WO2024024007A1 - Radar device and radar signal processing method - Google Patents

Radar device and radar signal processing method Download PDF

Info

Publication number
WO2024024007A1
WO2024024007A1 PCT/JP2022/029061 JP2022029061W WO2024024007A1 WO 2024024007 A1 WO2024024007 A1 WO 2024024007A1 JP 2022029061 W JP2022029061 W JP 2022029061W WO 2024024007 A1 WO2024024007 A1 WO 2024024007A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar device
vehicle
unit
axis deviation
radar
Prior art date
Application number
PCT/JP2022/029061
Other languages
French (fr)
Japanese (ja)
Inventor
正幸 佐藤
隆史 松村
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/029061 priority Critical patent/WO2024024007A1/en
Publication of WO2024024007A1 publication Critical patent/WO2024024007A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating

Definitions

  • the present invention relates to a radar device and a radar signal processing method.
  • a radar device is a device that radiates high-frequency electromagnetic waves, typically millimeter waves, into the surroundings, receives electromagnetic waves reflected from a target object, and processes the signals to obtain position and velocity information of the target object. By using this information, it is possible to construct a radar device that calculates the risk of collision between the target object and the own vehicle and issues a warning.
  • a camera device which is one type of sensing device, requires ambient light or auxiliary light, but since a radar device uses electromagnetic waves, it is possible to detect a target object only with the radar device. Because of this feature, it is particularly suitable for the radar device to be mounted on the end of the vehicle or the side of the vehicle.
  • radar devices are attached to the ends of vehicles, etc., and are devices that obtain information on the position and speed of detected targets.
  • the installation axis is misaligned, the accuracy of the target object information decreases.
  • the collision risk calculation becomes inaccurate, problems such as the alarm activation timing are delayed, the alarm is not activated (Non-alert), and unnecessary activation (Unnecessary alert) occur. For this reason, there is a need to establish a method for detecting axis deviation of radar equipment.
  • Patent Document 1 describes a radar device that is attached to the own vehicle so that at least a portion of the own vehicle body falls within the detection range.
  • the radar device described in Patent Document 1 sets a position where a detected part of the own vehicle extends as a reference position, and when a surrounding object is detected, the direction of existence of the object is determined by an axis deviation from the reference position. It is detected as an angle.
  • Patent Document 1 sets a part of the own vehicle as the reference position, when the radar device is attached to a movable part of the own vehicle, depending on the moving state, a part of the own vehicle may be set as the reference position. It is difficult to include it within the detection range, and axis deviation cannot be determined because the reference position is lost. Furthermore, if a part of your vehicle is included in the detection range, if there are detection objects near your vehicle, they may be judged as one target at the same time, making it difficult to detect the reference position. It deviates from its original position. Therefore, the reference position cannot be detected with high accuracy, and stable axis deviation detection cannot be provided. Another concern is that detecting a part of the own vehicle may cause multipath, which may cause unnecessary activation of an alarm.
  • the present application includes a plurality of means for solving the above problems, and one example is a radar device installed in a vehicle that transmits transmission waves to the surroundings and receives reflected waves reflected by objects.
  • a transmission/reception unit a detection processing unit that detects an object based on a received signal of the transmission/reception unit; an information acquisition unit that acquires yaw rate information of the vehicle;
  • the apparatus includes an axis deviation determination unit that determines the circumferential velocity caused by the position change and compares the circumferential velocity with yaw rate information to determine the axis deviation of the transmitter/receiver unit.
  • FIG. 1 is a block diagram showing a radar device and a control device according to a first embodiment of the present invention.
  • FIG. 3 is a diagram showing folding, unfolding, and stopped states of a mechanism section in which a radar device according to a first embodiment of the present invention is mounted.
  • FIG. 3 is a diagram showing the behavior of a target while the radar device according to the first embodiment of the present invention is in an unfolding operation from a folded state.
  • 1 is a block diagram showing an example of a hardware configuration of a computer included in a radar device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a flowchart of a target object state and axis deviation determination when a vehicle equipped with a radar device according to a first embodiment of the present invention is traveling in a straight line.
  • FIG. 3 is a diagram illustrating a target object state and a flowchart of axis deviation determination when a vehicle equipped with a radar device according to a first embodiment of the present invention is retracted while traveling in a straight line.
  • FIG. 2 is a diagram showing a target object state when a vehicle equipped with a radar device according to a first embodiment of the present invention is stopped, and a flowchart of axis deviation determination.
  • FIG. 3 is a diagram illustrating a target object state and a flowchart of axis deviation determination when a vehicle equipped with a radar device according to a first embodiment of the present invention is retracted while traveling in a straight line.
  • FIG. 2 is a diagram showing a target object state when a vehicle equipped with a radar device according to a first
  • FIG. 3 is a diagram showing a target object state and a flowchart of axis deviation determination when a retraction operation is performed while a vehicle equipped with a radar device according to a first embodiment of the present invention is stopped.
  • FIG. 3 is a diagram showing a flowchart of a target object state and axis deviation determination when a vehicle equipped with a radar device according to a first embodiment of the present invention is traveling on a curve;
  • FIG. 3 is a diagram illustrating a target object state and a flowchart of axis deviation determination when the vehicle equipped with the radar device according to the first embodiment of the present invention performs a storage operation while traveling on a curve.
  • FIG. 3 is a diagram showing a target object state and a flowchart of axis deviation determination when a retraction operation is performed while a vehicle equipped with a radar device according to a first embodiment of the present invention is stopped.
  • FIG. 3 is a diagram showing a flowchart of a target object state and axis deviation
  • FIG. 3 is a diagram showing the behavior of a target when peripheral velocity is developed in the radar device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram defining each velocity vector constituting a target velocity, for explaining the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a modification of the radar device and control device according to the first embodiment of the present invention. It is a block diagram showing the modification of the radar device and control device concerning the example of the 2nd embodiment of the present invention.
  • FIG. 7 is a block diagram showing a modification of the radar device and control device according to the third embodiment of the present invention.
  • FIG. 7 is a block diagram showing a modification of the radar device and control device according to the fourth embodiment of the present invention. It is a block diagram showing a modification of a radar device and a control device concerning a 5th example of embodiment of the present invention.
  • FIG. 1 is a diagram showing the configuration of a radar device 1 and a control device 7 according to this embodiment.
  • the radar device 1 of this embodiment is attached to a vehicle movable portion 5 on the front left or right side of a vehicle (truck) shown in FIG. 3, which will be described later.
  • the vehicle movable part 5 is configured as a door mirror stay to which a door mirror for the driver to check the side is attached. Therefore, the radar device 1 and the door mirrors attached to the vehicle movable section 5 move in conjunction with the movement of the vehicle movable section 5.
  • An example of the movable state of the radar device 1 will be described later with reference to FIG.
  • the vehicle movable section 5 has a built-in motor 6 that moves the vehicle movable section 5 itself between a folded state (storage state) and an unfolded state.
  • the control device 7 controls the motor 6, acquires information from the radar device 1, and performs warnings, vehicle control, and the like.
  • the radar device 1 includes a transmitting/receiving section 13 , a detection processing section 14 , an information acquisition section 16 , an alarm section 39 , an information transmitting section 40 , and a power supply section 47 .
  • the transmitting/receiving unit 13 performs processing for transmitting and receiving high frequency signals. That is, a high frequency signal generated by an oscillator inside the transmitting/receiving section 13 and amplified by a transmitting amplifier is radiated into space from the transmitting antenna 27 via the radome 35 as a transmitting wave 29 in the millimeter wave band.
  • the transmitted wave 29 is reflected by an object 12 within the detection range, such as a pedestrian, bicycle, motorcycle, car, truck, or bus, and becomes a received wave 30.
  • the received wave 30 propagates through space, it is received again by the receiving antenna 28 via the radome 35.
  • the signal received by the receiving antenna 28 is amplified by a receiving amplifier in the transmitting/receiving section 13, and mixed with a high frequency signal from an oscillator by a mixer to generate an intermediate frequency (IF) signal.
  • the IF signal is converted into a digital signal by an analog/digital converter in the transmitter/receiver 13, and then passed to the detection processor 14 using the digital signal as a reception signal.
  • the detection processing unit 14 performs two-dimensional fast Fourier transform (FFT) processing, angle estimation, grouping processing, and tracking processing. Further, the detection processing unit 14 receives information acquired from the vehicle sensor 9 from the vehicle information processing unit 10 of the control device 7 via the information acquisition unit 16 as vehicle information 11. The information acquisition unit 16 performs information acquisition processing to acquire vehicle information 11.
  • FFT fast Fourier transform
  • the detection processing section 14 sends target object information 32 and vehicle information 11 obtained through the detection processing to the alarm section 39.
  • a vehicle information processing unit 10 of the control device 7 generates vehicle information 11 based on a vehicle sensor 9 mounted on the vehicle.
  • the vehicle information 11 here includes yaw rate information indicating the rotation of the vehicle, information indicating whether the vehicle is running or stopped, and the like.
  • the warning unit 39 calculates objects 12 that have a possibility of colliding with the own vehicle 2 based on the target object information 32 and the vehicle information 11, and obtains the warning information 31 based on the calculation.
  • the alarm information 31 obtained by the alarm section 39 is supplied to the information transmitting section 40 .
  • the detection processing section 14 supplies the target object information 32 to the information transmission section 40 .
  • the information transmitter 40 transmits the warning information 31 and target information 32 to the vehicle information receiver 42 of the control device 7.
  • the control device 7 uses a user interface (not shown) including a display device, a speaker, etc. to notify the driver of an object approach warning.
  • the motor 6 is a drive unit that moves the vehicle movable unit 5, which is a door mirror stay to which a door mirror is attached, between a folded state (stored state) and an expanded state.
  • FIG. 2 shows an example in which the vehicle movable portion 5 is movable between a folded state and an unfolded state.
  • FIG. 2 is a view of the vehicle 2 viewed from directly above, and the upper side of FIG. 2 is the driver's seat.
  • the vehicle movable part 5 which is a door mirror stay, is attached to the left front of the vehicle 2, which is a truck.
  • FIG. 2 shows an example in which it is attached to the left front, it may also be attached to the right front.
  • the radar devices 1a, 1b, and 1c at the respective positions shown in FIG. 2 have a field of view (FoV) 4, which is a detection range, formed in a fan shape.
  • FoV field of view
  • the vehicle movable section 5 shown in FIG. 2 is driven by a motor 6 to rotate.
  • the radar device 1 attached to the vehicle movable part 5 changes its mounting position from the radar device (unfolded) 1a to the radar device (folded) 1b by the operation of the motor 6 based on the operation of the electric storage switch 8. Change.
  • an axis misalignment occurs in the radar device 1.
  • the radar device (unfolded) 1a ⁇ radar device (folded) 1b is in operation, if the stop operation is performed using the electric storage switch 8, the radar device (stopped) 1c will be in an intermediate position. Can be done.
  • FIG. 3 visually shows the behavior of a target detected by the radar device 1 while the vehicle movable portion 5 is unfolding from the folded state.
  • the mounting position changes from the radar device (unfolded) 1a to the radar device (folded) 1b due to the operation of the motor 6.
  • a circumferential velocity 18 corresponding to the rotational component of the vehicle movable part 5 appears, and a target velocity (with a rotational component) 37b on which the circumferential velocity 18 is superimposed is generated.
  • the axis deviation is detected by checking whether the vehicle running state or the motor 6 causes the circumferential speed 18 superimposed on the target object speed 37b.
  • the yaw rate information 17 of the vehicle information 11 (see FIG. 13) It can be confirmed using Axis deviation detection in this embodiment can be performed, for example, by the detection processing section 14 of the radar device 1.
  • the detection processing unit 14 of the radar device 1 is equipped with, for example, a computer that performs arithmetic processing, and can perform axis deviation detection processing.
  • FIG. 4 shows an example of the hardware configuration of a computer installed in the radar device 1, which performs axis deviation detection processing and the like inside the radar device 1.
  • the computer installed in the radar device 1 includes a CPU (Central Processing Unit) 101 which is a processor, a ROM (Read Only Memory) 102, a RAM (Random Access Memory) 103, and a non-volatile storage 104. Be prepared.
  • the nonvolatile storage 104 for example, a flash memory or an EEPROM (Electrically Erasable and Programmable Read Only Memory) is used. Alternatively, an HDD (Hard Disk Drive) or SSD (Solid State Drive) may be used.
  • the computer installed in the radar device 1 includes a network interface 105, an input device 106, and an output device 107.
  • the CPU 101 causes the RAM 103 to execute a program stored in the ROM 102 or the nonvolatile storage 104, thereby causing the RAM 103 to configure at least part of the functions performed by the detection processing unit 14 (FIG. 1).
  • the nonvolatile storage 104 stores programs for performing object detection processing, axis deviation detection processing, etc. as the radar device 1, and also stores vehicle information 11 and the like.
