WO2024023873A1 - Onboard control device - Google Patents

Onboard control device Download PDF

Info

Publication number
WO2024023873A1
WO2024023873A1 PCT/JP2022/028572 JP2022028572W WO2024023873A1 WO 2024023873 A1 WO2024023873 A1 WO 2024023873A1 JP 2022028572 W JP2022028572 W JP 2022028572W WO 2024023873 A1 WO2024023873 A1 WO 2024023873A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
voltage
vehicle
control device
state
Prior art date
Application number
PCT/JP2022/028572
Other languages
French (fr)
Japanese (ja)
Inventor
功治 前田
健治 古後
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/028572 priority Critical patent/WO2024023873A1/en
Publication of WO2024023873A1 publication Critical patent/WO2024023873A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements

Definitions

  • the present disclosure relates to an on-vehicle control device, and more particularly, to an on-vehicle control device that reduces power consumption of sensors mounted on a vehicle.
  • Patent Document 1 discloses an example of zone architecture. It is disclosed that the zone ECU placed at each location serves as a communication hub between the central control device and each sensor and actuator, and a power supply hub between the battery and each sensor and actuator. This Patent Document 1 also mentions a function of turning the sensor ON/OFF depending on the usage scene of the vehicle (for example, the scene where the program of the central control device is updated, the scene where the vehicle is parked, etc.).
  • Patent Document 1 discloses that the power of the sensor is controlled according to the usage scene of the vehicle, the state of the sensor is not taken into account in the power control of the sensor. In other words, in Patent Document 1, for example, it is not possible to control the power of the sensor while confirming the normal operation of the sensor.
  • the present disclosure provides an in-vehicle control device that is installed in each zone of a vehicle and is capable of communicating with sensors installed in each zone and controlling the power of the sensors.
  • the purpose is to provide an in-vehicle control device that is possible.
  • An in-vehicle control device is an in-vehicle control device provided in each zone of a vehicle, which is capable of communicating with a sensor provided in the zone and controlling the voltage applied to the sensor, and which is capable of controlling a voltage applied to the sensor.
  • a power supply means for applying a voltage to the sensor via the power supply means;
  • a voltage control means for controlling the voltage applied to the sensor from the power supply means;
  • a communication means for receiving sensor information indicating the state of the sensor from the sensor;
  • a changing means changes the voltage applied to the sensor based on the received sensor information, and the voltage control means executes control so that the voltage changed by the changing means is applied to the sensor.
  • an on-vehicle control device that is provided in each zone of a vehicle and is capable of communicating with sensors provided in each zone and controlling the power of the sensors, it is possible to reduce the power consumption of the sensors while checking the status of the sensors. be able to. As a result, the fuel efficiency of a vehicle equipped with the in-vehicle control device of the present disclosure is improved.
  • the in-vehicle control device of the present disclosure can reduce the power of the sensor while confirming the normal operation of the sensor, the in-vehicle control device of the present disclosure can be used for sensors with high safety requirements (for example, data used for autonomous driving).
  • the on-vehicle control device provided in each zone of the vehicle can perform both communication with the sensor and power control of the sensor, so power saving for the sensor can be achieved with a single on-vehicle control device. Therefore, there is no need for wasteful communication design such as transmitting communication with sensors to a central control device. Therefore, the design for power saving of the sensor can be completed by one vendor of the vehicle-mounted control device and does not involve the vendor of the central control device, etc., so that the design of the vehicle-mounted control device is facilitated.
  • FIG. 1 is a circuit block diagram showing an on-vehicle control device (zone ECU) of Example 1.
  • FIG. 3 is a circuit block diagram showing an on-vehicle control device (zone ECU) according to a second embodiment.
  • FIG. 3 is a circuit block diagram showing an in-vehicle control device (zone ECU) according to a third embodiment.
  • FIG. 3 is a circuit block diagram showing an in-vehicle control device (zone ECU) according to a fourth embodiment.
  • FIG. 7 is a circuit block diagram showing an in-vehicle control device (zone ECU) according to a fifth embodiment.
  • FIG. 1 is a circuit block diagram showing an in-vehicle control unit (zone ECU) installed in a general vehicle.
  • FIG. 2 is a block diagram showing the arrangement of an on-vehicle control unit (zone ECU) and sensors installed in a vehicle to which a zone architecture is applied.
  • FIG. 7 is a circuit block diagram showing an in-vehicle control device (zone ECU) according to a sixth embodiment. Table data showing an example of the relationship between vehicle status and power supply voltage.
  • 5 is a flowchart executed by the on-vehicle control device (zone ECU) of the first embodiment.
  • the circuit block diagram shown in FIG. 6 shows a vehicle control device (hereinafter, the vehicle control device will be appropriately referred to as ECU) mounted on a general vehicle.
  • ECU vehicle control device
  • power supply management and communication management for various actuators brake control ECU 602, headlight control unit 603, air conditioner control unit 604, automatic driving ECU 605) including sensors (LiDAR 607, Radar 608, Camera 609) are handled by separate ECUs.
  • the power control ECU 601 performs power control of each ECU, and for example, the power control ECU 601 receives power from the battery 108 and transmits the power to each ECU via a DCDC converter (power supply circuit 107).
  • communication control between each ECU is performed by a central gateway ECU 610 that is different from the power control ECU 601.
  • the central gateway ECU 610 transmits and receives data between each ECU connected via a communication line.
  • the vehicle architecture of this embodiment will be described using a block diagram showing the arrangement of the ECU and sensors mounted on a vehicle to which the zone architecture is applied as shown in FIG.
  • the number of ECUs and harnesses has increased, so the increase in the number of parts has become a problem.
  • the software is scattered across individual ECUs, it is difficult to update the software via OTA. Therefore, we reduced the number of ECUs by integrating the software into the central ECU 101, and by arranging zone ECUs 109 for each zone such as front right and front left, and using them as hubs for power control and communication control, we reduced the number of harnesses. zone architecture is becoming mainstream.
  • a feature of the zone ECU 109 in the zone architecture is that it serves as a hub for both power control and communication control.
  • power lines and communication lines were bundled for each function as shown in Figure 6, but in the zone architecture shown in Figure 7, communication lines and power lines are wired for each zone, and the zone ECU 109, actuator 701, and sensor 702 are connected. Connect. Thereby, the number of harnesses can be reduced and costs can be reduced.
  • the present embodiment is based on a vehicle to which the zone ECU 109 in such a zone architecture is applied.
  • FIG. 1 is a circuit block diagram showing an on-vehicle control device according to a first embodiment.
  • the in-vehicle control device of the first embodiment is a zone ECU 109 provided in each zone of the vehicle, and is capable of communicating with a sensor 105 provided in the zone and controlling the voltage applied to the sensor 105.
  • the zone ECU 109 which is an example of the in-vehicle control device of the first embodiment, includes a communication circuit 104 for performing routing, a power supply circuit 107 that supplies power to a plurality of sensors 105 connected to the zone ECU 109, and a power supply circuit 107 that supplies power to the sensors 105.
  • the sensor 105 includes a voltage control circuit 102 that controls the sensor 105, and a diagnostic circuit 103 that determines whether the sensor 105 is operating normally.
  • the power supply circuit 107 functions as a power supply unit that applies voltage to the sensor 105 via the power line 106.
  • the power supply circuit 107 relays power supply to the sensor 105 from a battery 108 mounted on the vehicle.
  • the voltage applied to sensor 105 is a DC voltage.
  • the voltage control circuit 102 functions as a voltage control means for controlling the voltage applied to the sensor 105 from the power supply circuit 107.
  • the communication circuit 104 is communicably connected to a sensor 105 mounted on the vehicle and a central ECU 101 via a communication line 110.
  • the central ECU 101 is an integrated in-vehicle control device that manages vehicle conditions, software, and the like.
  • the communication circuit 104 is, for example, an Ether switch.
  • the power supply circuit 107 is connected to the sensor 105 via a power line 106. Sensor data including image data captured by a camera, LiDAR point cloud data, sensed peripheral object information, etc. is transmitted to the central ECU 101 and the automatic driving ECU via the zone ECU 109. Further, the power supply circuit 107 is connected to a battery 108 mounted on the vehicle via a power line 106. The power necessary for the sensor 105 is supplied to the sensor 105 via a power supply circuit 107 (for example, a DC/DC converter) or a regulator.
  • a power supply circuit 107 for example, a DC/DC converter
  • the communication circuit 104 of the first embodiment functions as a communication means that receives sensor information indicating the state of the sensor 105 from the sensor 105 and vehicle information indicating the state of the vehicle from the central ECU 101.
  • the diagnostic circuit 103 then functions as a changing unit that changes the voltage applied to the sensor 105 based on the sensor information received by the communication circuit 104.
  • the voltage control circuit 102 executes control so that the voltage changed by the diagnostic circuit 103 is applied to the sensor 105.
  • the voltage control circuit 102 changes the settings of the power supply circuit 107 in order to change the output voltage output from the power supply circuit 107, or changes the input voltage input to the sensor 105.
  • the settings of the regulator of the sensor 105 may be changed.
  • the voltage applied to the sensor 105 is changed to the voltage applied to the sensor 105 when the sensor 105 is set to the operating state.
  • the voltage is changed to a voltage (first voltage) smaller than the voltage applied to the sensor 105.
  • This voltage (first voltage) is, for example, the lower limit value of the operating voltage range necessary to operate the sensor 105.
  • the zone ECU 109 receives vehicle information indicating the state of the vehicle from the central ECU 101 (for example, a running state indicating that the vehicle is running, or an idling state indicating that the vehicle is idling).
  • vehicle information indicating the state of the vehicle from the central ECU 101 (for example, a running state indicating that the vehicle is running, or an idling state indicating that the vehicle is idling).
  • sensor information indicating the state of the sensor 105 for example, beacon information that is periodically output when the sensor 105 is operating normally
  • the diagnostic circuit 103 analyzes the sensor information received from the watchdog timer 111 and diagnoses the state of the sensor 105.
  • the diagnostic circuit 103 confirms the normal operation of the sensor 105 based on the sensor information, and when it is determined that the vehicle is in a state where the voltage should be reduced in order to reduce the power consumption, the diagnostic circuit 103 causes the voltage control circuit 102 to reduce the power consumption of the sensor 105. instruct the transformation. Upon receiving the instruction, the voltage control circuit 102 adjusts the output voltage of the DCDC converter (power supply circuit 107) so that the voltage applied to the sensor 105 decreases. For example, if the vehicle information indicates an idle stop state and there is no need to send sensor data, but the sensor 105 cannot be started in time if the power is turned off, the lower limit of the operating voltage range required to operate the sensor 105 may be Apply voltage.
  • the voltage of the sensor 105 may be set to 0V to reduce power consumption to near zero.
  • the diagnostic circuit 103 confirms the normal operation of the sensor 105 and instructs the voltage control circuit 102 to increase the voltage of the sensor 105.
  • the voltage control circuit 102 adjusts the output voltage of the DCDC converter (power supply circuit 107) so that the voltage applied to the sensor 105 becomes a voltage for normal operation.
  • FIG. 9 is table data showing an example of the relationship between the vehicle state and the power supply voltage.
  • table data for determining the voltage applied to the sensor 105 will be explained using FIG. 9.
  • the table data is data in which the vehicle state, the outside temperature, and the power supply voltage supplied to each sensor 105 (sensors A to C in FIG. 9) are associated with each other. For example, if the outside temperature is -30° C. to 35° C. and the vehicle is in an idle stop state, 0.9 V is applied to sensors A to C.
  • the diagnostic circuit 103 determines the power supply voltage to be applied to the sensors A to C based on the outside temperature and vehicle information obtained from the central ECU 101.
  • the power consumption of unused sensors is reduced to reduce power consumption. If there is time to restart, it is also possible to lower the voltage to 0V. Further, when the outside air temperature is high, lowering the voltage may cause the sensor to not operate, so the sensor may be set to a higher voltage to compensate for its operation.
  • the power supply voltage setting may be changed depending on the vehicle speed and remaining battery level.
  • FIG. 10 is a flowchart executed by the on-vehicle control device (zone ECU 109) of the first embodiment.
  • the zone ECU 109 includes a processor such as a microcomputer, and a memory that stores program codes executed by the processor. Each step of the flowchart of FIG. 10 is executed by the processor of the zone ECU 109 executing the sensor voltage control program.
  • the zone ECU 109 executes the flowchart in FIG. 10 at predetermined time intervals.
  • the zone ECU 109 acquires vehicle information from the central ECU 101 that manages the state of the vehicle (step S101).
  • the acquired vehicle information includes, for example, an idle stop state, a general road driving state, an expressway driving state, a reverse driving state, a stopped state, and the like.
  • the zone ECU 109 acquires the outside air temperature from the central ECU 101 that manages the outside air temperature (step S102).
  • the zone ECU 109 refers to the table data 900 (see, for example, FIG. 9) (step S103).
  • the zone ECU 109 determines the voltage value to be applied to the sensor 105 from the table data 900 based on the vehicle state and outside temperature acquired in steps S101 and S102 (step S104). Zone ECU 109 executes control so that the voltage value determined in step S104 is applied to sensor 105. Specifically, the voltage control circuit 102 of the zone ECU 109 sets the output voltage of the power supply circuit 107, and the power supply circuit 107 applies the set output voltage to the sensor 105. Here, it is assumed that the regulator of the sensor 105 does not adjust the voltage applied to the sensor 105.
  • the zone ECU 109 acquires the sensor state from the sensor 105 (step S105).
  • the state of the sensor to be acquired is, for example, a normal state or an abnormal state. This allows the zone ECU 109 to grasp the state of the sensor.
  • the zone ECU 109 adjusts the voltage applied to the sensor 105 while checking the state of the sensor acquired in step S105 (step S106).
  • the power saving of the sensor 105 can be realized by one zone ECU 109, so there is no need for wasteful communication design such as transmitting communication with the sensor 105 to the central ECU 101. Therefore, the design for power saving of the sensor 105 is completed by one vendor of the zone ECU 109, and does not involve the vendor of the central ECU 101, etc., so that the design of the zone ECU 109 is facilitated. Furthermore, since there is no need to send the signal from the watchdog timer 111 to the central ECU 101, the communication load and CPU load on the central ECU 101 do not increase.
  • the voltage control circuit 102 can adjust the output voltage of the power supply circuit 107 by instructing the power supply circuit 107. Since the adjusted output voltage is applied to the sensor 105, the power consumption of the sensor 105 can be reduced.
  • the vehicle information indicates an idle stop state or a stopped state
  • the voltage applied to the sensor 105 can be changed to a voltage lower than the voltage applied to the sensor 105 when the sensor 105 is put into operation.
  • power consumption of the sensor 105 can be reduced when the sensor 105 is in a non-operating state or an idle state.
  • the sensor 105 can be operated while maintaining the sensor 105 operation. 105 can be reduced in power consumption.
  • the diagnostic circuit 103 can easily grasp the state of the sensor 105 by using beacon information as sensor information.
  • FIG. 2 is a circuit block diagram showing an on-vehicle control device according to a second embodiment.
  • two sensors of the same type are connected to the zone ECU 109.
  • One is a normal sensor 201 that is used during normal times, and the other is a backup sensor 202 that is used when there is an abnormality in the normal sensor 201.
  • sensors for automatic driving if there is an abnormality in the normal sensor 201, it is necessary to seamlessly switch to the backup sensor 202, so normally two sensors need to be operated at the same time, which wastes power. become.
  • the zone ECU 109 of the second embodiment reduces the power supplied to the backup sensor 202 during normal times, thereby reducing power consumption while keeping the sensor 202 ready for immediate operation in an emergency. If there is an abnormality in the normal sensor 201, power supply to the normal sensor 201 with the abnormality is stopped, and instead, the voltage of the backup sensor 202 is boosted to a value for normal operation.
  • the zone ECU 109 of the second embodiment can communicate with the backup sensor 202 that is used when the normal sensor 201 fails, and can control the voltage applied to the backup sensor 202 .
  • the voltage applied to the backup sensor 202 is changed to the normal state sensor 201.
  • the voltage applied to 201 is changed to a smaller voltage (second voltage).
  • the second voltage is the lower limit value of the operating voltage range necessary to operate the backup sensor 202.
  • the diagnostic circuit 103 determines that the state of the normal sensor 201 is abnormal based on the sensor information received from the normal sensor 201, the diagnostic circuit 103 changes the voltage applied to the backup sensor 202 to The voltage is changed to a third voltage higher than the second voltage.
  • the backup sensor 202 can be operated seamlessly. Further, at this time, by stopping the power supply to the normal sensor 201 in which the abnormality has occurred, power consumption of the normal sensor 201 can be reduced.
  • FIG. 3 is a circuit block diagram showing an on-vehicle control device according to a third embodiment.
  • the zone ECU 109 of the third embodiment includes a reset circuit 301 (resetting means) that resets the power supply circuit 107 and the sensor 105.
  • the diagnostic circuit 103 determines that the sensor 105 is abnormal based on the sensor information from the watchdog timer 111, it transmits the information to the central ECU 101 or the automatic driving ECU, and also transmits a reset instruction to the reset circuit 301. .
  • the reset circuit 301 Upon receiving the reset instruction, the reset circuit 301 resets the sensor 105 and the power supply circuit 107, and restarts the sensor 105 and the power supply circuit 107. Note that the reset circuit 301 may reset a plurality of power system sensors 105 including the sensor 105 in which an abnormality has occurred, or may reset only the sensor 105 in which an abnormality has occurred.
  • FIG. 4 is a circuit block diagram showing an on-vehicle control device (zone ECU) according to the fourth embodiment.
  • the AI 401 performs learning based on the vehicle information and outside temperature acquired from the central ECU 101, the voltage supplied to the sensor 105 by the power supply circuit 107, and the sensor information acquired from the sensor 105. For example, when the vehicle information is in the idle stop state, the outside temperature is -30°C to 35°C, and the voltage applied to the sensor 105 by the power supply circuit 107 is 0.9V, the sensor state obtained from the sensor 105 indicates that it is operating normally. If there is, these vehicle information, outside temperature, and applied voltage become correct data.
  • the AI 401 performs learning using teacher data including correct data and incorrect data as described above.
  • the learned model (AI401) then applies the smallest voltage value to the power supply circuit 107 from among the supply voltages that allow the sensor 105 to operate normally, based on the vehicle information and outside temperature acquired from the central ECU 101. Set. In this way, the AI 401 can set the voltage to minimize the power consumption of the sensor 105 based on the vehicle condition and outside temperature.
  • the trained AI 401 can set the voltage to minimize the power consumption of the sensor 105 based on the vehicle information and outside temperature acquired from the central ECU 101. Thereby, it is possible to reduce the power consumption of the sensor 105 while confirming the normal state of the sensor 105 using the optimal voltage setting determined by machine learning.
  • FIG. 5 is a circuit block diagram showing an on-vehicle control device according to a fifth embodiment.
  • the zone ECU 109 of the fifth embodiment is communicably connected to a TCU 501 mounted on a vehicle via a central ECU 101.
  • the TCU 501 obtains updated software and table data 900 via OTA through communication with a communication device at a center outside the vehicle.
  • the acquired table data 900 is transmitted to the zone ECU 109 via the central ECU 101.
  • Table data 900 is stored in storage 502 of zone ECU 109.
  • Diagnostic circuit 103 refers to table data 900 stored in storage 502 and determines the voltage to be applied to sensor 105.
  • table data 900 can be acquired and updated over the air, information for determining the voltage of sensor 105 can be updated as appropriate in accordance with environmental changes.
  • FIG. 8 is a circuit block diagram showing the in-vehicle control device (zone ECU 109) of the sixth embodiment.
  • the zone ECU 109 of the sixth embodiment includes a voltage control circuit 102 that performs register settings for the sensor 105.
  • the voltage control circuit 102 performs register settings of the sensor 105 via the communication circuit 104.
  • the output voltage of the regulator circuit 801 of the sensor 105 is changed by register setting.
  • the power supply voltage supplied from the power supply circuit 107 is adjusted by the regulator circuit 801 and supplied to the sensor 105.
  • the present disclosure is not limited to the embodiments described above, and includes various modifications.
  • the embodiments described above are described in detail to explain the present disclosure in an easy-to-understand manner, and the embodiments are not necessarily limited to those having all the configurations described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Selective Calling Equipment (AREA)

