WO2024023909A1 - 光配線システムおよび光配線方法 - Google Patents

光配線システムおよび光配線方法 Download PDF

Info

Publication number
WO2024023909A1
WO2024023909A1 PCT/JP2022/028721 JP2022028721W WO2024023909A1 WO 2024023909 A1 WO2024023909 A1 WO 2024023909A1 JP 2022028721 W JP2022028721 W JP 2022028721W WO 2024023909 A1 WO2024023909 A1 WO 2024023909A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
circulator
fiber
point
optical circulator
Prior art date
Application number
PCT/JP2022/028721
Other languages
English (en)
French (fr)
Inventor
千尋 鬼頭
優介 古敷谷
大輔 飯田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/028721 priority Critical patent/WO2024023909A1/ja
Publication of WO2024023909A1 publication Critical patent/WO2024023909A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form

Definitions

  • the present invention relates to an optical wiring system and an optical wiring method.
  • Optical transmission systems include single-fiber unidirectional transmission systems (see Non-Patent Document 1) that use optical fibers that transmit optical signals in one direction only, separately for uplink and downlink, and two-way optical transmission systems that transmit optical signals in both directions using a single optical fiber.
  • Non-Patent Document 1 that use optical fibers that transmit optical signals in one direction only, separately for uplink and downlink
  • two-way optical transmission systems that transmit optical signals in both directions using a single optical fiber.
  • There exists a single-core bidirectional transmission system see Non-Patent Documents 1 and 2) that performs communication in both directions.
  • Optical transmission systems that require large-capacity transmission, mainly in repeater sections, use single-fiber, unidirectional transmission systems that use WDM (Wavelength Division Multiplexing) technology.
  • WDM Widelength Division Multiplexing
  • single-fiber unidirectional transmission systems separate optical fibers are used for "upstream” and “downstream,” resulting in the cost of two optical fibers and Mux/Demux (wavelength multiplexing/demultiplexing module). There were unavoidable problems with the method.
  • the present invention has been made in view of these circumstances, and its purpose is to construct an optical transmission system that integrates a single-fiber unidirectional transmission system and a single-fiber bidirectional transmission system while suppressing costs. It is in.
  • the optical wiring system includes a first point and a second point connected to each other via a first optical fiber so that a first optical signal from the first point can be transmitted to the second point. and a second optical circulator located closer to the second point than the first optical circulator, and a second optical fiber between the first point and the second point, to the second point.
  • a third optical circulator and a fourth optical circulator closer to the second point than the third optical circulator which are connected to each other so as to transmit a second optical signal from the third optical circulator to the first point; a third optical circulator, a fifth optical circulator connected to the third optical fiber, and a sixth optical circulator connected to the second optical circulator, the fourth optical circulator, and the fourth optical fiber, A third optical signal from a third optical fiber is transmitted to the fourth optical fiber, and a fourth optical signal from the fourth optical fiber is transmitted to the third optical fiber.
  • the optical wiring method includes a first optical circulator and a second optical circulator located closer to the second point than the first optical circulator via a first optical fiber between a first point and a second point. , connects a first optical signal from the first point to the second point so as to transmit the third optical circulator and the second point via a second optical fiber between the first point and the second point.
  • a fourth optical circulator closer to the second point than the third optical circulator is connected so as to be able to transmit a second optical signal from the second point to the first point, and the fifth optical circulator is connected to the first optical circulator.
  • the third optical circulator, and the third optical fiber are connected, the second optical circulator, the fourth optical circulator, and the fourth optical fiber are connected to the sixth optical circulator, and A third optical signal is transmitted to the fourth optical fiber, and a fourth optical signal from the fourth optical fiber is transmitted to the third optical fiber.
  • an optical transmission system in which a single-fiber unidirectional transmission system and a single-fiber bidirectional transmission system are integrated while suppressing costs.
  • FIG. 1 is a schematic diagram showing an example of a single-fiber unidirectional transmission system.
  • FIG. 2 is a configuration diagram of an optical node of the single-fiber, unidirectional transmission system shown in FIG.
  • FIG. 3 is a configuration diagram showing two optical nodes connected to optical fibers.
  • FIG. 4 is a configuration diagram of the optical wiring system according to the first embodiment.
  • FIG. 5 is a flowchart showing an example of an optical wiring method.
  • FIG. 6 is a configuration diagram of an optical wiring system according to the second embodiment.
  • FIG. 1 is a configuration diagram showing an example of a single-fiber unidirectional transmission system.
  • the illustrated one-fiber, one-way transmission system has a plurality of optical nodes N1, N2, and N3.
  • the optical nodes N1, N2, and N3 are connected to each other by uplink and downlink optical fibers to form a ring.
  • optical nodes N1, N2, and N3 are equipped with optical devices (for example, optical amplifiers and optical isolators) that allow optical transmission in only one direction. For this reason, it is not possible to directly integrate a single-fiber bidirectional transmission system into a single-fiber unidirectional transmission system.
  • optical devices for example, optical amplifiers and optical isolators
  • FIG. 2 is a configuration diagram showing the configuration of the optical node N1 shown in FIG. 1.
  • the illustrated optical node N1 includes an optical amplifier (OA) 50, a wavelength selective switch (WSS) 60, a receiver (R) 70, and a transmitter (T) 80.
  • OA optical amplifier
  • WSS wavelength selective switch
  • R receiver
  • T transmitter
  • the optical node N1 amplifies an optical signal transmitted from an uplink or downlink optical fiber with a receiving optical amplifier 50, passes through a receiving wavelength selective switch 60, and receives it with a receiver 70.
  • the optical node N1 superimposes the optical signal output from the transmitter 80 using the wavelength selective switch 60, amplifies the superimposed optical signal using the transmission optical amplifier 50, and transmits it through the uplink or downlink optical fiber.
  • the illustrated optical node N1 includes two sets of transmitting and receiving devices, one for uplink and one for downlink.
  • Optical nodes N2 and N3 also have the same configuration as optical node N1, and optical node N1 and optical node N2, optical node N2 and optical node N3, and optical node N3 and optical node N1 are used for uplink and downlink, respectively. are connected by optical fibers.
  • FIG. 3 shows the optical node N1, the optical node N2, and the optical fibers 11 and 12 connecting them in the single-fiber unidirectional transmission system shown in FIG.
  • the optical fiber 11 transmits an optical signal from the optical node N1 to the second optical node N2.
  • Optical fiber 12 transmits an optical signal heading from optical node N2 to optical node N1.
  • the optical amplifier 50-1 of the optical node N1 amplifies the optical signal output from the wavelength selective switch 60-1 and transmits it to the optical fiber 11.
  • the optical amplifier 50-3 of the optical node N2 receives and amplifies the optical signal transmitted through the optical fiber 11, and then transmits it to the wavelength selective switch 60-3.
  • the optical amplifier 50-4 of the optical node N2 amplifies the optical signal output from the wavelength selective switch 60-4 and transmits it to the optical fiber 12.