  • the network interface 105 has a function of transmitting and receiving data to and from the control device 7 .
  • the input device 106 receives input of received signals from the transmitting/receiving section 13 and the like.
  • the output device 107 outputs a signal to the alarm unit 39 and the like.
  • FIGS. 5 and 6 are when the vehicle 2 is traveling in a straight line
  • FIGS. 7 and 8 are when the vehicle 2 is stopped
  • FIGS. 9 and 10 are when the vehicle 2 is traveling on a curve. It is.
  • the left side of each figure shows the position or movement of the vehicle movable part 5 from above the vehicle 2, and the right side of each figure shows a flowchart for performing axis deviation determination processing.
  • step S11 it is determined whether or not there is (step S11). If there is no rotational component in step S11 (NO in step S11), the detection processing unit 14 determines that the vehicle is traveling in a straight line or stopped, and ends the axis deviation detection process. Further, if there is a rotational component in step S11 (YES in step S11), the detection processing unit 14 determines whether or not the rotational component is approximately equal to the yaw rate obtained from the vehicle information (step 12).
  • step S12 If the rotational component is approximately equal to the yaw rate in step S12 (YES in step S12), it is determined that the own vehicle is traveling on a curve (step 13), and the axis deviation detection process is ended. Further, if the rotational component is not equal to the yaw rate in step S12 (NO in step S12), the detection processing unit 14 determines that axis deviation has occurred because the motor 6 is operating (step S14), Ends the axis deviation detection process.
  • step S11 of the flowchart for performing this axis deviation determination process the rotational components of a plurality of targets are detected, since it is assumed that the detected target itself may move with a rotational component. It is from. Normally, all of the targets detected by the radar device do not move with a rotational component, so by assuming that a plurality of targets are detected, the determination based on this flowchart can be performed appropriately. However, the case where multiple targets are detected is just one example, and one target may be detected and the determination may be made based on the rotational component of that one target.
  • FIG. 5 shows a case where the vehicle 2 is traveling in a straight line traveling direction 201.
  • each target object 36 detected by the radar device 1 does not exhibit the circumferential velocity 18, and a target velocity 37a without a rotational component is detected. Therefore, in the process of the flowchart for axis deviation determination in the detection processing unit 14, the determination of "a plurality of targets have rotational components" in step S11 is NO.
  • FIG. 6 shows an example in which the vehicle movable portion 5 is moved by the motor 6 in a situation where the vehicle 2 is traveling in a straight line traveling direction 201.
  • FIG. 7 shows a case where the vehicle 2 is stopped.
  • the circumferential velocity of the target object 36 is not expressed as in the case of straight-line traveling, and a target velocity 37a without a rotational component is generated. Therefore, in the process of the flowchart for axis deviation determination in the detection processing unit 14, the determination of "a plurality of targets have rotational components" in step S11 is NO.
  • FIG. 8 shows an example in which the vehicle movable portion 5 is moved by the motor 6 while the vehicle 2 is stopped.
  • FIG. 9 shows a case where the vehicle 2 is traveling in a curved direction 202.
  • FIG. 10 shows an example in which the vehicle movable portion 5 is moved by the motor 6 while the vehicle 2 is traveling in a curved direction 202.
  • FIG. 11 When traveling on a curve, two types of circumferential speeds occur depending on the vehicle traveling state and the operation of the motor 6. The behavior of the target at that time will be explained using FIG. 11.
  • a circumferential velocity (Y) 19 corresponding to R 2 is expressed as ⁇ 2 ⁇ R 2 in the tangential direction of a circle whose radius is the distance R 2 .
  • the circumferential velocity (M) 20 corresponding to the angular velocity ⁇ 1 and the distance R 1 from the center m 0 of the motor 6 is ⁇ 1 ⁇ R 1 , and a circle with the distance R 1 as the radius is Expresses tangentially.
  • FIG. 12 shows the definition of each velocity vector that constitutes the target velocity.
  • Actual target speed 304 is found by combining vectors of own vehicle speed 303, relative speed 305, peripheral speed (Y) 301, and peripheral speed (M) 302. That is, the following relational expression is obtained.
  • Target speed own vehicle speed + relative speed + peripheral speed (Y) + peripheral speed (M)
  • processing related to this axis deviation determination is performed by the detection processing unit 14 in the radar device 1.
  • the radar device 1 may be provided with a processing unit that determines the presence or absence of axis deviation, and the determination by that processing unit may be performed. The results may be sent to the control device 7 to perform corresponding control.
  • the radar device 1 shown in FIG. 13 has a configuration in which the radar device 1 shown in FIG. 1 is provided with a determination section 15.
  • the determination unit 15 acquires the circumferential velocity included in the plurality of target object information and the yaw rate information 17 included in the vehicle information from the detection processing unit 14, and compares the circumferential velocity and the yaw rate. Thereby, the determining unit 15 performs a process of determining whether there is an axis deviation. This process of determining the presence or absence of axis deviation is performed according to the flowcharts shown in FIGS. 5 to 10.
  • the determination result in the determination section 15 is supplied to the alarm section 39 and also to the control device 7.
  • the alarm unit 39 generates alarm information when there is an axis deviation and transmits it to the control device 7.
  • the control device 7 takes measures such as stopping vehicle control based on the target detected by the radar device 1 or reducing the traveling speed to a safe speed. I do.
  • the other configurations of the radar device 1 and the control device 7 shown in FIG. 13 are configured similarly to the radar device 1 and the control device 7 shown in FIG.
  • FIG. 14 the same components as those in FIGS. 1 to 13 described in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 14 is a diagram showing the configuration of the radar device 1 and the control device 7 of this embodiment.
  • the radar device 1 according to the present embodiment includes a determination unit 15 similarly to the radar device 1 shown in FIG.
  • the determination unit 15 acquires the circumferential velocity included in the plurality of target object information and the yaw rate information 17 included in the vehicle information from the detection processing unit 14, compares the circumferential velocity and the yaw rate, and determines the presence or absence of axis deviation. Perform processing. This process of determining the presence or absence of axis deviation is performed according to the flowcharts shown in FIGS. 5 to 10.
  • the judgment section 15 supplies an alarm suppression signal 41 to the alarm section 39 .
  • the alarm section 39 receives the alarm suppression signal 41, it limits the output of the alarm information 31. That is, when the alarm suppression signal 41 is issued, the alarm section 39 performs a process of suppressing the radar alarm function.
  • the other configurations of the radar device 1 and the control device 7 shown in FIG. 14 are configured similarly to the radar device 1 and the control device 7 shown in FIG. As a result, according to the second embodiment of the present invention, it is possible to obtain the effect of suppressing the occurrence of unnecessary operations in a state of axis misalignment.
  • FIG. 15 a third embodiment of the present invention will be described with reference to FIG. 15.
  • the same components as those in FIGS. 1 to 14 described in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 15 is a diagram showing the configuration of the radar device 1 and the control device 7 of this embodiment.
  • the radar device 1 of this embodiment like the radar device 1 shown in FIG. 14, includes a determination unit 15 and a storage unit 21 that stores the axis deviation result 24 in the determination unit 15. It is preferable that the storage section 21 is composed of a nonvolatile storage element.
  • the other configurations of the radar device 1 and the control device 7 shown in FIG. 15 are configured similarly to the radar device 1 and the control device 7 shown in FIG. 14.
  • the determination section 15 sends the alarm suppression signal 41 to the alarm section 39 as in the example of FIG. 14, but as shown in FIG.
  • a storage section 21 may be provided.
  • FIG. 16 the same components as those in FIGS. 1 to 15 described in the first to third embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 16 is a diagram showing the configuration of the radar device 1 and the control device 7 of this embodiment.
  • the radar device 1 according to the present embodiment includes a determination unit 15 similarly to the radar device 1 shown in FIG.
  • the determination unit 15 obtains the circumferential velocity included in the plurality of target object information and the yaw rate information 17 included in the vehicle information from the detection processing unit 14, compares the circumferential velocity and the yaw rate, and obtains the axis deviation result 24. .
  • the axis deviation result 24 outputted by the determination unit 15 is supplied to the integration unit 33 and integrated.
  • the integrating unit 33 calculates the actual amount of axis deviation 46 by integrating the preset axis deviation confirmation period and the result of the angular velocity (M).
  • the calculated actual axis deviation amount 46 is stored in the storage unit 21. It is preferable that this storage section 21 is also composed of a nonvolatile storage element.
  • the other configurations of the radar device 1 and the control device 7 shown in FIG. 16 are configured similarly to the radar device 1 and the control device 7 shown in FIG. 15.
  • FIG. 17 the same components as those in FIGS. 1 to 16 described in the first to fourth embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 17 is a diagram showing the configuration of the radar device 1 and the control device 7 of this embodiment.
  • the radar device 1 of this embodiment includes a determination section 15, an integration section 33, and a storage section 21, like the radar device 1 shown in FIG.
  • the configuration is the same as that of FIG. 16 in that the integration unit 33 integrates the axis deviation results 24 output by the determination unit 15 and stores the actual axis deviation amount 46 obtained by the integration in the storage unit 21. .
  • the radar device 1 shown in FIG. 17 includes a motor control section 48.
  • the motor control unit 48 sends a deployment command 49 to the control device 7 within a predetermined time.
  • the deployment signal output section 7b supplies the deployment signal 44 to the motor 6.
  • the other configurations of the radar device 1 and the control device 7 shown in FIG. 17 are configured similarly to the radar device 1 and the control device 7 shown in FIG. 16.
  • the actual accurate position can be determined in the subsequent calculation of the amount of axis deviation. This has the effect of being able to derive the amount of axis deviation.
  • the vehicle movable part 5 is provided on the left side of the host vehicle 2, and the direction of axis deviation is explained using the condition that the radar device (unfolded) 1a ⁇ the radar device (folded) 1b.
  • the vehicle movable part 5 may be located on the right side of the own vehicle 2, or the direction may be reversed from the radar device (folded) 1b to the radar device (unfolded) 1a. In this case, although the direction of axis deviation shown in FIG. 4 etc. is reversed, the same effect is obtained.
  • the rotational components of a plurality of targets are detected and it is determined whether each rotational component substantially matches the yaw rate. Judging from multiple targets in this way increases the accuracy of axis misalignment judgment, but the principle of axis misalignment judgment is to detect the rotational component of one target, and that one rotational component is determined by the yaw rate. It is also possible to determine axis misalignment by determining whether the values approximately match. Further, by determining the axis deviation based on one rotational component, the processing of the present invention can be applied even when there are few targets detected by the radar device 1 around the vehicle.
  • the radar device 1 is attached to the door mirror stay, which is a movable part of the vehicle 2.
  • the radar device 1 is attached to the door mirror stay as an example, and the radar device 1 is attached to other movable parts of the vehicle.
  • the axis deviation of the radar device may be determined.
  • information on the electric retractable switch 8 that starts the motor 6 can be obtained to determine each situation that occurs in conjunction with the operation of the door mirror stay to which the radar device 1 is attached. Therefore, the operation of the radar device 1 attached to a movable part such as a door mirror stay can be appropriately controlled, and false detection can be prevented.
  • the axis misalignment is determined within the radar device, but based on information from the radar device, the axis misalignment is determined in the control device and corresponding control is performed. It's okay.
  • the detection processing unit 14 and the like in the radar device 1 are configured by a computer executed under the control of a CPU, but some or all of the functions performed by the radar device can be implemented using an FPGA. It may also be realized by dedicated hardware such as a Field Programmable Gate Array (Field Programmable Gate Array) or an Application Specific Integrated Circuit (ASIC).
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • information such as programs, tables, files, etc. that realize the functions performed by the radar device can be stored in various recording media such as memory, hard disk, SSD (Solid State Drive), IC card, SD card, optical disk, etc.
  • SSD Solid State Drive
  • IC card integrated circuit card
  • SD card Secure Digital card
  • optical disk etc.
  • Object Target information 33... Integration unit, 35... Radome, 36... Target, 37a, 37b... Target speed, 39... Alarm unit, 40... Information transmitting unit, 41... Alarm suppression signal, 42... Vehicle information receiving unit, 43 ...Folding signal, 44...Deployment signal, 45...Stop signal, 47...Power supply section, 48...Motor control section, 49...Deployment instruction, 101...CPU, 102...ROM, 103...RAM, 104...Nonvolatile storage, 105 ...Network interface, 106...Input device, 107...Output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A radar device that is positioned on a vehicle, and comprises: a transmission/reception unit that transmits transmission waves to the surroundings and receives reflected waves which have been reflected by an object; a detection processing unit that detects the object on the basis of a received signal from the transmission/reception unit; an information acquisition unit that acquires yaw rate information about the vehicle; and an axial misalignment determination unit that calculates, for at least one object detected by the detection processing unit, the peripheral velocity produced by the positional change relative the transmission/reception vehicle, and compares the peripheral velocity and the yaw rate information to determine the axial misalignment of the transmission/reception unit.

