WO2024023870A1 - Waveguide-to-microstrip line converter, antenna device, and radar device - Google Patents

Waveguide-to-microstrip line converter, antenna device, and radar device Download PDF

Info

Publication number
WO2024023870A1
WO2024023870A1 PCT/JP2022/028557 JP2022028557W WO2024023870A1 WO 2024023870 A1 WO2024023870 A1 WO 2024023870A1 JP 2022028557 W JP2022028557 W JP 2022028557W WO 2024023870 A1 WO2024023870 A1 WO 2024023870A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
conductor layer
dielectric
conductor
microstrip line
Prior art date
Application number
PCT/JP2022/028557
Other languages
French (fr)
Japanese (ja)
Inventor
貴史 丸山
明道 廣田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2024520840A priority Critical patent/JP7515772B2/en
Priority to PCT/JP2022/028557 priority patent/WO2024023870A1/en
Publication of WO2024023870A1 publication Critical patent/WO2024023870A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/06Waveguide mouths

Definitions

  • the present disclosure relates to a waveguide-to-microstrip line converter that connects a microstrip line and a waveguide, which are transmission lines of different types, and an antenna device using the waveguide-to-microstrip line converter. and radar equipment.
  • Patent Document 1 In order to transmit signals to the microstrip line of A conventional antenna device is shown in Patent Document 1.
  • the waveguide-microstrip line converter shown in Patent Document 1 includes a waveguide, a dielectric substrate, a ground conductor, and a line conductor, and the waveguide has a long side parallel to the Y axis and a long side parallel to the X axis.
  • the ground conductor is provided on the first surface of the dielectric substrate, and the ground conductor is provided in the XY region surrounded by the opening edge of the waveguide, and It has a slot that is long in the Y-axis direction, and the line conductor is provided on the second surface of the dielectric substrate.
  • the waveguide has dimensions that are limited in order to pass the power of the high-frequency signal, and in the case of a rectangular waveguide, the opening of the waveguide is It is necessary to make the long side of the aperture larger than half the wavelength of the high frequency signal.
  • the end of the waveguide is opened and the waveguide is used as an antenna, it is desirable to downsize the waveguide-to-microstrip line conversion part in an antenna device in which waveguides used as antennas are densely arranged. It is rare.
  • the present disclosure has been made in view of the above points, and aims to obtain a miniaturized waveguide-microstrip line converter.
  • a waveguide-microstrip line converter includes a converter component and a waveguide component, and the converter component includes a dielectric and a linear line formed on one surface of the dielectric.
  • the converter component includes a dielectric and a linear line formed on one surface of the dielectric.
  • a probe extending continuously from one end of the signal conductor and located within the opening of the first conductor layer; a second conductor layer electrically connected to the first conductor layer by a through conductor penetrating from the first conductor layer to the other surface, the waveguide component facing the opening of the first conductor layer; A waveguide is provided, the other end surface of which is at an angle of 45 degrees in the longitudinal direction with respect to the extending direction of the signal conductor.
  • FIG. 2 is a conceptual side view of the waveguide-microstrip line converter according to the first embodiment along the propagation direction of a high-frequency signal in the waveguide.
  • FIG. 3 is a plan view showing the converter components and terminals in the waveguide-microstrip line converter according to the first embodiment.
  • FIG. 2 is a plan view showing a waveguide component in the waveguide-microstrip line converter according to the first embodiment.
  • FIG. 7 is a plan view showing a converter component and terminals in a waveguide-microstrip line converter according to a second embodiment.
  • FIG. 3 is a plan view showing a waveguide component in a waveguide-microstrip line converter according to a second embodiment.
  • FIG. 7 is a plan view showing a converter component and terminals in a waveguide-microstrip line converter according to Embodiment 3;
  • FIG. 7 is a plan view showing a waveguide component in a waveguide-microstrip line converter according to a third embodiment.
  • FIG. 7 is a conceptual side view of a waveguide functioning as an antenna of a radar device according to a fourth embodiment, taken along the propagation direction of a high-frequency signal.
  • FIG. 1 is not a cross-sectional view of a specific location along the Z-axis direction shown in FIG. 1, which is the propagation direction of high-frequency signals in the waveguide in a waveguide-microstrip line converter.
  • FIG. 1 is not a cross-sectional view of a specific location along the Z-axis direction shown in FIG. 1, which is the propagation direction of high-frequency signals in the waveguide in a waveguide-microstrip line converter.
  • FIG. 1 is not a cross-sectional view of a specific location along the Z-axis direction shown in FIG. 1, which is the propagation direction of high-frequency signals in the waveguide in a waveguide-microstrip line converter.
  • it is a conceptual side view along the Z-axis direction, conceptually showing the layer structure and the structure provided in each layer in a cross section. .
  • the X axis is a direction perpendicular to the extending direction of the signal conductor 12
  • the Y axis is the extending direction of the signal conductor 12
  • the Z axis is the propagation direction of the high frequency signal in the waveguide 24.
  • X axis, Y axis, and Z axis are three axes that are perpendicular to each other.
  • the waveguide-microstrip line converter converts a high-frequency signal from a microstrip line, which serves as a transmission line for high-frequency signals in a high-frequency region such as a millimeter wave band or a microwave band, into a high-frequency electromagnetic wave. Then, the signal is transmitted to a waveguide that does not increase loss during signal transmission. By opening the other end surface of the waveguide, the waveguide can be used as a transmitting antenna, and the antenna device according to the first embodiment transmits high-frequency electromagnetic waves into space from the open end surface of the waveguide as a transmitting antenna. Such waveguide-to-microstrip line converters can be used.
  • waveguide-to-microstrip line converter that converts a high-frequency signal from a microstrip line to a waveguide
  • waveguide-to-microstrip line converter that converts a high-frequency signal from a microstrip line to a waveguide.
  • Waveguide-to-microstrip line conversion that receives high-frequency electromagnetic waves from space from the open end of the waveguide as a receiving antenna, converts the received electromagnetic waves into high-frequency signals in the high-frequency region, and transmits them to the microstrip line.
  • the present invention can also be applied to an antenna device using a device.
  • the waveguide-microstrip line converter includes a converter component 10, a waveguide component 20, and a plurality of ball-shaped terminals 30.
  • the transducer component 10 is formed in a transducer forming area on the microstrip substrate.
  • the converter component 10 includes a converter dielectric 11, a signal conductor 12, a first conductor layer 13, a probe 14, a second conductor layer 15, a plurality of through conductors 16, and an inner conductor layer 18.
  • the term "for conversion" of the converter dielectric 11 will be omitted unless necessary.
  • the dielectric 11 is a dielectric formed continuously with the dielectric of the microstrip substrate, and has a multilayer structure having two dielectric layers in this example.
  • the dielectric 11 is located in the transducer forming area of the dielectric of the microstrip substrate.
  • the dielectric 11 is, for example, ceramic, which is commonly used in microstrip substrates. It is preferable to use a material with a relatively small dielectric loss tangent for the dielectric 11 in order to reduce attenuation of high frequency signals.
  • the signal conductor 12 is formed on one side of the dielectric 11, in this example, on the surface.
  • the signal conductor 12 extends linearly in the Y-axis direction in the transducer forming region of the dielectric 11 . That is, the extending direction of the signal conductor 12 is the illustrated Y-axis direction.
  • the signal conductor 12 is a conductive foil formed continuously with the signal conductor formed on one surface of the dielectric of the microstrip substrate.
  • a signal conductor, a ground plane formed in an inner layer of a dielectric, and a dielectric sandwiched between the signal conductor and the ground plane constitute a microstrip line.
  • the signal conductors on the microstrip substrate are electrically connected to a high frequency circuit.
  • the first conductor layer 13 is formed on one surface of the dielectric 11 in the transducer formation region, and extends in the extending direction of the signal conductor 12, that is, in the longitudinal direction with respect to the Y axis.
  • the opening 13a has an angle of 45 degrees.
  • the longitudinal direction of the opening 13a also forms an angle of 45 degrees with respect to the X axis.
  • One surface of the dielectric 11 where the opening 13a is located is exposed. That is, the opening 13a is formed by etching the conductor layer for forming the first conductor layer 13.
  • the shape of the opening 13a is a rounded rectangle with rounded corners, which is the same as the XY cross-sectional shape of the hollow portion 24a constituting the waveguide 24 and the shape of both end surfaces 24b and 24c of the waveguide 24.
  • the shape of the opening 13a is not limited to a rounded rectangle, but has a shape that matches the shape of the hollow portion 24a and both end surfaces 24b and 24c that constitute the waveguide 24, and the shape of the opening 13a is not limited to a rounded rectangle. If the shapes of 24b and 24c are rectangular, they are rectangular, and if they are elliptical, they are elliptical.
  • the size of the opening 13a is also the same as the size of the cross-sectional shape of the hollow portion 24a and the size of both end surfaces 24b and 24c, and has a major axis a and a minor axis b.
  • the shape and size of the opening 13a are not limited to the example described above, and may be any shape and size that matches the transmission characteristics of the high-frequency signal transmitted through the signal conductor 12.
  • the portion 13a has a longitudinal direction and a lateral direction, and may be an opening whose longitudinal direction forms an angle of 45 degrees with respect to the extending direction of the signal conductor 12.
  • the first conductor layer 13 has a conductor opening 13b along the signal conductor 12 at a position where the signal conductor 12 is arranged and communicated from the longitudinal center of the opening 13a.
  • the first conductor layer 13 is a conductor formed on one surface of the dielectric 11 in the transducer formation region by a generally known method over the entire surface of the transducer formation region excluding the opening 13a and the conductor opening 13b. It is a foil, and in this example it is a copper foil. The first conductor layer 13 is not present in the opening 13a and the conductor opening 13b, one surface of the dielectric 11 is exposed, and the signal conductor 12 is directly connected to the first conductor layer 13. There isn't.
  • the probe 14 is formed on one surface of the dielectric 11, is located within the opening 13a of the first conductor layer 13, continues from one end of the signal conductor 12, and extends perpendicular to the longitudinal direction of the opening 13a.
  • the angle between the longitudinal direction of the opening 13a and the extending direction of the signal conductor 12, that is, the Y axis is +45 degrees
  • the angle between the extending direction of the probe 14 and the extending direction of the signal conductor 12 is +45 degrees.
  • -45 degrees and the angle between the longitudinal direction of the opening 13a and the extending direction of the probe 14 is 90 degrees.
  • the probe 14 only needs to extend continuously from one end of the signal conductor 12 and be located within the opening 13a of the first conductor layer 13, and the direction in which the probe 14 extends and the direction in which the signal conductor 12 extends
  • the angle formed by the signal conductor 12 does not need to be -45 degrees, and may have any shape and direction depending on the transmission characteristics of the high frequency signal transmitted through the signal conductor 12.
  • the probe 14 crosses the opening 13a at the longitudinal center of the opening 13a.
  • the probe 14 is not directly connected to the first conductor layer 13.
  • the signal conductor 12 and the probe 14 are formed simultaneously with the signal conductor forming the microstrip line on one surface of the dielectric material forming the microstrip substrate.
  • the second conductor layer 15 is a conductor foil formed on the other surface of the dielectric 11 in the converter formation region, in this example, the back surface, facing the first conductor layer 13, and is a copper foil in this example. It is.
  • the second conductor layer 15 is formed on the entire other surface of the dielectric 11 in the transducer formation region at the same time as the conductor foil formed on the other surface of the dielectric of the microstrip substrate.
  • the second conductor layer 15 is electrically connected to the first conductor layer 13 by a plurality of through conductors 16 that penetrate from one surface of the dielectric 11 to the other surface.
  • each of the plurality of through conductors 16 penetrates from one side of the dielectric 11 to the other side, and has an upper end connected to the first conductor layer 13 and a lower end connected to the second conductor layer 15. connected.
  • the plurality of through conductors 16 are arranged at intervals so as to surround the opening 13a of the first conductor layer 13.
  • the plurality of through conductors 16 constitute a pseudo waveguide in a region surrounding the opening 13a.
  • the first conductor layer 13 including the opening 13a, the plurality of through conductors 16, and the second conductor layer 15 convert the high frequency signal transmitted through the microstrip line into the high frequency electromagnetic wave transmitted through the waveguide 24.
  • a conversion unit 17 is configured to perform the conversion.
  • a back short of the waveguide 24 is formed by the plurality of through conductors 16 and the second conductor layer 15. The length of the back short is 1/4 of the wavelength ⁇ within the dielectric 11. However, 1/4 does not strictly indicate 1/4, but is a value that includes design margin.
  • first conductor layer 13 and the second conductor layer 15 are preferably made by a plurality of through conductors 16 arranged so as to surround the opening 13a of the conductor layer 13;
  • the first conductor layer 13 and the second conductor layer 15 may be electrically connected by the through conductor 16.
  • An inner conductor layer 18 is formed on the inner layer of the dielectric 11 in the transducer formation region.
  • the internal conductor layer 18 is a conductor foil formed continuously with the ground plane formed in the dielectric inner layer of the microstrip board, and is a copper foil in this example.
  • the signal conductor 12, the internal conductor layer 18, and the dielectric 11 sandwiched between the signal conductor 12 and the internal conductor layer 18 constitute a microstrip line continuous from the microstrip line on the microstrip board.
  • the inner conductor layer 18 is electrically connected to the first conductor layer 13 and the second conductor layer 15 through the plurality of through conductors 16 .
  • Each of the plurality of through conductors 16 is a generally known through hole that penetrates through the internal conductor layer 18 from one surface of the dielectric 11 to the other surface.
  • the plurality of through conductors 16 are not limited to through holes, but include via holes that electrically connect the first conductor layer 13 and the inner conductor layer 18, and electrically connect the inner conductor layer 18 and the second conductor layer 15. It may also be configured by a via hole connected to.
  • the waveguide component 20 includes a waveguide dielectric 21 , a conductor layer 22 on one side, a conductor layer 23 on the other side, and a waveguide 24 .
  • the waveguide dielectric 21 will be omitted from “waveguide use” unless necessary.
  • the dielectric body 21 has a penetrating portion 21a in the portion where the waveguide 24 is formed, that is, in the waveguide formation region, having the same shape in the X-Y cross section shown from one side to the other side, in this example, from the front side to the back side. has.
  • the tube axis direction of the penetrating portion 21a is the Z-axis direction.
  • the angle between the longitudinal direction of the penetration portion 21a and the extending direction of the signal conductor 12, that is, the Y axis, is 45 degrees.
  • the longitudinal direction of the penetrating portion 21a also forms an angle of 45 degrees with respect to the X axis.
  • the cross-sectional shape of the penetrating portion 21a is a rounded rectangle with rounded vertices. Note that the cross section is the illustrated XY plane.
  • the cross-sectional shape of the penetrating portion 21a is not limited to a rounded rectangle, and may be changed as appropriate, and may be rectangular or elliptical. It is sufficient if the shape has a length that allows high-frequency electromagnetic waves to propagate.
  • Dielectric 21 is, for example, ceramic, which is commonly used when forming waveguide 24 . In order to manufacture the dielectric 21 at low cost, it is preferable to use a material with a relatively large dielectric loss tangent.
  • the penetrating portion 21a is formed by penetrating the dielectric 21 from one surface to the other surface by a generally known cutting process.
  • the one-side conductor layer 22 is formed on one surface of the dielectric 21, and has an opening 22a that communicates with the through-hole 21a at the position of the through-hole 21a.
  • the opening 22a has the same shape as the XY cross-sectional shape of the penetrating portion 21a, and is a rounded rectangle with rounded vertices.
  • the shape of the opening 22a is rectangular if the cross-sectional shape of the penetrating portion 21a is rectangular, and is elliptical if the cross-sectional shape of the penetrating portion 21a is oval.
  • the size of the opening 22a matches the size of the opening surface on one surface of the penetrating portion 21a.
  • the one-side conductor layer 22 is a conductor foil formed on one side of the dielectric 21 by a generally known method, and is a copper foil in this example.
  • the other surface conductor layer 23 is formed on the other surface of the dielectric 21 and has an opening 23a at the position of the penetration portion 21a that communicates with the penetration portion 21a.
  • the opening 23a has the same shape as the XY cross-sectional shape of the penetrating portion 21a, and is a rounded rectangle with rounded vertices.
  • the shape of the opening 23a is rectangular if the cross-sectional shape of the penetrating portion 21a is rectangular, and is elliptical if the cross-sectional shape of the penetrating portion 21a is oval. Further, the size of the opening 23a matches the size of the opening surface on the other surface of the penetrating portion 21a.
  • the other side conductor layer 23 is a conductor foil formed on the other side of the dielectric 21 by a generally known method, and is a copper foil in this example.
  • the waveguide 24 is a hollow waveguide composed of a waveguide layer 25, which is a conductor layer for forming a tube, formed on the entire inner surface of the penetrating portion 21a, and has a hollow portion 24a surrounded by the waveguide layer 25. It is.
  • the waveguide layer 25 has a cylindrical shape, and one end of the waveguide layer 25 is electrically connected to the first conductor layer 22 at the opening 22 a of the first conductor layer 22 .
  • the other end of the waveguide layer 25 is electrically connected to the other side conductor layer 23 at the opening 23 a of the other side conductor layer 23 .
  • the waveguide layer 25 is a plating layer formed on the entire inner surface of the penetrating portion 21a by metal plating, in this example, copper plating, in the same manner as in the generally known method for forming through holes.
  • the tube axis direction of the waveguide 24 is the illustrated Z direction.
  • the XY cross-sectional shape of the hollow portion 24a constituting the waveguide 24 has a similar shape to the penetrating portion 21a, which is smaller by the thickness of the waveguide layer 25. It has the same shape as , and is a rounded rectangle with rounded vertices.
  • the shape of the hollow portion 24a is rectangular if the cross-sectional shape of the penetrating portion 21a is rectangular, and is elliptical if the cross-sectional shape of the penetrating portion 21a is oval.
  • the shapes of both end surfaces 24b and 24c of the waveguide 24 are the same as the XY cross-sectional shape of the hollow portion 24a.
  • both end surfaces 24b and 24c of the waveguide 24 is a rounded rectangle having a major axis a, which is the length in the longitudinal direction, and a minor axis b, which is the length in the transverse direction.
  • the angle between the longitudinal direction of both end surfaces 24b and 24c, the extending direction of the signal conductor 12, and the illustrated Y axis is 45 degrees.
  • the longitudinal direction of both end surfaces 24b and 24c also forms an angle of 45 degrees with respect to the X axis.
  • the major axis a which is the length in the longitudinal direction of both end surfaces 24b and 24c, is long enough to propagate high-frequency electromagnetic waves, and in this example, is longer than half the wavelength of the electromagnetic waves.
  • the major axis a is 3 mm and the minor axis b is 0.8 mm.
  • the waveguide 24 can be used to transmit high-frequency electromagnetic waves into space or to transmit high-frequency electromagnetic waves from space. It can be used as an antenna to receive. Further, a waveguide (not shown) whose cross section has the same shape as the one end surface 24c of the waveguide 24 is connected in communication with the one end surface 24c of the waveguide 24, and the waveguide is connected to the connected waveguide. It may also be a device that propagates high frequency waves between the high frequency circuit and the high frequency circuit.
  • the other side conductor layer 23 is electrically connected to the first conductor layer 13 in the converter component 10 through a plurality of ball-shaped terminals 30 .
  • Electrical connection between the first conductor layer 13 and the other side conductor layer 23 through the plurality of terminals 30 is performed by a generally known ball grid array (BGA). That is, the plurality of terminals 30 constitute a ball grid array.
  • the ball grid array of terminals 30 also serves to mechanically connect the waveguide arrangement 20 to the transducer arrangement 10 .
  • the plurality of terminals 30 are arranged at intervals so as to surround the opening 13a of the first conductor layer 13 and the opening 23a of the other side conductor layer 23. That is, the opening 13a of the first conductor layer 13 and the opening 23a of the other side conductor layer 23 are arranged so that their respective longitudinal directions face each other at an angle of 45 degrees with respect to the signal conductor 12.
  • the ball grid array of the plurality of terminals 30 arranged in this manner constitutes a pseudo waveguide.
  • the high frequency signal transmitted through the signal conductor 12 is converted into an electromagnetic wave by the probe 14, and the converted electromagnetic wave is propagated to the waveguide 24 via a pseudo waveguide formed by a ball grid array. Further, the electromagnetic wave propagating through the waveguide 24 is converted into a high frequency signal by the probe 14 via a pseudo waveguide formed by a ball grid array, and the converted high frequency signal is transmitted through the signal conductor 12.
  • the electrical connection between the first conductor layer 13 and the other side conductor layer 23 is preferably made by forming a pseudo waveguide using a plurality of terminals 30; But it's okay.
  • the operation of the waveguide-microstrip line converter according to the first embodiment will be explained.
  • a case will be described in which the waveguide-microstrip line converter according to the first embodiment is applied to an antenna device in which the other end surface 24c of the waveguide 24 is open and the waveguide 24 is used as a transmitting antenna.
  • the high frequency signal transmitted through the microstrip line in the microstrip substrate is transmitted to the microstrip line including the signal conductor 12 in the waveguide-microstrip line converter.
  • the high frequency signal transmitted to the microstrip line including the signal conductor 12 is converted into the waveguide 24 at the probe 14 via a pseudo waveguide formed by a ball grid array with a plurality of terminals 30.
  • the converted high-frequency signal (electromagnetic wave) propagates through the waveguide 24, and the high-frequency electromagnetic wave is radiated into space from the open end surface 24c on the other side of the waveguide 24, which functions as a transmitting antenna.
  • the open end surface 24c on the other surface of the waveguide 24 receives high-frequency electromagnetic waves from space, and the waveguide 24 propagates the received electromagnetic waves.
  • the signal is converted into a high frequency signal on a microstrip line including the signal conductor 12, and the converted high frequency signal is transmitted through the microstrip line on the microstrip board and input into a high frequency circuit.
  • the microstrip line-waveguide converter has an angle formed by the extending direction of the signal conductor 12 in the converter component 10, and the longitudinal direction with respect to the Y axis in the drawing. Since the waveguide 24 is provided with the end surface 24b on the other end side at 45 degrees, the longitudinal direction of the end surface 24b on the other end side of the waveguide 24 is perpendicular to the extending direction of the signal conductor 12, that is, Compared to an arrangement in which the longitudinal direction of the end surface 24b is arranged parallel to the illustrated X-axis, the exclusive width in the X-axis direction can be made smaller. Specifically, the exclusive width in the X-axis direction can be reduced to 1/ ⁇ 2. As a result, the microstrip line-waveguide converter can be made smaller.
  • the plurality of microstrip line-waveguide converters are connected in a direction perpendicular to the extending direction of the signal conductor 12, as shown in the figure.
  • the waveguide 24 is a hollow waveguide having a hollow portion 24a built into the dielectric 21, it may be a hollow metal tube with a rounded rectangular or rectangular cross section.
  • the other end surface of the hollow metal tube may be electrically and mechanically connected to one surface of the first conductor layer 13 so as to surround the opening 13a.
  • the dielectric 11 used in the converter component 10 in which the signal conductor 12 for transmitting high-frequency signals is formed is made of a material with a relatively small dielectric loss tangent.
  • a material with a relatively large dielectric loss tangent for the dielectric 21 used in the waveguide component 20 for configuring the waveguide 24, which is generally considered not to increase loss during signal transmission Attenuation of high frequency signals can be reduced, and the microstrip line-waveguide converter can be manufactured at low cost. That is, it is preferable that the dielectric material 21 is made of a material having a larger dielectric loss tangent than that of the dielectric material 11.
  • Embodiment 2 A waveguide-microstrip line converter and antenna device according to a second embodiment will be explained using FIGS. 4 and 5.
  • the waveguide-microstrip line converter according to the second embodiment has a plurality of waveguide-microstrip line converters according to the first embodiment arranged in a direction perpendicular to the extending direction of the signal conductor 12. They are different, and in other respects are the same.
  • the waveguide-microstrip line converter according to the second embodiment an example is shown in which two waveguide-microstrip line converters are arranged in a direction perpendicular to the extending direction of the signal conductor 12.
  • the number of waveguide-to-microstrip line converters according to the second embodiment is not limited to two, and also includes one in which three or more are arranged.
  • Two waveguide-to-microstrip line converters will be described as a first waveguide-to-microstrip line converter and a second waveguide-to-microstrip line converter.
  • the first waveguide-microstrip line converter and the second waveguide-microstrip line converter each have the same configuration as the waveguide-microstrip line converter according to the first embodiment. Components corresponding to those in the waveguide-microstrip line converter according to Embodiment 1 will be described with reference signs -1 and -2 to clarify their correspondence.
  • FIG. 4 a plan view showing the converter components and terminals and the waveguide configuration
  • the side surface along the propagation direction of the high frequency signal in the waveguide shows the first waveguide-microstrip line converter and the second waveguide.
  • Each microstrip line converter is substantially the same as the waveguide-microstrip line converter according to the first embodiment.
  • the waveguide-microstrip line converter includes a first transducer component 10-1 and a first waveguide component 20- formed in a transducer formation region of a microstrip substrate. 1 and a plurality of ball-shaped first terminals 30-1, and a second transducer configuration formed in a transducer formation region of a microstrip substrate.
  • a second waveguide-to-microstrip line converter is provided, which includes a section 10-2, a second waveguide component 20-2, and a plurality of ball-shaped second terminals 30-2.
  • the first converter component 10-1 and the second converter component 10-2 have signal conductors 12-1, 12-2 in the converter formation area of the microstrip substrate. It is arranged and formed along the illustrated X-axis, which is a direction perpendicular to the stretching direction of.
  • the first converter component 10-1 and the second converter component 10-2 have a dielectric 11, a first conductor layer 13, a second conductor layer 15, and an inner conductor layer in the converter formation region. Make 18 common.
  • the first converter component 10-1 includes a first signal conductor 12-1, a first probe 14-1, and a plurality of first through conductors 16-1.
  • the second converter component 10-2 includes a second signal conductor 12-2, a second probe 14-2, and a plurality of second through conductors 16-2.
  • the first signal conductor 12-1 and the second signal conductor 12-2 extend linearly in parallel to the illustrated Y-axis in the transducer forming region of the dielectric 11.
  • the first signal conductor 12-1 and the second signal conductor 12-2 extend linearly parallel to the Y-axis, so they do not interfere with each other.
  • the distance dx between the first signal conductor 12-1 and the second signal conductor 12-2 is set to a half wavelength with respect to the wavelength of the high frequency wave propagating through the waveguides 24-1 and 24-2.
  • the set interval dx is not limited to a half wavelength with respect to the wavelength of the high frequency, and may be increased or decreased depending on the design of the waveguides 24-1 and 24-2.
  • the distance dx is equal to or less than a half wavelength with respect to the wavelength of the high frequency. Note that when there are three or more waveguide-microstrip line converters, the interval between adjacent signal conductors 12 is the set interval dx.
  • the first conductor layer 13 has a longitudinal direction that forms an angle of 45 degrees with respect to the extending direction of the first signal conductor 12-1 and the second signal conductor 12-2. It has a first opening 13a-1 and a second opening 13a-2.
  • the longitudinal direction of the first opening 13a-1 and the second opening 13a-2 also forms an angle of 45 degrees with respect to the X axis.
  • the first opening 13a-1 and the second opening 13a-2 are arranged in parallel, and the distance between the center of the first opening 13-1a and the center of the second opening 13a-2 is set.
  • the distance dx is the same as the distance dx between the first signal conductor 12-1 and the second signal conductor 12-2.
  • One end of the first signal conductor 12-1 reaches the longitudinal center of one side of the first opening 13a-1.
  • One end of the second signal conductor 12-2 reaches the longitudinal center of one side of the second opening 13a-2.
  • the first conductor layer 13 communicates with the first signal conductor 12-1 at a position where the first signal conductor 12-1 is disposed by communicating from the longitudinal center of the first opening 13a-1.
  • a second signal conductor 12-2 is placed in communication with the first conductor opening 13b-1 along the longitudinal center of the second opening 13a-2. It has a second conductor opening 13b-2 along the conductor 12-2.
  • the first probe 14-1 is located within the first opening 13a-1 of the first conductor layer 13, continues from one end of the first signal conductor 12-1, and extends from the first opening 13a. -1 extends perpendicularly to the longitudinal direction.
  • the second probe 14-2 is located within the second opening 13a-2 of the first conductor layer 13, continues from one end of the second signal conductor 12-2, and extends from the second opening 13a. -2 extends perpendicularly to the longitudinal direction.
  • each of the plurality of first through conductors 16-1 penetrates from one surface to the other surface of the dielectric 11, and has an upper end connected to the first conductor layer 13 and a lower end connected to the second conductor layer 15. electrically connected to.
  • the plurality of first through conductors 16-1 are arranged at intervals so as to surround the first opening 13a-1 of the first conductor layer 13.
  • the plurality of first penetrating conductors 16-1 constitute a pseudo waveguide in a region surrounding the first opening 13a-1.
  • the first conductor layer 13 including the first opening 13a-1, the plurality of first through conductors 16-1, and the second conductor layer 15 allow high frequency signals transmitted through the microstrip line and the first conductor layer 13 to be connected to each other.
  • a first conversion unit 17-1 is configured to perform conversion with a high-frequency electromagnetic wave propagating through the wave tube 24-1. Further, a back short of the first waveguide 24-1 is formed by the plurality of first through conductors 16-1 and the second conductor layer 15. Since the second signal conductor 12-2 extends linearly along the Y-axis, the high frequency signal transmitted through the second signal conductor 12-2 does not interfere with the first converter 17-1.
  • each of the plurality of second through conductors 16-2 penetrates from one surface to the other surface of the dielectric 11, and has an upper end connected to the first conductor layer 13 and a lower end connected to the second conductor layer 15. electrically connected to.
  • the plurality of second through conductors 16-2 are arranged at intervals so as to surround the second opening 13a-2 of the first conductor layer 13.
  • the plurality of second penetrating conductors 16-2 constitute a pseudo waveguide in a region surrounding the second opening 13a-2.
  • the first conductor layer 13 including the second opening 13a-2, the plurality of second through conductors 16-2, and the second conductor layer 15 allow high frequency signals transmitted through the microstrip line and the second conductor layer 13 to be connected to each other.
  • a second conversion unit 17-2 is configured to perform conversion with a high-frequency electromagnetic wave propagating through the wave tube 24-2. Further, a back short of the second waveguide 24-2 is formed by the plurality of second through conductors 16-2 and the second conductor layer 15. Since the first signal conductor 12-1 extends linearly along the Y-axis, the high frequency signal transmitted through the first signal conductor 12-1 does not interfere with the second converter 17-2.
  • the first waveguide configuration section 20-1 and the second waveguide configuration section 20-2 are arranged in a direction perpendicular to the extending direction of the signal conductors 12-1 and 12-2; It is arranged and formed along the illustrated X axis.
  • the first waveguide component 20-1 and the second waveguide component 20-2 share a dielectric 21, a conductor layer 22 on one side, and a conductor layer 23 on the other side in the waveguide formation region. Make it.
  • the dielectric 21 has a first penetrating portion 21a-1 penetrating from one surface to the other surface in a portion forming the first waveguide 24-1, and forms a second waveguide 24-2.
  • a second penetrating portion 21a-2 that penetrates from one surface to the other surface is provided at the portion where the second through portion 21a-2 penetrates from one surface to the other surface.
  • the angle between the longitudinal direction of the first penetrating portion 21a-1 and the extending direction of the first signal conductor 12-1, that is, the Y-axis, is 45 degrees.
  • the longitudinal direction of the first penetrating portion 21a-1 also forms an angle of 45 degrees with respect to the X axis.
  • the cross-sectional shape of the first penetrating portion 21a-1 is a rounded rectangle with rounded vertices.
  • the angle between the longitudinal direction of the second penetrating portion 21a-2 and the extending direction of the second signal conductor 12-2, that is, the Y-axis, is 45 degrees.
  • the longitudinal direction of the second penetrating portion 21a-2 also forms an angle of 45 degrees with respect to the X axis.
  • the cross-sectional shape of the second penetrating portion 21a-2 is a rounded rectangle with rounded vertices.
  • the first penetration part 21a-1 and the second penetration part 21a-2 are arranged in parallel, and the distance between the center of the first penetration part 21a-1 and the center of the second penetration part 21a-2 is set.
  • the distance dx is the same as the set distance dx between the first signal conductor 12-1 and the second signal conductor 12-2.
  • the one-side conductor layer 22 has a first opening 22a-1 that communicates with the first penetration part 21a-1 at the position of the first penetration part 21a-1, and a second opening 22a-1 that communicates with the first penetration part 21a-1. It has a second opening 22a-2 that communicates with the second penetration part 21a-2 at the position of the penetration part 21a-2.
  • the shape and size of the first opening 22a-1 match the shape and size of the opening surface on one surface of the first penetrating portion 21a-1.
  • the shape and size of the second opening 22a-2 match the shape and size of the opening surface on one surface of the second penetrating portion 21a-2.
  • the other side conductor layer 23 has a first opening 23a-1 communicating with the first penetration part 21a-1 at the position of the first penetration part 21a-1, and a first opening 23a-1 communicating with the first penetration part 21a-1. It has a second opening 23a-2 at a position that communicates with the second through-hole 21a-2.
  • the shape and size of the first opening 23a-1 match the shape and size of the opening on the other surface of the first penetrating portion 21a-1.
  • the shape and size of the second opening 23a-2 match the shape and size of the opening on the other surface of the second penetrating portion 21a-2.
  • the first waveguide 24-1 is constituted by a first waveguide layer 25-1 formed on the entire inner surface of the first penetrating portion 21a-1. It is a hollow waveguide having a first enclosed hollow part 24a-1.
  • the first waveguide layer 25-1 has a cylindrical shape, and one end of the first waveguide layer 25-1 is connected to the first conductor layer 22 at the first opening 22a-1 of the first conductor layer 22. 22. The other end of the first waveguide layer 25-1 is electrically connected to the other side conductor layer 23 at the first opening 23a-1 of the other side conductor layer 23.
  • the second waveguide 24-2 is constituted by a second waveguide layer 25-2 formed on the entire inner surface of the second penetrating portion 21a-2. It is a hollow waveguide having a second enclosed hollow part 24a-2.
  • the second waveguide layer 25-2 has a cylindrical shape, and one end of the second waveguide layer 25-2 is connected to the first conductor layer 22 at the second opening 22a-2 of the first conductor layer 22. 22.
  • the other end of the second waveguide layer 25-2 is electrically connected to the other side conductor layer 23 at the second opening 23a-2 of the other side conductor layer 23.
  • the shape of the cross section and both end surfaces 24b-1 and 24c-1 of the first hollow part 24a-1 in the first waveguide 24-1, and the second hollow part in the second waveguide 24-2 The cross section of 24a-2 and the shapes of both end surfaces 24b-2 and 24c-2 are the same, and the longitudinal direction and the extending direction of the first signal conductor 12-1 and the second signal conductor 12-2 are the same. , the angle formed with the illustrated Y axis is 45 degrees, and the angle formed with the X axis is also 45 degrees.
  • the major axis a which is the length in the longitudinal direction of each of them, is long enough to propagate high-frequency electromagnetic waves, and in this example, is longer than half the wavelength of the electromagnetic waves.
  • the major axis a is 3.098 mm
  • the minor axis b is 1.549 mm.
  • the center of the cross section and both end surfaces 24b-1 and 24c-1 of the first hollow part 24a-1 in the first waveguide 24-1, and the second hollow part in the second waveguide 24-2 The interval between the cross section of 24a-2 and the centers of both end faces 24b-2 and 24c-2 is a set interval dx, which is the set interval between the first signal conductor 12-1 and the second signal conductor 12-2. It is the same as the interval dx, and is half the wavelength of the high frequency. That is, the interval between the first waveguide 24-1 and the second waveguide 24-2 is the set interval dx, which is half the wavelength of the high frequency.
  • the center of the cross section and both end surfaces 24b-1 and 24c-1 of the first hollow part 24a-1 in the first waveguide 24-1, and the second hollow part in the second waveguide 24-2 The distance dx between the cross section of 24a-2 and the center of both end surfaces 24b-2 and 24c-2 is preferably half a wavelength or less with respect to the wavelength of the high frequency.
  • the first signal conductor 12-1 The distance dx between the signal conductor 12-2 and the second signal conductor 12-2 is also less than half a wavelength in total.
  • each of the first wave guide 24-1 and the second waveguide 24-2 transmits high-frequency electromagnetic waves into space. Or it can be used as an antenna to receive high frequency electromagnetic waves from space.
  • Both the first waveguide 24-1 and the second waveguide 24-2 may be used as a transmitting antenna or a receiving antenna, or one may be used as a transmitting antenna and the other as a receiving antenna.
  • the open end surface 24c-1 of the first waveguide 24-1 and the second waveguide By changing the phase of the high frequency wave emitted from the open end surface 24c-2 of the wave tube 24-2, the direction of beam orientation on the illustrated XZ plane can be changed. Furthermore, since the set interval dx between the first waveguide 24-1 and the second waveguide 24-2 is set to half a wavelength or less than a half wavelength, It is possible to obtain an antenna device in which grating lobes are not generated even when the beam is scanned in any direction in half space.
  • each of the one end surface 24c-1 of the first waveguide 24-1 and the one end surface 24c-2 of the second waveguide 24-2 has a cross section of the first waveguide 24-1.
  • a waveguide (not shown) having the same shape as the one end surface 24c-1 and the one end surface 24c-2 of the second waveguide 24-2 is connected to communicate with each other, and the waveguide is connected to the connected waveguide. It may also be a device that propagates high frequencies between it and a high frequency circuit.
  • the other side conductor layer 23 includes first conductor layers arranged at intervals so as to surround the first opening 13a-1 of the first conductor layer 13 in the converter component 10.
  • a second ball grid arranged at intervals so as to surround a plurality of first terminals 30-1 constituting a ball grid array and a second opening 13a-2 of the first conductor layer 13-1.
  • the plurality of second terminals 30-2 constituting the array are electrically connected to the first conductor layer 13.
  • first opening 13a-1 of the first conductor layer 13 and the first opening 23a-1 of the other side conductor layer 23 have their longitudinal directions aligned with respect to the first signal conductor 12-1.
