WO2024024086A1 - Optical transmitter - Google Patents

Optical transmitter Download PDF

Info

Publication number
WO2024024086A1
WO2024024086A1 PCT/JP2022/029294 JP2022029294W WO2024024086A1 WO 2024024086 A1 WO2024024086 A1 WO 2024024086A1 JP 2022029294 W JP2022029294 W JP 2022029294W WO 2024024086 A1 WO2024024086 A1 WO 2024024086A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
output
laser
optical
Prior art date
Application number
PCT/JP2022/029294
Other languages
French (fr)
Japanese (ja)
Inventor
明晨 陳
隆彦 進藤
慈 金澤
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/029294 priority Critical patent/WO2024024086A1/en
Publication of WO2024024086A1 publication Critical patent/WO2024024086A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Definitions

  • the present invention relates to an optical transmitter.
  • Electroabsorption modulator integrated DFB (EADFB) lasers have higher extinction characteristics and better chirp characteristics than directly modulated lasers, so they have been used in a wide range of applications including light sources for access networks. I've been exposed to it.
  • FIG. 7 shows the configuration of a general EADFB laser.
  • a DFB laser 221 and an EA modulator 222 are integrated into the same chip.
  • the DFB laser 221 includes an active layer 203 made of a multiple quantum well (MQW), and oscillates at a single wavelength using a diffraction grating 207 formed within a resonator.
  • the EA modulator 222 has a light absorption layer 204 made of MQW.
  • the active layer 203 and the light absorption layer 204 are sandwiched between the light confinement layer 202 and the light confinement layer 205, and have a Separate Confined Heterostructure (SCH) structure. Further, these are sandwiched between a lower cladding layer 201 and an upper cladding layer 206.
  • An electrode 211 is formed on the upper cladding layer 206 of the DFB laser 221. Further, an electrode 212 is formed on the upper cladding layer 206 of the EA modulator 222.
  • the output light from the DFB laser 221 is quenched by light absorption, thereby converting the electrical signal into an optical signal.
  • the electrical signal is converted into an optical signal by driving the EA modulator 222 under transmission/absorption conditions to flicker the output light from the DFB laser 221.
  • a problem with this EADFB laser is that the EA modulator involves large optical loss, making it difficult to increase the output.
  • AXEL SOA Assisted Extended Reach EADFB Laser
  • SOA semiconductor optical amplifier
  • AXEL the signal light oscillated by the DFB laser 221 and modulated by the EA modulator 222 is amplified by the integrated SOA 224, so high output is possible.
  • the SOA 224 also has an SCH structure in which the active layer 209 is sandwiched between the optical confinement layer 202 and the optical confinement layer 205. Further, these are sandwiched between a lower cladding layer 201 and an upper cladding layer 206. An electrode 213 is formed on the upper cladding layer 206 of the SOA 224 .
  • AXEL provided with the SOA 224, high output characteristics approximately twice as high as those of a general EADFB laser can be obtained.
  • AXEL is capable of highly efficient operation due to the integration effect of SOA, it is possible to reduce power consumption by approximately 40% when driven under operating conditions that provide the same optical output as a general EADFB laser. be.
  • AXEL can use the same MQW structure as DFB laser for the active layer of SOA. Therefore, the device can be manufactured using the same manufacturing process as a conventional EADFB laser without adding a regrowth process for integrating the SOA region.
  • the injection current is controlled in order to prevent the output power from changing over time. This control is achieved by monitoring part of the output power.
  • the light-emitting device that contributes to the output power is the laser section, so to monitor this output, you can monitor the front output, and also monitor the rear leakage light. You may do so.
  • the present invention has been made to solve the above-mentioned problems, and provides a PD for monitoring the forward output of a laser integrated with a modulator and a semiconductor optical amplifier without being restricted by design.
  • the purpose is to make it possible.
  • An optical transmitter includes: a waveguide type laser formed on a substrate; a waveguide type electroabsorption modulator formed on the substrate continuously from the laser in the waveguide direction; A waveguide-type semiconductor optical amplifier is formed on the substrate and amplifies the output light output from the electro-absorption modulator, and a waveguide-type semiconductor optical amplifier is formed on one end of the substrate and outputs the output light from the semiconductor optical amplifier.
  • a condensing section that is formed on the substrate and uses multimode interference to condense the reflected light reflected toward the substrate at the output end, and a photodiode that monitors the condensed light condensed by the condensing section.
  • the output light output from the semiconductor optical amplifier is incident obliquely to the output end.
  • the modulator and the semiconductor optical amplifier are integrated, since the present invention includes a condensing section that condenses the reflected light that is output from the semiconductor optical amplifier and reflected on the substrate side at the output end.
  • a PD for monitoring the forward output of the laser can be provided without being restricted by the design.
  • FIG. 1 is a plan view showing the configuration of an optical transmitter according to Embodiment 1 of the present invention.
  • FIG. 2A shows a state of an equivalent linear optical system in which light 131 emitted from the semiconductor optical amplifier 104, reflected at the output end 105, and incident on the condenser 106 is replaced by light traveling along the optical axis. It is a diagram.
  • FIG. 2B is an explanation showing the state of an equivalent linear optical system in which light 131 emitted from the semiconductor optical amplifier 104, reflected at the output end 105, and incident on the condenser 106 is replaced by light traveling along the optical axis. It is a diagram.
  • FIG. 2A shows a state of an equivalent linear optical system in which light 131 emitted from the semiconductor optical amplifier 104, reflected at the output end 105, and incident on the condenser 106 is replaced by light traveling along the optical axis. It is a diagram.
  • FIG. 2A shows a state of an equivalent linear optical system in which
  • FIG. 3 is a characteristic diagram showing the results of an optical waveguide simulation of the coupling efficiency from the SM optical waveguide 132 to the SM optical waveguide 133 shown in a linear optical system.
  • FIG. 4 is a characteristic diagram showing the results of an optical propagation simulation when the light condensing section 106 is introduced.
  • FIG. 5 is a plan view showing the configuration of an optical transmitter according to Embodiment 2 of the present invention.
  • FIG. 6 is a plan view showing the configuration of an optical transmitter according to Embodiment 3 of the present invention.
  • FIG. 7 is a cross-sectional view showing the configuration of a general EADFB laser.
  • FIG. 8 is a cross-sectional view showing the configuration of AXEL.
  • This optical transmitter includes a waveguide type laser 102 formed on a substrate 101, a waveguide type electro-absorption modulator (EA modulator) 103, and a waveguide type semiconductor optical amplifier 104. .
  • EA modulator electro-absorption modulator
  • the EA modulator 103 is formed on the substrate 101 so as to be continuous with the laser 102 in the waveguide direction.
  • the semiconductor optical amplifier 104 amplifies the output light output from the EA modulator 103.
  • the output light output from the semiconductor optical amplifier 104 is output to the outside from an output end 105 formed at one end of the substrate 101.
  • the output light output from the semiconductor optical amplifier 104 enters the output end 105 obliquely.
  • the substrate 101 is rectangular in plan view, and one of the short sides facing each other is the output end 105.
  • the laser 102 and the EA modulator 103 are formed in a state in which a waveguide structure extends in a direction parallel to the long side of the substrate 101 which is rectangular in plan view, and the waveguide direction is directed toward the output end 105. It is in a vertical state.
  • the laser 102 may be a distributed feedback (DFB) laser.
  • the laser 102 and the EA modulator 103 have the same structure as the EADFB laser described using FIGS. 7 and 8.
  • the laser 102 includes an active layer made of a multiple quantum well (MQW), and oscillates at a single wavelength using a diffraction grating formed within a resonator.
  • the EA modulator 103 has a light absorption layer 204 made of MQW.
  • the active layer of the laser 102 and the light absorption layer of the EA modulator 103 are sandwiched between two optical confinement layers (not shown) on the upper and lower sides when viewed from the substrate 101, forming a separate confinement heterostructure. Although not shown, these are sandwiched between a lower cladding layer and an upper cladding layer. Electrodes (not shown) are formed on the upper cladding layer of the laser 102 and on the upper cladding layer of the EA modulator 103, respectively.
  • the semiconductor optical amplifier 104 also includes an active layer, and the upper and lower parts of the active layer are sandwiched between two optical confinement layers, forming a separate confinement heterostructure. Further, although not shown, these are sandwiched between a lower cladding layer and an upper cladding layer, and an electrode is formed on the upper cladding layer.
  • This example includes a bent optical waveguide 108 that optically connects the EA modulator 103 and the semiconductor optical amplifier 104.
  • the laser 102 and the EA modulator 103 have their waveguide directions perpendicular to the output end 105 , but the bent optical waveguide 108 makes the waveguide direction of the semiconductor optical amplifier 104 not perpendicular to the output end 105 . It is in a diagonal state.
  • This optical transmitter also includes a condensing section 106 that is formed on the substrate 101 and condenses the reflected light reflected toward the substrate 101 at the output end 105 by multimode interference.
  • the condensing unit 106 condenses the reflected light that is output from the semiconductor optical amplifier 104 and obliquely enters the output end 105 and is reflected at the output end 105 toward the substrate 101 side.
  • the light condensing section 106 is constituted by an optical waveguide having a flat core, the core width of which is larger than the core thickness when viewed in cross section.
  • a window structure 111 in which a waveguide structure is not formed is provided between the output end 105 and the output end of the semiconductor optical amplifier 104.
  • this optical transmitter includes a photodiode 107 that monitors the condensed light condensed by the condensing section 106.
  • the photodiode 107 is of a waveguide type, and is formed on the substrate 101 in a region on the opposite side of the output end 105 when viewed from the light condensing section 106.
  • the photodiode 107 is optically connected to the output optical waveguide 106a of the light condensing section 106.
  • a notch 109 is provided in the substrate 101 on the light emission side of the photodiode 107.
  • a window structure 112 in which no waveguide structure is formed is provided between the notch 109 and the output end of the photodiode 107.
  • the substrate 101 can be formed into a rectangular shape in plan view, with one side (on the upper side of the paper in FIG.
  • a laser 102, an EA modulator 103, and a semiconductor optical amplifier 104 can be arranged on the side (side).
  • the light condensing unit 106 is arranged on the other side (the lower side of the paper in FIG. 1) that is in contact with the side of one end (output end 105) of the rectangular substrate 101 in plan view from the center of the substrate 101. be able to.
  • a notch 109 can be formed at the end of the substrate 101 on the other side at a location on the light output side of the photodiode 107.
  • a lower optical confinement layer is formed on the substrate 101.
  • the substrate 101 can be made of n-type InP.
  • the lower optical confinement layer can be formed by depositing (crystal growth) non-doped i-InGaAsP using a known metal organic chemical vapor deposition (MOCVD) method.
  • MOCVD metal organic chemical vapor deposition
  • an MQW that will become the active layer of the laser 102 and the semiconductor optical amplifier 104 is formed on the lower optical confinement layer.
  • an MQW can be formed by crystal-growing multiple layers of non-doped i-InGaAsP as well layers and InGaAsP as barrier layers alternately by MOCVD.
  • the well layer can have a thickness of about 15 nm
  • the barrier layer can have a thickness of about 8 nm, for example.
  • a diffraction grating is formed on the active layer of the laser 102.
  • a DFB laser can be obtained by forming a diffraction grating directly above the active layer and using this region as a resonator. Note that by forming diffraction gratings at two positions sandwiching the active layer region in the waveguide direction, a distributed reflection type (Distributed Bragg Reflector: DBR) can be achieved.
  • DBR distributed Bragg Reflector
  • an MQW that will become the light absorption layer is formed in the region that will become the EA modulator 103 by crystal regrowth.
  • An MQW as a light absorption layer can be formed by alternately growing multiple layers of undoped i-InGaAsP as a well layer and InGaAsP as a barrier layer in a composition ratio different from that of the active layer.