Abstract

The present invention facilitates saving of power on a sensor 105 while checking the condition of the sensor 105 in each of zone ECUs 109 that are provided in zone units in a vehicle and that are provided to respective zones. A zone ECU 109 is an ECU provided in each zone unit of a vehicle, is capable of communicating with a sensor 105 provided to a zone, and is also capable of controlling the voltage to be applied to the sensor 105. The zone ECU comprises: a power supply circuit 107 that applies voltage to the sensor 105 via a power line 106; a voltage control circuit 102 that controls the voltage to be applied to the sensor 105 from the power supply circuit 107; a communication circuit 104 that receives, from the sensor 105, sensor information indicating the condition of the sensor; and a diagnostic circuit 103 that changes the voltage to be applied to the sensor 105 in accordance with the sensor 105 information received by the communication circuit 104. The voltage control circuit 102 executes control such that the voltage changed by the diagnostic circuit 103 is to be applied to the sensor 105.

Description

車載制御装置In-vehicle control device
 本開示は、車載制御装置に関し、車両に搭載されるセンサの省電力化を図る車載制御装置に関する。 The present disclosure relates to an on-vehicle control device, and more particularly, to an on-vehicle control device that reduces power consumption of sensors mounted on a vehicle.
 近年、自動運転レベル高度化に伴いセンサ性能が飛躍的に向上し、更に自動運転向けのセンサ数も増化の一途を辿っている。一方で、EV化の進展もあり、車載部品の消費電力はバッテリーによる走行距離に大きく影響を与えるため、センサの消費電力の増加も無視できない。 In recent years, sensor performance has improved dramatically as the level of autonomous driving has become more sophisticated, and the number of sensors for autonomous driving is also increasing. On the other hand, with the advancement of EVs, the power consumption of in-vehicle components has a significant impact on the distance traveled by batteries, so the increase in power consumption of sensors cannot be ignored.
 また、車両の電子化に伴い、ECU(Electronic Control Unit)やハーネス数が増加したため、部品点数の増加が問題となっている。更にソフトウェアが個々のECUに点在しているため、OTA(Over The Air)によるソフトの更新も困難である。そこで、ソフトウェアをセントラルECUに統合する事でECU数を削減し、右前方、左前方といった各場所にゾーンECUを配置して電源と通信のハブとすることにより、ハーネス数を削減するゾーンアーキテクチャ化も進展している(例えば、特許文献1)。 Additionally, with the electronicization of vehicles, the number of ECUs (Electronic Control Units) and harnesses has increased, resulting in an increase in the number of parts, which has become a problem. Furthermore, since the software is scattered across individual ECUs, it is difficult to update the software over the air (OTA). Therefore, by integrating the software into the central ECU, we reduced the number of ECUs, and by placing zone ECUs in each location, such as the front right and front left, and using them as power and communication hubs, we created a zone architecture that reduces the number of harnesses. (For example, Patent Document 1).
特開2021-020606号公報JP2021-020606A
 特許文献1には、ゾーンアーキテクチャの例が開示されている。各場所に配置されたゾーンECUが、中央制御装置と各センサやアクチュエータとの通信ハブ、及びバッテリーと各センサやアクチュエータとの電源ハブになっていることが開示されている。この特許文献1は、車両の使用シーン(例えば、中央制御装置のプログラムを更新するシーン、駐車中のシーンなど)に応じてセンサをON/OFFする機能にも言及している。 Patent Document 1 discloses an example of zone architecture. It is disclosed that the zone ECU placed at each location serves as a communication hub between the central control device and each sensor and actuator, and a power supply hub between the battery and each sensor and actuator. This Patent Document 1 also mentions a function of turning the sensor ON/OFF depending on the usage scene of the vehicle (for example, the scene where the program of the central control device is updated, the scene where the vehicle is parked, etc.).
 しかしながら、特許文献1では、車両の使用シーンに応じてセンサの電力制御を行うことが開示されているものの、センサの電力制御にセンサの状態が加味されていない。つまり、特許文献1では、例えばセンサの正常動作を確認しながらセンサの電力制御を行うことができない。 However, although Patent Document 1 discloses that the power of the sensor is controlled according to the usage scene of the vehicle, the state of the sensor is not taken into account in the power control of the sensor. In other words, in Patent Document 1, for example, it is not possible to control the power of the sensor while confirming the normal operation of the sensor.
 本開示は、車両のゾーン単位で設けられ且つゾーンに設けられるセンサとの通信及びセンサの電力制御が可能な車載制御装置において、センサの状態を確認しながら、センサの省電力化を図ることが可能な車載制御装置を提供することを目的とする。 The present disclosure provides an in-vehicle control device that is installed in each zone of a vehicle and is capable of communicating with sensors installed in each zone and controlling the power of the sensors. The purpose is to provide an in-vehicle control device that is possible.
 本開示の車載制御装置は、車両のゾーン単位で設けられる車載制御装置であって、ゾーンに設けられるセンサと通信可能且つセンサに印加する電圧を制御可能な車載制御装置であって、電源線を介してセンサに電圧を印加する電力供給手段と、電力供給手段からセンサに印加される電圧を制御する電圧制御手段と、センサからセンサの状態を示すセンサ情報を受信する通信手段と、通信手段によって受信されたセンサ情報に基づいて、センサに印加される電圧を変更する変更手段と、を備え、電圧制御手段は、変更手段によって変更された電圧がセンサに印加されるように制御を実行する。 An in-vehicle control device according to the present disclosure is an in-vehicle control device provided in each zone of a vehicle, which is capable of communicating with a sensor provided in the zone and controlling the voltage applied to the sensor, and which is capable of controlling a voltage applied to the sensor. a power supply means for applying a voltage to the sensor via the power supply means; a voltage control means for controlling the voltage applied to the sensor from the power supply means; a communication means for receiving sensor information indicating the state of the sensor from the sensor; A changing means changes the voltage applied to the sensor based on the received sensor information, and the voltage control means executes control so that the voltage changed by the changing means is applied to the sensor.
 本開示によれば、車両のゾーン単位で設けられ且つゾーンに設けられるセンサとの通信及びセンサの電力制御が可能な車載制御装置において、センサの状態を確認しながら、センサの省電力化を図ることができる。その結果、本開示の車載制御装置が搭載された車両の燃費が改善する。また、本開示の車載制御装置は、センサの正常動作を確認しながらセンサの電力を低減することができるため、本開示の車載制御装置を安全要求が高いセンサ(例えば自動運転に使用されるデータを取得するセンサ)に適用することができる。また、本開示では、車両のゾーン単位で設けられる車載制御装置がセンサとの通信及びセンサの電力制御の両方を行うことができるので、センサの省電力化を1つの車載制御装置で実現可能なため、センサとの通信を中央制御装置に送信する等の無駄な通信設計が必要ない。したがって、センサの省電力化のための設計が1つの車載制御装置のベンダで完結し、中央制御装置のベンダ等に跨らないため、車載制御装置の設計が容易になる。 According to the present disclosure, in an on-vehicle control device that is provided in each zone of a vehicle and is capable of communicating with sensors provided in each zone and controlling the power of the sensors, it is possible to reduce the power consumption of the sensors while checking the status of the sensors. be able to. As a result, the fuel efficiency of a vehicle equipped with the in-vehicle control device of the present disclosure is improved. In addition, since the in-vehicle control device of the present disclosure can reduce the power of the sensor while confirming the normal operation of the sensor, the in-vehicle control device of the present disclosure can be used for sensors with high safety requirements (for example, data used for autonomous driving). can be applied to sensors that acquire Furthermore, in the present disclosure, the on-vehicle control device provided in each zone of the vehicle can perform both communication with the sensor and power control of the sensor, so power saving for the sensor can be achieved with a single on-vehicle control device. Therefore, there is no need for wasteful communication design such as transmitting communication with sensors to a central control device. Therefore, the design for power saving of the sensor can be completed by one vendor of the vehicle-mounted control device and does not involve the vendor of the central control device, etc., so that the design of the vehicle-mounted control device is facilitated.
実施例1の車載制御装置(ゾーンECU)を示す回路ブロック図。1 is a circuit block diagram showing an on-vehicle control device (zone ECU) of Example 1. FIG. 実施例2の車載制御装置(ゾーンECU)を示す回路ブロック図。FIG. 3 is a circuit block diagram showing an on-vehicle control device (zone ECU) according to a second embodiment. 実施例3の車載制御装置(ゾーンECU)を示す回路ブロック図。FIG. 3 is a circuit block diagram showing an in-vehicle control device (zone ECU) according to a third embodiment. 実施例4の車載制御装置(ゾーンECU)を示す回路ブロック図。FIG. 3 is a circuit block diagram showing an in-vehicle control device (zone ECU) according to a fourth embodiment. 実施例5の車載制御装置(ゾーンECU)を示す回路ブロック図。FIG. 7 is a circuit block diagram showing an in-vehicle control device (zone ECU) according to a fifth embodiment. 一般的な車両に搭載される車載制御装置(ゾーンECU)を示す回路ブロック図。FIG. 1 is a circuit block diagram showing an in-vehicle control unit (zone ECU) installed in a general vehicle. ゾーンアーキテクチャを適用した車両に搭載される車載制御装置(ゾーンECU)、及びセンサの配置構成を示すブロック図。FIG. 2 is a block diagram showing the arrangement of an on-vehicle control unit (zone ECU) and sensors installed in a vehicle to which a zone architecture is applied. 実施例6の車載制御装置(ゾーンECU)を示す回路ブロック図。FIG. 7 is a circuit block diagram showing an in-vehicle control device (zone ECU) according to a sixth embodiment. 車両状態と給電電圧との関係の例を示すテーブルデータ。Table data showing an example of the relationship between vehicle status and power supply voltage. 実施例1の車載制御装置(ゾーンECU)が実行するフローチャート。5 is a flowchart executed by the on-vehicle control device (zone ECU) of the first embodiment.
 実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。
 以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、重複する説明は省略することがある。
 同一あるいは同様な機能を有する要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、複数の要素を区別する必要がない場合には、添字を省略して説明する場合がある。
 本明細書等における「第1」、「第2」、「第3」などの表記は、構成要素を識別するために付するものであり、必ずしも、数、順序、もしくはその内容を限定するものではない。また、構成要素の識別のための番号は文脈毎に用いられ、一つの文脈で用いた番号が、他の文脈で必ずしも同一の構成を示すとは限らない。また、ある番号で識別された構成要素が、他の番号で識別された構成要素の機能を兼ねることを妨げるものではない。
 図面等において示す各構成の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面等に開示された位置、大きさ、形状、範囲などに限定されない。