  • the second opening 13a-2 of the first conductor layer 13 and the second opening 23a-2 of the other side conductor layer 23 are disposed facing each other at an angle of 45 degrees, and the longitudinal direction of each of the second opening 13a-2 of the first conductor layer 13 and the second opening 23a-2 of the other side conductor layer 23 is 45 degrees.
  • the two signal conductors 12-2 are arranged facing each other at an angle of 45 degrees.
  • the first ball grid array formed by the plurality of first terminals 30-1 arranged in this manner provides a first ball grid array with respect to the first transducer component 10-1 and the first waveguide component 20-1.
  • a second ball grid array with a plurality of second terminals 30-2 constitutes a pseudo waveguide and is connected to the second transducer component 10-2 and the second waveguide component 20-2.
  • a second pseudo waveguide is constructed.
  • the plurality of first terminals 30-1 constituting the first ball grid array and the plurality of second terminals 30-2 constituting the second ball grid array are connected to the first signal conductor 12-1, respectively. and the direction perpendicular to the extending direction of the second signal conductor 12-2, along the X-axis shown in the figure, in a parallel movement by an interval dx. That is, the distance between the corresponding first terminal 30-1 and second terminal 30-2 is all set to the distance dx, and as a result, the distance between the first converter 17-1 and the second converter 17- 2, the terminal surrounded by frame A in FIG. 4 becomes a terminal 30 that is shared by the first ball grid array and the second ball grid array.
  • the extending direction (Y-axis in the figure) of the first signal terminal 12-1 and the second signal terminal 12-2 is the same as that of the first converter 17-1 and the second converter 17-1. Since it is perpendicular to the arrangement direction (X axis in the drawing) of the converter 17-2, the high frequency signal transmitted to the first signal terminal 12-1 is transmitted to the second converter 17-2 and the second ball grid. There is no interference with the second pseudo waveguide by the array, and the high frequency signal transmitted to the second signal terminal 12-2 is transmitted to the first converter 17-1 and the first ball grid. The array does not interfere with the first pseudo waveguide.
  • the terminal surrounded by frame B in FIG. 4 is the terminal 30 shared between adjacent ball grid arrays. If the converter is formed adjacent to the right side of the second converter 17-2 in the drawing, the terminal surrounded by the frame C in FIG. 4 is a terminal shared between adjacent ball grid arrays. Becomes 30.
  • the first ball grid array formed by the first terminal 30-1 and the second ball grid array formed by the second terminal 30-2 are integrated with the first waveguide component 20-1 and the second ball grid array formed by the second terminal 30-2. It also serves to mechanically connect the second waveguide component 20-2 to the first transducer component 10-1 and second transducer component 10-2, which are integrally configured.
  • the microstrip line-waveguide converter according to the first embodiment in each microstrip line-waveguide converter, the microstrip line-waveguide converter according to the first embodiment, multiple microstrip line-waveguide converters are arranged in a direction perpendicular to the extending direction of the signal conductor, so multiple microstrip line-waveguide converters can be They can be densely arranged at narrow intervals in a direction perpendicular to the extending direction of the signal conductor.
  • the interval dx between the adjacent waveguides 24-1 and 24-2 is set to a half wavelength with respect to the wavelength of the high frequency wave propagating through the waveguides, or By making the wavelength less than half a wavelength, a plurality of waveguides can be densely arranged at narrow intervals in a direction perpendicular to the extending direction of the signal conductor. Moreover, since the interval dx between the adjacent waveguides 24-1 and 24-2 is set to half a wavelength or less than half a wavelength, the beam can be directed in any direction in the half space on the XZ plane in the radiation direction, the +Z direction in the figure. An antenna device that does not generate grating lobes even during scanning can be obtained.
  • the microstrip line-waveguide converter according to the second embodiment includes a first converter component 10-1, a first waveguide component 20-1, and a second converter component 10-2. and the second waveguide configuration section 20-2, that is, the first ball grid array and the second ball grid array corresponding to the pair of adjacent transducer configuration section and waveguide configuration section, the adjacent conversion
  • the terminals 30-1 and 30-2 that constitute the first ball grid array and the second ball grid array located between the pair of the waveguide component and the waveguide component as the common terminal 30,
  • a plurality of microstrip line-waveguide converters can be arranged more closely at narrow intervals in a direction perpendicular to the direction in which the signal conductor extends.
  • Embodiment 3 A waveguide-microstrip line converter and antenna device according to Embodiment 3 will be explained using FIGS. 6 and 7.
  • the waveguide-microstrip line converter according to the third embodiment is such that the waveguide-microstrip line converter according to the second embodiment converts two waveguide-microstrip line converters into the signal conductor 12.
  • two waveguides having the same configuration as the waveguide-microstrip line converter according to the second embodiment are further arranged in the direction orthogonal to the two arrangement directions. The difference is that the wave tube-microstrip line converter is arranged, and the other points are the same.
  • the waveguide-microstrip line converter according to the third embodiment has two axes perpendicular to the tube axis of the waveguide, two axes each on the X axis and the Y axis, assuming that the tube axis is the Z axis.
  • a waveguide-to-microstrip line converter is arranged.
  • two waveguide-to-microstrip line converters according to the third embodiment are shown as an example in which two waveguides are arranged on each of the X-axis and Y-axis, the number is not limited to two. It also includes those in which three or more are arranged on each axis.
  • the two waveguide-to-microstrip line converters arranged along the X-axis are the first waveguide-to-microstrip line converter shown as the waveguide-to-microstrip line converter according to the second embodiment. and the second waveguide-to-microstrip line converter. Additionally, the two waveguide-to-microstrip line converters arranged along the Y axis include a first waveguide-to-microstrip line converter and a second waveguide-to-microstrip line converter at 90°. This is similar to the arrangement in which the waveguides are rotated by a degree, and will be explained as a third waveguide-to-microstrip line converter and a fourth waveguide-to-microstrip line converter.
  • Each of the first waveguide-microstrip line converter to the fourth waveguide-microstrip line converter has the same configuration as the waveguide-microstrip line converter according to the first embodiment. Components corresponding to those in the waveguide-microstrip line converter according to Embodiment 1 will be described with reference numerals -1 to -4 to clarify their correspondence.
  • FIG. 6 a plan view (FIG. 6) showing the converter components and terminals and the waveguide configuration
  • the side surface along the propagation direction of the high-frequency signal in the waveguide is from the first waveguide-microstrip line converter to the fourth waveguide.
  • Each microstrip line converter is substantially the same as the waveguide-microstrip line converter according to the first embodiment. Note that in FIGS. 6 and 7, the same symbols as those in FIGS. 4 and 5 indicate the same or equivalent parts.
  • the waveguide-microstrip line converter includes a first waveguide-microstrip line converter to a fourth waveguide-microstrip line converter.
  • the first waveguide-microstrip line converter and the second waveguide-microstrip line converter have two axes orthogonal to the tube axis of the waveguide, and if the tube axis is the Z axis, the X axis and They are arranged in parallel along one axis of the Y axis, in this example the X axis shown in FIGS. 6 and 7.
  • the third waveguide-to-microstrip line converter and the fourth waveguide-to-microstrip line converter are arranged on the other axis of the X-axis and the Y-axis, in this example the Y-axis shown in FIGS. 6 and 7. are arranged in parallel along the
  • the first waveguide-microstrip line converter includes a first converter component 10-1, a first waveguide component 20-1, and a plurality of ball-shaped first terminals 30-1. Equipped with.
  • the second waveguide-microstrip line converter includes a second converter component 10-2, a second waveguide component 20-2, and a plurality of ball-shaped second terminals 30-2. Equipped with.
  • the third waveguide-microstrip line converter includes a third converter component 10-3, a third waveguide component 20-3, and a plurality of ball-shaped third terminals 30-3. Equipped with.
  • the fourth waveguide-microstrip line converter includes a fourth converter component 10-4, a fourth waveguide component 20-4, and a plurality of ball-shaped fourth terminals 30-4. Equipped with.
  • the first waveguide-microstrip line converter and the second waveguide-microstrip line converter are the first waveguide-microstrip line converter in the waveguide-microstrip line converter according to the second embodiment. Since the microstrip line converter and the second waveguide-to-microstrip line converter are the same, the third waveguide-to-microstrip line converter and the fourth waveguide-to-microstrip line converter are I will mainly explain.
  • the structures of the third converter component 10-3 and the fourth converter component 10-4 are basically a first waveguide-microstrip line converter and a second waveguide-microstrip line converter. Since the structure is the same as that of a strip line converter, the main points will be explained below.
  • the third signal conductor 12-3 and the fourth signal conductor 12-4 extend linearly in parallel to the illustrated On the side on which the waveguide-to-microstrip line converter and the second waveguide-to-microstrip line converter are arranged.
  • the third signal conductor 12-3 and the fourth signal conductor 12-4 extend linearly parallel to the Y-axis, so they do not interfere with each other.
  • the third converter component 10-3 and the fourth converter component 10-4 have a dielectric 11, a first conductor layer 13, a second conductor layer 15, and an inner conductor layer in the converter formation region. 18 is shared by the first converter component 10-1 and the second converter component 10-2.
  • the third converter component 10-3 includes a third signal conductor 12-3, a third probe 14-3, and a plurality of third through conductors 16-3.
  • the fourth converter component 10-4 includes a fourth signal conductor 12-4, a fourth probe 14-4, and a plurality of fourth through conductors 16-4.
  • the distance dy between the third signal conductor 12-3 and the fourth signal conductor 12-4 is the same as the distance dx between the first signal conductor 12-1 and the second signal conductor 12-2. This is set to be half the wavelength of the high frequency waves propagating through the waveguides 24-3 and 24-4.
  • the set interval dy is not limited to a half wavelength of the high frequency wavelength, and may be increased or decreased depending on the design of the waveguides 24-1 and 24-2.
  • the distance dy is less than half a wavelength with respect to the wavelength of the radio frequency. Note that when there are three or more waveguide-microstrip line converters along the Y axis, the interval between adjacent signal conductors 12 is the set interval dy.
  • the first conductor layer 13 has an angle of 45 degrees in the longitudinal direction with respect to the extending direction of the third signal conductor 12-3 and the fourth signal conductor 12-4. It has a third opening 13a-3 and a fourth opening 13a-4.
  • the longitudinal direction of the first opening 13a-1 and the second opening 13a-2 also forms an angle of 45 degrees with respect to the X axis.
  • the third opening 13a-3 and the fourth opening 13a-4 are arranged in parallel, and the distance between the center of the third opening 13a-3 and the center of the fourth opening 13a-4 is set.
  • the distance dy is the same as the distance dy between the third signal conductor 12-3 and the fourth signal conductor 12-4.
  • each of the plurality of third through conductors 16-3 penetrates from one surface to the other surface of the dielectric 11, and has an upper end connected to the first conductor layer 13 and a lower end connected to the second conductor layer 15. electrically connected to.
  • the plurality of third through conductors 16-3 are arranged at intervals so as to surround the third opening 13a-3 of the first conductor layer 13.
  • the plurality of third through conductors 16-3 constitute a pseudo waveguide in a region surrounding the third opening 13a-3.
  • the first conductor layer 13 including the third opening 13a-3, the plurality of third through conductors 16-3, and the second conductor layer 15 allow high frequency signals transmitted through the microstrip line and the third conductor layer 13 to be connected to each other.
  • a third conversion unit 17-3 is configured to perform conversion with a high frequency electromagnetic wave propagating through the wave tube 24-3. Further, a back short of the third waveguide 24-3 is formed by the plurality of third through conductors 16-3 and the second conductor layer 15. Since the fourth signal conductor 12-4 extends linearly along the X-axis, the high frequency signal transmitted through the fourth signal conductor 12-4 does not interfere with the third converter 17-3.
  • each of the plurality of fourth through conductors 16-4 penetrates from one side of the dielectric 11 to the other side, and has an upper end connected to the first conductive layer 13 and a lower end connected to the second conductive layer 15. electrically connected to.
  • the plurality of fourth through conductors 16-4 are arranged at intervals so as to surround the fourth opening 13a-4 of the first conductor layer 13.
  • the plurality of fourth through conductors 16-4 constitute a pseudo waveguide in a region surrounding the fourth opening 13a-4.
  • the first conductor layer 13 including the fourth opening 13a-4, the plurality of fourth through conductors 16-4, and the second conductor layer 15 allow high frequency signals transmitted through the microstrip line and the fourth conductor layer 13 to be connected to each other.
  • a fourth conversion unit 17-4 is configured to perform conversion with a high-frequency electromagnetic wave propagating through the wave tube 24-4. Further, a back short of the fourth waveguide 24-4 is formed by the plurality of fourth through conductors 16-4 and the second conductor layer 15. Since the third signal conductor 12-3 extends linearly along the X-axis, the high frequency signal transmitted through the third signal conductor 12-3 does not interfere with the fourth converter 17-4.
  • the third waveguide configuration section 20-3 and the fourth waveguide configuration section 20-4 have a dielectric material 21, a conductor layer 22 on one side, and a conductor layer 23 on the other side in the waveguide formation region. This is common to the first waveguide configuration section 20-1 and the second waveguide configuration section 20-2.
  • the dielectric 21 has a third penetration part 21a-3 penetrating from one surface to the other surface in a portion forming the third waveguide 24-3, and forms a fourth waveguide 24-4.
  • a fourth penetrating portion 21a-4 is provided at the portion where the cylindrical portion 21a-4 penetrates from one surface to the other surface.
  • the angle between the longitudinal direction of the third through-hole 21a-3 and the extending direction of the third signal conductor 12-3, that is, the X-axis, is 45 degrees.
  • the longitudinal direction of the third penetrating portion 21a-3 also forms an angle of 45 degrees with respect to the Y axis.
  • the angle between the longitudinal direction of the fourth through-hole 21a-4 and the extending direction of the fourth signal conductor 12-4, that is, the X-axis, is 45 degrees.
  • the longitudinal direction of the fourth penetrating portion 21a-4 also forms an angle of 45 degrees with respect to the Y axis.
  • the third penetration part 21a-3 and the fourth penetration part 21a-4 are arranged in parallel, and the distance between the center of the third penetration part 21a-3 and the center of the fourth penetration part 21a-4 is set.
  • the distance dy is the same as the distance dy between the third signal conductor 12-3 and the fourth signal conductor 12-4.
  • the one-side conductor layer 22 has a third opening 22a-3 that communicates with the third through-hole 21a-3 at the position of the third through-hole 21a-3, and a fourth opening 22a-3 that communicates with the third through-hole 21a-3. It has a fourth opening 22a-4 that communicates with the fourth through-hole 21a-4 at the position of the through-hole 21a-4.
  • the other side conductor layer 23 has a third opening 23a-3 communicating with the third penetration 21a-3 at the position of the third penetration 21a-3, and a third opening 23a-3 communicating with the third penetration 21a-3. It has a fourth opening 23a-4 that communicates with the fourth through-hole 21a-4 at the position.
  • the third waveguide 24-3 is constituted by a third waveguide layer 25-3 formed on the entire inner surface of the third penetrating portion 21a-3. It is a hollow waveguide having an enclosed third hollow part 24a-3.
  • the third waveguide layer 25-3 has a cylindrical shape, and one end of the third waveguide layer 25-3 is connected to the first conductor layer 22 at the third opening 22a-3 of the first conductor layer 22. 22.
  • the other end of the third waveguide layer 25-3 is electrically connected to the other side conductor layer 23 at the third opening 23a-3 of the other side conductor layer 23.
  • the fourth waveguide 24-4 is constituted by a fourth waveguide layer 25-4 formed on the entire inner surface of the fourth penetrating portion 21a-4. It is a hollow waveguide having an enclosed fourth hollow section 24a-4.
  • the fourth waveguide layer 25-4 has a cylindrical shape, and one end of the fourth waveguide layer 25-4 is connected to the first conductor layer 22 at the fourth opening 22a-4 of the first conductor layer 22. 22.
  • the other end of the fourth waveguide layer 25-4 is electrically connected to the other side conductor layer 23 at the fourth opening 23a-4 of the other side conductor layer 23.
  • the extending directions of the third and fourth signal conductors 12-4 form an angle of 45 degrees with the illustrated X-axis, and an angle of 45 degrees with the Y-axis.
  • the major axis a which is the length in the longitudinal direction of each of them, is long enough to propagate high-frequency electromagnetic waves, and in this example, is longer than half the wavelength of the electromagnetic waves.
  • the center of the cross section and both end surfaces 24b-3 and 24c-3 of the third hollow part 24a-3 in the third waveguide 24-3, and the fourth hollow part in the fourth waveguide 24-4 The distance between the cross section of 24a-4 and the centers of both end surfaces 24b-4 and 24c-4 is the set distance dy, which is the distance between the third signal conductor 12-3 and the fourth signal conductor 12-4. It is the same as dy, and is half the wavelength of the high frequency. That is, the interval between the third waveguide 24-3 and the fourth waveguide 24-4 is the set interval dy, which is half the wavelength of the high frequency.
  • each of the third wave guide 24-3 and the fourth waveguide 24-4 transmits high-frequency electromagnetic waves into space. Or it can be used as an antenna to receive high frequency electromagnetic waves from space.
  • Both the third waveguide 24-3 and the fourth waveguide 24-4 may be used as a transmitting antenna or a receiving antenna, or one may be used as a transmitting antenna and the other as a receiving antenna.
  • the open end surface 24c-3 of the third waveguide 24-3 and the fourth waveguide 24-4 By changing the phase of the high frequency wave emitted from the open end surface 24c-4 of the wave tube 24-4, the direction of beam orientation on the illustrated XZ plane can be changed. Furthermore, since the set interval dy between the third waveguide 24-3 and the fourth waveguide 24-4 is set to half a wavelength or less than half a wavelength, It is possible to obtain an antenna device in which grating lobes are not generated even when the beam is scanned in any direction in half space.
  • a plurality of waveguides in the direction along the X axis in this example, a first waveguide 24-1 and a second waveguide 24-2, are used as a first set of antennas.
  • a plurality of waveguides in the direction along the Y axis, in this example, the third waveguide 24-3 and the fourth waveguide 24-4 are the second set of antennas, and the first set of antennas is Both the antenna and the second set of antennas may be used as transmitting antennas or receiving antennas, or one set may be used as a transmitting antenna and the other set may be used as a receiving antenna.
  • each of the one end surface 24c-3 of the third waveguide 24-3 and the one end surface 24c-4 of the fourth waveguide 24-4 has a cross section of the third waveguide 24-3.
  • One end surface 24c-3 and a waveguide (not shown) having the same shape as the one end surface 24c-4 of the fourth waveguide 24-4 are connected in communication with each other, and the waveguide is connected to the connected waveguide. It may also be a device that propagates high frequencies between it and a high frequency circuit.
  • an interval is formed so as to surround the third opening 13a-3 of the first conductor layer 13 and the third opening 23a-3 of the other side conductor layer 23 in the converter component 10.
  • a plurality of third terminals 30-3 constituting a third ball grid array arranged at intervals electrically connect the other side conductor layer 23 and the first conductor layer 13.
  • a fourth ball grid array arranged at intervals so as to surround the fourth opening 13a-4 of the first conductor layer 13-1 and the fourth opening 23a-4 of the other side conductor layer 23.
  • a plurality of fourth terminals 30-4 forming the second side electrically connect the other side conductor layer 23 and the first conductor layer 13.
  • the third ball grid array formed by the plurality of third terminals 30-3 arranged in this manner provides a third ball grid array for the third transducer component 10-3 and the third waveguide component 20-3.
  • a fourth ball grid array with a plurality of fourth terminals 30-4 constitutes a pseudo waveguide and is connected to the fourth transducer component 10-4 and the fourth waveguide component 20-4.
  • a fourth pseudo waveguide is constructed.
  • the plurality of third terminals 30-3 constituting the third ball grid array and the plurality of fourth terminals 30-4 constituting the fourth ball grid array are connected to the third signal conductor 12-3, respectively. and a direction perpendicular to the extending direction of the fourth signal conductor 12-4, in which the signal conductor 12-4 is moved in parallel by an interval dy along the illustrated Y axis. That is, the intervals between the corresponding third terminal 30-3 and fourth terminal 30-4 are all set to the interval dy, and as a result, the third converter 17-3 and the fourth converter 17- 4 and the terminal surrounded by frame E in FIG. 6 becomes a terminal 30 that is shared by the third ball grid array and the fourth ball grid array.
  • the extending direction (X-axis in the figure) of the third signal terminal 12-3 and the fourth signal terminal 12-4 is the same as that of the third converting section 17-3 and the fourth converting section 17-3. Since it is perpendicular to the arrangement direction (Y-axis shown) of the converter 17-4, the high frequency signal transmitted to the third signal terminal 12-1 is transmitted to the fourth converter 17-4 and the fourth ball grid.
  • the array does not interfere with the fourth pseudo waveguide, and the high frequency signal transmitted to the fourth signal terminal 12-4 is transmitted to the third converter 17-3 and the third ball grid. There is no interference with the third pseudo waveguide by the array.
  • the terminal surrounded by the frame F in FIG. 6 is the terminal 30 that is shared between adjacent ball grid arrays.
  • the third ball grid array formed by the third terminal 30-3 and the fourth ball grid array formed by the fourth terminal 30-4 are integrated with the third waveguide component 20-3 and the fourth ball grid array formed by the fourth terminal 30-4. It also serves to mechanically connect the waveguide component 20-4 of No. 4 to the integrally configured third and fourth transducer components 10-3 and 10-4.
  • the microstrip line-waveguide converter according to the third embodiment in each microstrip line-waveguide converter, the microstrip line-waveguide converter according to the first embodiment In addition to having the same effect as the converter, it also has a plurality of microstrip line-waveguides in the X-axis direction shown in FIGS. 6 and 7, similar to the microstrip line-waveguide converter according to the second embodiment.
  • the transducers can be arranged densely at narrow intervals, and a plurality of microstrip line-waveguide converters can also be arranged densely at narrow intervals in the direction perpendicular to the extending direction of the signal conductor in the Y-axis direction.
  • the microstrip line-waveguide converter according to the third embodiment has waveguides 24-1 and 24 adjacent to each other in two directions perpendicular to the tube axis of the waveguide, that is, the X-axis and the Y-axis.
  • -2 interval dx and the interval dy between adjacent waveguides 24-3 and 24-4 can be made half a wavelength or less than a half wavelength with respect to the wavelength of the high frequency wave propagating in the waveguide, and can be made half a wavelength or half a wavelength. By making it less than the wavelength, it is possible to arrange densely at narrow intervals in the X-axis direction and the Y-axis direction.
  • the interval dx between the adjacent waveguides 24-1 and 24-2 is set to half a wavelength or less than a half wavelength
  • the radiation direction of the adjacent waveguides 24-1 and 24-2 which is - Grating lobes are not generated even when the beam is scanned in any direction in the half-space on the Z plane
  • the distance dy between adjacent waveguides 24-3 and 24-4 is set to half a wavelength or less than half a wavelength. Therefore, it is possible to obtain an antenna device in which grating lobes are not generated even if the beam is scanned in any direction in the half space on the YZ plane in the radiation direction of the adjacent waveguides 24-3 and 24-4, the +Z direction in the figure. be able to.
  • the microstrip line-waveguide converter according to the third embodiment is adjacent to the microstrip line-waveguide converter according to the second embodiment in the X-axis direction shown in FIGS. 6 and 7.
  • the terminals 30-1 and 30-2 that constitute the first ball grid array and the second ball grid array located between the pair of the converter component and the waveguide component as the common terminal 30, a plurality of microstrip line-waveguide converters can be closely arranged at narrow intervals, and also in the Y-axis direction, the third converter component 10-3 and the third waveguide component 20- In the third ball grid array and the fourth ball grid array corresponding to the pair of the third and fourth transducer components 10-4 and the fourth waveguide component 20-4, adjacent transducer components
  • the terminals 30-3 and 30-4 that constitute the third ball grid array and the fourth ball grid array which are located between the pair of waveguide components and the pair of waveguide components, as the common terminal 30, Can be placed more densely.
  • FIG. 8 is not a cross-sectional view of a specific location along the Z-axis direction shown in FIG. 8, which is the propagation direction of a high-frequency signal in a waveguide in a waveguide-microstrip line converter.
  • FIG. 8 is a conceptual side view along the Z-axis direction, conceptually showing the layer configuration and the structure provided in each layer in a cross section.
  • FIG. 8 is a conceptual side view along the Z-axis direction, conceptually showing the layer configuration and the structure provided in each layer in a cross section.
  • the X axis is a direction perpendicular to the extending direction of the signal conductor
  • the Y axis is the extending direction of the signal conductor
  • the Z axis is the propagation direction of the high frequency signal in the waveguide.
  • Z axis are three mutually perpendicular axes.
  • the same symbols as those shown in FIGS. 1 to 3 indicate the same or corresponding parts.
  • the radar device has one end surface 24c of the waveguide 24 as an open end surface, so that the waveguide 24 can be used as an antenna for transmitting high-frequency electromagnetic waves into space or receiving high-frequency electromagnetic waves from space.
  • the waveguide 24 is used as a transmitting antenna, it is possible to use a monolithic microwave integrated circuit (MMIC) 40 from a high-frequency circuit for signal processing built into the monolithic microwave integrated circuit (MMIC) 40. Based on a high frequency signal in a high frequency region such as a wave band or a microwave band, high frequency waves are radiated from the open end surface 24c of the waveguide 24.
  • MMIC monolithic microwave integrated circuit
  • the open end surface 24c of the waveguide 24 A high frequency signal is received from the high frequency circuit, a high frequency signal is inputted to the high frequency circuit based on the received high frequency signal, and the high frequency circuit processes the high frequency signal.
  • waveguide 24 In order to avoid complication of explanation, one example of the waveguide 24 will be explained below, but as shown in the waveguide-microstrip line converter according to the second embodiment, a waveguide that functions as an antenna may be used.
  • a radar device in which a plurality of tubes 24 are arranged along one of two axes perpendicular to the tube axis of the waveguide 24, and a waveguide-to-microstrip line converter according to the third embodiment are shown.
  • a radar device may be provided in which a plurality of waveguides 24 functioning as antennas are arranged along each of two directions.
  • the radar device includes a converter component 10, a waveguide component 20, a plurality of ball-shaped terminals 30, and an MMIC 40 having a built-in high frequency circuit.
  • the converter component 10 includes a converter dielectric 11, a signal conductor 12, a first conductor layer 13, a probe 14, a second conductor layer 15, a plurality of through conductors 16, and an internal conductor layer 18. Since it is the same as the converter component 10 shown in the waveguide-microstrip line converter according to the first embodiment, detailed explanation will be omitted.
  • the extending direction of the signal conductor 12 is the illustrated Y-axis direction in the transducer forming region of the dielectric 11. Therefore, the longitudinal direction of the opening 13a in the first conductor layer 13 forms an angle of 45 degrees with respect to the X axis. The longitudinal direction of the opening 13a also forms an angle of 45 degrees with respect to the Y axis. Note that a probe 14 located within the opening 13a is continuously formed at one end of the signal conductor 12.
  • a signal line that constitutes a microstrip line by the ground plane formed in the inner layer of the dielectric 11 and the dielectric 11 is connected. It is formed. Since the signal line is formed outside the converter forming area, it does not necessarily have to extend in the Y-axis direction shown in the figure.
  • the signal line is also shown as the signal conductor 12. Further, it is preferable to use a material with a relatively small dielectric loss tangent for the dielectric 11 in order to reduce attenuation of high frequency signals transmitted to the signal conductor 12 and signal line forming the microstrip line.
  • the waveguide component 20 includes a dielectric 21, a conductor layer 22 on one side, a conductor layer 23 on the other side, and a waveguide 24 in a waveguide formation region of a dielectric 21 for a waveguide. Since it is substantially the same as the waveguide component 20 shown in the waveguide-microstrip line converter according to No. 1, detailed explanation will be omitted.
  • FIG. 8 the longitudinal direction of the penetration part 21a formed in the waveguide formation region of the dielectric 21, the longitudinal direction of the opening 22a formed in the conductor layer 22 on one side, and the longitudinal direction of the opening 22a formed in the conductor layer 23 on the other side are shown.
  • the longitudinal direction of the opening 23a and the longitudinal direction of the cross section and both end surfaces 24b and 24c of the hollow portion 24a of the waveguide 24 form an angle of 45 degrees with respect to the illustrated X-axis.
  • Each longitudinal direction also forms an angle of 45 degrees with respect to the Y axis.
  • a plurality of terminals 30 constituting a ball grid array arranged at intervals so as to surround the opening 13a of the first conductor layer 13 and the opening 23a of the other side conductor layer 23 are connected to the other side conductor layer 23. and the first conductor layer 13 are electrically connected.
  • the ball grid array made up of the plurality of terminals 30 arranged in this manner is a pseudo-type for the transducer component 10 and the waveguide component 20 whose longitudinal direction makes an angle of 45 degrees with respect to the illustrated X-axis. Configure a waveguide.
  • the dielectric 21 has a multilayer structure including two dielectric layers, and has a mounting area in which the MMIC 40 and the like are mounted, which are continuous to the waveguide forming area.
  • the mounting area in the dielectric 21 is located at a position that does not face the transducer forming area in the dielectric 11 for the transducer, and the surface area of the waveguide forming area and the mounting area in the dielectric 21 is the same as the transducer forming area in the dielectric 11. Greater than the surface area of the region.
  • the one-side conductor layer 22 is also formed on one side of the dielectric 21 in the mounting area continuously from the waveguide forming area.
  • the inner conductor layer 26 is formed in the inner layer of the waveguide forming region and the mounting region of the dielectric 21, and serves as the ground plane of the microstrip line.
  • the inner conductor layer 26 has an opening 26a having the same cross-sectional shape as the penetration part 21a at the position of the penetration part 21a of the dielectric 21, and the waveguide layer 25 constituting the hollow part 24a in the opening 26a. electrically connected.
  • the inner conductor layer 26 and the inner conductor layer 18 in the transducer forming region are electrically connected by through holes and ball-shaped terminals.
  • the MMIC 40 is mounted on the other surface of the dielectric 21 in the mounting area.
  • the MMIC 40 has a built-in high frequency circuit that is responsible for transmitting and receiving high frequency waves used as a radar.
  • Each terminal in the MMIC 40 is connected to a signal wiring layer, a power supply wiring layer, and a ground wiring layer (in FIG. 8, one wiring layer is representatively indicated by reference numeral 28) formed on the other surface of the dielectric 21 in the mounting area. ) and a transmission line 27 for transmitting high-frequency signals through a ball-shaped terminal 33 electrically and mechanically. Connections between each terminal in the MMIC 40 and the wiring layer etc. 28 and the transmission line 27 may be made by soldering.
  • the transmission line 27 is electrically connected to the output terminal, input terminal, or input/output terminal of the MMIC 40 by a terminal 33, and the other end of the transmission line 27 is electrically connected to the other end of the signal conductor 12 by a ball-shaped terminal 32. connected.
  • the transmission path 27 includes the internal conductor layer 26 in the mounting area and the dielectric 21 sandwiched between the transmission path 27 and the internal conductor layer 26, and constitutes a microstrip line that transmits a high frequency signal.
  • the length L1 from the connection point at one end connected to the terminal 33 of the transmission line 27 to the connection point at the other end connected to the terminal 32 is the length L1 from the connection point at the other end connected to the terminal 32 of the signal conductor 12. It is shorter than the length L2 to the probe. By making the length L1 shorter than the length L2, it is possible to reduce attenuation of the high frequency signal transmitted through the transmission line 27 forming the microstrip line.
  • a high frequency signal is transmitted from the MMIC 40 via the transmission path 27, and the power radiated from the open end surface 24c of the waveguide 24 is received from the open end surface 24c of the waveguide 24 and transmitted to the MMIC 40 via the transmission path 27.
  • the detection performance of the radar device can be improved.
  • the size of the dielectric 21 is increased by the mounting area compared to only the waveguide forming area constituting the waveguide 24, that is, it is longer by the length including the length L2, but the size is increased by the length including the length L2. Since the resulting difference in size is only slight, the length L2 may be adjusted as necessary.
  • a high frequency signal for transmission is output from the output terminal of the MMIC 40 to the microstrip line including the transmission line 27 via the terminal 33.
  • the high frequency signal transmitted through the transmission line 27 is transmitted via the terminal 32 to the microstrip line including the signal conductor 12 in the waveguide-microstrip line converter.
  • the high frequency signal transmitted to the microstrip line including the signal conductor 12 is converted into the waveguide 24 at the probe 14 via a pseudo waveguide formed by a ball grid array with a plurality of terminals 30.
  • the converted high-frequency signal (electromagnetic wave) propagates through the waveguide 24, and the high-frequency electromagnetic wave is radiated into space from the open end surface 24c on the other side of the waveguide 24, which functions as a transmitting antenna.
  • the open end surface 24c of the waveguide 24 receives high-frequency electromagnetic waves from space, and the waveguide 24 propagates the received electromagnetic waves.
  • the electromagnetic wave is converted into a high frequency signal by the microstrip line including the signal conductor 12, and the converted high frequency signal is transmitted to the microstrip line including the signal conductor 12.
  • the high frequency signal transmitted through the signal conductor 12 is transmitted to the microstrip line including the transmission line 27 via the terminal 32.
  • the high frequency signal transmitted through the transmission line 27 is input to the input terminal of the MMIC 40 via the terminal 33, and is subjected to signal processing by the MMIC 40.
  • the radar device according to the first embodiment has the following advantages: In the figure, since the waveguide 24 is provided with the end surface 24b on the other end side whose longitudinal direction forms an angle of 45 degrees with respect to the X-axis, the exclusive width in the Y-axis direction can be reduced. Specifically, the exclusive width in the Y-axis direction can be reduced to 1/ ⁇ 2. As a result, the radar device can be made smaller.
  • the radar device includes a dielectric 21 in which a waveguide component 20 including a waveguide 24 is formed, and a mounted component such as an MMIC 40 having a built-in high-frequency circuit continuously in the waveguide formation region. Since it has a mounting area for mounting, it is possible to reduce the size of the radar device. Furthermore, the dielectric 21 is provided with a mounting area for mounting components necessary for the operation of the radar device, the dielectric 21 is made of a material with a relatively large dielectric loss tangent, and the signal conductor 12 through which high-frequency signals are transmitted is formed.
  • the dielectric material 11 used in the converter component 10 is made of a material with a relatively small dielectric loss tangent, the high frequency signal transmitted to the signal conductor 12 can be reduced without using expensive materials with a relatively small dielectric loss tangent. Since signal attenuation is reduced and the components are mounted on an inexpensive material with a relatively large dielectric loss tangent, the radar device as a whole can be manufactured at low cost. That is, by using a material with a dielectric loss tangent larger than that of the dielectric 11, the attenuation of the transmitted high-frequency signal can be reduced, and the radar device as a whole can be manufactured at low cost.
  • the waveguide 24 having the open end surface 24c functioning as an antenna is used as a waveguide.
  • the Y-axis in FIG. A plurality of radar devices may be arranged.
  • the plurality of signal conductors 12 in the plurality of converter components are electrically connected to the MMIC 40 mounted in the mounting area of the waveguide dielectric 21 via the corresponding terminals 32 and the corresponding transmission paths 27. connected to.
  • the intervals between adjacent waveguides 24 are set according to the wavelength of the high frequency wave propagating through the waveguides 24, as in the second embodiment. half the wavelength.
  • the interval between adjacent waveguides 24 half a wavelength, grating lobes are not generated between adjacent waveguides 24, and the plurality of waveguides 24, each of which functions as an antenna, are narrowed in one direction.
  • a radar device that can be arranged closely at intervals can be obtained.
  • the waveguide 24 having the open end surface 24c functioning as an antenna is used as a waveguide.
  • a plurality of radar devices may be arranged along two axes perpendicular to the tube axis of the tube 24, ie, the X axis and the Y axis in FIG. 8.
  • the plurality of signal conductors 12 in the plurality of converter components are electrically connected to the MMIC 40 mounted in the mounting area of the waveguide dielectric 21 via the corresponding terminals 32 and the corresponding transmission paths 27. connected to.
  • the intervals between adjacent waveguides 24 are set according to the wavelength of the high frequency wave propagating through the waveguides 24, as in the third embodiment. half the wavelength.
  • the intervals between the adjacent waveguides 24 are determined by the wavelength of the high frequency wave propagating through the waveguides 24 in the same way as shown in Embodiment 3. half wavelength.
  • grating lobes are not generated between adjacent waveguides 24, and a plurality of waveguides each functioning as an antenna are created.
  • a radar device in which the antennas 24 can be closely arranged at narrow intervals in two directions can be obtained. Since grating lobes are not generated in each of the two axes, a radar device that can prevent mismeasured angles can be obtained.
  • the plurality of waveguides 24 arranged along one axis and the plurality of waveguides 24 arranged along the other axis may all be used as transmitting antennas or receiving antennas.
  • the plurality of waveguides 24 arranged along the other axis may be used as a transmitting antenna, and the plurality of waveguides 24 arranged along the other axis may be used as a receiving antenna.
  • all the waveguides 24 are open.
  • the end faces 24c have the same direction, that is, the open end faces 24c have the same longitudinal direction; in this example, the angle with respect to the axis is 45 degrees, and radiation is radiated from the open end face 24c of the waveguide 24 functioning as a transmitting antenna.
  • the polarization of the high frequency wave and the polarization of the high frequency wave received by the open end surface 24c of the waveguide 24 functioning as a receiving antenna are the same. Therefore, high frequency waves can be received using the same polarization as the high frequency waves being transmitted.
  • a plurality of waveguides 24 arranged along one axis function as a transmitting antenna or a receiving antenna, and the horizontal position of the target is detected by the phase difference of the transmitted or received high frequency waves, and the horizontal position of the target is detected along the other axis.
  • the plurality of waveguides 24 arranged in a row function as a transmitting antenna or a receiving antenna, and the present invention can also be applied as a radar device that detects the position of a target in the vertical direction based on the phase difference between the transmitted or received high frequency waves.
  • the waveguide-microstrip line converter, antenna device, and radar device according to the present disclosure can be applied to the wireless communication field and radar field that use high-frequency signals in the microwave band or millimeter wave band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Waveguide Aerials (AREA)

