WO2024024078A1 - Solenoid control device - Google Patents

Solenoid control device Download PDF

Info

Publication number
WO2024024078A1
WO2024024078A1 PCT/JP2022/029265 JP2022029265W WO2024024078A1 WO 2024024078 A1 WO2024024078 A1 WO 2024024078A1 JP 2022029265 W JP2022029265 W JP 2022029265W WO 2024024078 A1 WO2024024078 A1 WO 2024024078A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
movable magnetic
coil
opposing
solenoid
Prior art date
Application number
PCT/JP2022/029265
Other languages
French (fr)
Japanese (ja)
Inventor
峻輔 山田
新太 中島
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to PCT/JP2022/029265 priority Critical patent/WO2024024078A1/en
Publication of WO2024024078A1 publication Critical patent/WO2024024078A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings

Definitions

  • the present disclosure relates to a solenoid control device.
  • Patent Document 1 discloses a method of suppressing the rotation of a motor that drives an electric pressing device using a solenoid.
  • a solenoid generates power by passing current through a coil to magnetize a fixed magnetic pole and attracting a movable magnetic pole. If a solenoid continues to apply current to the coil, it will continue to accelerate the movable magnetic pole, causing the movable magnetic pole to collide with the fixed magnetic pole, resulting in a loud collision noise.
  • the present disclosure was completed based on the above-mentioned circumstances, and an object of the present disclosure is to provide a solenoid control device that can perform control while suppressing loud noises from the solenoid.
  • the solenoid control device of the present disclosure includes: A solenoid control device that controls a solenoid that has a coil, a movable magnetic pole part, and a facing part, and in which the movable magnetic pole part is displaced so as to move in a direction toward the facing part and in a direction away from the facing part. There it is, comprising a control unit that controls the current flowing through the coil, The control unit adjusts the current flowing through the coil so that the value of the current flowing through the coil gradually increases during an initial period until the movable magnetic pole part starts moving in a direction away from the opposing part. Execute climb control.
  • control can be performed to suppress generation of loud noise from the solenoid.
  • FIG. 1 is a schematic diagram showing the configuration of a solenoid control device according to a first embodiment and a solenoid to be controlled.
  • FIG. 2 is a schematic diagram of the solenoid according to the first embodiment, showing a state in which the movable magnetic pole part is attracted to the first opposing part.
  • FIG. 3 is a schematic diagram of the solenoid according to the first embodiment, showing a state in which the movable magnetic pole part is attracted to the second opposing part.
  • FIG. 4 shows the magnitude of the current flowing through the coil when the movable magnetic pole part is attracted to the first opposing part, the amount of displacement of the movable magnetic pole part ascertained by the calculation unit, and the drive input from the external ECU to the control unit.
  • FIG. 5 is a timing chart showing changes in signals.
  • FIG. 5 shows the magnitude of the current flowing through the coil when the movable magnetic pole part is attracted to the second opposing part, the amount of displacement of the movable magnetic pole part ascertained by the calculation unit, and the drive input from the external ECU to the control unit.
  • FIG. 6 is a schematic diagram showing the configuration of a solenoid control device according to the second embodiment and a solenoid to be controlled.
  • FIG. 7 is a schematic diagram of the solenoid according to the second embodiment, showing a state in which the movable magnetic pole main body is farthest from the first opposing portion.
  • FIG. 8 is a schematic diagram of the solenoid according to the second embodiment, showing a state in which the movable magnetic pole main body is attracted to the first opposing part.
  • FIG. 9 shows the magnitude of the current flowing through the coil in the state where the movable magnetic pole body is the farthest away from the first opposing part, the amount of displacement of the movable magnetic pole body detected by the calculation unit, and input from the external ECU to the control unit.
  • 3 is a timing chart showing changes in a drive signal.
  • FIG. 10 shows the magnitude of the current flowing through the coil when the movable magnetic pole body is attracted to the first opposing part, the amount of displacement of the movable magnetic pole body detected by the calculation unit, and input from the external ECU to the control unit.
  • 3 is a timing chart showing changes in a drive signal.
  • the solenoid control device of the present disclosure includes a coil, a movable magnetic pole portion, and an opposing portion, and includes a solenoid in which the movable magnetic pole portion is displaced so as to move in a direction toward the opposing portion and a direction away from the opposing portion. Controlled.
  • This solenoid control device includes a control section that controls the current flowing through the coil.
  • the control unit executes current increase control to adjust the current flowing through the coil so that the value of the current flowing through the coil gradually increases during an initial period until the movable magnetic pole part starts moving in a direction away from the opposing part. .
  • the solenoid control device of [1] above can avoid rapid acceleration of the movable magnetic pole portion.
  • the solenoid control device of [1] above may include a detection unit that detects the start of movement of the movable magnetic pole portion.
  • the initial period is from the time when current supply to the coil is started until the time when the detection section detects the start of movement of the movable magnetic pole section, and the control section can execute current increase control during the initial period.
  • the solenoid control device in [2] above is configured to perform current increase control in the initial period, the control unit reliably separates and executes current control in the initial period and the period after the initial period. be able to.
  • FIG. 1 illustrates a solenoid control system 100 provided with a solenoid control device 170 according to the first embodiment.
  • the solenoid control system 100 is a system in which a solenoid control device 170 controls the operation of the solenoid 130.
  • the solenoid 130 is provided in a vehicle and functions as an actuator.
  • the solenoid control system 100 includes a solenoid 130 and a solenoid control device 170.
  • the solenoid control device 170 includes a detection section 75 and a control section 172.
  • the object to be controlled by the solenoid control device 170 is the solenoid 130 .
  • the solenoid 130 includes a coil 31, a facing portion 133, a movable magnetic pole portion 132, and a rod 35. Current is supplied to the coil 31 from the switching section 74. Solenoid 130 is an object to be controlled by solenoid control device 170.
  • the facing part 133 has a first facing part 133A and a second facing part 133B.
  • the first opposing portion 133A is arranged in an annular shape around the axis R at one end of the coil 31.
  • the first opposing portion 133A is arranged at one end of the coil 31 and is fixed to the coil 31. In other words, the first opposing portion 133A is a fixed magnetic pole.
  • a portion of the first opposing portion 133A is disposed within the coil 31.
  • the first opposing portion 133A is made of a magnetic material.
  • the second opposing portion 133B is arranged in an annular shape around the axis R at the other end of the coil 31.
  • the second opposing portion 133B is arranged at the other end of the coil 31 and is fixed to the coil 31.
  • the second opposing portion 133B is a fixed magnetic pole.
  • a portion of the second opposing portion 133B is disposed within the coil 31.
  • the second opposing portion 133B is made of a magnetic material.
  • 133 A of 1st opposing parts and the 2nd opposing part 133B are spaced apart.
  • the first opposing portion 133A and the second opposing portion 133B have the same form.
  • the first opposing portion 133A and the second opposing portion 133B become magnetic when a movable magnetic pole portion 132 (described later) comes into contact with them and a permanent magnet 132A approaches them.
  • a movable magnetic pole portion 132 (described later) comes into contact with them and a permanent magnet 132A approaches them.
  • the permanent magnet 132A on the first opposing part 133A side causes the first opposing part 133A to have an S pole in the region on one end side in the axis R direction and an S pole in the axis R direction.
  • the region on the other end side becomes the N pole.
  • the permanent magnet 132A on the second facing part 133B side causes the second facing part 133B to have a north pole in one end region in the axis R direction and a north pole in the other end region in the axis R direction.
  • the region on the end side becomes the south pole.
  • the movable magnetic pole portion 132 is arranged in a ring shape around the axis R.
  • the movable magnetic pole portion 132 is made of a magnetic material.
  • the movable magnetic pole portion 132 is disposed within the coil 31 between the first opposing portion 133A and the second opposing portion 133B.
  • the movable magnetic pole part 132 is arranged to be movable in the direction of the axis R.
  • a pair of permanent magnets 132A are provided within the movable magnetic pole portion 132.
  • One permanent magnet 132A is arranged at one end of the movable magnetic pole part 132 facing the first facing part 133A and the other end facing the second facing part 133B.
  • One end and the other end of the movable magnetic pole part 132 are predetermined parts of the movable magnetic pole part 132. That is, the first opposing portion 133A and the second opposing portion 133B are arranged with a predetermined portion of the movable magnetic pole portion 132 interposed therebetween.
  • These permanent magnets 132A are arranged such that their two magnetic poles (S pole and N pole) are lined up in the axis R direction. Furthermore, these permanent magnets 132A are arranged with the same magnetic poles facing each other. For example, these permanent magnets 132A are arranged inward so that their north poles face each other, and are arranged outward so that their south poles face oppositely to each other in the axis R direction.
  • the movable magnetic pole part 132 is held by the permanent magnet 132A in a state where it is magnetically attracted to either the first facing part 133A or the second facing part 133B.
  • Ru the permanent magnet 132A may be placed outside the movable magnetic pole portion 132.
  • a configuration can be considered in which the first opposing portion 133A and the second opposing portion 133B are provided.
  • the movable magnetic pole portion 132, the first opposing portion 133A, and the second opposing portion 133B become magnetic due to the magnetic field generated in the coil 31.
  • the opposite direction Pd1 a current flows in the coil 31 in the direction Pd1 opposite to the predetermined direction (hereinafter also simply referred to as the opposite direction Pd1)
  • the movable magnetic pole part 132, the first opposing part 133A, and the second opposing part 133B move in the direction of the axis R.
  • the region on one end side becomes the north pole, and the region on the other end side in the direction of the axis R becomes the south pole (see FIG. 2).
  • the first opposing portion 133A repels the permanent magnet 132A on the one end side of the movable magnetic pole portion 132.
  • the second opposing portion 133B attracts the permanent magnet 132A on the other end side of the movable magnetic pole portion 132. Then, the movable magnetic pole part 132 is repelled by the first opposing part 133A, is attracted to the second opposing part 133B, and moves toward the second opposing part 133B.
  • the solenoid 130 is configured such that in response to the current flowing in the opposite direction Pd1 through the coil 31, a force is applied to the movable magnetic pole part in a direction that causes the other end (predetermined part) of the movable magnetic pole part 132 to approach the second opposing part 133B. 132.
  • the movable magnetic pole part 132, the first opposing part 133A, and the second opposing part 133B have an S pole in the region on one end side in the axis R direction, and The region on the other end side becomes the north pole (see FIG. 3). Since one end side of the second opposing portion 133B becomes the S pole, the second opposing portion 133B repels the permanent magnet 132A on the other end side of the movable magnetic pole portion 132. On the other hand, since the other end side of the first opposing part 133A becomes the north pole, the first opposing part 133A attracts the permanent magnet 132A on the one end side of the movable magnetic pole part 132.
  • the movable magnetic pole part 132 is repelled by the second facing part 133B, is attracted to the first facing part 133A, and moves toward the first facing part 133A.
  • the solenoid 130 applies a force to the movable magnetic pole portion 132 in a direction that causes one end (predetermined portion) of the movable magnetic pole portion 132 to approach the first opposing portion 133A in response to the current flowing in the predetermined direction Pd2 through the coil 31.
  • the movable magnetic pole part 132 moves in the direction approaching the facing part 133 and in the direction away from the facing part 133 (in one direction and the other direction of the axis R) within the coil 31, depending on the direction of the current flowing through the coil 31.
  • the predetermined direction Pd2 here is a direction from one end of the coil 31 to the other end, and is a direction from the first connection point Cp1 of the switching section 74 to the second connection point Cp2 via the coil 31.
  • the reverse direction Pd1 is a direction from the other end of the coil 31 to one end, and is a direction from the second connection point Cp2 of the switching section 74 to the first connection point Cp1 via the coil 31.
  • the movable magnetic pole portion 132 is disposed integrally connected to the central portion of the rod 35 in the longitudinal direction.
  • the rod 35 is movable in the direction of the axis R together with the movable magnetic pole part 132.
  • One end of the rod 35 protrudes to the outside of the coil 31 regardless of the position of the movable magnetic pole part 132 within the coil 31.
  • a permanent magnet 35A is attached to one end of the rod 35 that projects outward from one end of the coil 31.
  • the switching unit 74 supplies a DC current supplied from a power supply unit 90, which is a DC power source, to the coil 31 so as to flow in either the opposite direction Pd1 or the predetermined direction Pd2.
  • the switching unit 74 includes a first switch element 74A, a second switch element 74B, a third switch element 74C, and a fourth switch element 74D (hereinafter also referred to as switch elements 74A, 74B, 74C, and 74D) connected in a full bridge. It has a configuration.
  • MOSFETs Metal Oxide Semiconductor Field Effect Transistors
  • the first switch element 74A and the second switch element 74B are connected in series between the conductive path 91 that inputs the input voltage to the switching section 74 and the reference conductive path 92, and are electrically connected to each other at the first connection point Cp1. is connected to.
  • the third switch element 74C and the fourth switch element 74D are connected in series between the conductive path 91 and the reference conductive path 92, and are electrically connected to each other at the second connection point Cp2.
  • One end of the coil 31 is electrically connected to the first connection point Cp1.
  • the other end of the coil 31 is electrically connected to the second connection point Cp2.
  • the detection unit 75 includes a detection unit 71 and a calculation unit 172A provided in the control unit 172.
  • the calculation unit 172A is configured to be able to calculate the magnitude and direction of the magnetism of the permanent magnet 35A of the rod 35 detected by the detection unit 71 by dividing it into three mutually orthogonal directions.
  • the calculation unit 172A is configured to be able to calculate the amount of change in the magnetic magnitude and direction of the permanent magnet 35A detected by the detection unit 71 at predetermined time intervals.
  • the calculation unit 172A calculates the magnitude and direction of the magnetism detected by the detection unit 71 by dividing it into three mutually orthogonal directions, and based on the amount of change in these, the rod 35 provided with the permanent magnet 35A moves.
  • the detection unit 71 detects the amount of change in the magnetic magnitude and direction of the permanent magnet 35A as zero. Further, when the rod 35 moves, the detection unit 71 detects the amount of change in the magnetic magnitude and direction of the permanent magnet 35A as a non-zero value. For example, the detection unit 75 detects the start of movement of the movable magnetic pole portion 132 by detecting that the amount of displacement changes from 0 to a non-zero value.
  • a predetermined movement threshold Vth is stored as a fixed value in the ROM 172B of the control unit 172.
  • the control unit 172 is configured to be able to determine whether or not the rod 35 is moving based on the amount of change in the magnetic magnitude and direction of the permanent magnet 35A detected by the detection unit 71 and the movement threshold Vth. ing. For example, the control unit 172 determines that the rod 35 has not moved when the amount of change is less than or equal to the movement threshold Vth, and determines that the rod 35 has not moved when the amount of change is greater than the movement threshold Vth. It is determined that there is.
  • the control unit 172 is configured to output a drive signal Ds1 to the switching unit 74 when a drive command signal C1 is input from an external ECU (not shown) or the like.
  • the drive signal Ds1 is PWM with a duty that causes a current in the opposite direction Pd1 to flow through the coil 31.
  • the control section 172 outputs the drive signal Ds1 to the switching section 74, the on/off operation of each switch element 74A, 74B, 74C, 74D of the switching section 74 is controlled, and a current in the opposite direction Pd1 flows through the coil 31.
  • the control unit 172 is configured to output a drive signal Ds2 to the switching unit 74 when the drive command signal C2 is input from an external ECU (not shown) or the like.
  • the drive signal Ds2 is a PWM duty signal that causes a current to flow in a predetermined direction Pd2 through the coil 31.
  • the control section 172 outputs the drive signal Ds2 to the switching section 74, the on/off operation of each switch element 74A, 74B, 74C, 74D of the switching section 74 is controlled, and a current flows in the coil 31 in a predetermined direction Pd2. In this way, the control unit 172 controls the current flowing through the coil 31.
  • the control unit 172 receives the drive command signal C1 or C2 until the movable magnetic pole part 132 moves in a direction away from the facing part 133 (either the first facing part 133A or the second facing part 133B).
  • current increase control is executed.
  • the current increase control is a control that adjusts the current flowing through the coil 31 so that the current flowing through the coil 31 gradually increases at a constant rate.
  • Gradually increasing at a constant rate means, for example, that the current increase amount ⁇ I of a predetermined magnitude increases every unit time.
  • the magnetic strength of the movable magnetic pole section 132, the first opposing section 133A, and the second opposing section 133B gradually increases at a constant rate in proportion to this. becomes larger.
  • the initial period is a period during which the arithmetic unit 172A determines that the rod 35 is not moving. This is until the start is detected.
  • the magnitude (N1 (A)) of the current flowing through the coil 31 is such that the magnetism imparted to the first opposing portion 133A by the coil 31 does not repel the magnetic force of the permanent magnet 132A on the side closer to the first opposing portion 133A.