 本明細書で引用した刊行物、特許および特許出願は、そのまま本明細書の説明の一部を構成する。
 本明細書において単数形で表される構成要素は、特段文脈で明らかに示されない限り、複数形を含むものとする。
Embodiments will be described in detail using the drawings. However, the present invention should not be construed as being limited to the contents described in the embodiments shown below. Those skilled in the art will readily understand that the specific configuration can be changed without departing from the spirit or spirit of the present invention.
In the configuration of the invention described below, the same parts or parts having similar functions may be designated by the same reference numerals in different drawings, and overlapping explanations may be omitted.
When there are multiple elements having the same or similar functions, the same reference numerals may be given different subscripts for explanation. However, if there is no need to distinguish between multiple elements, the subscript may be omitted in the explanation.
In this specification, etc., expressions such as "first,""second," and "third" are used to identify constituent elements, and do not necessarily limit the number, order, or content thereof. isn't it. Further, numbers for identifying components are used for each context, and a number used in one context does not necessarily indicate the same configuration in another context. Furthermore, this does not preclude a component identified by a certain number from serving the function of a component identified by another number.
The position, size, shape, range, etc. of each component shown in the drawings etc. may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range, etc. disclosed in the drawings or the like.
The publications, patents, and patent applications cited herein are incorporated in their entirety.
Elements expressed in the singular herein shall include the plural unless the context clearly dictates otherwise.
 本実施例を説明する前に、図6で示す一般的な車両に搭載される車両制御装置(以下、車両制御装置を適宜ECUと呼ぶ)を示す回路ブロック図により、現状のECUの構成ではセンサの省電力化が困難であることを説明する。現状は、センサ(LiDAR607、Rader608、Camera609)を含む種々のアクチュエータ(ブレーキ制御ECU602、ヘッドライト制御部603、エアコン制御部604、自動運転ECU605)の電源の管理と通信の管理とは、別々のECUで実施されている。つまり、電力制御ECU601が各ECUの電力制御を行い、例えば、電力制御ECU601は、バッテリー108から電力を受けて、DCDCコンバーター(電源供給回路107)を介して各ECUへ送電する。一方で、各ECU間の通信制御は、電力制御ECU601とは異なるセントラルゲートウェイECU610によって実行される。例えば、セントラルゲートウェイECU610は、通信線で接続される各ECU間のデータを送受信する。 Before explaining this embodiment, the circuit block diagram shown in FIG. 6 shows a vehicle control device (hereinafter, the vehicle control device will be appropriately referred to as ECU) mounted on a general vehicle. Explain that it is difficult to save power. Currently, power supply management and communication management for various actuators (brake control ECU 602, headlight control unit 603, air conditioner control unit 604, automatic driving ECU 605) including sensors (LiDAR 607, Radar 608, Camera 609) are handled by separate ECUs. It is being carried out in That is, the power control ECU 601 performs power control of each ECU, and for example, the power control ECU 601 receives power from the battery 108 and transmits the power to each ECU via a DCDC converter (power supply circuit 107). On the other hand, communication control between each ECU is performed by a central gateway ECU 610 that is different from the power control ECU 601. For example, the central gateway ECU 610 transmits and receives data between each ECU connected via a communication line.
 現状でも、車両状態に応じて負荷の電力を調整する例はある。例えば緊急ブレーキが発動した場合、大きな電力を瞬時的に消費するため、ヘッドライトやエアコンへの給電を一時的に瞬断、もしくは電圧を低減することで省電力化を図り、エンストを防ぐ処理が行われている。しかし、このような方法は、安全要求レベルが低く、アナログ的な動作をするエアコンやヘッドライトに対しては有効である。しかし、安全要求レベルが高く、電源電圧を下げた場合にある閾値を超えると動作しなくなるようなデジタル回路を含む自動運転向けのセンサに対しては適用できない。場合によっては、再起動までに時間を要して、自動運転や運転補助に影響が出る可能性が高いためである。 Even at present, there are examples of adjusting the load power depending on the vehicle condition. For example, when emergency braking is activated, a large amount of power is consumed instantaneously, so the power supply to the headlights and air conditioner is temporarily cut off or the voltage is reduced to save power and prevent the engine from stalling. It is being done. However, such a method is effective for air conditioners and headlights that have low safety requirements and operate in an analog manner. However, it cannot be applied to sensors for autonomous driving that have high safety requirements and include digital circuits that will stop operating if a certain threshold is exceeded when the power supply voltage is lowered. This is because in some cases, it may take some time to restart, which is likely to affect automatic driving and driving assistance.
 そのため、自動運転向けのセンサの電力を低減するために給電電圧を制御する場合、センサの正常動作を確認しながら電圧を変える必要がある。しかし、現状の構成では、センサと通信してセンサの状態を把握することができるのは、自動運転ECU605であり、センサの電圧を制御することができるのは、電源制御ECU601である。電源制御ECU601がセンサの状態を把握しながらセンサの電圧を調整しようとすると、セントラルゲートウェイECU610を介してセンサの状態を取得する必要がある。そのため、全体の制御を行うために少なくとも3つのECU(電源制御ECU601、セントラルゲートウェイECU610、自動運転ECU605)を設計及び検証する必要があり、システム設計の難易度が高い。ECU間でセンサのデータを送受信する必要があり、通信帯域を逼迫するし、伝送遅延も気にする必要がある。このため、現状の構成では、自動運転向けのセンサを省電力化することは困難である。 Therefore, when controlling the power supply voltage to reduce the power of sensors for autonomous driving, it is necessary to change the voltage while checking the normal operation of the sensor. However, in the current configuration, it is the automatic operation ECU 605 that can communicate with the sensor and grasp the sensor state, and the power supply control ECU 601 can control the voltage of the sensor. If the power supply control ECU 601 tries to adjust the voltage of the sensor while grasping the sensor state, it is necessary to acquire the sensor state via the central gateway ECU 610. Therefore, it is necessary to design and verify at least three ECUs (power control ECU 601, central gateway ECU 610, and automatic operation ECU 605) in order to perform overall control, making system design highly difficult. It is necessary to send and receive sensor data between ECUs, which puts a strain on the communication band and requires consideration of transmission delays. Therefore, with the current configuration, it is difficult to reduce the power consumption of sensors for automatic driving.
 次に、図7に示すゾーンアーキテクチャを適用した車両に搭載されるECU、及びセンサの配置構成を示すブロック図を用いて、本実施の形態の車両アーキテクチャについて説明する。近年、車両の電子化に伴い、ECUやハーネス数が増加したため、部品点数の増加が問題となっている。更にソフトウェアが個々のECUに点在しているため、OTAによるソフト更新も困難である。そこで、ソフトウェアをセントラルECU101に統合することでECU数を削減し、右前方、左前方といった各ゾーン単位でゾーンECU109を配置して、電力制御と通信制御のハブとすることにより、ハーネス数を削減するゾーンアーキテクチャが主流になりつつある。ゾーンアーキテクチャにおけるゾーンECU109の特徴は、電力制御と通信制御との両方のハブになることである。従来では、図6のように機能毎に電源線や通信線を束ねていたが、図7のゾーンアーキテクチャでは、ゾーン単位で通信線や電源線を配線し、ゾーンECU109とアクチュエータ701やセンサ702とを接続する。これにより、ハーネスの本数を低減し、低コスト化が実現できる。本実施の形態は、このようなゾーンアーキテクチャにおけるゾーンECU109を適用した車両を前提としている。 Next, the vehicle architecture of this embodiment will be described using a block diagram showing the arrangement of the ECU and sensors mounted on a vehicle to which the zone architecture is applied as shown in FIG. In recent years, with the electronicization of vehicles, the number of ECUs and harnesses has increased, so the increase in the number of parts has become a problem. Furthermore, since the software is scattered across individual ECUs, it is difficult to update the software via OTA. Therefore, we reduced the number of ECUs by integrating the software into the central ECU 101, and by arranging zone ECUs 109 for each zone such as front right and front left, and using them as hubs for power control and communication control, we reduced the number of harnesses. zone architecture is becoming mainstream. A feature of the zone ECU 109 in the zone architecture is that it serves as a hub for both power control and communication control. Conventionally, power lines and communication lines were bundled for each function as shown in Figure 6, but in the zone architecture shown in Figure 7, communication lines and power lines are wired for each zone, and the zone ECU 109, actuator 701, and sensor 702 are connected. Connect. Thereby, the number of harnesses can be reduced and costs can be reduced. The present embodiment is based on a vehicle to which the zone ECU 109 in such a zone architecture is applied.
<1.車載制御装置の構成>
 図1は、実施例1の車載制御装置を示す回路ブロック図である。実施例1の車載制御装置は、車両のゾーン単位で設けられるゾーンECU109であって、ゾーンに設けられるセンサ105と通信可能且つセンサ105に印加する電圧を制御可能なゾーンECU109である。実施例1の車載制御装置の一例であるゾーンECU109は、ルーティングを行うための通信回路104と、ゾーンECU109に接続される複数のセンサ105へ給電する電源供給回路107と、センサ105への給電電圧を制御する電圧制御回路102と、センサ105が正常動作しているかを判断する診断回路103と、を備えている。電源供給回路107は、電源線106を介してセンサ105に電圧を印加する電力供給手段として機能する。電源供給回路107は、車両に搭載されるバッテリー108からセンサ105への電源供給を中継する。センサ105に印加される電圧は、DC電圧である。また、電圧制御回路102は、電源供給回路107からセンサ105に印加される電圧を制御する電圧制御手段として機能する。
<1. Configuration of on-vehicle control device>
FIG. 1 is a circuit block diagram showing an on-vehicle control device according to a first embodiment. The in-vehicle control device of the first embodiment is a zone ECU 109 provided in each zone of the vehicle, and is capable of communicating with a sensor 105 provided in the zone and controlling the voltage applied to the sensor 105. The zone ECU 109, which is an example of the in-vehicle control device of the first embodiment, includes a communication circuit 104 for performing routing, a power supply circuit 107 that supplies power to a plurality of sensors 105 connected to the zone ECU 109, and a power supply circuit 107 that supplies power to the sensors 105. The sensor 105 includes a voltage control circuit 102 that controls the sensor 105, and a diagnostic circuit 103 that determines whether the sensor 105 is operating normally. The power supply circuit 107 functions as a power supply unit that applies voltage to the sensor 105 via the power line 106. The power supply circuit 107 relays power supply to the sensor 105 from a battery 108 mounted on the vehicle. The voltage applied to sensor 105 is a DC voltage. Further, the voltage control circuit 102 functions as a voltage control means for controlling the voltage applied to the sensor 105 from the power supply circuit 107.