  • the MQW serving as the light absorption layer and the active layer in the region of the laser 102 that has already been formed are formed in a butt-joint state. Further, an MQW layer serving as a light absorption layer is also formed in a region to be used as a photodiode 107.
  • InGaAsP which is to be used as a core layer, is formed by crystal regrowth in the region to be the bent optical waveguide 108.
  • the core layer is formed so as to be butt-jointed with the active layer and the light absorption layer in the region of the semiconductor optical amplifier 104 that have already been formed.
  • a core layer made of InGaAsP is also formed in a region to be the light condensing section 106 (output optical waveguide 106a).
  • an upper optical confinement layer made of i-InGaAsP and an upper cladding layer made of p-InP are formed to realize optical confinement in the vertical (vertical) direction when viewed from the substrate 101. Further, a contact layer made of, for example, p + -InGaAsP can also be formed on the upper cladding layer.
  • Optical waveguide structure channel type optical waveguide structure with a high mesa structure of a predetermined width, consisting of a cladding layer, a lower optical confinement layer, an active layer, an optical absorption layer, a core layer, an upper optical confinement layer, an upper cladding layer, and a contact layer. form.
  • an optical waveguide structure having a mesa structure is also formed in the region to be the photodiode 107 using the above-mentioned selective etching mask.
  • the core layer made of InGaAsP remains in the region that is to be the light condensing section 106 (output optical waveguide 106a), which is wider than the region that is to be the light condensing section 106 in plan view.
  • the selective etching mask used as the selective growth mask is removed, a new selective etching mask is formed, and the core layer remaining in the region to be the light condensing part 106 is selectively removed, thereby forming the light condensing part 106.
  • a mesa shape (output optical waveguide 106a) is formed.
  • a protective layer made of an insulating material such as SiO 2 is formed on the mesa-shaped surface of the formed light condensing section 106 (output optical waveguide 106a).
  • a protective layer made of an insulating material such as SiO 2 is formed on the mesa-shaped surface of the formed light condensing section 106 (output optical waveguide 106a).
  • the contact layer between the regions is removed, and then electrodes are formed in each region. . Thereafter, chipping by cleavage, formation of an anti-reflection (AR) film 114, and formation of a high reflection (HR) film 115 are performed.
  • the HR film 115 is formed on the end (end surface) of the substrate 101 opposite to the output end 105 . Note that, hereinafter, the end of the substrate 101 on which the HR film 115 is formed, on the opposite side from the output end 105, will be referred to as the rear end.
  • a laser 102 is driven by a constant current to emit continuous wave (CW) oscillation, and by modulating the voltage applied to an EA modulator 103, the light absorption is modulated and the intensity of the light is modulated. Achieves modulation.
  • the semiconductor optical amplifier 104 amplifies the output light of the EA modulator 103 in order to compensate for the insertion loss of the absorption type EA modulator 103.
  • the reflected light from the output end 105 is also amplified, so it is said that a general AXEL is easily affected by the reflected return light.
  • a bent optical waveguide 108 is inserted between the EA modulator 103 and the semiconductor optical amplifier 104, and end face incidence (oblique incidence) with an angle at the output end 105 is realized.
  • the reflected return light at the output end 105 is suppressed more than in the case of only the AR film 114.
  • a window structure 111 is provided immediately in front of the output end 105 in which the optical waveguide structure disappears for a certain period in both the horizontal and vertical directions, and by utilizing light diffusion, return light can be further suppressed.
  • the main output light of this optical transmitter passes through a lens focusing optical system and an isolator placed in front of the output end 105, and is coupled to an optical fiber.
  • an optical element for partially extracting the light is inserted within the section of the condensing optical system.
  • packages that accommodate modulated lasers have become smaller, and the physical length of fiber-coupled systems has become shorter.
  • the optical transmitter according to the first embodiment includes a photodiode 107 on a substrate 101. Due to oblique incidence at the output end 105, a slight amount of reflected light from the AR film 114 is reflected into the substrate 101 in a direction different from that of the semiconductor optical amplifier 104. Furthermore, since the light is diffused by the window structure 111, for example, when a light absorption layer of a photodiode (PD) is provided in the substrate 101 and the photocurrent in the light absorption layer is monitored, the light is diffused vertically. In this direction, there is little overlap between the light absorption layer and the diffused light, resulting in low absorption efficiency.
  • PD photodiode
  • the width of the light absorption layer is increased in order to absorb more of this diffused light.
  • a reverse bias is always applied to the monitor PD, and dark current is generated as noise.
  • the area of the monitor PD becomes large, the resistance at the pn junction in the light absorption layer decreases, so the dark current increases, and if the intensity of the target light to be monitored is low, it will be buried in noise.
  • a condensing section 106 is introduced to condense horizontally diverging light.
  • the degree of freedom is low.
  • optical monitoring within the substrate 101 is realized by condensing light by the condenser 106 using multimode interference (MMI).
  • MMI multimode interference
  • FIG. 1 shows a side view
  • FIG. 2B shows a top view
  • light 131 is diffused in the XY axis directions.
  • a semiconductor optical amplifier 104 serving as a single mode (SM) optical waveguide is placed ahead of the window structure 111.
  • this also has the structure of an SM optical waveguide in the XZ plane.
  • the coupling efficiency from the SM optical waveguide 132 to the opposing SM optical waveguide 133 via the window structure 111 is the result of an optical waveguide simulation. As shown by the black square in , it is 9% when the length of the window structure 111 (window structure length) is 10 ⁇ m.
  • a light condensing section 106 is arranged instead of a single mode optical waveguide, and in the X-axis direction, reflection by the side wall of the condensing section 106 and optical interference are arranged. This makes it possible to condense light and efficiently couple it to the SM optical waveguide 133.
  • FIG. 4 shows the results of an optical propagation simulation when the light condensing section 106 is introduced. According to the optical propagation shown in the simulation results, as shown by the black circles in FIG. 3, it is possible to improve the coupling efficiency to 14% for the same window structure length of 10 ⁇ m.
  • the wavelength of the laser is 1310 nm
  • the condensing section 106 is a passive optical waveguide whose core layer is made of InGaAsP material and has a refractive index of 3.4.
  • the thickness of the core layer is 300 nm.
  • the cladding material is InP and has a refractive index of 3.2.
  • the designed physical length of the window structure 111 is 10 ⁇ m, and the distance from the output end of the semiconductor optical amplifier 104 to the start portion (input end) of the light condensing section 106 is 20 ⁇ m, which is twice the length of the window structure 111. Become.
  • the width of the core layer of the light condensing section 106 is 8 ⁇ m and the length is 300 ⁇ m.
  • the mesa width of the waveguide structure of the laser 102, EA modulator 103, and semiconductor optical amplifier 104 is 1 ⁇ m.
  • the inclination of the output end 105 of the semiconductor optical amplifier 104 in the waveguide direction with respect to the plane is 5 degrees.
  • the inclination of the output end 105 of the light condensing section 106 in the waveguide direction with respect to the plane was set to -10 degrees.
  • the displacement of the optical axis in the X direction when propagating from the output end of the semiconductor optical amplifier 104 to the output end 105 is about 1 ⁇ m.
  • the center of the optical waveguide of the light collecting section 106 was further offset by 4 ⁇ m in the X direction. Therefore, light enters the light condensing section 106 from a location shifted from the center of the light condensing section 106 .
  • the core width of the output optical waveguide 106a connected to the light condensing section 106 is 2.6 ⁇ m.
  • the manufacturing length of the window structure 111 is determined by the precision of the cleavage inclination. In reality, the length of the window structure 111 varies by about several ⁇ m. If the window structure 111 is made shorter than the design as a result of manufacturing, the results shown in FIG. 4 show that the coupling efficiency improves when the SM optical waveguides are opposed to each other. When the window structure length is shorter than 8 ⁇ m, the coupling efficiency of the SM optical waveguides facing each other is higher than that of the present invention. However, it is not preferable for the window structure 111 to become short because it weakens the suppression of return light for the semiconductor optical amplifier 104.
  • a photodiode 107 having an optical waveguide structure is optically connected to the tip of the output optical waveguide 106a of the light condensing section 106.
  • the light absorption layer of the photodiode 107 can be formed by leaving the light absorption layer of the EA modulator 103 or the active layer of the laser 102 or semiconductor optical amplifier 104 during these mesa processing processes, thereby eliminating the need for additional processes. It can be made to
  • the optical waveguide structure (mesa structure) in the condensing section 106 can be formed by performing additional dry etching after the high mesa embedding process of the laser 102, EA modulator 103, and semiconductor optical amplifier 104. can.
  • the optical waveguide structure (mesa structure) in the light condensing section 106 is not buried, and in the horizontal direction, optical confinement is achieved by the interface between air and the semiconductor via the protective layer.
  • the photodiode 107 can also have a so-called ridge optical waveguide structure.
  • the notch 109 is preferably located at a location away from the rear end of the substrate 101 where the HR film 115 is formed. This is to prevent the HR film from being formed on the oblique sides of the notch 109.
  • This optical transmitter includes a waveguide type laser 102 formed on a substrate 101, an EA modulator 103, and a waveguide type semiconductor optical amplifier 104. It also includes a bent optical waveguide 108 that optically connects the EA modulator 103 and the semiconductor optical amplifier 104. Further, an AR film 114 is formed on the output end 105 of the substrate 101, an HR film 115 is formed on the rear end of the substrate 101, and a window structure 111 is provided in front of the output end 105 of the substrate 101. . It also includes a light condensing section 106 (output optical waveguide 106a) and a notch 109. These are the same as in the first embodiment described above.
  • Embodiment 2 is a photodiode that monitors external output light 134 that is collected by a light collection unit 106, guided through an output optical waveguide 106a, passed through a window structure 112, and exited from an oblique side surface of a notch 109. 107'.
  • the substrate 101 can be formed into a rectangular shape in plan view, with one side (on the upper side of the paper in FIG.
  • a laser 102, an EA modulator 103, and a semiconductor optical amplifier 104 can be arranged on the side (side).
  • the light condensing unit 106 is arranged on the other side (the lower side of the paper in FIG. 1) that is in contact with the side of one end (output end 105) of the rectangular substrate 101 in plan view from the center of the substrate 101. be able to.
  • a notch 109 can be formed at the end of the substrate 101 on the other side at a location on the light output side of the light condensing section 106 (output optical waveguide 106a).
  • This optical transmitter includes a waveguide type laser 102 formed on a substrate 101, an EA modulator 103, and a waveguide type semiconductor optical amplifier 104. It also includes a bent optical waveguide 108 that optically connects the EA modulator 103 and the semiconductor optical amplifier 104. Further, an AR film 114 is formed on the output end 105 of the substrate 101, an HR film 115 is formed on the rear end of the substrate 101, and a window structure 111 is provided in front of the output end 105 of the substrate 101. . It also includes a light condensing section 106 (output optical waveguide 106a). These are the same as in the first embodiment described above.
  • the configuration is such that the light emitted from the photodiode 107 that monitors the condensed light condensed by the condensing section 106 is incident perpendicularly to the side of the rear end (end) of the substrate 101.
  • the output optical waveguide 106a is provided with a bent portion 161, and the waveguide direction of the output optical waveguide 106a is changed in a plane parallel to the plane of the substrate 101 to a direction perpendicular to the rear end side of the substrate 101.
  • the light condensing section that condenses the reflected light that is output from the semiconductor optical amplifier and reflected on the substrate side at the output end, allows the modulator and the semiconductor optical amplifier to It becomes possible to provide a PD for monitoring the forward output of the integrated laser without being restricted by the design.
  • EA modulator Electro-absorption modulator

