WO2024023428A1 - Coating application method and turbine blade with coating applied according to this method - Google Patents

Coating application method and turbine blade with coating applied according to this method Download PDF

Info

Publication number
WO2024023428A1
WO2024023428A1 PCT/FR2023/051143 FR2023051143W WO2024023428A1 WO 2024023428 A1 WO2024023428 A1 WO 2024023428A1 FR 2023051143 W FR2023051143 W FR 2023051143W WO 2024023428 A1 WO2024023428 A1 WO 2024023428A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
chemical vapor
substrate
nickel
coating
Prior art date
Application number
PCT/FR2023/051143
Other languages
French (fr)
Inventor
Amar Saboundji
Virginie JAQUET
Original Assignee
Safran
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran filed Critical Safran
Publication of WO2024023428A1 publication Critical patent/WO2024023428A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/95Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • F05D2300/121Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/132Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/134Zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating

Definitions

  • the present presentation concerns a process for applying a coating to a nickel-based superalloy substrate, as well as a nickel-based superalloy turbine blade with a coating applied according to this process.
  • nickel-based superalloy we mean a superalloy whose mass percentage of nickel is the majority. We understand that nickel is therefore the element with the highest mass percentage.
  • nickel-based superalloys for single-crystal blades have undergone significant changes in chemical composition, with the aim in particular of improving their creep properties at high temperatures while maintaining environmental resistance. very aggressive in which these superalloys are used.
  • These superalloys include an austenitic matrix of face-centered cubic structure, solid solution based on nickel, called gamma phase ("y"), with precipitates of gamma prime (“y'") hardening phase of ordered cubic structure L1 2 of type Ni 3 Al The whole (matrix and precipitates) is therefore described as a y/y' superalloy.
  • these superalloys contain a high proportion of y' phase precipitates, approximately 60 to 70% by weight.
  • metallic coatings adapted to these superalloys have been developed in order to increase their resistance to the aggressive environment in which they are used, including resistance to oxidation and resistance to corrosion.
  • a ceramic coating of low thermal conductivity, performing a thermal barrier function can be added to reduce the temperature on the metal surface.
  • a complete protection system comprises at least two layers.
  • the first layer also called sub-layer or bonding layer
  • the deposition step is followed by a diffusion step of the sublayer in the superalloy.
  • Deposit and distribution can also be carried out in a single step.
  • M Ni (nickel) or Co (cobalt)
  • Cr chromium
  • NiAlyPtz nickel aluminide type alloys
  • the second layer is a ceramic coating comprising for example yttriated zirconia, also called “YSZ” in accordance with the English acronym for " Yttria Stabilized Zirconia” or “YPSZ” in accordance with the English acronym for “Yttria Partially Stabilized Zirconia” and having a porous structure.
  • This layer can be deposited by different processes, such as electron beam evaporation (“EB-PVD” in accordance with the English acronym for “Electron Beam Physical Vapor Deposition”), thermal spraying (“APS” in accordance with the English acronym for “Atmospheric Plasma Spraying” or “SPS” in accordance with the English acronym for “Suspension Plasma Spraying”), or any other process making it possible to obtain a porous ceramic coating with low thermal conductivity.
  • EB-PVD electron beam evaporation
  • APS in accordance with the English acronym for “Atmospheric Plasma Spraying” or “SPS” in accordance with the English acronym for “Suspension Plasma Spraying”
  • any other process making it possible to obtain a porous ceramic coating with low thermal conductivity.
  • inter-diffusion phenomena occur on the microscopic scale between the nickel-based superalloy of the substrate and the metal alloy of the underlayer.
  • These inter-diffusion phenomena associated with the oxidation of the sub-layer, modify in particular the chemical composition, the microstructure and therefore the mechanical properties of the sub-layer. from the manufacturing of the coating, then during the use of the blade in the turbine.
  • These inter-diffusion phenomena also modify the chemical composition, the microstructure and consequently the mechanical properties of the superalloy of the substrate under the coating.
  • a secondary reaction zone can thus form in the superalloy under the sub-layer to a depth of several tens, or even hundreds, of micrometers.
  • the mechanical characteristics of this ZRS are significantly lower than those of the substrate superalloy.
  • the formation of ZRS is undesirable because it leads to a significant reduction in the mechanical strength of the superalloy by facilitating the initiation of cracks at grain boundaries and interfaces, which is all the more critical at the level of the thin walls of the turbine blades. .
  • a first aspect of the present presentation concerns a process for applying a coating, which can be used even inside small cavities, and which makes it possible to protect a nickel-based superalloy substrate from oxidation and corrosion. even in aggressive environments, and in particular at very high temperatures, without mechanically weakening this substrate.
  • the method according to this first aspect comprises at least a first chemical vapor deposition step, for depositing chromium and/or cobalt on a surface of the substrate, and a second chemical vapor deposition step. , after at least partial diffusion, in an underlying layer of the substrate, chromium and/or cobalt deposited during the first chemical vapor deposition step, to introduce aluminum into said underlying layer of the substrate.