Abstract

A waveguide-to-microstrip line converter according to the present invention is provided with a converter configuration unit (10) and a waveguide configuration unit (20). The converter configuration unit comprises: a dielectric (11); a straight linear signal conductor (12) formed on one surface of the dielectric (11); a first conductor layer (13) formed on one surface of the dielectric (11) and having an opening (13a) whose lengthwise direction forms a 45° angle relative to the direction of extension of the signal conductor (12); a probe (14) that is formed on one surface of the dielectric (11), extends continuously from one end of the signal conductor (12), and is located inside the opening (13a) of the first conductor layer (13); and a second conductor layer (15) that is formed on another surface of the dielectric (11) so as to oppose the first conductor layer (13) and is electrically connected to the first conductor layer (11) by a through conductor (16) which passes from one surface to the other surface. The waveguide configuration unit (20) comprises a waveguide (24) which has another end surface (24b) that opposes the opening (13a) of the first conductor layer (13) and whose lengthwise direction forms a 45° angle relative to the direction of extension of the signal conductor (12).

Description

導波管-マイクロストリップ線路変換器、アンテナ装置、及びレーダ装置Waveguide-microstrip line converter, antenna device, and radar device
 本開示は、方式の異なる伝送線路である、マイクロストリップ線路と導波管との間を接続する導波管-マイクロストリップ線路変換器、及び導波管-マイクロストリップ線路変換器を用いたアンテナ装置及びレーダ装置に関する。 The present disclosure relates to a waveguide-to-microstrip line converter that connects a microstrip line and a waveguide, which are transmission lines of different types, and an antenna device using the waveguide-to-microstrip line converter. and radar equipment.
 ミリ波帯等の高周波領域において、信号伝送に際して損失を増加させない導波管から、信号処理のための各種の高周波回路及びその周辺回路が実装された平面基板上に用いられる高周波信号の伝送線路としてのマイクロストリップ線路へ信号を伝送するために、導波管による伝送方式からマイクロストリップ線路による伝送方式に変換する導波管-マイクロストリップ線路変換器、及び導波管-マイクロストリップ線路変換器を用いたアンテナ装置が特許文献1に示されている。 In high frequency regions such as millimeter wave bands, from waveguides that do not increase loss during signal transmission to high frequency signal transmission lines used on flat substrates on which various high frequency circuits for signal processing and their peripheral circuits are mounted. In order to transmit signals to the microstrip line of A conventional antenna device is shown in Patent Document 1.
 特許文献1に示された導波管-マイクロストリップ線路変換器は、導波管と誘電体基板と地導体と線路導体を備え、導波管はY軸に平行な長辺とX軸に平行な短辺とを備える長方形の開口縁部を有し、地導体は誘電体基板の第1の面に設けられ、導波管の開口縁部により囲まれたXY領域に、X軸方向よりもY軸方向が長いスロットを有し、線路導体は誘電体基板の第2の面に設けられる。 The waveguide-microstrip line converter shown in Patent Document 1 includes a waveguide, a dielectric substrate, a ground conductor, and a line conductor, and the waveguide has a long side parallel to the Y axis and a long side parallel to the X axis. The ground conductor is provided on the first surface of the dielectric substrate, and the ground conductor is provided in the XY region surrounded by the opening edge of the waveguide, and It has a slot that is long in the Y-axis direction, and the line conductor is provided on the second surface of the dielectric substrate.
特表2019-138468号公報Special table 2019-138468 publication
 このように構成された導波管-マイクロストリップ線路変換器において、導波管は高周波信号の電力を通過させるためには寸法に制約があり、矩形の導波管の場合、導波管の開口径の長辺を高周波信号の波長に対し半波長よりも大きくする必要がある。
 一方、導波管の端部を開放し導波管をアンテナとした場合、アンテナとする導波管を密に配置したアンテナ装置における導波管-マイクロストリップ線路変換部を小型化することが望まれている。
In a waveguide-to-microstrip line converter configured in this way, the waveguide has dimensions that are limited in order to pass the power of the high-frequency signal, and in the case of a rectangular waveguide, the opening of the waveguide is It is necessary to make the long side of the aperture larger than half the wavelength of the high frequency signal.
On the other hand, when the end of the waveguide is opened and the waveguide is used as an antenna, it is desirable to downsize the waveguide-to-microstrip line conversion part in an antenna device in which waveguides used as antennas are densely arranged. It is rare.
 本開示は上記した点に鑑みてなされたものであり、小型化された導波管-マイクロストリップ線路変換器を得ることを目的とする。 The present disclosure has been made in view of the above points, and aims to obtain a miniaturized waveguide-microstrip line converter.
 本開示に係る導波管-マイクロストリップ線路変換器は、変換器構成部と導波管構成部とを備え、変換器構成部は、誘電体と、誘電体の一面に形成された直線状の信号用導体と、誘電体の一面に形成され、信号用導体の延伸方向に対して長手方向のなす角度が45度である開口部を有する第1の導体層と、誘電体の一面に形成され、信号用導体の一端から連続して延在し、第1の導体層の開口部内に位置するプローブと、誘電体の他面に第1の導体層に対向して形成され、誘電体の一面から他面まで貫通する貫通導体により第1の導体層に電気的に接続される第2の導体層と、を備え、導波管構成部は、第1の導体層の開口部と対向し、信号用導体の延伸方向に対して長手方向のなす角度が45度である他端面を有する導波管を備える。 A waveguide-microstrip line converter according to the present disclosure includes a converter component and a waveguide component, and the converter component includes a dielectric and a linear line formed on one surface of the dielectric. A signal conductor, a first conductor layer formed on one surface of the dielectric and having an opening whose longitudinal direction forms an angle of 45 degrees with respect to the extending direction of the signal conductor, and a first conductor layer formed on one surface of the dielectric. , a probe extending continuously from one end of the signal conductor and located within the opening of the first conductor layer; a second conductor layer electrically connected to the first conductor layer by a through conductor penetrating from the first conductor layer to the other surface, the waveguide component facing the opening of the first conductor layer; A waveguide is provided, the other end surface of which is at an angle of 45 degrees in the longitudinal direction with respect to the extending direction of the signal conductor.
 本開示によれば、導波管-マイクロストリップ線路変換器の小型化が図れる。 According to the present disclosure, it is possible to downsize the waveguide-microstrip line converter.
実施の形態1に係る導波管-マイクロストリップ線路変換器の導波管における高周波信号の伝搬方向に沿った側面概念図である。FIG. 2 is a conceptual side view of the waveguide-microstrip line converter according to the first embodiment along the propagation direction of a high-frequency signal in the waveguide. 実施の形態1に係る導波管-マイクロストリップ線路変換器における変換器構成部及び端子を示す平面図である。FIG. 3 is a plan view showing the converter components and terminals in the waveguide-microstrip line converter according to the first embodiment. 実施の形態1に係る導波管-マイクロストリップ線路変換器における導波管構成部を示す平面図である。FIG. 2 is a plan view showing a waveguide component in the waveguide-microstrip line converter according to the first embodiment. 実施の形態2に係る導波管-マイクロストリップ線路変換器における変換器構成部及び端子を示す平面図である。FIG. 7 is a plan view showing a converter component and terminals in a waveguide-microstrip line converter according to a second embodiment. 実施の形態2に係る導波管-マイクロストリップ線路変換器における導波管構成部を示す平面図である。FIG. 3 is a plan view showing a waveguide component in a waveguide-microstrip line converter according to a second embodiment. 実施の形態3に係る導波管-マイクロストリップ線路変換器における変換器構成部及び端子を示す平面図である。FIG. 7 is a plan view showing a converter component and terminals in a waveguide-microstrip line converter according to Embodiment 3; 実施の形態3に係る導波管-マイクロストリップ線路変換器における導波管構成部を示す平面図である。FIG. 7 is a plan view showing a waveguide component in a waveguide-microstrip line converter according to a third embodiment. 実施の形態4に係るレーダ装置のアンテナとして機能する導波管における高周波信号の伝搬方向に沿った側面概念図である。FIG. 7 is a conceptual side view of a waveguide functioning as an antenna of a radar device according to a fourth embodiment, taken along the propagation direction of a high-frequency signal.
実施の形態1.
 実施の形態1に係る導波管-マイクロストリップ線路変換器及びアンテナ装置を図1から図3を用いて説明する。
 なお、図1は、導波管-マイクロストリップ線路変換器における導波管における高周波信号の伝搬方向、図1図示Z軸方向に沿った特定の箇所の断面図ではなく、導波管-マイクロストリップ線路変換器の層構成及び各層に設けられた構造を分かり易く説明するために、層構成及び各層に設けられた構造を断面により概念的に示した、Z軸方向に沿った側面概念図である。
 また、図1から図3において、X軸は信号用導体12の延伸方向と直交する方向、Y軸は信号用導体12の延伸方向、Z軸は導波管24における高周波信号の伝搬方向であり、X軸、Y軸及びZ軸は互いに垂直な3軸である。
Embodiment 1.
A waveguide-microstrip line converter and antenna device according to a first embodiment will be explained using FIGS. 1 to 3.
Note that FIG. 1 is not a cross-sectional view of a specific location along the Z-axis direction shown in FIG. 1, which is the propagation direction of high-frequency signals in the waveguide in a waveguide-microstrip line converter. In order to clearly explain the layer structure and the structure provided in each layer of the line converter, it is a conceptual side view along the Z-axis direction, conceptually showing the layer structure and the structure provided in each layer in a cross section. .
1 to 3, the X axis is a direction perpendicular to the extending direction of the signal conductor 12, the Y axis is the extending direction of the signal conductor 12, and the Z axis is the propagation direction of the high frequency signal in the waveguide 24. , X axis, Y axis, and Z axis are three axes that are perpendicular to each other.
 実施の形態1に係る導波管-マイクロストリップ線路変換器は、ミリ波帯又はマイクロ波帯等の高周波領域における高周波信号の伝送線路としてのマイクロストリップ線路からの高周波信号を高周波の電磁波に変換して、信号伝送に際して損失を増加させない導波管へ伝送する。
 導波管の他端面を開放することにより、導波管を送信アンテナとして利用でき、送信アンテナとしての導波管の開放端面から高周波の電磁波を空間へ送信するアンテナ装置として、実施の形態1に係る導波管-マイクロストリップ線路変換器を使用できる。
The waveguide-microstrip line converter according to the first embodiment converts a high-frequency signal from a microstrip line, which serves as a transmission line for high-frequency signals in a high-frequency region such as a millimeter wave band or a microwave band, into a high-frequency electromagnetic wave. Then, the signal is transmitted to a waveguide that does not increase loss during signal transmission.
By opening the other end surface of the waveguide, the waveguide can be used as a transmitting antenna, and the antenna device according to the first embodiment transmits high-frequency electromagnetic waves into space from the open end surface of the waveguide as a transmitting antenna. Such waveguide-to-microstrip line converters can be used.
 なお、以下の説明において、高周波信号をマイクロストリップ線路から導波管へ変換する導波管-マイクロストリップ線路変換器を主体に説明するが、逆に、導波管を他端面が開放した受信アンテナとし、空間からの高周波の電磁波を受信アンテナとしての導波管の開放端面から受信し、受信した電磁波を高周波領域における高周波信号に変換してマイクロストリップ線路へ伝送する導波管-マイクロストリップ線路変換器を使用したアンテナ装置にも適用できる。 In the following explanation, we will mainly explain a waveguide-to-microstrip line converter that converts a high-frequency signal from a microstrip line to a waveguide, but conversely, we will explain a waveguide-to-microstrip line converter that converts a high-frequency signal from a microstrip line to a waveguide. Waveguide-to-microstrip line conversion that receives high-frequency electromagnetic waves from space from the open end of the waveguide as a receiving antenna, converts the received electromagnetic waves into high-frequency signals in the high-frequency region, and transmits them to the microstrip line. The present invention can also be applied to an antenna device using a device.
 実施の形態1に係る導波管-マイクロストリップ線路変換器は変換器構成部10と導波管構成部20と、複数のボール状の端子30とを備える。
 変換器構成部10は、マイクロストリップ基板における変換器形成領域に形成される。
 変換器構成部10は、変換器用の誘電体11と信号用導体12と第1の導体層13とプローブ14と第2の導体層15と複数の貫通導体16と内部導体層18を備える。
 なお、以下の説明では煩雑さを避けるため、必要とする場合を除いて、変換器用の誘電体11の「変換用の」を省略して説明する。
The waveguide-microstrip line converter according to the first embodiment includes a converter component 10, a waveguide component 20, and a plurality of ball-shaped terminals 30.
The transducer component 10 is formed in a transducer forming area on the microstrip substrate.
The converter component 10 includes a converter dielectric 11, a signal conductor 12, a first conductor layer 13, a probe 14, a second conductor layer 15, a plurality of through conductors 16, and an inner conductor layer 18.
In the following description, in order to avoid complexity, the term "for conversion" of the converter dielectric 11 will be omitted unless necessary.
 誘電体11はマイクロストリップ基板の誘電体と連続的に形成された誘電体であり、本例では2層の誘電体層を有する多層構造である。
 誘電体11はマイクロストリップ基板の誘電体の変換器形成領域に位置する。
 誘電体11はマイクロストリップ基板に一般的に使用されている、例えば、セラミックである。
 誘電体11は、高周波信号の減衰を少なくするために比較的誘電正接の小さい材料を用いるのが好ましい。
The dielectric 11 is a dielectric formed continuously with the dielectric of the microstrip substrate, and has a multilayer structure having two dielectric layers in this example.
The dielectric 11 is located in the transducer forming area of the dielectric of the microstrip substrate.
The dielectric 11 is, for example, ceramic, which is commonly used in microstrip substrates.
It is preferable to use a material with a relatively small dielectric loss tangent for the dielectric 11 in order to reduce attenuation of high frequency signals.
 信号用導体12は、図2に示すように、誘電体11の一面、この例では表面に形成される。
 信号用導体12は、誘電体11の変換器形成領域において、Y軸方向に直線状に延伸される。つまり、信号用導体12の延伸方向は図示Y軸方向である。
 信号用導体12は、マイクロストリップ基板の誘電体の一面に形成された信号用導体と連続的に形成された導体箔である。
 マイクロストリップ基板において、信号用導体と、誘電体の内層に形成された地板と、信号用導体と地板とに挟まれた誘電体はマイクロストリップ線路を構成する。
 マイクロストリップ基板における信号用導体は高周波回路に電気的に接続される。
As shown in FIG. 2, the signal conductor 12 is formed on one side of the dielectric 11, in this example, on the surface.
The signal conductor 12 extends linearly in the Y-axis direction in the transducer forming region of the dielectric 11 . That is, the extending direction of the signal conductor 12 is the illustrated Y-axis direction.
The signal conductor 12 is a conductive foil formed continuously with the signal conductor formed on one surface of the dielectric of the microstrip substrate.
In a microstrip board, a signal conductor, a ground plane formed in an inner layer of a dielectric, and a dielectric sandwiched between the signal conductor and the ground plane constitute a microstrip line.
The signal conductors on the microstrip substrate are electrically connected to a high frequency circuit.
 第1の導体層13は、図1及び図2に示すように、変換器形成領域における誘電体11の一面に形成され、信号用導体12の延伸方向、つまり、Y軸に対して長手方向のなす角度が45度である開口部13aを有する。開口部13aの長手方向はX軸に対してなす角度も45度である。
 開口部13aが位置する誘電体11の一面は露出される。つまり、開口部13aは第1の導体層13を形成するための導体層をエッチングすることにより形成される。
As shown in FIGS. 1 and 2, the first conductor layer 13 is formed on one surface of the dielectric 11 in the transducer formation region, and extends in the extending direction of the signal conductor 12, that is, in the longitudinal direction with respect to the Y axis. The opening 13a has an angle of 45 degrees. The longitudinal direction of the opening 13a also forms an angle of 45 degrees with respect to the X axis.
One surface of the dielectric 11 where the opening 13a is located is exposed. That is, the opening 13a is formed by etching the conductor layer for forming the first conductor layer 13.
 開口部13aの形状は、導波管24を構成する中空部24aのX-Y断面形状及び導波管24の両端面24b、24cの形状と同じ長方形の頂点を丸めた角丸長方形である。
 開口部13aの形状は角丸長方形に限られるものではなく、導波管24を構成する中空部24a及び両端面24b、24cの形状に合わせた形状であり、中空部24aの断面形状及び両端面24b、24cの形状が長方形であれば長方形、楕円形であれば楕円形である。
The shape of the opening 13a is a rounded rectangle with rounded corners, which is the same as the XY cross-sectional shape of the hollow portion 24a constituting the waveguide 24 and the shape of both end surfaces 24b and 24c of the waveguide 24.
The shape of the opening 13a is not limited to a rounded rectangle, but has a shape that matches the shape of the hollow portion 24a and both end surfaces 24b and 24c that constitute the waveguide 24, and the shape of the opening 13a is not limited to a rounded rectangle. If the shapes of 24b and 24c are rectangular, they are rectangular, and if they are elliptical, they are elliptical.
 また、開口部13aの大きさも、中空部24aの断面形状の大きさ及び両端面24b、24cの大きさと同じであり、長径a及び短径bを有する大きさである。なお、ここで言う「同じ」は設計上の裕度を含む。
 なお、開口部13aの形状及び大きさは、上記した例に限られるものではなく、信号用導体12を伝送する高周波信号の通過特性に合わせた任意な形状及び大きさでよく、要は、開口部13aは長手方向と短手方向を有し、長手方向のなす角度が信号用導体12の延伸方向に対して45度である開口部であればよい。
Further, the size of the opening 13a is also the same as the size of the cross-sectional shape of the hollow portion 24a and the size of both end surfaces 24b and 24c, and has a major axis a and a minor axis b. Note that the term "same" here includes design margins.
Note that the shape and size of the opening 13a are not limited to the example described above, and may be any shape and size that matches the transmission characteristics of the high-frequency signal transmitted through the signal conductor 12. The portion 13a has a longitudinal direction and a lateral direction, and may be an opening whose longitudinal direction forms an angle of 45 degrees with respect to the extending direction of the signal conductor 12.
 信号用導体12の一端は、開口部13aの一辺における長手方向の中央に至る。
 第1の導体層13は、開口部13aの長手方向の中央から連通して信号用導体12が配置される位置に信号用導体12に沿った導体用開口部13bを有する。
One end of the signal conductor 12 reaches the longitudinal center of one side of the opening 13a.
The first conductor layer 13 has a conductor opening 13b along the signal conductor 12 at a position where the signal conductor 12 is arranged and communicated from the longitudinal center of the opening 13a.
 第1の導体層13は、変換器形成領域における誘電体11の一面において、開口部13a及び導体用開口部13bを除いた変換器形成領域の全面に、一般に知られた方法により形成された導体箔であり、本例においては銅箔である。
 開口部13a及び導体用開口部13bには第1の導体層13が存在せず、誘電体11の一面が露出しており、信号用導体12が第1の導体層13に直接接続されることはない。
The first conductor layer 13 is a conductor formed on one surface of the dielectric 11 in the transducer formation region by a generally known method over the entire surface of the transducer formation region excluding the opening 13a and the conductor opening 13b. It is a foil, and in this example it is a copper foil.
The first conductor layer 13 is not present in the opening 13a and the conductor opening 13b, one surface of the dielectric 11 is exposed, and the signal conductor 12 is directly connected to the first conductor layer 13. There isn't.
 プローブ14は誘電体11の一面に形成され、第1の導体層13の開口部13a内に位置し、信号用導体12の一端から連続し、開口部13aの長手方向に直交して延在する。
 例えば、開口部13aの長手方向と信号用導体12の延伸方向、つまり、Y軸とのなす角度が+45度であり、プローブ14の延在方向と信号用導体12の延伸方向とのなす角度が-45度であり、開口部13aの長手方向とプローブ14の延在方向とのなす角度が90度である。
The probe 14 is formed on one surface of the dielectric 11, is located within the opening 13a of the first conductor layer 13, continues from one end of the signal conductor 12, and extends perpendicular to the longitudinal direction of the opening 13a. .
For example, the angle between the longitudinal direction of the opening 13a and the extending direction of the signal conductor 12, that is, the Y axis, is +45 degrees, and the angle between the extending direction of the probe 14 and the extending direction of the signal conductor 12 is +45 degrees. -45 degrees, and the angle between the longitudinal direction of the opening 13a and the extending direction of the probe 14 is 90 degrees.
 なお、プローブ14は信号用導体12の一端から連続して延在し、第1の導体層13の開口部13a内に位置すれば良く、プローブ14の延在方向と信号用導体12の延伸方向とのなす角度が-45度である必要はなく、信号用導体12を伝送する高周波信号の通過特性に合わせて任意な形状及び任意な方向でよい。 Note that the probe 14 only needs to extend continuously from one end of the signal conductor 12 and be located within the opening 13a of the first conductor layer 13, and the direction in which the probe 14 extends and the direction in which the signal conductor 12 extends The angle formed by the signal conductor 12 does not need to be -45 degrees, and may have any shape and direction depending on the transmission characteristics of the high frequency signal transmitted through the signal conductor 12.
 プローブ14は、開口部13aの長手方向の中央において、開口部13aを横切る。
 プローブ14は第1の導体層13に直接接続されることはない。
 信号用導体12とプローブ14は、マイクロストリップ基板を構成する誘電体の一面に、マイクロストリップ線路を構成する信号用導体と同時に形成される。
The probe 14 crosses the opening 13a at the longitudinal center of the opening 13a.
The probe 14 is not directly connected to the first conductor layer 13.
The signal conductor 12 and the probe 14 are formed simultaneously with the signal conductor forming the microstrip line on one surface of the dielectric material forming the microstrip substrate.
 第2の導体層15は、変換器形成領域における誘電体11の他面、この例では裏面に、第1の導体層13に対向して形成された導体箔であり、本例においては銅箔である。
 第2の導体層15は、マイクロストリップ基板の誘電体の他面に形成された導体箔と同時に、誘電体11の変換器形成領域における他面全面に形成される。
 第2の導体層15は、誘電体11の一面から他面まで貫通する複数の貫通導体16により、第1の導体層13に電気的に接続される。
The second conductor layer 15 is a conductor foil formed on the other surface of the dielectric 11 in the converter formation region, in this example, the back surface, facing the first conductor layer 13, and is a copper foil in this example. It is.
The second conductor layer 15 is formed on the entire other surface of the dielectric 11 in the transducer formation region at the same time as the conductor foil formed on the other surface of the dielectric of the microstrip substrate.
The second conductor layer 15 is electrically connected to the first conductor layer 13 by a plurality of through conductors 16 that penetrate from one surface of the dielectric 11 to the other surface.
 複数の貫通導体16はそれぞれ、図1及び図2に示すように、誘電体11の一面から他面まで貫通し、上端が第1の導体層13に、下端が第2の導体層15に電気的に接続される。
 複数の貫通導体16は第1の導体層13の開口部13aを囲むように間隔をあけて配置される。
 複数の貫通導体16は開口部13aを取り囲む領域において疑似的な導波管を構成する。
As shown in FIGS. 1 and 2, each of the plurality of through conductors 16 penetrates from one side of the dielectric 11 to the other side, and has an upper end connected to the first conductor layer 13 and a lower end connected to the second conductor layer 15. connected.
The plurality of through conductors 16 are arranged at intervals so as to surround the opening 13a of the first conductor layer 13.
The plurality of through conductors 16 constitute a pseudo waveguide in a region surrounding the opening 13a.
 開口部13aを含む第1の導体層13と複数の貫通導体16と第2の導体層15とにより、マイクロストリップ線路を伝送する高周波信号と導波管24を伝搬する高周波の電磁波との変換を行う変換部17を構成する。
 また、複数の貫通導体16と第2の導体層15とにより導波管24のバックショートが形成される。
 バックショートの長さは誘電体11内の波長λの1/4である。但し、1/4は厳密に1/4を示すものではなく、設計裕度を含んだ値である。
The first conductor layer 13 including the opening 13a, the plurality of through conductors 16, and the second conductor layer 15 convert the high frequency signal transmitted through the microstrip line into the high frequency electromagnetic wave transmitted through the waveguide 24. A conversion unit 17 is configured to perform the conversion.
Further, a back short of the waveguide 24 is formed by the plurality of through conductors 16 and the second conductor layer 15.
The length of the back short is 1/4 of the wavelength λ within the dielectric 11. However, 1/4 does not strictly indicate 1/4, but is a value that includes design margin.
 なお、第1の導体層13と第2の導体層15との電気的接続は、導体層13の開口部13aを囲むように配列される複数の貫通導体16により行うのが好ましいが、1つの貫通導体16により第1の導体層13と第2の導体層15との電気的接続を行うものでもよい。 Note that the electrical connection between the first conductor layer 13 and the second conductor layer 15 is preferably made by a plurality of through conductors 16 arranged so as to surround the opening 13a of the conductor layer 13; The first conductor layer 13 and the second conductor layer 15 may be electrically connected by the through conductor 16.
 内部導体層18は変換器形成領域における誘電体11の内層に形成される。
 内部導体層18は、マイクロストリップ基板の誘電体の内層に形成された地板と連続的に形成された導体箔であり、本例においては銅箔である。
 信号用導体12と、内部導体層18と、信号用導体12と内部導体層18とに挟まれた誘電体11は、マイクロストリップ基板におけるマイクロストリップ線路から連続したマイクロストリップ線路を構成する。
An inner conductor layer 18 is formed on the inner layer of the dielectric 11 in the transducer formation region.
The internal conductor layer 18 is a conductor foil formed continuously with the ground plane formed in the dielectric inner layer of the microstrip board, and is a copper foil in this example.
The signal conductor 12, the internal conductor layer 18, and the dielectric 11 sandwiched between the signal conductor 12 and the internal conductor layer 18 constitute a microstrip line continuous from the microstrip line on the microstrip board.
 内部導体層18は、複数の貫通導体16により、第1の導体層13及び第2の導体層15と電気的に接続される。
 複数の貫通導体16はそれぞれ、誘電体11の一面から内部導体層18を貫通し他面まで貫通する、一般的に知られているスルーホールである。
 なお、複数の貫通導体16はスルーホールに限られるものではなく、第1の導体層13と内部導体層18を電気的に接続するビアホールと、内部導体層18と第2の導体層15電気的に接続するビアホールにより構成されるものでもよい。
The inner conductor layer 18 is electrically connected to the first conductor layer 13 and the second conductor layer 15 through the plurality of through conductors 16 .
Each of the plurality of through conductors 16 is a generally known through hole that penetrates through the internal conductor layer 18 from one surface of the dielectric 11 to the other surface.
Note that the plurality of through conductors 16 are not limited to through holes, but include via holes that electrically connect the first conductor layer 13 and the inner conductor layer 18, and electrically connect the inner conductor layer 18 and the second conductor layer 15. It may also be configured by a via hole connected to.
 導波管構成部20は、導波管用の誘電体21と一面側導体層22と他面側導体層23と導波管24を備える。
 なお、以下の説明では煩雑さを避けるため、必要とする場合を除いて、導波管用の誘電体21について「導波管用の」を省略して説明する。
The waveguide component 20 includes a waveguide dielectric 21 , a conductor layer 22 on one side, a conductor layer 23 on the other side, and a waveguide 24 .
In the following description, in order to avoid complexity, the waveguide dielectric 21 will be omitted from "waveguide use" unless necessary.
 誘電体21は、導波管24を形成する部分、つまり、導波管形成領域に、一面から他面、この例では表面から裏面まで図示X-Y断面が同一形状である貫通した貫通部21aを有する。
 導波管構成部20は、導波管24を形成するための貫通部21aの他面における開口面が、図1に示すように、変換器構成部10における第1の導体層13の開口部13aに対向して配置される。
 貫通部21aの管軸方向はZ軸方向である。
 貫通部21aの長手方向と信号用導体12の延伸方向、つまり、Y軸とのなす角度が45度である。貫通部21aの長手方向はX軸に対してなす角度も45度である。
 貫通部21aにおいて、横断面形状が長方形の頂点を丸めた角丸長方形である。
 なお、横断面は図示X-Y面である。
The dielectric body 21 has a penetrating portion 21a in the portion where the waveguide 24 is formed, that is, in the waveguide formation region, having the same shape in the X-Y cross section shown from one side to the other side, in this example, from the front side to the back side. has.
As shown in FIG. 13a.
The tube axis direction of the penetrating portion 21a is the Z-axis direction.
The angle between the longitudinal direction of the penetration portion 21a and the extending direction of the signal conductor 12, that is, the Y axis, is 45 degrees. The longitudinal direction of the penetrating portion 21a also forms an angle of 45 degrees with respect to the X axis.
The cross-sectional shape of the penetrating portion 21a is a rounded rectangle with rounded vertices.
Note that the cross section is the illustrated XY plane.
 貫通部21aにおける横断面形状は、角丸長方形に限られるものではなく、適宜変更してよく、長方形又は楕円形状でもよく、要は、導波管24の中空部24aにおいて、長手方向の長さが高周波の電磁波を伝搬できる長さを有する形状であればよい。
 誘電体21は、導波管24を形成する際に一般的に使用されている、例えば、セラミックである。
 誘電体21は、安価に製造するためには比較的誘電正接の大きい材料を用いるのが好ましい。
 貫通部21aは、一般的に知られている切削加工により、誘電体21の一面から他面まで貫通させて形成する。
The cross-sectional shape of the penetrating portion 21a is not limited to a rounded rectangle, and may be changed as appropriate, and may be rectangular or elliptical. It is sufficient if the shape has a length that allows high-frequency electromagnetic waves to propagate.
Dielectric 21 is, for example, ceramic, which is commonly used when forming waveguide 24 .
In order to manufacture the dielectric 21 at low cost, it is preferable to use a material with a relatively large dielectric loss tangent.
The penetrating portion 21a is formed by penetrating the dielectric 21 from one surface to the other surface by a generally known cutting process.
 一面側導体層22は誘電体21の一面に形成され、貫通部21aの位置に貫通部21aと連通する開口部22aを有する。
 開口部22aは貫通部21aにおけるX-Y断面形状と同じ形状であり、長方形の頂点を丸めた角丸長方形である。
 開口部22aの形状は貫通部21aの断面形状に合わせて貫通部21aの断面形状が長方形であれば長方形、楕円形であれば楕円形である。
 また、開口部22aの大きさは貫通部21aの一面における開口面の大きさと一致する。
 一面側導体層22は一般に知られた方法により、誘電体21の一面に形成された導体箔であり、本例においては銅箔である。
The one-side conductor layer 22 is formed on one surface of the dielectric 21, and has an opening 22a that communicates with the through-hole 21a at the position of the through-hole 21a.
The opening 22a has the same shape as the XY cross-sectional shape of the penetrating portion 21a, and is a rounded rectangle with rounded vertices.
The shape of the opening 22a is rectangular if the cross-sectional shape of the penetrating portion 21a is rectangular, and is elliptical if the cross-sectional shape of the penetrating portion 21a is oval.
Furthermore, the size of the opening 22a matches the size of the opening surface on one surface of the penetrating portion 21a.
The one-side conductor layer 22 is a conductor foil formed on one side of the dielectric 21 by a generally known method, and is a copper foil in this example.
 他面側導体層23は誘電体21の他面に形成され、貫通部21aの位置に貫通部21aと連通する開口部23aを有する。
 開口部23aは貫通部21aにおけるX-Y断面形状と同じ形状であり、長方形の頂点を丸めた角丸長方形である。
 開口部23aの形状は貫通部21aの断面形状に合わせて貫通部21aの断面形状が長方形であれば長方形、楕円形であれば楕円形である。
 また、開口部23aの大きさは貫通部21aの他面における開口面の大きさと一致する。
 他面側導体層23は一般に知られた方法により、誘電体21の他面に形成された導体箔であり、本例においては銅箔である。
The other surface conductor layer 23 is formed on the other surface of the dielectric 21 and has an opening 23a at the position of the penetration portion 21a that communicates with the penetration portion 21a.
The opening 23a has the same shape as the XY cross-sectional shape of the penetrating portion 21a, and is a rounded rectangle with rounded vertices.
The shape of the opening 23a is rectangular if the cross-sectional shape of the penetrating portion 21a is rectangular, and is elliptical if the cross-sectional shape of the penetrating portion 21a is oval.
Further, the size of the opening 23a matches the size of the opening surface on the other surface of the penetrating portion 21a.
The other side conductor layer 23 is a conductor foil formed on the other side of the dielectric 21 by a generally known method, and is a copper foil in this example.
 導波管24は貫通部21aの内面全面に形成された管構成用の導体層である導波管層25により構成され、導波管層25により囲われた中空部24aを有する中空導波管である。
 導波管層25は筒状をなし、導波管層25の一端は、一面側導体層22の開口部22aにおいて、一面側導体層22に電気的に接続される。
 導波管層25の他端は、他面側導体層23の開口部23aにおいて、他面側導体層23に電気的に接続される。
 導波管層25は、貫通部21aの内面全面に、一般に知られたスルーホールの形成方法と同様に金属めっき、本例においては銅メッキにより形成されたメッキ層である。
 導波管24の管軸方向は図示Z方向である。
The waveguide 24 is a hollow waveguide composed of a waveguide layer 25, which is a conductor layer for forming a tube, formed on the entire inner surface of the penetrating portion 21a, and has a hollow portion 24a surrounded by the waveguide layer 25. It is.
The waveguide layer 25 has a cylindrical shape, and one end of the waveguide layer 25 is electrically connected to the first conductor layer 22 at the opening 22 a of the first conductor layer 22 .
The other end of the waveguide layer 25 is electrically connected to the other side conductor layer 23 at the opening 23 a of the other side conductor layer 23 .
The waveguide layer 25 is a plating layer formed on the entire inner surface of the penetrating portion 21a by metal plating, in this example, copper plating, in the same manner as in the generally known method for forming through holes.
The tube axis direction of the waveguide 24 is the illustrated Z direction.
 導波管24を構成する中空部24aのX-Y断面形状は、貫通部21aに対して導波管層25の厚み分だけ小さい相似形状をしており、貫通部21aにおけるX-Y断面形状と同じ形状であり、長方形の頂点を丸めた角丸長方形である。
 中空部24aの形状は貫通部21aの断面形状に合わせて貫通部21aの断面形状が長方形であれば長方形、楕円形であれば楕円形である。
 導波管24の両端面24b、24cの形状は中空部24aのX-Y断面形状と同じ形状である。
The XY cross-sectional shape of the hollow portion 24a constituting the waveguide 24 has a similar shape to the penetrating portion 21a, which is smaller by the thickness of the waveguide layer 25. It has the same shape as , and is a rounded rectangle with rounded vertices.
The shape of the hollow portion 24a is rectangular if the cross-sectional shape of the penetrating portion 21a is rectangular, and is elliptical if the cross-sectional shape of the penetrating portion 21a is oval.
The shapes of both end surfaces 24b and 24c of the waveguide 24 are the same as the XY cross-sectional shape of the hollow portion 24a.
 導波管24の両端面24b、24cの形状は、図3に示すように、長手方向の長さである長径aと短手方向の長さである短径bとを有する角丸長方形であり、両端面24b、24cの長手方向と信号用導体12の延伸方向、図示Y軸とのなす角度が45度である。両端面24b、24cの長手方向はX軸に対してなす角度も45度である。
 両端面24b、24cにおける長手方向の長さである長径aが高周波の電磁波を伝搬できる長さを有し、本例において、電磁波の波長の半波長より長い。
 導波管24の両端面24b、24cにおいて、例えば、長径aが3mm、短径bが0.8mmである。
As shown in FIG. 3, the shape of both end surfaces 24b and 24c of the waveguide 24 is a rounded rectangle having a major axis a, which is the length in the longitudinal direction, and a minor axis b, which is the length in the transverse direction. The angle between the longitudinal direction of both end surfaces 24b and 24c, the extending direction of the signal conductor 12, and the illustrated Y axis is 45 degrees. The longitudinal direction of both end surfaces 24b and 24c also forms an angle of 45 degrees with respect to the X axis.
The major axis a, which is the length in the longitudinal direction of both end surfaces 24b and 24c, is long enough to propagate high-frequency electromagnetic waves, and in this example, is longer than half the wavelength of the electromagnetic waves.
In both end surfaces 24b and 24c of the waveguide 24, for example, the major axis a is 3 mm and the minor axis b is 0.8 mm.
 変換器構成部10に対して逆側に位置する導波管24の一端面24cを開放した開放端面とすることにより、導波管24を、空間へ高周波の電磁波を送信又は空間から高周波の電磁波を受信するアンテナとして使用できる。
 また、導波管24の一端面24cに、断面が導波管24の一端面24cと同じ形状である導波管(図示せず)を連通させて接続し、接続した導波管に接続された高周波回路との間で高周波を伝搬するものとしても良い。
By making one end surface 24c of the waveguide 24 located on the opposite side to the converter component 10 an open end surface, the waveguide 24 can be used to transmit high-frequency electromagnetic waves into space or to transmit high-frequency electromagnetic waves from space. It can be used as an antenna to receive.
Further, a waveguide (not shown) whose cross section has the same shape as the one end surface 24c of the waveguide 24 is connected in communication with the one end surface 24c of the waveguide 24, and the waveguide is connected to the connected waveguide. It may also be a device that propagates high frequency waves between the high frequency circuit and the high frequency circuit.
 他面側導体層23は変換器構成部10における第1の導体層13に複数のボール状の端子30により電気的に接続される。
 複数の端子30による第1の導体層13と他面側導体層23との電気的接続は、一般に知られているボールグリッドアレイ(BGA)により行われる。
 すなわち、複数の端子30はボールグリッドアレイを構成する。
 複数の端子30によるボールグリッドアレイは、導波管構成部20を変換器構成部10に機械的に接続する役割も果たす。
The other side conductor layer 23 is electrically connected to the first conductor layer 13 in the converter component 10 through a plurality of ball-shaped terminals 30 .
Electrical connection between the first conductor layer 13 and the other side conductor layer 23 through the plurality of terminals 30 is performed by a generally known ball grid array (BGA).
That is, the plurality of terminals 30 constitute a ball grid array.
The ball grid array of terminals 30 also serves to mechanically connect the waveguide arrangement 20 to the transducer arrangement 10 .
 複数の端子30は第1の導体層13の開口部13a及び他面側導体層23の開口部23aを囲むように間隔をあけて配置される。
 すなわち、第1の導体層13の開口部13aと他面側導体層23の開口部23aは、それぞれの長手方向が信号用導体12に対する角度を45度として対向して配置される。
 このようにして配置された複数の端子30によるボールグリッドアレイは疑似的な導波管を構成する。
The plurality of terminals 30 are arranged at intervals so as to surround the opening 13a of the first conductor layer 13 and the opening 23a of the other side conductor layer 23.
That is, the opening 13a of the first conductor layer 13 and the opening 23a of the other side conductor layer 23 are arranged so that their respective longitudinal directions face each other at an angle of 45 degrees with respect to the signal conductor 12.