Abstract

This optical transmitter comprises a waveguide type laser (102) formed on a substrate (101), a waveguide type EA modulator (103), and a waveguide type semiconductor optical amplifier (104) and comprises a condensing unit (106) that uses multi-mode interference to condense reflected light that has been output by the semiconductor optical amplifier (104), has been made incident obliquely to an exit end (105), and has been reflected by the exit end (105) toward the substrate (101) side. The condensing unit (106) is formed from an optical waveguide made of a flat core having the core width larger than the core thickness when viewed in cross section.

Description

光送信器optical transmitter
 本発明は、光送信器に関する。 The present invention relates to an optical transmitter.
 近年の動画配信サービスの普及やモバイルトラフィック需要の増大に伴い、ネットワークトラフィックが爆発的に増大している。ネットワークを担う光伝送路においては、伝送レートの高速化や低消費電力化に加えて伝送距離の長延化によるネットワークの低コスト化がトレンドとなっており、ここで用いられる半導体変調光源にも高速・高出力化への要求が高まっている。 With the spread of video distribution services and the increase in demand for mobile traffic in recent years, network traffic is increasing explosively. In the optical transmission lines that play a role in networks, trends are toward higher transmission rates, lower power consumption, and lower network costs by extending transmission distances, and the semiconductor modulated light sources used here are also becoming faster.・Requirements for higher output are increasing.
 電界吸収型変調器集積型DFB(EADFB)レーザは、直接変調型のレーザと比較して高い消光特性とすぐれたチャープ特性を有することから、これまでにアクセス系ネットワーク用光源を含め幅広い用途で用いられてきた。図7に一般的なEADFBレーザの構成を示す。一般的なEADFBレーザは、DFBレーザ221およびEA変調器222が、同一のチップ内に集積されている。DFBレーザ221は、多重量子井戸(MQW)からなる活性層203を備え、共振器内に形成された回折格子207によって単一波長で発振する。また、EA変調器222は、MQWからなる光吸収層204を有する。 Electroabsorption modulator integrated DFB (EADFB) lasers have higher extinction characteristics and better chirp characteristics than directly modulated lasers, so they have been used in a wide range of applications including light sources for access networks. I've been exposed to it. FIG. 7 shows the configuration of a general EADFB laser. In a typical EADFB laser, a DFB laser 221 and an EA modulator 222 are integrated into the same chip. The DFB laser 221 includes an active layer 203 made of a multiple quantum well (MQW), and oscillates at a single wavelength using a diffraction grating 207 formed within a resonator. Furthermore, the EA modulator 222 has a light absorption layer 204 made of MQW.
 活性層203および光吸収層204は、光閉じ込め層202および光閉じ込め層205に挟まれ、分離閉じ込めヘテロ(Separate Confined Heterostructure;SCH)構造とされている。また、これらは、下部クラッド層201と上部クラッド層206とに挟まれている。DFBレーザ221の上部クラッド層206の上には、電極211が形成されている。また、EA変調器222の上部クラッド層206の上には、電極212が形成されている。 The active layer 203 and the light absorption layer 204 are sandwiched between the light confinement layer 202 and the light confinement layer 205, and have a Separate Confined Heterostructure (SCH) structure. Further, these are sandwiched between a lower cladding layer 201 and an upper cladding layer 206. An electrode 211 is formed on the upper cladding layer 206 of the DFB laser 221. Further, an electrode 212 is formed on the upper cladding layer 206 of the EA modulator 222.
 EA変調器222の光吸収層204において、DFBレーザ221からの出力光を光吸収によって消光させることで、電気信号を光信号に変換する。EA変調器222を透過・吸収する条件で駆動してDFBレーザ221からの出力光を明滅させることで、電気信号を光信号に変換する。 In the light absorption layer 204 of the EA modulator 222, the output light from the DFB laser 221 is quenched by light absorption, thereby converting the electrical signal into an optical signal. The electrical signal is converted into an optical signal by driving the EA modulator 222 under transmission/absorption conditions to flicker the output light from the DFB laser 221.
 このEADFBレーザの課題として、EA変調器が大きな光損失を伴うために高出力化が困難な点があげられる。この解決策として、EADFBレーザの光出射端にさらに半導体光増幅器(SOA)を集積したEADFBレーザであるAXEL(SOA Assisted Extended Reach EADFB Laser)が提案されている(非特許文献1)。 A problem with this EADFB laser is that the EA modulator involves large optical loss, making it difficult to increase the output. As a solution to this problem, AXEL (SOA Assisted Extended Reach EADFB Laser), which is an EADFB laser that further integrates a semiconductor optical amplifier (SOA) at the light emitting end of the EADFB laser, has been proposed (Non-Patent Document 1).
 AXELの概略について、図8を用いて説明する。AXELでは、DFBレーザ221で発振してEA変調器222によって変調された信号光が、集積されたSOA224によって増幅されるため、高出力化が可能である。なお、SOA224も、活性層209が、光閉じ込め層202および光閉じ込め層205に挟まれ、SCH構造とされている。また、これらは、下部クラッド層201と上部クラッド層206とに挟まれている。SOA224の上部クラッド層206の上には、電極213が形成されている。 The outline of AXEL will be explained using FIG. 8. In AXEL, the signal light oscillated by the DFB laser 221 and modulated by the EA modulator 222 is amplified by the integrated SOA 224, so high output is possible. Note that the SOA 224 also has an SCH structure in which the active layer 209 is sandwiched between the optical confinement layer 202 and the optical confinement layer 205. Further, these are sandwiched between a lower cladding layer 201 and an upper cladding layer 206. An electrode 213 is formed on the upper cladding layer 206 of the SOA 224 .
 このように、SOA224を設けたAXELによれば、一般的なEADFBレーザと比較して約2倍の高出力特性が得られる。加えて、AXELは、SOAの集積効果による高効率動作が可能なことから、一般的なEADFBレーザと同一の光出力が得られる動作条件で駆動した場合、約4割の消費電力削減が可能である。さらに、AXELは、SOAの活性層にDFBレーザと同一のMQW構造を用いることができる。このため、SOA領域の集積のための再成長プロセスを追加することなく、従来のEADFBレーザと同一の製造工程でデバイス作製が可能である。 In this way, according to the AXEL provided with the SOA 224, high output characteristics approximately twice as high as those of a general EADFB laser can be obtained. In addition, since AXEL is capable of highly efficient operation due to the integration effect of SOA, it is possible to reduce power consumption by approximately 40% when driven under operating conditions that provide the same optical output as a general EADFB laser. be. Furthermore, AXEL can use the same MQW structure as DFB laser for the active layer of SOA. Therefore, the device can be manufactured using the same manufacturing process as a conventional EADFB laser without adding a regrowth process for integrating the SOA region.
 ところで、光通信の送信器として使用されるレーザは、出力パワーが経時的に変化しないようにするため、注入電流が制御されている。この制御は、出力パワーの一部をモニタすることで実現されている。一般的なSOA集積のないEADFBの場合、出力パワーに寄与する発光デバイスはレーザ部であるため、この出力をモニタするには、前方出力をモニタしてもよく、また、後方の漏れ光をモニタしても良い。 Incidentally, in a laser used as a transmitter for optical communication, the injection current is controlled in order to prevent the output power from changing over time. This control is achieved by monitoring part of the output power. In the case of a general EADFB without SOA integration, the light-emitting device that contributes to the output power is the laser section, so to monitor this output, you can monitor the front output, and also monitor the rear leakage light. You may do so.
 しかし、SOAを集積したAXELの場合、SOAによる増幅効果が出力パワーに影響するため、レーザからの漏れ光を後方からモニタする方法は、上述した制御のために用いることができない。このため、AXELの場合、上述した制御のために、前方出力をモニタすることになる。ところが、一般的に、レーザチップの出力光を光ファイバに結合するためのレンズやアイソレータといった光学部品を多数配置するため、モニタ用のフォトダイオード(PD)を配置するためのスペースが限られている。このため、変調器、SOAを集積したレーザの場合、前方出力のパワーをモニタするためのPDを設ける設計に、制約がある。 However, in the case of an AXEL with an integrated SOA, the amplification effect of the SOA affects the output power, so the method of monitoring the leakage light from the laser from the rear cannot be used for the above-mentioned control. Therefore, in the case of AXEL, the forward output is monitored for the above-mentioned control. However, since many optical components such as lenses and isolators are generally arranged to couple the output light of the laser chip to the optical fiber, the space for arranging the monitoring photodiode (PD) is limited. . For this reason, in the case of a laser integrated with a modulator and SOA, there are restrictions on the design of providing a PD for monitoring the power of the forward output.
 本発明は、以上のような問題点を解消するためになされたものであり、変調器、半導体光増幅器を集積したレーザの前方出力をモニタするためのPDを、設計に制約を受けることなく設けることができるようにすることを目的とする。 The present invention has been made to solve the above-mentioned problems, and provides a PD for monitoring the forward output of a laser integrated with a modulator and a semiconductor optical amplifier without being restricted by design. The purpose is to make it possible.
 本発明に係る光送信器は、基板の上に形成された導波路型のレーザと、導波方向にレーザに連続して基板の上に形成された導波路型の電界吸収型変調器と、基板の上に形成されて電界吸収型変調器から出力した出力光を増幅する導波路型の半導体光増幅器と、基板の一端側に形成され、半導体光増幅器から出力した出力光が出射される出射端と、基板の上に形成され、出射端で基板の側に反射した反射光を、多モード干渉により集光する集光部と、集光部が集光した集光光をモニタするフォトダイオードとを備え、半導体光増幅器から出力した出力光は、出射端に対して斜めに入射する。 An optical transmitter according to the present invention includes: a waveguide type laser formed on a substrate; a waveguide type electroabsorption modulator formed on the substrate continuously from the laser in the waveguide direction; A waveguide-type semiconductor optical amplifier is formed on the substrate and amplifies the output light output from the electro-absorption modulator, and a waveguide-type semiconductor optical amplifier is formed on one end of the substrate and outputs the output light from the semiconductor optical amplifier. a condensing section that is formed on the substrate and uses multimode interference to condense the reflected light reflected toward the substrate at the output end, and a photodiode that monitors the condensed light condensed by the condensing section. The output light output from the semiconductor optical amplifier is incident obliquely to the output end.
 以上説明したように、本発明によれば、半導体光増幅器から出力されて、出射端で基板の側に反射した反射光を集光する集光部を備えるので、変調器、半導体光増幅器を集積したレーザの前方出力をモニタするためのPDを、設計に制約を受けることなく設けることができる。 As described above, according to the present invention, the modulator and the semiconductor optical amplifier are integrated, since the present invention includes a condensing section that condenses the reflected light that is output from the semiconductor optical amplifier and reflected on the substrate side at the output end. A PD for monitoring the forward output of the laser can be provided without being restricted by the design.
図1は、本発明の実施の形態1に係る光送信器の構成を示す平面図である。FIG. 1 is a plan view showing the configuration of an optical transmitter according to Embodiment 1 of the present invention. 図2Aは、半導体光増幅器104から出射されて出射端105で反射され、集光部106に入射する光131を光軸に沿って進行する光で置き換えた等価な直線光学系の状態を示す説明図である。FIG. 2A shows a state of an equivalent linear optical system in which light 131 emitted from the semiconductor optical amplifier 104, reflected at the output end 105, and incident on the condenser 106 is replaced by light traveling along the optical axis. It is a diagram. 図2Bは、半導体光増幅器104から出射されて出射端105で反射され、集光部106に入射する光131を光軸に沿って進行する光で置き換えた等価な直線光学系の状態を示す説明図である。FIG. 2B is an explanation showing the state of an equivalent linear optical system in which light 131 emitted from the semiconductor optical amplifier 104, reflected at the output end 105, and incident on the condenser 106 is replaced by light traveling along the optical axis. It is a diagram. 図3は、直線光学系に示されるSM光導波路132からSM光導波路133への結合効率の光導波路シミュレーションの結果を示す特性図である。FIG. 3 is a characteristic diagram showing the results of an optical waveguide simulation of the coupling efficiency from the SM optical waveguide 132 to the SM optical waveguide 133 shown in a linear optical system. 図4は、集光部106を導入した場合の光学伝搬シミュレーションの結果を示す特性図である。FIG. 4 is a characteristic diagram showing the results of an optical propagation simulation when the light condensing section 106 is introduced. 図5は、本発明の実施の形態2に係る光送信器の構成を示す平面図である。FIG. 5 is a plan view showing the configuration of an optical transmitter according to Embodiment 2 of the present invention. 図6は、本発明の実施の形態3に係る光送信器の構成を示す平面図である。FIG. 6 is a plan view showing the configuration of an optical transmitter according to Embodiment 3 of the present invention. 図7は、一般的なEADFBレーザの構成を示す断面図である。FIG. 7 is a cross-sectional view showing the configuration of a general EADFB laser. 図8は、AXELの構成を示す断面図である。FIG. 8 is a cross-sectional view showing the configuration of AXEL.
 以下、本発明の実施の形態に係る光送信器について説明する。 Hereinafter, an optical transmitter according to an embodiment of the present invention will be described.
[実施の形態1]