Description

レーダ装置およびレーダ信号処理方法Radar device and radar signal processing method
 本発明は、レーダ装置およびレーダ信号処理方法に関する。 The present invention relates to a radar device and a radar signal processing method.
 近年、自動車の事故防止を目的とした運転者支援や自動運転の実現化に対応するセンシング装置の一つとして、レーダ装置の開発が進んでいる。レーダ装置は、ミリ波に代表される高周波の電磁波を周囲に放射し、物標から反射される電磁波を受信し信号処理することで、その物標の位置および速度情報を得る装置である。これらの情報を利用することで、対象となる物標と自車両との衝突リスクを計算し、警報を発するレーダ装置の構築が可能となる。 In recent years, development of radar devices has been progressing as one of the sensing devices that support driver support for the purpose of preventing automobile accidents and the realization of autonomous driving. A radar device is a device that radiates high-frequency electromagnetic waves, typically millimeter waves, into the surroundings, receives electromagnetic waves reflected from a target object, and processes the signals to obtain position and velocity information of the target object. By using this information, it is possible to construct a radar device that calculates the risk of collision between the target object and the own vehicle and issues a warning.
 ところで、センシング装置の一つであるカメラ装置は周囲光または補助光が必要となるが、レーダ装置では電磁波を利用していることから、レーダ装置のみで物標検知が可能である。この特徴から、レーダ装置は特に車両の端部や車両側面への搭載が好適である。 By the way, a camera device, which is one type of sensing device, requires ambient light or auxiliary light, but since a radar device uses electromagnetic waves, it is possible to detect a target object only with the radar device. Because of this feature, it is particularly suitable for the radar device to be mounted on the end of the vehicle or the side of the vehicle.
 上述のように、レーダ装置は車両の端部等に取付けられ、検知した物標の位置および速度情報を求める装置であるが、取り付けの軸ずれが発生した場合は、物標情報の精度が低下し、衝突リスク計算が不正確となるため、警報作動タイミングがズレたり、警報の不作動(Non-alert)、不要作動(Unnecessary alert)といった問題が生じる。このことからレーダ装置の軸ずれを検知する手法の確立が要請されている。 As mentioned above, radar devices are attached to the ends of vehicles, etc., and are devices that obtain information on the position and speed of detected targets. However, if the installation axis is misaligned, the accuracy of the target object information decreases. However, since the collision risk calculation becomes inaccurate, problems such as the alarm activation timing are delayed, the alarm is not activated (Non-alert), and unnecessary activation (Unnecessary alert) occur. For this reason, there is a need to establish a method for detecting axis deviation of radar equipment.
 このような要請に対して、例えば、特許文献1には、自車両本体の少なくとも一部が検知範囲内に入るように自車両に取付けられたレーダ装置が記載されている。特許文献1に記載されるレーダ装置は、検知された自車両一部が延在する位置を基準位置と設定し、周辺物体を検知したときに該物体の存在方向を上記基準位置からの軸ずれ角度として検出している。 In response to such a request, for example, Patent Document 1 describes a radar device that is attached to the own vehicle so that at least a portion of the own vehicle body falls within the detection range. The radar device described in Patent Document 1 sets a position where a detected part of the own vehicle extends as a reference position, and when a surrounding object is detected, the direction of existence of the object is determined by an axis deviation from the reference position. It is detected as an angle.
特開2009-20076号公報Japanese Patent Application Publication No. 2009-20076
 しかしながら、特許文献1に記載の技術は、自車両の一部を基準位置と設定するため、自車両の可動部にレーダ装置を取付けた場合、可動状態によっては自車両の一部をレーダ装置の検知範囲内に含めることが難しく、基準位置を見失うため軸ずれ判定ができない。さらに、自車両の一部を検知範囲内に含めてしまうと、自車両近傍に検知物体が存在する場合に、それらを同時に1つの物標と判断してしまうことがあり、基準位置の検知が本来位置から偏移してしまう。よって、基準位置を精度よく検知できず、安定した軸ずれ検知を提供することができない。また、自車両の一部を検知するということは、別の懸念として、マルチパスを発生させる可能性があり、警報の不要作動を引起すことも考えられる。 However, since the technology described in Patent Document 1 sets a part of the own vehicle as the reference position, when the radar device is attached to a movable part of the own vehicle, depending on the moving state, a part of the own vehicle may be set as the reference position. It is difficult to include it within the detection range, and axis deviation cannot be determined because the reference position is lost. Furthermore, if a part of your vehicle is included in the detection range, if there are detection objects near your vehicle, they may be judged as one target at the same time, making it difficult to detect the reference position. It deviates from its original position. Therefore, the reference position cannot be detected with high accuracy, and stable axis deviation detection cannot be provided. Another concern is that detecting a part of the own vehicle may cause multipath, which may cause unnecessary activation of an alarm.
 このため、自車両一部を基準点として検知する必要なく、自車両周辺の物体を検知するというレーダ装置の通常動作を用いて、軸ずれ検知を可能とすることが望まれていた。 Therefore, it has been desired to be able to detect axis deviation using the normal operation of the radar device, which detects objects around the own vehicle, without having to detect a part of the own vehicle as a reference point.
 上記課題を解決するために、例えば請求の範囲に記載の構成を採用する。
 本願は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、レーダ装置として、車両に設置され、周囲に送信波を送信するとともに物体によって反射された反射波を受信する送受信部と、送受信部の受信信号に基づいて、物体を検知する検知処理部と、車両のヨーレート情報を取得する情報取得部と、検知処理部が検知した少なくとも一つの物体について、送受信部車両に対する位置変化により発生する周速度を求め、周速度とヨーレート情報とを比較して送受信部の軸ずれを判定する軸ずれ判定部と、を備える。
In order to solve the above problems, for example, the configurations described in the claims are adopted.
The present application includes a plurality of means for solving the above problems, and one example is a radar device installed in a vehicle that transmits transmission waves to the surroundings and receives reflected waves reflected by objects. a transmission/reception unit; a detection processing unit that detects an object based on a received signal of the transmission/reception unit; an information acquisition unit that acquires yaw rate information of the vehicle; The apparatus includes an axis deviation determination unit that determines the circumferential velocity caused by the position change and compares the circumferential velocity with yaw rate information to determine the axis deviation of the transmitter/receiver unit.
 本発明によれば、レーダ装置の送受信部の軸ずれを正確に判定することができる。
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to accurately determine the axis misalignment of the transmitter/receiver section of a radar device.
Problems, configurations, and effects other than those described above will be made clear by the following description of the embodiments.
本発明の第1の実施の形態例に係るレーダ装置および制御装置を示すブロック図である。FIG. 1 is a block diagram showing a radar device and a control device according to a first embodiment of the present invention. 本発明の第1の実施の形態例に係るレーダ装置が搭載された機構部の折畳、展開、停止状態を示す図である。FIG. 3 is a diagram showing folding, unfolding, and stopped states of a mechanism section in which a radar device according to a first embodiment of the present invention is mounted. 本発明の第1の実施の形態例に係るレーダ装置が折畳状態から展開動作中の物標のふるまいを示す図である。FIG. 3 is a diagram showing the behavior of a target while the radar device according to the first embodiment of the present invention is in an unfolding operation from a folded state. 本発明の第1の実施の形態例に係るレーダ装置が備えるコンピュータのハードウェア構成例を示すブロック図である。1 is a block diagram showing an example of a hardware configuration of a computer included in a radar device according to a first embodiment of the present invention. FIG. 本発明の第1の実施の形態例に係るレーダ装置を搭載した車両の直線走行時の物標状態、並びに軸ずれ判定のフローチャートを示す図である。FIG. 2 is a diagram showing a flowchart of a target object state and axis deviation determination when a vehicle equipped with a radar device according to a first embodiment of the present invention is traveling in a straight line. 本発明の第1の実施の形態例に係るレーダ装置を搭載した車両の直線走行中に格納作動した時の物標状態、並びに軸ずれ判定のフローチャートを示す図である。FIG. 3 is a diagram illustrating a target object state and a flowchart of axis deviation determination when a vehicle equipped with a radar device according to a first embodiment of the present invention is retracted while traveling in a straight line. 本発明の第1の実施の形態例に係るレーダ装置を搭載した車両の停止時の物標状態、並びに軸ずれ判定のフローチャートを示す図である。FIG. 2 is a diagram showing a target object state when a vehicle equipped with a radar device according to a first embodiment of the present invention is stopped, and a flowchart of axis deviation determination. 本発明の第1の実施の形態例に係るレーダ装置を搭載した車両の停止中に格納作動した時の物標状態、並びに軸ずれ判定のフローチャートを示す図である。FIG. 3 is a diagram showing a target object state and a flowchart of axis deviation determination when a retraction operation is performed while a vehicle equipped with a radar device according to a first embodiment of the present invention is stopped. 本発明の第1の実施の形態例に係るレーダ装置を搭載した車両の曲線走行時の物標状態、並びに軸ずれ判定のフローチャートを示す図である。FIG. 3 is a diagram showing a flowchart of a target object state and axis deviation determination when a vehicle equipped with a radar device according to a first embodiment of the present invention is traveling on a curve; 本発明の第1の実施の形態例に係るレーダ装置を搭載した車両の曲線走行中に格納作動した時の物標状態、並びに軸ずれ判定のフローチャートを示す図である。FIG. 3 is a diagram illustrating a target object state and a flowchart of axis deviation determination when the vehicle equipped with the radar device according to the first embodiment of the present invention performs a storage operation while traveling on a curve. 本発明の第1の実施の形態例に係るレーダ装置における周速度発現時の物標のふるまいを示す図である。FIG. 3 is a diagram showing the behavior of a target when peripheral velocity is developed in the radar device according to the first embodiment of the present invention. 本発明の第1の実施の形態例を説明するための、物標速度を構成する各速度ベクトルを定義した図である。FIG. 2 is a diagram defining each velocity vector constituting a target velocity, for explaining the first embodiment of the present invention. 本発明の第1の実施の形態例に係るレーダ装置および制御装置の変形例を示すブロック図である。FIG. 2 is a block diagram showing a modification of the radar device and control device according to the first embodiment of the present invention. 本発明の第2の実施の形態例に係るレーダ装置および制御装置の変形例を示すブロック図である。It is a block diagram showing the modification of the radar device and control device concerning the example of the 2nd embodiment of the present invention. 本発明の第3の実施の形態例に係るレーダ装置および制御装置の変形例を示すブロック図である。FIG. 7 is a block diagram showing a modification of the radar device and control device according to the third embodiment of the present invention. 本発明の第4の実施の形態例に係るレーダ装置および制御装置の変形例を示すブロック図である。FIG. 7 is a block diagram showing a modification of the radar device and control device according to the fourth embodiment of the present invention. 本発明の第5の実施の形態例に係るレーダ装置および制御装置の変形例を示すブロック図である。It is a block diagram showing a modification of a radar device and a control device concerning a 5th example of embodiment of the present invention.
<第1の実施の形態例>
 以下、本発明の第1の実施の形態例を、図1~図13を参照して説明する。
<First embodiment example>
A first embodiment of the present invention will be described below with reference to FIGS. 1 to 13.
[レーダ装置および制御装置の構成]
 図1は、本実施の形態例のレーダ装置1と制御装置7の構成を示す図である。
 本実施の形態例のレーダ装置1は、後述する図3に示す車両(トラック)の前方の左側または右側の車両可動部5に取付けられる。車両可動部5は、運転者が側方を確認するためのドアミラーが取り付けられたドアミラーステーとして構成されている。したがって、車両可動部5に取付けられたレーダ装置1やドアミラーは、車両可動部5の動きに連動して可動する。レーダ装置1の可動状態の例は図3で後述する。
[Configuration of radar device and control device]
FIG. 1 is a diagram showing the configuration of a radar device 1 and a control device 7 according to this embodiment.
The radar device 1 of this embodiment is attached to a vehicle movable portion 5 on the front left or right side of a vehicle (truck) shown in FIG. 3, which will be described later. The vehicle movable part 5 is configured as a door mirror stay to which a door mirror for the driver to check the side is attached. Therefore, the radar device 1 and the door mirrors attached to the vehicle movable section 5 move in conjunction with the movement of the vehicle movable section 5. An example of the movable state of the radar device 1 will be described later with reference to FIG.
 車両可動部5には、車両可動部5そのもの折畳状態(格納状態)と展開状態との間で可動させるモータ6が内蔵されている。制御装置7は、このモータ6を制御すると共に、レーダ装置1からの情報を取得して、警告や車両制御などを行う。 The vehicle movable section 5 has a built-in motor 6 that moves the vehicle movable section 5 itself between a folded state (storage state) and an unfolded state. The control device 7 controls the motor 6, acquires information from the radar device 1, and performs warnings, vehicle control, and the like.
 レーダ装置1は、送受信部13、検知処理部14、情報取得部16、警報部39、情報送信部40、および電源部47を備える。
 送受信部13は、高周波信号の送受信処理を行う。すなわち、送受信部13の内部の発振器で生成され送信用増幅器で増幅された高周波信号は、送信アンテナ27からレドーム35を介して、ミリ波帯の送信波29となって空間へ放射される。
The radar device 1 includes a transmitting/receiving section 13 , a detection processing section 14 , an information acquisition section 16 , an alarm section 39 , an information transmitting section 40 , and a power supply section 47 .
The transmitting/receiving unit 13 performs processing for transmitting and receiving high frequency signals. That is, a high frequency signal generated by an oscillator inside the transmitting/receiving section 13 and amplified by a transmitting amplifier is radiated into space from the transmitting antenna 27 via the radome 35 as a transmitting wave 29 in the millimeter wave band.
 送信波29は検知範囲内で、例えば歩行者、自転車、バイク、自動車、トラック、バスといった物体12で反射され受信波30となる。
 受信波30は空間を伝搬後に再度レドーム35を介して受信アンテナ28で受信される。受信アンテナ28で受信された信号は、送受信部13内の受信用増幅器で増幅され、混合器にて発振器の高周波信号と混合されて、中間周波 (Intermediate Frequency:IF)信号が生成される。IF信号は、送受信部13内のアナログ/デジタル変換器でデジタル信号に変換された後、そのデジタル信号を受信信号として、検知処理部14に渡される。
The transmitted wave 29 is reflected by an object 12 within the detection range, such as a pedestrian, bicycle, motorcycle, car, truck, or bus, and becomes a received wave 30.