  • the nickel-based superalloy subject to this coating application process may comprise at least 3% by weight of rhenium.
  • Rhenium makes it possible to slow down the diffusion of chemical species within the superalloy and to limit the coalescence of the y' phase precipitates during service at high temperatures, to thus improve the resistance of the superalloy to creep at high temperatures, but presents the disadvantage of facilitating, with conventional coatings, the formation of secondary reaction zones with the coating, in an underlying layer. With the coating deposition process according to the first aspect, it is possible to avoid this disadvantage of rhenium in the nickel-based superalloy.
  • the first chemical vapor deposition step can form a surface layer with a thickness of between 5 and 20 ⁇ m. This thickness makes it possible to obtain satisfactory protection against corrosion and oxidation without unduly encumbering narrow cooling channels.
  • the aluminum can be doped with silicon and/or at least one rare earth, such as for example hafnium, yttrium or zirconium, in order to further increase the resistance. to oxidation.
  • first and/or second chemical vapor deposition step it is in particular possible to use any one of the plasma-enhanced chemical vapor deposition processes (in English: “Plasma-Enhanced Chemical Vapor Deposition”). " or PECVD), low pressure chemical vapor deposition (in English: “Low Pressure Chemical Vapor Deposition” or LPCVD), chemical vapor deposition under ultra-high vacuum (in English: “Ultra-High Vacuum Chemical Vapor Deposition » or UHVCVD) and atomic layer chemical vapor deposition (in English: “Atomic Layer Chemical Vapor Deposition” or ALCVD).
  • PECVD plasma-enhanced chemical vapor deposition processes
  • low pressure chemical vapor deposition in English: “Low Pressure Chemical Vapor Deposition” or LPCVD
  • chemical vapor deposition under ultra-high vacuum in English: “Ultra-High Vacuum Chemical Vapor Deposition » or UHVCVD
  • atomic layer chemical vapor deposition in English: “Atomic Layer
  • the first and/or the second chemical vapor deposition step may be low pressure chemical vapor deposition, thus taking place at a temperature of between 900 and 1150° C., for example between 1000 and 1100°C, and at a pressure of between 2 and 50 kPa.
  • the first chemical vapor deposition step can be carried out at a temperature of between 1040 and 1060° C. and at a pressure of between 5 and 20 kPa or at a pressure of between 15 and 25 kPa, preferably between 18 and 22 kPa
  • the second chemical vapor deposition step is carried out at a temperature of between 1050 and 1070°C and at a pressure of approximately 20 kPa.
  • a second aspect of the present presentation concerns a turbine blade made of nickel-based superalloy with a coating applied according to the process of the first aspect.
  • this blade may comprise one or more cooling channels, and the coating be applied inside the cooling channels, which is facilitated by the use of chemical vapor deposition steps.
  • a third aspect of the present presentation concerns a turbomachine comprising the turbine blade according to the second aspect.
  • the turbomachine may in particular be a fan turbojet (in English: “turbofan”).
  • Other types of turbomachine such as for example a turboprop, a turboshaft engine, or a single-flow turbojet (in English: “turbojet”).
  • Figure 1 is a schematic view in longitudinal section of a turbomachine.
  • Figure 2 schematically illustrates a turbine blade of the turbomachine of Figure 1, with cooling channels.
  • Figure 3 schematically illustrates a nickel-based superalloy substrate with a layer of metal deposited on the surface of the substrate during a first chemical vapor deposition step.
  • Figure 4 schematically illustrates the nickel-based superalloy substrate after diffusion, in an underlying layer of the substrate, of the metal deposited during the first chemical vapor deposition step.
  • Figure 5 schematically illustrates the nickel-based superalloy substrate with a layer of aluminum deposited on the surface of the substrate during a second chemical vapor deposition step.
  • Single-crystal nickel-based superalloys consist of precipitates y' Ni 3 (AI, Ti, Ta) dispersed in a matrix y of cubic structure with centered feces, solid solution based on nickel, and have mechanical properties, particularly at high temperatures, which make them interesting candidates for the manufacture of monocrystalline parts intended for the hot parts of turbojet engines.
  • These superalloys may in particular have rhenium concentrations equal to or greater than 3% by weight in order to slow down the diffusion of chemical species within the superalloy and to limit the coalescence of phase y' precipitates during service at high temperatures, a phenomenon which causes a reduction in mechanical resistance. Rhenium thus makes it possible to improve the creep resistance at high temperatures of the nickel-based superalloy.
  • these nickel-based superalloys can be intended for the manufacture of single-crystal blades by a directed solidification process in a thermal gradient.
  • the use of a monocrystalline seed or a grain selector at the start of solidification makes it possible to obtain this monocrystalline structure, oriented for example in a crystallographic direction ⁇ 001> which is the orientation which confers, in general, the properties optimal mechanics of superalloys.
  • Figure 1 represents, in section along a vertical plane passing through its main axis A, a fan turbojet 10.
  • a fan turbojet 10 can comprise, from upstream to downstream depending on the circulation of the air flow, a blower 12, a low pressure compressor 14, a high pressure compressor 16, a combustion chamber 18, a high pressure turbine 20, and a low pressure turbine 22.