 通信回路104は、車両に搭載されるセンサ105やセントラルECU101と通信線110を介して通信可能に接続される。なお、セントラルECU101は、車両の状態の管理やソフトウェアの管理などを行う統合車載制御装置である。通信回路104は、例えばEtherスイッチである。また、電源供給回路107は、センサ105と電源線106を介して接続される。カメラによって撮像された画像データ、LiDARの点群データ、又はセンシングした周辺の物体情報等を含むセンサデータは、ゾーンECU109を介して、セントラルECU101や自動運転ECUへ送信される。また、電源供給回路107は、電源線106を介して車両に搭載されるバッテリー108と接続される。センサ105に必要な電力は、電源供給回路107(例えば、DCDCコンバーター)やレギュレータを介してセンサ105へ給電される。 The communication circuit 104 is communicably connected to a sensor 105 mounted on the vehicle and a central ECU 101 via a communication line 110. Note that the central ECU 101 is an integrated in-vehicle control device that manages vehicle conditions, software, and the like. The communication circuit 104 is, for example, an Ether switch. Further, the power supply circuit 107 is connected to the sensor 105 via a power line 106. Sensor data including image data captured by a camera, LiDAR point cloud data, sensed peripheral object information, etc. is transmitted to the central ECU 101 and the automatic driving ECU via the zone ECU 109. Further, the power supply circuit 107 is connected to a battery 108 mounted on the vehicle via a power line 106. The power necessary for the sensor 105 is supplied to the sensor 105 via a power supply circuit 107 (for example, a DC/DC converter) or a regulator.
 実施例1の通信回路104は、センサ105からセンサ105の状態を示すセンサ情報を受信したり、セントラルECU101から車両の状態を示す車両情報を受信したりする通信手段として機能する。そして、診断回路103は、通信回路104によって受信されたセンサ情報に基づいて、センサ105に印加される電圧を変更する変更手段として機能する。さらに、電圧制御回路102は、診断回路103によって変更された電圧がセンサ105に印加されるように制御を実行する。具体的には、電圧制御回路102は、電源供給回路107から出力される出力電圧を変更するために電源供給回路107の設定を変更したり、センサ105に入力される入力電圧を変更するためにセンサ105のレギュレータの設定を変更したりする。 The communication circuit 104 of the first embodiment functions as a communication means that receives sensor information indicating the state of the sensor 105 from the sensor 105 and vehicle information indicating the state of the vehicle from the central ECU 101. The diagnostic circuit 103 then functions as a changing unit that changes the voltage applied to the sensor 105 based on the sensor information received by the communication circuit 104. Furthermore, the voltage control circuit 102 executes control so that the voltage changed by the diagnostic circuit 103 is applied to the sensor 105. Specifically, the voltage control circuit 102 changes the settings of the power supply circuit 107 in order to change the output voltage output from the power supply circuit 107, or changes the input voltage input to the sensor 105. For example, the settings of the regulator of the sensor 105 may be changed.
 診断回路103は、車両情報に基づいてセンサ105の状態を非稼働状態又はアイドル状態にすることが可能であると判断する場合、センサ105に印加する電圧を、センサ105を稼働状態にする場合にセンサ105に印加する電圧より小さい電圧(第1電圧)に変更する。この電圧(第1電圧)は、例えばセンサ105を動作させるために必要な動作電圧範囲の下限値である。 When the diagnostic circuit 103 determines that the state of the sensor 105 can be set to the non-operating state or the idle state based on the vehicle information, the voltage applied to the sensor 105 is changed to the voltage applied to the sensor 105 when the sensor 105 is set to the operating state. The voltage is changed to a voltage (first voltage) smaller than the voltage applied to the sensor 105. This voltage (first voltage) is, for example, the lower limit value of the operating voltage range necessary to operate the sensor 105.
<2.車載制御装置(ゾーンECU109)の動作>
 ゾーンECU109は、セントラルECU101から車両の状態を示す車両情報(例えば、走行中を示す走行状態、又はアイドル中を示すアイドル状態)を受信する。一方で、ゾーンECU109は、センサ105のウォッチドッグタイマー111からセンサ105の状態を示すセンサ情報(例えば、センサ105が正常に動作しているときに定期的に出力するビーコン情報)を受信する。診断回路103は、ウォッチドッグタイマー111から受信したセンサ情報を解析し、センサ105の状態を診断する。診断回路103は、センサ情報に基づいてセンサ105の正常動作を確認し、且つ低電力化のために電圧を低減すべき車両状態であると判断した場合、電圧制御回路102にセンサ105の低電力化を指示する。指示を受けた電圧制御回路102は、センサ105に印加される電圧が低下するように、DCDCコンバーター(電源供給回路107)の出力電圧を調整する。例えば、車両情報がアイドルストップ状態を示し、センサデータを送信する必要は無いがセンサ105の電源を落とすと起動が間に合わない場合は、センサ105を動作させるために必要な動作電圧範囲の下限値の電圧を印可する。センサ105の電源を落としても、センサデータを送信するまでに十分な時間がある場合は、消費電力をゼロ近くにするためにセンサ105の電圧を0Vに設定してもよい。車両情報がアイドリングストップ状態から走行状態に遷移した場合は、診断回路103は、センサ105の正常動作を確認し、電圧制御回路102にセンサ105の昇圧を指示する。指示を受けた電圧制御回路102は、センサ105に印加される電圧が通常動作用の電圧になるように、DCDCコンバーター(電源供給回路107)の出力電圧を調整する。
<2. Operation of the onboard control device (zone ECU 109)>
The zone ECU 109 receives vehicle information indicating the state of the vehicle from the central ECU 101 (for example, a running state indicating that the vehicle is running, or an idling state indicating that the vehicle is idling). On the other hand, the zone ECU 109 receives sensor information indicating the state of the sensor 105 (for example, beacon information that is periodically output when the sensor 105 is operating normally) from the watchdog timer 111 of the sensor 105. The diagnostic circuit 103 analyzes the sensor information received from the watchdog timer 111 and diagnoses the state of the sensor 105. The diagnostic circuit 103 confirms the normal operation of the sensor 105 based on the sensor information, and when it is determined that the vehicle is in a state where the voltage should be reduced in order to reduce the power consumption, the diagnostic circuit 103 causes the voltage control circuit 102 to reduce the power consumption of the sensor 105. instruct the transformation. Upon receiving the instruction, the voltage control circuit 102 adjusts the output voltage of the DCDC converter (power supply circuit 107) so that the voltage applied to the sensor 105 decreases. For example, if the vehicle information indicates an idle stop state and there is no need to send sensor data, but the sensor 105 cannot be started in time if the power is turned off, the lower limit of the operating voltage range required to operate the sensor 105 may be Apply voltage. Even if the power to the sensor 105 is turned off, if there is sufficient time until the sensor data is transmitted, the voltage of the sensor 105 may be set to 0V to reduce power consumption to near zero. When the vehicle information changes from the idling stop state to the running state, the diagnostic circuit 103 confirms the normal operation of the sensor 105 and instructs the voltage control circuit 102 to increase the voltage of the sensor 105. Upon receiving the instruction, the voltage control circuit 102 adjusts the output voltage of the DCDC converter (power supply circuit 107) so that the voltage applied to the sensor 105 becomes a voltage for normal operation.
<3.テーブルデータ>
 図9は、車両状態と給電電圧との関係の例を示すテーブルデータである。ここで、図9を用いて、センサ105に印加される電圧を決定するためのテーブルデータについて説明する。テーブルデータは、車両状態、外気温度、及び各センサ105(図9では、センサA~C)に供給する給電電圧が対応付けられたデータである。例えば、外気温度が-30℃~35℃において、車両状態がアイドルストップ状態であれば、センサA~Cには0.9Vが印加される。診断回路103は、セントラルECU101から取得した外気温度及び車両情報に基づいて、センサA~Cに印加する給電電圧を決定する。
<3. Table data>
FIG. 9 is table data showing an example of the relationship between the vehicle state and the power supply voltage. Here, table data for determining the voltage applied to the sensor 105 will be explained using FIG. 9. The table data is data in which the vehicle state, the outside temperature, and the power supply voltage supplied to each sensor 105 (sensors A to C in FIG. 9) are associated with each other. For example, if the outside temperature is -30° C. to 35° C. and the vehicle is in an idle stop state, 0.9 V is applied to sensors A to C. The diagnostic circuit 103 determines the power supply voltage to be applied to the sensors A to C based on the outside temperature and vehicle information obtained from the central ECU 101.
 アイドルストップ中、一般道走行中、高速道路走行中などの状況下では、使用するセンサが異なるため、使用しないセンサに関しては電源を低減して低電力化する。再起動しても時間的に余裕がある場合は、0Vに落としてしまうことも可能である。また、外気温度が高温の時には、低電圧化すると動作しなくなる場合があるため、センサの動作補償のために高い電圧に設定してもよい。車速やバッテリー残量に応じて、給電電圧の設定を変えても良い。 Since different sensors are used under conditions such as idling stop, driving on public roads, and driving on expressways, the power consumption of unused sensors is reduced to reduce power consumption. If there is time to restart, it is also possible to lower the voltage to 0V. Further, when the outside air temperature is high, lowering the voltage may cause the sensor to not operate, so the sensor may be set to a higher voltage to compensate for its operation. The power supply voltage setting may be changed depending on the vehicle speed and remaining battery level.
<4.車載制御装置(ゾーンECU109)の動作フロー>
 図10は、実施例1の車載制御装置(ゾーンECU109)が実行するフローチャートである。ゾーンECU109は、マイコンなどをプロセッサ、及びプロセッサが実行するプログラムコードを記憶するメモリなどを有する。ゾーンECU109のプロセッサがセンサの電圧制御プログラムを実行することにより、図10のフローチャートの各ステップが実行される。
<4. Operation flow of on-vehicle control device (zone ECU 109)>
FIG. 10 is a flowchart executed by the on-vehicle control device (zone ECU 109) of the first embodiment. The zone ECU 109 includes a processor such as a microcomputer, and a memory that stores program codes executed by the processor. Each step of the flowchart of FIG. 10 is executed by the processor of the zone ECU 109 executing the sensor voltage control program.
 ゾーンECU109は、図10のフローチャートを所定の時間間隔で実行する。まず、ゾーンECU109は、車両の状態を管理するセントラルECU101から車両情報を取得する(ステップS101)。取得する車両情報は、例えばアイドルストップ状態、一般道走行状態、高速道路走行状態、バック走行状態、停止状態などである。 The zone ECU 109 executes the flowchart in FIG. 10 at predetermined time intervals. First, the zone ECU 109 acquires vehicle information from the central ECU 101 that manages the state of the vehicle (step S101). The acquired vehicle information includes, for example, an idle stop state, a general road driving state, an expressway driving state, a reverse driving state, a stopped state, and the like.