The ball grid array of the plurality of terminals 30 arranged in this manner constitutes a pseudo waveguide.
 信号用導体12を伝送する高周波信号は、プローブ14により電磁波に変換され、変換された電磁波がボールグリッドアレイによる疑似的な導波管を介して導波管24に伝搬される。
 また、導波管24を伝搬する電磁波はボールグリッドアレイによる疑似的な導波管を介し、プローブ14により高周波信号に変換され、変換された高周波信号が信号用導体12を伝送する。
 なお、第1の導体層13と他面側導体層23との電気的接続は、複数の端子30により疑似的な導波管を構成するのが好まししいが、一つの端子30により行うものでも良い。
The high frequency signal transmitted through the signal conductor 12 is converted into an electromagnetic wave by the probe 14, and the converted electromagnetic wave is propagated to the waveguide 24 via a pseudo waveguide formed by a ball grid array.
Further, the electromagnetic wave propagating through the waveguide 24 is converted into a high frequency signal by the probe 14 via a pseudo waveguide formed by a ball grid array, and the converted high frequency signal is transmitted through the signal conductor 12.
Note that the electrical connection between the first conductor layer 13 and the other side conductor layer 23 is preferably made by forming a pseudo waveguide using a plurality of terminals 30; But it's okay.
 次に、実施の形態1に係る導波管-マイクロストリップ線路変換器の動作について説明する。
 導波管24の他端面24cを開放し、導波管24を送信アンテナとしたアンテナ装置に実施の形態1に係る導波管-マイクロストリップ線路変換器を適用した場合について説明する。
 マイクロストリップ基板におけるマイクロストリップ線路を伝送された高周波信号は導波管-マイクロストリップ線路変換器における信号用導体12を含むマイクロストリップ線路に伝送される。
Next, the operation of the waveguide-microstrip line converter according to the first embodiment will be explained.
A case will be described in which the waveguide-microstrip line converter according to the first embodiment is applied to an antenna device in which the other end surface 24c of the waveguide 24 is open and the waveguide 24 is used as a transmitting antenna.
The high frequency signal transmitted through the microstrip line in the microstrip substrate is transmitted to the microstrip line including the signal conductor 12 in the waveguide-microstrip line converter.
 信号用導体12を含むマイクロストリップ線路に伝送された高周波信号は、プローブ14において、複数の端子30によるボールグリッドアレイによる疑似的な導波管を介して導波管24へ変換される。
 変換された高周波信号(電磁波)は導波管24を伝搬し、送信アンテナとして機能する導波管24の他面における開放端面24cから空間に高周波の電磁波が放射される。
The high frequency signal transmitted to the microstrip line including the signal conductor 12 is converted into the waveguide 24 at the probe 14 via a pseudo waveguide formed by a ball grid array with a plurality of terminals 30.
The converted high-frequency signal (electromagnetic wave) propagates through the waveguide 24, and the high-frequency electromagnetic wave is radiated into space from the open end surface 24c on the other side of the waveguide 24, which functions as a transmitting antenna.
 一方、導波管24を受信アンテナとして機能させた場合は、導波管24の他面における開放端面24cにおいて空間からの高周波の電磁波を受信し、受信した電磁波を導波管24が伝搬し、プローブ14において、信号用導体12を含むマイクロストリップ線路に高周波信号に変換し、変換された高周波信号がマイクロストリップ基板におけるマイクロストリップ線路を伝送して高周波回路に入力される。 On the other hand, when the waveguide 24 functions as a receiving antenna, the open end surface 24c on the other surface of the waveguide 24 receives high-frequency electromagnetic waves from space, and the waveguide 24 propagates the received electromagnetic waves. In the probe 14, the signal is converted into a high frequency signal on a microstrip line including the signal conductor 12, and the converted high frequency signal is transmitted through the microstrip line on the microstrip board and input into a high frequency circuit.
 以上に述べたように、実施の形態1に係るマイクロストリップ線路-導波管変換器は、変換器構成部10における信号用導体12の延伸方向、図示においてY軸に対して長手方向のなす角度が45度である他端側の端面24bを有する導波管24を備えるので、導波管24の他端側の端面24bの長手方向を信号用導体12の延伸方向に対して直交、つまり、端面24bの長手方向を図示X軸に平行に配置させたものに比べて、X軸方向の専有幅を小さくできる。具体的にはX軸方向の専有幅を1/√2にできる。
 その結果、マイクロストリップ線路-導波管変換器として小型化が図れる。
As described above, the microstrip line-waveguide converter according to the first embodiment has an angle formed by the extending direction of the signal conductor 12 in the converter component 10, and the longitudinal direction with respect to the Y axis in the drawing. Since the waveguide 24 is provided with the end surface 24b on the other end side at 45 degrees, the longitudinal direction of the end surface 24b on the other end side of the waveguide 24 is perpendicular to the extending direction of the signal conductor 12, that is, Compared to an arrangement in which the longitudinal direction of the end surface 24b is arranged parallel to the illustrated X-axis, the exclusive width in the X-axis direction can be made smaller. Specifically, the exclusive width in the X-axis direction can be reduced to 1/√2.
As a result, the microstrip line-waveguide converter can be made smaller.
 例えば、実施の形態1に係るマイクロストリップ線路-導波管変換器をアンテナ装置に適用した場合、複数のマイクロストリップ線路-導波管変換器を信号用導体12の延伸方向と直交する方向、図示X軸に沿って密に配置できる利点がある。
 なお、導波管24を誘電体21に組み込んだ中空部24aを有する中空導波管としたが、断面形状が角丸長方形又は矩形の中空の金属管としてもよい。
 導波管24を中空の金属管とした場合、中空の金属管の他端面を、開口部13aを囲うように第1の導体層13の一面に電気的及び機械的に接続すればよい。
For example, when the microstrip line-waveguide converter according to the first embodiment is applied to an antenna device, the plurality of microstrip line-waveguide converters are connected in a direction perpendicular to the extending direction of the signal conductor 12, as shown in the figure. There is an advantage that they can be arranged densely along the X axis.
Although the waveguide 24 is a hollow waveguide having a hollow portion 24a built into the dielectric 21, it may be a hollow metal tube with a rounded rectangular or rectangular cross section.
When the waveguide 24 is a hollow metal tube, the other end surface of the hollow metal tube may be electrically and mechanically connected to one surface of the first conductor layer 13 so as to surround the opening 13a.
 実施の形態1に係るマイクロストリップ線路-導波管変換器は、高周波信号が伝送される信号用導体12が形成される変換器構成部10に用いられる誘電体11を比較的誘電正接の小さい材料を用い、一般的に信号伝送に際して損失を増加させないとされる導波管24を構成するための導波管構成部20に用いられる誘電体21を比較的誘電正接の大きい材料を用いることにより、高周波信号の減衰を少なくし、しかも、マイクロストリップ線路-導波管変換器を安価に製造できる。
 すなわち、誘電体21の誘電正接を誘電体11の誘電正接より大きい材料とするのが好ましい。
In the microstrip line-waveguide converter according to the first embodiment, the dielectric 11 used in the converter component 10 in which the signal conductor 12 for transmitting high-frequency signals is formed is made of a material with a relatively small dielectric loss tangent. By using a material with a relatively large dielectric loss tangent for the dielectric 21 used in the waveguide component 20 for configuring the waveguide 24, which is generally considered not to increase loss during signal transmission, Attenuation of high frequency signals can be reduced, and the microstrip line-waveguide converter can be manufactured at low cost.
That is, it is preferable that the dielectric material 21 is made of a material having a larger dielectric loss tangent than that of the dielectric material 11.
実施の形態2.
 実施の形態2に係る導波管-マイクロストリップ線路変換器及びアンテナ装置を図4及び図5を用いて説明する。
 実施の形態2に係る導波管-マイクロストリップ線路変換器は、実施の形態1に係る導波管-マイクロストリップ線路変換器を信号用導体12の延伸方向と直交する方向に複数配置した点が相違し、その他の点については同じである。
Embodiment 2.
A waveguide-microstrip line converter and antenna device according to a second embodiment will be explained using FIGS. 4 and 5.
The waveguide-microstrip line converter according to the second embodiment has a plurality of waveguide-microstrip line converters according to the first embodiment arranged in a direction perpendicular to the extending direction of the signal conductor 12. They are different, and in other respects are the same.
 実施の形態2に係る導波管-マイクロストリップ線路変換器は、2つの導波管-マイクロストリップ線路変換器を信号用導体12の延伸方向と直交する方向に配置した例を一例として示す。但し、実施の形態2に係る導波管-マイクロストリップ線路変換器は2つに限られるものではなく、3つ以上配置されたものも含む。
 2つの導波管-マイクロストリップ線路変換器を第1の導波管-マイクロストリップ線路変換器、第2の導波管-マイクロストリップ線路変換器として説明する。
In the waveguide-microstrip line converter according to the second embodiment, an example is shown in which two waveguide-microstrip line converters are arranged in a direction perpendicular to the extending direction of the signal conductor 12. However, the number of waveguide-to-microstrip line converters according to the second embodiment is not limited to two, and also includes one in which three or more are arranged.
Two waveguide-to-microstrip line converters will be described as a first waveguide-to-microstrip line converter and a second waveguide-to-microstrip line converter.
 第1の導波管-マイクロストリップ線路変換器及び第2の導波管-マイクロストリップ線路変換器はそれぞれ、実施の形態1に係る導波管-マイクロストリップ線路変換器と同じ構成をしており、実施の形態1に係る導波管-マイクロストリップ線路変換器における構成要素に対応する構成要素に対して、-1及び-2の符号を付して対応関係を明確にして説明する。 The first waveguide-microstrip line converter and the second waveguide-microstrip line converter each have the same configuration as the waveguide-microstrip line converter according to the first embodiment. Components corresponding to those in the waveguide-microstrip line converter according to Embodiment 1 will be described with reference signs -1 and -2 to clarify their correspondence.
 以下の説明において、実施の形態1に係る導波管-マイクロストリップ線路変換器との相違点を中心に説明するため、変換器構成部及び端子を示す平面図(図4)及び導波管構成部を示す平面図(図5)を用いて説明するが、導波管における高周波信号の伝搬方向に沿った側面は、第1の導波管-マイクロストリップ線路変換器及び第2の導波管-マイクロストリップ線路変換器それぞれは実施の形態1に係る導波管-マイクロストリップ線路変換器と実質同じである。 In the following description, in order to mainly explain the differences from the waveguide-microstrip line converter according to Embodiment 1, a plan view (FIG. 4) showing the converter components and terminals and the waveguide configuration The side surface along the propagation direction of the high frequency signal in the waveguide shows the first waveguide-microstrip line converter and the second waveguide. - Each microstrip line converter is substantially the same as the waveguide-microstrip line converter according to the first embodiment.
 実施の形態2に係る導波管-マイクロストリップ線路変換器は、マイクロストリップ基板の変換器形成領域に形成された第1の変換器構成部10-1と第1の導波管構成部20-1と複数のボール状の第1の端子30-1とを備える第1の導波管-マイクロストリップ線路変換器、及び、マイクロストリップ基板の変換器形成領域に形成された第2の変換器構成部10-2と第2の導波管構成部20-2と複数のボール状の第2の端子30-2とを備える第2の導波管-マイクロストリップ線路変換器を備える。 The waveguide-microstrip line converter according to the second embodiment includes a first transducer component 10-1 and a first waveguide component 20- formed in a transducer formation region of a microstrip substrate. 1 and a plurality of ball-shaped first terminals 30-1, and a second transducer configuration formed in a transducer formation region of a microstrip substrate. A second waveguide-to-microstrip line converter is provided, which includes a section 10-2, a second waveguide component 20-2, and a plurality of ball-shaped second terminals 30-2.
 第1の変換器構成部10-1及び第2の変換器構成部10-2は、図4に示すように、マイクロストリップ基板の変換器形成領域に、信号用導体12-1、12-2の延伸方向と直交する方向、図示X軸に沿って配置して形成される。
 第1の変換器構成部10-1及び第2の変換器構成部10-2は、変換器形成領域において、誘電体11と第1の導体層13と第2の導体層15と内部導体層18を共通にする。
As shown in FIG. 4, the first converter component 10-1 and the second converter component 10-2 have signal conductors 12-1, 12-2 in the converter formation area of the microstrip substrate. It is arranged and formed along the illustrated X-axis, which is a direction perpendicular to the stretching direction of.
The first converter component 10-1 and the second converter component 10-2 have a dielectric 11, a first conductor layer 13, a second conductor layer 15, and an inner conductor layer in the converter formation region. Make 18 common.
 第1の変換器構成部10-1は第1の信号用導体12-1と第1のプローブ14-1と複数の第1の貫通導体16-1を備える。
 第2の変換器構成部10-2は第2の信号用導体12-2と第2のプローブ14-2と複数の第2の貫通導体16-2を備える。
 第1の信号用導体12-1及び第2の信号用導体12-2は、誘電体11の変換器形成領域において、図示Y軸に平行して直線状に延伸される。
 第1の信号用導体12-1及び第2の信号用導体12-2はY軸に平行して直線状に延伸されるため、互いに干渉しない。
The first converter component 10-1 includes a first signal conductor 12-1, a first probe 14-1, and a plurality of first through conductors 16-1.
The second converter component 10-2 includes a second signal conductor 12-2, a second probe 14-2, and a plurality of second through conductors 16-2.
The first signal conductor 12-1 and the second signal conductor 12-2 extend linearly in parallel to the illustrated Y-axis in the transducer forming region of the dielectric 11.
The first signal conductor 12-1 and the second signal conductor 12-2 extend linearly parallel to the Y-axis, so they do not interfere with each other.
 第1の信号用導体12-1と第2の信号用導体12-2との間隔dxは導波管24-1、24-2を伝搬する高周波の波長に対して半波長に設定される。
 設定間隔dxは高周波の波長に対して半波長に限られるものではなく、導波管24-1、24-2の設計に応じて増減しても良い。好ましくは、間隔dxは高周波の波長に対して半波長以下である。
 なお、導波管-マイクロストリップ線路変換器が3つ以上の複数である場合は、隣接する信号用導体12の間隔が設定間隔dxである。
The distance dx between the first signal conductor 12-1 and the second signal conductor 12-2 is set to a half wavelength with respect to the wavelength of the high frequency wave propagating through the waveguides 24-1 and 24-2.
The set interval dx is not limited to a half wavelength with respect to the wavelength of the high frequency, and may be increased or decreased depending on the design of the waveguides 24-1 and 24-2. Preferably, the distance dx is equal to or less than a half wavelength with respect to the wavelength of the high frequency.
Note that when there are three or more waveguide-microstrip line converters, the interval between adjacent signal conductors 12 is the set interval dx.
 第1の導体層13は、図4に示すように、第1の信号用導体12-1と第2の信号用導体12-2の延伸方向に対して長手方向のなす角度が45度である第1の開口部13a-1及び第2の開口部13a-2を有する。第1の開口部13a-1及び第2の開口部13a-2の長手方向はX軸に対してなす角度も45度である。
 第1の開口部13a-1及び第2の開口部13a-2は平行して配置され、第1の開口部13-1aの中心と第2の開口部13a-2の中心との間隔は設定間隔dxであり、第1の信号用導体12-1と第2の信号用導体12-2との間隔dxと同じである。
As shown in FIG. 4, the first conductor layer 13 has a longitudinal direction that forms an angle of 45 degrees with respect to the extending direction of the first signal conductor 12-1 and the second signal conductor 12-2. It has a first opening 13a-1 and a second opening 13a-2. The longitudinal direction of the first opening 13a-1 and the second opening 13a-2 also forms an angle of 45 degrees with respect to the X axis.
The first opening 13a-1 and the second opening 13a-2 are arranged in parallel, and the distance between the center of the first opening 13-1a and the center of the second opening 13a-2 is set. The distance dx is the same as the distance dx between the first signal conductor 12-1 and the second signal conductor 12-2.
 第1の信号用導体12-1の一端は、第1の開口部13a-1の一辺における長手方向の中央に至る。
 第2の信号用導体12-2の一端は、第2の開口部13a-2の一辺における長手方向の中央に至る。
One end of the first signal conductor 12-1 reaches the longitudinal center of one side of the first opening 13a-1.
One end of the second signal conductor 12-2 reaches the longitudinal center of one side of the second opening 13a-2.
 第1の導体層13は、第1の開口部13a-1の長手方向の中央から連通して第1の信号用導体12-1が配置される位置に第1の信号用導体12-1に沿った第1の導体用開口部13b-1、及び第2の開口部13a-2の長手方向の中央から連通して第2の信号用導体12-2が配置される位置に第2の信号用導体12-2に沿った第2の導体用開口部13b-2を有する。 The first conductor layer 13 communicates with the first signal conductor 12-1 at a position where the first signal conductor 12-1 is disposed by communicating from the longitudinal center of the first opening 13a-1. A second signal conductor 12-2 is placed in communication with the first conductor opening 13b-1 along the longitudinal center of the second opening 13a-2. It has a second conductor opening 13b-2 along the conductor 12-2.
 第1のプローブ14-1は、第1の導体層13の第1の開口部13a-1内に位置し、第1の信号用導体12-1の一端から連続し、第1の開口部13a-1の長手方向に直交して延在する。
 第2のプローブ14-2は、第1の導体層13の第2の開口部13a-2内に位置し、第2の信号用導体12-2の一端から連続し、第2の開口部13a-2の長手方向に直交して延在する。
The first probe 14-1 is located within the first opening 13a-1 of the first conductor layer 13, continues from one end of the first signal conductor 12-1, and extends from the first opening 13a. -1 extends perpendicularly to the longitudinal direction.
The second probe 14-2 is located within the second opening 13a-2 of the first conductor layer 13, continues from one end of the second signal conductor 12-2, and extends from the second opening 13a. -2 extends perpendicularly to the longitudinal direction.
 複数の第1の貫通導体16-1はそれぞれ、図4に示すように、誘電体11の一面から他面まで貫通し、上端が第1の導体層13に、下端が第2の導体層15に電気的に接続される。
 複数の第1の貫通導体16-1は第1の導体層13の第1の開口部13a-1を囲むように間隔をあけて配置される。
 複数の第1の貫通導体16-1は第1の開口部13a-1を取り囲む領域において疑似的な導波管を構成する。
As shown in FIG. 4, each of the plurality of first through conductors 16-1 penetrates from one surface to the other surface of the dielectric 11, and has an upper end connected to the first conductor layer 13 and a lower end connected to the second conductor layer 15. electrically connected to.
The plurality of first through conductors 16-1 are arranged at intervals so as to surround the first opening 13a-1 of the first conductor layer 13.
The plurality of first penetrating conductors 16-1 constitute a pseudo waveguide in a region surrounding the first opening 13a-1.
 第1の開口部13a-1を含む第1の導体層13と複数の第1の貫通導体16-1と第2の導体層15とにより、マイクロストリップ線路を伝送する高周波信号と第1の導波管24-1を伝搬する高周波の電磁波との変換を行う第1の変換部17-1を構成する。
 また、複数の第1の貫通導体16-1と第2の導体層15とにより第1の導波管24-1のバックショートが形成される。
 第2の信号用導体12-2はY軸に沿って直線状に延伸されるため、第2の信号用導体12-2を伝送する高周波信号は第1の変換部17-1に干渉しない。
The first conductor layer 13 including the first opening 13a-1, the plurality of first through conductors 16-1, and the second conductor layer 15 allow high frequency signals transmitted through the microstrip line and the first conductor layer 13 to be connected to each other. A first conversion unit 17-1 is configured to perform conversion with a high-frequency electromagnetic wave propagating through the wave tube 24-1.
Further, a back short of the first waveguide 24-1 is formed by the plurality of first through conductors 16-1 and the second conductor layer 15.
Since the second signal conductor 12-2 extends linearly along the Y-axis, the high frequency signal transmitted through the second signal conductor 12-2 does not interfere with the first converter 17-1.
 複数の第2の貫通導体16-2はそれぞれ、図4に示すように、誘電体11の一面から他面まで貫通し、上端が第1の導体層13に、下端が第2の導体層15に電気的に接続される。
 複数の第2の貫通導体16-2は第1の導体層13の第2の開口部13a-2を囲むように間隔をあけて配置される。
 複数の第2の貫通導体16-2は第2の開口部13a-2を取り囲む領域において疑似的な導波管を構成する。
As shown in FIG. 4, each of the plurality of second through conductors 16-2 penetrates from one surface to the other surface of the dielectric 11, and has an upper end connected to the first conductor layer 13 and a lower end connected to the second conductor layer 15. electrically connected to.
The plurality of second through conductors 16-2 are arranged at intervals so as to surround the second opening 13a-2 of the first conductor layer 13.
The plurality of second penetrating conductors 16-2 constitute a pseudo waveguide in a region surrounding the second opening 13a-2.
 第2の開口部13a-2を含む第1の導体層13と複数の第2の貫通導体16-2と第2の導体層15とにより、マイクロストリップ線路を伝送する高周波信号と第2の導波管24-2を伝搬する高周波の電磁波との変換を行う第2の変換部17-2を構成する。
 また、複数の第2の貫通導体16-2と第2の導体層15とにより第2の導波管24-2のバックショートが形成される。
 第1の信号用導体12-1はY軸に沿って直線状に延伸されるため、第1の信号用導体12-1を伝送する高周波信号は第2の変換部17-2に干渉しない。
The first conductor layer 13 including the second opening 13a-2, the plurality of second through conductors 16-2, and the second conductor layer 15 allow high frequency signals transmitted through the microstrip line and the second conductor layer 13 to be connected to each other. A second conversion unit 17-2 is configured to perform conversion with a high-frequency electromagnetic wave propagating through the wave tube 24-2.
Further, a back short of the second waveguide 24-2 is formed by the plurality of second through conductors 16-2 and the second conductor layer 15.
Since the first signal conductor 12-1 extends linearly along the Y-axis, the high frequency signal transmitted through the first signal conductor 12-1 does not interfere with the second converter 17-2.
 第1の導波管構成部20-1及び第2の導波管構成部20-2は、図5に示すように、信号用導体12-1、12-2の延伸方向と直交する方向、図示X軸に沿って配置して形成される。
 第1の導波管構成部20-1及び第2の導波管構成部20-2は、導波管形成領域において、誘電体21と一面側導体層22と他面側導体層23を共通にする。
As shown in FIG. 5, the first waveguide configuration section 20-1 and the second waveguide configuration section 20-2 are arranged in a direction perpendicular to the extending direction of the signal conductors 12-1 and 12-2; It is arranged and formed along the illustrated X axis.
The first waveguide component 20-1 and the second waveguide component 20-2 share a dielectric 21, a conductor layer 22 on one side, and a conductor layer 23 on the other side in the waveguide formation region. Make it.
 誘電体21は、第1の導波管24-1を形成する部分に、一面から他面まで貫通した第1の貫通部21a-1を有し、第2の導波管24-2を形成する部分に、一面から他面まで貫通した第2の貫通部21a-2を有する。
 第1の貫通部21a-1の長手方向と第1の信号用導体12-1の延伸方向、つまり、Y軸とのなす角度が45度である。第1の貫通部21a-1の長手方向はX軸に対してなす角度も45度である。
 第1の貫通部21a-1において、横断面形状が長方形の頂点を丸めた角丸長方形である。
The dielectric 21 has a first penetrating portion 21a-1 penetrating from one surface to the other surface in a portion forming the first waveguide 24-1, and forms a second waveguide 24-2. A second penetrating portion 21a-2 that penetrates from one surface to the other surface is provided at the portion where the second through portion 21a-2 penetrates from one surface to the other surface.
The angle between the longitudinal direction of the first penetrating portion 21a-1 and the extending direction of the first signal conductor 12-1, that is, the Y-axis, is 45 degrees. The longitudinal direction of the first penetrating portion 21a-1 also forms an angle of 45 degrees with respect to the X axis.
The cross-sectional shape of the first penetrating portion 21a-1 is a rounded rectangle with rounded vertices.
 第2の貫通部21a-2の長手方向と第2の信号用導体12-2の延伸方向、つまり、Y軸とのなす角度が45度である。第2の貫通部21a-2の長手方向はX軸に対してなす角度も45度である。
 第2の貫通部21a-2において、横断面形状が長方形の頂点を丸めた角丸長方形である。
 第1の貫通部21a-1及び第2の貫通部21a-2は平行して配置され、第1の貫通部21a-1の中心と第2の貫通部21a-2の中心との間隔は設定間隔dxであり、第1の信号用導体12-1と第2の信号用導体12-2との設定間隔dxと同じである。
The angle between the longitudinal direction of the second penetrating portion 21a-2 and the extending direction of the second signal conductor 12-2, that is, the Y-axis, is 45 degrees. The longitudinal direction of the second penetrating portion 21a-2 also forms an angle of 45 degrees with respect to the X axis.
The cross-sectional shape of the second penetrating portion 21a-2 is a rounded rectangle with rounded vertices.
The first penetration part 21a-1 and the second penetration part 21a-2 are arranged in parallel, and the distance between the center of the first penetration part 21a-1 and the center of the second penetration part 21a-2 is set. The distance dx is the same as the set distance dx between the first signal conductor 12-1 and the second signal conductor 12-2.
 一面側導体層22は、図5に示すように、第1の貫通部21a-1の位置に第1の貫通部21a-1と連通する第1の開口部22a-1を有し、第2の貫通部21a-2の位置に第2の貫通部21a-2と連通する第2の開口部22a-2を有する。
 第1の開口部22a-1の形状及び大きさは第1の貫通部21a-1の一面における開口面の形状及び大きさと一致する。
 第2の開口部22a-2の形状及び大きさは第2の貫通部21a-2の一面における開口面の形状及び大きさと一致する。
As shown in FIG. 5, the one-side conductor layer 22 has a first opening 22a-1 that communicates with the first penetration part 21a-1 at the position of the first penetration part 21a-1, and a second opening 22a-1 that communicates with the first penetration part 21a-1. It has a second opening 22a-2 that communicates with the second penetration part 21a-2 at the position of the penetration part 21a-2.
The shape and size of the first opening 22a-1 match the shape and size of the opening surface on one surface of the first penetrating portion 21a-1.
The shape and size of the second opening 22a-2 match the shape and size of the opening surface on one surface of the second penetrating portion 21a-2.
 他面側導体層23は第1の貫通部21a-1の位置に第1の貫通部21a-1と連通する第1の開口部23a-1を有し、第2の貫通部21a-2の位置に第2の貫通部21a-2と連通する第2の開口部23a-2を有する。
 第1の開口部23a-1の形状及び大きさは第1の貫通部21a-1の他面における開口面の形状及び大きさと一致する。
 第2の開口部23a-2の形状及び大きさは第2の貫通部21a-2の他面における開口面の形状及び大きさと一致する。
The other side conductor layer 23 has a first opening 23a-1 communicating with the first penetration part 21a-1 at the position of the first penetration part 21a-1, and a first opening 23a-1 communicating with the first penetration part 21a-1. It has a second opening 23a-2 at a position that communicates with the second through-hole 21a-2.
The shape and size of the first opening 23a-1 match the shape and size of the opening on the other surface of the first penetrating portion 21a-1.
The shape and size of the second opening 23a-2 match the shape and size of the opening on the other surface of the second penetrating portion 21a-2.
 第1の導波管24-1は第1の貫通部21a-1の内面全面に形成された第1の導波管層25-1により構成され、第1の導波管層25-1により囲われた第1の中空部24a-1を有する中空導波管である。
 第1の導波管層25-1は筒状をなし、第1の導波管層25-1の一端は、一面側導体層22の第1の開口部22a-1において、一面側導体層22に電気的に接続される。
 第1の導波管層25-1の他端は、他面側導体層23の第1の開口部23a-1において、他面側導体層23に電気的に接続される。
The first waveguide 24-1 is constituted by a first waveguide layer 25-1 formed on the entire inner surface of the first penetrating portion 21a-1. It is a hollow waveguide having a first enclosed hollow part 24a-1.
The first waveguide layer 25-1 has a cylindrical shape, and one end of the first waveguide layer 25-1 is connected to the first conductor layer 22 at the first opening 22a-1 of the first conductor layer 22. 22.
The other end of the first waveguide layer 25-1 is electrically connected to the other side conductor layer 23 at the first opening 23a-1 of the other side conductor layer 23.
 第2の導波管24-2は第2の貫通部21a-2の内面全面に形成された第2の導波管層25-2により構成され、第2の導波管層25-2により囲われた第2の中空部24a-2を有する中空導波管である。
 第2の導波管層25-2は筒状をなし、第2の導波管層25-2の一端は、一面側導体層22の第2の開口部22a-2において、一面側導体層22に電気的に接続される。
 第2の導波管層25-2の他端は、他面側導体層23の第2の開口部23a-2において、他面側導体層23に電気的に接続される。
The second waveguide 24-2 is constituted by a second waveguide layer 25-2 formed on the entire inner surface of the second penetrating portion 21a-2. It is a hollow waveguide having a second enclosed hollow part 24a-2.
The second waveguide layer 25-2 has a cylindrical shape, and one end of the second waveguide layer 25-2 is connected to the first conductor layer 22 at the second opening 22a-2 of the first conductor layer 22. 22.
The other end of the second waveguide layer 25-2 is electrically connected to the other side conductor layer 23 at the second opening 23a-2 of the other side conductor layer 23.
 第1の導波管24-1における第1の中空部24a-1の横断面及び両端面24b-1、24c-1の形状と、第2の導波管24-2における第2の中空部24a-2の横断面及び両端面24b-2、24c-2の形状は同じであり、それぞれの長手方向と第1の信号用導体12-1及び第2の信号用導体12-2の延伸方向、図示Y軸とのなす角度が45度であり、X軸に対してなす角度も45度である。 The shape of the cross section and both end surfaces 24b-1 and 24c-1 of the first hollow part 24a-1 in the first waveguide 24-1, and the second hollow part in the second waveguide 24-2 The cross section of 24a-2 and the shapes of both end surfaces 24b-2 and 24c-2 are the same, and the longitudinal direction and the extending direction of the first signal conductor 12-1 and the second signal conductor 12-2 are the same. , the angle formed with the illustrated Y axis is 45 degrees, and the angle formed with the X axis is also 45 degrees.
 また、それぞれの長手方向の長さである長径aが高周波の電磁波を伝搬できる長さを有し、本例において、電磁波の波長の半波長より長い。
 第1の導波管24-1の両端面24b-1、24c-1及び第2の導波管24-2の両端面24b-2、24c-2において、例えば、長径aが3.098mm、短径bが1.549mmである。
In addition, the major axis a, which is the length in the longitudinal direction of each of them, is long enough to propagate high-frequency electromagnetic waves, and in this example, is longer than half the wavelength of the electromagnetic waves.
For example, in both end surfaces 24b-1, 24c-1 of the first waveguide 24-1 and both end surfaces 24b-2, 24c-2 of the second waveguide 24-2, the major axis a is 3.098 mm, The minor axis b is 1.549 mm.
 第1の導波管24-1における第1の中空部24a-1の横断面及び両端面24b-1、24c-1の中心と、第2の導波管24-2における第2の中空部24a-2の横断面及び両端面24b-2、24c-2の中心との間隔は設定間隔dxであり、第1の信号用導体12-1と第2の信号用導体12-2との設定間隔dxと同じであり、高周波の波長に対して半波長である。
 すなわち、第1の導波管24-1と第2の導波管24-2との間隔は設定間隔dxであり、高周波の波長に対して半波長である。
The center of the cross section and both end surfaces 24b-1 and 24c-1 of the first hollow part 24a-1 in the first waveguide 24-1, and the second hollow part in the second waveguide 24-2 The interval between the cross section of 24a-2 and the centers of both end faces 24b-2 and 24c-2 is a set interval dx, which is the set interval between the first signal conductor 12-1 and the second signal conductor 12-2. It is the same as the interval dx, and is half the wavelength of the high frequency.
That is, the interval between the first waveguide 24-1 and the second waveguide 24-2 is the set interval dx, which is half the wavelength of the high frequency.
 第1の導波管24-1における第1の中空部24a-1の横断面及び両端面24b-1、24c-1の中心と、第2の導波管24-2における第2の中空部24a-2の横断面及び両端面24b-2、24c-2の中心との間隔dxは高周波の波長に対して半波長以下であることが好ましく、この場合、第1の信号用導体12-1と第2の信号用導体12-2との間隔dxも合わせて半波長以下である。 The center of the cross section and both end surfaces 24b-1 and 24c-1 of the first hollow part 24a-1 in the first waveguide 24-1, and the second hollow part in the second waveguide 24-2 The distance dx between the cross section of 24a-2 and the center of both end surfaces 24b-2 and 24c-2 is preferably half a wavelength or less with respect to the wavelength of the high frequency. In this case, the first signal conductor 12-1 The distance dx between the signal conductor 12-2 and the second signal conductor 12-2 is also less than half a wavelength in total.
 第1の変換器構成部10-1及び第2の変換器構成部10-2それぞれに対して逆側に位置する第1の導波管24-1の一端面24c-1及び第2の導波管24-2の一端面24c-2を開放した開放端面とすることにより、第1の導波管24-1及び第2の導波管24-2それぞれを、空間へ高周波の電磁波を送信又は空間から高周波の電磁波を受信するアンテナとして使用できる。
 第1の導波管24-1及び第2の導波管24-2両者を送信アンテナ又は受信アンテナとして使用、あるいは一方を送信アンテナ、他方を受信アンテナとして使用するものでもよい。
One end surface 24c-1 of the first waveguide 24-1 and the second waveguide located on the opposite side with respect to the first converter component 10-1 and the second converter component 10-2, respectively. By making one end surface 24c-2 of the wave tube 24-2 open, each of the first wave guide 24-1 and the second wave guide 24-2 transmits high-frequency electromagnetic waves into space. Or it can be used as an antenna to receive high frequency electromagnetic waves from space.
Both the first waveguide 24-1 and the second waveguide 24-2 may be used as a transmitting antenna or a receiving antenna, or one may be used as a transmitting antenna and the other as a receiving antenna.
 また、第1の導波管24-1及び第2の導波管24-2両者を送信アンテナとして使用した場合、第1の導波管24-1の開放端面24c-1及び第2の導波管24-2の開放端面24c-2から放射される高周波の位相を変えることで図示X-Z面上のビームの指向方向を変えることができる。
 さらに、第1の導波管24-1と第2の導波管24-2の設定間隔dxを半波長もしくは半波長以下にしているので、放射方向、図示+Z方向のX-Z面上の半空間の任意の方向にビーム走査してもグレーティングローブが発生しないアンテナ装置を得ることができる。
Further, when both the first waveguide 24-1 and the second waveguide 24-2 are used as transmitting antennas, the open end surface 24c-1 of the first waveguide 24-1 and the second waveguide By changing the phase of the high frequency wave emitted from the open end surface 24c-2 of the wave tube 24-2, the direction of beam orientation on the illustrated XZ plane can be changed.
Furthermore, since the set interval dx between the first waveguide 24-1 and the second waveguide 24-2 is set to half a wavelength or less than a half wavelength, It is possible to obtain an antenna device in which grating lobes are not generated even when the beam is scanned in any direction in half space.
 また、第1の導波管24-1の一端面24c-1及び第2の導波管24-2の一端面24c-2それぞれに、それぞれの断面が第1の導波管24-1の一端面24c-1及び第2の導波管24-2の一端面24c-2と同じ形状である導波管(図示せず)を連通させて接続し、接続した導波管に接続された高周波回路との間で高周波を伝搬するものとしても良い。 Further, each of the one end surface 24c-1 of the first waveguide 24-1 and the one end surface 24c-2 of the second waveguide 24-2 has a cross section of the first waveguide 24-1. A waveguide (not shown) having the same shape as the one end surface 24c-1 and the one end surface 24c-2 of the second waveguide 24-2 is connected to communicate with each other, and the waveguide is connected to the connected waveguide. It may also be a device that propagates high frequencies between it and a high frequency circuit.
 他面側導体層23は、図4に示すように、変換器構成部10における第1の導体層13の第1の開口部13a-1を囲むように間隔をあけて配置される第1のボールグリッドアレイを構成する複数の第1の端子30-1と、第1の導体層13-1の第2の開口部13a-2を囲むように間隔をあけて配置される第2のボールグリッドアレイを構成する複数の第2の端子30-2により、第1の導体層13に電気的に接続される。 As shown in FIG. 4, the other side conductor layer 23 includes first conductor layers arranged at intervals so as to surround the first opening 13a-1 of the first conductor layer 13 in the converter component 10. A second ball grid arranged at intervals so as to surround a plurality of first terminals 30-1 constituting a ball grid array and a second opening 13a-2 of the first conductor layer 13-1. The plurality of second terminals 30-2 constituting the array are electrically connected to the first conductor layer 13.
 すなわち、第1の導体層13の第1の開口部13a-1と他面側導体層23の第1の開口部23a-1は、それぞれの長手方向が第1の信号用導体12-1に対する角度を45度として対向して配置され、第1の導体層13の第2の開口部13a-2と他面側導体層23の第2の開口部23a-2は、それぞれの長手方向が第2の信号用導体12-2に対する角度を45度として対向して配置される。 That is, the first opening 13a-1 of the first conductor layer 13 and the first opening 23a-1 of the other side conductor layer 23 have their longitudinal directions aligned with respect to the first signal conductor 12-1. The second opening 13a-2 of the first conductor layer 13 and the second opening 23a-2 of the other side conductor layer 23 are disposed facing each other at an angle of 45 degrees, and the longitudinal direction of each of the second opening 13a-2 of the first conductor layer 13 and the second opening 23a-2 of the other side conductor layer 23 is 45 degrees. The two signal conductors 12-2 are arranged facing each other at an angle of 45 degrees.
 このようにして配置された複数の第1の端子30-1による第1のボールグリッドアレイは第1の変換器構成部10-1と第1の導波管構成部20-1に対する第1の疑似的な導波管を構成し、複数の第2の端子30-2による第2のボールグリッドアレイは第2の変換器構成部10-2と第2の導波管構成部20-2に対する第2の疑似的な導波管を構成する。 The first ball grid array formed by the plurality of first terminals 30-1 arranged in this manner provides a first ball grid array with respect to the first transducer component 10-1 and the first waveguide component 20-1. A second ball grid array with a plurality of second terminals 30-2 constitutes a pseudo waveguide and is connected to the second transducer component 10-2 and the second waveguide component 20-2. A second pseudo waveguide is constructed.
 第1のボールグリッドアレイを構成する複数の第1の端子30-1と第2のボールグリッドアレイを構成する複数の第2の端子30-2は、それぞれが第1の信号用導体12-1及び第2の信号用導体12-2の延伸方向と直交する方向、図示X軸に沿って間隔dx平行移動した関係になっている。
 すなわち、対応する第1の端子30-1と第2の端子30-2との間隔が全て間隔dxにされており、その結果、第1の変換部17-1と第2の変換部17-2との間に位置する端子、図4図示枠Aに囲まれた端子は、第1のボールグリッドアレイと第2のボールグリッドアレイに対して共用する端子30になる。
The plurality of first terminals 30-1 constituting the first ball grid array and the plurality of second terminals 30-2 constituting the second ball grid array are connected to the first signal conductor 12-1, respectively. and the direction perpendicular to the extending direction of the second signal conductor 12-2, along the X-axis shown in the figure, in a parallel movement by an interval dx.
That is, the distance between the corresponding first terminal 30-1 and second terminal 30-2 is all set to the distance dx, and as a result, the distance between the first converter 17-1 and the second converter 17- 2, the terminal surrounded by frame A in FIG. 4 becomes a terminal 30 that is shared by the first ball grid array and the second ball grid array.