  • the optical amplifier 50-2 of the optical node N1 receives and amplifies the optical signal transmitted through the optical fiber 12, and then transmits it to the receiving wavelength selective switch 60-2.
  • Each optical amplifier 50 is installed to compensate for loss of optical signals in the optical transmission line. Furthermore, each optical amplifier 50 has an optical isolation function to limit optical signal transmission to one direction.
  • FIG. 4 shows a configuration diagram of the optical wiring system 10 according to the first embodiment of the present invention.
  • the optical wiring system 10 of this embodiment includes six optical circulators 21 to 26.
  • the optical signal of the single-fiber bidirectional transmission system is superimposed on the optical fiber used in the single-fiber unidirectional transmission system described in FIGS. 1 to 3.
  • the optical nodes N1 and N2 form part of a single-fiber, unidirectional transmission system.
  • the optical transmission devices 31 and 32 constitute a part of a single-fiber bidirectional transmission system.
  • a CWDM transmission device that is expected to be applied to point-to-point communication such as mobile fronthaul can be used.
  • the optical node N1 is placed at the first point, and the optical node N2 is placed at the second point.
  • the optical transmission device 31 is arranged on the first optical node N1 (first point) side, and the optical transmission device 32 is arranged on the second optical node N2 (second point) side.
  • Each of the optical circulators 21 to 26 is a three-terminal non-complete circulation type optical circulator having three ports: port 1 (P1), port 2 (P2), and port 3 (P3).
  • the optical circulators 21 to 26 are optical devices having an optical isolation function, and are capable of optical transmission only from port 1 to port 2 and from port 2 to port 3, and from port 3 to port 1 and from port 1 to port 3, optical transmission is not possible in each direction from port 3 to port 2.
  • the optical circulators 21 to 26 also have almost no wavelength dependence. Note that the optical circulators 21 to 26 may be a 3-terminal complete circulation optical circulator, a 4-terminal non-complete circulation optical circulator, or a 4-terminal complete circulation optical circulator, but may also have port 1, port 2, port 3 similar to this embodiment. It can be used by connecting.
  • Two optical fibers 11 and 12 are installed between the optical node N1 and the optical node N2.
  • the optical fiber 11 is connected to the optical amplifier 51 of the optical node N1 and the optical amplifier 53 of the optical node N2, and transmits an optical signal going from a first point to a second point.
  • the optical fiber 12 is connected to the optical amplifier 52 of the optical node N1 and the optical amplifier 54 of the optical node N2, and transmits an optical signal going from the second point to the first point.
  • An optical circulator 21 is connected to the optical amplifier 51 side (first point side) of the optical fiber 11, and an optical circulator 22 is connected to the optical amplifier 53 side (second point side).
  • port 1 is connected to the optical amplifier 51 via the optical fiber 13
  • port 2 is connected to one end of the optical fiber 11.
  • the optical circulator 22 has a port 2 connected to the other end of the optical fiber 11 and a port 3 connected to the optical amplifier 53 via the optical fiber 14.
  • An optical circulator 23 is connected to the optical amplifier 52 side (first point side) of the optical fiber 12, and an optical circulator 24 is connected to the optical amplifier 54 side (second point side).
  • the optical circulator 23 has a port 3 connected to the optical amplifier 52 via the optical fiber 15 and a port 2 connected to one end of the optical fiber 12.
  • the optical circulator 24 has a port 2 connected to the other end of the optical fiber 12 and a port 1 connected to the optical amplifier 54 via the optical fiber 16.
  • the optical signal transmission path using the existing single fiber unidirectional transmission system via the optical fibers 11 to 16 is created. 91 and 92 are maintained.
  • the optical circulator 25 is connected to the optical transmission device 31, the optical circulator 21, and the optical circulator 23 arranged on the first point side. Specifically, port 1 of optical circulator 25 is connected to port 3 of optical circulator 21 via optical fiber 41, and port 3 of optical circulator 25 is connected to port 1 of optical circulator 23 via optical fiber 42. ing. Port 2 of the optical circulator 25 is connected via an optical fiber 43 to an input/output end of an optical transmission device 31 placed on the first point side.
  • the optical circulator 26 is connected to the optical transmission device 32, the optical circulator 22, and the optical circulator 24 arranged on the second point side. Specifically, port 3 of the optical circulator 26 is connected to port 1 of the optical circulator 22 via an optical fiber 44, and port 1 of the optical circulator 26 is connected to port 3 of the optical circulator 24 via an optical fiber 45. ing. Port 2 of the optical circulator 26 is connected via an optical fiber 46 to an input/output end of an optical transmission device 32 located on the second point side.
  • the optical wiring system 10 of this embodiment transmits the optical signal output from the optical transmission device 31 to the optical fiber 43, the optical circulator 25, the optical fiber 42, and the optical circulator 23.
  • the optical fiber 12, the optical circulator 24, the optical fiber 45, the optical circulator 26, and the optical fiber 46 are transmitted to the optical transmission device 32 through a transmission path 93 in this order.
  • the optical signal output from the optical transmission device 31 of the single-fiber bidirectional transmission system is transmitted through the second optical fiber 12 in the opposite direction to the transmission direction of the optical signal transmitted at the optical nodes N1 and N2 of the single-fiber unidirectional transmission system. transmitted.
  • the optical wiring system 10 also transmits the optical signal output from the optical transmission device 32 to the optical fiber 46, the optical circulator 26, the optical fiber 44, the optical circulator 22, the optical fiber 11, the optical circulator 21, the optical fiber 41, and the optical circulator. 25, the signal is transmitted to the optical transmission device 31 through the transmission path 94 in the order of the optical fiber 43.
  • the optical signal output from the optical transmission device 32 of the single-fiber bidirectional transmission system is transmitted through the optical fiber 11 in the opposite direction to the transmission direction of the optical signal transmitted at the optical nodes N1 and N2 of the single-fiber unidirectional transmission system. Ru.
  • the optical circulators 21 to 26 are arranged so that the optical signals of the single-fiber unidirectional transmission system and the optical signals of the single-fiber bidirectional transmission system propagate in opposite directions to each other through the optical fibers 11 and 12. .
  • optical wiring system 10 of this embodiment by adding the optical circulators 21 to 26 shown in FIG. 4 to the existing single-fiber unidirectional transmission system as shown in FIG. It is possible to easily construct an optical transmission system that coexists with a single-fiber bidirectional transmission system.
  • Transmission delay time is the time required for an optical signal to pass through a transmission path. Adjusting the difference between the transmission delay time of the optical signal in the transmission path 93 from the optical transmission device 31 to the optical transmission device 32 and the transmission delay time of the optical signal in the transmission path 94 from the optical transmission device 32 to the optical transmission device 31.
  • the optical wiring system 10 may include an optical delay controller (not shown).
  • an optical delay controller (not shown) may be connected to an arbitrary point of the transmission path 93 and the transmission path 94 where the transmission delay time of the optical signal is small.