 そして、ゾーンECU109は、外気温度を管理するセントラルECU101から外気温度を取得する(ステップS102)。 Then, the zone ECU 109 acquires the outside air temperature from the central ECU 101 that manages the outside air temperature (step S102).
 次に、ゾーンECU109は、テーブルデータ900(例えば、図9参照)を参照する(ステップS103)。 Next, the zone ECU 109 refers to the table data 900 (see, for example, FIG. 9) (step S103).
 ゾーンECU109は、ステップS101及びS102で取得した車両状態及び外気温度に基づいて、テーブルデータ900からセンサ105に印加する電圧値を決定する(ステップS104)。ゾーンECU109は、ステップS104で決定した電圧値がセンサ105に印加されるよう制御を実行する。具体的には、ゾーンECU109の電圧制御回路102が電源供給回路107の出力電圧を設定し、電源供給回路107が設定された出力電圧をセンサ105に印加する。ここでは、センサ105のレギュレータがセンサ105に印加される電圧を調整しないこととする。 The zone ECU 109 determines the voltage value to be applied to the sensor 105 from the table data 900 based on the vehicle state and outside temperature acquired in steps S101 and S102 (step S104). Zone ECU 109 executes control so that the voltage value determined in step S104 is applied to sensor 105. Specifically, the voltage control circuit 102 of the zone ECU 109 sets the output voltage of the power supply circuit 107, and the power supply circuit 107 applies the set output voltage to the sensor 105. Here, it is assumed that the regulator of the sensor 105 does not adjust the voltage applied to the sensor 105.
 また、ゾーンECU109は、センサ105からセンサの状態を取得する(ステップS105)。取得するセンサの状態は、例えば正常状態、異常状態などである。これにより、ゾーンECU109は、センサの状態を把握することが可能となる。 Additionally, the zone ECU 109 acquires the sensor state from the sensor 105 (step S105). The state of the sensor to be acquired is, for example, a normal state or an abnormal state. This allows the zone ECU 109 to grasp the state of the sensor.
 そして、ゾーンECU109は、ステップS105で取得したセンサの状態を確認しながら、センサ105に印加する電圧を調整する(ステップS106)。 Then, the zone ECU 109 adjusts the voltage applied to the sensor 105 while checking the state of the sensor acquired in step S105 (step S106).
 (実施例1の効果)
 このように車両の状態に応じてセンサ105の給電電圧を変えることによって、センサ105の消費電力を低減することができる。結果的に、車両の省電力化や走行距離を延ばすことが可能になる。この時、センサ105の正常動作を確認しながら給電電圧を変えるので、センサ105の正常動作が保証され、安全要求の高い自動運転用のセンサの省電力化を図ることができる。また、電力制御と通信制御とのハブであるゾーンECU109で電圧制御の判断及び電圧制御を実施することによって、ゾーンECU109のみの設計によりセンサ105の省電力化を実現することができる。このように、センサ105の省電力化を1つのゾーンECU109で実現可能なため、センサ105との通信をセントラルECU101に送信する等の無駄な通信設計が必要ない。したがって、センサ105の省電力化のための設計が1つのゾーンECU109のベンダで完結し、セントラルECU101のベンダ等に跨らないため、ゾーンECU109の設計が容易になる。また、ウォッチドッグタイマー111の信号をセントラルECU101まで送る必要が無いため、セントラルECU101の通信負荷やCPU負荷が高くなることも無い。
(Effects of Example 1)
By changing the power supply voltage of the sensor 105 according to the state of the vehicle in this way, the power consumption of the sensor 105 can be reduced. As a result, it becomes possible to save power and extend the driving distance of the vehicle. At this time, since the power supply voltage is changed while confirming the normal operation of the sensor 105, the normal operation of the sensor 105 is guaranteed, and it is possible to reduce the power consumption of the sensor for automatic driving where safety requirements are high. In addition, by determining voltage control and performing voltage control in the zone ECU 109, which is a hub for power control and communication control, power saving of the sensor 105 can be realized by designing only the zone ECU 109. In this way, the power saving of the sensor 105 can be realized by one zone ECU 109, so there is no need for wasteful communication design such as transmitting communication with the sensor 105 to the central ECU 101. Therefore, the design for power saving of the sensor 105 is completed by one vendor of the zone ECU 109, and does not involve the vendor of the central ECU 101, etc., so that the design of the zone ECU 109 is facilitated. Furthermore, since there is no need to send the signal from the watchdog timer 111 to the central ECU 101, the communication load and CPU load on the central ECU 101 do not increase.
 電圧制御回路102は、電源供給回路107に指示することによって、電源供給回路107の出力電圧を調整することが可能となる。調整された出力電圧がセンサ105に印加されるので、センサ105の省電力化を図ることが可能となる。 The voltage control circuit 102 can adjust the output voltage of the power supply circuit 107 by instructing the power supply circuit 107. Since the adjusted output voltage is applied to the sensor 105, the power consumption of the sensor 105 can be reduced.
 車両情報がアイドルストップ状態や停止状態の場合、センサ105の状態を非稼働状態又はアイドル状態にすることが可能である。この場合、センサ105に印加される電圧を、センサ105を稼働状態にする場合にセンサ105に印加する電圧より小さい電圧に変更することができる。その結果、センサ105が非稼働状態又はアイドル状態のときに、センサ105の省電力化を図ることができる。 When the vehicle information indicates an idle stop state or a stopped state, it is possible to set the state of the sensor 105 to a non-operating state or an idle state. In this case, the voltage applied to the sensor 105 can be changed to a voltage lower than the voltage applied to the sensor 105 when the sensor 105 is put into operation. As a result, power consumption of the sensor 105 can be reduced when the sensor 105 is in a non-operating state or an idle state.
 また、非稼働状態又はアイドル状態のときにセンサ105に印加される電圧を、センサ105を動作させるために必要な動作電圧範囲の下限値とすることによって、センサ105の動作を維持しながら、センサ105の省電力化を図ることができる。 In addition, by setting the voltage applied to the sensor 105 in the non-operating state or idle state to the lower limit of the operating voltage range necessary to operate the sensor 105, the sensor 105 can be operated while maintaining the sensor 105 operation. 105 can be reduced in power consumption.
 診断回路103は、センサ情報としてビーコン情報を利用することによって容易にセンサ105の状態を把握することができる。 The diagnostic circuit 103 can easily grasp the state of the sensor 105 by using beacon information as sensor information.
 レベル4以上の自動運転では、システム的に安全を保障する必要があるため、自動運転に関わる機能は冗長化されている必要がある。例えば、自動運転向けのセンサも2つ以上設置する必要があると考えられている。図2は、実施例2の車載制御装置を示す回路ブロック図である。実施例2では、ゾーンECU109に同種類の2つのセンサが接続されている。一方が正常時に使用される正常時用のセンサ201であり、他方が正常時用のセンサ201に異常があった場合に使用されるバックアップ用のセンサ202である。自動運転用のセンサでは、正常時用のセンサ201に異常があった場合はシームレスにバックアップ用のセンサ202に切り替える必要があるため、通常は2つ同時にセンサを動作させる必要があり、電力が無駄になる。そのため、一方をアイドルにするために、実施例2のゾーンECU109を適用する。実施例2のゾーンECU109は、通常時はバックアップ用のセンサ202の給電電力を低減して、緊急時に即動作可能な状態にしておきながら低電力化を図る。正常時用のセンサ201に異常があった場合、異常があった正常時用のセンサ201への電源供給を停止し、その代わりバックアップ用のセンサ202の電圧を正常動作用の値に昇圧する。 In level 4 or higher automated driving, it is necessary to ensure system safety, so functions related to automated driving must be redundant. For example, it is considered necessary to install two or more sensors for autonomous driving. FIG. 2 is a circuit block diagram showing an on-vehicle control device according to a second embodiment. In the second embodiment, two sensors of the same type are connected to the zone ECU 109. One is a normal sensor 201 that is used during normal times, and the other is a backup sensor 202 that is used when there is an abnormality in the normal sensor 201. With sensors for automatic driving, if there is an abnormality in the normal sensor 201, it is necessary to seamlessly switch to the backup sensor 202, so normally two sensors need to be operated at the same time, which wastes power. become. Therefore, in order to make one idle, the zone ECU 109 of the second embodiment is applied. The zone ECU 109 of the second embodiment reduces the power supplied to the backup sensor 202 during normal times, thereby reducing power consumption while keeping the sensor 202 ready for immediate operation in an emergency. If there is an abnormality in the normal sensor 201, power supply to the normal sensor 201 with the abnormality is stopped, and instead, the voltage of the backup sensor 202 is boosted to a value for normal operation.
 すなわち、実施例2のゾーンECU109は、正常時用のセンサ201の故障時に使用されるバックアップ用のセンサ202と通信可能且つバックアップ用のセンサ202に印加する電圧を制御可能であって、診断回路103は、正常時用のセンサ201から受信したセンサ情報に基づいて正常時用のセンサ201の状態が正常状態であると判断する場合、バックアップ用のセンサ202に印加する電圧を、正常時用のセンサ201に印加する電圧より小さい電圧(第2電圧)に変更する。第2電圧は、バックアップ用のセンサ202を動作させるために必要な動作電圧範囲の下限値である。そして、診断回路103は、正常時用のセンサ201から受信したセンサ情報に基づいて正常時用のセンサ201の状態が異常状態であると判断する場合、バックアップ用のセンサ202に印加する電圧を、第2電圧より大きい第3電圧に変更する。 That is, the zone ECU 109 of the second embodiment can communicate with the backup sensor 202 that is used when the normal sensor 201 fails, and can control the voltage applied to the backup sensor 202 . When determining that the normal state sensor 201 is in a normal state based on the sensor information received from the normal state sensor 201, the voltage applied to the backup sensor 202 is changed to the normal state sensor 201. The voltage applied to 201 is changed to a smaller voltage (second voltage). The second voltage is the lower limit value of the operating voltage range necessary to operate the backup sensor 202. When the diagnostic circuit 103 determines that the state of the normal sensor 201 is abnormal based on the sensor information received from the normal sensor 201, the diagnostic circuit 103 changes the voltage applied to the backup sensor 202 to The voltage is changed to a third voltage higher than the second voltage.
 (実施例2の効果)
 正常時用のセンサ201が正常に稼働している場合には、バックアップ用のセンサ202の省電力化を図ることが可能となり、結果的に、車両の省電力化や走行距離を延ばすことが可能になる。
(Effects of Example 2)
When the normal sensor 201 is operating normally, it is possible to save power for the backup sensor 202, and as a result, it is possible to save power and extend the driving distance of the vehicle. become.
 また、正常時用のセンサ201が異常である場合には、バックアップ用のセンサ202が即座に稼働可能な程度の電圧が印加されているので、シームレスにバックアップ用のセンサ202を稼働させることができる。また、このとき、異常が発生した正常時用のセンサ201への給電を停止することによって、正常時用のセンサ201の省電力化を図ることができる。 Furthermore, if the normal sensor 201 is abnormal, a voltage sufficient to enable the backup sensor 202 to operate immediately is applied, so the backup sensor 202 can be operated seamlessly. . Further, at this time, by stopping the power supply to the normal sensor 201 in which the abnormality has occurred, power consumption of the normal sensor 201 can be reduced.