 はじめに、本発明の実施の形態1に係る光送信器について、図1を参照して説明する。この光送信器は、基板101の上に形成された導波路型のレーザ102と、導波路型の電界吸収型変調器(EA変調器)103と、導波路型の半導体光増幅器104とを備える。
[Embodiment 1]
First, an optical transmitter according to Embodiment 1 of the present invention will be explained with reference to FIG. This optical transmitter includes a waveguide type laser 102 formed on a substrate 101, a waveguide type electro-absorption modulator (EA modulator) 103, and a waveguide type semiconductor optical amplifier 104. .
 EA変調器103は、導波方向にレーザ102に連続して基板101の上に形成されている。半導体光増幅器104は、EA変調器103から出力した出力光を増幅する。半導体光増幅器104から出力した出力光は、基板101の一端側に形成された出射端105より外部に出射する。半導体光増幅器104から出力した出力光は、出射端105に対して斜めに入射する。 The EA modulator 103 is formed on the substrate 101 so as to be continuous with the laser 102 in the waveguide direction. The semiconductor optical amplifier 104 amplifies the output light output from the EA modulator 103. The output light output from the semiconductor optical amplifier 104 is output to the outside from an output end 105 formed at one end of the substrate 101. The output light output from the semiconductor optical amplifier 104 enters the output end 105 obliquely.
 例えば、基板101は、平面視で矩形とされ、互いに向かい合う短辺の一方を出射端105としている。また、レーザ102、EA変調器103は、平面視矩形とされた基板101の長辺に平行な方向に、導波路構造が延在する状態に形成され、導波方向を出射端105に対して垂直な状態としている。 For example, the substrate 101 is rectangular in plan view, and one of the short sides facing each other is the output end 105. Further, the laser 102 and the EA modulator 103 are formed in a state in which a waveguide structure extends in a direction parallel to the long side of the substrate 101 which is rectangular in plan view, and the waveguide direction is directed toward the output end 105. It is in a vertical state.
 レーザ102は、分布帰還型(Distributed Feedback;DFB)レーザとすることができる。レーザ102、EA変調器103は、図7,図8を用いて説明したEADFBレーザと同様の構造とされている。例えば、レーザ102は、図示していないが、多重量子井戸(MQW)からなる活性層を備え、共振器内に形成された回折格子によって単一波長で発振する。また、EA変調器103は、図示していないが、MQWからなる光吸収層204を有する。 The laser 102 may be a distributed feedback (DFB) laser. The laser 102 and the EA modulator 103 have the same structure as the EADFB laser described using FIGS. 7 and 8. For example, although not shown, the laser 102 includes an active layer made of a multiple quantum well (MQW), and oscillates at a single wavelength using a diffraction grating formed within a resonator. Furthermore, although not shown, the EA modulator 103 has a light absorption layer 204 made of MQW.
 レーザ102の活性層およびEA変調器103の光吸収層は、基板101から見て上下を2つの光閉じ込め層(不図示)に挟まれ、分離閉じ込めヘテロ構造とされている。また、これらは、図示していないが、下部クラッド層と上部クラッド層とに挟まれている。レーザ102の上部クラッド層の上、およびEA変調器103の上部クラッド層の上の各々に、電極(不図示)が形成されている。 The active layer of the laser 102 and the light absorption layer of the EA modulator 103 are sandwiched between two optical confinement layers (not shown) on the upper and lower sides when viewed from the substrate 101, forming a separate confinement heterostructure. Although not shown, these are sandwiched between a lower cladding layer and an upper cladding layer. Electrodes (not shown) are formed on the upper cladding layer of the laser 102 and on the upper cladding layer of the EA modulator 103, respectively.
 半導体光増幅器104も、図示していないが、活性層を備え、活性層の上下が2つの光閉じ込め層に挟まれ、分離閉じ込めヘテロ構造とされている。また、これらは、図示していないが、下部クラッド層と上部クラッド層とに挟まれ、上部クラッド層の上には、電極が形成されている。 Although not shown, the semiconductor optical amplifier 104 also includes an active layer, and the upper and lower parts of the active layer are sandwiched between two optical confinement layers, forming a separate confinement heterostructure. Further, although not shown, these are sandwiched between a lower cladding layer and an upper cladding layer, and an electrode is formed on the upper cladding layer.
 この例では、EA変調器103と半導体光増幅器104とを光学的に接続する曲げ光導波路108を備える。レーザ102およびEA変調器103は、導波方向を出射端105に対して垂直な状態としているが、曲げ光導波路108により、半導体光増幅器104の導波方向を、出射端105に対して垂直ではない斜めな状態としている。 This example includes a bent optical waveguide 108 that optically connects the EA modulator 103 and the semiconductor optical amplifier 104. The laser 102 and the EA modulator 103 have their waveguide directions perpendicular to the output end 105 , but the bent optical waveguide 108 makes the waveguide direction of the semiconductor optical amplifier 104 not perpendicular to the output end 105 . It is in a diagonal state.
 また、この光送信器は、基板101の上に形成され、出射端105で基板101の側に反射した反射光を、多モード干渉により集光する集光部106を備える。集光部106は、半導体光増幅器104より出力されて出射端105に対して斜めに入射し、出射端105で基板101の側に反射した反射光を集光する。集光部106は、断面視でコア厚に対してコア幅がより大きい扁平なコアによる光導波路から構成されている。ここで、出射端105と、半導体光増幅器104の出力端との間には、導波路構造が形成されていない窓構造111を備えている。 This optical transmitter also includes a condensing section 106 that is formed on the substrate 101 and condenses the reflected light reflected toward the substrate 101 at the output end 105 by multimode interference. The condensing unit 106 condenses the reflected light that is output from the semiconductor optical amplifier 104 and obliquely enters the output end 105 and is reflected at the output end 105 toward the substrate 101 side. The light condensing section 106 is constituted by an optical waveguide having a flat core, the core width of which is larger than the core thickness when viewed in cross section. Here, a window structure 111 in which a waveguide structure is not formed is provided between the output end 105 and the output end of the semiconductor optical amplifier 104.
 また、この光送信器は、集光部106が集光した集光光をモニタするフォトダイオード107を備える。この例では、フォトダイオード107は、導波路型とされ、集光部106から見て、出射端105の反対側の領域の基板101の上に形成されている。フォトダイオード107は、集光部106の出力光導波路106aに光学的に接続している。 Additionally, this optical transmitter includes a photodiode 107 that monitors the condensed light condensed by the condensing section 106. In this example, the photodiode 107 is of a waveguide type, and is formed on the substrate 101 in a region on the opposite side of the output end 105 when viewed from the light condensing section 106. The photodiode 107 is optically connected to the output optical waveguide 106a of the light condensing section 106.
 また、実施の形態1では、フォトダイオード107の光出射側の基板101に形成された切欠き109を備える。切欠き109とフォトダイオード107の出射端との間には、導波路構造が形成されていない窓構造112を備えている。 Further, in the first embodiment, a notch 109 is provided in the substrate 101 on the light emission side of the photodiode 107. A window structure 112 in which no waveguide structure is formed is provided between the notch 109 and the output end of the photodiode 107.
 例えば、基板101は、平面視矩形に形成することができ、基板101の中央より平面視矩形の基板101の一端側(出射端105)の辺に接する一方の辺(図1の紙面の上側の辺)の側に、レーザ102、EA変調器103、半導体光増幅器104を配置することができる。また、基板101の中央より平面視矩形の基板101の一端側(出射端105)の辺に接する他方の辺(図1の紙面の下側の辺)の側に、集光部106を配置することができる。この構成において、他方の辺の基板101の端部の、フォトダイオード107の光出射側となる箇所に、切欠き109が形成できる。 For example, the substrate 101 can be formed into a rectangular shape in plan view, with one side (on the upper side of the paper in FIG. A laser 102, an EA modulator 103, and a semiconductor optical amplifier 104 can be arranged on the side (side). Further, the light condensing unit 106 is arranged on the other side (the lower side of the paper in FIG. 1) that is in contact with the side of one end (output end 105) of the rectangular substrate 101 in plan view from the center of the substrate 101. be able to. In this configuration, a notch 109 can be formed at the end of the substrate 101 on the other side at a location on the light output side of the photodiode 107.
 上述したレーザ102、EA変調器103、半導体光増幅器104の作製について簡単に説明すると、まず、基板101の上に、下部光閉じ込め層を形成する。例えば、基板101は、n型のInPから構成することができる。例えば、公知の有機金属気相成長(MOCVD)法により、ノンドープのi-InGaAsPを堆積(結晶成長)することで、下部光閉じ込め層が形成できる。 To briefly explain the production of the laser 102, EA modulator 103, and semiconductor optical amplifier 104 described above, first, a lower optical confinement layer is formed on the substrate 101. For example, the substrate 101 can be made of n-type InP. For example, the lower optical confinement layer can be formed by depositing (crystal growth) non-doped i-InGaAsP using a known metal organic chemical vapor deposition (MOCVD) method.
 次いで、下部光閉じ込め層の上に、レーザ102および半導体光増幅器104の活性層となるMQWを形成する。例えば、MOCVD法により、井戸層とするノンドープのi-InGaAsPと、障壁層とするInGaAsPとを交互に複数層結晶成長させることで、MQWが形成できる。井戸層は、例えば、厚さ15nm程度とし、障壁層は、厚さ8nm程度とすることができる。 Next, an MQW that will become the active layer of the laser 102 and the semiconductor optical amplifier 104 is formed on the lower optical confinement layer. For example, an MQW can be formed by crystal-growing multiple layers of non-doped i-InGaAsP as well layers and InGaAsP as barrier layers alternately by MOCVD. The well layer can have a thickness of about 15 nm, and the barrier layer can have a thickness of about 8 nm, for example.
 次に、レーザ102における活性層の上に、回折格子を形成する。一般に、活性層の直上に回折格子を形成し、この領域を共振器とすることで、DFBレーザとすることができる。なお、活性層の領域を導波方向に挾む2つの位置に、各々回折格子を形成することで、分布反射型(Distributed Bragg Reflector:DBR)とすることができる。 Next, a diffraction grating is formed on the active layer of the laser 102. Generally, a DFB laser can be obtained by forming a diffraction grating directly above the active layer and using this region as a resonator. Note that by forming diffraction gratings at two positions sandwiching the active layer region in the waveguide direction, a distributed reflection type (Distributed Bragg Reflector: DBR) can be achieved.
 次に、EA変調器103、曲げ光導波路108とする領域の活性層を除去し、EA変調器103とする領域に、光吸収層とするMQWを結晶再成長により形成する。活性層とは異なる組成比で、井戸層とするノンドープのi-InGaAsPと、障壁層とするInGaAsPとを交互に複数層結晶成長させることで、光吸収層とするMQWが形成できる。光吸収層とするMQWと、既に形成されているレーザ102の領域の活性層とは、バットジョイント結合する状態に形成する。さらに、フォトダイオード107とする領域にも、光吸収層とするMQWを形成しておく。 Next, the active layer in the region that will become the EA modulator 103 and the bent optical waveguide 108 is removed, and an MQW that will become the light absorption layer is formed in the region that will become the EA modulator 103 by crystal regrowth. An MQW as a light absorption layer can be formed by alternately growing multiple layers of undoped i-InGaAsP as a well layer and InGaAsP as a barrier layer in a composition ratio different from that of the active layer. The MQW serving as the light absorption layer and the active layer in the region of the laser 102 that has already been formed are formed in a butt-joint state. Further, an MQW layer serving as a light absorption layer is also formed in a region to be used as a photodiode 107.
 また、曲げ光導波路108とする領域に、コア層とするInGaAsPを結晶再成長により形成する。コア層は、既に形成されている半導体光増幅器104の領域の活性層、および光吸収層と、バットジョイント結合する状態に形成する。さらに、集光部106(出力光導波路106a)とする領域にも、InGaAsPからなるコア層を形成しておく。 Furthermore, InGaAsP, which is to be used as a core layer, is formed by crystal regrowth in the region to be the bent optical waveguide 108. The core layer is formed so as to be butt-jointed with the active layer and the light absorption layer in the region of the semiconductor optical amplifier 104 that have already been formed. Furthermore, a core layer made of InGaAsP is also formed in a region to be the light condensing section 106 (output optical waveguide 106a).
 次に、i-InGaAsPからなる上部光閉じ込め層、および、p-InPからなる上部クラッド層を形成し、基板101から見て上下(垂直)方向の光閉じ込めを実現する。また、上部クラッド層の上に、例えば、p+-InGaAsPからなるコンタクト層を形成することもできる。 Next, an upper optical confinement layer made of i-InGaAsP and an upper cladding layer made of p-InP are formed to realize optical confinement in the vertical (vertical) direction when viewed from the substrate 101. Further, a contact layer made of, for example, p + -InGaAsP can also be formed on the upper cladding layer.
 次に、基板101の上に結晶成長した各層を、SiO2などによる選択エッチングマスクを用いて選択的に除去することで、レーザ102、EA変調器103、半導体光増幅器104とする領域において、下部クラッド層,下部光閉じ込め層,活性層,光吸収層、コア層、上部光閉じ込め層,上部クラッド層,およびコンタクト層からなる所定の幅のハイメサ構造とした光導波路構造(チャネル型光導波路構造)を形成する。 Next, by selectively removing each layer crystal-grown on the substrate 101 using a selective etching mask made of SiO 2 or the like, the lower part is removed in the regions where the laser 102, EA modulator 103, and semiconductor optical amplifier 104 are to be formed. Optical waveguide structure (channel type optical waveguide structure) with a high mesa structure of a predetermined width, consisting of a cladding layer, a lower optical confinement layer, an active layer, an optical absorption layer, a core layer, an upper optical confinement layer, an upper cladding layer, and a contact layer. form.