  • the installation positions of the optical circulators 21 to 26 are arbitrary and do not need to be near the installation point of the optical node N1 or the optical node N2, but the optical loss allowed by the specifications of the optical transmission device 31 and the optical transmission device 32 The position is considered to be below the budget.
  • the increase in loss in the transmission paths 91 and 92 of the single-fiber unidirectional transmission system between the optical amplifier 51 and the optical amplifier 53 and between the optical amplifier 52 and the optical amplifier 54 is only due to the insertion loss of the two optical circulators ( (approximately 1 to 2 dB). Therefore, the influence on the existing single-fiber unidirectional transmission system can be minimized.
  • the optical circulators 21 to 26 have no wavelength dependence. Therefore, the optical circulators 21 to 26 do not affect the wavelength design of the single-fiber unidirectional transmission system, and the degree of freedom in wavelength design for the added single-fiber bidirectional transmission system can be ensured.
  • optical isolation function of the optical circulators 21 to 26 and the optical amplifiers 51 to 54 it is extremely unlikely that the optical signals of the single-fiber bidirectional transmission system will cause optical crosstalk that would affect the single-fiber unidirectional transmission system. . Therefore, the influence on the existing single-fiber unidirectional transmission system can be minimized.
  • optical isolation function of the optical circulators 21 to 26 it is extremely unlikely that an optical signal in a single-fiber unidirectional transmission system will cause optical crosstalk that would affect a single-fiber bidirectional transmission system.
  • the optical wiring system 10 by adding the optical circulators 21 to 26, which are inexpensive general-purpose optical devices, to the existing single-fiber unidirectional transmission system, various wavelength designs can be achieved while minimizing the increase in optical loss. Can comply with standards. Further, according to the optical wiring system 10, the transmission path of the single-fiber unidirectional transmission system is minimized, while minimizing the mutual influence such as the optical signal-to-noise ratio due to optical crosstalk between the single-fiber unidirectional transmission system and the single-fiber bidirectional transmission system. It is possible to make a single-fiber bidirectional transmission system coexist with an existing single-fiber unidirectional transmission system while making use of this technology.
  • FIG. 5 is an example of a flowchart showing an optical wiring method of the optical wiring system 10.
  • a first optical circulator 21 and a second optical circulator 22 are respectively connected to the first point side and the second point side of the optical fiber 11 that transmits an optical signal going from the first point to the second point (step S1).
  • the third optical circulator 23 and the fourth optical circulator 24 are respectively connected to the first point side and the second point side of the second optical fiber 12 that transmits the optical signal heading from the second point to the first point ( Step S2).
  • steps S1 to S4 may be performed in any order.
  • the optical wiring system 10 of the present embodiment described above transmits the first optical signal from the first point N1 via the first optical fibers 13, 11, and 14 between the first point N1 and the second point N2.
  • a third optical circulator 23 and a third optical circulator 23 are connected to each other so as to be able to transmit a second optical signal from the second point N2 to the first point N1 via the second optical fibers 15, 12, and 16.
  • the third optical signal from the third optical fiber 43 is transmitted to the fifth optical circulator 25 , the third optical circulator 23 , the second optical fiber 12 , the fourth optical circulator 24 , the sixth optical circulator 26 , and the fourth optical fiber 46 in this order.
  • the first transmission path 93 is used for transmission.
  • the fourth optical signal from the fourth optical fiber 46 is transmitted to the sixth optical circulator 26 , the second optical circulator 22 , the first optical fiber 11 , the first optical circulator 21 , the fifth optical circulator 25 , and the third optical fiber 43 in this order.
  • the second transmission path 94 is used for transmission.
  • the optical signal of a single-fiber bidirectional transmission system can be transferred to the optical fiber used in the single-fiber unidirectional transmission system, while minimizing the influence on the existing single-fiber unidirectional transmission system. Can be easily superimposed. Therefore, the cost of introducing a newly added single-fiber bidirectional transmission system can be suppressed, and an economical optical transmission system can be constructed.
  • FIG. 6 shows a configuration diagram of an optical wiring system 10A according to the second embodiment.
  • the optical wiring system 10A according to the second embodiment differs from the first embodiment shown in FIG. 4 in that it includes an optical branching device 35.
  • the rest of the configuration of the optical wiring system 10A is the same as the optical wiring system 10 of the first embodiment, so a description thereof will be omitted.
  • PON Passive Optical Network
  • splitters which are low-cost passive elements, to split optical signals into multiple optical fibers and distribute them to multiple users. do.
  • the illustrated optical branching device 35 is arranged between the optical circulator 26 and the plurality of optical transmission devices 32-1 to 32-n, and branches the optical signal output from the optical circulator 26 into a plurality of optical fibers in the transmission path 93. do.
  • port 2 of the optical circulator 26 is connected to an optical branching device 35 placed on the optical node N2 side by an optical fiber 46.
  • the optical branching device 35 branches the optical signal transmitted through the transmission path 93 into a plurality of optical signals.
  • the plurality of branched optical signals are transmitted to a plurality of optical transmission devices 32-1 to 32-n via a plurality of optical fibers.
  • a wavelength division multiplexing (WDM) splitter, an optical power splitter, etc. can be applied to the optical branching device 35.
  • WDM wavelength division multiplexing
  • an optical transmission device compatible with WDM-PON and TDM-PON Time Division Multiplexing-PON
  • They may be deployed as 32-1 to 32-n.
  • the optical wiring system 10A may include an optical delay controller (not shown).
  • the optical delay controller may be connected to an arbitrary point of the transmission path 93 and the transmission path 94 where the transmission delay time of the optical signal is small.
  • the optical branching device 35 is installed on the second point side, but the optical branching device 35 may be installed on the first point side.
  • the optical branching device 35 is placed between the optical circulator 25 and the plurality of optical transmission devices 31, and branches the optical signal output from the optical circulator 25 into the plurality of optical fibers in the transmission path 94. Further, the optical branching device 35 may be installed on both the first point side and the second point side.
  • the optical wiring system 10A according to the second embodiment described above includes the optical branching device 35, so that the optical signal of the PON system (single-fiber bidirectional transmission system) can be superimposed on the optical signal of the single-fiber unidirectional transmission system. Can be done.
  • optical circulators 21 to 26 are added to an existing single-fiber unidirectional transmission system to integrate a single-fiber bidirectional transmission system into a single-fiber unidirectional transmission system.
  • the optical circulators 21 to 26 may be added to the existing single-fiber bidirectional transmission system to integrate the single-fiber unidirectional transmission system into the single-fiber bidirectional transmission system.