 センサ105の異常が発生した場合、センサ105をリセットして再起動を行って、センサ105を正常状態に復帰させることが有効である。図3は、実施例3の車載制御装置を示す回路ブロック図である。実施例3のゾーンECU109は、電源供給回路107及びセンサ105をリセットするリセット回路301(リセット手段)を備える。診断回路103がウォッチドッグタイマー111からのセンサ情報に基づいてセンサ105が異常であると判断した場合は、その情報をセントラルECU101又は自動運転ECUへ送信すると共に、リセット回路301にリセット指示を送信する。リセット指示を受信したリセット回路301は、センサ105と電源供給回路107とをリセットして、再起動する。なお、リセット回路301は、異常が発生したセンサ105を含む電力系の複数のセンサ105をリセットしてもよいし、異常が発生したセンサ105のみをリセットしてもよい。 If an abnormality occurs in the sensor 105, it is effective to reset and restart the sensor 105 to return the sensor 105 to its normal state. FIG. 3 is a circuit block diagram showing an on-vehicle control device according to a third embodiment. The zone ECU 109 of the third embodiment includes a reset circuit 301 (resetting means) that resets the power supply circuit 107 and the sensor 105. When the diagnostic circuit 103 determines that the sensor 105 is abnormal based on the sensor information from the watchdog timer 111, it transmits the information to the central ECU 101 or the automatic driving ECU, and also transmits a reset instruction to the reset circuit 301. . Upon receiving the reset instruction, the reset circuit 301 resets the sensor 105 and the power supply circuit 107, and restarts the sensor 105 and the power supply circuit 107. Note that the reset circuit 301 may reset a plurality of power system sensors 105 including the sensor 105 in which an abnormality has occurred, or may reset only the sensor 105 in which an abnormality has occurred.
 (実施例3の効果)
 実施例3では、異常が発生したセンサ105のリセットを行うことができるので、センサ105の再起動による正常状態への復帰を行うことができる。
(Effects of Example 3)
In the third embodiment, since the sensor 105 in which an abnormality has occurred can be reset, the sensor 105 can be restarted to return to a normal state.
 実施例4では、車両の状態からセンサの消費電力を最小化するための電圧設定はAI401により学習される。図4は、実施例4の車載制御装置(ゾーンECU)を示す回路ブロック図である。 In the fourth embodiment, the AI 401 learns the voltage setting for minimizing the power consumption of the sensor based on the state of the vehicle. FIG. 4 is a circuit block diagram showing an on-vehicle control device (zone ECU) according to the fourth embodiment.
 例えば、AI401は、セントラルECU101から取得した車両情報や外気温度と、電源供給回路107がセンサ105に供給した電圧と、センサ105から取得したセンサ情報と、に基づいて学習を行う。例えば、車両情報がアイドルストップ状態、外気温度が-30℃~35℃、及び電源供給回路107がセンサ105に印加した電圧が0.9Vのときに、センサ105から取得したセンサ状態が正常稼働であれば、これらの車両情報、外気温度、及び印加電圧が正解データとなる。一方、車両情報がアイドルストップ状態、外気温度が-30℃~35℃、及び電源供給回路107がセンサ105に印加した電圧が0.8Vのときに、センサ105から取得したセンサ状態が異常であれば、これらの車両情報、外気温度、及び印加電圧が不正解データとなる。実施例4では、上記したような正解データ及び不正解データを含む教師データを用いて、AI401が学習を行う。 For example, the AI 401 performs learning based on the vehicle information and outside temperature acquired from the central ECU 101, the voltage supplied to the sensor 105 by the power supply circuit 107, and the sensor information acquired from the sensor 105. For example, when the vehicle information is in the idle stop state, the outside temperature is -30°C to 35°C, and the voltage applied to the sensor 105 by the power supply circuit 107 is 0.9V, the sensor state obtained from the sensor 105 indicates that it is operating normally. If there is, these vehicle information, outside temperature, and applied voltage become correct data. On the other hand, if the sensor status obtained from the sensor 105 is abnormal when the vehicle information is in the idle stop state, the outside temperature is -30°C to 35°C, and the voltage applied to the sensor 105 by the power supply circuit 107 is 0.8V, For example, these vehicle information, outside temperature, and applied voltage become incorrect data. In the fourth embodiment, the AI 401 performs learning using teacher data including correct data and incorrect data as described above.
 そして、学習済みのモデル(AI401)は、セントラルECU101から取得した車両情報や外気温度に基づいて、センサ105が正常稼働可能な供給電圧の中から最も電圧値が小さい電圧値を電源供給回路107に設定する。このようにして、AI401は、車両の状態や外気温度からセンサ105の消費電力を最小化するための電圧設定を行うことができる。 The learned model (AI401) then applies the smallest voltage value to the power supply circuit 107 from among the supply voltages that allow the sensor 105 to operate normally, based on the vehicle information and outside temperature acquired from the central ECU 101. Set. In this way, the AI 401 can set the voltage to minimize the power consumption of the sensor 105 based on the vehicle condition and outside temperature.
 (実施例4の効果)
 実施例4では、学習済みのAI401により、セントラルECU101から取得した車両情報や外気温度に基づいて、センサ105の消費電力を最小化するための電圧設定を行うことができる。これにより、機械学習により求めた最適な電圧設定でセンサ105の正常状態を確認しながら、センサ105の省電力化を図ることができる。
(Effects of Example 4)
In the fourth embodiment, the trained AI 401 can set the voltage to minimize the power consumption of the sensor 105 based on the vehicle information and outside temperature acquired from the central ECU 101. Thereby, it is possible to reduce the power consumption of the sensor 105 while confirming the normal state of the sensor 105 using the optimal voltage setting determined by machine learning.
 診断回路103がセンサ105に印加する電圧値を決定するために参照するテーブルデータ900は、車両に搭載されるTCU(Telematics Control Unit)と更新ソフトウェアを配信する車外のセンターとの通信によりOTAで取得してもよいし、更新してもよい。図5は、実施例5の車載制御装置を示す回路ブロック図である。図5に示すように、実施例5のゾーンECU109は、セントラルECU101を介して車両に搭載されるTCU501と通信可能に接続される。TCU501は、車外のセンターの通信装置との通信によりOTAで更新ソフトウェアやテーブルデータ900を取得する。取得したテーブルデータ900は、セントラルECU101を介してゾーンECU109に送信される。テーブルデータ900は、ゾーンECU109のストレージ502に格納される。診断回路103は、ストレージ502に格納されたテーブルデータ900を参照して、センサ105に印加される電圧を決定する。 The table data 900 that the diagnostic circuit 103 refers to in order to determine the voltage value to be applied to the sensor 105 is obtained OTA through communication between the TCU (Telematics Control Unit) installed in the vehicle and a center outside the vehicle that distributes updated software. You can update it or update it. FIG. 5 is a circuit block diagram showing an on-vehicle control device according to a fifth embodiment. As shown in FIG. 5, the zone ECU 109 of the fifth embodiment is communicably connected to a TCU 501 mounted on a vehicle via a central ECU 101. The TCU 501 obtains updated software and table data 900 via OTA through communication with a communication device at a center outside the vehicle. The acquired table data 900 is transmitted to the zone ECU 109 via the central ECU 101. Table data 900 is stored in storage 502 of zone ECU 109. Diagnostic circuit 103 refers to table data 900 stored in storage 502 and determines the voltage to be applied to sensor 105.
 (実施例5の効果)
 OTAでテーブルデータ900を取得したり更新したりすることが可能であるので、センサ105の電圧を決定するための情報を環境変化に合わせて適宜更新することができる。
(Effects of Example 5)
Since table data 900 can be acquired and updated over the air, information for determining the voltage of sensor 105 can be updated as appropriate in accordance with environmental changes.
 センサ105にレギュレータ回路801が設けられる場合、センサ105に印加される電圧制御は、ゾーンECU109のDCDCコンバーター(電源供給回路107)で行わず、通信によるレジスタ設定を行うことによって、センサ105のレギュレータ回路801の設定を変更して給電電圧を制御し、センサ105の消費電力を低減してもよい。図8は、実施例6の車載制御装置(ゾーンECU109)を示す回路ブロック図である。図8に示すように、実施例6のゾーンECU109は、センサ105のレジスタ設定を行う電圧制御回路102を備える。電圧制御回路102は、通信回路104を介してセンサ105のレジスタ設定を行う。レジスタ設定によってセンサ105のレギュレータ回路801の出力電圧が変更される。電源供給回路107から給電される給電電圧は、レギュレータ回路801で調整され、センサ105に供給される。 When the sensor 105 is provided with the regulator circuit 801, the voltage applied to the sensor 105 is not controlled by the DC/DC converter (power supply circuit 107) of the zone ECU 109, but by setting registers through communication. The power consumption of the sensor 105 may be reduced by changing the settings of the sensor 801 to control the power supply voltage. FIG. 8 is a circuit block diagram showing the in-vehicle control device (zone ECU 109) of the sixth embodiment. As shown in FIG. 8, the zone ECU 109 of the sixth embodiment includes a voltage control circuit 102 that performs register settings for the sensor 105. The voltage control circuit 102 performs register settings of the sensor 105 via the communication circuit 104. The output voltage of the regulator circuit 801 of the sensor 105 is changed by register setting. The power supply voltage supplied from the power supply circuit 107 is adjusted by the regulator circuit 801 and supplied to the sensor 105.
 (実施例6の効果)
 センサ105に印加される電圧がレギュレータ回路801によって調整される構成において、電圧制御回路102のレジスタ設定によってセンサ105に印加される電圧を容易に決定又は調整することができる。
(Effect of Example 6)
In a configuration in which the voltage applied to the sensor 105 is regulated by the regulator circuit 801, the voltage applied to the sensor 105 can be easily determined or adjusted by register settings of the voltage control circuit 102.
 <変形例>
 本開示は、前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施形態は本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
<Modified example>
The present disclosure is not limited to the embodiments described above, and includes various modifications. For example, the embodiments described above are described in detail to explain the present disclosure in an easy-to-understand manner, and the embodiments are not necessarily limited to those having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is possible to add, delete, or replace some of the configurations of each embodiment with other configurations.
101…セントラルECU
102…電圧制御回路
103…診断回路
104…通信回路
105…センサ
106…電源線
107…電源供給回路
108…バッテリー
109…ゾーンECU
110…通信線
111…ウォッチドッグタイマー
201…正常時用のセンサ
202…バックアップ用のセンサ
301…リセット回路
401…AI回路
501…TCU
502…ストレージ
601…電圧制御ECU
602…ブレーキ制御ECU
603…ヘッドライト制御部
604…エアコン制御部
605…自動運転ECU
607…LiDAR
608…Radar
609…Camera
610…セントラルゲートウェイECU
701…アクチュエータ
801…レギュレータ回路
101...Central ECU
102...Voltage control circuit 103...Diagnostic circuit 104...Communication circuit 105...Sensor 106...Power line 107...Power supply circuit 108...Battery 109...Zone ECU
110... Communication line 111... Watchdog timer 201... Normal state sensor 202... Backup sensor 301... Reset circuit 401... AI circuit 501... TCU
502...Storage 601...Voltage control ECU
602...Brake control ECU
603...Headlight control unit 604...Air conditioner control unit 605...Automatic operation ECU
607...LiDAR
608...Radar
609...Camera
610...Central gateway ECU
701...Actuator 801...Regulator circuit