  • the size is such that the facing portion 133A and the movable magnetic pole portion 132 are kept attracted to each other by the magnetic force of the permanent magnet 132A.
  • control unit 172 continues adjusting the drive signal Ds1 so that the magnitude of the current flowing through the coil 31 gradually increases at a constant rate.
  • the magnitude of the current flowing through the coil 31 gradually increases from N1 (A) at a constant rate.
  • the magnetism of the movable magnetic pole portion 132 gradually increases at a constant rate. Then, at time T2, the magnitude of the current flowing through the coil 31 becomes N2 (A), and the magnetism of the first opposing part 133A at this time is repelled by the magnetic force of the permanent magnet 132A on the side closer to the first opposing part 133A. It will be the size that it will be. Then, the movable magnetic pole part 132 is repelled by the first facing part 133A, is attracted to the second facing part 133B, and starts moving toward the second facing part 133B.
  • the detection section 75 detects that the movable magnetic pole section 132 has started moving toward the second opposing section 133B. Then, the control unit 172 ends the current increase control based on the detection result of the detection unit 75.
  • the period from time T1 to time T2 is an initial period.
  • control unit 172 can perform a different type of current control that is different from the current increase control. For example, a method may be considered in which the magnitude of the current flowing through the coil 31 is controlled so that the movable magnetic pole part 132 does not accelerate excessively toward the second opposing part 133B. The movable magnetic pole part 132 is attracted to the second opposing part 133B by the magnetic force of the permanent magnet 132A.
  • the magnitude of the current flowing through the coil 31 (N3(A)) is such that the magnetism imparted to the second opposing portion 133B by the coil 31 does not repel the magnetic force of the permanent magnet 132A on the side closer to the second opposing portion 133B.
  • the size is such that the facing portion 133B and the movable magnetic pole portion 132 are kept attracted to each other by the magnetic force of the permanent magnet 132A.
  • control unit 172 continues adjusting the drive signal Ds2 so that the magnitude of the current flowing through the coil 31 gradually increases at a constant rate.
  • the control unit 172 continues adjusting the drive signal Ds2 so that the magnitude of the current flowing through the coil 31 gradually increases at a constant rate.
  • the magnitude of the current flowing through the coil 31 gradually increases from N3(A) at a constant rate.
  • the magnetism of the movable magnetic pole portion 132 gradually increases at a constant rate. Then, at time T4, the magnitude of the current flowing through the coil 31 becomes N4 (A), and the magnetism of the second opposing part 133B at this time is repelled by the magnetic force of the permanent magnet 132A on the side closer to the second opposing part 133A. It will be the size that it will be. Then, the movable magnetic pole part 132 is repelled by the second facing part 133B, is attracted to the first facing part 133A, and starts moving toward the first facing part 133A. At time T4, the detection section 75 detects that the movable magnetic pole section 132 has started moving toward the first opposing section 133A. Then, the control unit 172 ends the current increase control based on the detection result of the detection unit 75. The period from time T3 to time T4 is an initial period.
  • control unit 172 can perform a different type of current control that is different from the current increase control. For example, a method may be considered in which the magnitude of the current flowing through the coil 31 is controlled so that the movable magnetic pole section 132 does not accelerate excessively toward the first opposing section 133A. The movable magnetic pole part 132 is attracted to the first opposing part 133A by the magnetic force of the permanent magnet 132A.
  • the solenoid control device 170 includes a coil 31, a movable magnetic pole part 132, and a facing part 133, and is a solenoid in which the movable magnetic pole part 132 is displaced so as to move in a direction toward the facing part 133 and a direction away from the facing part 133. 130 is to be controlled.
  • the solenoid control device 170 includes a control section 172 that controls the current flowing through the coil 31.
  • the control unit 172 controls a current that adjusts the current flowing through the coil 31 so that the value of the current flowing through the coil 31 gradually increases during an initial period until the movable magnetic pole portion 132 starts moving in a direction away from the opposing portion 133. Execute climb control. According to this configuration, rapid acceleration of the movable magnetic pole portion 132 can be avoided.
  • the solenoid control device 170 includes a detection unit 75 that detects the start of movement of the movable magnetic pole portion 132. During an initial period, from the time when current supply to the coil 31 is started, the detection unit 75 detects the start of movement of the movable magnetic pole portion 132. This is until the start is detected.
  • the control unit 172 executes current increase control in the initial period. According to this configuration, since the current increase control is performed in the initial period, the control unit 172 can reliably separate and execute current control in the initial period and a period after the initial period. .
  • the facing part 133 and the movable magnetic pole part 132 are attracted by magnetic force. Since the facing part 133 and the movable magnetic pole part 132 are attracted to each other by magnetic force, in order to separate the movable magnetic pole part 132 from the facing part 133, it is necessary to move the facing part 133 and the movable magnetic pole part 132 in the opposite direction to the attracting force. It is necessary to apply an external force greater than the attraction force to the movable magnetic pole portion 132. In such a case, if an external force larger than the attraction force is suddenly applied, the movable magnetic pole part 132 suddenly starts moving away from the opposing part 133.
  • the control portion 172 adjusts the current flowing through the coil 31 so that the value of the current flowing through the coil 31 gradually increases. do. Therefore, it is possible to avoid sudden application of an external force greater than the attraction force to the movable magnetic pole part 132, and to easily suppress the movable magnetic pole part 132 from suddenly moving away from the opposing part 133.
  • a solenoid control device 270 according to a second embodiment will be described with reference to FIGS. 6 to 10.
  • the solenoid 230 that is controlled by the solenoid control device 270 has no second facing portion, a housing portion 236, a compression coil spring 234, and a movable portion.
  • the configuration of the magnetic pole portion 232 and the like are different from the second embodiment.
  • the solenoid control device 270 of the second embodiment differs from the first embodiment in the operation of the control section 272 and the like.
  • the same components as in the first embodiment are denoted by the same reference numerals, and descriptions of the same functions and effects as in the first embodiment will be omitted.
  • FIG. 6 illustrates a solenoid control system 200 provided with a solenoid control device 270 according to the second embodiment.
  • the solenoid 230 includes a coil 31, a first opposing portion 133A, a movable magnetic pole portion 232, a rod 35, a housing portion 236, and a compression coil spring 234.
  • the movable magnetic pole section 232 has a movable magnetic pole main body section 232A and a presser plate section 232B.
  • the movable magnetic pole main body portion 232A is made of a magnetic material.
  • the movable magnetic pole main body portion 232A is arranged in a ring shape around the axis R within the coil 31.
  • a permanent magnet 132A is provided inside the movable magnetic pole main body 232A.
  • the permanent magnet 132A is arranged such that its two magnetic poles (S pole and N pole) are aligned in the axis R direction.
  • the permanent magnet 132A may be arranged outside the movable magnetic pole main body 232A. For example, a configuration may be considered in which it is provided within the first opposing portion 133A.
  • the holding plate portion 232B has an annular shape around the axis R, and is arranged outside the coil 31.
  • the movable magnetic pole main body portion 232A and the presser plate portion 232B are arranged in the direction of the axis R with the first opposing portion 133A interposed therebetween.
  • the movable magnetic pole portion 232 is arranged to be movable in the direction of the axis R.
  • the movable magnetic pole main body portion 232A is disposed integrally connected to the central portion of the rod 35 in the longitudinal direction.
  • the presser plate portion 232B is disposed integrally connected to the other end of the rod 35 in the length direction.
  • the rod 35 is disposed so as to be movable in the direction of the axis R together with the movable magnetic pole body 232A and the presser plate 232B.
  • the housing portion 236 is provided adjacent to the coil 31 in the direction of the axis R.
  • the other end of the rod 35 passes through the accommodating portion 236, and the holding plate portion 232B is accommodated therein.
  • the compression coil spring 234 is disposed inside the housing portion 236 on the opposite side of the first opposing portion 133A with the presser plate portion 232B interposed therebetween.
  • the direction of expansion and contraction of the compression coil spring 234 is along the axis R.
  • the compression coil spring 234 is oriented along the axis R, and is configured to always apply an external force to the presser plate portion 232B in a direction that brings the presser plate portion 232B closer to the first opposing portion 133A.
  • the solenoid 230 is configured to apply an external force to the movable magnetic pole portion 232 in a direction that causes the presser plate portion 232B (predetermined portion) to approach the first opposing portion 133A.
  • the compression coil spring 234 is housed in the housing portion 236 in a compressed state in the expansion/contraction direction (that is, in a state that is shorter than its free length). Therefore, the compression coil spring 234 always generates an elastic force in the extension direction, and this elastic force is always applied as an external force to the presser plate portion 232B.
  • the presser plate portion 232B when the presser plate portion 232B is in contact with the first opposing portion 133A (see FIG. 7), the external force applied by the compression coil spring 234 to the presser plate portion 232B is minimized.
  • the holding plate part 232B is at the farthest position from the first opposing part 133A (see FIG. 8) (that is, when the compression coil spring 234 is in the most compressed state), the compression coil spring 234 is placed in the holding plate part 232B. The applied external force becomes maximum.
  • the control unit 272 is configured to output a drive signal Ds2 to the switching unit 74 when a drive command signal C2 is input from an external ECU (not shown) or the like.
  • the control section 272 outputs the drive signal Ds2 to the switching section 74, the on/off operation of each switch element 74A, 74B, 74C, 74D of the switching section 74 is controlled, and a current flows in the coil 31 in a predetermined direction Pd2.
  • the elastic force (external force) applied by the compression coil spring 234 to the holding plate section 232B causes the movable magnetic pole main body section 232A to move farthest away from the first opposing section 133A.
  • the distanced state is maintained at the remote position (see FIG. 7).
  • the drive command signal C2 is not input to the control unit 272
  • no current flows through the coil 31.
  • the movable magnetic pole main body portion 232A and the first opposing portion 133A are not magnetized.
  • the control unit 272 increases the current flowing through the coil 31 gradually at a constant rate while the drive command signal C2 is input and the calculation unit 172A determines that the rod 35 is not moving. Execute control.
  • the current flowing through the coil 31 is gradually increased at a constant rate, the magnetic strength of the movable magnetic pole main body portion 232A and the first opposing portion 133A is also gradually increased at a constant rate in proportion to this.
  • the movable magnetic pole main body portion 232A is held at the farthest position from the first opposing portion 133A (see FIG. 7).
  • the presser plate portion 232B is pressed by the compression coil spring 234 and is held in contact with the first opposing portion 133A.
  • the drive command signal C2 is input to the control section 272 at time T5 shown in FIG.
  • the control section 172 outputs a drive signal Ds2, which is adjusted to cause a current of N5 (A) in magnitude to flow through the coil 31 in a predetermined direction Pd2, to the switching section 74.
  • the control unit 272 starts current increase control at time T5.
  • a force is applied to the movable magnetic pole main body portion 232A to draw it toward the first opposing portion 133A.
  • the force applied to the movable magnetic pole main body part 232A to be attracted to the first opposing part 133A is slightly smaller than the elastic force (external force) applied by the compression coil spring 234 to the presser plate part 232B. Therefore, even if a current having a magnitude of N5 (A) flows through the coil 31 in the predetermined direction Pd2, the movable magnetic pole main body portion 232A does not move toward the first opposing portion 133A.
  • control unit 272 continues adjusting the drive signal Ds2 so that the magnitude of the current value flowing through the coil 31 gradually increases at a constant rate.
  • the control unit 272 continues adjusting the drive signal Ds2 so that the magnitude of the current value flowing through the coil 31 gradually increases at a constant rate.
  • the magnitude of the current flowing through the coil 31 gradually increases from N5 (A) at a constant rate.
  • the magnetism of the movable magnetic pole main body portion 232A gradually increases at a constant rate. Then, at time T6, the magnitude of the current flowing through the coil 31 becomes N6 (A), and at this time, the force applied to the movable magnetic pole main body part 232A to be attracted to the first opposing part 133A is suppressed by the compression coil spring 234. This is larger than the elastic force (external force) applied to the plate portion 232B. Then, the movable magnetic pole main body portion 232A is attracted to the first opposing portion 133A and starts moving toward the first opposing portion 133A. At this time, the detection section 75 detects that the movable magnetic pole main body section 232A has started moving toward the first opposing section 133A. Then, the control unit 272 ends the current increase control based on the detection result of the detection unit 75.
  • the control unit 272 can perform a different type of current control that is different from the current increase control. For example, a method may be considered in which the magnitude of the current flowing through the coil 31 is controlled so that the movable magnetic pole main body portion 232A does not excessively accelerate toward the first opposing portion 133A.
  • the movable magnetic pole body 232A is magnetically attracted to the first opposing portion 133A.
  • the drive command signal C2 continues to be input to the control portion 272. As a result, the state in which the movable magnetic pole main body portion 232A and the first opposing portion 133A are attracted by magnetic force is maintained.
  • the control unit 272 starts current reduction control to continue adjusting the drive signal Ds2 so that the magnitude of the current value flowing through the coil 31 gradually decreases at a constant rate.
  • the magnitude of the current flowing through the coil 31 gradually decreases from N7(A) at a constant rate.
  • the magnetism of the movable magnetic pole main body portion 232A and the first opposing portion 133A gradually decreases at a constant rate. Then, at time T8, the magnitude of the current flowing through the coil 31 becomes N8 (A). At this time, the force applied to the movable magnetic pole main body part 232A to be attracted to the first opposing part 133A is greater than the elastic force (external force) applied to the presser plate part 232B when the compression coil spring 234 is most compressed in the expansion/contraction direction. becomes smaller.
  • the movable magnetic pole main body portion 232A starts moving in the direction away from the first opposing portion 133A.
  • the detection section 75 detects that the movable magnetic pole main body section 232A has started moving in the direction away from the first opposing section 133A.
  • the control section 272 ends the current lowering control based on the detection result of the detection section 75.
  • the period from time T7 to time T8 is an initial period.
  • the current supplied from the drive unit to the coil may be changed in steps. Furthermore, a configuration may be added to the configurations of Embodiments 1 and 2 in which the current supplied from the drive unit to the coil is changed in stages.
  • control unit is mainly configured with a microcomputer, but it may be realized with a plurality of hardware circuits other than the microcomputer.
  • an infrared sensor may be used as the detection section. This eliminates the need to provide a magnet on the rod.
  • the direction of the magnetic poles of the permanent magnet provided in the movable magnetic pole part and the direction of the magnetic poles in the opposing part may be opposite to the axial direction.
  • a permanent magnet having a magnetic pole in a direction to draw the movable magnetic pole body to the other end of the coil, or an external force in a direction to move the movable magnetic pole body to the other end of the coil is used.
  • a tension coil spring may be arranged to provide the following.
  • a buffer material may be provided between the movable magnetic pole part and the opposing part.
  • the current increase amount of the predetermined magnitude may be changed between a first value larger than 0 and a second value larger than the first value.
  • the current flowing through the coil may be changed from 0 (A) to gradually increase at a constant rate. Furthermore, while the current increase control is being executed, a section may be set in which the magnitude of the current flowing through the coil is not changed and maintained at a constant magnitude, or a zone in which the magnitude of the current flowing in the coil is reduced. That is, it is not necessary to gradually increase the current flowing through the coil at a constant rate over the entire initial period.
  • the detection unit may be configured to detect the moving speed of the rod.
  • a feedback calculation method such as a PI calculation method or a PID calculation method may be employed while controlling the magnitude of the current flowing through the coil so as to reach the target current value.
  • Switching section 74A First switch element (switch element) 74B...Second switch element (switch element) 74C...Third switch element (switch element) 74D...Fourth switch element (switch element) 75...Detection section 90...Power supply section 91...Conducting path 92...Reference conducting path 100, 200...Solenoid control system 130, 230...Solenoid 132, 232...Movable magnetic pole section 132A...Permanent magnet 133...Opposing section 133A...First opposing section (opposite part) 133B...Second opposing part (opposing part) 170, 270...
  • Solenoid control device 172 272... Control section 172A... Arithmetic section 172B... ROM 232A...Movable magnetic pole body part 232B...Press plate part 234...Compression coil spring 236...Accommodating parts C1, C2...Drive command signal Cp1...First connection point Cp2...Second connection point Ds1, Ds2...Drive signal Pd1...Reverse direction Pd2... Predetermined direction R...axis line Vth...movement threshold