 また、このとき、フォトダイオード107とする領域も、上述した選択エッチングマスクを用い、メサ構造とした光導波路構造を形成する。一方、集光部106(出力光導波路106a)とする領域は、平面視で集光部106とする箇所より広い領域に、InGaAsPからなるコア層が残る状態としておく。 Furthermore, at this time, an optical waveguide structure having a mesa structure is also formed in the region to be the photodiode 107 using the above-mentioned selective etching mask. On the other hand, the core layer made of InGaAsP remains in the region that is to be the light condensing section 106 (output optical waveguide 106a), which is wider than the region that is to be the light condensing section 106 in plan view.
 次いで、上述した選択エッチングマスクを、今度は選択成長マスクとして用い、形成したメサ構造の周囲の基板101の上に、例えば、Feがドープされて高抵抗とされたInPを埋め込み再成長させて、ハイメサ構造を埋め込み絶縁層で埋め込む。次いで、選択成長マスクとして用いた選択エッチングマスクを除去し、新たな選択エッチングマスクを形成し、集光部106とする領域に残してあるコア層を選択的に除去することで、集光部106(出力光導波路106a)のメサ形状を形成する。また、形成した集光部106(出力光導波路106a)のメサ形状の表面に、例えば、SiO2などの絶縁材料による保護層を形成しておく。集光部106(出力光導波路106a)のメサ形状は、保護層を形成するが、埋め込み絶縁層で埋め込む構造とはしない。 Next, using the above-described selective etching mask as a selective growth mask, for example, InP doped with Fe and made to have high resistance is buried and regrown on the substrate 101 around the formed mesa structure. Embed the high mesa structure with a buried insulating layer. Next, the selective etching mask used as the selective growth mask is removed, a new selective etching mask is formed, and the core layer remaining in the region to be the light condensing part 106 is selectively removed, thereby forming the light condensing part 106. A mesa shape (output optical waveguide 106a) is formed. Further, a protective layer made of an insulating material such as SiO 2 is formed on the mesa-shaped surface of the formed light condensing section 106 (output optical waveguide 106a). Although the mesa shape of the light condensing section 106 (output optical waveguide 106a) forms a protective layer, it is not embedded with a buried insulating layer.
 次に、レーザ102、EA変調器103、半導体光増幅器104、フォトダイオード107の各領域を電気的に絶縁するために、領域間のコンタクト層を除去し、この後、各領域に電極を形成する。この後、へき開によるチッピング、反射防止(Anti Reflection:AR)膜114の形成、反射(High Reflection:HR)膜115の形成を実施する。HR膜115は、基板101の出射端105と反対側の端部(端面)に形成する。なお、以降では、HR膜115を形成する基板101の出射端105と反対側の端部を、後端と称する。 Next, in order to electrically insulate each region of the laser 102, EA modulator 103, semiconductor optical amplifier 104, and photodiode 107, the contact layer between the regions is removed, and then electrodes are formed in each region. . Thereafter, chipping by cleavage, formation of an anti-reflection (AR) film 114, and formation of a high reflection (HR) film 115 are performed. The HR film 115 is formed on the end (end surface) of the substrate 101 opposite to the output end 105 . Note that, hereinafter, the end of the substrate 101 on which the HR film 115 is formed, on the opposite side from the output end 105, will be referred to as the rear end.
 この光送信器は、レーザ102が一定電流で駆動され、連続波(CW)発振し、EA変調器103への印加電圧を変調することで、光吸収を変調し、光の強度を変調する強度変調を実現している。半導体光増幅器104では、吸収型のEA変調器103の挿入損失を補うため、EA変調器103の出力光を増幅する。半導体光増幅器104では、出射端105からの反射光も増幅されるため、一般的なAXELでは反射戻り光の影響を受けやすいとされている。 In this optical transmitter, a laser 102 is driven by a constant current to emit continuous wave (CW) oscillation, and by modulating the voltage applied to an EA modulator 103, the light absorption is modulated and the intensity of the light is modulated. Achieves modulation. The semiconductor optical amplifier 104 amplifies the output light of the EA modulator 103 in order to compensate for the insertion loss of the absorption type EA modulator 103. In the semiconductor optical amplifier 104, the reflected light from the output end 105 is also amplified, so it is said that a general AXEL is easily affected by the reflected return light.
 これに対し、実施の形態1では、EA変調器103と半導体光増幅器104の間に、曲げ光導波路108を挿入し、出射端105における角度を持った端面入射(斜入射)を実現している。この構成により、出射端105おける反射戻り光を、AR膜114のみの場合よりもさらに戻り光を抑制している。これに加え、出射端105の直前に、光導波路構造が水平・垂直方向ともに一定区間消失する窓構造111としており、光の拡散を利用することで戻り光のさらなる抑制を実現している。 On the other hand, in the first embodiment, a bent optical waveguide 108 is inserted between the EA modulator 103 and the semiconductor optical amplifier 104, and end face incidence (oblique incidence) with an angle at the output end 105 is realized. . With this configuration, the reflected return light at the output end 105 is suppressed more than in the case of only the AR film 114. In addition, a window structure 111 is provided immediately in front of the output end 105 in which the optical waveguide structure disappears for a certain period in both the horizontal and vertical directions, and by utilizing light diffusion, return light can be further suppressed.
 この光送信器の主たる出力光は、出射端105の前方に配置されるレンズ集光光学系やアイソレータを通過して、光ファイバへ結合される。この出力光の経時変化をモニタするためには、集光光学系の区間内に光を部分的に取り出すための光学素子を挿入することになる。近年、変調レーザを収容するパッケージの小型化が進んでおり、ファイバ結合系の物理長が短くなっている。また、光路長が伸びるとその分、高NAである出力光は広がるため結合効率が低下する。このため、上記のような、基板101の出力光が出力される側におけるモニタリング技術よりも、基板101の内部、または他の光学系がない基板101の後方でモニタする技術の方が好ましい。 The main output light of this optical transmitter passes through a lens focusing optical system and an isolator placed in front of the output end 105, and is coupled to an optical fiber. In order to monitor the change over time of this output light, an optical element for partially extracting the light is inserted within the section of the condensing optical system. In recent years, packages that accommodate modulated lasers have become smaller, and the physical length of fiber-coupled systems has become shorter. Furthermore, as the optical path length increases, the output light having a high NA spreads accordingly, resulting in a decrease in coupling efficiency. For this reason, a technique of monitoring inside the substrate 101 or behind the substrate 101 where there is no other optical system is preferable to a technique of monitoring on the side of the substrate 101 from which the output light is output, as described above.
 実施の形態1に係る光送信器は、基板101の上に、フォトダイオード107を備える。出射端105では斜入射により、AR膜114での僅かな反射光は、半導体光増幅器104とは異なる方向の基板101内に反射される。さらに窓構造111により、光が拡散しているため、例えば、基板101内にフォトダイオード(PD)の光吸収層を設けて、光吸収層における光電流をモニタとする場合、光の拡散により垂直方向では、光吸収層と拡散光の重なりが小さく吸収効率が低い。一方で、水平方向でも光が拡散するため、この拡散した光をより多く吸収するために、光吸収層の幅を拡大することになる。モニタPDでは逆バイアスが常に加えられており、暗電流がノイズとして発生する。モニタPDの領域が大領域化すると、光吸収層におけるpn接合における抵抗が低下するため、暗電流が上昇し、モニタする対象光の強度が弱いとノイズに埋もれてしまう。 The optical transmitter according to the first embodiment includes a photodiode 107 on a substrate 101. Due to oblique incidence at the output end 105, a slight amount of reflected light from the AR film 114 is reflected into the substrate 101 in a direction different from that of the semiconductor optical amplifier 104. Furthermore, since the light is diffused by the window structure 111, for example, when a light absorption layer of a photodiode (PD) is provided in the substrate 101 and the photocurrent in the light absorption layer is monitored, the light is diffused vertically. In this direction, there is little overlap between the light absorption layer and the diffused light, resulting in low absorption efficiency. On the other hand, since light is also diffused in the horizontal direction, the width of the light absorption layer is increased in order to absorb more of this diffused light. A reverse bias is always applied to the monitor PD, and dark current is generated as noise. When the area of the monitor PD becomes large, the resistance at the pn junction in the light absorption layer decreases, so the dark current increases, and if the intensity of the target light to be monitored is low, it will be buried in noise.
 これに対し、本発明では、水平方向の発散した光を集光するための集光部106を導入する。垂直方向についでは、特殊な構造を導入しようとした場合、PDの光吸収層の上下に追加の層構造を導入する必要があり結晶成長による制約を受けるため自由度が低い。これに対して、水平方向はプロセスによる形状変更が可能であるため容易である。本発明では、多モード干渉(MMI)を利用した集光部106による光集光で、基板101内での光モニタを実現する。 In contrast, in the present invention, a condensing section 106 is introduced to condense horizontally diverging light. In the vertical direction, when attempting to introduce a special structure, it is necessary to introduce an additional layer structure above and below the light absorption layer of the PD, which is constrained by crystal growth, so the degree of freedom is low. On the other hand, it is easier to change the shape in the horizontal direction because it is possible to change the shape through a process. In the present invention, optical monitoring within the substrate 101 is realized by condensing light by the condenser 106 using multimode interference (MMI).
 図1に示すように、半導体光増幅器104から出射されてAR膜114(出射端105)で反射された光131は、集光部106に入射する。これを光軸に沿って進行する光で考えると、図2A、図2Bに示すような等価な直線光学系に書き換えられる。図2Aは側面、図2Bは上面から見た状態を示している。窓構造111において光131はXY軸方向に拡散している。図2AのYZ面内では、単一モード(SM)の光導波路となる半導体光増幅器104が窓構造111の先に配置されている。例えば、これがXZ面内でも同様にSM光導波路の構造となっている。つまり2つのSM光導波路132、SM光導波路133が、窓構造111を挟んで対面している場合の光結合を考える。 As shown in FIG. 1, light 131 emitted from the semiconductor optical amplifier 104 and reflected by the AR film 114 (outgoing end 105) enters the light condensing section 106. If this is considered as light traveling along the optical axis, it can be rewritten into an equivalent linear optical system as shown in FIGS. 2A and 2B. FIG. 2A shows a side view, and FIG. 2B shows a top view. In the window structure 111, light 131 is diffused in the XY axis directions. In the YZ plane of FIG. 2A, a semiconductor optical amplifier 104 serving as a single mode (SM) optical waveguide is placed ahead of the window structure 111. For example, this also has the structure of an SM optical waveguide in the XZ plane. In other words, consider optical coupling when two SM optical waveguides 132 and 133 face each other with the window structure 111 in between.
 例えば、出射端105での反射率を100%と仮定すると、SM光導波路132から、窓構造111を経由し、対向するSM光導波路133への結合効率は、光導波路シミュレーションの結果である図3の黒四角に示すように、窓構造111の長さ(窓構造長)が10μmの場合9%である。これに対して、本発明では、図2Bのように、XZ面内では単一モード光導波路ではなく集光部106を配置し、X軸方向については集光部106における側壁による反射と光干渉により、光を集光して効率よくSM光導波路133に結合することを実現する。 For example, assuming that the reflectance at the output end 105 is 100%, the coupling efficiency from the SM optical waveguide 132 to the opposing SM optical waveguide 133 via the window structure 111 is the result of an optical waveguide simulation. As shown by the black square in , it is 9% when the length of the window structure 111 (window structure length) is 10 μm. In contrast, in the present invention, as shown in FIG. 2B, in the XZ plane, a light condensing section 106 is arranged instead of a single mode optical waveguide, and in the X-axis direction, reflection by the side wall of the condensing section 106 and optical interference are arranged. This makes it possible to condense light and efficiently couple it to the SM optical waveguide 133.
 図4は、集光部106を導入した場合の光学伝搬シミュレーションの結果を表している。このシミュレーション結果に示される光学伝搬によれば、図3の黒丸に示すように、同じ窓構造長10μmの場合、結合効率を14%まで向上させることが可能である。 FIG. 4 shows the results of an optical propagation simulation when the light condensing section 106 is introduced. According to the optical propagation shown in the simulation results, as shown by the black circles in FIG. 3, it is possible to improve the coupling efficiency to 14% for the same window structure length of 10 μm.
 ここではレーザの波長は1310nmであり、集光部106は、コア層がInGaAsP材料からなる屈折率が3.4となるパッシブ光導波路である。コア層の厚さは300nmである。一方,クラッドの材料はInPであり屈折率は3.2である。窓構造111の設計上の物理長は10μmであり、半導体光増幅器104の出射端から集光部106の開始部(入力端)までの距離は、窓構造111の長さの2倍の20μmとなる。 Here, the wavelength of the laser is 1310 nm, and the condensing section 106 is a passive optical waveguide whose core layer is made of InGaAsP material and has a refractive index of 3.4. The thickness of the core layer is 300 nm. On the other hand, the cladding material is InP and has a refractive index of 3.2. The designed physical length of the window structure 111 is 10 μm, and the distance from the output end of the semiconductor optical amplifier 104 to the start portion (input end) of the light condensing section 106 is 20 μm, which is twice the length of the window structure 111. Become.