 それぞれが疑似的な導波管を構成する第1のボールグリッドアレイと第2のボールグリッドアレイにおいて、第1の変換部17-1と第2の変換部17-2との間に位置する端子を共用する端子30としているが、第1の信号用端子12-1及び第2の信号用端子12-2の延伸方向(図示Y軸)が、第1の変換部17-1と第2の変換部17-2の配置方向(図示X軸)と直交しているので、第1の信号用端子12-1に伝送される高周波信号は第2の変換部17-2及び第2のボールグリッドアレイによる第2の疑似的な導波管に干渉することはなく、また、第2の信号用端子12-2に伝送される高周波信号は第1の変換部17-1及び第1のボールグリッドアレイによる第1の疑似的な導波管に干渉することはない。 A terminal located between the first converting section 17-1 and the second converting section 17-2 in the first ball grid array and the second ball grid array, each of which constitutes a pseudo waveguide. However, the extending direction (Y-axis in the figure) of the first signal terminal 12-1 and the second signal terminal 12-2 is the same as that of the first converter 17-1 and the second converter 17-1. Since it is perpendicular to the arrangement direction (X axis in the drawing) of the converter 17-2, the high frequency signal transmitted to the first signal terminal 12-1 is transmitted to the second converter 17-2 and the second ball grid. There is no interference with the second pseudo waveguide by the array, and the high frequency signal transmitted to the second signal terminal 12-2 is transmitted to the first converter 17-1 and the first ball grid. The array does not interfere with the first pseudo waveguide.
 なお、第1の変換部17-1の図示左隣に隣接して変換部を形成した場合は、図4図示枠Bに囲まれた端子が隣接するボールグリッドアレイ間に対して共用する端子30になり、第2の変換部17-2の図示右隣に隣接して変換部を形成した場合は、図4図示枠Cに囲まれた端子が隣接するボールグリッドアレイ間に対して共用する端子30になる。
 第1の端子30-1による第1のボールグリッドアレイと第2の端子30-2による第2のボールグリッドアレイは、一体的に構成された第1の導波管構成部20-1及び第2の導波管構成部20-2を、一体的に構成された第1の変換器構成部10-1及び第2の変換器構成部10-2に機械的に接続する役割も果たす。
Note that when a converter is formed adjacent to the first converter 17-1 on the left side in the illustration, the terminal surrounded by frame B in FIG. 4 is the terminal 30 shared between adjacent ball grid arrays. If the converter is formed adjacent to the right side of the second converter 17-2 in the drawing, the terminal surrounded by the frame C in FIG. 4 is a terminal shared between adjacent ball grid arrays. Becomes 30.
The first ball grid array formed by the first terminal 30-1 and the second ball grid array formed by the second terminal 30-2 are integrated with the first waveguide component 20-1 and the second ball grid array formed by the second terminal 30-2. It also serves to mechanically connect the second waveguide component 20-2 to the first transducer component 10-1 and second transducer component 10-2, which are integrally configured.
 以上に述べたように、実施の形態2に係るマイクロストリップ線路-導波管変換器は、個々のマイクロストリップ線路-導波管変換器において、実施の形態1に係るマイクロストリップ線路-導波管変換器と同様の効果を有する他、複数のマイクロストリップ線路-導波管変換器を信号用導体の延伸方向と直交する方向に複数配置したので、複数のマイクロストリップ線路-導波管変換器を信号用導体の延伸方向と直交する方向に狭い間隔で密に配置できる。 As described above, in the microstrip line-waveguide converter according to the second embodiment, in each microstrip line-waveguide converter, the microstrip line-waveguide converter according to the first embodiment In addition to having the same effect as a transducer, multiple microstrip line-waveguide converters are arranged in a direction perpendicular to the extending direction of the signal conductor, so multiple microstrip line-waveguide converters can be They can be densely arranged at narrow intervals in a direction perpendicular to the extending direction of the signal conductor.
 実施の形態2に係るマイクロストリップ線路-導波管変換器は、隣接する導波管24-1、24-2の間隔dxを、導波管を伝搬する高周波の波長に対して半波長、もしくは半波長以下にでき、半波長、もしくは半波長以下にしたことにより、複数の導波管を信号用導体の延伸方向と直交する方向に狭い間隔で密に配置できる。
 しかも、隣接する導波管24-1、24-2の間隔dxを半波長もしくは半波長以下にしているので、放射方向、図示+Z方向のX-Z面上の半空間の任意の方向にビーム走査してもグレーティングローブが発生しないアンテナ装置を得ることができる。
In the microstrip line-waveguide converter according to the second embodiment, the interval dx between the adjacent waveguides 24-1 and 24-2 is set to a half wavelength with respect to the wavelength of the high frequency wave propagating through the waveguides, or By making the wavelength less than half a wavelength, a plurality of waveguides can be densely arranged at narrow intervals in a direction perpendicular to the extending direction of the signal conductor.
Moreover, since the interval dx between the adjacent waveguides 24-1 and 24-2 is set to half a wavelength or less than half a wavelength, the beam can be directed in any direction in the half space on the XZ plane in the radiation direction, the +Z direction in the figure. An antenna device that does not generate grating lobes even during scanning can be obtained.
 実施の形態2に係るマイクロストリップ線路-導波管変換器は、第1の変換器構成部10-1及び第1の導波管構成部20-1と第2の変換器構成部10-2及び第2の導波管構成部20-2、つまり、隣接する変換器構成部及び導波管構成部の対に対応する第1のボールグリッドアレイと第2のボールグリッドアレイにおいて、隣接する変換器構成部と導波管構成部の対との間に位置する第1のボールグリッドアレイと第2のボールグリッドアレイを構成する端子30-1、30-2を共用端子30としたことにより、複数のマイクロストリップ線路-導波管変換器を信号用導体の延伸方向と直交する方向に狭い間隔でより密に配置できる。 The microstrip line-waveguide converter according to the second embodiment includes a first converter component 10-1, a first waveguide component 20-1, and a second converter component 10-2. and the second waveguide configuration section 20-2, that is, the first ball grid array and the second ball grid array corresponding to the pair of adjacent transducer configuration section and waveguide configuration section, the adjacent conversion By using the terminals 30-1 and 30-2 that constitute the first ball grid array and the second ball grid array located between the pair of the waveguide component and the waveguide component as the common terminal 30, A plurality of microstrip line-waveguide converters can be arranged more closely at narrow intervals in a direction perpendicular to the direction in which the signal conductor extends.
実施の形態3.
 実施の形態3に係る導波管-マイクロストリップ線路変換器及びアンテナ装置を図6及び図7を用いて説明する。
 実施の形態3に係る導波管-マイクロストリップ線路変換器は、実施の形態2に係る導波管-マイクロストリップ線路変換器が2つの導波管-マイクロストリップ線路変換器を信号用導体12の延伸方向と直交する方向に2つ配置したものに対して、さらに、2つの配列方向と直交する方向に、実施の形態2に係る導波管-マイクロストリップ線路変換器と同じ構成の2つの導波管-マイクロストリップ線路変換器を配置した点が相違し、その他の点については同じである。
Embodiment 3.
A waveguide-microstrip line converter and antenna device according to Embodiment 3 will be explained using FIGS. 6 and 7.
The waveguide-microstrip line converter according to the third embodiment is such that the waveguide-microstrip line converter according to the second embodiment converts two waveguide-microstrip line converters into the signal conductor 12. In addition to the two waveguides arranged in the direction orthogonal to the stretching direction, two waveguides having the same configuration as the waveguide-microstrip line converter according to the second embodiment are further arranged in the direction orthogonal to the two arrangement directions. The difference is that the wave tube-microstrip line converter is arranged, and the other points are the same.
 すなわち、実施の形態3に係る導波管-マイクロストリップ線路変換器は、導波管の管軸に直交する2軸、管軸をZ軸とすると、X軸及びY軸それぞれに、2つずつの導波管-マイクロストリップ線路変換器を配置したものである。
 なお、X軸及びY軸それぞれに2つ配置したものを一例として示すが、2つに限られるものではなく、実施の形態3に係る導波管-マイクロストリップ線路変換器は、X軸及びY軸それぞれに3つ以上配置されたものも含む。
That is, the waveguide-microstrip line converter according to the third embodiment has two axes perpendicular to the tube axis of the waveguide, two axes each on the X axis and the Y axis, assuming that the tube axis is the Z axis. A waveguide-to-microstrip line converter is arranged.
Although two waveguide-to-microstrip line converters according to the third embodiment are shown as an example in which two waveguides are arranged on each of the X-axis and Y-axis, the number is not limited to two. It also includes those in which three or more are arranged on each axis.
 X軸に沿って配置された2つの導波管-マイクロストリップ線路変換器は、実施の形態2に係る導波管-マイクロストリップ線路変換器として示した第1の導波管-マイクロストリップ線路変換器及び第2の導波管-マイクロストリップ線路変換器と同じである。
 また、Y軸に沿って配置された2つの導波管-マイクロストリップ線路変換器は、第1の導波管-マイクロストリップ線路変換器及び第2の導波管-マイクロストリップ線路変換器を90度回転させて配置したものと同様であり、第3の導波管-マイクロストリップ線路変換器、第4の導波管-マイクロストリップ線路変換器として説明する。
The two waveguide-to-microstrip line converters arranged along the X-axis are the first waveguide-to-microstrip line converter shown as the waveguide-to-microstrip line converter according to the second embodiment. and the second waveguide-to-microstrip line converter.
Additionally, the two waveguide-to-microstrip line converters arranged along the Y axis include a first waveguide-to-microstrip line converter and a second waveguide-to-microstrip line converter at 90°. This is similar to the arrangement in which the waveguides are rotated by a degree, and will be explained as a third waveguide-to-microstrip line converter and a fourth waveguide-to-microstrip line converter.
 第1の導波管-マイクロストリップ線路変換器から第4の導波管-マイクロストリップ線路変換器はそれぞれ、実施の形態1に係る導波管-マイクロストリップ線路変換器と同じ構成をしており、実施の形態1に係る導波管-マイクロストリップ線路変換器における構成要素に対応する構成要素に対して、-1から-4の符号を付して対応関係を明確にして説明する。 Each of the first waveguide-microstrip line converter to the fourth waveguide-microstrip line converter has the same configuration as the waveguide-microstrip line converter according to the first embodiment. Components corresponding to those in the waveguide-microstrip line converter according to Embodiment 1 will be described with reference numerals -1 to -4 to clarify their correspondence.
 以下の説明において、実施の形態2に係る導波管-マイクロストリップ線路変換器との相違点を中心に説明するため、変換器構成部及び端子を示す平面図(図6)及び導波管構成部を示す平面図(図7)を用いて説明するが、導波管における高周波信号の伝搬方向に沿った側面は、第1の導波管-マイクロストリップ線路変換器から第4の導波管-マイクロストリップ線路変換器それぞれは実施の形態1に係る導波管-マイクロストリップ線路変換器と実質同じである。
 なお、図6及び図7中、図4及び図5に付された符号と同一符号は同一又は相当部分を示す。
In the following description, in order to mainly explain the differences from the waveguide-microstrip line converter according to Embodiment 2, a plan view (FIG. 6) showing the converter components and terminals and the waveguide configuration The side surface along the propagation direction of the high-frequency signal in the waveguide is from the first waveguide-microstrip line converter to the fourth waveguide. - Each microstrip line converter is substantially the same as the waveguide-microstrip line converter according to the first embodiment.
Note that in FIGS. 6 and 7, the same symbols as those in FIGS. 4 and 5 indicate the same or equivalent parts.
 実施の形態3に係る導波管-マイクロストリップ線路変換器は、第1の導波管-マイクロストリップ線路変換器から第4の導波管-マイクロストリップ線路変換器を備える。
 第1の導波管-マイクロストリップ線路変換器及び第2の導波管-マイクロストリップ線路変換器は、導波管の管軸に直交する2軸、管軸をZ軸とすると、X軸及びY軸の一方の軸、この例では図6及び図7に示すX軸に沿って並列して配置される。
 第3の導波管-マイクロストリップ線路変換器及び第4の導波管-マイクロストリップ線路変換器は、X軸及びY軸の他方の軸、この例では図6及び図7に示すY軸に沿って並列して配置される。
The waveguide-microstrip line converter according to the third embodiment includes a first waveguide-microstrip line converter to a fourth waveguide-microstrip line converter.
The first waveguide-microstrip line converter and the second waveguide-microstrip line converter have two axes orthogonal to the tube axis of the waveguide, and if the tube axis is the Z axis, the X axis and They are arranged in parallel along one axis of the Y axis, in this example the X axis shown in FIGS. 6 and 7.
The third waveguide-to-microstrip line converter and the fourth waveguide-to-microstrip line converter are arranged on the other axis of the X-axis and the Y-axis, in this example the Y-axis shown in FIGS. 6 and 7. are arranged in parallel along the
 第1の導波管-マイクロストリップ線路変換器は、第1の変換器構成部10-1と第1の導波管構成部20-1と複数のボール状の第1の端子30-1とを備える。
 第2の導波管-マイクロストリップ線路変換器は、第2の変換器構成部10-2と第2の導波管構成部20-2と複数のボール状の第2の端子30-2とを備える。
 第3の導波管-マイクロストリップ線路変換器は、第3の変換器構成部10-3と第3の導波管構成部20-3と複数のボール状の第3の端子30-3とを備える。
 第4の導波管-マイクロストリップ線路変換器は、第4の変換器構成部10-4と第4の導波管構成部20-4と複数のボール状の第4の端子30-4とを備える。
The first waveguide-microstrip line converter includes a first converter component 10-1, a first waveguide component 20-1, and a plurality of ball-shaped first terminals 30-1. Equipped with.
The second waveguide-microstrip line converter includes a second converter component 10-2, a second waveguide component 20-2, and a plurality of ball-shaped second terminals 30-2. Equipped with.
The third waveguide-microstrip line converter includes a third converter component 10-3, a third waveguide component 20-3, and a plurality of ball-shaped third terminals 30-3. Equipped with.
The fourth waveguide-microstrip line converter includes a fourth converter component 10-4, a fourth waveguide component 20-4, and a plurality of ball-shaped fourth terminals 30-4. Equipped with.
 第1の導波管-マイクロストリップ線路変換器及び第2の導波管-マイクロストリップ線路変換器は、実施の形態2に係る導波管-マイクロストリップ線路変換器における第1の導波管-マイクロストリップ線路変換器及び第2の導波管-マイクロストリップ線路変換器と同じであるので、第3の導波管-マイクロストリップ線路変換器及び第4の導波管-マイクロストリップ線路変換器を中心に説明する。 The first waveguide-microstrip line converter and the second waveguide-microstrip line converter are the first waveguide-microstrip line converter in the waveguide-microstrip line converter according to the second embodiment. Since the microstrip line converter and the second waveguide-to-microstrip line converter are the same, the third waveguide-to-microstrip line converter and the fourth waveguide-to-microstrip line converter are I will mainly explain.
 第3の変換器構成部10-3及び第4の変換器構成部10-4は、図6において、第1の変換器構成部10-1及び第2の変換器構成部10-2に対して(x、y)=(-1、1)のベクトルを中心とした鏡像の関係にある位置に配置される。
 従って、第3の変換器構成部10-3及び第4の変換器構成部10-4は、図6に示すように、マイクロストリップ基板における変換器形成領域に、信号用導体12-3、12-4の延伸方向と直交する方向、図示Y軸に沿って配置して形成される。
In FIG. 6, the third converter component 10-3 and the fourth converter component 10-4 are connected to the first converter component 10-1 and the second converter component 10-2. and are placed in a mirror image relationship around the vector (x, y) = (-1, 1).
Therefore, as shown in FIG. 6, the third converter component 10-3 and the fourth converter component 10-4 are provided with signal conductors 12-3 and 12 in the converter forming area of the microstrip substrate. -4 is arranged along the illustrated Y axis, which is a direction perpendicular to the stretching direction.
 第3の変換器構成部10-3及び第4の変換器構成部10-4の構造は、基本的には第1の導波管-マイクロストリップ線路変換器及び第2の導波管-マイクロストリップ線路変換器の構造と同じであるので主だった点を以下に説明する。
 第3の信号用導体12-3及び第4の信号用導体12-4は誘電体11の変換器形成領域において、図示X軸に平行して直線状に延伸され、他端が第1の導波管-マイクロストリップ線路変換器及び第2の導波管-マイクロストリップ線路変換器が配置された側にある。
 第3の信号用導体12-3及び第4の信号用導体12-4はY軸に平行して直線状に延伸されるため、互いに干渉しない。
The structures of the third converter component 10-3 and the fourth converter component 10-4 are basically a first waveguide-microstrip line converter and a second waveguide-microstrip line converter. Since the structure is the same as that of a strip line converter, the main points will be explained below.
The third signal conductor 12-3 and the fourth signal conductor 12-4 extend linearly in parallel to the illustrated On the side on which the waveguide-to-microstrip line converter and the second waveguide-to-microstrip line converter are arranged.
The third signal conductor 12-3 and the fourth signal conductor 12-4 extend linearly parallel to the Y-axis, so they do not interfere with each other.
 第3の変換器構成部10-3及び第4の変換器構成部10-4は、変換器形成領域において、誘電体11と第1の導体層13と第2の導体層15と内部導体層18を、第1の変換器構成部10-1及び第2の変換器構成部10-2と共通にする。
 第3の変換器構成部10-3は第3の信号用導体12-3と第3のプローブ14-3と複数の第3の貫通導体16-3を備える。
 第4の変換器構成部10-4は第4の信号用導体12-4と第4のプローブ14-4と複数の第4の貫通導体16-4を備える。
The third converter component 10-3 and the fourth converter component 10-4 have a dielectric 11, a first conductor layer 13, a second conductor layer 15, and an inner conductor layer in the converter formation region. 18 is shared by the first converter component 10-1 and the second converter component 10-2.
The third converter component 10-3 includes a third signal conductor 12-3, a third probe 14-3, and a plurality of third through conductors 16-3.
The fourth converter component 10-4 includes a fourth signal conductor 12-4, a fourth probe 14-4, and a plurality of fourth through conductors 16-4.
 第3の信号用導体12-3と第4の信号用導体12-4との間隔dyは、第1の信号用導体12-1と第2の信号用導体12-2との間隔dxと同じであり、導波管24-3、24-4を伝搬する高周波の波長に対して半波長に設定される。
 設定間隔dyは、設定間隔dxと同様に、高周波の波長に対して半波長に限られるものではなく、導波管24-1、24-2の設計に応じて増減しても良い。好ましくは、間隔dyは高周波の波長に対して半波長以下である。
 なお、Y軸に沿って導波管-マイクロストリップ線路変換器が3つ以上の複数である場合は、隣接する信号用導体12の間隔が設定間隔dyである。
The distance dy between the third signal conductor 12-3 and the fourth signal conductor 12-4 is the same as the distance dx between the first signal conductor 12-1 and the second signal conductor 12-2. This is set to be half the wavelength of the high frequency waves propagating through the waveguides 24-3 and 24-4.
Like the setting interval dx, the set interval dy is not limited to a half wavelength of the high frequency wavelength, and may be increased or decreased depending on the design of the waveguides 24-1 and 24-2. Preferably, the distance dy is less than half a wavelength with respect to the wavelength of the radio frequency.
Note that when there are three or more waveguide-microstrip line converters along the Y axis, the interval between adjacent signal conductors 12 is the set interval dy.
 第1の導体層13は、図6に示すように、第3の信号用導体12-3と第4の信号用導体12-4の延伸方向に対して長手方向のなす角度が45度である第3の開口部13a-3及び第4の開口部13a-4を有する。第1の開口部13a-1及び第2の開口部13a-2の長手方向はX軸に対してなす角度も45度である。
 第3の開口部13a-3及び第4の開口部13a-4は平行して配置され、第3の開口部13a-3の中心と第4の開口部13a-4の中心との間隔は設定間隔dyであり、第3の信号用導体12-3と第4の信号用導体12-4との間隔dyと同じである。
As shown in FIG. 6, the first conductor layer 13 has an angle of 45 degrees in the longitudinal direction with respect to the extending direction of the third signal conductor 12-3 and the fourth signal conductor 12-4. It has a third opening 13a-3 and a fourth opening 13a-4. The longitudinal direction of the first opening 13a-1 and the second opening 13a-2 also forms an angle of 45 degrees with respect to the X axis.
The third opening 13a-3 and the fourth opening 13a-4 are arranged in parallel, and the distance between the center of the third opening 13a-3 and the center of the fourth opening 13a-4 is set. The distance dy is the same as the distance dy between the third signal conductor 12-3 and the fourth signal conductor 12-4.
 複数の第3の貫通導体16-3はそれぞれ、図6に示すように、誘電体11の一面から他面まで貫通し、上端が第1の導体層13に、下端が第2の導体層15に電気的に接続される。
 複数の第3の貫通導体16-3は第1の導体層13の第3の開口部13a-3を囲むように間隔をあけて配置される。
 複数の第3の貫通導体16-3は第3の開口部13a-3を取り囲む領域において疑似的な導波管を構成する。
As shown in FIG. 6, each of the plurality of third through conductors 16-3 penetrates from one surface to the other surface of the dielectric 11, and has an upper end connected to the first conductor layer 13 and a lower end connected to the second conductor layer 15. electrically connected to.
The plurality of third through conductors 16-3 are arranged at intervals so as to surround the third opening 13a-3 of the first conductor layer 13.
The plurality of third through conductors 16-3 constitute a pseudo waveguide in a region surrounding the third opening 13a-3.
 第3の開口部13a-3を含む第1の導体層13と複数の第3の貫通導体16-3と第2の導体層15とにより、マイクロストリップ線路を伝送する高周波信号と第3の導波管24-3を伝搬する高周波の電磁波との変換を行う第3の変換部17-3を構成する。
 また、複数の第3の貫通導体16-3と第2の導体層15とにより第3の導波管24-3のバックショートが形成される。
 第4の信号用導体12-4はX軸に沿って直線状に延伸されるため、第4の信号用導体12-4を伝送する高周波信号は第3の変換部17-3に干渉しない。
The first conductor layer 13 including the third opening 13a-3, the plurality of third through conductors 16-3, and the second conductor layer 15 allow high frequency signals transmitted through the microstrip line and the third conductor layer 13 to be connected to each other. A third conversion unit 17-3 is configured to perform conversion with a high frequency electromagnetic wave propagating through the wave tube 24-3.
Further, a back short of the third waveguide 24-3 is formed by the plurality of third through conductors 16-3 and the second conductor layer 15.
Since the fourth signal conductor 12-4 extends linearly along the X-axis, the high frequency signal transmitted through the fourth signal conductor 12-4 does not interfere with the third converter 17-3.
 複数の第4の貫通導体16-4はそれぞれ、図6に示すように、誘電体11の一面から他面まで貫通し、上端が第1の導体層13に、下端が第2の導体層15に電気的に接続される。
 複数の第4の貫通導体16-4は第1の導体層13の第4の開口部13a-4を囲むように間隔をあけて配置される。
 複数の第4の貫通導体16-4は第4の開口部13a-4を取り囲む領域において疑似的な導波管を構成する。
As shown in FIG. 6, each of the plurality of fourth through conductors 16-4 penetrates from one side of the dielectric 11 to the other side, and has an upper end connected to the first conductive layer 13 and a lower end connected to the second conductive layer 15. electrically connected to.
The plurality of fourth through conductors 16-4 are arranged at intervals so as to surround the fourth opening 13a-4 of the first conductor layer 13.
The plurality of fourth through conductors 16-4 constitute a pseudo waveguide in a region surrounding the fourth opening 13a-4.
 第4の開口部13a-4を含む第1の導体層13と複数の第4の貫通導体16-4と第2の導体層15とにより、マイクロストリップ線路を伝送する高周波信号と第4の導波管24-4を伝搬する高周波の電磁波との変換を行う第4の変換部17-4を構成する。
 また、複数の第4の貫通導体16-4と第2の導体層15とにより第4の導波管24-4のバックショートが形成される。
 第3の信号用導体12-3はX軸に沿って直線状に延伸されるため、第3の信号用導体12-3を伝送する高周波信号は第4の変換部17-4に干渉しない。
The first conductor layer 13 including the fourth opening 13a-4, the plurality of fourth through conductors 16-4, and the second conductor layer 15 allow high frequency signals transmitted through the microstrip line and the fourth conductor layer 13 to be connected to each other. A fourth conversion unit 17-4 is configured to perform conversion with a high-frequency electromagnetic wave propagating through the wave tube 24-4.
Further, a back short of the fourth waveguide 24-4 is formed by the plurality of fourth through conductors 16-4 and the second conductor layer 15.
Since the third signal conductor 12-3 extends linearly along the X-axis, the high frequency signal transmitted through the third signal conductor 12-3 does not interfere with the fourth converter 17-4.
 第3の導波管構成部20-3及び第4の導波管構成部20-4は、図7において、第1の導波管構成部20-1及び第2の導波管構成部20-2に対して(x、y)=(-1、1)のベクトルを中心とした鏡像の関係にある位置に配置される。
 従って、第3の導波管構成部20-3及び第4の導波管構成部20-4は、図7に示すように、信号用導体12-3、12-4の延伸方向と直交する方向、図示Y軸に沿って配置して形成される。
In FIG. -2 is placed at a position that is a mirror image of the vector (x, y) = (-1, 1).
Therefore, as shown in FIG. direction, and is arranged along the illustrated Y axis.
 第3の導波管構成部20-3及び第4の導波管構成部20-4は、導波管形成領域において、誘電体21と一面側導体層22と他面側導体層23を第1の導波管構成部20-1及び第2の導波管構成部20-2と共通にする。
 誘電体21は、第3の導波管24-3を形成する部分に、一面から他面まで貫通した第3の貫通部21a-3を有し、第4の導波管24-4を形成する部分に、一面から他面まで貫通した第4の貫通部21a-4を有する。
 第3の貫通部21a-3の長手方向と第3の信号用導体12-3の延伸方向、つまり、X軸とのなす角度が45度である。第3の貫通部21a-3の長手方向はY軸に対してなす角度も45度である。
The third waveguide configuration section 20-3 and the fourth waveguide configuration section 20-4 have a dielectric material 21, a conductor layer 22 on one side, and a conductor layer 23 on the other side in the waveguide formation region. This is common to the first waveguide configuration section 20-1 and the second waveguide configuration section 20-2.
The dielectric 21 has a third penetration part 21a-3 penetrating from one surface to the other surface in a portion forming the third waveguide 24-3, and forms a fourth waveguide 24-4. A fourth penetrating portion 21a-4 is provided at the portion where the cylindrical portion 21a-4 penetrates from one surface to the other surface.
The angle between the longitudinal direction of the third through-hole 21a-3 and the extending direction of the third signal conductor 12-3, that is, the X-axis, is 45 degrees. The longitudinal direction of the third penetrating portion 21a-3 also forms an angle of 45 degrees with respect to the Y axis.
 第4の貫通部21a-4の長手方向と第4の信号用導体12-4の延伸方向、つまり、X軸とのなす角度が45度である。第4の貫通部21a-4の長手方向はY軸に対してなす角度も45度である。
 第3の貫通部21a-3及び第4の貫通部21a-4は平行して配置され、第3の貫通部21a-3の中心と第4の貫通部21a-4の中心との間隔は設定間隔dyであり、第3の信号用導体12-3と第4の信号用導体12-4との間隔dyと同じである。
The angle between the longitudinal direction of the fourth through-hole 21a-4 and the extending direction of the fourth signal conductor 12-4, that is, the X-axis, is 45 degrees. The longitudinal direction of the fourth penetrating portion 21a-4 also forms an angle of 45 degrees with respect to the Y axis.
The third penetration part 21a-3 and the fourth penetration part 21a-4 are arranged in parallel, and the distance between the center of the third penetration part 21a-3 and the center of the fourth penetration part 21a-4 is set. The distance dy is the same as the distance dy between the third signal conductor 12-3 and the fourth signal conductor 12-4.
 一面側導体層22は、図7に示すように、第3の貫通部21a-3の位置に第3の貫通部21a-3と連通する第3の開口部22a-3を有し、第4の貫通部21a-4の位置に第4の貫通部21a-4と連通する第4の開口部22a-4を有する。
 他面側導体層23は第3の貫通部21a-3の位置に第3の貫通部21a-3と連通する第3の開口部23a-3を有し、第4の貫通部21a-4の位置に第4の貫通部21a-4と連通する第4の開口部23a-4を有する。
As shown in FIG. 7, the one-side conductor layer 22 has a third opening 22a-3 that communicates with the third through-hole 21a-3 at the position of the third through-hole 21a-3, and a fourth opening 22a-3 that communicates with the third through-hole 21a-3. It has a fourth opening 22a-4 that communicates with the fourth through-hole 21a-4 at the position of the through-hole 21a-4.
The other side conductor layer 23 has a third opening 23a-3 communicating with the third penetration 21a-3 at the position of the third penetration 21a-3, and a third opening 23a-3 communicating with the third penetration 21a-3. It has a fourth opening 23a-4 that communicates with the fourth through-hole 21a-4 at the position.
 第3の導波管24-3は第3の貫通部21a-3の内面全面に形成された第3の導波管層25-3により構成され、第3の導波管層25-3により囲われた第3の中空部24a-3を有する中空導波管である。
 第3の導波管層25-3は筒状をなし、第3の導波管層25-3の一端は、一面側導体層22の第3の開口部22a-3において、一面側導体層22に電気的に接続される。
 第3の導波管層25-3の他端は、他面側導体層23の第3の開口部23a-3において、他面側導体層23に電気的に接続される。
The third waveguide 24-3 is constituted by a third waveguide layer 25-3 formed on the entire inner surface of the third penetrating portion 21a-3. It is a hollow waveguide having an enclosed third hollow part 24a-3.
The third waveguide layer 25-3 has a cylindrical shape, and one end of the third waveguide layer 25-3 is connected to the first conductor layer 22 at the third opening 22a-3 of the first conductor layer 22. 22.
The other end of the third waveguide layer 25-3 is electrically connected to the other side conductor layer 23 at the third opening 23a-3 of the other side conductor layer 23.
 第4の導波管24-4は第4の貫通部21a-4の内面全面に形成された第4の導波管層25-4により構成され、第4の導波管層25-4により囲われた第4の中空部24a-4を有する中空導波管である。
 第4の導波管層25-4は筒状をなし、第4の導波管層25-4の一端は、一面側導体層22の第4の開口部22a-4において、一面側導体層22に電気的に接続される。
 第4の導波管層25-4の他端は、他面側導体層23の第4の開口部23a-4において、他面側導体層23に電気的に接続される。
The fourth waveguide 24-4 is constituted by a fourth waveguide layer 25-4 formed on the entire inner surface of the fourth penetrating portion 21a-4. It is a hollow waveguide having an enclosed fourth hollow section 24a-4.
The fourth waveguide layer 25-4 has a cylindrical shape, and one end of the fourth waveguide layer 25-4 is connected to the first conductor layer 22 at the fourth opening 22a-4 of the first conductor layer 22. 22.
The other end of the fourth waveguide layer 25-4 is electrically connected to the other side conductor layer 23 at the fourth opening 23a-4 of the other side conductor layer 23.
 第3の導波管24-3における第3の中空部24a-3及び第4の導波管24-4における第4の中空部24a-4それぞれの長手方向と第3の信号用導体12-3及び第4の信号用導体12-4の延伸方向、図示X軸とのなす角度が45度であり、Y軸に対してなす角度も45度である。
 また、それぞれの長手方向の長さである長径aが高周波の電磁波を伝搬できる長さを有し、本例において、電磁波の波長の半波長より長い。
The longitudinal direction of each of the third hollow part 24a-3 in the third waveguide 24-3 and the fourth hollow part 24a-4 in the fourth waveguide 24-4 and the third signal conductor 12- The extending directions of the third and fourth signal conductors 12-4 form an angle of 45 degrees with the illustrated X-axis, and an angle of 45 degrees with the Y-axis.
In addition, the major axis a, which is the length in the longitudinal direction of each of them, is long enough to propagate high-frequency electromagnetic waves, and in this example, is longer than half the wavelength of the electromagnetic waves.
 第3の導波管24-3における第3の中空部24a-3の横断面及び両端面24b-3、24c-3の中心と、第4の導波管24-4における第4の中空部24a-4の横断面及び両端面24b-4、24c-4の中心との間隔は設定間隔dyであり、第3の信号用導体12-3と第4の信号用導体12-4との間隔dyと同じであり、高周波の波長に対して半波長である。
 すなわち、第3の導波管24-3と第4の導波管24-4との間隔は設定間隔dyであり、高周波の波長に対して半波長である。
The center of the cross section and both end surfaces 24b-3 and 24c-3 of the third hollow part 24a-3 in the third waveguide 24-3, and the fourth hollow part in the fourth waveguide 24-4 The distance between the cross section of 24a-4 and the centers of both end surfaces 24b-4 and 24c-4 is the set distance dy, which is the distance between the third signal conductor 12-3 and the fourth signal conductor 12-4. It is the same as dy, and is half the wavelength of the high frequency.
That is, the interval between the third waveguide 24-3 and the fourth waveguide 24-4 is the set interval dy, which is half the wavelength of the high frequency.
 第3の変換器構成部10-3及び第4の変換器構成部10-4それぞれに対して逆側に位置する第3の導波管24-3の一端面24c-3及び第4の導波管24-4の一端面24c-4を開放した開放端面とすることにより、第3の導波管24-3及び第4の導波管24-4それぞれを、空間へ高周波の電磁波を送信又は空間から高周波の電磁波を受信するアンテナとして使用できる。
 第3の導波管24-3及び第4の導波管24-4両者を送信アンテナ又は受信アンテナとして使用、あるいは一方を送信アンテナ、他方を受信アンテナとして使用するものでもよい。
One end surface 24c-3 of the third waveguide 24-3 and the fourth waveguide located on the opposite side to the third converter component 10-3 and the fourth converter component 10-4, respectively. By making one end surface 24c-4 of the wave tube 24-4 open, each of the third wave guide 24-3 and the fourth wave guide 24-4 transmits high-frequency electromagnetic waves into space. Or it can be used as an antenna to receive high frequency electromagnetic waves from space.
Both the third waveguide 24-3 and the fourth waveguide 24-4 may be used as a transmitting antenna or a receiving antenna, or one may be used as a transmitting antenna and the other as a receiving antenna.
 また、第3の導波管24-3及び第4の導波管24-4両者を送信アンテナとして使用した場合、第3の導波管24-3の開放端面24c-3及び第4の導波管24-4の開放端面24c-4から放射される高周波の位相を変えることで図示X-Z面上のビームの指向方向を変えることができる。
 さらに、第3の導波管24-3と第4の導波管24-4の設定間隔dyを半波長もしくは半波長以下にしているので、放射方向、図示+Z方向のY-Z面上の半空間の任意の方向にビーム走査してもグレーティングローブが発生しないアンテナ装置を得ることができる。
Further, when both the third waveguide 24-3 and the fourth waveguide 24-4 are used as transmitting antennas, the open end surface 24c-3 of the third waveguide 24-3 and the fourth waveguide By changing the phase of the high frequency wave emitted from the open end surface 24c-4 of the wave tube 24-4, the direction of beam orientation on the illustrated XZ plane can be changed.
Furthermore, since the set interval dy between the third waveguide 24-3 and the fourth waveguide 24-4 is set to half a wavelength or less than half a wavelength, It is possible to obtain an antenna device in which grating lobes are not generated even when the beam is scanned in any direction in half space.
 無線通信又はレーダにおいて、X軸に沿った方向の複数の導波管、本例において、第1の導波管24-1及び第2の導波管24-2を第1の組のアンテナとし、Y軸に沿った方向の複数の導波管、本例において、第3の導波管24-3及び第4の導波管24-4を第2の組のアンテナとし、第1の組のアンテナ及び第2の組のアンテナ両者を送信アンテナ又は受信アンテナとして使用、あるいは一方の組を送信アンテナ、他方の組を受信アンテナとして使用するものでもよい。 In wireless communication or radar, a plurality of waveguides in the direction along the X axis, in this example, a first waveguide 24-1 and a second waveguide 24-2, are used as a first set of antennas. , a plurality of waveguides in the direction along the Y axis, in this example, the third waveguide 24-3 and the fourth waveguide 24-4 are the second set of antennas, and the first set of antennas is Both the antenna and the second set of antennas may be used as transmitting antennas or receiving antennas, or one set may be used as a transmitting antenna and the other set may be used as a receiving antenna.
 また、第3の導波管24-3の一端面24c-3及び第4の導波管24-4の一端面24c-4それぞれに、それぞれの断面が第3の導波管24-3の一端面24c-3及び第4の導波管24-4の一端面24c-4と同じ形状である導波管(図示せず)を連通させて接続し、接続した導波管に接続された高周波回路との間で高周波を伝搬するものとしても良い。 Further, each of the one end surface 24c-3 of the third waveguide 24-3 and the one end surface 24c-4 of the fourth waveguide 24-4 has a cross section of the third waveguide 24-3. One end surface 24c-3 and a waveguide (not shown) having the same shape as the one end surface 24c-4 of the fourth waveguide 24-4 are connected in communication with each other, and the waveguide is connected to the connected waveguide. It may also be a device that propagates high frequencies between it and a high frequency circuit.
 図6に示すように、変換器構成部10における第1の導体層13の第3の開口部13a-3及び他面側導体層23の第3の開口部23a-3を囲むように間隔をあけて配置される第3のボールグリッドアレイを構成する複数の第3の端子30-3が、他面側導体層23と第1の導体層13を電気的に接続する。
 第1の導体層13-1の第4の開口部13a-4及び他面側導体層23の第4の開口部23a-4を囲むように間隔をあけて配置される第4のボールグリッドアレイを構成する複数の第4の端子30-4が、他面側導体層23と第1の導体層13を電気的に接続する。
As shown in FIG. 6, an interval is formed so as to surround the third opening 13a-3 of the first conductor layer 13 and the third opening 23a-3 of the other side conductor layer 23 in the converter component 10. A plurality of third terminals 30-3 constituting a third ball grid array arranged at intervals electrically connect the other side conductor layer 23 and the first conductor layer 13.
A fourth ball grid array arranged at intervals so as to surround the fourth opening 13a-4 of the first conductor layer 13-1 and the fourth opening 23a-4 of the other side conductor layer 23. A plurality of fourth terminals 30-4 forming the second side electrically connect the other side conductor layer 23 and the first conductor layer 13.
 このようにして配置された複数の第3の端子30-3による第3のボールグリッドアレイは第3の変換器構成部10-3と第3の導波管構成部20-3に対する第3の疑似的な導波管を構成し、複数の第4の端子30-4による第4のボールグリッドアレイは第4の変換器構成部10-4と第4の導波管構成部20-4に対する第4の疑似的な導波管を構成する。 The third ball grid array formed by the plurality of third terminals 30-3 arranged in this manner provides a third ball grid array for the third transducer component 10-3 and the third waveguide component 20-3. A fourth ball grid array with a plurality of fourth terminals 30-4 constitutes a pseudo waveguide and is connected to the fourth transducer component 10-4 and the fourth waveguide component 20-4. A fourth pseudo waveguide is constructed.
 第3のボールグリッドアレイを構成する複数の第3の端子30-3と第4のボールグリッドアレイを構成する複数の第4の端子30-4は、それぞれが第3の信号用導体12-3及び第4の信号用導体12-4の延伸方向と直交する方向、図示Y軸に沿って間隔dy平行移動した関係になっている。
 すなわち、対応する第3の端子30-3と第4の端子30-4との間隔が全て間隔dyにされており、その結果、第3の変換部17-3と第4の変換部17-4との間に位置する端子、図6図示枠Eに囲まれた端子は、第3のボールグリッドアレイと第4のボールグリッドアレイに対して共用する端子30になる。
The plurality of third terminals 30-3 constituting the third ball grid array and the plurality of fourth terminals 30-4 constituting the fourth ball grid array are connected to the third signal conductor 12-3, respectively. and a direction perpendicular to the extending direction of the fourth signal conductor 12-4, in which the signal conductor 12-4 is moved in parallel by an interval dy along the illustrated Y axis.
That is, the intervals between the corresponding third terminal 30-3 and fourth terminal 30-4 are all set to the interval dy, and as a result, the third converter 17-3 and the fourth converter 17- 4 and the terminal surrounded by frame E in FIG. 6 becomes a terminal 30 that is shared by the third ball grid array and the fourth ball grid array.
 それぞれが疑似的な導波管を構成する第3のボールグリッドアレイと第4のボールグリッドアレイにおいて、第3の変換部17-3と第4の変換部17-4との間に位置する端子を共用する端子30としているが、第3の信号用端子12-3及び第4の信号用端子12-4の延伸方向(図示X軸)が、第3の変換部17-3と第4の変換部17-4の配置方向(図示Y軸)と直交しているので、第3の信号用端子12-1に伝送される高周波信号は第4の変換部17-4及び第4のボールグリッドアレイによる第4の疑似的な導波管に干渉することはなく、また、第4の信号用端子12-4に伝送される高周波信号は第3の変換部17-3及び第3のボールグリッドアレイによる第3の疑似的な導波管に干渉することはない。 A terminal located between the third converting section 17-3 and the fourth converting section 17-4 in the third ball grid array and the fourth ball grid array, each of which constitutes a pseudo waveguide. However, the extending direction (X-axis in the figure) of the third signal terminal 12-3 and the fourth signal terminal 12-4 is the same as that of the third converting section 17-3 and the fourth converting section 17-3. Since it is perpendicular to the arrangement direction (Y-axis shown) of the converter 17-4, the high frequency signal transmitted to the third signal terminal 12-1 is transmitted to the fourth converter 17-4 and the fourth ball grid. The array does not interfere with the fourth pseudo waveguide, and the high frequency signal transmitted to the fourth signal terminal 12-4 is transmitted to the third converter 17-3 and the third ball grid. There is no interference with the third pseudo waveguide by the array.