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)

Abstract

Provided is a solenoid control device capable of performing control to suppress generation of loud sound from a solenoid. A solenoid control device (170) controls a solenoid (130) that comprises a coil (31), a movable magnetic pole portion (132), and an opposing portion (133). The movable magnetic pole portion (132) is displaced so as to be moved in a direction toward the opposing portion (133) or a direction away from the opposing portion (133). The solenoid control device (170) comprises a control unit (172) that controls a current delivered to the coil (31). The control unit (172) performs a current-increasing control to adjust the current that flows through the coil (31) so that the value of the current through the coil (31) gradually increases in an initial period before the movable magnetic pole portion (132) starts to move in the direction away from the opposing portion (133).

Description

ソレノイド制御装置solenoid control device
 本開示は、ソレノイド制御装置に関する。 The present disclosure relates to a solenoid control device.
 特許文献1には、ソレノイドを用いて電動押圧装置を駆動するモータの回転を抑制する手法が開示されている。 Patent Document 1 discloses a method of suppressing the rotation of a motor that drives an electric pressing device using a solenoid.
特開2012-193802号公報Japanese Patent Application Publication No. 2012-193802 特開2009-24724号公報JP2009-24724A
 ソレノイドは、コイルに電流を流して固定磁極を磁化させ、可動磁極を引き寄せることによって動力を発生させる。ソレノイドは、コイルに連続して電流を流し続けると、可動磁極を加速し続けることになり、固定磁極に可動磁極が勢いよく衝突し、その結果大きな衝突音が生じてしまう。 A solenoid generates power by passing current through a coil to magnetize a fixed magnetic pole and attracting a movable magnetic pole. If a solenoid continues to apply current to the coil, it will continue to accelerate the movable magnetic pole, causing the movable magnetic pole to collide with the fixed magnetic pole, resulting in a loud collision noise.
 本開示は、上記のような事情に基づいて完成されたものであって、ソレノイドから大きな音が生じることを抑えた制御をすることができるソレノイド制御装置を提供することを目的とする。 The present disclosure was completed based on the above-mentioned circumstances, and an object of the present disclosure is to provide a solenoid control device that can perform control while suppressing loud noises from the solenoid.
 本開示のソレノイド制御装置は、
 コイルと可動磁極部と対向部とを有するとともに、前記対向部に接近する方向及び前記対向部から離間する方向に移動するように前記可動磁極部が変位するソレノイドを制御対象とするソレノイド制御装置であって、
 前記コイルに流す電流を制御する制御部を有し、
 前記制御部は、前記可動磁極部が前記対向部から離間する方向に移動を開始するまでの初期期間において、前記コイルに流れる電流値が徐々に大きくなるように前記コイルに流れる電流を調整する電流上昇制御を実行する。
The solenoid control device of the present disclosure includes:
A solenoid control device that controls a solenoid that has a coil, a movable magnetic pole part, and a facing part, and in which the movable magnetic pole part is displaced so as to move in a direction toward the facing part and in a direction away from the facing part. There it is,
comprising a control unit that controls the current flowing through the coil,
The control unit adjusts the current flowing through the coil so that the value of the current flowing through the coil gradually increases during an initial period until the movable magnetic pole part starts moving in a direction away from the opposing part. Execute climb control.
 本開示によれば、ソレノイドから大きな音が生じることを抑えた制御をすることができる。 According to the present disclosure, control can be performed to suppress generation of loud noise from the solenoid.
図1は、実施形態1のソレノイド制御装置、及び制御対象であるソレノイドの構成を示す概略図である。FIG. 1 is a schematic diagram showing the configuration of a solenoid control device according to a first embodiment and a solenoid to be controlled. 図2は、実施形態1のソレノイドの概略図であって、第1対向部に可動磁極部が吸着した状態を示す。FIG. 2 is a schematic diagram of the solenoid according to the first embodiment, showing a state in which the movable magnetic pole part is attracted to the first opposing part. 図3は、実施形態1のソレノイドの概略図であって、第2対向部に可動磁極部が吸着した状態を示す。FIG. 3 is a schematic diagram of the solenoid according to the first embodiment, showing a state in which the movable magnetic pole part is attracted to the second opposing part. 図4は、第1対向部に可動磁極部が吸着している状態における、コイルに流れる電流の大きさ、演算部において把握された可動磁極部の変位量、外部ECUから制御部に入力する駆動信号の変化を示すタイミングチャートである。FIG. 4 shows the magnitude of the current flowing through the coil when the movable magnetic pole part is attracted to the first opposing part, the amount of displacement of the movable magnetic pole part ascertained by the calculation unit, and the drive input from the external ECU to the control unit. 5 is a timing chart showing changes in signals. 図5は、第2対向部に可動磁極部が吸着している状態における、コイルに流れる電流の大きさ、演算部において把握された可動磁極部の変位量、外部ECUから制御部に入力する駆動信号の変化を示すタイミングチャートである。FIG. 5 shows the magnitude of the current flowing through the coil when the movable magnetic pole part is attracted to the second opposing part, the amount of displacement of the movable magnetic pole part ascertained by the calculation unit, and the drive input from the external ECU to the control unit. 5 is a timing chart showing changes in signals. 図6は、実施形態2のソレノイド制御装置、及び制御対象であるソレノイドの構成を示す概略図である。FIG. 6 is a schematic diagram showing the configuration of a solenoid control device according to the second embodiment and a solenoid to be controlled. 図7は、実施形態2のソレノイドの概略図であって、第1対向部から可動磁極本体部が最も遠ざかった状態を示す。FIG. 7 is a schematic diagram of the solenoid according to the second embodiment, showing a state in which the movable magnetic pole main body is farthest from the first opposing portion. 図8は、実施形態2のソレノイドの概略図であって、第1対向部に可動磁極本体部が吸着した状態を示す。FIG. 8 is a schematic diagram of the solenoid according to the second embodiment, showing a state in which the movable magnetic pole main body is attracted to the first opposing part. 図9は、第1対向部から可動磁極本体部が最も遠ざかっている状態における、コイルに流れる電流の大きさ、演算部において把握された可動磁極本体部の変位量、外部ECUから制御部に入力する駆動信号の変化を示すタイミングチャートである。FIG. 9 shows the magnitude of the current flowing through the coil in the state where the movable magnetic pole body is the farthest away from the first opposing part, the amount of displacement of the movable magnetic pole body detected by the calculation unit, and input from the external ECU to the control unit. 3 is a timing chart showing changes in a drive signal. 図10は、第1対向部に可動磁極本体部が吸着している状態における、コイルに流れる電流の大きさ、演算部において把握された可動磁極本体部の変位量、外部ECUから制御部に入力する駆動信号の変化を示すタイミングチャートである。FIG. 10 shows the magnitude of the current flowing through the coil when the movable magnetic pole body is attracted to the first opposing part, the amount of displacement of the movable magnetic pole body detected by the calculation unit, and input from the external ECU to the control unit. 3 is a timing chart showing changes in a drive signal.
 以下では、本開示の実施形態が列記されて例示される。なお、以下で示す〔1〕から〔3〕の特徴は、矛盾しない態様でどのように組み合わせてもよい。 Below, embodiments of the present disclosure are listed and illustrated. Note that the features [1] to [3] shown below may be combined in any manner consistent with each other.
 〔1〕本開示のソレノイド制御装置は、コイルと可動磁極部と対向部とを有するとともに、対向部に接近する方向及び対向部から離間する方向に移動するように可動磁極部が変位するソレノイドを制御対象とする。このソレノイド制御装置は、コイルに流す電流を制御する制御部を有している。制御部は、可動磁極部が対向部から離間する方向に移動を開始するまでの初期期間において、コイルに流れる電流値が徐々に大きくなるようにコイルに流れる電流を調整する電流上昇制御を実行する。 [1] The solenoid control device of the present disclosure includes a coil, a movable magnetic pole portion, and an opposing portion, and includes a solenoid in which the movable magnetic pole portion is displaced so as to move in a direction toward the opposing portion and a direction away from the opposing portion. Controlled. This solenoid control device includes a control section that controls the current flowing through the coil. The control unit executes current increase control to adjust the current flowing through the coil so that the value of the current flowing through the coil gradually increases during an initial period until the movable magnetic pole part starts moving in a direction away from the opposing part. .
 上記〔1〕のソレノイド制御装置は、可動磁極部が急激に加速することを避けることができる。 The solenoid control device of [1] above can avoid rapid acceleration of the movable magnetic pole portion.
 〔2〕上記〔1〕のソレノイド制御装置は、可動磁極部の移動の開始を検出する検知部を有し得る。初期期間は、コイルへの電流供給を開始する時から、検知部が可動磁極部の移動開始を検出する時までの間であり、制御部は、初期期間において電流上昇制御を実行し得る。 [2] The solenoid control device of [1] above may include a detection unit that detects the start of movement of the movable magnetic pole portion. The initial period is from the time when current supply to the coil is started until the time when the detection section detects the start of movement of the movable magnetic pole section, and the control section can execute current increase control during the initial period.
 上記〔2〕のソレノイド制御装置は、初期期間において電流上昇制御を行う構成であるので、制御部は、初期期間と、初期期間よりも後の期間と、における電流制御を確実に切り分けて実行することができる。 Since the solenoid control device in [2] above is configured to perform current increase control in the initial period, the control unit reliably separates and executes current control in the initial period and the period after the initial period. be able to.
 〔3〕上記〔1〕又は〔2〕のソレノイド制御装置において、可動磁極部が移動を開始する前には、対向部と可動磁極部とが磁力によって吸着し得る。 [3] In the solenoid control device of [1] or [2] above, before the movable magnetic pole part starts moving, the opposing part and the movable magnetic pole part can be attracted by magnetic force.
 対向部と可動磁極部とは磁力によって吸着しているので、可動磁極部を対向部から引き離すには、対向部と可動磁極部とが吸着する吸着力と反対の向きに吸着力よりも大きな外力を可動磁極部に付与する必要がある。こうした場合、吸着力よりも大きい外力を突然に加えると、可動磁極部は、突然に対向部から離れるように移動を開始する。上記〔3〕のソレノイド制御装置は、対向部と可動磁極部とが磁力によって吸着している構成の場合、制御部がコイルに流れる電流値を徐々に大きくなるようにコイルに流れる電流を調整する。このため、可動磁極部に吸着力よりも大きい外力が突然に加わることを避け、可動磁極部が対向部から突然に離れるように移動することを抑制し易い。 Since the facing part and the movable magnetic pole part are attracted by magnetic force, in order to separate the movable magnetic pole part from the facing part, an external force greater than the attracting force must be applied in the opposite direction to the attracting force that attracts the facing part and the movable magnetic pole part. It is necessary to apply this to the movable magnetic pole part. In such a case, if an external force larger than the attraction force is suddenly applied, the movable magnetic pole part suddenly starts moving away from the opposing part. In the solenoid control device of [3] above, when the opposing part and the movable magnetic pole part are attracted by magnetic force, the control part adjusts the current flowing through the coil so that the value of the current flowing through the coil gradually increases. . Therefore, it is possible to avoid sudden application of an external force greater than the attraction force to the movable magnetic pole portion, and to easily suppress the movable magnetic pole portion from suddenly moving away from the opposing portion.
[本開示の実施形態の詳細] [Details of embodiments of the present disclosure]
<実施形態1>
 実施形態1に係るソレノイド制御装置170について、図1から図5を参照しつつ説明する。図1には、実施形態1に係るソレノイド制御装置170が設けられたソレノイド制御システム100が例示される。ソレノイド制御システム100は、ソレノイド制御装置170がソレノイド130の動作を制御するシステムである。ソレノイド130は、例えば、車両内に設けられアクチュエータとして機能する。ソレノイド制御システム100は、ソレノイド130と、ソレノイド制御装置170と、を備えている。ソレノイド制御装置170は、検知部75と、制御部172と、を有している。ソレノイド制御装置170の制御対象はソレノイド130である。
<Embodiment 1>
A solenoid control device 170 according to Embodiment 1 will be described with reference to FIGS. 1 to 5. FIG. 1 illustrates a solenoid control system 100 provided with a solenoid control device 170 according to the first embodiment. The solenoid control system 100 is a system in which a solenoid control device 170 controls the operation of the solenoid 130. For example, the solenoid 130 is provided in a vehicle and functions as an actuator. The solenoid control system 100 includes a solenoid 130 and a solenoid control device 170. The solenoid control device 170 includes a detection section 75 and a control section 172. The object to be controlled by the solenoid control device 170 is the solenoid 130 .
[ソレノイドの構成]
 図1に示すように、ソレノイド130は、コイル31と、対向部133と、可動磁極部132と、ロッド35と、を有している。コイル31には、スイッチング部74から電流が供給されるようになっている。ソレノイド130は、ソレノイド制御装置170の制御対象である。
[Solenoid configuration]
As shown in FIG. 1, the solenoid 130 includes a coil 31, a facing portion 133, a movable magnetic pole portion 132, and a rod 35. Current is supplied to the coil 31 from the switching section 74. Solenoid 130 is an object to be controlled by solenoid control device 170.
 対向部133は、第1対向部133Aと、第2対向部133Bと、を有している。第1対向部133Aは、コイル31の一端部に軸線R周りに環状をなして配置されている。第1対向部133Aは、コイル31の一端部に配置され、コイル31に対して固定されている。つまり、第1対向部133Aは、固定磁極である。第1対向部133Aの一部は、コイル31内に配置されている。第1対向部133Aは、磁性を有する材料で形成されている。 The facing part 133 has a first facing part 133A and a second facing part 133B. The first opposing portion 133A is arranged in an annular shape around the axis R at one end of the coil 31. The first opposing portion 133A is arranged at one end of the coil 31 and is fixed to the coil 31. In other words, the first opposing portion 133A is a fixed magnetic pole. A portion of the first opposing portion 133A is disposed within the coil 31. The first opposing portion 133A is made of a magnetic material.