  • the high pressure turbine 20 may comprise a plurality of blades 20A rotating with the rotor and fixed blades 20B, also called rectifiers, mounted on the stator.
  • the stator of the turbine 20 may comprise a plurality of stator rings 24 arranged opposite the rotating blades 20A of the turbine 20.
  • a blade 20A, 20B for a turbomachine comprising a nickel-based superalloy.
  • those prevailing within the hot parts of turbomachines may require cooling of the 20A blades, 20B.
  • such a blade 20A, 20B may include internal cavities, in particular in the form of cooling channels 21, to allow the circulation of a cooling fluid such as, for example, air taken from the compressors 14, 16.
  • the width of the cooling channels 21 is however restricted by the shape and dimensions of these blades 20A, 20B, and can be of the order of a tenth of a millimeter, that is to say a hundred of micrometers.
  • a coating can be applied to this surface following a process comprising two consecutive stages of chemical vapor deposition. These two consecutive steps can be carried out in the same chemical vapor deposition device.
  • chromium can be deposited, for example at a temperature of between 1040 and 1060°C and at a pressure of between 15 and 25 kPa, preferably between 18 and 22 kPa, on the surface of this nickel-based superalloy substrate 100, as illustrated in Figure 3, to form a surface layer 101, superimposed on the substrate 100, with a thickness ei of, for example, between 5 and 20 pm.
  • Cobalt can, however, be deposited alternatively or in addition to chromium during this first chemical vapor deposition step.
  • the chromium and/or cobalt deposited during the first chemical vapor deposition step can then diffuse into the substrate 100, to form an underlying layer 102, rich in chromium and/or cobalt and poor in rhenium. .
  • this underlying layer 102 after a first step of chemical deposition of chromium in the vapor phase on a substrate 100 in CMSX-4 Plus Mod C ® superalloy and the subsequent diffusion of this chromium in the underlying layer 102, this underlying layer 102, being able to have a thickness 62 normally less than the initial thickness ei of the surface layer 101 before diffusion, as illustrated in Figure 4, can have a composition, in mass percentages, of 40 to 55% of nickel, 10 to 30% of chromium, 7 to 8% cobalt, 1 to 2% aluminum, and practically no rhenium, this having been displaced from this underlying layer 102 by the chromium.
  • This diffusion can in particular be facilitated by a heat treatment, for example at a temperature greater than 1000°C and a pressure of between 10 -3 and 10 -4 Pa for up to 4 hours or under a partial pressure of a neutral gas such as Argon of between 0.1 to 1 Pa for 2 at 4 a.m.
  • a heat treatment for example at a temperature greater than 1000°C and a pressure of between 10 -3 and 10 -4 Pa for up to 4 hours or under a partial pressure of a neutral gas such as Argon of between 0.1 to 1 Pa for 2 at 4 a.m.
  • the diffusion of chromium and/or cobalt in the underlying layer 102 can be followed by the second chemical vapor deposition step.
  • this second chemical vapor deposition step which can take the form of a “flash” type aluminization, and which can for example be carried out at a temperature of between 900 and 1150° C, in particular between 1050 and 1070 °C, at a pressure of between 2 and 50 kPa, for example at approximately 20 kPa, and/or for a period of between 30 minutes and 8 hours, in particular between 30 and 60 minutes, aluminum can be introduced up into the underlying layer 102, as illustrated in Figure 5, where it can reach a concentration of 5 to 12% by weight.
  • the concentration of aluminum could even reach up to 20%.
  • This aluminum in the surface 101 and underlying 102 layers can then, in service, form alumina, thus helping to protect the other alloy elements.
  • the aluminum can be deposited pure or doped with silicon and/or one or more rare earths, such as for example hafnium, yttrium or zirconium, which can thus reach each mass concentrations of, for example 0.5 to 2% in the surface layers 101 and underlying layers 102.
  • the part forming the substrate 100 is extracted, before the second chemical vapor deposition step, from an enclosure in which the first chemical deposition step has been carried out, in particular if said first and second steps chemical vapor deposition must be carried out in two different enclosures to meet industrial constraints.
  • the heat treatment for the diffusion, towards the underlying layer 102, of the chromium and/or cobalt deposited during the first chemical vapor deposition step could be carried out in an enclosure used for the second stage of chemical vapor deposition, during its rise in temperature prior to the implementation of the second stage of chemical vapor deposition.
  • first and second chemical vapor deposition steps could be carried out in the same enclosure, maintained at the required temperature and pressure for the appropriate time for the heat treatment used for diffusion, in the interval between the first and second chemical vapor deposition steps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The present invention relates to a method for applying a coating to a substrate (100) made of a nickel-based superalloy and to a turbine blade made of a nickel-based superalloy with a coating applied according to this method. The coating application method comprises at least a first chemical vapour deposition step for depositing chromium and/or cobalt on a surface of the substrate (100) and a second chemical vapour deposition step, after at least partially diffusing, in an underlying layer (102) of the substrate (100), the chromium and/or the cobalt deposited in the first chemical vapour deposition step, for depositing aluminium on the underlying layer (102) of the substrate (100).

