電部
65…制御部
66…電流センサ
210…電源システム
260…補助電源装置
266A…第2電流センサ
266B,266C…第3電流センサ
10...Power supply system 20...Power supply section 30...Power line 32...Fuse (cutoff section)
40... Power storage units 51, 52...Load 60...Auxiliary power supply device 61...First conductive path 62...Second conductive path 63...Third conductive path 63A...Power source side conductive path 63B, 63C...Load side conductive path 63D, 63E ...Switch element 64...Charging unit 65...Control unit 66...Current sensor 210...Power system 260...Auxiliary power supply device 266A...Second current sensor 266B, 266C...Third current sensor

Claims (8)

  1.  電源部と、前記電源部から電力を供給される経路である電力路と、蓄電部と、を有する電源システムに用いられる補助電源装置であって、
     前記電力路に電気的に接続され、前記電力路から供給される電流が流れる第1導電路と、
     前記第1導電路から分岐する第2導電路及び第3導電路と、
     前記第2導電路と前記蓄電部との間に設けられ、前記第2導電路から供給される電力に基づいて前記蓄電部に充電電流を供給する充電動作を少なくとも行う充電部と、
     前記充電部を制御する制御部と、
     を有し、
     前記制御部は、前記電力路から前記第1導電路に流れ込む電流を上限電流値以下に抑えるように前記充電部に前記充電動作を行わせる
     補助電源装置。
    An auxiliary power supply device used in a power supply system including a power supply unit, a power path that is a route through which power is supplied from the power supply unit, and a power storage unit,
    a first conductive path that is electrically connected to the power path and through which a current supplied from the power path flows;
    a second conductive path and a third conductive path branching from the first conductive path;
    a charging unit that is provided between the second conductive path and the power storage unit and performs at least a charging operation to supply charging current to the power storage unit based on the power supplied from the second conductive path;
    a control unit that controls the charging unit;
    has
    The control unit causes the charging unit to perform the charging operation so as to suppress the current flowing from the power path into the first conductive path to an upper limit current value or less. The auxiliary power supply device.
  2.  前記第1導電路の電流値を検出する電流センサを有し、
     前記制御部は、前記電流センサの検出結果に基づき、前記電力路から前記第1導電路に流れ込む電流を前記上限電流値以下とするように前記充電部の前記充電動作を制御する
     請求項1に記載の補助電源装置。
    comprising a current sensor that detects a current value of the first conductive path,
    The control unit controls the charging operation of the charging unit so that the current flowing from the power path to the first conductive path is equal to or less than the upper limit current value based on the detection result of the current sensor. Auxiliary power supply as described.
  3.  前記第2導電路の電流値を検出する第2電流センサと、
     前記第1導電路から前記第3導電路に流れ込む電流を検出可能に配置された1以上の第3電流センサと、
     を有し、
     前記制御部は、前記第2電流センサの検出結果及び前記第3電流センサの検出結果に基づき、前記電力路から前記第1導電路に流れ込む電流を前記上限電流値以下とするように前記充電部の前記充電動作を制御する
     請求項1に記載の補助電源装置。
    a second current sensor that detects a current value of the second conductive path;
    one or more third current sensors arranged to be able to detect a current flowing from the first conductive path to the third conductive path;
    has
    The control unit controls the charging unit to control the current flowing from the power path to the first conductive path to be equal to or less than the upper limit current value based on the detection result of the second current sensor and the detection result of the third current sensor. The auxiliary power supply device according to claim 1 , wherein the auxiliary power supply device controls the charging operation of the battery.
  4.  前記制御部は、前記上限電流値より小さい所定の目標電流値と前記第3導電路の電流値との和が前記上限電流値以下であることを条件として前記第2導電路の電流値を前記目標電流値に近づける第1制御を行い、前記目標電流値と前記第3導電路の電流値との和が前記上限電流値を超える状態で前記充電部に前記充電動作を行わせる場合は前記第2導電路の電流値を前記目標電流値よりも低い値に制限しつつ前記第1導電路に流れ込む電流を前記上限電流値以下に抑える第2制御を行う
     請求項1から請求項3のいずれか一項に記載の補助電源装置。
    The control unit adjusts the current value of the second conductive path to the current value on the condition that the sum of a predetermined target current value smaller than the upper limit current value and the current value of the third conductive path is equal to or less than the upper limit current value. When performing the first control to approach the target current value and causing the charging unit to perform the charging operation in a state where the sum of the target current value and the current value of the third conductive path exceeds the upper limit current value, the first control Any one of claims 1 to 3, wherein second control is performed to limit the current value of the second conductive path to a value lower than the target current value while suppressing the current flowing into the first conductive path to below the upper limit current value. Auxiliary power supply device according to paragraph 1.
  5.  前記制御部は、前記上限電流値より小さい所定の目標電流値と前記第3導電路の電流値との和が前記上限電流値より小さい場合に、前記第1導電路の電流値を前記上限電流値に近づけるように前記目標電流値を大きくする制御を行う
     請求項1又は請求項2に記載の補助電源装置。
    The control unit sets the current value of the first conductive path to the upper limit current when a sum of a predetermined target current value smaller than the upper limit current value and a current value of the third conductive path is smaller than the upper limit current value. The auxiliary power supply device according to claim 1 or 2, wherein control is performed to increase the target current value so as to approach the target current value.
  6.  前記電源システムは、前記電力路の電流値が遮断電流値に達した場合に前記第1導電路の通電を遮断する遮断部を有するものであり、
     前記上限電流値は、前記遮断電流値未満である
     請求項1又は請求項2に記載の補助電源装置。
    The power supply system includes a cutoff unit that cuts off energization of the first conductive path when the current value of the power path reaches a cutoff current value,
    The auxiliary power supply device according to claim 1 or 2, wherein the upper limit current value is less than the cutoff current value.
  7.  前記制御部は、前記第1導電路の電流値に基づいて前記上限電流値を変化させる
     請求項1又は請求項2に記載の補助電源装置。
    The auxiliary power supply device according to claim 1 or 2, wherein the control unit changes the upper limit current value based on the current value of the first conductive path.
  8.  前記電源システムは、前記電力路にヒューズが設けられるものであり、
     前記ヒューズは、電流値毎に許容時間を定めた遮断特性に基づき、いずれかの値の電流が前記遮断特性において当該いずれかの値に対応付けられた許容時間以上流れた場合に前記第1導電路の通電を遮断するように動作し、
     前記制御部は、前記第1導電路の電流値が所定の下限電流値以上の電流値となってから所定の経過時間が経過する間、前記遮断特性において前記経過時間に相当する前記許容時間に対応する電流値よりも前記上限電流値を小さくする
     請求項7に記載の補助電源装置。
    The power supply system is one in which a fuse is provided in the power path,
    Based on a cutoff characteristic that defines a permissible time for each current value, the fuse disables the first conductive current when a current of any value flows for longer than a permissible time corresponding to any value in the cutoff characteristic. operates to cut off electricity to the road,
    The control unit is configured to adjust the cutoff characteristic to the allowable time corresponding to the elapsed time while a predetermined elapsed time elapses after the current value of the first conductive path becomes a current value equal to or higher than a predetermined lower limit current value. The auxiliary power supply device according to claim 7, wherein the upper limit current value is smaller than a corresponding current value.
PCT/JP2022/029303 2022-07-29 2022-07-29 Auxiliary power supply device WO2024024088A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/029303 WO2024024088A1 (en) 2022-07-29 2022-07-29 Auxiliary power supply device
JP2022577247A JPWO2024024088A1 (en) 2022-07-29 2022-07-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029303 WO2024024088A1 (en) 2022-07-29 2022-07-29 Auxiliary power supply device