Abstract

光配線システム(10)は、第1光ファイバ(13,11,14)を介して第1地点(N1)からの第1光信号を第2地点(N2)に伝送可能に互いに接続された第1光サーキュレータ(21)と第2光サーキュレータ(22)と、第2光ファイバ(15,12,16)を介して第2地点(N2)からの第2光信号を第1地点(N1)に伝送可能に互いに接続された第3光サーキュレータ(23)と第4光サーキュレータ(24)と、第1光サーキュレータ(21)と第3光サーキュレータ(23)と第3光ファイバ(43)に接続された第5光サーキュレータ(25)と、第2光サーキュレータ(22)と第4光サーキュレータ(24)と第4光ファイバ(46)に接続された第6光サーキュレータ(26)とを備え、第3光ファイバ(43)からの第3光信号を第4光ファイバ(46)に伝送し、第4光ファイバ(46)からの第4光信号を第3光ファイバ(43)に伝送する。

Description

光配線システムおよび光配線方法
 本発明は、光配線システムおよび光配線方法に関する。
 光伝送システムには、上りと下りで別々に、一方向にのみ光信号を伝送する光ファイバを使って通信する一心片方向伝送システム(非特許文献1参照)と、1心の光ファイバで双方向の通信を行う一心双方向伝送システム(非特許文献1、2参照)が存在する。
光伝送技術について、APRESIA Systems株式会社、インターネット<URL: https://www.apresia.jp/technical/transmission/> 技術基礎講座[GE-PON技術]、NTT技術ジャーナル、2005年8月 小型WDM形光伝送装置の機能拡充による光ファイバ枯渇問題対応、ドコモR&Dテクニカルジャーナル、VOL.19 NO.4
 主として中継区間等の大容量伝送が求められる光伝送システムには、WDM(Wavelength Division Multiplexing:波長分割多重)技術を用いた一心片方向伝送システムを用いる。しかし、一心片方向伝送システムでは、「上り」と「下り」で別々の光ファイバを用いるため、2心分の光ファイバとMux/Demux(波長合分波モジュール)のコストがかかるという、光伝送方式上の避けられない課題があった。
 一方、経済性を重視する光アクセス区間では、一心双方向伝送システムが用いられてきた。近年、モバイルフロントホール等への適用を想定したCWDM(Coarse Wavelength Division Multiplexing)技術の進展や、IEEE P802.3caにおいて50Gbit/s PON (Passive Optical Network)の方式規格化が完了するなど、一心双方向伝送システムによる大容量光伝送システム化への期待が高まっている。また、ダークファイバの枯渇エリアでは、モバイルフロントホールを構築するための光ファイバの調達が困難な状況もある(非特許文献3参照)。
 本発明は、このような状況に鑑みてなされたものであり、その目的は、コストを抑制しつつ、一心片方向伝送システムと一心双方向伝送システムとが統合された光伝送システムを構築することにある。
 本発明に係る光配線システムは、第1地点と第2地点との間の第1光ファイバを介して、前記第1地点からの第1光信号を前記第2地点に伝送可能に互いに接続された、第1光サーキュレータおよび前記第1光サーキュレータより前記第2地点側の第2光サーキュレータと、前記第1地点と前記第2地点との間の第2光ファイバを介して、前記第2地点からの第2光信号を前記第1地点に伝送可能に互いに接続された、第3光サーキュレータおよび前記第3光サーキュレータより前記第2地点側の第4光サーキュレータと、前記第1光サーキュレータ、前記第3光サーキュレータ、および第3光ファイバに接続された第5光サーキュレータと、前記第2光サーキュレータ、前記第4光サーキュレータ、および第4光ファイバに接続された第6光サーキュレータとを備え、前記第3光ファイバからの第3光信号を前記第4光ファイバに伝送し、前記第4光ファイバからの第4光信号を前記第3光ファイバに伝送する。
 本発明に係る光配線方法は、第1地点と第2地点との間の第1光ファイバを介して、第1光サーキュレータおよび前記第1光サーキュレータより前記第2地点側の第2光サーキュレータを、前記第1地点からの第1光信号を前記第2地点に伝送可能に接続し、前記第1地点と前記第2地点との間の第2光ファイバを介して、第3光サーキュレータおよび前記第3光サーキュレータより前記第2地点側の第4光サーキュレータを、前記第2地点からの第2光信号を前記第1地点に伝送可能に接続し、第5光サーキュレータに、前記第1光サーキュレータ、前記第3光サーキュレータ、および第3光ファイバを接続し、第6光サーキュレータに、前記第2光サーキュレータ、前記第4光サーキュレータ、および第4光ファイバを接続し、前記第3光ファイバからの第3光信号を前記第4光ファイバに伝送し、前記第4光ファイバからの第4光信号を前記第3光ファイバに伝送する。
 本発明によれば、コストを抑制しつつ、一心片方向伝送システムと一心双方向伝送システムとが統合された光伝送システムを構築することができる。
図1は、一心片方向伝送システムの一例を示す概略図である。 図2は、図1に示す一心片方向伝送システムの光ノードの構成図である。 図3は、光ファイバに接続された2つの光ノードを示す構成図である。 図4は、第1実施形態に係る光配線システムの構成図である。 図5は、光配線方法の一例を示すフローチャートである。 図6は、第2実施形態に係る光配線システムの構成図である。
 図面を参照して、本発明の実施形態を説明する。図面の記載において同一部分には同一符号を付して説明を省略する。
(一心片方向伝送システムの例)
 図1は、一心片方向伝送システムの一例を示す構成図である。図示する一心片方向伝送システムは、複数の光ノードN1,N2,N3を有する。光ノードN1,N2,N3は、上り用と下り用の光ファイバで互いに連結され、リングを形成する。