 第2対向部133Bは、コイル31の他端部に軸線R周りに環状をなして配置されている。第2対向部133Bは、コイル31の他端部に配置され、コイル31に対して固定されている。つまり、第2対向部133Bは、固定磁極である。第2対向部133Bの一部は、コイル31内に配置されている。第2対向部133Bは、磁性を有する材料で形成されている。第1対向部133Aと、第2対向部133Bとは、離間している。第1対向部133Aと、第2対向部133Bとは、同一の形態をなしている。 The second opposing portion 133B is arranged in an annular shape around the axis R at the other end of the coil 31. The second opposing portion 133B is arranged at the other end of the coil 31 and is fixed to the coil 31. In other words, the second opposing portion 133B is a fixed magnetic pole. A portion of the second opposing portion 133B is disposed within the coil 31. The second opposing portion 133B is made of a magnetic material. 133 A of 1st opposing parts and the 2nd opposing part 133B are spaced apart. The first opposing portion 133A and the second opposing portion 133B have the same form.
 第1対向部133A及び第2対向部133Bは、後述する可動磁極部132が接触して永久磁石132Aが近づくことによって磁気を帯びる。例えば、第1対向部133Aに可動磁極部132が接触すると、第1対向部133A側の永久磁石132Aによって第1対向部133Aは、軸線R方向の一端側の領域がS極、軸線R方向の他端側の領域がN極になる。第2対向部133Bに可動磁極部132が接触すると、第2対向部133B側の永久磁石132Aによって、第2対向部133Bは、軸線R方向の一端側の領域がN極、軸線R方向の他端側の領域がS極になる。 The first opposing portion 133A and the second opposing portion 133B become magnetic when a movable magnetic pole portion 132 (described later) comes into contact with them and a permanent magnet 132A approaches them. For example, when the movable magnetic pole part 132 comes into contact with the first opposing part 133A, the permanent magnet 132A on the first opposing part 133A side causes the first opposing part 133A to have an S pole in the region on one end side in the axis R direction and an S pole in the axis R direction. The region on the other end side becomes the N pole. When the movable magnetic pole part 132 comes into contact with the second facing part 133B, the permanent magnet 132A on the second facing part 133B side causes the second facing part 133B to have a north pole in one end region in the axis R direction and a north pole in the other end region in the axis R direction. The region on the end side becomes the south pole.
 可動磁極部132は、軸線R周りに環状をなして配置されている。可動磁極部132は、磁性を有する材料で形成されている。可動磁極部132は、コイル31内であって、第1対向部133Aと、第2対向部133Bとの間に配置されている。可動磁極部132は、軸線R方向に移動自在に配置されている。可動磁極部132内には、一対の永久磁石132Aが設けられている。これら永久磁石132Aは、可動磁極部132において、第1対向部133Aに対向する一端部と、第2対向部133Bに対向する他端部とに一つずつ配置されている。可動磁極部132の一端部及び他端部は、可動磁極部132における所定部位である。つまり、第1対向部133A及び第2対向部133Bは、可動磁極部132の所定部位を挟んで配置されている。これら永久磁石132Aは、自身の2つの磁極(S極及びN極)が軸線R方向に並ぶ向きに配置されている。さらに、これら永久磁石132Aは、同じ磁極同士を対向させて配置されている。例えば、これら永久磁石132Aは、N極同士が対向するように内向きに配置され、S極同士が軸線R方向において互いに反対向きになるように外向きに配置されている。このため、コイル31に電流が流れていない場合には、可動磁極部132は、永久磁石132Aによって、第1対向部133A、又は第2対向部133Bのいずれかに磁力によって吸着した状態で保持される。なお、永久磁石132Aを可動磁極部132外に配置してもよい。例えば、第1対向部133A、及び第2対向部133B内に設ける構成が考えられる。 The movable magnetic pole portion 132 is arranged in a ring shape around the axis R. The movable magnetic pole portion 132 is made of a magnetic material. The movable magnetic pole portion 132 is disposed within the coil 31 between the first opposing portion 133A and the second opposing portion 133B. The movable magnetic pole part 132 is arranged to be movable in the direction of the axis R. A pair of permanent magnets 132A are provided within the movable magnetic pole portion 132. One permanent magnet 132A is arranged at one end of the movable magnetic pole part 132 facing the first facing part 133A and the other end facing the second facing part 133B. One end and the other end of the movable magnetic pole part 132 are predetermined parts of the movable magnetic pole part 132. That is, the first opposing portion 133A and the second opposing portion 133B are arranged with a predetermined portion of the movable magnetic pole portion 132 interposed therebetween. These permanent magnets 132A are arranged such that their two magnetic poles (S pole and N pole) are lined up in the axis R direction. Furthermore, these permanent magnets 132A are arranged with the same magnetic poles facing each other. For example, these permanent magnets 132A are arranged inward so that their north poles face each other, and are arranged outward so that their south poles face oppositely to each other in the axis R direction. Therefore, when no current is flowing through the coil 31, the movable magnetic pole part 132 is held by the permanent magnet 132A in a state where it is magnetically attracted to either the first facing part 133A or the second facing part 133B. Ru. Note that the permanent magnet 132A may be placed outside the movable magnetic pole portion 132. For example, a configuration can be considered in which the first opposing portion 133A and the second opposing portion 133B are provided.
 コイル31に電流が流れると、コイル31に発生した磁場によって可動磁極部132、第1対向部133A、及び第2対向部133Bは、磁気を帯びる。例えば、コイル31に所定方向と逆方向Pd1(以下、単に逆方向Pd1ともいう)の電流が流れると、可動磁極部132、第1対向部133A、及び第2対向部133Bは、軸線R方向の一端側の領域がN極になり、軸線R方向の他端側の領域がS極になる(図2参照)。第1対向部133Aの他端側がS極になるので、第1対向部133Aは、可動磁極部132の一端側の永久磁石132Aと反発する。これに対して、第2対向部133Bの一端側がN極になるので、第2対向部133Bは、可動磁極部132の他端側の永久磁石132Aと引き合う。すると、可動磁極部132は、第1対向部133Aと反発するとともに、第2対向部133Bに引き寄せられ、第2対向部133B側に移動する。このように、ソレノイド130は、コイル31に逆方向Pd1の電流が流れることに応じて可動磁極部132の他端部(所定部位)を第2対向部133Bに接近させる向きの力が可動磁極部132に生じる構成である。 When a current flows through the coil 31, the movable magnetic pole portion 132, the first opposing portion 133A, and the second opposing portion 133B become magnetic due to the magnetic field generated in the coil 31. For example, when a current flows in the coil 31 in the direction Pd1 opposite to the predetermined direction (hereinafter also simply referred to as the opposite direction Pd1), the movable magnetic pole part 132, the first opposing part 133A, and the second opposing part 133B move in the direction of the axis R. The region on one end side becomes the north pole, and the region on the other end side in the direction of the axis R becomes the south pole (see FIG. 2). Since the other end side of the first opposing portion 133A becomes the S pole, the first opposing portion 133A repels the permanent magnet 132A on the one end side of the movable magnetic pole portion 132. On the other hand, since one end side of the second opposing portion 133B becomes the north pole, the second opposing portion 133B attracts the permanent magnet 132A on the other end side of the movable magnetic pole portion 132. Then, the movable magnetic pole part 132 is repelled by the first opposing part 133A, is attracted to the second opposing part 133B, and moves toward the second opposing part 133B. In this manner, the solenoid 130 is configured such that in response to the current flowing in the opposite direction Pd1 through the coil 31, a force is applied to the movable magnetic pole part in a direction that causes the other end (predetermined part) of the movable magnetic pole part 132 to approach the second opposing part 133B. 132.
 そして、コイル31に所定方向Pd2の電流が流れると、可動磁極部132、第1対向部133A、及び第2対向部133Bは、軸線R方向の一端側の領域がS極になり、軸線R方向の他端側の領域がN極になる(図3参照)。第2対向部133Bの一端側がS極になるので、第2対向部133Bは、可動磁極部132の他端側の永久磁石132Aと反発する。これに対して、第1対向部133Aの他端側がN極になるので、第1対向部133Aは、可動磁極部132の一端側の永久磁石132Aと引き合う。すると、可動磁極部132は、第2対向部133Bと反発するとともに、第1対向部133Aに引き寄せられ、第1対向部133A側に移動する。このように、ソレノイド130は、コイル31に所定方向Pd2の電流が流れることに応じて可動磁極部132の一端部(所定部位)を第1対向部133Aに接近させる向きの力が可動磁極部132に生じる構成である。 Then, when a current in a predetermined direction Pd2 flows through the coil 31, the movable magnetic pole part 132, the first opposing part 133A, and the second opposing part 133B have an S pole in the region on one end side in the axis R direction, and The region on the other end side becomes the north pole (see FIG. 3). Since one end side of the second opposing portion 133B becomes the S pole, the second opposing portion 133B repels the permanent magnet 132A on the other end side of the movable magnetic pole portion 132. On the other hand, since the other end side of the first opposing part 133A becomes the north pole, the first opposing part 133A attracts the permanent magnet 132A on the one end side of the movable magnetic pole part 132. Then, the movable magnetic pole part 132 is repelled by the second facing part 133B, is attracted to the first facing part 133A, and moves toward the first facing part 133A. In this manner, the solenoid 130 applies a force to the movable magnetic pole portion 132 in a direction that causes one end (predetermined portion) of the movable magnetic pole portion 132 to approach the first opposing portion 133A in response to the current flowing in the predetermined direction Pd2 through the coil 31. This is the configuration that occurs in
 こうして、可動磁極部132は、コイル31に流れる電流の向きに応じて、コイル31内において、対向部133に接近する方向及び対向部133から離間する方向(軸線Rの一方向及び他方向)に変位する。ここでいう所定方向Pd2は、コイル31の一端から他端に向かう方向であり、スイッチング部74の第1接続点Cp1からコイル31を介して第2接続点Cp2に向かう方向である。逆方向Pd1は、コイル31の他端から一端に向かう方向であり、スイッチング部74の第2接続点Cp2からコイル31介して第1接続点Cp1に向かう方向である。 In this way, the movable magnetic pole part 132 moves in the direction approaching the facing part 133 and in the direction away from the facing part 133 (in one direction and the other direction of the axis R) within the coil 31, depending on the direction of the current flowing through the coil 31. Displace. The predetermined direction Pd2 here is a direction from one end of the coil 31 to the other end, and is a direction from the first connection point Cp1 of the switching section 74 to the second connection point Cp2 via the coil 31. The reverse direction Pd1 is a direction from the other end of the coil 31 to one end, and is a direction from the second connection point Cp2 of the switching section 74 to the first connection point Cp1 via the coil 31.
 可動磁極部132は、ロッド35の長さ方向の中央部に一体的に連結して配置されている。ロッド35は、可動磁極部132とともに軸線R方向に移動自在である。ロッド35の一端部は、コイル31内における可動磁極部132の位置に関わらず、コイル31の外部に突出している。コイル31の一端から外部に突出しているロッド35の一端部には、永久磁石35Aが取り付けられている。 The movable magnetic pole portion 132 is disposed integrally connected to the central portion of the rod 35 in the longitudinal direction. The rod 35 is movable in the direction of the axis R together with the movable magnetic pole part 132. One end of the rod 35 protrudes to the outside of the coil 31 regardless of the position of the movable magnetic pole part 132 within the coil 31. A permanent magnet 35A is attached to one end of the rod 35 that projects outward from one end of the coil 31.
[スイッチング部の構成]
 スイッチング部74は、直流電源である電源部90から供給される直流電流を、コイル31に対して逆方向Pd1又は所定方向Pd2のいずれかの方向に流れるように供給する。スイッチング部74は、第1スイッチ素子74A、第2スイッチ素子74B、第3スイッチ素子74C、及び第4スイッチ素子74D(以下、スイッチ素子74A,74B,74C,74Dともいう)がフルブリッジ接続された構成を有する。スイッチ素子74A,74B,74C,74Dには、種々のスイッチ素子を用いることができるが、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)を用いることが好ましい。
[Switching section configuration]
The switching unit 74 supplies a DC current supplied from a power supply unit 90, which is a DC power source, to the coil 31 so as to flow in either the opposite direction Pd1 or the predetermined direction Pd2. The switching unit 74 includes a first switch element 74A, a second switch element 74B, a third switch element 74C, and a fourth switch element 74D (hereinafter also referred to as switch elements 74A, 74B, 74C, and 74D) connected in a full bridge. It has a configuration. Although various switch elements can be used for the switch elements 74A, 74B, 74C, and 74D, it is preferable to use MOSFETs (Metal Oxide Semiconductor Field Effect Transistors).
 第1スイッチ素子74A及び第2スイッチ素子74Bは、スイッチング部74に入力電圧を入力する導電路91と、基準導電路92との間に直列に接続され、互いが第1接続点Cp1において電気的に接続している。第3スイッチ素子74C及び第4スイッチ素子74Dは、導電路91と基準導電路92との間に直列に接続され、互いが第2接続点Cp2において電気的に接続している。第1接続点Cp1には、コイル31の一端が電気的に接続されている。第2接続点Cp2には、コイル31の他端が電気的に接続されている。 The first switch element 74A and the second switch element 74B are connected in series between the conductive path 91 that inputs the input voltage to the switching section 74 and the reference conductive path 92, and are electrically connected to each other at the first connection point Cp1. is connected to. The third switch element 74C and the fourth switch element 74D are connected in series between the conductive path 91 and the reference conductive path 92, and are electrically connected to each other at the second connection point Cp2. One end of the coil 31 is electrically connected to the first connection point Cp1. The other end of the coil 31 is electrically connected to the second connection point Cp2.
[検知部の構成]
 検知部75は、検出部71及び制御部172内に設けられた演算部172Aによって構成されている。演算部172Aは、検出部71が検出したロッド35の永久磁石35Aの磁気の大きさ及び向きを互いに直交する3つの方向に分けて算出し得る構成とされている。演算部172Aは、検出部71が検出した永久磁石35Aの磁気の大きさ及び向きの変化量を所定時間毎に算出し得る構成とされている。演算部172Aは、検出部71が検出した磁気の大きさ及び向きを互いに直交する3つの方向に分けて算出し、これらの変化量に基づいて、永久磁石35Aが設けられたロッド35が移動しているか否かを把握する。例えば、ロッド35が移動していない場合、検出部71は、永久磁石35Aの磁気の大きさ及び向きの変化量を0として検出する。また、ロッド35が移動する場合、検出部71は、永久磁石35Aの磁気の大きさ及び向きの変化量を0でない数値として検出する。例えば、検知部75は、変位量が0から0でない数値に変化したことを検出することによって、可動磁極部132の移動の開始を検出する。
[Configuration of detection unit]