Publications (1)

Publication Number Publication Date
WO2024024088A1 true WO2024024088A1 (en) 2024-02-01

Family

ID=89705869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029303 WO2024024088A1 (en) 2022-07-29 2022-07-29 Auxiliary power supply device

Country Status (2)

Country Link
JP (1) JPWO2024024088A1 (en)
WO (1) WO2024024088A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130648A (en) * 2009-12-21 2011-06-30 Panasonic Electric Works Co Ltd Power supply system for electric vehicle
JP2022015230A (en) * 2020-07-08 2022-01-21 ダイヤゼブラ電機株式会社 Power conditioner and rechargeable battery charging control system including the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130648A (en) * 2009-12-21 2011-06-30 Panasonic Electric Works Co Ltd Power supply system for electric vehicle
JP2022015230A (en) * 2020-07-08 2022-01-21 ダイヤゼブラ電機株式会社 Power conditioner and rechargeable battery charging control system including the same

Also Published As

Publication number Publication date
JPWO2024024088A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
JP6623937B2 (en) Relay device and power supply device
JP6728991B2 (en) Relay device and power supply device
JP6801528B2 (en) In-vehicle power supply control device and in-vehicle power supply
JP6451708B2 (en) In-vehicle backup device
JP6610439B2 (en) Power supply
WO2018070231A1 (en) Vehicle-mounted backup device
WO2019208203A1 (en) Onboard backup circuit and onboard backup device
JP6396041B2 (en) Vehicle and failure detection method
WO2020116260A1 (en) In-vehicle backup power source control device, and in-vehicle backup power source device
JP6903951B2 (en) Power system
JP2019195249A (en) Vehicle power supply system
WO2022244687A1 (en) Blocking control device and blocking control system
WO2024024088A1 (en) Auxiliary power supply device
JP2019041509A (en) Power supply system
US20090134853A1 (en) Power supply apparatus
JP2019009950A (en) On-vehicle power supply circuit and on-vehicle power supply device
JP7021661B2 (en) Power supply controller
JP2022137921A (en) Charge and discharge control device
JP2022035412A (en) Battery pack
JP2004527997A (en) Reverse connection protection device for energy source
KR20200009361A (en) Method of block for smart power relay assembly and smart power relay assembly
JP7226273B2 (en) Abnormality determination device
WO2024004145A1 (en) On-vehicle back-up control device
WO2024004193A1 (en) Vehicle-mounted backup control device
WO2016171203A1 (en) Power supply device and power supply system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022577247

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953176

Country of ref document: EP

Kind code of ref document: A1