After the received wave 30 propagates through space, it is received again by the receiving antenna 28 via the radome 35. The signal received by the receiving antenna 28 is amplified by a receiving amplifier in the transmitting/receiving section 13, and mixed with a high frequency signal from an oscillator by a mixer to generate an intermediate frequency (IF) signal. The IF signal is converted into a digital signal by an analog/digital converter in the transmitter/receiver 13, and then passed to the detection processor 14 using the digital signal as a reception signal.
 検知処理部14は、2次元高速フーリエ変換(Fast Fourier Transform:FFT)処理、角度推定、グルーピング処理、およびトラッキング処理を実施する。さらに検知処理部14は、車両センサ9から取得した情報を、制御装置7の車両情報処理部10から情報取得部16を介して車両情報11として受取る。情報取得部16は、車両情報11を取得する情報取得処理を行う。 The detection processing unit 14 performs two-dimensional fast Fourier transform (FFT) processing, angle estimation, grouping processing, and tracking processing. Further, the detection processing unit 14 receives information acquired from the vehicle sensor 9 from the vehicle information processing unit 10 of the control device 7 via the information acquisition unit 16 as vehicle information 11. The information acquisition unit 16 performs information acquisition processing to acquire vehicle information 11.
 検知処理部14は、検知処理で得た物標情報32と車両情報11を警報部39に送る。
 制御装置7の車両情報処理部10は、車両に搭載された車両センサ9に基づいて車両情報11を生成する。ここでの車両情報11としては、車両の回転を示すヨーレート情報や、車両が走行しているか停止しているかを示す情報など含まれる。
The detection processing section 14 sends target object information 32 and vehicle information 11 obtained through the detection processing to the alarm section 39.
A vehicle information processing unit 10 of the control device 7 generates vehicle information 11 based on a vehicle sensor 9 mounted on the vehicle. The vehicle information 11 here includes yaw rate information indicating the rotation of the vehicle, information indicating whether the vehicle is running or stopped, and the like.
 警報部39は、物標情報32と車両情報11に基づいて、自車両2への衝突可能性がある物体12を計算し、計算に基づいて警報情報31を得る。警報部39で得られた警報情報31は、情報送信部40に供給される。また、検知処理部14は、物標情報32を情報送信部40に供給する。 The warning unit 39 calculates objects 12 that have a possibility of colliding with the own vehicle 2 based on the target object information 32 and the vehicle information 11, and obtains the warning information 31 based on the calculation. The alarm information 31 obtained by the alarm section 39 is supplied to the information transmitting section 40 . Furthermore, the detection processing section 14 supplies the target object information 32 to the information transmission section 40 .
 情報送信部40は、警報情報31と物標情報32を、制御装置7の車両情報受信部42に送信する。これを受けて、制御装置7は、表示装置やスピーカなどを有するユーザインタフェース(不図示)を用いて、運転者に物体の接近警報を報知する。 The information transmitter 40 transmits the warning information 31 and target information 32 to the vehicle information receiver 42 of the control device 7. In response to this, the control device 7 uses a user interface (not shown) including a display device, a speaker, etc. to notify the driver of an object approach warning.
 次に、図1の制御装置7と車両可動部5の関係について説明する。
 運転者が車室内で電動格納スイッチ8を操作することで、制御装置7の折畳信号出力部7a、展開信号出力部7b、または停止信号出力部7cから、折畳信号43、展開信号44、停止信号45のいずれか一つが出力され、車両可動部5のモータ6に供給される。
 モータ6は、ドアミラーが取り付けられたドアミラーステーである車両可動部5を折畳状態(格納状態)と展開状態との間で可動させる駆動部である。
Next, the relationship between the control device 7 and the vehicle movable section 5 in FIG. 1 will be explained.
When the driver operates the electric storage switch 8 inside the vehicle, the folding signal 43, unfolding signal 44, Any one of the stop signals 45 is output and supplied to the motor 6 of the vehicle movable part 5.
The motor 6 is a drive unit that moves the vehicle movable unit 5, which is a door mirror stay to which a door mirror is attached, between a folded state (stored state) and an expanded state.
[車両可動部の動作とレーダ装置の状態]
 図2は、車両可動部5が、折畳状態と展開状態との間で可動する例を示す。図2は、車両2を真上から見た図であり、図2の上側が運転席である。
 図2に示すように、ドアミラーステーである車両可動部5は、トラックである車両2の左前方に取り付けられている。図2では左前方に取り付けた例を示すが、右前方に取り付けてもよい。
 図2に示すそれぞれの位置のレーダ装置1a,1b,1cは、検知範囲である視野角(FoV:Field of View)4が扇形に形成されている。
[Operation of vehicle moving parts and status of radar device]
FIG. 2 shows an example in which the vehicle movable portion 5 is movable between a folded state and an unfolded state. FIG. 2 is a view of the vehicle 2 viewed from directly above, and the upper side of FIG. 2 is the driver's seat.
As shown in FIG. 2, the vehicle movable part 5, which is a door mirror stay, is attached to the left front of the vehicle 2, which is a truck. Although FIG. 2 shows an example in which it is attached to the left front, it may also be attached to the right front.
The radar devices 1a, 1b, and 1c at the respective positions shown in FIG. 2 have a field of view (FoV) 4, which is a detection range, formed in a fan shape.
 図2に示す車両可動部5は、モータ6による駆動で回転する。
 具体的には、車両可動部5に取付けたレーダ装置1は、電動格納スイッチ8の操作に基づいたモータ6の動作により、レーダ装置(展開)1a→レーダ装置(折畳)1bと取付位置が変化する。このような動作時には、レーダ装置1に軸ずれが起きている。
The vehicle movable section 5 shown in FIG. 2 is driven by a motor 6 to rotate.
Specifically, the radar device 1 attached to the vehicle movable part 5 changes its mounting position from the radar device (unfolded) 1a to the radar device (folded) 1b by the operation of the motor 6 based on the operation of the electric storage switch 8. Change. During such an operation, an axis misalignment occurs in the radar device 1.
 さらに、レーダ装置(展開)1a→レーダ装置(折畳)1bの動作中であっても、電動格納スイッチ8で停止操作をすると、レーダ装置(停止)1cのような途中位置の状態をとることができる。 Furthermore, even if the radar device (unfolded) 1a → radar device (folded) 1b is in operation, if the stop operation is performed using the electric storage switch 8, the radar device (stopped) 1c will be in an intermediate position. Can be done.
 図3は、車両可動部5が折畳状態から展開動作中に、レーダ装置1による検出される物標のふるまいを視覚的に示す。
 図3に示すように、自車両2が自車直線方向201に進行中に、モータ6の作動により、レーダ装置(展開)1a→レーダ装置(折畳)1bへと取付位置が変化する場合には、レーダ装置1により検出される物標36に、車両可動部5の回転成分に対応した周速度18が発現し、周速度18が重畳した物標速度(回転成分有り)37bが生じる。
FIG. 3 visually shows the behavior of a target detected by the radar device 1 while the vehicle movable portion 5 is unfolding from the folded state.
As shown in FIG. 3, when the vehicle 2 is traveling in the vehicle linear direction 201, the mounting position changes from the radar device (unfolded) 1a to the radar device (folded) 1b due to the operation of the motor 6. In the target object 36 detected by the radar device 1, a circumferential velocity 18 corresponding to the rotational component of the vehicle movable part 5 appears, and a target velocity (with a rotational component) 37b on which the circumferential velocity 18 is superimposed is generated.
 本実施の形態例では、この物標速度37bに重畳された周速度18が、車両走行状態とモータ6のいずれにより発現せしめたかを確認することで、軸ずれ検知を行うものである。
 ここで、自車走行状態には、主に直線走行、停止、曲線走行の3通りがあるが、これらの状態に起因した周速度18については、車両情報11のヨーレート情報17(図13参照)を用いて確認することができる。
 本実施の形態例における軸ずれ検知は、例えばレーダ装置1の検知処理部14で行うことができる。レーダ装置1の検知処理部14は、例えば演算処理を行うコンピュータを備えて、軸ずれ検知処理を行うことができる。
In this embodiment, the axis deviation is detected by checking whether the vehicle running state or the motor 6 causes the circumferential speed 18 superimposed on the target object speed 37b.
Here, there are mainly three running states of the own vehicle: running in a straight line, stopped, and running on a curve. Regarding the circumferential speed 18 caused by these states, the yaw rate information 17 of the vehicle information 11 (see FIG. 13) It can be confirmed using
Axis deviation detection in this embodiment can be performed, for example, by the detection processing section 14 of the radar device 1. The detection processing unit 14 of the radar device 1 is equipped with, for example, a computer that performs arithmetic processing, and can perform axis deviation detection processing.
[レーダ装置に搭載されたコンピュータのハードウェア構成例]
 図4は、レーダ装置1の内部で軸ずれ検知処理などを行う、レーダ装置1に搭載されたコンピュータのハードウェア構成例を示す。
 レーダ装置1に搭載されたコンピュータは、プロセッサであるCPU(中央処理ユニット:Central Processing Unit)101と、ROM(Read Only Memory)102と、RAM(Random Access Memory)103と、不揮発性ストレージ104とを備える。不揮発性ストレージ104としては、例えばフラシュメモリやEEPROM(Electrically Erasable and Programmable Read Only Memory)が使用される。あるいは、HDD(Hard Disk Drive)やSSD(Solid State Drive)を使用してもよい。
 また、レーダ装置1に搭載されたコンピュータは、ネットワークインターフェース105と、入力装置106と、出力装置107とを備える。
[Example of hardware configuration of computer installed in radar equipment]
FIG. 4 shows an example of the hardware configuration of a computer installed in the radar device 1, which performs axis deviation detection processing and the like inside the radar device 1.
The computer installed in the radar device 1 includes a CPU (Central Processing Unit) 101 which is a processor, a ROM (Read Only Memory) 102, a RAM (Random Access Memory) 103, and a non-volatile storage 104. Be prepared. As the nonvolatile storage 104, for example, a flash memory or an EEPROM (Electrically Erasable and Programmable Read Only Memory) is used. Alternatively, an HDD (Hard Disk Drive) or SSD (Solid State Drive) may be used.
Further, the computer installed in the radar device 1 includes a network interface 105, an input device 106, and an output device 107.
 CPU101は、ROM102または不揮発性ストレージ104が記憶したプログラムをRAM103で実行させることで、RAM103に検知処理部14(図1)が行う機能の少なくとも一部を構成させる。
 不揮発性ストレージ104は、レーダ装置1としての物体の検知処理や軸ずれ検知処理などを行うプログラムを記憶すると共に、車両情報11などを記憶する。ネットワークインターフェース105は、制御装置7との送受信機能を有する。入力装置106は、送受信部13からの受信信号の入力などを受け付ける。出力装置107は、警報部39などへの信号出力を行う。
The CPU 101 causes the RAM 103 to execute a program stored in the ROM 102 or the nonvolatile storage 104, thereby causing the RAM 103 to configure at least part of the functions performed by the detection processing unit 14 (FIG. 1).
The nonvolatile storage 104 stores programs for performing object detection processing, axis deviation detection processing, etc. as the radar device 1, and also stores vehicle information 11 and the like. The network interface 105 has a function of transmitting and receiving data to and from the control device 7 . The input device 106 receives input of received signals from the transmitting/receiving section 13 and the like. The output device 107 outputs a signal to the alarm unit 39 and the like.
[軸ずれ検知処理の流れ]
 次に、本実施の形態例による軸ずれ検知処理の流れを、図5~図10を参照して順に説明する。図5および図6は、車両2が直線走行している場合、図7および図8は、車両2が停止している場合、そして図9および図10は、車両2が曲線走行している場合である。各図の左側は、車両可動部5の位置または動きを車両2の上側から示し、各図の右側は、軸ずれ判定処理を行うフローチャートを示す。
[Flow of axis misalignment detection process]
Next, the flow of the axis deviation detection process according to this embodiment will be explained in order with reference to FIGS. 5 to 10. 5 and 6 are when the vehicle 2 is traveling in a straight line, FIGS. 7 and 8 are when the vehicle 2 is stopped, and FIGS. 9 and 10 are when the vehicle 2 is traveling on a curve. It is. The left side of each figure shows the position or movement of the vehicle movable part 5 from above the vehicle 2, and the right side of each figure shows a flowchart for performing axis deviation determination processing.
 まず、図5~図10の各図で共通のフローチャートに示す処理について説明すると、レーダ装置1の検知処理部14は、送受信部13で得た受信信号から検知された複数の物標に回転成分があるか否かを判断する(ステップS11)。
 ステップS11で回転成分がない場合(ステップS11のNO)、検知処理部14は、直線走行中または停止中と判断して、軸ずれ検知処理を終了する。また、ステップS11で回転成分がある場合(ステップS11のYES)、検知処理部14は、回転成分が車両情報で得られるヨーレートとほぼ等しいか否かを判断する(ステップ12)。
First, to explain the process shown in the common flowchart in each figure of FIGS. It is determined whether or not there is (step S11).
If there is no rotational component in step S11 (NO in step S11), the detection processing unit 14 determines that the vehicle is traveling in a straight line or stopped, and ends the axis deviation detection process. Further, if there is a rotational component in step S11 (YES in step S11), the detection processing unit 14 determines whether or not the rotational component is approximately equal to the yaw rate obtained from the vehicle information (step 12).
 ステップS12で回転成分がヨーレートとほぼ等しい場合(ステップS12のYES)、自車両は曲線を走行していると判断して(ステップ13)、軸ずれ検知処理を終了する。また、ステップS12で回転成分がヨーレートと等しくない場合(ステップS12のNO)、検知処理部14は、モータ6が作動中のために軸ずれが発生していると判断して(ステップ14)、軸ずれ検知処理を終了する。 If the rotational component is approximately equal to the yaw rate in step S12 (YES in step S12), it is determined that the own vehicle is traveling on a curve (step 13), and the axis deviation detection process is ended. Further, if the rotational component is not equal to the yaw rate in step S12 (NO in step S12), the detection processing unit 14 determines that axis deviation has occurred because the motor 6 is operating (step S14), Ends the axis deviation detection process.
 なお、この軸ずれ判定処理を行うフローチャートのステップS11で、複数の物標の回転成分を検出するようにした点は、検出される物標自体が回転成分を伴う動きをする場合も想定されるからである。通常、レーダ装置が検出した全ての物標が回転成分を伴う動きをすることはないので、複数物標を検出した場合とすることで、このフローチャートによる判定が適正に行えるようになる。但し、複数物標を検出した場合とするのは一つの例であり、一つの物標を検出して、その一つの物標の回転成分から判断してもよい。 Note that in step S11 of the flowchart for performing this axis deviation determination process, the rotational components of a plurality of targets are detected, since it is assumed that the detected target itself may move with a rotational component. It is from. Normally, all of the targets detected by the radar device do not move with a rotational component, so by assuming that a plurality of targets are detected, the determination based on this flowchart can be performed appropriately. However, the case where multiple targets are detected is just one example, and one target may be detected and the determination may be made based on the rotational component of that one target.
 次に、図5~図10に示す具体的な例について説明する。
 図5は、車両2が直線進行方向201で走行をしている場合である。
 この場合には、レーダ装置1で検出されるそれぞれの物標36には周速度18は発現せず、回転成分無しの物標速度37aが検出される。したがって、検知処理部14での軸ずれ判定のフローチャートの処理では、ステップS11の「複数物標に回転成分有り」の判定でNOになる。