 また、集光部106のコア層の幅は8μmであり長さは300μmである。レーザ102、EA変調器103、および半導体光増幅器104の導波路構造のメサ幅は1μmである。また、半導体光増幅器104の導波方向の出射端105の平面に対する傾きは5度である。これに対して、集光部106の導波方向の出射端105の平面に対する傾きは-10度とした。 Furthermore, the width of the core layer of the light condensing section 106 is 8 μm and the length is 300 μm. The mesa width of the waveguide structure of the laser 102, EA modulator 103, and semiconductor optical amplifier 104 is 1 μm. Further, the inclination of the output end 105 of the semiconductor optical amplifier 104 in the waveguide direction with respect to the plane is 5 degrees. On the other hand, the inclination of the output end 105 of the light condensing section 106 in the waveguide direction with respect to the plane was set to -10 degrees.
 窓構造111の長さが10μmであることから、半導体光増幅器104の出力端から出射端105まで伝搬した場合の光軸のX方向の変位は約1μmである。この箇所から、集光部106と半導体光増幅器104の光導波路が干渉しないために、集光部106の光導波路の中心はさらに4μm、X方向にオフセットさせた。このため、集光部106への光は、集光部106の中心からずれた場所より入射する。集光部106に接続する出力光導波路106aのコア幅は2.6μmである。 Since the length of the window structure 111 is 10 μm, the displacement of the optical axis in the X direction when propagating from the output end of the semiconductor optical amplifier 104 to the output end 105 is about 1 μm. In order to prevent the optical waveguides of the light collecting section 106 and the semiconductor optical amplifier 104 from interfering with each other from this point, the center of the optical waveguide of the light collecting section 106 was further offset by 4 μm in the X direction. Therefore, light enters the light condensing section 106 from a location shifted from the center of the light condensing section 106 . The core width of the output optical waveguide 106a connected to the light condensing section 106 is 2.6 μm.
 一般的に、窓構造111の製造上の長さは、へき開の傾き精度によって決まる。実際には、数μm程度、窓構造111の長さが変動する。製造の結果、窓構造111が設計より短くなった場合は、図4が示す結果では、SM光導波路対向では結合効率が改善する。窓構造長が8μmよりも短い場合、SM光導波路対向の方が本発明よりも結合効率が高くなる。しかし、窓構造111が短くなることは、半導体光増幅器104に対しては、戻り光の抑制が弱くなるため、好ましくない。 Generally, the manufacturing length of the window structure 111 is determined by the precision of the cleavage inclination. In reality, the length of the window structure 111 varies by about several μm. If the window structure 111 is made shorter than the design as a result of manufacturing, the results shown in FIG. 4 show that the coupling efficiency improves when the SM optical waveguides are opposed to each other. When the window structure length is shorter than 8 μm, the coupling efficiency of the SM optical waveguides facing each other is higher than that of the present invention. However, it is not preferable for the window structure 111 to become short because it weakens the suppression of return light for the semiconductor optical amplifier 104.
 一方で、窓構造111が長くなる場合、結合効率はSM光導波路対向では指数関数的に低下しているのに対し、集光部106を導入した本発明の構造では、結合効率は放物線状に変化することが示されている。このため、集光部106を備える方が、製造ばらつきに対して高いトレランスを有することがわかる。集光部106の出力光導波路106aの先に、光導波路構造となっているフォトダイオード107が光学的に接続されている。 On the other hand, when the window structure 111 becomes longer, the coupling efficiency decreases exponentially when facing the SM optical waveguide, whereas in the structure of the present invention in which the light condensing section 106 is introduced, the coupling efficiency decreases parabolically. has been shown to change. Therefore, it can be seen that the provision of the light condensing section 106 has higher tolerance to manufacturing variations. A photodiode 107 having an optical waveguide structure is optically connected to the tip of the output optical waveguide 106a of the light condensing section 106.
 フォトダイオード107の光吸収層はEA変調器103の光吸収層、もしくはレーザ102、半導体光増幅器104の活性層を、これらのメサ加工プロセスの際に残留させることで、追加のプロセスを必要とせずに作製可能である。 The light absorption layer of the photodiode 107 can be formed by leaving the light absorption layer of the EA modulator 103 or the active layer of the laser 102 or semiconductor optical amplifier 104 during these mesa processing processes, thereby eliminating the need for additional processes. It can be made to
 集光部106における光導波路構造(メサ構造)については、レーザ102、EA変調器103、半導体光増幅器104のハイメサの埋め込み工程のあとに、別途の追加のドライエッチングを行うことで形成することができる。集光部106における光導波路構造(メサ構造)は、埋め込みを行わず、水平方向については保護層を介した空気と半導体との界面による光閉じ込めを実現している。なお、フォトダイオード107については、いわゆるリッジ光導波路構造とすることも可能である。 The optical waveguide structure (mesa structure) in the condensing section 106 can be formed by performing additional dry etching after the high mesa embedding process of the laser 102, EA modulator 103, and semiconductor optical amplifier 104. can. The optical waveguide structure (mesa structure) in the light condensing section 106 is not buried, and in the horizontal direction, optical confinement is achieved by the interface between air and the semiconductor via the protective layer. Note that the photodiode 107 can also have a so-called ridge optical waveguide structure.
 集光部106により集光された光が、フォトダイオード107ですべて吸収されることが理想的である。しかし残留光については、フォトダイオード107の出力側に設ける窓構造112、およびエッチングより形成される切欠き109の斜めの側面により反射光を抑制する。切欠き109は、図1に示すように、基板101のHR膜115が形成される後端から離れた場所にあることが好ましい。これは、切欠き109の斜めの側面にHR膜が形成されることを防ぐためである。 Ideally, all of the light focused by the light focusing section 106 is absorbed by the photodiode 107. However, as for residual light, reflected light is suppressed by the window structure 112 provided on the output side of the photodiode 107 and the oblique side surfaces of the notch 109 formed by etching. As shown in FIG. 1, the notch 109 is preferably located at a location away from the rear end of the substrate 101 where the HR film 115 is formed. This is to prevent the HR film from being formed on the oblique sides of the notch 109.
[実施の形態2]
 次に、本発明の実施の形態2に係る光送信器について、図5を参照して説明する。この光送信器は、基板101の上に形成された導波路型のレーザ102と、EA変調器103と、導波路型の半導体光増幅器104とを備える。また、EA変調器103と半導体光増幅器104とを光学的に接続する曲げ光導波路108を備える。また、基板101の出射端105には、AR膜114が形成され、基板101の後端には、HR膜115が形成され、また、基板101の出射端105の手前に、窓構造111を備える。また、集光部106(出力光導波路106a)、および切欠き109を備える。これらは、前述した実施の形態1と同様である。
[Embodiment 2]
Next, an optical transmitter according to Embodiment 2 of the present invention will be described with reference to FIG. 5. This optical transmitter includes a waveguide type laser 102 formed on a substrate 101, an EA modulator 103, and a waveguide type semiconductor optical amplifier 104. It also includes a bent optical waveguide 108 that optically connects the EA modulator 103 and the semiconductor optical amplifier 104. Further, an AR film 114 is formed on the output end 105 of the substrate 101, an HR film 115 is formed on the rear end of the substrate 101, and a window structure 111 is provided in front of the output end 105 of the substrate 101. . It also includes a light condensing section 106 (output optical waveguide 106a) and a notch 109. These are the same as in the first embodiment described above.
 実施の形態2は、集光部106により集光され、出力光導波路106aを導波し、窓構造112を通過して切欠き109の斜めの側面より出射した外部出力光134をモニタするフォトダイオード107’を備える。 Embodiment 2 is a photodiode that monitors external output light 134 that is collected by a light collection unit 106, guided through an output optical waveguide 106a, passed through a window structure 112, and exited from an oblique side surface of a notch 109. 107'.
 例えば、基板101は、平面視矩形に形成することができ、基板101の中央より平面視矩形の基板101の一端側(出射端105)の辺に接する一方の辺(図1の紙面の上側の辺)の側に、レーザ102、EA変調器103、半導体光増幅器104を配置することができる。また、基板101の中央より平面視矩形の基板101の一端側(出射端105)の辺に接する他方の辺(図1の紙面の下側の辺)の側に、集光部106を配置することができる。この構成において、他方の辺の基板101の端部の、集光部106(出力光導波路106a)の光出射側となる箇所に、切欠き109が形成できる。 For example, the substrate 101 can be formed into a rectangular shape in plan view, with one side (on the upper side of the paper in FIG. A laser 102, an EA modulator 103, and a semiconductor optical amplifier 104 can be arranged on the side (side). Further, the light condensing unit 106 is arranged on the other side (the lower side of the paper in FIG. 1) that is in contact with the side of one end (output end 105) of the rectangular substrate 101 in plan view from the center of the substrate 101. be able to. In this configuration, a notch 109 can be formed at the end of the substrate 101 on the other side at a location on the light output side of the light condensing section 106 (output optical waveguide 106a).
[実施の形態3]
 次に、本発明の実施の形態3に係る光送信器について、図6を参照して説明する。この光送信器は、基板101の上に形成された導波路型のレーザ102と、EA変調器103と、導波路型の半導体光増幅器104とを備える。また、EA変調器103と半導体光増幅器104とを光学的に接続する曲げ光導波路108を備える。また、基板101の出射端105には、AR膜114が形成され、基板101の後端には、HR膜115が形成され、また、基板101の出射端105の手前に、窓構造111を備える。また、集光部106(出力光導波路106a)を備える。これらは、前述した実施の形態1と同様である。
[Embodiment 3]
Next, an optical transmitter according to Embodiment 3 of the present invention will be described with reference to FIG. 6. This optical transmitter includes a waveguide type laser 102 formed on a substrate 101, an EA modulator 103, and a waveguide type semiconductor optical amplifier 104. It also includes a bent optical waveguide 108 that optically connects the EA modulator 103 and the semiconductor optical amplifier 104. Further, an AR film 114 is formed on the output end 105 of the substrate 101, an HR film 115 is formed on the rear end of the substrate 101, and a window structure 111 is provided in front of the output end 105 of the substrate 101. . It also includes a light condensing section 106 (output optical waveguide 106a). These are the same as in the first embodiment described above.
 実施の形態3では、集光部106が集光した集光光をモニタするフォトダイオード107の出射光が、基板101の後端(端部)の辺に対して垂直に入射する構成としている。例えば、出力光導波路106aに、曲げ部161を設け、基板101の平面に平行な面内で、出力光導波路106aの導波方向を、基板101の後端の辺に対して垂直な方向に変更することで、上述した構成とすることができる。 In the third embodiment, the configuration is such that the light emitted from the photodiode 107 that monitors the condensed light condensed by the condensing section 106 is incident perpendicularly to the side of the rear end (end) of the substrate 101. For example, the output optical waveguide 106a is provided with a bent portion 161, and the waveguide direction of the output optical waveguide 106a is changed in a plane parallel to the plane of the substrate 101 to a direction perpendicular to the rear end side of the substrate 101. By doing so, the above-mentioned configuration can be achieved.
 この構成では、フォトダイオード107で吸収されずに出射した光が、基板101の後端のHR膜115で反射され、フォトダイオード107に戻される。HR膜115で反射してフォトダイオード107に戻された光は、再度、フォトダイオード107に吸収させることができる。これにより、フォトダイオード107の吸収長を、例えば半分にすることができ、暗電流を抑制することが可能である。 In this configuration, light emitted without being absorbed by the photodiode 107 is reflected by the HR film 115 at the rear end of the substrate 101 and returned to the photodiode 107. The light reflected by the HR film 115 and returned to the photodiode 107 can be absorbed by the photodiode 107 again. Thereby, the absorption length of the photodiode 107 can be halved, for example, and dark current can be suppressed.
 以上に説明したように、本発明によれば、半導体光増幅器から出力されて、出射端で基板の側に反射した反射光を集光する集光部を備えるので、変調器、半導体光増幅器を集積したレーザの前方出力をモニタするためのPDを、設計に制約を受けることなく設けることができるようになる。 As described above, according to the present invention, the light condensing section that condenses the reflected light that is output from the semiconductor optical amplifier and reflected on the substrate side at the output end, allows the modulator and the semiconductor optical amplifier to It becomes possible to provide a PD for monitoring the forward output of the integrated laser without being restricted by the design.
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 It should be noted that the present invention is not limited to the embodiments described above, and many modifications and combinations can be made within the technical idea of the present invention by those having ordinary knowledge in this field. That is clear.
 101…基板、102…レーザ、103…電界吸収型変調器(EA変調器)、104…半導体光増幅器、105…出射端、106…集光部、106a…出力光導波路、107…フォトダイオード、108…曲げ光導波路、109…切欠き、111…窓構造、112…窓構造、114…反射防止(AR)膜、115…反射(HR)膜115。 DESCRIPTION OF SYMBOLS 101... Substrate, 102... Laser, 103... Electro-absorption modulator (EA modulator), 104... Semiconductor optical amplifier, 105... Outgoing end, 106... Condensing part, 106a... Output optical waveguide, 107... Photodiode, 108 ...Bent optical waveguide, 109...Notch, 111...Window structure, 112...Window structure, 114...Anti-reflection (AR) film, 115...Reflection (HR) film 115.