 なお、第4の変換部17-4の図示下隣に隣接して変換部を形成した場合は、図6図示枠Fに囲まれた端子が隣接するボールグリッドアレイ間に対して共用する端子30になる。
 第3の端子30-3による第3のボールグリッドアレイと第4の端子30-4による第4のボールグリッドアレイは、一体的に構成された第3の導波管構成部20-3及び第4の導波管構成部20-4を、一体的に構成された第3の変換器構成部10-3及び第4の変換器構成部10-4に機械的に接続する役割も果たす。
Note that when a converter is formed adjacent to the fourth converter 17-4 below the fourth converter 17-4, the terminal surrounded by the frame F in FIG. 6 is the terminal 30 that is shared between adjacent ball grid arrays. become.
The third ball grid array formed by the third terminal 30-3 and the fourth ball grid array formed by the fourth terminal 30-4 are integrated with the third waveguide component 20-3 and the fourth ball grid array formed by the fourth terminal 30-4. It also serves to mechanically connect the waveguide component 20-4 of No. 4 to the integrally configured third and fourth transducer components 10-3 and 10-4.
 以上に述べたように、実施の形態3に係るマイクロストリップ線路-導波管変換器は、個々のマイクロストリップ線路-導波管変換器において、実施の形態1に係るマイクロストリップ線路-導波管変換器と同様の効果を有する他、図6及び図7に示すX軸方向に対して実施の形態2に係るマイクロストリップ線路-導波管変換器と同様に複数のマイクロストリップ線路-導波管変換器を狭い間隔で密に配置でき、Y軸方向に対しても複数のマイクロストリップ線路-導波管変換器を信号用導体の延伸方向と直交する方向に狭い間隔で密に配置できる。 As described above, in the microstrip line-waveguide converter according to the third embodiment, in each microstrip line-waveguide converter, the microstrip line-waveguide converter according to the first embodiment In addition to having the same effect as the converter, it also has a plurality of microstrip line-waveguides in the X-axis direction shown in FIGS. 6 and 7, similar to the microstrip line-waveguide converter according to the second embodiment. The transducers can be arranged densely at narrow intervals, and a plurality of microstrip line-waveguide converters can also be arranged densely at narrow intervals in the direction perpendicular to the extending direction of the signal conductor in the Y-axis direction.
 実施の形態3に係るマイクロストリップ線路-導波管変換器は、導波管の管軸と直交する2方向、つまり、X軸及びY軸に対してそれぞれ隣接する導波管24-1、24-2の間隔dx及び隣接する導波管24-3、24-4の間隔dyを、導波管を伝搬する高周波の波長に対して半波長、もしくは半波長以下にでき、半波長、もしくは半波長以下にしたことにより、X軸方向及びY軸方向に狭い間隔で密に配置できる。 The microstrip line-waveguide converter according to the third embodiment has waveguides 24-1 and 24 adjacent to each other in two directions perpendicular to the tube axis of the waveguide, that is, the X-axis and the Y-axis. -2 interval dx and the interval dy between adjacent waveguides 24-3 and 24-4 can be made half a wavelength or less than a half wavelength with respect to the wavelength of the high frequency wave propagating in the waveguide, and can be made half a wavelength or half a wavelength. By making it less than the wavelength, it is possible to arrange densely at narrow intervals in the X-axis direction and the Y-axis direction.
 しかも、隣接する導波管24-1、24-2の間隔dxを半波長もしくは半波長以下にしているので、隣接する導波管24-1、24-2の放射方向、図示+Z方向のX-Z面上の半空間の任意の方向にビーム走査してもグレーティングローブが発生しなく、また、隣接する導波管24-3、24-4の間隔dyを半波長もしくは半波長以下にしているので、隣接する導波管24-3、24-4の放射方向、図示+Z方向のY-Z面上の半空間の任意の方向にビーム走査してもグレーティングローブが発生しないアンテナ装置を得ることができる。 Moreover, since the interval dx between the adjacent waveguides 24-1 and 24-2 is set to half a wavelength or less than a half wavelength, the radiation direction of the adjacent waveguides 24-1 and 24-2, which is - Grating lobes are not generated even when the beam is scanned in any direction in the half-space on the Z plane, and the distance dy between adjacent waveguides 24-3 and 24-4 is set to half a wavelength or less than half a wavelength. Therefore, it is possible to obtain an antenna device in which grating lobes are not generated even if the beam is scanned in any direction in the half space on the YZ plane in the radiation direction of the adjacent waveguides 24-3 and 24-4, the +Z direction in the figure. be able to.
 実施の形態3に係るマイクロストリップ線路-導波管変換器は、図6及び図7に示すX軸方向に対して実施の形態2に係るマイクロストリップ線路-導波管変換器と同様に隣接する変換器構成部と導波管構成部の対との間に位置する第1のボールグリッドアレイと第2のボールグリッドアレイを構成する端子30-1、30-2を共用端子30としたことにより、複数のマイクロストリップ線路-導波管変換器を狭い間隔で密に配置でき、Y軸方向に対しても、第3の変換器構成部10-3及び第3の導波管構成部20-3と第4の変換器構成部10-4及び第4の導波管構成部20-4の対に対応する第3のボールグリッドアレイと第4のボールグリッドアレイにおいて、隣接する変換器構成部と導波管構成部の対との間に位置する第3のボールグリッドアレイと第4のボールグリッドアレイを構成する端子30-3、30-4を共用端子30としたことにより、狭い間隔でより密に配置できる。 The microstrip line-waveguide converter according to the third embodiment is adjacent to the microstrip line-waveguide converter according to the second embodiment in the X-axis direction shown in FIGS. 6 and 7. By using the terminals 30-1 and 30-2 that constitute the first ball grid array and the second ball grid array located between the pair of the converter component and the waveguide component as the common terminal 30, , a plurality of microstrip line-waveguide converters can be closely arranged at narrow intervals, and also in the Y-axis direction, the third converter component 10-3 and the third waveguide component 20- In the third ball grid array and the fourth ball grid array corresponding to the pair of the third and fourth transducer components 10-4 and the fourth waveguide component 20-4, adjacent transducer components By using the terminals 30-3 and 30-4 that constitute the third ball grid array and the fourth ball grid array, which are located between the pair of waveguide components and the pair of waveguide components, as the common terminal 30, Can be placed more densely.
実施の形態4.
 実施の形態4に係るレーダ装置を、図8を用いて説明する。
 実施の形態4に係るレーダ装置は、実施の形態1に係る導波管-マイクロストリップ線路変換器を有する。
 なお、図8は、導波管-マイクロストリップ線路変換器における導波管における高周波信号の伝搬方向、図8図示Z軸方向に沿った特定の箇所の断面図ではなく、レーダ装置の層構成及び各層に設けられた構造を分かり易く説明するために、層構成及び各層に設けられた構造を断面により概念的に示した、Z軸方向に沿った側面概念図である。
 また、図8において、X軸は信号用導体の延伸方向と直交する方向、Y軸は信号用導体の延伸方向、Z軸は導波管における高周波信号の伝搬方向であり、X軸、Y軸及びZ軸は互いに垂直な3軸である。
 図8中、図1から図3に示された符号と同一符号は同一又は相当部分を示す。
Embodiment 4.
A radar device according to Embodiment 4 will be explained using FIG. 8.
The radar device according to the fourth embodiment includes the waveguide-microstrip line converter according to the first embodiment.
Note that FIG. 8 is not a cross-sectional view of a specific location along the Z-axis direction shown in FIG. 8, which is the propagation direction of a high-frequency signal in a waveguide in a waveguide-microstrip line converter. In order to clearly explain the structure provided in each layer, it is a conceptual side view along the Z-axis direction, conceptually showing the layer configuration and the structure provided in each layer in a cross section.
In addition, in FIG. 8, the X axis is a direction perpendicular to the extending direction of the signal conductor, the Y axis is the extending direction of the signal conductor, and the Z axis is the propagation direction of the high frequency signal in the waveguide. and Z axis are three mutually perpendicular axes.
In FIG. 8, the same symbols as those shown in FIGS. 1 to 3 indicate the same or corresponding parts.
 実施の形態4に係るレーダ装置は、導波管24の一端面24cを開放した開放端面とすることにより、導波管24を空間へ高周波の電磁波を送信又は空間から高周波の電磁波を受信するアンテナとして使用し、導波管24を送信アンテナとして使用する場合はモノリシックマイクロ波集積回路(MMIC:Monolithic Microwave Integrated Circuit、以下、MMICと言う)40に内蔵された信号処理のための高周波回路からのミリ波帯又はマイクロ波帯等の高周波領域における高周波信号に基づき、導波管24の開放端面24cから高周波を放射し、導波管24を受信アンテナとして使用する場合は導波管24の開放端面24cから高周波を受信し、受信した高周波に基づき、高周波信号を高周波回路が入力し、高周波回路が高周波信号を信号処理する。 The radar device according to the fourth embodiment has one end surface 24c of the waveguide 24 as an open end surface, so that the waveguide 24 can be used as an antenna for transmitting high-frequency electromagnetic waves into space or receiving high-frequency electromagnetic waves from space. When the waveguide 24 is used as a transmitting antenna, it is possible to use a monolithic microwave integrated circuit (MMIC) 40 from a high-frequency circuit for signal processing built into the monolithic microwave integrated circuit (MMIC) 40. Based on a high frequency signal in a high frequency region such as a wave band or a microwave band, high frequency waves are radiated from the open end surface 24c of the waveguide 24. When the waveguide 24 is used as a receiving antenna, the open end surface 24c of the waveguide 24 A high frequency signal is received from the high frequency circuit, a high frequency signal is inputted to the high frequency circuit based on the received high frequency signal, and the high frequency circuit processes the high frequency signal.
 説明の煩雑さを防ぐため、導波管24として1つの例を以下に説明するが、実施の形態2に係る導波管-マイクロストリップ線路変換器に示したように、アンテナとして機能する導波管24を、導波管24の管軸に直交する2方向の軸の内の一方の軸に沿って複数配列したレーダ装置、実施の形態3に係る導波管-マイクロストリップ線路変換器に示したように、アンテナとして機能する導波管24を2方向それぞれに沿って複数配列したレーダ装置であってもよい。 In order to avoid complication of explanation, one example of the waveguide 24 will be explained below, but as shown in the waveguide-microstrip line converter according to the second embodiment, a waveguide that functions as an antenna may be used. A radar device in which a plurality of tubes 24 are arranged along one of two axes perpendicular to the tube axis of the waveguide 24, and a waveguide-to-microstrip line converter according to the third embodiment are shown. Similarly, a radar device may be provided in which a plurality of waveguides 24 functioning as antennas are arranged along each of two directions.
 実施の形態4に係るレーダ装置は、変換器構成部10と導波管構成部20と複数のボール状の端子30と高周波回路が内蔵されたMMIC40を備える。
 変換器構成部10は、変換器用の誘電体11と信号用導体12と第1の導体層13とプローブ14と第2の導体層15と複数の貫通導体16と内部導体層18を備え、実施の形態1に係る導波管-マイクロストリップ線路変換器に示した変換器構成部10と同じであるので、詳細な説明は省略する。
The radar device according to the fourth embodiment includes a converter component 10, a waveguide component 20, a plurality of ball-shaped terminals 30, and an MMIC 40 having a built-in high frequency circuit.
The converter component 10 includes a converter dielectric 11, a signal conductor 12, a first conductor layer 13, a probe 14, a second conductor layer 15, a plurality of through conductors 16, and an internal conductor layer 18. Since it is the same as the converter component 10 shown in the waveguide-microstrip line converter according to the first embodiment, detailed explanation will be omitted.
 なお、図8において、信号用導体12の延伸方向は誘電体11の変換器形成領域において、図示Y軸方向である。
 従って、第1の導体層13における開口部13aの長手方向はX軸に対してなす角度が45度である。開口部13aの長手方向はY軸に対してなす角度も45度である。
 なお、信号用導体12の一端に開口部13a内に位置するプローブ14が連続して形成される。
In FIG. 8, the extending direction of the signal conductor 12 is the illustrated Y-axis direction in the transducer forming region of the dielectric 11.
Therefore, the longitudinal direction of the opening 13a in the first conductor layer 13 forms an angle of 45 degrees with respect to the X axis. The longitudinal direction of the opening 13a also forms an angle of 45 degrees with respect to the Y axis.
Note that a probe 14 located within the opening 13a is continuously formed at one end of the signal conductor 12.
 また、信号用導体12の他端に、誘電体11の変換器形成領域外において、誘電体11の内層に形成された地板と誘電体11によりマイクロストリップ線路を構成する信号用線路が連続して形成される。信号用線路は変換器形成領域外に形成されるため、必ずしも図示Y軸方向に延在していなくとも良い。 In addition, at the other end of the signal conductor 12, outside the converter forming area of the dielectric 11, a signal line that constitutes a microstrip line by the ground plane formed in the inner layer of the dielectric 11 and the dielectric 11 is connected. It is formed. Since the signal line is formed outside the converter forming area, it does not necessarily have to extend in the Y-axis direction shown in the figure.
 なお、図8において、煩雑さを避けるため、信号用線路も含めて信号用導体12として示している。
 また、誘電体11は、マイクロストリップ線路を構成する信号用導体12及び信号用線路に伝送される高周波信号の減衰を少なくするために比較的誘電正接の小さい材料を用いるのが好ましい。
In addition, in FIG. 8, in order to avoid complexity, the signal line is also shown as the signal conductor 12.
Further, it is preferable to use a material with a relatively small dielectric loss tangent for the dielectric 11 in order to reduce attenuation of high frequency signals transmitted to the signal conductor 12 and signal line forming the microstrip line.
 導波管構成部20は、導波管用の誘電体21における導波管形成領域において、誘電体21と一面側導体層22と他面側導体層23と導波管24を備え、実施の形態1に係る導波管-マイクロストリップ線路変換器に示した導波管構成部20と実質的に同じであるので、詳細な説明は省略する。
 なお、図8において、誘電体21における導波管形成領域に形成された貫通部21aの長手方向、一面側導体層22に形成された開口部22aの長手方向、他面側導体層23に形成された開口部23aの長手方向、並びに、導波管24の中空部24aにおける横断面及び両端面24b、24cの長手方向は図示X軸に対してなす角度が45度である。それぞれの長手方向はY軸に対してなす角度も45度である。
The waveguide component 20 includes a dielectric 21, a conductor layer 22 on one side, a conductor layer 23 on the other side, and a waveguide 24 in a waveguide formation region of a dielectric 21 for a waveguide. Since it is substantially the same as the waveguide component 20 shown in the waveguide-microstrip line converter according to No. 1, detailed explanation will be omitted.
In FIG. 8, the longitudinal direction of the penetration part 21a formed in the waveguide formation region of the dielectric 21, the longitudinal direction of the opening 22a formed in the conductor layer 22 on one side, and the longitudinal direction of the opening 22a formed in the conductor layer 23 on the other side are shown. The longitudinal direction of the opening 23a and the longitudinal direction of the cross section and both end surfaces 24b and 24c of the hollow portion 24a of the waveguide 24 form an angle of 45 degrees with respect to the illustrated X-axis. Each longitudinal direction also forms an angle of 45 degrees with respect to the Y axis.
 第1の導体層13の開口部13a及び他面側導体層23の開口部23aを囲むように間隔をあけて配置されるボールグリッドアレイを構成する複数の端子30が、他面側導体層23と第1の導体層13を電気的に接続する。
 このようにして配置された複数の端子30によるボールグリッドアレイは、長手方向が図示X軸に対してなす角度が45度である、変換器構成部10と導波管構成部20に対する疑似的な導波管を構成する。
A plurality of terminals 30 constituting a ball grid array arranged at intervals so as to surround the opening 13a of the first conductor layer 13 and the opening 23a of the other side conductor layer 23 are connected to the other side conductor layer 23. and the first conductor layer 13 are electrically connected.
The ball grid array made up of the plurality of terminals 30 arranged in this manner is a pseudo-type for the transducer component 10 and the waveguide component 20 whose longitudinal direction makes an angle of 45 degrees with respect to the illustrated X-axis. Configure a waveguide.
 誘電体21は2層の誘電体層を有する多層構造であり、導波管形成領域に連続してMMIC40などを実装する実装領域を有する。
 誘電体21における実装領域は、変換器用の誘電体11における変換器形成領域と対向しない位置にあり、誘電体21における導波管形成領域及び実装領域を合わせた表面積が誘電体11における変換器形成領域の表面積より大きい。
 誘電体21は、安価に製造するためには比較的誘電正接の大きい材料を用いるのが好ましい。
 誘電体21が実装領域を有するとしてもレーダ装置を安価に製造できる。
The dielectric 21 has a multilayer structure including two dielectric layers, and has a mounting area in which the MMIC 40 and the like are mounted, which are continuous to the waveguide forming area.
The mounting area in the dielectric 21 is located at a position that does not face the transducer forming area in the dielectric 11 for the transducer, and the surface area of the waveguide forming area and the mounting area in the dielectric 21 is the same as the transducer forming area in the dielectric 11. Greater than the surface area of the region.
In order to manufacture the dielectric 21 at low cost, it is preferable to use a material with a relatively large dielectric loss tangent.
Even if the dielectric 21 has a mounting area, the radar device can be manufactured at low cost.
 一面側導体層22は実装領域における誘電体21の一面にも導波管形成領域から連続して形成される。
 内部導体層26は誘電体21における導波管形成領域及び実装領域の内層に形成され、マイクロストリップ線路の地板の役割を果たす。
The one-side conductor layer 22 is also formed on one side of the dielectric 21 in the mounting area continuously from the waveguide forming area.
The inner conductor layer 26 is formed in the inner layer of the waveguide forming region and the mounting region of the dielectric 21, and serves as the ground plane of the microstrip line.
 内部導体層26は、誘電体21の貫通部21aの位置に貫通部21aの断面形状と同じ形状の開口部26aを有し、開口部26aにおいて、中空部24aを構成する導波管層25に電気的に接続される。
 内部導体層26と変換器形成領域における内部導体層18はスルーホール及びボール状の端子により電気的に接続される。
The inner conductor layer 26 has an opening 26a having the same cross-sectional shape as the penetration part 21a at the position of the penetration part 21a of the dielectric 21, and the waveguide layer 25 constituting the hollow part 24a in the opening 26a. electrically connected.
The inner conductor layer 26 and the inner conductor layer 18 in the transducer forming region are electrically connected by through holes and ball-shaped terminals.
 MMIC40は実装領域における誘電体21の他面に実装される。
 MMIC40はレーダとして用いる高周波の送受信を担う高周波回路を内蔵する。
 MMIC40における各端子は、実装領域における誘電体21の他面に形成された信号配線層、電源配線層、及びグランド配線層(図8において、代表して符号28により一つの配線層を示している。)、並びに高周波信号を伝送する伝送路27に、ボール状の端子33により、電気的及び機械的に接続される。
 MMIC40における各端子と配線層等28及び伝送路27との接続ははんだにより行ってもよい。
The MMIC 40 is mounted on the other surface of the dielectric 21 in the mounting area.
The MMIC 40 has a built-in high frequency circuit that is responsible for transmitting and receiving high frequency waves used as a radar.
Each terminal in the MMIC 40 is connected to a signal wiring layer, a power supply wiring layer, and a ground wiring layer (in FIG. 8, one wiring layer is representatively indicated by reference numeral 28) formed on the other surface of the dielectric 21 in the mounting area. ) and a transmission line 27 for transmitting high-frequency signals through a ball-shaped terminal 33 electrically and mechanically.
Connections between each terminal in the MMIC 40 and the wiring layer etc. 28 and the transmission line 27 may be made by soldering.
 伝送路27の一端はMMIC40の出力端子、入力端子、又は入出力端子に端子33により電気的に接続され、伝送路27の他端は信号用導体12の他端にボール状の端子32により電気的に接続される。
 伝送路27は、実装領域における内部導体層26と、伝送路27と内部導体層26とに挟まれた誘電体21とにより、高周波信号を伝送するマイクロストリップ線路を構成する。
One end of the transmission line 27 is electrically connected to the output terminal, input terminal, or input/output terminal of the MMIC 40 by a terminal 33, and the other end of the transmission line 27 is electrically connected to the other end of the signal conductor 12 by a ball-shaped terminal 32. connected.
The transmission path 27 includes the internal conductor layer 26 in the mounting area and the dielectric 21 sandwiched between the transmission path 27 and the internal conductor layer 26, and constitutes a microstrip line that transmits a high frequency signal.
 伝送線路27の端子33に接続された一端における接続点から端子32に接続された他端における接続点までの長さL1は、信号用導体12の端子32に接続された他端における接続点からプローブまでの長さL2より短い。
 長さL1を長さL2より短くしたことにより、マイクロストリップ線路を構成する伝送路27を伝送する高周波信号の減衰を少なくできる。
The length L1 from the connection point at one end connected to the terminal 33 of the transmission line 27 to the connection point at the other end connected to the terminal 32 is the length L1 from the connection point at the other end connected to the terminal 32 of the signal conductor 12. It is shorter than the length L2 to the probe.
By making the length L1 shorter than the length L2, it is possible to reduce attenuation of the high frequency signal transmitted through the transmission line 27 forming the microstrip line.
 従って、MMIC40から伝送路27を介して高周波信号を伝送し、導波管24の開放端面24cから放射される電力、又は導波管24の開放端面24cから受信され、伝送路27を介してMMIC40に入力される高周波信号の電力を増やし、レーダ装置の検知性能を向上できる。
 また、誘電体21の大きさは、導波管24を構成する導波管形成領域のみに比べて実装領域分増加、つまり、長さL2を含む長さ分だけ長くなるが、長さL2に起因した大きさの違いは僅かしか生じないので、必要に応じて長さL2を調整すればよい。
Therefore, a high frequency signal is transmitted from the MMIC 40 via the transmission path 27, and the power radiated from the open end surface 24c of the waveguide 24 is received from the open end surface 24c of the waveguide 24 and transmitted to the MMIC 40 via the transmission path 27. By increasing the power of the high-frequency signal input to the radar device, the detection performance of the radar device can be improved.
In addition, the size of the dielectric 21 is increased by the mounting area compared to only the waveguide forming area constituting the waveguide 24, that is, it is longer by the length including the length L2, but the size is increased by the length including the length L2. Since the resulting difference in size is only slight, the length L2 may be adjusted as necessary.
 次に、実施の形態4に係るレーダ装置の動作について説明する。
 開放端面24cを有する導波管24を送信アンテナとして使用した場合について説明する。
 MMIC40の出力端子から送信するための高周波信号が端子33を介して伝送路27を含むマイクロストリップ線路に出力される。伝送路27を伝送された高周波信号は、端子32を介して導波管-マイクロストリップ線路変換器における信号用導体12を含むマイクロストリップ線路に伝送される。
Next, the operation of the radar device according to the fourth embodiment will be explained.
A case will be described in which the waveguide 24 having the open end surface 24c is used as a transmitting antenna.
A high frequency signal for transmission is output from the output terminal of the MMIC 40 to the microstrip line including the transmission line 27 via the terminal 33. The high frequency signal transmitted through the transmission line 27 is transmitted via the terminal 32 to the microstrip line including the signal conductor 12 in the waveguide-microstrip line converter.
 信号用導体12を含むマイクロストリップ線路に伝送された高周波信号は、プローブ14において、複数の端子30によるボールグリッドアレイによる疑似的な導波管を介して導波管24へ変換される。
 変換された高周波信号(電磁波)は導波管24を伝搬し、送信アンテナとして機能する導波管24の他面における開放端面24cから空間に高周波の電磁波が放射される。
The high frequency signal transmitted to the microstrip line including the signal conductor 12 is converted into the waveguide 24 at the probe 14 via a pseudo waveguide formed by a ball grid array with a plurality of terminals 30.
The converted high-frequency signal (electromagnetic wave) propagates through the waveguide 24, and the high-frequency electromagnetic wave is radiated into space from the open end surface 24c on the other side of the waveguide 24, which functions as a transmitting antenna.
 一方、開放端面24cを有する導波管24を受信アンテナとして機能させた場合は、導波管24の開放端面24cにおいて空間からの高周波の電磁波を受信し、受信した電磁波を導波管24が伝搬し、プローブ14において、信号用導体12を含むマイクロストリップ線路に電磁波から高周波信号に変換し、変換された高周波信号が信号用導体12を含むマイクロストリップ線路に伝送される。 On the other hand, when the waveguide 24 having the open end surface 24c is used as a receiving antenna, the open end surface 24c of the waveguide 24 receives high-frequency electromagnetic waves from space, and the waveguide 24 propagates the received electromagnetic waves. In the probe 14, the electromagnetic wave is converted into a high frequency signal by the microstrip line including the signal conductor 12, and the converted high frequency signal is transmitted to the microstrip line including the signal conductor 12.
 信号用導体12を伝送された高周波信号は、端子32を介して伝送路27を含むマイクロストリップ線路に伝送される。
 伝送路27を伝送された高周波信号は、端子33を介してMMIC40の入力端子に入力され、MMIC40により信号処理される。
The high frequency signal transmitted through the signal conductor 12 is transmitted to the microstrip line including the transmission line 27 via the terminal 32.
The high frequency signal transmitted through the transmission line 27 is input to the input terminal of the MMIC 40 via the terminal 33, and is subjected to signal processing by the MMIC 40.
 以上に述べたように、実施の形態1に係るレーダ装置は、実施の形態1に係るマイクロストリップ線路-導波管変換器と同様に、変換器構成部10における信号用導体12の延伸方向、図示においてX軸に対して長手方向のなす角度が45度である他端側の端面24bを有する導波管24を備えるので、Y軸方向の専有幅を小さくできる。具体的にはY軸方向の専有幅を1/√2にできる。
 その結果、レーダ装置として小型化が図れる。
As described above, similarly to the microstrip line-waveguide converter according to the first embodiment, the radar device according to the first embodiment has the following advantages: In the figure, since the waveguide 24 is provided with the end surface 24b on the other end side whose longitudinal direction forms an angle of 45 degrees with respect to the X-axis, the exclusive width in the Y-axis direction can be reduced. Specifically, the exclusive width in the Y-axis direction can be reduced to 1/√2.
As a result, the radar device can be made smaller.
 実施の形態4に係るレーダ装置は、導波管24を含む導波管構成部20が形成される誘電体21に、導波管形成領域に連続して高周波回路を内蔵するMMIC40などの実装部品を実装する実装領域を有するものとしたので、レーダ装置として小型化が図れる。
 しかも、レーダ装置の動作に必要な実装部品を実装する実装領域を誘電体21に設け、誘電体21を比較的誘電正接の大きい材料を用い、高周波信号が伝送される信号用導体12が形成される変換器構成部10に用いられる誘電体11を比較的誘電正接の小さい材料を用いたので、高価とされる比較的誘電正接の小さい材料を削減した上で信号用導体12に伝送される高周波信号の減衰を少なくし、実装部品を安価とされる比較的誘電正接の大きい材料に実装したので、レーダ装置全体として安価に製造できる。
 すなわち、誘電体21の誘電正接を誘電体11の誘電正接より大きい材料としたことにより、伝送される高周波信号の減衰を少なくし、レーダ装置全体として安価に製造できる。
The radar device according to Embodiment 4 includes a dielectric 21 in which a waveguide component 20 including a waveguide 24 is formed, and a mounted component such as an MMIC 40 having a built-in high-frequency circuit continuously in the waveguide formation region. Since it has a mounting area for mounting, it is possible to reduce the size of the radar device.
Furthermore, the dielectric 21 is provided with a mounting area for mounting components necessary for the operation of the radar device, the dielectric 21 is made of a material with a relatively large dielectric loss tangent, and the signal conductor 12 through which high-frequency signals are transmitted is formed. Since the dielectric material 11 used in the converter component 10 is made of a material with a relatively small dielectric loss tangent, the high frequency signal transmitted to the signal conductor 12 can be reduced without using expensive materials with a relatively small dielectric loss tangent. Since signal attenuation is reduced and the components are mounted on an inexpensive material with a relatively large dielectric loss tangent, the radar device as a whole can be manufactured at low cost.
That is, by using a material with a dielectric loss tangent larger than that of the dielectric 11, the attenuation of the transmitted high-frequency signal can be reduced, and the radar device as a whole can be manufactured at low cost.
 なお、実施の形態4に係るレーダ装置において、実施の形態2に係る導波管-マイクロストリップ線路変換器に示したように、アンテナとして機能する開放端面24cを有する導波管24を、導波管24の管軸に直交する2方向の軸の内の一方の軸、図8においてY軸に沿って、変換器構成部10及び導波管構成部20の対を2つもしくは2つ以上の複数配列したレーダ装置としてもよい。 Note that in the radar device according to the fourth embodiment, as shown in the waveguide-microstrip line converter according to the second embodiment, the waveguide 24 having the open end surface 24c functioning as an antenna is used as a waveguide. Along one of the two axes perpendicular to the tube axis of the tube 24, the Y-axis in FIG. A plurality of radar devices may be arranged.
 この場合、複数の変換器構成部における複数の信号用導体12は、導波管用の誘電体21における実装領域に実装されたMMIC40に、対応する端子32及び対応する伝送路27を介して電気的に接続される。 In this case, the plurality of signal conductors 12 in the plurality of converter components are electrically connected to the MMIC 40 mounted in the mounting area of the waveguide dielectric 21 via the corresponding terminals 32 and the corresponding transmission paths 27. connected to.
 一方の軸に沿って配列された複数の導波管24に対してそれぞれ隣接する導波管24の間隔を、実施の形態2に示したと同様に、導波管24を伝搬する高周波の波長に対して半波長にする。
 それぞれ隣接する導波管24の間隔を半波長にすることにより、隣接する導波管24間において、グレーティングローブが発生せず、それぞれがアンテナとして機能する複数の導波管24を一方向に狭い間隔で密に配置できるレーダ装置が得られる。
For a plurality of waveguides 24 arranged along one axis, the intervals between adjacent waveguides 24 are set according to the wavelength of the high frequency wave propagating through the waveguides 24, as in the second embodiment. half the wavelength.
By making the interval between adjacent waveguides 24 half a wavelength, grating lobes are not generated between adjacent waveguides 24, and the plurality of waveguides 24, each of which functions as an antenna, are narrowed in one direction. A radar device that can be arranged closely at intervals can be obtained.
 また、実施の形態4に係るレーダ装置において、実施の形態3に係る導波管-マイクロストリップ線路変換器に示したように、アンテナとして機能する開放端面24cを有する導波管24を、導波管24の管軸に直交する2方向の軸、図8においてX軸及びY軸それぞれに沿って複数配列したレーダ装置であってもよい。
 この場合、複数の変換器構成部における複数の信号用導体12は、導波管用の誘電体21における実装領域に実装されたMMIC40に、対応する端子32及び対応する伝送路27を介して電気的に接続される。
Further, in the radar device according to the fourth embodiment, as shown in the waveguide-microstrip line converter according to the third embodiment, the waveguide 24 having the open end surface 24c functioning as an antenna is used as a waveguide. A plurality of radar devices may be arranged along two axes perpendicular to the tube axis of the tube 24, ie, the X axis and the Y axis in FIG. 8.
In this case, the plurality of signal conductors 12 in the plurality of converter components are electrically connected to the MMIC 40 mounted in the mounting area of the waveguide dielectric 21 via the corresponding terminals 32 and the corresponding transmission paths 27. connected to.
 一方の軸に沿って配列された複数の導波管24に対してそれぞれ隣接する導波管24の間隔を、実施の形態3に示したと同様に、導波管24を伝搬する高周波の波長に対して半波長にする。
 他方の軸に沿って配列された複数の導波管24に対してもそれぞれ隣接する導波管24の間隔を、実施の形態3に示したと同様に、導波管24を伝搬する高周波の波長に対して半波長にする。
For a plurality of waveguides 24 arranged along one axis, the intervals between adjacent waveguides 24 are set according to the wavelength of the high frequency wave propagating through the waveguides 24, as in the third embodiment. half the wavelength.
For the plurality of waveguides 24 arranged along the other axis, the intervals between the adjacent waveguides 24 are determined by the wavelength of the high frequency wave propagating through the waveguides 24 in the same way as shown in Embodiment 3. half wavelength.
 2方向の軸それぞれにおいて、隣接する導波管24の間隔を半波長にすることにより、隣接する導波管24間において、グレーティングローブが発生せず、それぞれがアンテナとして機能する複数の導波管24を2方向に狭い間隔で密に配置できるレーダ装置が得られる。
 2方向の軸それぞれにおいて、グレーティングローブが発生しないため、誤測角の防止が図れたレーダ装置が得られる。
By making the interval between adjacent waveguides 24 half a wavelength in each of the two axes, grating lobes are not generated between adjacent waveguides 24, and a plurality of waveguides each functioning as an antenna are created. A radar device in which the antennas 24 can be closely arranged at narrow intervals in two directions can be obtained.
Since grating lobes are not generated in each of the two axes, a radar device that can prevent mismeasured angles can be obtained.
 一方の軸に沿って配列された複数の導波管24と他方の軸に沿って配列された複数の導波管24全てを送信アンテナ又は受信アンテナとしてもよく、一方の軸に沿って配列された複数の導波管24を送信アンテナとし、他方の軸に沿って配列された複数の導波管24を受信アンテナとしてもよい。 The plurality of waveguides 24 arranged along one axis and the plurality of waveguides 24 arranged along the other axis may all be used as transmitting antennas or receiving antennas. The plurality of waveguides 24 arranged along the other axis may be used as a transmitting antenna, and the plurality of waveguides 24 arranged along the other axis may be used as a receiving antenna.
 一方の軸に沿って配列された複数の導波管24を送信アンテナとし、他方の軸に沿って配列された複数の導波管24を受信アンテナとした場合、全ての導波管24における開放端面24cの向きが同じ、すなわち、開放端面24cの長手方向の向きが同じ、本例においては軸に対する角度が45度であり、送信アンテナとして機能する導波管24の開放端面24cから放射される高周波の偏波と受信アンテナとして機能する導波管24の開放端面24cにより受信される高周波の偏波は同じである。
 このため、送信する高周波と同じ偏波により高周波を受信できる。
When a plurality of waveguides 24 arranged along one axis are used as a transmitting antenna and a plurality of waveguides 24 arranged along the other axis are used as a receiving antenna, all the waveguides 24 are open. The end faces 24c have the same direction, that is, the open end faces 24c have the same longitudinal direction; in this example, the angle with respect to the axis is 45 degrees, and radiation is radiated from the open end face 24c of the waveguide 24 functioning as a transmitting antenna. The polarization of the high frequency wave and the polarization of the high frequency wave received by the open end surface 24c of the waveguide 24 functioning as a receiving antenna are the same.
Therefore, high frequency waves can be received using the same polarization as the high frequency waves being transmitted.
 一方の軸に沿って配列された複数の導波管24を送信アンテナ又は受信アンテナとして機能させ、送信又は受信した高周波の位相差により物標の水平方向の位置を検出し、他方の軸に沿って配列された複数の導波管24を送信アンテナ又は受信アンテナとして機能させ、送信又は受信した高周波の位相差により物標の垂直方向の位置を検出するレーダ装置としても適用できる。 A plurality of waveguides 24 arranged along one axis function as a transmitting antenna or a receiving antenna, and the horizontal position of the target is detected by the phase difference of the transmitted or received high frequency waves, and the horizontal position of the target is detected along the other axis. The plurality of waveguides 24 arranged in a row function as a transmitting antenna or a receiving antenna, and the present invention can also be applied as a radar device that detects the position of a target in the vertical direction based on the phase difference between the transmitted or received high frequency waves.
 なお、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 Note that it is possible to freely combine each embodiment, to modify any component of each embodiment, or to omit any component in each embodiment.
 本開示に係る導波管-マイクロストリップ線路変換器、アンテナ装置、及びレーダ装置は、マイクロ波帯あるいはミリ波帯の高周波信号を用いる無線通信分野及びレーダ分野に適用できる。 The waveguide-microstrip line converter, antenna device, and radar device according to the present disclosure can be applied to the wireless communication field and radar field that use high-frequency signals in the microwave band or millimeter wave band.
 10 変換器構成部、10-1 第1の変換器構成部、10-2 第2の変換器構成部、10-3 第3の変換器構成部、10-4 第4の変換器構成部、11 変換器用の誘電体、12 信号用導体、12-1 第1の信号用導体、12-2 第2の信号用導体、13 第1の導体層、14 プローブ、14-1 第1のプローブ、14-2 第2のプローブ、14-3 第3のプローブ、14-4 第4のプローブ、15 第2の導体層、16 貫通導体、16-1 第1の貫通導体、16-2 第2の貫通導体、16-3 第3の貫通導体、16-4 第4の貫通導体、17 変換部、17-1 第1の変換部、17-2 第2の変換部、17-3 第3の変換部、17-4 第4の変換部、18 内部導体層、20 導波管構成部、20-1 第1の導波管構成部、20-2 第2の導波管構成部、20-3 第3の導波管構成部、20-4 第4の導波管構成部、21 導波管用の誘電体、21a 貫通部、22 一面側導体層、22a 開口部、23 他面側導体層、23a 開口部、24 導波管、24-1 第1の導波管、24-2 第2の導波管、24-3 第3の導波管、24-4 第4の導波管、24a 中空部、24a-1 第1の中空部、24a-2 第2の中空部、24a-3 第3の中空部、24a-4 第4の中空部、24b、24c 端面、25 導波管層、25-1 第1の導波管層、25-2 第2の導波管層、25-3 第3の導波管層、25-4 第4の導波管層、30 端子、30-1 第1の端子、30-2 第2の端子、30-3 第3の端子、30-4 第4の端子、40 MMIC。 10 converter component, 10-1 first converter component, 10-2 second converter component, 10-3 third converter component, 10-4 fourth converter component, 11 Dielectric for converter, 12 Signal conductor, 12-1 First signal conductor, 12-2 Second signal conductor, 13 First conductor layer, 14 Probe, 14-1 First probe, 14-2 second probe, 14-3 third probe, 14-4 fourth probe, 15 second conductor layer, 16 through conductor, 16-1 first through conductor, 16-2 second through conductor Penetrating conductor, 16-3 Third penetrating conductor, 16-4 Fourth penetrating conductor, 17 Conversion section, 17-1 First conversion section, 17-2 Second conversion section, 17-3 Third conversion Part, 17-4 Fourth conversion section, 18 Internal conductor layer, 20 Waveguide component, 20-1 First waveguide component, 20-2 Second waveguide component, 20-3 3rd waveguide component, 20-4 4th waveguide component, 21 dielectric for waveguide, 21a penetration part, 22 one side conductor layer, 22a opening, 23 other side conductor layer, 23a Opening, 24 Waveguide, 24-1 First waveguide, 24-2 Second waveguide, 24-3 Third waveguide, 24-4 Fourth waveguide, 24a Hollow part, 24a-1 first hollow part, 24a-2 second hollow part, 24a-3 third hollow part, 24a-4 fourth hollow part, 24b, 24c end face, 25 waveguide layer, 25-1 First waveguide layer, 25-2 Second waveguide layer, 25-3 Third waveguide layer, 25-4 Fourth waveguide layer, 30 Terminal, 30-1 First terminal, 30-2 second terminal, 30-3 third terminal, 30-4 fourth terminal, 40 MMIC.