 一般的に、光ノードN1,N2,N3には、片方向のみの光伝送を許容する光デバイス(例えば、光増幅器、光アイソレータ)が搭載される。このため、一心片方向伝送システムにそのまま一心双方向伝送システムを統合することはできない。
 図2は、図1に示す光ノードN1の構成を示す構成図である。図示する光ノードN1は、光増幅器(OA)50と、波長選択スイッチ(WSS)60と、受信機(R)70と、送信機(T)80とを有する。
 光ノードN1は、上り用または下り用の光ファイバから伝送された光信号を、受信用の光増幅器50で増幅し、受信用の波長選択スイッチ60を経て、受信機70で受信する。また、光ノードN1は、送信機80から出力される光信号を波長選択スイッチ60により重畳し、重畳した光信号を送信用の光増幅器50により増幅して上り用または下り用の光ファイバで伝送する。すなわち、図示する光ノードN1は、上り用と下り用とで2組の送受信用デバイスを備えている。
 光ノードN2,N3も、光ノードN1と同様の構成を有し、光ノードN1と光ノードN2、光ノードN2と光ノードN3、および光ノードN3と光ノードN1が、それぞれ上り用と下り用の光ファイバにより接続されている。
 図3は、図1に示した一心片方向伝送システムの光ノードN1と、光ノードN2と、それらの間を接続する光ファイバ11,12とを示す。光ファイバ11は、光ノードN1から第2光ノードN2に向かう光信号を伝送する。光ファイバ12は、光ノードN2から光ノードN1に向かう光信号を伝送する。
 光ノードN1の光増幅器50-1は、波長選択スイッチ60-1から出力される光信号を増幅して、光ファイバ11に伝送する。光ノードN2の光増幅器50-3は、光ファイバ11で伝送された光信号を受信して増幅した後に、波長選択スイッチ60-3に伝送する。
 光ノードN2の光増幅器50-4は、波長選択スイッチ60-4から出力される光信号を増幅して、光ファイバ12に伝送する。光ノードN1の光増幅器50-2は、光ファイバ12で伝送された光信号を受信して増幅した後に、受信用の波長選択スイッチ60-2に伝送する。
 各々の光増幅器50は、光信号の光伝送線路での損失を補償するために設置されている。また、各々の光増幅器50は、光信号を片向伝送に制限するための光アイソレーション機能を有する。
(第1実施形態)
 図4は、本発明の第1実施形態に係る光配線システム10の構成図を示す。本実施形態の光配線システム10は、6個の光サーキュレータ21~26を備える。これにより、本実施形態では、図1~3で説明した一心片方向伝送システムで用いられている光ファイバに一心双方向伝送システムの光信号を重畳する。
 光ノードN1,N2は、一心片方向伝送システムの一部を構成する。図4では、便宜上、光ノードN1,N2として光増幅器51~54のみを示しているが、光ノードN1,N2は、それぞれ図3の光ノードN1,N2と同様の構成を有する。光伝送装置31、32は一心双方向伝送システムの一部を構成する。光伝送装置31、32には、例えば、モバイルフロントホール等、point to point通信への適用が想定されるCWDM伝送装置を用いることができる。
 図示する例では、光ノードN1は、第1地点に配置され、光ノードN2は第2地点に配置されている。光伝送装置31は、第1光ノードN1(第1地点)側に配置され、光伝送装置32は、第2光ノードN2(第2地点)側に配置されている。
 光サーキュレータ21~26は、それぞれ、ポート1(P1)、ポート2(P2)、およびポート3(P3)の3つのポートを有する3端子非完全循環形光サーキュレータである。光サーキュレータ21~26は、光アイソレーション機能を有する光デバイスであり、ポート1からポート2と、ポート2からポート3のみの光伝送が可能であり、ポート3からポート1と、ポート1からポート3と、ポート3からポート2の各方向には光伝送できない。光サーキュレータ21~26は、波長依存性もほとんどない。なお、光サーキュレータ21~26としては、3端子完全循環形光サーキュレータ、4端子非完全循環形光サーキュレータ、4端子完全循環形光サーキュレータでも、本実施形態と同様のポート1、ポート2、ポート3の接続にすることにより使用可能である。
 光ノードN1と、光ノードN2との間には、2本の光ファイバ11、12が敷設されている。光ファイバ11は、光ノードN1の光増幅器51と光ノードN2の光増幅器53とに接続され、第1地点から第2地点に向かう光信号を伝送する。光ファイバ12は、光ノードN1の光増幅器52と光ノードN2の光増幅器54とに接続され、第2地点から第1地点に向かう光信号を伝送する。
 光ファイバ11の光増幅器51側(第1地点側)に光サーキュレータ21が接続され、光増幅器53側(第2地点側)に光サーキュレータ22が接続される。光サーキュレータ21は、ポート1が光ファイバ13を介して光増幅器51に接続され、ポート2が光ファイバ11の一端に接続される。光サーキュレータ22は、ポート2が光ファイバ11の他端に接続され、ポート3が光ファイバ14を介して光増幅器53に接続される。
 光ファイバ12の光増幅器52側(第1地点側)に光サーキュレータ23が接続され、光増幅器54側(第2地点側)に光サーキュレータ24が接続される。光サーキュレータ23は、ポート3が光ファイバ15を介して光増幅器52に接続され、ポート2が光ファイバ12の一端に接続される。光サーキュレータ24は、ポート2が光ファイバ12の他端に接続され、ポート1が光ファイバ16を介して光増幅器54に接続される。
 このように4つの光サーキュレータ21~24を一心片方向伝送システム(光ノードN1,N2)に接続することにより、光ファイバ11~16を介した既存の一心片方向伝送システムによる光信号の伝送経路91,92が維持される。