The detection unit 75 includes a detection unit 71 and a calculation unit 172A provided in the control unit 172. The calculation unit 172A is configured to be able to calculate the magnitude and direction of the magnetism of the permanent magnet 35A of the rod 35 detected by the detection unit 71 by dividing it into three mutually orthogonal directions. The calculation unit 172A is configured to be able to calculate the amount of change in the magnetic magnitude and direction of the permanent magnet 35A detected by the detection unit 71 at predetermined time intervals. The calculation unit 172A calculates the magnitude and direction of the magnetism detected by the detection unit 71 by dividing it into three mutually orthogonal directions, and based on the amount of change in these, the rod 35 provided with the permanent magnet 35A moves. Understand whether or not For example, when the rod 35 is not moving, the detection unit 71 detects the amount of change in the magnetic magnitude and direction of the permanent magnet 35A as zero. Further, when the rod 35 moves, the detection unit 71 detects the amount of change in the magnetic magnitude and direction of the permanent magnet 35A as a non-zero value. For example, the detection unit 75 detects the start of movement of the movable magnetic pole portion 132 by detecting that the amount of displacement changes from 0 to a non-zero value.
[制御部の構成]
 図1に示すように、例えば、制御部172のROM172Bには、予め定められた移動閾値Vthが固定値として記憶されている。制御部172は、検出部71が検出した永久磁石35Aの磁気の大きさ及び向きの変化量と、移動閾値Vthとに基づいて、ロッド35が移動しているか否かを判定し得る構成とされている。例えば、制御部172は、この変化量の大きさが移動閾値Vth以下の場合にロッド35が移動していないと判別し、この変化量が移動閾値Vthよりも大きい場合にロッド35が移動していると判別する。
[Configuration of control unit]
As shown in FIG. 1, for example, a predetermined movement threshold Vth is stored as a fixed value in the ROM 172B of the control unit 172. The control unit 172 is configured to be able to determine whether or not the rod 35 is moving based on the amount of change in the magnetic magnitude and direction of the permanent magnet 35A detected by the detection unit 71 and the movement threshold Vth. ing. For example, the control unit 172 determines that the rod 35 has not moved when the amount of change is less than or equal to the movement threshold Vth, and determines that the rod 35 has not moved when the amount of change is greater than the movement threshold Vth. It is determined that there is.
 制御部172は、図示しない外部ECU等から、駆動指令信号C1が入力されると、スイッチング部74に駆動信号Ds1を出力する構成とされている。例えば、駆動信号Ds1は、コイル31に逆方向Pd1の電流を流すデューティのPWMである。制御部172からスイッチング部74に駆動信号Ds1を出力すると、スイッチング部74の各スイッチ素子74A,74B,74C,74Dのオンオフ動作が制御されてコイル31に逆方向Pd1の電流が流れる。 The control unit 172 is configured to output a drive signal Ds1 to the switching unit 74 when a drive command signal C1 is input from an external ECU (not shown) or the like. For example, the drive signal Ds1 is PWM with a duty that causes a current in the opposite direction Pd1 to flow through the coil 31. When the control section 172 outputs the drive signal Ds1 to the switching section 74, the on/off operation of each switch element 74A, 74B, 74C, 74D of the switching section 74 is controlled, and a current in the opposite direction Pd1 flows through the coil 31.
 制御部172は、図示しない外部ECU等から、駆動指令信号C2が入力されると、スイッチング部74に駆動信号Ds2を出力する構成とされている。例えば、駆動信号Ds2は、コイル31に所定方向Pd2の電流を流すデューティのPWMである。制御部172からスイッチング部74に駆動信号Ds2を出力すると、スイッチング部74の各スイッチ素子74A,74B,74C,74Dのオンオフ動作が制御されてコイル31に所定方向Pd2の電流が流れる。こうして、制御部172は、コイル31に流す電流を制御する。 The control unit 172 is configured to output a drive signal Ds2 to the switching unit 74 when the drive command signal C2 is input from an external ECU (not shown) or the like. For example, the drive signal Ds2 is a PWM duty signal that causes a current to flow in a predetermined direction Pd2 through the coil 31. When the control section 172 outputs the drive signal Ds2 to the switching section 74, the on/off operation of each switch element 74A, 74B, 74C, 74D of the switching section 74 is controlled, and a current flows in the coil 31 in a predetermined direction Pd2. In this way, the control unit 172 controls the current flowing through the coil 31.
 制御部172は、駆動指令信号C1又はC2が入力されており、且つ可動磁極部132が対向部133(第1対向部133A及び第2対向部133Bのいずれか)から離間する方向に移動するまでの初期期間において、電流上昇制御を実行する。電流上昇制御は、コイル31に流れる電流が一定の割合で徐々に大きくなるようにコイル31に流れる電流を調整する制御である。一定の割合で徐々に大きくなるとは、例えば、所定の大きさの電流増加量ΔIが単位時間毎に増加する状態である。コイル31に流れる電流が一定の割合で徐々に大きくなると、これに比例するように、可動磁極部132、第1対向部133A、及び第2対向部133Bが帯びる磁気の強さも一定の割合で徐々に大きくなる。 The control unit 172 receives the drive command signal C1 or C2 until the movable magnetic pole part 132 moves in a direction away from the facing part 133 (either the first facing part 133A or the second facing part 133B). In the initial period, current increase control is executed. The current increase control is a control that adjusts the current flowing through the coil 31 so that the current flowing through the coil 31 gradually increases at a constant rate. Gradually increasing at a constant rate means, for example, that the current increase amount ΔI of a predetermined magnitude increases every unit time. When the current flowing through the coil 31 gradually increases at a constant rate, the magnetic strength of the movable magnetic pole section 132, the first opposing section 133A, and the second opposing section 133B gradually increases at a constant rate in proportion to this. becomes larger.
 例えば、初期期間は、ロッド35が移動していないと演算部172Aが判別している間の期間であり、コイル31への電流供給を開始する時から、検知部75が可動磁極部132の移動開始を検出するときまでの間である。 For example, the initial period is a period during which the arithmetic unit 172A determines that the rod 35 is not moving. This is until the start is detected.
[ソレノイド制御装置における動作]
 ソレノイド制御装置170の動作の一例について説明する。
[Operation in solenoid control device]
An example of the operation of the solenoid control device 170 will be described.
 例えば、駆動指令信号C1,C2が制御部172に入力されていない状態であって、可動磁極部132と第1対向部133Aとが永久磁石132Aの磁力によって吸着した状態において、図4に示す時刻T1に制御部172に駆動指令信号C1が入力される。駆動指令信号C2は、制御部172に入力されない。すると、制御部172は、スイッチング部74に向けて、コイル31に逆方向Pd1(図2参照)に大きさがN1(A)の電流を流すように調整された駆動信号Ds1を出力する。制御部172は、時刻T1に電流上昇制御を開始する。 For example, when the drive command signals C1 and C2 are not input to the control unit 172 and the movable magnetic pole part 132 and the first opposing part 133A are attracted by the magnetic force of the permanent magnet 132A, the time shown in FIG. A drive command signal C1 is input to the control unit 172 at T1. The drive command signal C2 is not input to the control section 172. Then, the control section 172 outputs a drive signal Ds1 to the switching section 74, which is adjusted so that a current having a magnitude of N1 (A) flows through the coil 31 in the opposite direction Pd1 (see FIG. 2). The control unit 172 starts current increase control at time T1.
 コイル31に流れる電流の大きさ(N1(A))は、コイル31によって第1対向部133Aが帯びる磁気が第1対向部133Aに近い側の永久磁石132Aの磁力と反発せずに、第1対向部133Aと可動磁極部132が永久磁石132Aの磁力によって吸着した状態が保持される程度の大きさである。 The magnitude (N1 (A)) of the current flowing through the coil 31 is such that the magnetism imparted to the first opposing portion 133A by the coil 31 does not repel the magnetic force of the permanent magnet 132A on the side closer to the first opposing portion 133A. The size is such that the facing portion 133A and the movable magnetic pole portion 132 are kept attracted to each other by the magnetic force of the permanent magnet 132A.
 そして、時刻T1を経過後、制御部172は、コイル31に流す電流値の大きさを一定の割合で徐々に大きくなるように駆動信号Ds1の調整を継続する。これによって、時刻T1を経過後、コイル31に流れる電流の大きさは、N1(A)から一定の割合で徐々に大きくなる。 After time T1 has elapsed, the control unit 172 continues adjusting the drive signal Ds1 so that the magnitude of the current flowing through the coil 31 gradually increases at a constant rate. As a result, after time T1 has elapsed, the magnitude of the current flowing through the coil 31 gradually increases from N1 (A) at a constant rate.
 これに伴い、可動磁極部132が帯びる磁気が一定の割合で徐々に大きくなる。そして、時刻T2において、コイル31に流れる電流の大きさは、N2(A)になり、このときの第1対向部133Aの磁気が第1対向部133Aに近い側の永久磁石132Aの磁力と反発する大きさになる。すると、可動磁極部132は、第1対向部133Aと反発するとともに、第2対向部133Bに引き寄せられ、第2対向部133B側への移動を開始する。つまり、可動磁極部132が移動を開始する前には、第1対向部133Aと可動磁極部132とは、永久磁石132Aの磁力によって吸着している。時刻T2において検知部75は、可動磁極部132が第2対向部133B側への移動を開始したことを検知する。すると、制御部172は、検知部75の検出結果に基づいて、電流上昇制御を終了する。時刻T1から時刻T2までの間の期間は、初期期間である。 Along with this, the magnetism of the movable magnetic pole portion 132 gradually increases at a constant rate. Then, at time T2, the magnitude of the current flowing through the coil 31 becomes N2 (A), and the magnetism of the first opposing part 133A at this time is repelled by the magnetic force of the permanent magnet 132A on the side closer to the first opposing part 133A. It will be the size that it will be. Then, the movable magnetic pole part 132 is repelled by the first facing part 133A, is attracted to the second facing part 133B, and starts moving toward the second facing part 133B. That is, before the movable magnetic pole part 132 starts moving, the first opposing part 133A and the movable magnetic pole part 132 are attracted to each other by the magnetic force of the permanent magnet 132A. At time T2, the detection section 75 detects that the movable magnetic pole section 132 has started moving toward the second opposing section 133B. Then, the control unit 172 ends the current increase control based on the detection result of the detection unit 75. The period from time T1 to time T2 is an initial period.
 時刻T2以降において制御部172は、電流上昇制御とは異なる別方式の電流制御を実行し得る。例えば、可動磁極部132が第2対向部133Bに向けて過度に加速しないようにコイル31に流れる電流の大きさを制御する方法等が考えられる。そして、可動磁極部132は、第2対向部133Bに永久磁石132Aの磁力によって吸着する。 After time T2, the control unit 172 can perform a different type of current control that is different from the current increase control. For example, a method may be considered in which the magnitude of the current flowing through the coil 31 is controlled so that the movable magnetic pole part 132 does not accelerate excessively toward the second opposing part 133B. The movable magnetic pole part 132 is attracted to the second opposing part 133B by the magnetic force of the permanent magnet 132A.
 次に、駆動指令信号C1,C2が制御部172に入力されていない状態であって、可動磁極部132と第2対向部133Bとが永久磁石132Aの磁力によって吸着した状態において、図5に示す時刻T3に制御部172に駆動指令信号C2が入力される。駆動指令信号C1は、制御部172に入力されない。すると、制御部172は、スイッチング部74に向けて、コイル31に所定方向Pd2(図3参照)に大きさがN3(A)の電流を流すように調整された駆動信号Ds2を出力する。制御部172は、時刻T3に電流上昇制御を開始する。 Next, in a state where the drive command signals C1 and C2 are not input to the control unit 172 and the movable magnetic pole part 132 and the second opposing part 133B are attracted by the magnetic force of the permanent magnet 132A, the state shown in FIG. Drive command signal C2 is input to control section 172 at time T3. The drive command signal C1 is not input to the control section 172. Then, the control section 172 outputs, to the switching section 74, a drive signal Ds2 adjusted to cause a current of magnitude N3 (A) to flow through the coil 31 in a predetermined direction Pd2 (see FIG. 3). The control unit 172 starts current increase control at time T3.
 コイル31に流れる電流の大きさ(N3(A))は、コイル31によって第2対向部133Bが帯びる磁気が第2対向部133Bに近い側の永久磁石132Aの磁力と反発せずに、第2対向部133Bと可動磁極部132が永久磁石132Aの磁力によって吸着した状態が保持される程度の大きさである。 The magnitude of the current flowing through the coil 31 (N3(A)) is such that the magnetism imparted to the second opposing portion 133B by the coil 31 does not repel the magnetic force of the permanent magnet 132A on the side closer to the second opposing portion 133B. The size is such that the facing portion 133B and the movable magnetic pole portion 132 are kept attracted to each other by the magnetic force of the permanent magnet 132A.
 そして、時刻T3を経過後、制御部172は、コイル31に流す電流値の大きさを一定の割合で徐々に大きくなるように駆動信号Ds2の調整を継続する。これによって、時刻T3を経過後、コイル31に流れる電流の大きさは、N3(A)から一定の割合で徐々に大きくなる。 After time T3 has elapsed, the control unit 172 continues adjusting the drive signal Ds2 so that the magnitude of the current flowing through the coil 31 gradually increases at a constant rate. As a result, after time T3, the magnitude of the current flowing through the coil 31 gradually increases from N3(A) at a constant rate.
 これに伴い、可動磁極部132が帯びる磁気が一定の割合で徐々に大きくなる。そして、時刻T4において、コイル31に流れる電流の大きさは、N4(A)になり、このときの第2対向部133Bの磁気が第2対向部133Aに近い側の永久磁石132Aの磁力と反発する大きさになる。すると、可動磁極部132は、第2対向部133Bと反発するとともに、第1対向部133Aに引き寄せられ、第1対向部133A側への移動を開始する。時刻T4において検知部75は、可動磁極部132が第1対向部133A側への移動を開始したことを検知する。すると、制御部172は、検知部75の検出結果に基づいて、電流上昇制御を終了する。時刻T3から時刻T4までの間の期間は、初期期間である。 Along with this, the magnetism of the movable magnetic pole portion 132 gradually increases at a constant rate. Then, at time T4, the magnitude of the current flowing through the coil 31 becomes N4 (A), and the magnetism of the second opposing part 133B at this time is repelled by the magnetic force of the permanent magnet 132A on the side closer to the second opposing part 133A. It will be the size that it will be. Then, the movable magnetic pole part 132 is repelled by the second facing part 133B, is attracted to the first facing part 133A, and starts moving toward the first facing part 133A. At time T4, the detection section 75 detects that the movable magnetic pole section 132 has started moving toward the first opposing section 133A. Then, the control unit 172 ends the current increase control based on the detection result of the detection unit 75. The period from time T3 to time T4 is an initial period.