Claims (27)

  1.  変換器構成部と導波管構成部とを備え、
     前記変換器構成部は、誘電体と、前記誘電体の一面に形成された直線状の信号用導体と、前記誘電体の一面に形成され、前記信号用導体の延伸方向に対して長手方向のなす角度が45度である開口部を有する第1の導体層と、前記誘電体の一面に形成され、前記信号用導体の一端から連続して延在し、前記第1の導体層の開口部内に位置するプローブと、前記誘電体の他面に前記第1の導体層に対向して形成され、前記誘電体の一面から他面まで貫通する貫通導体により前記第1の導体層に電気的に接続される第2の導体層と、を備え、
     前記導波管構成部は、前記第1の導体層の開口部と対向し、前記信号用導体の延伸方向に対して長手方向のなす角度が45度である他端面を有する導波管を備える
     導波管-マイクロストリップ線路変換器。
    comprising a converter component and a waveguide component,
    The converter component includes a dielectric, a linear signal conductor formed on one surface of the dielectric, and a linear signal conductor formed on one surface of the dielectric in a longitudinal direction with respect to an extending direction of the signal conductor. a first conductor layer having an opening formed at an angle of 45 degrees; and a through conductor formed on the other surface of the dielectric so as to face the first conductor layer and penetrating from one surface to the other surface of the dielectric to electrically connect the first conductor layer. a second conductor layer to be connected;
    The waveguide component includes a waveguide that faces the opening of the first conductor layer and has the other end face whose longitudinal direction forms an angle of 45 degrees with respect to the extending direction of the signal conductor. Waveguide-microstrip line converter.
  2.  前記第1の導体層と前記第2の導体層を電気的に接続する前記貫通導体は、前記第1の導体層の開口部を囲むように間隔をあけて配置される複数の貫通導体からなり、
     前記複数の貫通導体と前記第2の導体層により前記導波管のバックショートを形成する、
     請求項1に記載の導波管-マイクロストリップ線路変換器。
    The through conductor that electrically connects the first conductor layer and the second conductor layer is composed of a plurality of through conductors arranged at intervals so as to surround the opening of the first conductor layer. ,
    forming a back short of the waveguide by the plurality of through conductors and the second conductor layer;
    The waveguide-microstrip line converter according to claim 1.
  3.  前記第1の導体層と前記第2の導体層を電気的に接続する前記貫通導体は、前記第1の導体層の開口部を囲むように間隔をあけて配置される複数の貫通導体からなり、
     前記複数の貫通導体が疑似的な導波管を構成する、
     請求項1に記載の導波管-マイクロストリップ線路変換器。
    The through conductor that electrically connects the first conductor layer and the second conductor layer is composed of a plurality of through conductors arranged at intervals so as to surround the opening of the first conductor layer. ,
    the plurality of penetrating conductors constitute a pseudo waveguide;
    The waveguide-microstrip line converter according to claim 1.
  4.  前記導波管構成部は、一面から他面まで貫通し、長手方向が前記信号用導体の延伸方向に対してなす角度が45度である貫通部を有する誘電体を備え、
     前記導波管は、前記貫通部の内面全面に形成された導波管層により中空部を囲う中空導波管であり、前記中空部の長手方向が前記信号用導体の延伸方向に対してなす角度が45度である、
     請求項1から請求項3のいずれか1項に記載の導波管-マイクロストリップ線路変換器。
    The waveguide component includes a dielectric body having a penetrating portion that penetrates from one surface to the other surface and whose longitudinal direction makes an angle of 45 degrees with respect to the extending direction of the signal conductor,
    The waveguide is a hollow waveguide that surrounds a hollow part with a waveguide layer formed on the entire inner surface of the penetrating part, and the longitudinal direction of the hollow part is aligned with the extending direction of the signal conductor. The angle is 45 degrees,
    The waveguide-microstrip line converter according to any one of claims 1 to 3.
  5.  前記導波管構成部は、一面から他面まで貫通し、長手方向が前記信号用導体の延伸方向に対してなす角度が45度である貫通部を有する誘電体と、当該誘電体の他面に、前記貫通部と連通する、長手方向が前記信号用導体の延伸方向に対してなす角度が45度である開口部を有する他面側導体層を備え、前記他面側導体層は前記第1の導体層にボール状の端子により電気的に接続され、
     前記導波管は、前記貫通部の内面全面に形成された導波管層により中空部を囲う中空導波管であり、前記中空部の長手方向が前記信号用導体の延伸方向に対してなす角度が45度である、
     請求項1から請求項3のいずれか1項に記載の導波管-マイクロストリップ線路変換器。
    The waveguide component includes a dielectric body having a penetrating portion that penetrates from one surface to the other surface and whose longitudinal direction makes an angle of 45 degrees with respect to the extending direction of the signal conductor, and the other surface of the dielectric body. the other side conductor layer has an opening that communicates with the through portion and whose longitudinal direction makes an angle of 45 degrees with respect to the extending direction of the signal conductor; electrically connected to the first conductor layer by a ball-shaped terminal,
    The waveguide is a hollow waveguide that surrounds a hollow part with a waveguide layer formed on the entire inner surface of the penetrating part, and the longitudinal direction of the hollow part is aligned with the extending direction of the signal conductor. The angle is 45 degrees,
    The waveguide-microstrip line converter according to any one of claims 1 to 3.
  6.  前記ボール状の端子は、前記第1の導体層の開口部及び前記他面側導体層の開口部を囲むように間隔をあけて配置される複数のボール状の端子からなるボールグリッドアレイを構成し、
     前記ボールグリッドアレイは疑似的な導波管を構成する、
     請求項5に記載の導波管-マイクロストリップ線路変換器。
    The ball-shaped terminals constitute a ball grid array consisting of a plurality of ball-shaped terminals arranged at intervals so as to surround the opening of the first conductor layer and the opening of the other side conductor layer. death,
    the ball grid array constitutes a pseudo waveguide;
    The waveguide-microstrip line converter according to claim 5.
  7.  前記導波管における前記中空部の長手方向の長さは、前記導波管を伝搬する電磁波の半波長より長い請求項5に記載の導波管-マイクロストリップ線路変換器。 The waveguide-microstrip line converter according to claim 5, wherein the length of the hollow portion in the waveguide in the longitudinal direction is longer than a half wavelength of the electromagnetic wave propagating through the waveguide.
  8.  変換器構成部と導波管構成部とを備え、
     前記変換器構成部は、誘電体と、前記誘電体の一面に形成された直線状の信号用導体と、前記誘電体の一面に形成され、前記信号用導体の一端から延在したプローブと、前記誘電体の他面に前記プローブと対向して形成された導体層と、を備え、
     前記導波管構成部は、前記プローブと対向し、前記信号用導体の延伸方向に対して長手方向のなす角度が45度である他端面を有する導波管を備える
     導波管-マイクロストリップ線路変換器。
    comprising a converter component and a waveguide component,
    The converter component includes a dielectric, a linear signal conductor formed on one surface of the dielectric, and a probe formed on one surface of the dielectric and extending from one end of the signal conductor. a conductor layer formed on the other surface of the dielectric to face the probe,
    The waveguide configuration section includes a waveguide that faces the probe and has the other end surface whose longitudinal direction forms an angle of 45 degrees with respect to the extending direction of the signal conductor. Waveguide-microstrip line converter.
  9.  それぞれが対応する複数の変換器構成部と複数の導波管構成部とを備え、
     前記複数の変換器構成部は、共通する誘電体と第1の導体層と第2の導体層を備え、
     前記複数の変換器構成部それぞれは、前記誘電体の一面に形成された直線状の信号用導体と、プローブとを備え、前記信号用導体それぞれは隣接する信号用導体と設定間隔を有して前記信号用導体の延伸方向と直交する方向に配置され、
     前記第1の導体層は前記誘電体の一面に形成され、前記複数の変換器構成部それぞれに対応し、それぞれが対応する前記信号用導体の延伸方向に対して長手方向のなす角度が45度である複数の開口部を有し、前記開口部それぞれは隣接する開口部と前記設定間隔を有して前記信号用導体の延伸方向と直交する方向に配置され、
     前記プローブは対応する前記信号用導体の一端から連続して延在し、前記第1の導体層の対応する前記開口部内に位置し、
     前記第2の導体層は、前記誘電体の他面に前記第1の導体層に対向して形成され、前記誘電体の一面から他面まで貫通する貫通導体により前記第1の導体層に電気的に接続され、
     前記複数の導波管構成部それぞれは、前記第1の導体層の開口部それぞれと対向し、それぞれが対応する前記信号用導体の延伸方向に対して長手方向のなす角度が45度である他端面を有する導波管を備え、前記導波管それぞれは隣接する導波管と前記設定間隔を有して前記信号用導体の延伸方向と直交する方向に配置される、
     導波管-マイクロストリップ線路変換器。
    each comprising a plurality of corresponding transducer components and a plurality of waveguide components;
    The plurality of transducer components include a common dielectric, a first conductive layer, and a second conductive layer,
    Each of the plurality of converter components includes a linear signal conductor formed on one surface of the dielectric and a probe, and each of the signal conductors has a set interval from an adjacent signal conductor. arranged in a direction perpendicular to the extending direction of the signal conductor,
    The first conductor layer is formed on one surface of the dielectric, and corresponds to each of the plurality of converter components, and the first conductor layer has an angle of 45 degrees in the longitudinal direction with respect to the extending direction of the corresponding signal conductor. a plurality of openings, each of the openings being arranged at the set interval from an adjacent opening in a direction perpendicular to the extending direction of the signal conductor;
    The probe extends continuously from one end of the corresponding signal conductor and is located within the corresponding opening of the first conductor layer,
    The second conductor layer is formed on the other surface of the dielectric so as to face the first conductor layer, and is configured to conduct electricity to the first conductor layer by a through conductor that penetrates from one surface to the other surface of the dielectric. connected to
    Each of the plurality of waveguide components faces each of the openings of the first conductor layer, and each of the plurality of waveguide components makes an angle of 45 degrees in the longitudinal direction with respect to the extending direction of the corresponding signal conductor. comprising a waveguide having an end face, each of the waveguides being disposed in a direction perpendicular to the extending direction of the signal conductor with the predetermined interval from the adjacent waveguide;
    Waveguide-microstrip line converter.
  10.  前記複数の導波管構成部は共通する導波管用の誘電体と一面側導体層と他面側導体層を備え、
     前記導波管用の誘電体は、前記複数の導波管構成部それぞれに対応し、それぞれが対応する前記信号用導体の延伸方向に対して長手方向のなす角度が45度である、一面から他面まで貫通した貫通部を有し、
     前記他面側導体層は、前記導波管用の誘電体の他面に形成され、それぞれが対応する前記貫通部と連通し、対応する前記信号用導体の延伸方向に対して長手方向のなす角度が45度である開口部を有し、前記他面側導体層は前記第1の導体層にボール状の端子により電気的に接続され、
     前記導波管は、前記貫通部の内面全面に形成された導波管層により中空部を囲う中空導波管であり、前記中空部の長手方向が前記信号用導体の延伸方向に対してなす角度が45度である、
     請求項9に記載の導波管-マイクロストリップ線路変換器。
    The plurality of waveguide components include a common waveguide dielectric, a conductor layer on one side, and a conductor layer on the other side,
    The dielectric for the waveguide corresponds to each of the plurality of waveguide components, and the longitudinal direction thereof forms an angle of 45 degrees with respect to the extending direction of the corresponding signal conductor. It has a penetration part that penetrates to the surface,
    The other side conductor layer is formed on the other side of the waveguide dielectric, each communicates with the corresponding penetration part, and has an angle formed in the longitudinal direction with respect to the extending direction of the corresponding signal conductor. has an opening whose angle is 45 degrees, and the other side conductor layer is electrically connected to the first conductor layer by a ball-shaped terminal,
    The waveguide is a hollow waveguide that surrounds a hollow part with a waveguide layer formed on the entire inner surface of the penetrating part, and the longitudinal direction of the hollow part is aligned with the extending direction of the signal conductor. The angle is 45 degrees,
    The waveguide-microstrip line converter according to claim 9.
  11.  前記ボール状の端子は、前記第1の導体層の複数の開口部それぞれ及び前記他面側導体層の複数の開口部それぞれを囲むように間隔をあけて配置される複数のボールグリッドアレイを構成し、
     前記ボールグリッドアレイそれぞれは対応する前記変換器構成部と対応する前記導波管構成部に対する疑似的な導波管を構成する、
     請求項10に記載の導波管-マイクロストリップ線路変換器。
    The ball-shaped terminals constitute a plurality of ball grid arrays arranged at intervals so as to surround each of the plurality of openings in the first conductor layer and each of the plurality of openings in the other side conductor layer. death,
    Each of the ball grid arrays constitutes a pseudo waveguide for the corresponding transducer component and the corresponding waveguide component;
    The waveguide-microstrip line converter according to claim 10.
  12.  隣接する前記変換器構成部及び前記導波管構成部の対に対応する前記ボールグリッドアレイにおいて、隣接する前記変換器構成部及び前記導波管構成部の対との間に位置する前記ボールグリッドアレイを構成する端子は共用端子である請求項11に記載の導波管-マイクロストリップ線路変換器。 In the ball grid array corresponding to the adjacent pair of the transducer component and the waveguide component, the ball grid located between the adjacent pair of the transducer component and the waveguide component. 12. The waveguide-microstrip line converter according to claim 11, wherein the terminals constituting the array are shared terminals.
  13.  前記設定間隔は前記導波管を伝搬する高周波の波長に対して半波長以下である請求項9から請求項12のいずれか1項に記載の導波管-マイクロストリップ線路変換器。 The waveguide-microstrip line converter according to any one of claims 9 to 12, wherein the set interval is a half wavelength or less with respect to the wavelength of the high frequency wave propagating in the waveguide.
  14.  第1の方向に平行に配列される、それぞれが対応する複数の変換器構成部と複数の導波管構成部と、前記第1の方向と直交する第2の方向に平行に配列される、それぞれが対応する複数の変換器構成部と複数の導波管構成部とを備え、
     前記第1の方向に配列された前記複数の変換器構成部及び前記第2の方向に配列された前記複数の変換器構成部は、共通する誘電体と第1の導体層と第2の導体層を備え、
     前記第1の方向に配列された複数の変換器構成部それぞれは、前記誘電体の一面に形成され、延伸方向が前記第2の方向である直線状の信号用導体と、プローブとを備え、前記信号用導体それぞれは隣接する信号用導体と設定間隔を有して前記第1の方向に配置され、
     前記第2の方向に配列された複数の変換器構成部それぞれは、前記誘電体の一面に形成され、延伸方向が前記第1の方向である直線状の信号用導体と、プローブとを備え、前記信号用導体それぞれは隣接する信号用導体と前記設定間隔を有して前記第2の方向に配置され、
     前記第1の導体層は前記誘電体の一面に形成され、前記第1の方向に配列された複数の変換器構成部及び前記第2の方向に配列された複数の変換器構成部それぞれに対応し、それぞれが対応する前記信号用導体の延伸方向に対して長手方向のなす角度が45度である複数の開口部を有し、前記複数の開口部それぞれは隣接する開口部と前記設定間隔を有して配置され、
     前記プローブは対応する前記信号用導体の一端から連続して延在し、前記第1の導体層の対応する前記開口部内に位置し、
     前記第2の導体層は、前記誘電体の他面に前記第1の導体層に対向して形成され、前記誘電体の一面から他面まで貫通する貫通導体により前記第1の導体層に電気的に接続され、
     前記第1の方向に配列された前記複数の導波管構成部それぞれは、前記第1の導体層の前記第1の方向に配列された前記開口部それぞれと対向し、それぞれが第2の方向に対して長手方向のなす角度が45度である他端面を有する導波管を備え、前記導波管それぞれは隣接する導波管と前記設定間隔を有して前記第1の方向に配置され、
     前記第2の方向に配列された前記複数の導波管構成部それぞれは、前記第1の導体層の前記第2の方向に配列された前記開口部それぞれと対向し、それぞれが第1の方向に対して長手方向のなす角度が45度である他端面を有する導波管を備え、前記導波管それぞれは隣接する導波管と前記設定間隔を有して前記第2の方向に配置される、
     導波管-マイクロストリップ線路変換器。
    a plurality of transducer components and a plurality of waveguide components, each corresponding to a plurality of transducer components and a plurality of waveguide components arranged parallel to a first direction; and a second direction perpendicular to the first direction. each comprising a plurality of corresponding transducer components and a plurality of waveguide components;
    The plurality of transducer components arranged in the first direction and the plurality of transducer components arranged in the second direction have a common dielectric material, a first conductor layer, and a second conductor layer. comprising layers,
    Each of the plurality of converter components arranged in the first direction includes a linear signal conductor formed on one surface of the dielectric and whose extending direction is the second direction, and a probe, Each of the signal conductors is arranged in the first direction with a set interval from an adjacent signal conductor,
    Each of the plurality of converter components arranged in the second direction includes a linear signal conductor formed on one surface of the dielectric and whose extending direction is the first direction, and a probe, Each of the signal conductors is arranged in the second direction with the set interval from the adjacent signal conductor,
    The first conductor layer is formed on one surface of the dielectric and corresponds to each of the plurality of transducer components arranged in the first direction and the plurality of transducer components arranged in the second direction. and each has a plurality of openings whose longitudinal direction forms an angle of 45 degrees with respect to the extending direction of the corresponding signal conductor, and each of the plurality of openings has the set interval with respect to the adjacent opening. arranged with
    The probe extends continuously from one end of the corresponding signal conductor and is located within the corresponding opening of the first conductor layer,
    The second conductor layer is formed on the other surface of the dielectric so as to face the first conductor layer, and is configured to conduct electricity to the first conductor layer by a through conductor that penetrates from one surface to the other surface of the dielectric. connected to
    Each of the plurality of waveguide components arranged in the first direction faces each of the openings of the first conductor layer arranged in the first direction, and each of the plurality of waveguide components arranged in the first direction faces each of the openings arranged in the first direction. a waveguide having the other end surface whose longitudinal direction forms an angle of 45 degrees with respect to the waveguide, each of the waveguides being arranged in the first direction with the predetermined distance from the adjacent waveguide. ,
    Each of the plurality of waveguide constituent parts arranged in the second direction faces each of the openings arranged in the second direction of the first conductor layer, and each of the plurality of waveguide constituent parts arranged in the second direction faces each other. a waveguide having the other end surface whose longitudinal direction forms an angle of 45 degrees with respect to the waveguide, each of the waveguides being arranged in the second direction with the predetermined distance from the adjacent waveguide. Ru,
    Waveguide-microstrip line converter.
  15.  前記第1の方向に配列された前記複数の導波管構成部及び前記第2の方向に配列された前記複数の導波管構成部は共通する導波管用の誘電体と一面側導体層と他面側導体層を備え、
     前記導波管用の誘電体は、前記第1の方向に配列された前記複数の導波管構成部及び前記第2の方向に配列された前記複数の導波管構成部それぞれに対応し、それぞれが対応する前記信号用導体の延伸方向に対して長手方向のなす角度が45度である、一面から他面まで貫通した貫通部を有し、
     前記他面側導体層は、前記導波管用の誘電体の他面に形成され、それぞれが対応する前記貫通部に連通し、対応する前記信号用導体の延伸方向に対して長手方向のなす角度が45度である開口部を有し、前記他面側導体層は前記第1の導体層にボール状の端子により電気的に接続され、
     前記第1の方向に配列された前記複数の導波管構成部の導波管は、それぞれが対応する前記貫通部の内面全面に形成された導波管層により中空部を囲う中空導波管であり、前記中空部の長手方向が前記第2の方向に対してなす角度が45度であり、
     前記第2の方向に配列された前記複数の導波管構成部の導波管は、それぞれが対応する前記貫通部の内面全面に形成された導波管層により中空部を囲う中空導波管であり、前記中空部の長手方向が前記第1の方向に対してなす角度が45度である、
     請求項14に記載の導波管-マイクロストリップ線路変換器。
    The plurality of waveguide constituent parts arranged in the first direction and the plurality of waveguide constituent parts arranged in the second direction have a common waveguide dielectric material and a one-side conductor layer. Equipped with a conductor layer on the other side,
    The waveguide dielectric corresponds to each of the plurality of waveguide constituent parts arranged in the first direction and the plurality of waveguide constituent parts arranged in the second direction, respectively. has a penetrating portion that penetrates from one surface to the other surface and whose longitudinal direction forms an angle of 45 degrees with respect to the extending direction of the corresponding signal conductor,
    The other side conductor layer is formed on the other side of the waveguide dielectric, each communicates with the corresponding penetration part, and has an angle formed in the longitudinal direction with respect to the extending direction of the corresponding signal conductor. has an opening whose angle is 45 degrees, and the other side conductor layer is electrically connected to the first conductor layer by a ball-shaped terminal,
    Each of the waveguides of the plurality of waveguide components arranged in the first direction is a hollow waveguide whose hollow part is surrounded by a waveguide layer formed on the entire inner surface of the corresponding penetrating part. and the angle that the longitudinal direction of the hollow part makes with the second direction is 45 degrees,
    Each of the waveguides of the plurality of waveguide components arranged in the second direction is a hollow waveguide whose hollow part is surrounded by a waveguide layer formed on the entire inner surface of the corresponding penetrating part. and the angle that the longitudinal direction of the hollow part makes with the first direction is 45 degrees,
    The waveguide-microstrip line converter according to claim 14.
  16.  前記設定間隔は前記導波管を伝搬する高周波の波長に対して半波長以下である請求項14に記載の導波管-マイクロストリップ線路変換器。 15. The waveguide-microstrip line converter according to claim 14, wherein the set interval is a half wavelength or less with respect to the wavelength of the high frequency wave propagating in the waveguide.
  17.  前記設定間隔は前記導波管を伝搬する高周波の波長に対して半波長以下である請求項15に記載の導波管-マイクロストリップ線路変換器。 16. The waveguide-microstrip line converter according to claim 15, wherein the set interval is less than a half wavelength with respect to the wavelength of the high frequency wave propagating in the waveguide.
  18.  請求項1から請求項3、及び、請求項8のいずれか1項に記載の導波管-マイクロストリップ線路変換器において、
     前記導波管の一端面を開放した開放端面とし、前記導波管をアンテナとしたアンテナ装置。
    In the waveguide-microstrip line converter according to any one of claims 1 to 3 and claim 8,
    An antenna device in which one end surface of the waveguide is an open end surface, and the waveguide is used as an antenna.
  19.  請求項5に記載の導波管-マイクロストリップ線路変換器において、
     前記導波管の一端面を開放した開放端面とし、前記導波管をアンテナとしたアンテナ装置。
    The waveguide-microstrip line converter according to claim 5,
    An antenna device in which one end surface of the waveguide is an open end surface, and the waveguide is used as an antenna.
  20.  請求項13に記載の導波管-マイクロストリップ線路変換器において、
     前記導波管の一端面を開放した開放端面とし、前記導波管をアンテナとしたアンテナ装置。
    The waveguide-microstrip line converter according to claim 13,
    An antenna device in which one end surface of the waveguide is an open end surface, and the waveguide is used as an antenna.
  21.  請求項14から請求項16のいずれか1項に記載の導波管-マイクロストリップ線路変換器において、
     前記導波管の一端面を開放した開放端面とし、前記導波管をアンテナとしたアンテナ装置。
    The waveguide-microstrip line converter according to any one of claims 14 to 16,
    An antenna device in which one end surface of the waveguide is an open end surface, and the waveguide is used as an antenna.
  22.  請求項17に記載の導波管-マイクロストリップ線路変換器において、
    前記導波管の一端面を開放した開放端面とし、前記導波管をアンテナとしたアンテナ装置。
    The waveguide-microstrip line converter according to claim 17,
    An antenna device in which one end surface of the waveguide is an open end surface, and the waveguide is used as an antenna.
  23.  前記第1の方向に配列された前記複数の導波管構成部の導波管を送信アンテナとし、
     前記第2の方向に配列された前記複数の導波管構成部の導波管を受信アンテナとする、
     請求項22に記載のアンテナ装置。
    A waveguide of the plurality of waveguide components arranged in the first direction is used as a transmitting antenna,
    a waveguide of the plurality of waveguide components arranged in the second direction is used as a receiving antenna;
    The antenna device according to claim 22.
  24.  請求項22又は請求項23に記載のアンテナ装置において、
     前記導波管用の誘電体は、前記第1の方向に配列された前記複数の導波管構成部及び前記第2の方向に配列された前記複数の導波管構成部が形成される導波管形成領域と、前記導波管形成領域に連続して形成される実装領域とを有し、
     前記実装領域における前記導波管用の誘電体の他面に実装された、前記信号用導体に伝送される高周波信号を処理するための高周波回路を内蔵する実装部品を備える、
     レーダ装置。
    The antenna device according to claim 22 or 23,
    The dielectric for the waveguide is a waveguide in which the plurality of waveguide constituent parts arranged in the first direction and the plurality of waveguide constituent parts arranged in the second direction are formed. comprising a tube forming area and a mounting area formed continuously to the waveguide forming area,
    a mounting component that is mounted on the other surface of the waveguide dielectric in the mounting area and includes a built-in high-frequency circuit for processing a high-frequency signal transmitted to the signal conductor;
    radar equipment.
  25.  前記導波管用の誘電体における導波管形成領域及び実装領域を合わせた表面積が、変換器用の前記誘電体における変換器形成領域の表面積が大きい請求項24に記載のレーダ装置。 25. The radar device according to claim 24, wherein the combined surface area of the waveguide forming area and the mounting area in the dielectric for the waveguide is larger than the surface area of the converter forming area in the dielectric for the converter.
  26.  前記導波管用の誘電体の誘電正接が変換器用の前記誘電体の誘電正接より大きいとした請求項24に記載のレーダ装置。 The radar device according to claim 24, wherein the dielectric loss tangent of the dielectric for the waveguide is larger than the dielectric loss tangent of the dielectric for the converter.
  27.  前記導波管用の誘電体の誘電正接が変換器用の前記誘電体の誘電正接より大きいとした請求項25に記載のレーダ装置。 The radar device according to claim 25, wherein the dielectric loss tangent of the dielectric for the waveguide is larger than the dielectric loss tangent of the dielectric for the converter.
PCT/JP2022/028557 2022-07-25 2022-07-25 Waveguide-to-microstrip line converter, antenna device, and radar device WO2024023870A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024520840A JP7515772B2 (en) 2022-07-25 2022-07-25 Waveguide-to-microstrip line converter, antenna device, and radar device
PCT/JP2022/028557 WO2024023870A1 (en) 2022-07-25 2022-07-25 Waveguide-to-microstrip line converter, antenna device, and radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028557 WO2024023870A1 (en) 2022-07-25 2022-07-25 Waveguide-to-microstrip line converter, antenna device, and radar device