 光サーキュレータ25は、第1地点側に配置された光伝送装置31と、光サーキュレータ21と、光サーキュレータ23とに接続される。具体的には、光サーキュレータ25のポート1が光サーキュレータ21のポート3に光ファイバ41を介して接続され、光サーキュレータ25のポート3が光サーキュレータ23のポート1と光ファイバ42を介して接続されている。光サーキュレータ25のポート2は、第1地点側に配置された光伝送装置31の入出力端に光ファイバ43を介して接続されている。
 光サーキュレータ26は、第2地点側に配置された光伝送装置32と、光サーキュレータ22と、光サーキュレータ24とに接続される。具体的には、光サーキュレータ26のポート3が光サーキュレータ22のポート1に光ファイバ44を介して接続され、光サーキュレータ26のポート1が光サーキュレータ24のポート3と光ファイバ45を介して接続されている。光サーキュレータ26のポート2は、第2地点側に配置された光伝送装置32の入出力端に光ファイバ46を介して接続されている。
 このような光サーキュレータ21~26を備えることで、本実施形態の光配線システム10は、光伝送装置31から出力された光信号を、光ファイバ43、光サーキュレータ25、光ファイバ42、光サーキュレータ23、光ファイバ12、光サーキュレータ24、光ファイバ45、光サーキュレータ26、光ファイバ46の順番の伝送経路93で光伝送装置32に伝送する。つまり、一心双方向伝送システムの光伝送装置31から出力された光信号は、一心片方向伝送システムの光ノードN1,N2で伝送される光信号の伝送方向と逆方向に第2光ファイバ12で伝送される。
 また、光配線システム10は、光伝送装置32から出力された光信号を、光ファイバ46、光サーキュレータ26、光ファイバ44、光サーキュレータ22、光ファイバ11、光サーキュレータ21、光ファイバ41、光サーキュレータ25、光ファイバ43の順番の伝送経路94で光伝送装置31に伝送する。つまり、一心双方向伝送システムの光伝送装置32から出力された光信号は、一心片方向伝送システムの光ノードN1,N2で伝送される光信号の伝送方向と逆方向に光ファイバ11で伝送される。
 このように、本実施形態では、一心片方向伝送システムの光信号と、一心双方向伝送システムの光信号とが、光ファイバ11、12で互いに対向伝搬するように光サーキュレータ21~26を配置する。
 従って、本実施形態の光配線システム10によれば、図3に示したような既存の一心片方向伝送システムに、図4に示す光サーキュレータ21~26を追加することにより、一心片方向伝送システムと一心双方向伝送システムとが共存する光伝送システムを容易に構築することができる。
 伝送遅延時間は、光信号が伝送経路内を通過するのに要する時間である。光伝送装置31から光伝送装置32までの伝送経路93における光信号の伝送遅延時間と光伝送装置32から光伝送装置31までの伝送経路94における光信号の伝送遅延時間の間の差を調整するために、光配線システム10は光遅延制御器(不図示)を備えてもよい。例えば、伝送経路93と伝送経路94のうち、光信号の伝送遅延時間の小さい伝送経路の任意地点に光遅延制御器(不図示)を接続してもよい。
 なお、光サーキュレータ21~26の設置位置は任意であり、光ノードN1または光ノードN2の設置地点の近傍である必要はないが、光伝送装置31と光伝送装置32の仕様が許容する光損失バジェット以下となる位置とされる。
 光増幅器51と光増幅器53の間、および光増幅器52と光増幅器54の間の一心片方向伝送システムの伝送経路91,92の損失の増加は、光サーキュレータ2つ分の挿入損失によるもののみ(1~2dB程度)である。したがって、既存の一心片方向伝送システムへの影響を極力抑えることができる。
 また、光サーキュレータ21~26は、波長依存性がない。このため、光サーキュレータ21~26が一心片方向伝送システムの波長設計に影響を与えることはなく、追加する一心双方向伝送システムに対する波長設計の自由度も担保することができる。
 また、光サーキュレータ21~26および光増幅器51~54の光アイソレーション機能により、一心双方向伝送システムの光信号が、一心片方向伝送システムに影響を与える光クロストークとなることは極めて軽微である。したがって、既存の一心片方向伝送システムへの影響を極力抑えることができる。同様に、光サーキュレータ21~26の光アイソレーション機能により、一心片方向伝送システムの光信号が、一心双方向伝送システムに影響を与える光クロストークとなることも極めて軽微である。
 したがって、光配線システム10によれば、安価な汎用光デバイスである光サーキュレータ21~26を既存の一心片方向伝送システムに追加することで、光損失増加を最小限に抑えつつ、様々な波長設計規格に対応することができる。また、光配線システム10によれば、一心片方向伝送システムと一心双方向伝送システムの光クロストークによる光信号対雑音比等の相互影響を極めて軽微に抑えつつ、一心片方向伝送システムの伝送経路を活用しながら、既存の一心片方向伝送システムに一心双方向伝送システムを共存させることができる。
 図5は、光配線システム10の光配線方法を示すフローチャートの一例である。
 第1地点から第2地点に向かう光信号を伝送する光ファイバ11の第1地点側および第2地点側に、第1光サーキュレータ21および第2光サーキュレータ22をそれぞれ接続する(ステップS1)。
 次に、第2地点から第1地点に向かう光信号を伝送する第2光ファイバ12の第1地点側および第2地点側に、第3光サーキュレータ23および第4光サーキュレータ24をそれぞれ接続する(ステップS2)。
 そして、第5光サーキュレータ25に、第1光サーキュレータ21と、第3光サーキュレータ23と、第1地点側に配置された第1光伝送装置31とを接続する(ステップS3)。そして、第6光サーキュレータ26に、第2光サーキュレータ22と、第4光サーキュレータ24と、第2地点側に配置された第2光伝送装置32とを接続する(ステップS4)。なお、ステップS1~S4の実施の順番は任意でよい。