Claims (6)

  1.  基板の上に形成された導波路型のレーザと、
     導波方向に前記レーザに連続して前記基板の上に形成された導波路型の電界吸収型変調器と、
     前記基板の上に形成されて前記電界吸収型変調器から出力した出力光を増幅する導波路型の半導体光増幅器と、
     前記基板の一端側に形成され、前記半導体光増幅器から出力した出力光が出射される出射端と、
     前記基板の上に形成され、前記出射端で前記基板の側に反射した反射光を、多モード干渉により集光する集光部と、
     前記集光部が集光した集光光をモニタするフォトダイオードと
     を備え、
     前記半導体光増幅器から出力した出力光は、前記出射端に対して斜めに入射する
     ことを特徴とする光送信器。
    A waveguide type laser formed on a substrate,
    a waveguide-type electroabsorption modulator formed on the substrate in succession to the laser in the waveguide direction;
    a waveguide type semiconductor optical amplifier formed on the substrate and amplifying the output light output from the electroabsorption modulator;
    an output end formed on one end side of the substrate, from which output light output from the semiconductor optical amplifier is output;
    a condensing section formed on the substrate and condensing reflected light reflected toward the substrate at the output end by multimode interference;
    and a photodiode for monitoring the condensed light condensed by the condensing section,
    An optical transmitter characterized in that the output light output from the semiconductor optical amplifier is incident obliquely to the output end.
  2.  請求項1記載の光送信器において、
     前記フォトダイオードは、導波路型とされ、前記集光部から見て、前記出射端の反対側の領域の前記基板の上に形成されていることを特徴とする光送信器。
    The optical transmitter according to claim 1,
    The optical transmitter is characterized in that the photodiode is of a waveguide type and is formed on the substrate in a region opposite to the output end when viewed from the light condensing section.
  3.  請求項2記載の光送信器において、
     前記基板は、平面視矩形に形成され、
     前記基板の中央より平面視矩形の前記基板の一端側の辺に接する一方の辺の側に、前記レーザ、前記電界吸収型変調器、前記半導体光増幅器が配置され、
     前記基板の中央より平面視矩形の前記基板の一端側の辺に接する他方の辺の側に、前記集光部が配置され、
     前記他方の辺の前記基板の端部において、前記フォトダイオードの光出射側となる箇所に形成された切欠きを備えることを特徴とする光送信器。
    The optical transmitter according to claim 2,
    The substrate is formed into a rectangular shape in plan view,
    The laser, the electroabsorption modulator, and the semiconductor optical amplifier are arranged on one side of the substrate that is in contact with one end side of the substrate that is rectangular in plan view from the center of the substrate,
    The light condensing portion is disposed on the other side of the substrate that is in contact with one end side of the substrate that is rectangular in plan view from the center of the substrate,
    An optical transmitter comprising: a notch formed at an end of the substrate on the other side at a location on a light output side of the photodiode.
  4.  請求項2記載の光送信器において、
     前記基板の前記出射端と反対側の端部に形成された反射膜を備え、
     前記フォトダイオードの出射光は、前記端部に対して垂直に入射する
     ことを特徴とする光送信器。
    The optical transmitter according to claim 2,
    a reflective film formed on an end of the substrate opposite to the output end;
    An optical transmitter, wherein the light emitted from the photodiode is incident perpendicularly to the end.
  5.  請求項1記載の光送信器において、
     前記基板は、平面視矩形に形成され、
     前記基板の中央より平面視矩形の前記基板の一端側の辺に接する一方の辺の側に、前記レーザ、前記電界吸収型変調器、前記半導体光増幅器が配置され、
     前記基板の中央より平面視矩形の前記基板の一端側の辺に接する他方の辺の側に、前記集光部が配置され、
     前記他方の辺の前記基板の端部において、前記集光部の光出射側となる箇所に形成された切欠きを備えることを特徴とする光送信器。
    The optical transmitter according to claim 1,
    The substrate is formed into a rectangular shape in plan view,
    The laser, the electroabsorption modulator, and the semiconductor optical amplifier are arranged on one side of the substrate that is in contact with one end side of the substrate that is rectangular in plan view from the center of the substrate,
    The light condensing portion is arranged on the other side of the substrate that is in contact with one end side of the rectangular substrate in plan view from the center of the substrate,
    An optical transmitter comprising: a notch formed at an end of the substrate on the other side at a location on a light output side of the light condensing section.
  6.  請求項1~5のいずれか1項に記載の光送信器において、
     前記電界吸収型変調器と前記半導体光増幅器とを光学的に接続し、前記半導体光増幅器から出力した出力光を、前記出射端に対して斜めに入射するための曲げ光導波路を備えることを特徴とする光送信器。
    The optical transmitter according to any one of claims 1 to 5,
    It is characterized by comprising a bent optical waveguide for optically connecting the electro-absorption modulator and the semiconductor optical amplifier, and for making the output light output from the semiconductor optical amplifier obliquely incident on the output end. An optical transmitter.
PCT/JP2022/029294 2022-07-29 2022-07-29 Optical transmitter WO2024024086A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029294 WO2024024086A1 (en) 2022-07-29 2022-07-29 Optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029294 WO2024024086A1 (en) 2022-07-29 2022-07-29 Optical transmitter