Publications (1)

Publication Number Publication Date
WO2024023870A1 true WO2024023870A1 (en) 2024-02-01

Family

ID=89705715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028557 WO2024023870A1 (en) 2022-07-25 2022-07-25 Waveguide-to-microstrip line converter, antenna device, and radar device

Country Status (2)

Country Link
JP (1) JP7515772B2 (en)
WO (1) WO2024023870A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270633A (en) * 1996-03-29 1997-10-14 Hitachi Ltd Tem slot array antenna
WO2010026990A1 (en) * 2008-09-05 2010-03-11 三菱電機株式会社 High-frequency circuit package, and sensor module
JP2011109431A (en) * 2009-11-18 2011-06-02 Mitsubishi Electric Corp Waveguide-microstrip line converter and method of manufacturing the same
JP2016144139A (en) * 2015-02-04 2016-08-08 富士通株式会社 Laminated waveguide, radio communication module and radio communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270633A (en) * 1996-03-29 1997-10-14 Hitachi Ltd Tem slot array antenna
WO2010026990A1 (en) * 2008-09-05 2010-03-11 三菱電機株式会社 High-frequency circuit package, and sensor module
JP2011109431A (en) * 2009-11-18 2011-06-02 Mitsubishi Electric Corp Waveguide-microstrip line converter and method of manufacturing the same
JP2016144139A (en) * 2015-02-04 2016-08-08 富士通株式会社 Laminated waveguide, radio communication module and radio communication system

Also Published As

Publication number Publication date
JP7515772B2 (en) 2024-07-12
JPWO2024023870A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
JP6750738B2 (en) Antenna module and communication device
KR102466972B1 (en) Switchable transmit and receive phased array antenna
EP3252870B1 (en) Antenna module
US20130169499A1 (en) Dielectric antenna and antenna module
US10854984B2 (en) Air-filled quad-ridge radiator for AESA applications
JP5420654B2 (en) Wideband long slot array antenna using simple feed element without balun
US10665952B2 (en) Microwave antenna module for space applications including a hybrid transmit/receive module of package on package type
US7289078B2 (en) Millimeter wave antenna
US11705614B2 (en) Coupling device and antenna
US20230243920A1 (en) Antenna apparatus and radar apparatus
JPWO2019187758A1 (en) Array antenna
GB2398430A (en) High frequency multilayer pcb with wave guiding channel
US11374321B2 (en) Integrated differential antenna with air gap for propagation of differential-mode radiation
WO2022097490A1 (en) Horn antenna
CN112242612A (en) Patch antenna
GB2594935A (en) Modular high frequency device
WO2024023870A1 (en) Waveguide-to-microstrip line converter, antenna device, and radar device
CN114614275B (en) HTCC dual-beam tile-type airtight SIP module
CN217134665U (en) Antenna device for realizing circular polarized wave
WO2009123234A1 (en) High-frequency module and manufacturing method thereof and transmitter, receiver, transmitter-receiver and radar device equipped with said high-frequency module
KR100630331B1 (en) The Antenna Apparatus Using Resin Divider And Feeder Panel
WO2021187010A1 (en) Antenna module
US10680307B2 (en) Waveguide to strip line transducer including a waveguide wall forming substrate having an end surface bonded to a second conductor, and a power feed circuit formed therefrom
JP2001088097A (en) Millimeter wave multi-layer substrate module and its manufacture
Talukder et al. A 24 GHz active antenna in flip-chip technology with integrated frontend

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952969

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024520840

Country of ref document: JP