 以上説明した本実施形態の光配線システム10は、第1地点N1と第2地点N2との間の第1光ファイバ13,11,14を介して、第1地点N1からの第1光信号を第2地点N2に伝送可能に互いに接続された、第1光サーキュレータ21および第1光サーキュレータ21より第2地点N2側の第2光サーキュレータ22と、第1地点N1と第2地点N2との間の第2光ファイバ15,12,16を介して、第2地点N2からの第2光信号を第1地点N1に伝送可能に互いに接続された、第3光サーキュレータ23および第3光サーキュレータ23より第2地点N2側の第4光サーキュレータ24と、第1光サーキュレータ21、第3光サーキュレータ23、および第3光ファイバ43に接続された第5光サーキュレータ25と、第2光サーキュレータ22、第4光サーキュレータ24、および第4光ファイバ46に接続された第6光サーキュレータ26とを備え、第3光ファイバ43からの第3光信号を第4光ファイバ46に伝送し、第4光ファイバ46からの第4光信号を第3光ファイバ43に伝送する。第3光ファイバ43からの第3光信号を、第5光サーキュレータ25、第3光サーキュレータ23、第2光ファイバ12、第4光サーキュレータ24、第6光サーキュレータ26、第4光ファイバ46の順番の第1伝送経路93で伝送する。第4光ファイバ46からの第4光信号を、第6光サーキュレータ26、第2光サーキュレータ22、第1光ファイバ11、第1光サーキュレータ21、第5光サーキュレータ25、第3光ファイバ43の順番の第2伝送経路94で伝送する。
 これにより、本実施形態では、一心片方向伝送システムと一心双方向伝送システムとが共存する光伝送システムを容易に構築することができる。例えば、本実施形態の光配線システムでは、既存の一心片方向伝送システムへの影響を極力抑えつつ、一心片方向伝送システムに用いられている光ファイバに、一心双方向伝送システムの光信号を、容易に重畳させることができる。したがって、新たに追加する一心双方向伝送システムの導入コストを抑制し、経済的な光伝送システムを構築することができる。
 また、光ファイバのリソースが枯渇している区間においても既存の一心片方向伝送システムを活用して新たな一心双方向伝送システムの導入が可能となる。
(第2実施形態)
 図6に、第2実施形態に係る光配線システム10Aの構成図を示す。第2実施形態に係る光配線システム10Aは、光分岐デバイス35を備える点において、図4に示す第1実施形態と相違する。光配線システム10Aのその他の構成は、第1実施形態の光配線システム10と同一のため、説明を省略する。
 本実施形態は、一心片方向伝送システムに、光分岐デバイスを用いるPONシステム(一心双方向伝送システム)を統合する場合を想定する。PON(Passive Optical Network)は、アクセス形態の1つで、光-電気変換を行わず、低コストな受動素子であるスプリッタを用いて光信号を複数の光ファイバに分岐して、複数ユーザに分配する。
 図示する光分岐デバイス35は、光サーキュレータ26と複数の光伝送装置32-1~32-nの間に配置され、伝送経路93において光サーキュレータ26から出力される光信号を複数の光ファイバに分岐する。具体的には、光サーキュレータ26のポート2が光ノードN2側に配置された光分岐デバイス35と光ファイバ46で接続される。光分岐デバイス35は、伝送経路93で伝送される光信号を複数に分岐する。分岐された複数の光信号は、複数の光ファイバを介して複数の光伝送装置32-1~32-nに伝送される。
 光分岐デバイス35には、波長分割多重(WDM)スプリッタ、光パワースプリッタ等を適用することができる。また、光分岐デバイス35に、WDMスプリッタまたは光パワースプリッタを適用した場合、それぞれ、WDM-PON、TDM-PON(Time Division Multiplexing‐PON:時分割多重PON)に対応する光伝送装置を光伝送装置32-1~32-nとして配備すればよい。
 光伝送装置31から光分岐デバイス35までの伝送経路93における光信号の伝送遅延時間と、光伝送装置32から光分岐デバイス35までの伝送経路94における光信号の伝送遅延時間の間の差を調整するために、光配線システム10Aは光遅延制御器(不図示)を備えてもよい。例えば、伝送経路93と伝送経路94のうち、光信号の伝送遅延時間の小さい伝送経路の任意地点に光遅延制御器を接続してもよい。
 また、図6では、光分岐デバイス35は第2地点側に設置されているが、光分岐デバイス35は、第1地点側に設置されていてもよい。この場合、光分岐デバイス35は、光サーキュレータ25と複数の光伝送装置31の間に配置され、伝送経路94において光サーキュレータ25から出力される光信号を複数の光ファイバに分岐する。また、光分岐デバイス35は、第1地点側および第2地点側の両方にそれぞれ設置されていてもよい。
 以上説明した第2実施形態に係る光配線システム10Aは、光分岐デバイス35を備えることで、一心片方向伝送システムの光信号に、PONシステム(一心双方向伝送システム)の光信号を重畳することができる。
(他の実施形態)
 上記実施形態は、既存の一心片方向伝送システムに光サーキュレータ21~26を追加して、一心双方向伝送システムを一心片方向伝送システムに統合させた例である。しかし、既存の一心双方向伝送システムに光サーキュレータ21~26を追加して、一心片方向伝送システムを一心双方向伝送システムに統合させてもよい。
 上記のように、本発明のいくつかの実施形態を記載したが、この開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。この開示から、当業者には様々な代替の実施形態、実施例および運用技術が明らかとなろう。
 10、10A 光配線システム
 11~16 光ファイバ
 21~26 光サーキュレータ
 31,32 光伝送装置
 35 光分岐デバイス
 41~46 光ファイバ
 50~54 光増幅器
 91~94 伝送経路
 N1~N3 光ノード