Publications (1)

Publication Number Publication Date
WO2024024086A1 true WO2024024086A1 (en) 2024-02-01

Family

ID=89705908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029294 WO2024024086A1 (en) 2022-07-29 2022-07-29 Optical transmitter

Country Status (1)

Country Link
WO (1) WO2024024086A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135381A1 (en) * 2016-02-04 2017-08-10 日本電信電話株式会社 Optical transmitter and light intensity monitoring method
WO2019059066A1 (en) * 2017-09-19 2019-03-28 日本電信電話株式会社 Semiconductor optical integrated element
WO2021097560A1 (en) * 2019-11-18 2021-05-27 Electrophotonic-Ic Inc. Vertically integrated electro-absorption modulated lasers and methods of fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135381A1 (en) * 2016-02-04 2017-08-10 日本電信電話株式会社 Optical transmitter and light intensity monitoring method
WO2019059066A1 (en) * 2017-09-19 2019-03-28 日本電信電話株式会社 Semiconductor optical integrated element
WO2021097560A1 (en) * 2019-11-18 2021-05-27 Electrophotonic-Ic Inc. Vertically integrated electro-absorption modulated lasers and methods of fabrication

Similar Documents

Publication Publication Date Title
EP0602873B1 (en) Optical switching array using semiconductor amplifier waveguides
US7424041B2 (en) Wide tuneable laser sources
US9088132B2 (en) Semiconductor optical element, integrated semiconductor optical element, and semiconductor optical element module
JP3244115B2 (en) Semiconductor laser
US20100142885A1 (en) Optical module
JP3244116B2 (en) Semiconductor laser
JP5545847B2 (en) Optical semiconductor device
US7466736B2 (en) Semiconductor laser diode, semiconductor optical amplifier, and optical communication device
JP6717733B2 (en) Semiconductor optical integrated circuit
US7277462B2 (en) Wide tuneable laser sources
JP2011233829A (en) Integrated semiconductor optical element and integrated semiconductor optical element module
JP3284994B2 (en) Semiconductor optical integrated device and method of manufacturing the same
US5239600A (en) Optical device with an optical coupler for effecting light branching/combining by splitting a wavefront of light
JP2019008179A (en) Semiconductor optical element
US5321714A (en) Reflection suppression in semiconductor diode optical switching arrays
US20030064537A1 (en) Semiconductor laser device and method for effectively reducing facet reflectivity
JP2015065406A (en) Wavelength variable light source and wavelength variable light source module
WO2024024086A1 (en) Optical transmitter
JP2003078209A (en) Optical semiconductor device
US6865205B2 (en) Semiconductor laser
JP2011258785A (en) Optical waveguide and optical semiconductor device using it
JP3245940B2 (en) Semiconductor optical integrated device
US20040001243A1 (en) Semiconductor optical modulator and semiconductor optical device
JPH11103126A (en) Semiconductor optical element and its manufacture
WO2021148120A1 (en) Single-mode dfb laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953174

Country of ref document: EP

Kind code of ref document: A1