 時刻T4以降において制御部172は、電流上昇制御とは異なる別方式の電流制御を実行し得る。例えば、可動磁極部132が第1対向部133Aに向けて過度に加速しないようにコイル31に流れる電流の大きさを制御する方法等が考えられる。そして、可動磁極部132は、第1対向部133Aに永久磁石132Aの磁力によって吸着する。 After time T4, the control unit 172 can perform a different type of current control that is different from the current increase control. For example, a method may be considered in which the magnitude of the current flowing through the coil 31 is controlled so that the movable magnetic pole section 132 does not accelerate excessively toward the first opposing section 133A. The movable magnetic pole part 132 is attracted to the first opposing part 133A by the magnetic force of the permanent magnet 132A.
 次に、本構成の効果を例示する。 Next, the effects of this configuration will be illustrated.
 ソレノイド制御装置170は、コイル31と可動磁極部132と対向部133とを有するとともに、対向部133に接近する方向及び対向部133から離間する方向に移動するように可動磁極部132が変位するソレノイド130を制御対象とする。ソレノイド制御装置170は、コイル31に流す電流を制御する制御部172を有している。制御部172は、可動磁極部132が対向部133から離間する方向に移動を開始するまでの初期期間において、コイル31に流れる電流値が徐々に大きくなるようにコイル31に流れる電流を調整する電流上昇制御を実行する。この構成によれば、可動磁極部132が急激に加速することを避けることができる。 The solenoid control device 170 includes a coil 31, a movable magnetic pole part 132, and a facing part 133, and is a solenoid in which the movable magnetic pole part 132 is displaced so as to move in a direction toward the facing part 133 and a direction away from the facing part 133. 130 is to be controlled. The solenoid control device 170 includes a control section 172 that controls the current flowing through the coil 31. The control unit 172 controls a current that adjusts the current flowing through the coil 31 so that the value of the current flowing through the coil 31 gradually increases during an initial period until the movable magnetic pole portion 132 starts moving in a direction away from the opposing portion 133. Execute climb control. According to this configuration, rapid acceleration of the movable magnetic pole portion 132 can be avoided.
 ソレノイド制御装置170は、可動磁極部132の移動の開始を検出する検知部75を有し、初期期間は、コイル31への電流供給を開始する時から、検知部75が可動磁極部132の移動開始を検出する時までの間である。制御部172は、初期期間において電流上昇制御を実行する。この構成によれば、初期期間において電流上昇制御を行う構成であるので、制御部172は、初期期間と、初期期間よりも後の期間と、における電流制御を確実に切り分けて実行することができる。 The solenoid control device 170 includes a detection unit 75 that detects the start of movement of the movable magnetic pole portion 132. During an initial period, from the time when current supply to the coil 31 is started, the detection unit 75 detects the start of movement of the movable magnetic pole portion 132. This is until the start is detected. The control unit 172 executes current increase control in the initial period. According to this configuration, since the current increase control is performed in the initial period, the control unit 172 can reliably separate and execute current control in the initial period and a period after the initial period. .
 ソレノイド制御装置170において、可動磁極部132が移動を開始する前には、対向部133と可動磁極部132とが磁力によって吸着する。対向部133と可動磁極部132とは磁力によって吸着しているので、可動磁極部132を対向部133から引き離すには、対向部133と可動磁極部132とが吸着する吸着力と反対の向きに吸着力よりも大きな外力を可動磁極部132に付与する必要がある。こうした場合、吸着力よりも大きな外力を突然に加えると、可動磁極部132は、突然に対向部133から離れるように移動を開始する。ソレノイド制御装置170は、対向部133と可動磁極部132とが磁力によって吸着している構成の場合、制御部172がコイル31に流れる電流値を徐々に大きくなるようにコイル31に流れる電流を調整する。このため、可動磁極部132に吸着力よりも大きい外力が突然に加わることを避け、可動磁極部132が対向部133から突然に離れるように移動することを抑制し易い。 In the solenoid control device 170, before the movable magnetic pole part 132 starts moving, the facing part 133 and the movable magnetic pole part 132 are attracted by magnetic force. Since the facing part 133 and the movable magnetic pole part 132 are attracted to each other by magnetic force, in order to separate the movable magnetic pole part 132 from the facing part 133, it is necessary to move the facing part 133 and the movable magnetic pole part 132 in the opposite direction to the attracting force. It is necessary to apply an external force greater than the attraction force to the movable magnetic pole portion 132. In such a case, if an external force larger than the attraction force is suddenly applied, the movable magnetic pole part 132 suddenly starts moving away from the opposing part 133. When the solenoid control device 170 has a configuration in which the facing portion 133 and the movable magnetic pole portion 132 are attracted by magnetic force, the control portion 172 adjusts the current flowing through the coil 31 so that the value of the current flowing through the coil 31 gradually increases. do. Therefore, it is possible to avoid sudden application of an external force greater than the attraction force to the movable magnetic pole part 132, and to easily suppress the movable magnetic pole part 132 from suddenly moving away from the opposing part 133.
<実施形態2>
 次に、実施形態2に係るソレノイド制御装置270について、図6から図10を参照しつつ説明する。実施形態2において、ソレノイド制御装置270の制御対象であるソレノイド230において、第2対向部が設けられていない点、収容部236が設けられている点、圧縮コイルバネ234が設けられている点、可動磁極部232の構成等が実施形態2と異なる。さらに、実施形態2のソレノイド制御装置270は、制御部272の動作等が実施形態1と異なる。実施形態2において、実施形態1と同じ構成については同一の符号を付し、実施形態1と同じ作用及び効果については説明を省略する。
<Embodiment 2>
Next, a solenoid control device 270 according to a second embodiment will be described with reference to FIGS. 6 to 10. In the second embodiment, the solenoid 230 that is controlled by the solenoid control device 270 has no second facing portion, a housing portion 236, a compression coil spring 234, and a movable portion. The configuration of the magnetic pole portion 232 and the like are different from the second embodiment. Furthermore, the solenoid control device 270 of the second embodiment differs from the first embodiment in the operation of the control section 272 and the like. In the second embodiment, the same components as in the first embodiment are denoted by the same reference numerals, and descriptions of the same functions and effects as in the first embodiment will be omitted.
[ソレノイドの構成]
 図6には、実施形態2に係るソレノイド制御装置270が設けられたソレノイド制御システム200が例示される。図6に示すように、ソレノイド230は、コイル31と、第1対向部133Aと、可動磁極部232と、ロッド35と、収容部236と、圧縮コイルバネ234と、を有している。
[Solenoid configuration]
FIG. 6 illustrates a solenoid control system 200 provided with a solenoid control device 270 according to the second embodiment. As shown in FIG. 6, the solenoid 230 includes a coil 31, a first opposing portion 133A, a movable magnetic pole portion 232, a rod 35, a housing portion 236, and a compression coil spring 234.
 可動磁極部232は、可動磁極本体部232Aと、押え板部232Bと、を有している。可動磁極本体部232Aは、磁性を有する材料で形成されている。可動磁極本体部232Aは、コイル31内であって、軸線R周りに環状をなして配置される。可動磁極本体部232A内には、永久磁石132Aが設けられている。永久磁石132Aは、自身の2つの磁極(S極、及びN極)が軸線R方向に並ぶ向きに配置されている。なお、永久磁石132Aを可動磁極本体部232A外に配置してもよい。例えば、第1対向部133A内に設ける構成が考えられる。 The movable magnetic pole section 232 has a movable magnetic pole main body section 232A and a presser plate section 232B. The movable magnetic pole main body portion 232A is made of a magnetic material. The movable magnetic pole main body portion 232A is arranged in a ring shape around the axis R within the coil 31. A permanent magnet 132A is provided inside the movable magnetic pole main body 232A. The permanent magnet 132A is arranged such that its two magnetic poles (S pole and N pole) are aligned in the axis R direction. Note that the permanent magnet 132A may be arranged outside the movable magnetic pole main body 232A. For example, a configuration may be considered in which it is provided within the first opposing portion 133A.
 押え板部232Bは、軸線R周りに環状をなし、コイル31の外に配置されている。可動磁極本体部232A、及び押え板部232Bは、軸線R方向に第1対向部133Aを挟んで配置されている。可動磁極部232は、軸線R方向に移動自在に配置されている。 The holding plate portion 232B has an annular shape around the axis R, and is arranged outside the coil 31. The movable magnetic pole main body portion 232A and the presser plate portion 232B are arranged in the direction of the axis R with the first opposing portion 133A interposed therebetween. The movable magnetic pole portion 232 is arranged to be movable in the direction of the axis R.
 可動磁極本体部232Aは、ロッド35の長さ方向の中央部に一体的に連結して配置されている。押え板部232Bは、ロッド35の長さ方向の他端部に一体的に連結して配置されている。ロッド35は、可動磁極本体部232A、及び押え板部232Bとともに軸線R方向に移動自在に配置されている。 The movable magnetic pole main body portion 232A is disposed integrally connected to the central portion of the rod 35 in the longitudinal direction. The presser plate portion 232B is disposed integrally connected to the other end of the rod 35 in the length direction. The rod 35 is disposed so as to be movable in the direction of the axis R together with the movable magnetic pole body 232A and the presser plate 232B.
 収容部236は、コイル31に対して軸線R方向に隣合って設けられている。収容部236は、ロッド35の他端部が貫通しており、内部に押え板部232Bが収容されている。圧縮コイルバネ234は、収容部236の内部であって、押え板部232Bを挟んで、第1対向部133Aの反対側に配置されている。圧縮コイルバネ234の伸縮方向は、軸線Rに沿っている。圧縮コイルバネ234は、軸線Rに沿った向きであり、押え板部232Bを第1対向部133Aに近づける向きに、押え板部232Bに常に外力を付与する構成とされている。つまり、ソレノイド230は、可動磁極部232に対して、押え板部232B(所定部位)を第1対向部133Aに接近させる方向に外力が付与される構成である。圧縮コイルバネ234は、伸縮方向に圧縮された状態(すなわち、自由長よりも短い状態)で収容部236に収容されている。このため、圧縮コイルバネ234は、常に伸長方向に弾性力を生じており、この弾性力を外力として押え板部232Bに常に付与するのである。 The housing portion 236 is provided adjacent to the coil 31 in the direction of the axis R. The other end of the rod 35 passes through the accommodating portion 236, and the holding plate portion 232B is accommodated therein. The compression coil spring 234 is disposed inside the housing portion 236 on the opposite side of the first opposing portion 133A with the presser plate portion 232B interposed therebetween. The direction of expansion and contraction of the compression coil spring 234 is along the axis R. The compression coil spring 234 is oriented along the axis R, and is configured to always apply an external force to the presser plate portion 232B in a direction that brings the presser plate portion 232B closer to the first opposing portion 133A. That is, the solenoid 230 is configured to apply an external force to the movable magnetic pole portion 232 in a direction that causes the presser plate portion 232B (predetermined portion) to approach the first opposing portion 133A. The compression coil spring 234 is housed in the housing portion 236 in a compressed state in the expansion/contraction direction (that is, in a state that is shorter than its free length). Therefore, the compression coil spring 234 always generates an elastic force in the extension direction, and this elastic force is always applied as an external force to the presser plate portion 232B.
 例えば、押え板部232Bが第1対向部133Aに接触した状態(図7参照)であるとき、圧縮コイルバネ234が押え板部232Bに付与する外力は、最小になる。そして、押え板部232Bが第1対向部133Aから最も離れた位置(図8参照)にあるとき(すなわち、圧縮コイルバネ234が最も圧縮された状態のとき)、圧縮コイルバネ234が押え板部232Bに付与する外力は、最大になる。 For example, when the presser plate portion 232B is in contact with the first opposing portion 133A (see FIG. 7), the external force applied by the compression coil spring 234 to the presser plate portion 232B is minimized. When the holding plate part 232B is at the farthest position from the first opposing part 133A (see FIG. 8) (that is, when the compression coil spring 234 is in the most compressed state), the compression coil spring 234 is placed in the holding plate part 232B. The applied external force becomes maximum.
 制御部272は、図示しない外部ECU等から、駆動指令信号C2が入力されるとスイッチング部74に駆動信号Ds2を出力する構成とされている。制御部272からスイッチング部74に駆動信号Ds2を出力すると、スイッチング部74の各スイッチ素子74A,74B,74C,74Dのオンオフ動作が制御されてコイル31に所定方向Pd2の電流が流れる。制御部272に駆動指令信号C2が入力されていない状態のとき、圧縮コイルバネ234が押え板部232Bに付与する弾性力(外力)によって、可動磁極本体部232Aは、第1対向部133Aから最も離れた位置に遠ざかった状態が保持される(図7参照)。制御部272に駆動指令信号C2が入力されていない状態のとき、コイル31には電流が流れない。このとき、可動磁極本体部232A及び第1対向部133Aは、磁気を帯びない。 The control unit 272 is configured to output a drive signal Ds2 to the switching unit 74 when a drive command signal C2 is input from an external ECU (not shown) or the like. When the control section 272 outputs the drive signal Ds2 to the switching section 74, the on/off operation of each switch element 74A, 74B, 74C, 74D of the switching section 74 is controlled, and a current flows in the coil 31 in a predetermined direction Pd2. When the drive command signal C2 is not input to the control section 272, the elastic force (external force) applied by the compression coil spring 234 to the holding plate section 232B causes the movable magnetic pole main body section 232A to move farthest away from the first opposing section 133A. The distanced state is maintained at the remote position (see FIG. 7). When the drive command signal C2 is not input to the control unit 272, no current flows through the coil 31. At this time, the movable magnetic pole main body portion 232A and the first opposing portion 133A are not magnetized.
 制御部272は、駆動指令信号C2が入力されており、且つロッド35が移動していないと演算部172Aが判別している間、コイル31に流れる電流を一定の割合で徐々に大きくする電流上昇制御を実行する。コイル31に流れる電流を一定の割合で徐々に大きくすると、これに比例するように、可動磁極本体部232A及び第1対向部133Aが帯びる磁気の強さも一定の割合で徐々に大きくなる。 The control unit 272 increases the current flowing through the coil 31 gradually at a constant rate while the drive command signal C2 is input and the calculation unit 172A determines that the rod 35 is not moving. Execute control. When the current flowing through the coil 31 is gradually increased at a constant rate, the magnetic strength of the movable magnetic pole main body portion 232A and the first opposing portion 133A is also gradually increased at a constant rate in proportion to this.