Next, specific examples shown in FIGS. 5 to 10 will be described.
FIG. 5 shows a case where the vehicle 2 is traveling in a straight line traveling direction 201.
In this case, each target object 36 detected by the radar device 1 does not exhibit the circumferential velocity 18, and a target velocity 37a without a rotational component is detected. Therefore, in the process of the flowchart for axis deviation determination in the detection processing unit 14, the determination of "a plurality of targets have rotational components" in step S11 is NO.
 図6は、車両2が直線進行方向201で走行をしている状況で、モータ6により車両可動部5が可動した場合の例である。
 この場合には、車両2が直線進行方向201に進み、かつモータ6が作動するので、物標36に周速度が発現し、回転成分18が含まれる物標速度37bが生じる。したがって、検知処理部14での軸ずれ判定のフローチャートの処理では、ステップS11の「複数物標に回転成分有り」の判定でYESとなり、ステップS12の「回転成分=ヨーレート?」の判定ではNOとなるので、モータ6の作動による軸ずれと判定できる。
FIG. 6 shows an example in which the vehicle movable portion 5 is moved by the motor 6 in a situation where the vehicle 2 is traveling in a straight line traveling direction 201.
In this case, since the vehicle 2 moves in the linear traveling direction 201 and the motor 6 operates, the target object 36 develops a circumferential speed, and the target object speed 37b including the rotational component 18 is generated. Therefore, in the process of the flowchart for axis deviation determination in the detection processing unit 14, the determination of "Multiple targets have rotational components" in step S11 is YES, and the determination of "rotation component = yaw rate?" in step S12 is NO. Therefore, it can be determined that the axis deviation is caused by the operation of the motor 6.
 図7は、車両2が停止している場合である。
 この場合には、直線走行時と同じように物標36に周速度は発現せず、回転成分無しの物標速度37aが生じる。したがって、検知処理部14での軸ずれ判定のフローチャートの処理では、ステップS11の「複数物標に回転成分有り」の判定でNOとなる。
FIG. 7 shows a case where the vehicle 2 is stopped.
In this case, the circumferential velocity of the target object 36 is not expressed as in the case of straight-line traveling, and a target velocity 37a without a rotational component is generated. Therefore, in the process of the flowchart for axis deviation determination in the detection processing unit 14, the determination of "a plurality of targets have rotational components" in step S11 is NO.
 図8は、車両2が停止している状況で、モータ6により車両可動部5が可動した場合の例である。
 この場合には、物標36に周速度が発現し、回転成分有りの物標速度37bが生じる。したがって、検知処理部14での軸ずれ判定のフローチャートの処理では、ステップS11の「複数物標に回転成分有り」の判定でYESとなり、ステップS12の「回転成分=ヨーレート?」の判定ではNOとなるので、ステップS14でモータ6の作動による軸ずれと判定できる。
FIG. 8 shows an example in which the vehicle movable portion 5 is moved by the motor 6 while the vehicle 2 is stopped.
In this case, a circumferential velocity develops in the target object 36, and a target velocity 37b with a rotational component is generated. Therefore, in the process of the flowchart for axis deviation determination in the detection processing unit 14, the determination of "Multiple targets have rotational components" in step S11 is YES, and the determination of "rotation component = yaw rate?" in step S12 is NO. Therefore, it can be determined in step S14 that the axis deviation is caused by the operation of the motor 6.
 図9は、車両2が曲線方向202で走行をしている場合である。
 この場合には、レーダ装置1で検出されるそれぞれの物標36には周速度が発現し、回転成分18が含まれる物標速度37bが生じる。したがって、検知処理部14での軸ずれ判定のフローチャートの処理では、ステップS11の「複数物標に回転成分有り」の判定でYESになり、ステップS12の「回転成分=ヨーレート?」の判定でもYESになるので、ステップS13で周速度18が自車曲線走行によるものと判定できる。
FIG. 9 shows a case where the vehicle 2 is traveling in a curved direction 202.
In this case, each target 36 detected by the radar device 1 exhibits a circumferential velocity, and a target velocity 37b including the rotational component 18 is generated. Therefore, in the process of the flowchart for axis deviation determination in the detection processing unit 14, the determination of "Multiple targets have rotational components" in step S11 is YES, and the determination of "rotation component = yaw rate?" in step S12 is also YES. Therefore, in step S13, it can be determined that the peripheral speed 18 is due to the own vehicle traveling on a curve.
 図10は、車両2が曲線方向202に走行をしている状況で、モータ6により車両可動部5が可動した場合の例である。
 この場合には、レーダ装置1で検出されるそれぞれの物標36には周速度18が発現し、回転成分が含まれる物標速度37bが生じる。したがって、検知処理部14での軸ずれ判定のフローチャートの処理では、ステップS11の「複数物標に回転成分有り」の判定でYESになり、ステップS12の「回転成分=ヨーレート?」の判定ではNOになるので、ステップS14でモータ6の作動による軸ずれと判定できる。
FIG. 10 shows an example in which the vehicle movable portion 5 is moved by the motor 6 while the vehicle 2 is traveling in a curved direction 202.
In this case, each target object 36 detected by the radar device 1 exhibits a circumferential velocity 18, and a target velocity 37b including a rotational component is generated. Therefore, in the process of the flowchart for axis deviation determination in the detection processing unit 14, the determination of "Multiple targets have rotational components" in step S11 is YES, and the determination of "rotation component = yaw rate?" in step S12 is NO. Therefore, it can be determined in step S14 that the axis deviation is caused by the operation of the motor 6.
 曲線走行時には、自車走行状態とモータ6の作動による2種類の周速度が発生するが、そのときの物標のふるまいについて、図11を用いて説明する。
 図11に示すように、自車両2が自車曲線進行方向202に進むと、物標36にはt=0において、角速度ωとヨーレートで設定している後輪車輪中心wからの距離Rに応じた周速度(Y)19がω・Rとして、距離Rを半径とした円の接線方向に発現する。
When traveling on a curve, two types of circumferential speeds occur depending on the vehicle traveling state and the operation of the motor 6. The behavior of the target at that time will be explained using FIG. 11.
As shown in FIG. 11, when the own vehicle 2 moves in the own vehicle curve traveling direction 202, the distance from the rear wheel center w 1 set by the angular velocity ω 2 and the yaw rate is displayed at the target 36 at t=0. A circumferential velocity (Y) 19 corresponding to R 2 is expressed as ω 2 ·R 2 in the tangential direction of a circle whose radius is the distance R 2 .
 同様にモータ6に対しても、角速度ωとモータ6の中心mからの距離Rに応じた周速度(M)20がω・Rとして、距離Rを半径とした円の接線方向に発現する。このt=0における周速度(Y)19と周速度(M)20の合成方向にt=1における物標36が移動することになる。
 つまり、2サイクル分の物標情報データを用いることで、周速度のベクトル算出が可能となる。
Similarly, for the motor 6, the circumferential velocity (M) 20 corresponding to the angular velocity ω 1 and the distance R 1 from the center m 0 of the motor 6 is ω 1・R 1 , and a circle with the distance R 1 as the radius is Expresses tangentially. The target object 36 at t=1 moves in the synthetic direction of the circumferential velocity (Y) 19 and the circumferential velocity (M) 20 at t=0.
In other words, by using two cycles of target object information data, it is possible to calculate the circumferential velocity vector.
 図12は、物標速度を構成する各速度ベクトルの定義を示す。
 実際の物標速度304は、自車速度303、相対速度305、周速度(Y)301および周速度(M)302の各ベクトルを合成することで求まる。すなわち、以下の関係式となる。
   物標速度=自車速度+相対速度+周速度(Y)+周速度(M)
 ここで、左辺を周速度(M)20として展開すると、
   周速度(M)=自車速度+相対速度+周速度(Y)-物標速度=α
の関係となる。つまりα≠0かどうかを判定することで、軸ずれの判定が可能となる。この軸ずれ判定に関する処理は、図1に示す構成の場合、レーダ装置1内の検知処理部14で行われる。
FIG. 12 shows the definition of each velocity vector that constitutes the target velocity.
Actual target speed 304 is found by combining vectors of own vehicle speed 303, relative speed 305, peripheral speed (Y) 301, and peripheral speed (M) 302. That is, the following relational expression is obtained.
Target speed = own vehicle speed + relative speed + peripheral speed (Y) + peripheral speed (M)
Here, if the left side is expanded as peripheral velocity (M) 20,
Circumferential speed (M) = own vehicle speed + relative speed + circumferential speed (Y) - target speed = α
The relationship is In other words, by determining whether α≠0, it is possible to determine the axis misalignment. In the case of the configuration shown in FIG. 1, processing related to this axis deviation determination is performed by the detection processing unit 14 in the radar device 1.
 すなわち、図1に示す構成の場合、レーダ装置1内の検知処理部14が軸ずれ判定部を内蔵し、この検知処理部14で軸ずれが判定された場合、検知処理部14で検知された物標が適正な検知でないとして、制御装置7などの外部の装置への物標情報の出力を抑止するような、誤検出の防止処理が可能になる。
 なお、検知処理部14の内部で、検出した物標が適正か否かを判断してもよいが、軸ずれ有無の判定を行う処理部をレーダ装置1に設けて、その処理部での判定結果を制御装置7に送って、対応した制御を行うようにしてもよい。
That is, in the case of the configuration shown in FIG. It becomes possible to perform a process for preventing false detection, such as suppressing output of target object information to an external device such as the control device 7, assuming that the target object is not properly detected.
Note that it may be determined whether the detected target is appropriate or not within the detection processing unit 14, but the radar device 1 may be provided with a processing unit that determines the presence or absence of axis deviation, and the determination by that processing unit may be performed. The results may be sent to the control device 7 to perform corresponding control.
 図13に示すレーダ装置1は、図1に示すレーダ装置1に、判定部15を備える構成としたものである。判定部15は、検知処理部14から複数の物標情報に含まれる周速度と車両情報に含まれるヨーレート情報17とを取得して、周速度とヨーレートを比較する。これにより、判定部15は、軸ずれ有無の判定処理を行う。この軸ずれ有無の判定処理は、図5~図10に示すフローチャートにより行われる。 The radar device 1 shown in FIG. 13 has a configuration in which the radar device 1 shown in FIG. 1 is provided with a determination section 15. The determination unit 15 acquires the circumferential velocity included in the plurality of target object information and the yaw rate information 17 included in the vehicle information from the detection processing unit 14, and compares the circumferential velocity and the yaw rate. Thereby, the determining unit 15 performs a process of determining whether there is an axis deviation. This process of determining the presence or absence of axis deviation is performed according to the flowcharts shown in FIGS. 5 to 10.
 判定部15における判定結果は、警報部39に供給されると共に、制御装置7に供給される。警報部39は、軸ずれ有のときに警報情報を生成して、制御装置7に送信する。また、制御装置7は、軸ずれ有の判定結果を取得したとき、レーダ装置1が検出した物標に基づいた車両制御を中止したり、走行速度を安全な速度まで低下させたりする等の対処を行う。
 図13に示すレーダ装置1や制御装置7のその他の構成は、図1に示すレーダ装置1や制御装置7と同様に構成される。
The determination result in the determination section 15 is supplied to the alarm section 39 and also to the control device 7. The alarm unit 39 generates alarm information when there is an axis deviation and transmits it to the control device 7. In addition, when the control device 7 obtains the determination result that there is an axis deviation, the control device 7 takes measures such as stopping vehicle control based on the target detected by the radar device 1 or reducing the traveling speed to a safe speed. I do.
The other configurations of the radar device 1 and the control device 7 shown in FIG. 13 are configured similarly to the radar device 1 and the control device 7 shown in FIG.
<第2の実施の形態例>
 次に、本発明の第2の実施の形態例を、図14を参照して説明する。図14において、第1の実施の形態例で説明した図1~図13と同様の構成については、同一の符号を付し、その詳細な説明は省略する。
<Second embodiment example>
Next, a second embodiment of the present invention will be described with reference to FIG. 14. In FIG. 14, the same components as those in FIGS. 1 to 13 described in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
 図14は、本実施の形態例のレーダ装置1と制御装置7の構成を示す図である。
 本実施の形態例のレーダ装置1は、図13に示すレーダ装置1と同様に、判定部15を備える。判定部15は、検知処理部14から複数の物標情報に含まれる周速度と車両情報に含まれるヨーレート情報17とを取得して、周速度とヨーレートとを比較して、軸ずれ有無の判定処理を行う。この軸ずれ有無の判定処理は、図5~図10に示すフローチャートにより行われる。
FIG. 14 is a diagram showing the configuration of the radar device 1 and the control device 7 of this embodiment.
The radar device 1 according to the present embodiment includes a determination unit 15 similarly to the radar device 1 shown in FIG. The determination unit 15 acquires the circumferential velocity included in the plurality of target object information and the yaw rate information 17 included in the vehicle information from the detection processing unit 14, compares the circumferential velocity and the yaw rate, and determines the presence or absence of axis deviation. Perform processing. This process of determining the presence or absence of axis deviation is performed according to the flowcharts shown in FIGS. 5 to 10.
 判定部15での判定結果で軸ずれ有のとき、判定部15は、警報部39に警報抑制信号41を供給する。警報部39は警報抑制信号41を受取ると、警報情報31の出力を制限する。つまり、警報抑制信号41の発報で、警報部39は、レーダ警報機能を抑制する処理が行われる。
 図14に示すレーダ装置1や制御装置7のその他の構成は、図1に示すレーダ装置1や制御装置7と同様に構成される。
 これにより、本発明の第2の実施の形態例によると、軸ずれ状態での不要作動の発生を抑制する効果を得ることができる。
When the judgment result of the judgment section 15 is that there is an axis deviation, the judgment section 15 supplies an alarm suppression signal 41 to the alarm section 39 . When the alarm section 39 receives the alarm suppression signal 41, it limits the output of the alarm information 31. That is, when the alarm suppression signal 41 is issued, the alarm section 39 performs a process of suppressing the radar alarm function.
The other configurations of the radar device 1 and the control device 7 shown in FIG. 14 are configured similarly to the radar device 1 and the control device 7 shown in FIG.
As a result, according to the second embodiment of the present invention, it is possible to obtain the effect of suppressing the occurrence of unnecessary operations in a state of axis misalignment.
<第3の実施の形態例>
 次に、本発明の第3の実施の形態例を、図15を参照して説明する。図15において、第1および第2の実施の形態例で説明した図1~図14と同様の構成については、同一の符号を付し、その詳細な説明は省略する。
<Third embodiment example>
Next, a third embodiment of the present invention will be described with reference to FIG. 15. In FIG. 15, the same components as those in FIGS. 1 to 14 described in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.
 図15は、本実施の形態例のレーダ装置1と制御装置7の構成を示す図である。
 本実施の形態例のレーダ装置1は、図14に示すレーダ装置1と同様に、判定部15を備えると共に、判定部15での軸ずれ結果24を記憶する記憶部21を備える。記憶部21は、不揮発性の記憶素子から構成するのが好ましい。
 図15に示すレーダ装置1や制御装置7のその他の構成は、図14に示すレーダ装置1や制御装置7と同様に構成される。
FIG. 15 is a diagram showing the configuration of the radar device 1 and the control device 7 of this embodiment.