Claims (15)

  1.  車両のゾーン単位で設けられる車載制御装置であって、前記ゾーンに設けられるセンサと通信可能且つ前記センサに印加する電圧を制御可能な車載制御装置であって、
     電源線を介して前記センサに電圧を印加する電力供給手段と、
     前記電力供給手段から前記センサに印加される前記電圧を制御する電圧制御手段と、
     前記センサから前記センサの状態を示すセンサ情報を受信する通信手段と、
     前記通信手段によって受信された前記センサ情報に基づいて、前記センサに印加される電圧を変更する変更手段と、を備え、
     前記電圧制御手段は、前記変更手段によって変更された前記電圧が前記センサに印加されるように制御を実行する
     ことを特徴とする車載制御装置。
    An on-vehicle control device provided in each zone of a vehicle, which is capable of communicating with a sensor provided in the zone and controlling the voltage applied to the sensor,
    power supply means for applying voltage to the sensor via a power line;
    Voltage control means for controlling the voltage applied to the sensor from the power supply means;
    communication means for receiving sensor information indicating the state of the sensor from the sensor;
    Changing means for changing the voltage applied to the sensor based on the sensor information received by the communication means,
    The vehicle-mounted control device is characterized in that the voltage control means executes control so that the voltage changed by the changing means is applied to the sensor.
  2.  前記車載制御装置は、前記車両の状態を管理する統合車載制御装置と通信可能であって、
     前記通信手段は、前記統合車載制御装置から前記車両の状態を示す車両情報を受信し、
     前記変更手段は、前記通信手段によって受信された前記車両情報に基づいて、前記センサに印加される電圧を決定し、
     前記電圧制御手段は、決定された前記電圧が前記センサに印加されるように前記電力供給手段を制御する
     ことを特徴とする請求項1に記載の車載制御装置。
    The in-vehicle control device is capable of communicating with an integrated in-vehicle control device that manages the state of the vehicle,
    The communication means receives vehicle information indicating a state of the vehicle from the integrated in-vehicle control device,
    The changing means determines the voltage applied to the sensor based on the vehicle information received by the communication means,
    The vehicle-mounted control device according to claim 1, wherein the voltage control means controls the power supply means so that the determined voltage is applied to the sensor.
  3.  前記電圧制御手段は、前記変更手段によって変更又は決定された前記電圧が前記センサに印加されるように前記電力供給手段の出力電圧を変更する、又は前記センサに設けられるレギュレータ回路のレジスタの設定を変更する
     ことを特徴とする請求項1に記載の車載制御装置。
    The voltage control means changes the output voltage of the power supply means so that the voltage changed or determined by the change means is applied to the sensor, or changes the setting of a register of a regulator circuit provided in the sensor. The in-vehicle control device according to claim 1, characterized in that:
  4.  前記変更手段は、前記車両情報に基づいて前記センサの状態を非稼働状態又はアイドル状態にすることが可能であると判断する場合、前記センサに印加する電圧を、前記センサを稼働状態にする場合に前記センサに印加する電圧より小さい第1電圧に変更する
     ことを特徴とする請求項2に記載の車載制御装置。
    When the changing means determines that it is possible to change the state of the sensor to a non-operating state or an idle state based on the vehicle information, the changing means changes the voltage applied to the sensor to bring the sensor into an operating state. The in-vehicle control device according to claim 2, wherein the first voltage is changed to a first voltage smaller than the voltage applied to the sensor.
  5.  前記第1電圧は、前記センサを動作させるために必要な動作電圧範囲の下限値である
     ことを特徴とする請求項4に記載の車載制御装置。
    The vehicle-mounted control device according to claim 4, wherein the first voltage is a lower limit value of an operating voltage range necessary to operate the sensor.
  6.  前記車載制御装置は、前記センサの故障時に使用されるバックアップ用のセンサと通信可能且つ前記バックアップ用のセンサに印加する電圧を制御可能であって、
     前記変更手段は、前記センサから受信した前記センサ情報に基づいて前記センサの状態が正常状態であると判断する場合、前記バックアップ用のセンサに印加する電圧を、前記センサに印加する電圧より小さい第2電圧に変更する
     ことを特徴とする請求項1に記載の車載制御装置。
    The in-vehicle control device is capable of communicating with a backup sensor used in the event of a failure of the sensor, and is capable of controlling a voltage applied to the backup sensor,
    When determining that the state of the sensor is normal based on the sensor information received from the sensor, the changing means changes the voltage applied to the backup sensor to a voltage smaller than the voltage applied to the sensor. The vehicle-mounted control device according to claim 1, characterized in that the voltage is changed to two voltages.
  7.  前記変更手段は、前記センサから受信した前記センサ情報に基づいて前記センサの状態が異常状態であると判断する場合、前記バックアップ用のセンサに印加する電圧を、前記第2電圧より大きい第3電圧に変更する
     ことを特徴とする請求項6に記載の車載制御装置。
    When determining that the state of the sensor is abnormal based on the sensor information received from the sensor, the changing means changes the voltage applied to the backup sensor to a third voltage higher than the second voltage. The in-vehicle control device according to claim 6, characterized in that:
  8.  前記第2電圧は、前記バックアップ用のセンサを動作させるために必要な動作電圧範囲の下限値である
     ことを特徴とする請求項6に記載の車載制御装置。
    The in-vehicle control device according to claim 6, wherein the second voltage is a lower limit value of an operating voltage range necessary to operate the backup sensor.
  9.  前記センサ情報は、前記センサが正常に動作しているときに定期的に出力されるビーコン情報である
     ことを特徴とする請求項1に記載の車載制御装置。
    The in-vehicle control device according to claim 1, wherein the sensor information is beacon information that is periodically output when the sensor is operating normally.
  10.  前記電力供給手段は、前記車両に搭載されるバッテリーから前記センサへの電源供給を中継する
     ことを特徴とする請求項1に記載の車載制御装置。
    The vehicle-mounted control device according to claim 1, wherein the power supply means relays power supply from a battery mounted on the vehicle to the sensor.
  11.  前記センサをリセットするリセット手段をさらに備え、
     前記変更手段は、前記センサ情報に基づいて前記センサの状態が異常状態であると判断した場合、前記リセット手段に前記センサをリセットするよう指示する
     ことを特徴とする請求項1に記載の車載制御装置。
    Further comprising a reset means for resetting the sensor,
    The in-vehicle control according to claim 1, wherein the changing means instructs the resetting means to reset the sensor when determining that the state of the sensor is abnormal based on the sensor information. Device.
  12.  前記センサの消費電力を最小化するための電圧を設定する学習済みモデルをさらに備える
     ことを特徴とする請求項1に記載の車載制御装置。
    The in-vehicle control device according to claim 1, further comprising a learned model that sets a voltage for minimizing power consumption of the sensor.
  13.  前記車載制御装置は、車外の通信装置と通信可能であって、
     前記センサ情報に基づいて前記センサに印加する電圧を変更するための情報を前記通信装置を介して受信する
     ことを特徴とする請求項1に記載の車載制御装置。
    The in-vehicle control device is capable of communicating with a communication device outside the vehicle,
    The vehicle-mounted control device according to claim 1, wherein information for changing the voltage applied to the sensor based on the sensor information is received via the communication device.
  14.  前記センサに印加される電圧は、DC電圧である
     ことを特徴とする請求項1に記載の車載制御装置。
    The vehicle-mounted control device according to claim 1, wherein the voltage applied to the sensor is a DC voltage.
  15.  前記センサは、自動運転に使用されるデータを取得するセンサである
     ことを特徴とする請求項1に記載の車載制御装置。
    The in-vehicle control device according to claim 1, wherein the sensor is a sensor that acquires data used for automatic driving.
PCT/JP2022/028572 2022-07-25 2022-07-25 Onboard control device WO2024023873A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028572 WO2024023873A1 (en) 2022-07-25 2022-07-25 Onboard control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028572 WO2024023873A1 (en) 2022-07-25 2022-07-25 Onboard control device