[ソレノイド制御装置における動作]
 ソレノイド制御装置270の動作の一例について説明する。
[Operation in solenoid control device]
An example of the operation of the solenoid control device 270 will be described.
 制御部172に駆動指令信号C2が入力されていない状態において、可動磁極本体部232Aは、第1対向部133Aから最も遠ざかった位置に保持されている(図7参照)。これとともに、押え板部232Bは、圧縮コイルバネ234によって押圧されて、第1対向部133Aに接触した状態に保持されている。そして、図9に示す時刻T5に制御部272に駆動指令信号C2が入力される。すると、制御部172は、スイッチング部74に向けて、コイル31に所定方向Pd2に大きさがN5(A)の電流を流すように調整された駆動信号Ds2を出力する。制御部272は、時刻T5に電流上昇制御を開始する。 In a state where the drive command signal C2 is not input to the control unit 172, the movable magnetic pole main body portion 232A is held at the farthest position from the first opposing portion 133A (see FIG. 7). At the same time, the presser plate portion 232B is pressed by the compression coil spring 234 and is held in contact with the first opposing portion 133A. Then, the drive command signal C2 is input to the control section 272 at time T5 shown in FIG. Then, the control section 172 outputs a drive signal Ds2, which is adjusted to cause a current of N5 (A) in magnitude to flow through the coil 31 in a predetermined direction Pd2, to the switching section 74. The control unit 272 starts current increase control at time T5.
 これによって、可動磁極本体部232Aには、第1対向部133Aに引き寄せられる力が付与される。このとき、可動磁極本体部232Aに付与される第1対向部133Aに引き寄せられる力は、圧縮コイルバネ234が押え板部232Bに付与する弾性力(外力)よりも僅かに小さい。このため、コイル31に所定方向Pd2に大きさがN5(A)の電流が流れても、可動磁極本体部232Aは、第1対向部133A側に移動しない。 As a result, a force is applied to the movable magnetic pole main body portion 232A to draw it toward the first opposing portion 133A. At this time, the force applied to the movable magnetic pole main body part 232A to be attracted to the first opposing part 133A is slightly smaller than the elastic force (external force) applied by the compression coil spring 234 to the presser plate part 232B. Therefore, even if a current having a magnitude of N5 (A) flows through the coil 31 in the predetermined direction Pd2, the movable magnetic pole main body portion 232A does not move toward the first opposing portion 133A.
 そして、時刻T5を経過後、制御部272は、コイル31に流す電流値の大きさを一定の割合で徐々に大きくなるように駆動信号Ds2の調整を継続する。これによって、時刻T5を経過後、コイル31に流れる電流の大きさは、N5(A)から一定の割合で徐々に大きくなる。 Then, after time T5 has elapsed, the control unit 272 continues adjusting the drive signal Ds2 so that the magnitude of the current value flowing through the coil 31 gradually increases at a constant rate. As a result, after time T5, the magnitude of the current flowing through the coil 31 gradually increases from N5 (A) at a constant rate.
 これに伴い、可動磁極本体部232Aが帯びる磁気が一定の割合で徐々に大きくなる。そして、時刻T6において、コイル31に流れる電流の大きさがN6(A)になり、このとき、可動磁極本体部232Aに付与される第1対向部133Aに引き寄せられる力は、圧縮コイルバネ234が押え板部232Bに付与する弾性力(外力)よりも大きくなる。すると、可動磁極本体部232Aは、第1対向部133Aに引き寄せられ、第1対向部133A側への移動を開始する。このとき、検知部75は、可動磁極本体部232Aが第1対向部133A側への移動を開始したことを検知する。すると、制御部272は、検知部75の検出結果に基づいて、電流上昇制御を終了する。 Along with this, the magnetism of the movable magnetic pole main body portion 232A gradually increases at a constant rate. Then, at time T6, the magnitude of the current flowing through the coil 31 becomes N6 (A), and at this time, the force applied to the movable magnetic pole main body part 232A to be attracted to the first opposing part 133A is suppressed by the compression coil spring 234. This is larger than the elastic force (external force) applied to the plate portion 232B. Then, the movable magnetic pole main body portion 232A is attracted to the first opposing portion 133A and starts moving toward the first opposing portion 133A. At this time, the detection section 75 detects that the movable magnetic pole main body section 232A has started moving toward the first opposing section 133A. Then, the control unit 272 ends the current increase control based on the detection result of the detection unit 75.
 時刻T6以降において制御部272は、電流上昇制御とは異なる別方式の電流制御を実行し得る。例えば、可動磁極本体部232Aが第1対向部133Aに向けて過度に加速しないようにコイル31に流れる電流の大きさを制御する方法等が考えられる。そして、可動磁極本体部232Aは、第1対向部133Aに磁力によって吸着する。例えば、可動磁極本体部232Aが第1対向部133Aに磁力によって吸着した後も、制御部272には、駆動指令信号C2が継続して入力される。これによって、可動磁極本体部232Aと第1対向部133Aとが磁力によって吸着した状態が保持される。 After time T6, the control unit 272 can perform a different type of current control that is different from the current increase control. For example, a method may be considered in which the magnitude of the current flowing through the coil 31 is controlled so that the movable magnetic pole main body portion 232A does not excessively accelerate toward the first opposing portion 133A. The movable magnetic pole body 232A is magnetically attracted to the first opposing portion 133A. For example, even after the movable magnetic pole main body portion 232A is magnetically attracted to the first opposing portion 133A, the drive command signal C2 continues to be input to the control portion 272. As a result, the state in which the movable magnetic pole main body portion 232A and the first opposing portion 133A are attracted by magnetic force is maintained.
 可動磁極本体部232Aと第1対向部133Aとが磁力によって吸着した状態において、コイル31には、所定方向Pd2に大きさがN7(A)の電流が流れている(図10参照)。そして、図10に示す時刻T7に制御部272への駆動指令信号C2の入力が停止する。 In a state where the movable magnetic pole main body portion 232A and the first opposing portion 133A are attracted by magnetic force, a current having a magnitude of N7 (A) flows in the coil 31 in the predetermined direction Pd2 (see FIG. 10). Then, at time T7 shown in FIG. 10, input of the drive command signal C2 to the control section 272 is stopped.
 すると、時刻T7を経過後、制御部272は、コイル31に流す電流値の大きさを一定の割合で徐々に小さくなるように駆動信号Ds2の調整を継続する電流下降制御を開始する。これによって、時刻T7を経過後、コイル31に流れる電流の大きさは、N7(A)から一定の割合で徐々に小さくなる。 Then, after time T7, the control unit 272 starts current reduction control to continue adjusting the drive signal Ds2 so that the magnitude of the current value flowing through the coil 31 gradually decreases at a constant rate. As a result, after time T7, the magnitude of the current flowing through the coil 31 gradually decreases from N7(A) at a constant rate.
 これに伴い、可動磁極本体部232A、及び第1対向部133Aが帯びる磁気が一定の割合で徐々に小さくなる。そして、時刻T8において、コイル31に流れる電流の大きさは、N8(A)になる。このとき、可動磁極本体部232Aに付与される第1対向部133Aに引き寄せられる力は、圧縮コイルバネ234が伸縮方向に最も圧縮された際に押え板部232Bに付与する弾性力(外力)よりも小さくなる。 Along with this, the magnetism of the movable magnetic pole main body portion 232A and the first opposing portion 133A gradually decreases at a constant rate. Then, at time T8, the magnitude of the current flowing through the coil 31 becomes N8 (A). At this time, the force applied to the movable magnetic pole main body part 232A to be attracted to the first opposing part 133A is greater than the elastic force (external force) applied to the presser plate part 232B when the compression coil spring 234 is most compressed in the expansion/contraction direction. becomes smaller.
 すると、可動磁極本体部232Aは、第1対向部133Aから遠ざかる方向への移動を開始する。このとき、検知部75は、可動磁極本体部232Aが第1対向部133Aから遠ざかる方向への移動を開始したことを検知する。すると、制御部272は、検知部75の検出結果に基づいて、電流下降制御を終了する。時刻T7から時刻T8までの間の期間は、初期期間である。 Then, the movable magnetic pole main body portion 232A starts moving in the direction away from the first opposing portion 133A. At this time, the detection section 75 detects that the movable magnetic pole main body section 232A has started moving in the direction away from the first opposing section 133A. Then, the control section 272 ends the current lowering control based on the detection result of the detection section 75. The period from time T7 to time T8 is an initial period.
<他の実施形態>
 なお、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、請求の範囲によって示された範囲内又は請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。
<Other embodiments>
It should be noted that the embodiments disclosed herein are illustrative in all respects and should not be considered restrictive. The scope of the present invention is not limited to the embodiments disclosed herein, and is intended to include all modifications within the scope indicated by the claims or within the range equivalent to the claims. be done.
 実施形態1、2とは異なり、駆動部からコイルへ供給する電流を段階的に変化させてもよい。また、実施形態1、2の構成に、駆動部からコイルへ供給する電流を段階的に変化させる構成を加えてもよい。 Unlike Embodiments 1 and 2, the current supplied from the drive unit to the coil may be changed in steps. Furthermore, a configuration may be added to the configurations of Embodiments 1 and 2 in which the current supplied from the drive unit to the coil is changed in stages.
 実施形態1、2では、制御部がマイクロコンピュータを主体として構成されているが、マイクロコンピュータ以外の複数のハードウェア回路によって実現されてもよい。 In the first and second embodiments, the control unit is mainly configured with a microcomputer, but it may be realized with a plurality of hardware circuits other than the microcomputer.
 実施形態1、2とは異なり、検出部に赤外線センサを用いてもよい。これによって、ロッドに磁石を設けなくて済む。 Unlike Embodiments 1 and 2, an infrared sensor may be used as the detection section. This eliminates the need to provide a magnet on the rod.
 実施形態1、2とは異なり、可動磁極部に設けられた永久磁石の磁極の向き、及び対向部における磁極の向きは、軸線方向に対して逆向きであってもよい。 Unlike Embodiments 1 and 2, the direction of the magnetic poles of the permanent magnet provided in the movable magnetic pole part and the direction of the magnetic poles in the opposing part may be opposite to the axial direction.
 実施形態2とは異なり、圧縮コイルバネに代えて、コイルの他端部に可動磁極本体部を引き寄せる向きの磁極を有する永久磁石や、コイルの他端部に可動磁極本体部を移動させる向きに外力を付与する引張りコイルバネを配置してもよい。 Unlike Embodiment 2, instead of using a compression coil spring, a permanent magnet having a magnetic pole in a direction to draw the movable magnetic pole body to the other end of the coil, or an external force in a direction to move the movable magnetic pole body to the other end of the coil is used. A tension coil spring may be arranged to provide the following.
 実施形態1、2において、可動磁極部と対向部との間に緩衝材を設けてもよい。 In Embodiments 1 and 2, a buffer material may be provided between the movable magnetic pole part and the opposing part.
 実施形態1、2とは異なり、所定の大きさの電流増加量が0よりも大きい第1の値と、第1の値よりも大きい第2の値と、の間で変化させてもよい。 Unlike Embodiments 1 and 2, the current increase amount of the predetermined magnitude may be changed between a first value larger than 0 and a second value larger than the first value.
 実施形態1、2とは異なり、電流上昇制御が開始する際に、コイルに流す電流を0(A)から一定の割合で徐々に大きくなるように変化させてもよい。また、電流上昇制御を実行中に、コイルに流れる電流の大きさを変化させず一定の大きさに保つ区間や、コイルに流れる電流の大きさを小さくする区間を設定してもよい。つまり、初期期間の全体にわたってコイルに流れる電流を一定の割合で徐々に大きくしなくてもよい。 Unlike Embodiments 1 and 2, when the current increase control starts, the current flowing through the coil may be changed from 0 (A) to gradually increase at a constant rate. Furthermore, while the current increase control is being executed, a section may be set in which the magnitude of the current flowing through the coil is not changed and maintained at a constant magnitude, or a zone in which the magnitude of the current flowing in the coil is reduced. That is, it is not necessary to gradually increase the current flowing through the coil at a constant rate over the entire initial period.
 実施形態1、2とは異なり、検知部は、ロッドの移動速度を検知する構成としてもよい。 Unlike Embodiments 1 and 2, the detection unit may be configured to detect the moving speed of the rod.
 実施形態1、2とは異なり、PI演算方式やPID演算方式等のフィードバック演算方式を採用しつつ、目標電流値になるようにコイルに流れる電流の大きさを制御してもよい。 Unlike Embodiments 1 and 2, a feedback calculation method such as a PI calculation method or a PID calculation method may be employed while controlling the magnitude of the current flowing through the coil so as to reach the target current value.
31…コイル
35…ロッド
35A…永久磁石
71…検出部
74…スイッチング部
74A…第1スイッチ素子(スイッチ素子)
74B…第2スイッチ素子(スイッチ素子)
74C…第3スイッチ素子(スイッチ素子)
74D…第4スイッチ素子(スイッチ素子)
75…検知部
90…電源部
91…導電路
92…基準導電路
100,200…ソレノイド制御システム
130,230…ソレノイド
132,232…可動磁極部
132A…永久磁石
133…対向部
133A…第1対向部(対向部)
133B…第2対向部(対向部)
170,270…ソレノイド制御装置
172,272…制御部
172A…演算部
172B…ROM
232A…可動磁極本体部
232B…押え板部
234…圧縮コイルバネ
236…収容部
C1,C2…駆動指令信号
Cp1…第1接続点
Cp2…第2接続点
Ds1,Ds2…駆動信号
Pd1…逆方向
Pd2…所定方向
R…軸線
Vth…移動閾値
31... Coil 35... Rod 35A... Permanent magnet 71... Detection section 74... Switching section 74A... First switch element (switch element)
74B...Second switch element (switch element)
74C...Third switch element (switch element)
74D...Fourth switch element (switch element)
75...Detection section 90...Power supply section 91...Conducting path 92... Reference conducting path 100, 200... Solenoid control system 130, 230... Solenoid 132, 232...Movable magnetic pole section 132A...Permanent magnet 133...Opposing section 133A...First opposing section (opposite part)
133B...Second opposing part (opposing part)
170, 270... Solenoid control device 172, 272... Control section 172A... Arithmetic section 172B... ROM
232A...Movable magnetic pole body part 232B...Press plate part 234...Compression coil spring 236...Accommodating parts C1, C2...Drive command signal Cp1...First connection point Cp2...Second connection point Ds1, Ds2...Drive signal Pd1...Reverse direction Pd2... Predetermined direction R...axis line Vth...movement threshold