The radar device 1 of this embodiment, like the radar device 1 shown in FIG. 14, includes a determination unit 15 and a storage unit 21 that stores the axis deviation result 24 in the determination unit 15. It is preferable that the storage section 21 is composed of a nonvolatile storage element.
The other configurations of the radar device 1 and the control device 7 shown in FIG. 15 are configured similarly to the radar device 1 and the control device 7 shown in FIG. 14.
 これにより、本発明の第3の実施の形態例によると、車両2の制御装置7やレーダ装置1が電源オフとなっても、前回の軸ずれ判定結果を参照して、適正に制御できるようになる。
 なお、図15に示す構成では、図14の例と同様に、判定部15から警報部39に警報抑制信号41を送るようにしたが、図15に示すように、判定部15の出力を制御装置7に供給する場合に、記憶部21を備えてもよい。
As a result, according to the third embodiment of the present invention, even if the control device 7 and radar device 1 of the vehicle 2 are powered off, appropriate control can be performed by referring to the previous axis deviation determination result. become.
Note that in the configuration shown in FIG. 15, the determination section 15 sends the alarm suppression signal 41 to the alarm section 39 as in the example of FIG. 14, but as shown in FIG. When supplying to the device 7, a storage section 21 may be provided.
<第4の実施の形態例>
 次に、本発明の第4の実施の形態例を、図16を参照して説明する。図16において、第1~第3の実施の形態例で説明した図1~図15と同様の構成については、同一の符号を付し、その詳細な説明は省略する。
<Fourth embodiment example>
Next, a fourth embodiment of the present invention will be described with reference to FIG. 16. In FIG. 16, the same components as those in FIGS. 1 to 15 described in the first to third embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.
 図16は、本実施の形態例のレーダ装置1と制御装置7の構成を示す図である。
 本実施の形態例のレーダ装置1は、図15に示すレーダ装置1と同様に、判定部15を備える。判定部15は、検知処理部14から複数の物標情報に含まれる周速度と車両情報に含まれるヨーレート情報17とを取得して、周速度とヨーレートを比較して、軸ずれ結果24を得る。
 判定部15が出力する軸ずれ結果24は、積算部33に供給されて積算される。積算部33は、予め設定している軸ずれ確認周期と角速度(M)の結果を積算することで、実際の軸ずれ量46を算出する。算出した実際の軸ずれ量46は、記憶部21に記憶される。この記憶部21も、不揮発性の記憶素子で構成するのが好ましい。
 図16に示すレーダ装置1や制御装置7のその他の構成は、図15に示すレーダ装置1や制御装置7と同様に構成される。
FIG. 16 is a diagram showing the configuration of the radar device 1 and the control device 7 of this embodiment.
The radar device 1 according to the present embodiment includes a determination unit 15 similarly to the radar device 1 shown in FIG. The determination unit 15 obtains the circumferential velocity included in the plurality of target object information and the yaw rate information 17 included in the vehicle information from the detection processing unit 14, compares the circumferential velocity and the yaw rate, and obtains the axis deviation result 24. .
The axis deviation result 24 outputted by the determination unit 15 is supplied to the integration unit 33 and integrated. The integrating unit 33 calculates the actual amount of axis deviation 46 by integrating the preset axis deviation confirmation period and the result of the angular velocity (M). The calculated actual axis deviation amount 46 is stored in the storage unit 21. It is preferable that this storage section 21 is also composed of a nonvolatile storage element.
The other configurations of the radar device 1 and the control device 7 shown in FIG. 16 are configured similarly to the radar device 1 and the control device 7 shown in FIG. 15.
 これにより、本発明の第4の実施の形態例によると、モータ6の停止によってドアミラーステーである車両可動部5が途中位置で止まった状態や、車両の電源がオフになった場合も、前回の軸ずれ量を正確に把握することができるという効果がある。 As a result, according to the fourth embodiment of the present invention, even if the vehicle movable part 5, which is a door mirror stay, is stopped at an intermediate position due to the stop of the motor 6, or if the vehicle power is turned off, the previous This has the effect of being able to accurately grasp the amount of axis deviation.
<第5の実施の形態例>
 次に、本発明の第5の実施の形態例を、図17を参照して説明する。図17において、第1~第4の実施の形態例で説明した図1~図16と同様の構成については、同一の符号を付し、その詳細な説明は省略する。
<Fifth embodiment example>
Next, a fifth embodiment of the present invention will be described with reference to FIG. 17. In FIG. 17, the same components as those in FIGS. 1 to 16 described in the first to fourth embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.
 図17は、本実施の形態例のレーダ装置1と制御装置7の構成を示す図である。
 本実施の形態例のレーダ装置1は、図16に示すレーダ装置1と同様に、判定部15と積算部33と記憶部21とを備える。そして、積算部33が、判定部15が出力する軸ずれ結果24を積算し、積算して得た実際の軸ずれ量46を記憶部21に記憶させる点は、図16の構成と同じである。
FIG. 17 is a diagram showing the configuration of the radar device 1 and the control device 7 of this embodiment.
The radar device 1 of this embodiment includes a determination section 15, an integration section 33, and a storage section 21, like the radar device 1 shown in FIG. The configuration is the same as that of FIG. 16 in that the integration unit 33 integrates the axis deviation results 24 output by the determination unit 15 and stores the actual axis deviation amount 46 obtained by the integration in the storage unit 21. .
 そして、図17に示すレーダ装置1は、モータ制御部48を有する。モータ制御部48は、レーダ装置1の電源部47で自車両2の電源起動を検知したら、所定の時間内に展開命令49を制御装置7に送付する。
 展開命令49を受信した制御装置7は、展開信号出力部7bが展開信号44をモータ6に供給する。
 図17に示すレーダ装置1や制御装置7のその他の構成は、図16に示すレーダ装置1や制御装置7と同様に構成される。
The radar device 1 shown in FIG. 17 includes a motor control section 48. When the power supply unit 47 of the radar device 1 detects power activation of the own vehicle 2, the motor control unit 48 sends a deployment command 49 to the control device 7 within a predetermined time.
In the control device 7 that has received the deployment command 49, the deployment signal output section 7b supplies the deployment signal 44 to the motor 6.
The other configurations of the radar device 1 and the control device 7 shown in FIG. 17 are configured similarly to the radar device 1 and the control device 7 shown in FIG. 16.
 本発明の第5の実施の形態例によると、軸ずれの初期位置を、必ず展開状態のレーダ装置1a(図2)に合わすことができるので、以後の軸ずれ量算出において、実際の正確な軸ずれ量を導き出すことができるという効果がある。 According to the fifth embodiment of the present invention, since the initial position of the axis deviation can always be aligned with the radar device 1a (FIG. 2) in the deployed state, the actual accurate position can be determined in the subsequent calculation of the amount of axis deviation. This has the effect of being able to derive the amount of axis deviation.
<変形例>
 なお、本発明は、上述した各実施の形態例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
<Modified example>
Note that the present invention is not limited to the embodiments described above, and includes various modifications. For example, the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
 例えば、上述した各実施の形態例では、自車両2の左側に車両可動部5を備付け、軸ずれ方向はレーダ装置(展開)1a→レーダ装置(折畳)1bの条件を用いて説明した。これに対して、車両可動部5は、自車両2の右側や、レーダ装置(折畳)1b→レーダ装置(展開)1aと方向を逆にしてもよい。この場合、図4などに示した軸ずれ方向が反転するが同じ作用効果を有する。 For example, in each of the embodiments described above, the vehicle movable part 5 is provided on the left side of the host vehicle 2, and the direction of axis deviation is explained using the condition that the radar device (unfolded) 1a → the radar device (folded) 1b. On the other hand, the vehicle movable part 5 may be located on the right side of the own vehicle 2, or the direction may be reversed from the radar device (folded) 1b to the radar device (unfolded) 1a. In this case, although the direction of axis deviation shown in FIG. 4 etc. is reversed, the same effect is obtained.
 また、上述した各実施の形態例では、図5などのフローチャートに示すように、複数の物標の回転成分を検出して、それぞれの回転成分がヨーレートとほぼ一致するか判断するようにした。このように複数の物標から判断することで、軸ずれ判断の正確性が増すが、軸ずれ判断を行う原理上は一つの物標の回転成分を検出して、その一つの回転成分がヨーレートとほぼ一致するか判断することでも、軸ずれ判断を行うことが可能である。また、一つの回転成分から軸ずれを判断することで、車両の周囲に、レーダ装置1で検出する物標が少ない場合にも、本発明の処理を適用することができる。 Furthermore, in each of the embodiments described above, as shown in the flowcharts such as FIG. 5, the rotational components of a plurality of targets are detected and it is determined whether each rotational component substantially matches the yaw rate. Judging from multiple targets in this way increases the accuracy of axis misalignment judgment, but the principle of axis misalignment judgment is to detect the rotational component of one target, and that one rotational component is determined by the yaw rate. It is also possible to determine axis misalignment by determining whether the values approximately match. Further, by determining the axis deviation based on one rotational component, the processing of the present invention can be applied even when there are few targets detected by the radar device 1 around the vehicle.
 また、上述した各実施の形態例では、レーダ装置1を車両2の可動部であるドアミラーステーに取り付けた例としたが、ドアミラーステーに取り付けるのは一例であり、車両のその他の可動部に取り付けた場合に、レーダ装置の軸ずれを判定するようにしてもよい。但し、上述した各実施の形態例の場合には、モータ6を起動させる電動格納スイッチ8の情報を得て、レーダ装置1が取り付けられたドアミラーステーの動作に伴って行われる各状況を判断できるので、ドアミラーステーのような可動部に取り付けられたレーダ装置1の動作を適切に制御できると共に、誤検知を防止できるようになる。
 また、上述した各実施の形態例では、レーダ装置内で軸ずれ判定を行うようにしたが、レーダ装置からの情報に基づいて、制御装置で軸ずれ判定を行い、対応した制御を行うようにしてもよい。
Furthermore, in each of the embodiments described above, the radar device 1 is attached to the door mirror stay, which is a movable part of the vehicle 2. However, the radar device 1 is attached to the door mirror stay as an example, and the radar device 1 is attached to other movable parts of the vehicle. In this case, the axis deviation of the radar device may be determined. However, in the case of each of the above-mentioned embodiments, information on the electric retractable switch 8 that starts the motor 6 can be obtained to determine each situation that occurs in conjunction with the operation of the door mirror stay to which the radar device 1 is attached. Therefore, the operation of the radar device 1 attached to a movable part such as a door mirror stay can be appropriately controlled, and false detection can be prevented.
Furthermore, in each of the above-described embodiments, the axis misalignment is determined within the radar device, but based on information from the radar device, the axis misalignment is determined in the control device and corresponding control is performed. It's okay.
 また、レーダ装置1内の検知処理部14などは、図4に示す構成では、CPUの制御で実行されるコンピュータで構成した例としたが、レーダ装置が行う機能の一部または全部を、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)などの専用のハードウェアによって実現してもよい。 Further, in the configuration shown in FIG. 4, the detection processing unit 14 and the like in the radar device 1 are configured by a computer executed under the control of a CPU, but some or all of the functions performed by the radar device can be implemented using an FPGA. It may also be realized by dedicated hardware such as a Field Programmable Gate Array (Field Programmable Gate Array) or an Application Specific Integrated Circuit (ASIC).
 また、図1、図2、図13~図17のブロック図では、制御線や情報線は説明上必要と考えられるものだけを示しており、製品上必ずしも必要な信号線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 さらに、図6などに示すフローチャートに示す処理の順序についても一例を示すものであり、処理結果に影響を及ぼさない範囲で、処理の順序を変更してもよく、あるいは複数の処理を同時に実行してもよい。
In addition, in the block diagrams of FIGS. 1, 2, and 13 to 17, only control lines and information lines that are considered necessary for explanation are shown, and signal lines and information lines that are not necessarily necessary for the product are shown. It doesn't necessarily mean there are. In reality, almost all components may be considered to be interconnected.
Furthermore, the order of the processes shown in the flowcharts shown in FIG. 6 etc. is an example, and the order of the processes may be changed within the range that does not affect the processing results, or multiple processes may be executed at the same time. It's okay.
 また、レーダ装置が行う機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)、ICカード、SDカード、光ディスク等の各種記録媒体に置くことができる。 Further, information such as programs, tables, files, etc. that realize the functions performed by the radar device can be stored in various recording media such as memory, hard disk, SSD (Solid State Drive), IC card, SD card, optical disk, etc.
 1,1a,1b,1c…レーダ装置、2…車両、5…車両可動部、6…モータ、7…制御装置、7a…折畳信号出力部、7b…展開信号出力部、7c…停止信号出力部、8…電動格納スイッチ、9…車両センサ、10…車両情報処理部、11…車両情報、12…物体、13…送受信部、14…検知処理部15…判定部、16…情報取得部、17…ヨーレート情報、18…回転成分、19,20…周速度、21…記憶部、27…送信アンテナ、28…受信アンテナ、29…送信波、30…受信波、31…警報情報、32…物標情報、33…積算部、35…レドーム、36…物標、37a,37b…物標速度、39…警報部、40…情報送信部、41…警報抑制信号、42…車両情報受信部、43…折畳信号、44…展開信号、45…停止信号、47…電源部、48…モータ制御部、49…展開命令、101…CPU、102…ROM、103…RAM、104…不揮発性ストレージ、105…ネットワークインターフェース、106…入力装置、107…出力装置 DESCRIPTION OF SYMBOLS 1, 1a, 1b, 1c... Radar device, 2... Vehicle, 5... Vehicle movable part, 6... Motor, 7... Control device, 7a... Folding signal output part, 7b... Deployment signal output part, 7c... Stop signal output Part, 8... Electric storage switch, 9... Vehicle sensor, 10... Vehicle information processing unit, 11... Vehicle information, 12... Object, 13... Transmission/reception unit, 14... Detection processing unit 15... Judgment unit, 16... Information acquisition unit, 17... Yaw rate information, 18... Rotation component, 19, 20... Circumferential velocity, 21... Storage section, 27... Transmitting antenna, 28... Receiving antenna, 29... Transmitting wave, 30... Receiving wave, 31... Alarm information, 32... Object Target information, 33... Integration unit, 35... Radome, 36... Target, 37a, 37b... Target speed, 39... Alarm unit, 40... Information transmitting unit, 41... Alarm suppression signal, 42... Vehicle information receiving unit, 43 ...Folding signal, 44...Deployment signal, 45...Stop signal, 47...Power supply section, 48...Motor control section, 49...Deployment instruction, 101...CPU, 102...ROM, 103...RAM, 104...Nonvolatile storage, 105 ...Network interface, 106...Input device, 107...Output device