Publications (1)

Publication Number Publication Date
WO2024023873A1 true WO2024023873A1 (en) 2024-02-01

Family

ID=89705718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028572 WO2024023873A1 (en) 2022-07-25 2022-07-25 Onboard control device

Country Status (1)

Country Link
WO (1) WO2024023873A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000322101A (en) * 1999-05-13 2000-11-24 Mitsubishi Electric Corp System and method for controlling fault tolerant vehicle
US20190009813A1 (en) * 2017-07-07 2019-01-10 GM Global Technology Operations LLC Fail operational control of steer-by-wire system without mechanical backup connection
US20190100238A1 (en) * 2017-09-29 2019-04-04 Mando Corporation Method and apparatus for controlling angle overlay of vehicle according to input steering angle sensor
JP2021011231A (en) * 2019-07-09 2021-02-04 マツダ株式会社 On-vehicle network system
JP2021020606A (en) * 2019-07-30 2021-02-18 マツダ株式会社 On-vehicle power supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000322101A (en) * 1999-05-13 2000-11-24 Mitsubishi Electric Corp System and method for controlling fault tolerant vehicle
US20190009813A1 (en) * 2017-07-07 2019-01-10 GM Global Technology Operations LLC Fail operational control of steer-by-wire system without mechanical backup connection
US20190100238A1 (en) * 2017-09-29 2019-04-04 Mando Corporation Method and apparatus for controlling angle overlay of vehicle according to input steering angle sensor
JP2021011231A (en) * 2019-07-09 2021-02-04 マツダ株式会社 On-vehicle network system
JP2021020606A (en) * 2019-07-30 2021-02-18 マツダ株式会社 On-vehicle power supply system

Similar Documents

Publication Publication Date Title
US11427212B2 (en) Autonomous driving control system for vehicle
JP2002200948A (en) Vehicular power distribution device
JP7509273B2 (en) Vehicle control device
US11639144B2 (en) In-vehicle network system
DE102019218718B4 (en) Control system for controlling operation of a self-propelled vehicle and motor vehicle
WO2024023873A1 (en) Onboard control device
US8606481B2 (en) Data write device and data write method
WO2021020257A1 (en) In-vehicle power supply system
CN210309937U (en) Vehicle-mounted power supply control system and electric vehicle
US20050120281A1 (en) Electronic control unit
US8180463B2 (en) Method and apparatus for a computerized integrated power bus
KR101575253B1 (en) Main semiconductor device for air conditioner and vehicle air conditioner system having the same
CN115503626A (en) Control system, method, electronic device, and storage medium for vehicle
US20210179144A1 (en) Method for Operating a Self-Propelled Vehicle, and Control System for Performing Such a Method
CN112739578B (en) Auxiliary power supply and method for providing auxiliary power
US11254328B2 (en) Apparatus and method for using components of a vehicle
WO2024013995A1 (en) Electronic control device and electronic control method
CN115279627A (en) Software update device, software update method, and software update processing program
WO2023119448A1 (en) In-vehicle control device
JP5764043B2 (en) Vehicle control system
JPH05155295A (en) Method for controlling electronic control system for vehicle
WO2022259655A1 (en) Vehicle control device and vehicle control system
JP7492864B2 (en) Vehicle control device
US20240001967A1 (en) Redundant System
US20240086174A1 (en) Vehicular electronic control device and update program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952972

Country of ref document: EP

Kind code of ref document: A1