Claims (3)

  1.  コイルと可動磁極部と対向部とを有するとともに、前記対向部に接近する方向及び前記対向部から離間する方向に移動するように前記可動磁極部が変位するソレノイドを制御対象とするソレノイド制御装置であって、
     前記コイルに流す電流を制御する制御部を有し、
     前記制御部は、前記可動磁極部が前記対向部から離間する方向に移動を開始するまでの初期期間において、前記コイルに流れる電流値が徐々に大きくなるように前記コイルに流れる電流を調整する電流上昇制御を実行するソレノイド制御装置。
    A solenoid control device that controls a solenoid that has a coil, a movable magnetic pole part, and a facing part, and in which the movable magnetic pole part is displaced so as to move in a direction toward the facing part and in a direction away from the facing part. There it is,
    comprising a control unit that controls the current flowing through the coil,
    The control unit adjusts the current flowing through the coil so that the value of the current flowing through the coil gradually increases during an initial period until the movable magnetic pole part starts moving in a direction away from the opposing part. Solenoid control device that performs lift control.
  2.  前記可動磁極部の移動の開始を検出する検知部を有し、
     前記初期期間は、前記コイルへの電流供給を開始する時から、前記検知部が前記可動磁極部の移動開始を検出する時までの間であり、
     前記制御部は、前記初期期間において前記電流上昇制御を実行する請求項1に記載のソレノイド制御装置。
    comprising a detection unit that detects the start of movement of the movable magnetic pole part,
    The initial period is from the time when current supply to the coil is started until the time when the detection unit detects the start of movement of the movable magnetic pole part,
    The solenoid control device according to claim 1, wherein the control unit executes the current increase control during the initial period.
  3.  前記可動磁極部が移動を開始する前には、前記対向部と前記可動磁極部とが磁力によって吸着している請求項1又は請求項2に記載のソレノイド制御装置。 The solenoid control device according to claim 1 or 2, wherein the opposing portion and the movable magnetic pole portion are attracted to each other by magnetic force before the movable magnetic pole portion starts moving.
PCT/JP2022/029265 2022-07-29 2022-07-29 Solenoid control device WO2024024078A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029265 WO2024024078A1 (en) 2022-07-29 2022-07-29 Solenoid control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029265 WO2024024078A1 (en) 2022-07-29 2022-07-29 Solenoid control device

Publications (1)

Publication Number Publication Date
WO2024024078A1 true WO2024024078A1 (en) 2024-02-01

Family

ID=89705846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029265 WO2024024078A1 (en) 2022-07-29 2022-07-29 Solenoid control device

Country Status (1)

Country Link
WO (1) WO2024024078A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023588A (en) * 2009-07-16 2011-02-03 Ricoh Co Ltd Driving device of solenoid, image forming apparatus, paper processing apparatus, method of controlling solenoid, and solenoid controlling program
JP2018019043A (en) * 2016-07-29 2018-02-01 キヤノンファインテックニスカ株式会社 Solenoid drive device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023588A (en) * 2009-07-16 2011-02-03 Ricoh Co Ltd Driving device of solenoid, image forming apparatus, paper processing apparatus, method of controlling solenoid, and solenoid controlling program
JP2018019043A (en) * 2016-07-29 2018-02-01 キヤノンファインテックニスカ株式会社 Solenoid drive device

Similar Documents

Publication Publication Date Title
ATE442694T1 (en) DRIVE UNIT
US11614179B2 (en) Electromagnetic flexure valve and electromagnetic flexure valve component
BR0014967A (en) Actuator and flow control systems, and methods for controlling an actuator
JP2002101631A (en) Moving magnet electromagnetic actuator
US9607746B2 (en) Electromagnetic actuator device
US7808153B2 (en) Inertial drive actuator
JP6321371B2 (en) Solenoid valve device
JP2006345589A (en) Driver, imaging apparatus employing it and control method of driver
EP3961882A3 (en) Electromagnetic actuator and vibration generator including the same
US20220021289A1 (en) Adjustable force device
WO2024024078A1 (en) Solenoid control device
US9812938B2 (en) Magnetic device comprising an acceleration unit acting on the translator
US8558498B2 (en) Drive device
WO2024024031A1 (en) Solenoid control device
WO2024018513A1 (en) Solenoid control apparatus
JPH11243013A (en) Method for driving electromagnetic actuator
JP2005039147A (en) Linear actuator capable of low-speed drive
JP2009222040A (en) Shape memory alloy actuator
CN113659876A (en) Driving assembly and magnetic suspension equipment
WO2024024033A1 (en) Solenoid control device
US6831538B2 (en) Linear voice coil actuator as a controllable electromagnetic compression spring
CN112201538A (en) Electromechanical actuator with self-adjusting control
CN115050536B (en) Bistable electromagnet
CN215956292U (en) Driving assembly and magnetic suspension equipment
US20220108858A1 (en) Relay Device and Control Method of Relay Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952159

Country of ref document: EP

Kind code of ref document: A1