Claims (7)

  1.  車両に設置され、周囲に送信波を送信するとともに物体によって反射された反射波を受信する送受信部と、
     前記送受信部の受信信号に基づいて、物体を検知する検知処理部と、
     前記車両のヨーレート情報を取得する情報取得部と、
     前記検知処理部が検知した少なくとも一つの物体について、前記送受信部の前記車両に対する位置変化により発生する周速度を求め、前記周速度と前記ヨーレート情報とを比較して前記送受信部の軸ずれを判定する軸ずれ判定部と、を備える
     レーダ装置。
    a transmitting/receiving unit installed in the vehicle and transmitting a transmitted wave to the surroundings and receiving a reflected wave reflected by an object;
    a detection processing unit that detects an object based on the received signal of the transmitting and receiving unit;
    an information acquisition unit that acquires yaw rate information of the vehicle;
    For at least one object detected by the detection processing unit, determine a circumferential velocity caused by a change in the position of the transmitting/receiving unit with respect to the vehicle, and comparing the circumferential velocity with the yaw rate information to determine an axis deviation of the transmitting/receiving unit. A radar device comprising: an axis misalignment determination unit that performs
  2.  前記判定部により、軸ずれ判定となった場合に警報抑制信号を発報し、レーダ警報機能を抑制する
     請求項1に記載のレーダ装置。
    The radar device according to claim 1, wherein the determination unit issues an alarm suppression signal and suppresses a radar alarm function when an axis deviation is determined.
  3.  前記判定部は、当該レーダ装置の軸ずれ量を記憶する記憶部を備える
     請求項2に記載のレーダ装置。
    The radar device according to claim 2, wherein the determination unit includes a storage unit that stores an amount of axis deviation of the radar device.
  4.  前記記憶部が記憶するレーダ軸ずれ量を積算して、実軸ずれ量を得る積算部を備える
     請求項3に記載のレーダ装置。
    The radar device according to claim 3, further comprising an integrating unit that integrates the radar axis deviation amounts stored in the storage unit to obtain an actual axis deviation amount.
  5.  電源起動時に、当該レーダ装置の設置箇所を展開および格納するモータに、展開命令信号を出力するモータ制御部を備える
     請求項4に記載のレーダ装置。
    The radar device according to claim 4, further comprising a motor control unit that outputs a deployment command signal to a motor that deploys and retracts the installation location of the radar device when the power is turned on.
  6.  前記モータを起動させるスイッチの情報を取得する
     請求項5に記載のレーダ装置。
    The radar device according to claim 5, further comprising acquiring information about a switch that starts the motor.
  7.  車両に設置されたレーダ装置の信号を処理するレーダ信号処理方法であって、
     前記レーダ装置の送受信部によって送信した送信波が物体で反射した受信信号に基づいて、物体を検知する検知処理と、
     前記車両のヨーレート情報を取得する情報取得処理と、
     前記検知処理によって検知した少なくとも一つの物体について、前記送受信部の前記車両に対する位置変化により発生する周速度を求め、前記周速度と前記ヨーレート情報とを比較して前記送受信部の軸ずれを判定する軸ずれ判定処理と、を含む
     レーダ信号処理方法。
    A radar signal processing method for processing signals of a radar device installed in a vehicle, the method comprising:
    Detection processing for detecting an object based on a received signal in which a transmission wave transmitted by a transmission/reception unit of the radar device is reflected by an object;
    information acquisition processing for acquiring yaw rate information of the vehicle;
    For at least one object detected by the detection process, a circumferential velocity generated due to a change in the position of the transmitting/receiving unit with respect to the vehicle is determined, and the circumferential velocity and the yaw rate information are compared to determine an axis deviation of the transmitting/receiving unit. A radar signal processing method including axis deviation determination processing.
PCT/JP2022/029061 2022-07-28 2022-07-28 Radar device and radar signal processing method WO2024024007A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029061 WO2024024007A1 (en) 2022-07-28 2022-07-28 Radar device and radar signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029061 WO2024024007A1 (en) 2022-07-28 2022-07-28 Radar device and radar signal processing method