Claims (7)

  1.  第1地点と第2地点との間の第1光ファイバを介して、前記第1地点からの第1光信号を前記第2地点に伝送可能に互いに接続された、第1光サーキュレータおよび前記第1光サーキュレータより前記第2地点側の第2光サーキュレータと、
     前記第1地点と前記第2地点との間の第2光ファイバを介して、前記第2地点からの第2光信号を前記第1地点に伝送可能に互いに接続された、第3光サーキュレータおよび前記第3光サーキュレータより前記第2地点側の第4光サーキュレータと、
     前記第1光サーキュレータ、前記第3光サーキュレータ、および第3光ファイバに接続された第5光サーキュレータと、
     前記第2光サーキュレータ、前記第4光サーキュレータ、および第4光ファイバに接続された第6光サーキュレータと、を備え、
     前記第3光ファイバからの第3光信号を前記第4光ファイバに伝送し、前記第4光ファイバからの第4光信号を前記第3光ファイバに伝送する光配線システム。
  2.  前記第3光ファイバからの前記第3光信号を、前記第5光サーキュレータ、前記第3光サーキュレータ、前記第2光ファイバ、前記第4光サーキュレータ、前記第6光サーキュレータ、前記第4光ファイバの順番の第1伝送経路で伝送し、
     前記第4光ファイバからの前記第4光信号を、前記第6光サーキュレータ、前記第2光サーキュレータ、前記第1光ファイバ、前記第1光サーキュレータ、前記第5光サーキュレータ、前記第3光ファイバの順番の第2伝送経路で伝送する
    請求項1に記載の光配線システム。
  3.  前記第1伝送経路と前記第2伝送経路とのうち光信号の伝送遅延時間の小さい伝送経路に設置され、前記第1伝送経路の伝送遅延時間と前記第2伝送経路の伝送遅延時間の間の差を調整する光遅延制御器を備える請求項2に記載の光配線システム。
  4.  前記第6光サーキュレータと複数の前記第4光ファイバの間に配置され、前記第6光サーキュレータから出力される前記第3光信号を複数に分岐する光分岐デバイスを備える請求項1~3のいずれか一項に記載の光配線システム。
  5.  前記第5光サーキュレータと複数の前記第3光ファイバの間に配置され、前記第5光サーキュレータから出力される前記第4光信号を複数に分岐する光分岐デバイスを備える請求項1~3のいずれか一項に記載の光配線システム。
  6.  第1地点と第2地点との間の第1光ファイバを介して、第1光サーキュレータおよび前記第1光サーキュレータより前記第2地点側の第2光サーキュレータを、前記第1地点からの第1光信号を前記第2地点に伝送可能に接続し、
     前記第1地点と前記第2地点との間の第2光ファイバを介して、第3光サーキュレータおよび前記第3光サーキュレータより前記第2地点側の第4光サーキュレータを、前記第2地点からの第2光信号を前記第1地点に伝送可能に接続し、
     第5光サーキュレータに、前記第1光サーキュレータ、前記第3光サーキュレータ、および第3光ファイバを接続し、
     第6光サーキュレータに、前記第2光サーキュレータ、前記第4光サーキュレータ、および第4光ファイバを接続し、
     前記第3光ファイバからの第3光信号を前記第4光ファイバに伝送し、
     前記第4光ファイバからの第4光信号を前記第3光ファイバに伝送する
    光配線方法。
  7.  前記第3光ファイバからの前記第3光信号を、前記第5光サーキュレータ、前記第3光サーキュレータ、前記第2光ファイバ、前記第4光サーキュレータ、前記第6光サーキュレータ、前記第4光ファイバの順番の第1伝送経路で伝送し、
     前記第4光ファイバからの前記第4光信号を、前記第6光サーキュレータ、前記第2光サーキュレータ、前記第1光ファイバ、前記第1光サーキュレータ、前記第5光サーキュレータ、前記第3光ファイバの順番の第2伝送経路で伝送する
    請求項6に記載の光配線方法。
PCT/JP2022/028721 2022-07-26 2022-07-26 光配線システムおよび光配線方法 WO2024023909A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028721 WO2024023909A1 (ja) 2022-07-26 2022-07-26 光配線システムおよび光配線方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028721 WO2024023909A1 (ja) 2022-07-26 2022-07-26 光配線システムおよび光配線方法

Publications (1)

Publication Number Publication Date
WO2024023909A1 true WO2024023909A1 (ja) 2024-02-01

Family

ID=89705772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028721 WO2024023909A1 (ja) 2022-07-26 2022-07-26 光配線システムおよび光配線方法

Country Status (1)

Country Link
WO (1) WO2024023909A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022919A (ja) * 1996-07-04 1998-01-23 Kokusai Denshin Denwa Co Ltd <Kdd> 光分岐装置
US20070286605A1 (en) * 2006-06-07 2007-12-13 Feuer Mark D Tunable bidirectional multiplexer/demultiplexer for optical transmission system
JP2009284304A (ja) * 2008-05-23 2009-12-03 Fujitsu Ltd 光通信装置および光通信システム
WO2018193835A1 (ja) * 2017-04-18 2018-10-25 日本電気株式会社 双方向光伝送システム及び双方向光伝送方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022919A (ja) * 1996-07-04 1998-01-23 Kokusai Denshin Denwa Co Ltd <Kdd> 光分岐装置
US20070286605A1 (en) * 2006-06-07 2007-12-13 Feuer Mark D Tunable bidirectional multiplexer/demultiplexer for optical transmission system
JP2009284304A (ja) * 2008-05-23 2009-12-03 Fujitsu Ltd 光通信装置および光通信システム
WO2018193835A1 (ja) * 2017-04-18 2018-10-25 日本電気株式会社 双方向光伝送システム及び双方向光伝送方法

Similar Documents

Publication Publication Date Title
US6236499B1 (en) Highly scalable modular optical amplifier based subsystem
KR101410158B1 (ko) 신호 전송 시스템, 방법 및 관련 장치
US8249453B2 (en) Optical communication system
CN110212985B (zh) 光纤时间频率和数据联合传输系统和方法
US20070243456A1 (en) Thread-Type Flexible Battery
US9621297B2 (en) Optical communication system, method of bi-directional communication and method of operating a network element
JP2007535269A (ja) リングタイプ光伝送システム
US20140363161A1 (en) Optical signal switching device and optical transmission system
WO2024023909A1 (ja) 光配線システムおよび光配線方法
JP4852260B2 (ja) 1心双方向波長多重伝送システム
JP4709764B2 (ja) 光挿入分岐装置
KR101076949B1 (ko) 수신 다이버시티 기능을 갖는 인빌딩 rf 분산형 중계기
US20050259988A1 (en) Bi-directional optical access network
Cao et al. A novel architecture of reconfigurable WDM/TDM-PON
JP2007535237A (ja) 波長分割多重化方式の受動光ネットワークシステム
CN109714126B (zh) 可实现光网络单元间交互通信的波分复用无源光网络系统
US6845188B2 (en) DC WDM device and DC WDM system and transmission network using the same
JP2007535268A (ja) センター二重化構造波長分割多重化方式受動光ネットワークシステム
KR100594900B1 (ko) 다중링 구조 파장 분할 다중화 방식 수동 광 네트워크시스템
Zhu et al. Design and simulation of optical network architecture based on point-to-multipoint direct communication between optical network units for data center
WO2023109815A1 (zh) 一种光通信网以及通信节点
US7809227B2 (en) Optical fiber, and optical access network, local area network and optical parts for communication, which use the optical fiber
Shao et al. High‐reliable multi‐wavelength optical access network expanding by a single‐fiber tangent ring
KR100628927B1 (ko) 파장 분할 다중화 방식 수동 광 네트워크 시스템의 신호손실 보상장치
WO2023174544A1 (en) Optical network nodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953007

Country of ref document: EP

Kind code of ref document: A1