Publications (1)

Publication Number Publication Date
WO2024024007A1 true WO2024024007A1 (en) 2024-02-01

Family

ID=89705716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029061 WO2024024007A1 (en) 2022-07-28 2022-07-28 Radar device and radar signal processing method

Country Status (1)

Country Link
WO (1) WO2024024007A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281239A (en) * 1996-04-12 1997-10-31 Mitsubishi Electric Corp Periphery monitor device for vehicle
US6202027B1 (en) * 1997-08-27 2001-03-13 Delphi Technologies, Inc. Automatic curve sensor calibration method for an automotive CW/ICC system
JP2012068216A (en) * 2010-09-27 2012-04-05 Mazda Motor Corp Sensor orientation deviation detecting device
JP2021143906A (en) * 2020-03-11 2021-09-24 株式会社デンソー Axis deviation detection device and axis deviation detection program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281239A (en) * 1996-04-12 1997-10-31 Mitsubishi Electric Corp Periphery monitor device for vehicle
US6202027B1 (en) * 1997-08-27 2001-03-13 Delphi Technologies, Inc. Automatic curve sensor calibration method for an automotive CW/ICC system
JP2012068216A (en) * 2010-09-27 2012-04-05 Mazda Motor Corp Sensor orientation deviation detecting device
JP2021143906A (en) * 2020-03-11 2021-09-24 株式会社デンソー Axis deviation detection device and axis deviation detection program

Similar Documents

Publication Publication Date Title
US10011278B2 (en) Collision avoidance system
US7158015B2 (en) Vision-based method and system for automotive parking aid, reversing aid, and pre-collision sensing application
EP2913234B1 (en) Automatic braking for driving in reverse
JP2012506052A (en) Sensor system including a confirmation sensor for detecting a state immediately before a collision
JP5418794B2 (en) Automotive radar equipment
US20180197417A1 (en) Trailer mode blind spot sensor
US20100225522A1 (en) Sensor system for detecting an impending collision of a vehicle
WO2018092568A1 (en) Collision determination device and collision determination method
WO2024024007A1 (en) Radar device and radar signal processing method
US20200070718A1 (en) Notification device, notification system, and computer program
JP2009058316A (en) Radar device, object detection method, and vehicle
Mende et al. New automotive applications for smart radar systems
WO2019203160A1 (en) Driving assistance system and method
WO2021070881A1 (en) Control device
JP4821291B2 (en) Vehicle obstacle detection device
JP2008143429A (en) Collision predicting device
EP2042886A2 (en) Radio frequency proximity sensor and sensor system
JP5613457B2 (en) Object detection device
JP5071885B2 (en) Vehicle obstacle detection device
JP5604179B2 (en) Object detection device
JP2008039581A (en) Onboard radar system and control method therefor
JP7344077B2 (en) Collision determination device
WO2023074071A1 (en) Axial shift determination device and axial shift determination method
JP2007163316A (en) Radar system
WO2021070880A1 (en) Control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953100

Country of ref document: EP

Kind code of ref document: A1