Description

. .
Description Description
Titre de l'invention : Procédé d'application de revêtement et aube de turbine avec revêtement appliqué suivant ce procédé Title of the invention: Process for applying coating and turbine blade with coating applied according to this process
Domaine Technique Technical area
[0001] Le présent exposé concerne un procédé d’application de revêtement sur un substrat en superalliage à base de nickel, ainsi qu’une aube de turbine en superalliage à base de nickel avec un revêtement appliqué suivant ce procédé. On entend, par superalliage à base de nickel, un superalliage dont le pourcentage massique en nickel est majoritaire. On comprend que le nickel est donc l’élément dont le pourcentage massique est le plus élevé. The present presentation concerns a process for applying a coating to a nickel-based superalloy substrate, as well as a nickel-based superalloy turbine blade with a coating applied according to this process. By nickel-based superalloy we mean a superalloy whose mass percentage of nickel is the majority. We understand that nickel is therefore the element with the highest mass percentage.
Technique antérieure Prior art
[0002] Il est connu d'utiliser des superalliages à base de nickel pour les parties chaudes de turbines à gaz pour moteurs d’avion ou d’hélicoptère et notamment pour la fabrication d’aubes monocristallines fixes ou mobiles. [0002] It is known to use nickel-based superalloys for the hot parts of gas turbines for airplane or helicopter engines and in particular for the manufacture of fixed or mobile monocrystalline blades.
[0003] Ces matériaux ont pour principaux avantages de combiner à la fois une résistance au fluage élevée à haute température ainsi qu’une résistance à l’oxydation et à la corrosion. [0003] These materials have the main advantages of combining both high creep resistance at high temperatures as well as resistance to oxidation and corrosion.
[0004] Au cours du temps, les superalliages à base de nickel pour aubes monocristallines ont subi d’importantes évolutions de composition chimique, dans le but notamment d’améliorer leurs propriétés en fluage à haute température tout en conservant une résistance à l’environnement très agressif dans lesquels ces superalliages sont utilisés. Ces superalliages comprennent une matrice austénitique de structure cubique à faces centrées, solution solide à base de nickel, dite phase gamma (« y »), avec des précipités de phase durcissante gamma prime (« y’ ») de structure cubique ordonnée L12 de type Ni3Al L’ensemble (matrice et précipités) est donc décrit comme un superalliage y/y’. En général, à température ambiante, ces superalliages contiennent une forte proportion de précipités de phase y’, environ 60 à 70% massique. [0004] Over time, nickel-based superalloys for single-crystal blades have undergone significant changes in chemical composition, with the aim in particular of improving their creep properties at high temperatures while maintaining environmental resistance. very aggressive in which these superalloys are used. These superalloys include an austenitic matrix of face-centered cubic structure, solid solution based on nickel, called gamma phase ("y"), with precipitates of gamma prime ("y'") hardening phase of ordered cubic structure L1 2 of type Ni 3 Al The whole (matrix and precipitates) is therefore described as a y/y' superalloy. In general, at room temperature, these superalloys contain a high proportion of y' phase precipitates, approximately 60 to 70% by weight.
[0005] Par ailleurs, des revêtements métalliques adaptés à ces superalliages ont été développés afin d’augmenter leur résistance à l’environnement agressif dans lequel ils sont utilisés, notamment la résistance à l’oxydation et la résistance à la corrosion. De plus, un revêtement céramique de faible conductivité thermique, remplissant une fonction de barrière thermique, peut être ajouté pour réduire la température à la surface du métal. [0005] Furthermore, metallic coatings adapted to these superalloys have been developed in order to increase their resistance to the aggressive environment in which they are used, including resistance to oxidation and resistance to corrosion. Additionally, a ceramic coating of low thermal conductivity, performing a thermal barrier function, can be added to reduce the temperature on the metal surface.
[0006] Typiquement, un système de protection complet comporte au moins deux couches. La première couche, aussi appelée sous-couche ou couche de liaison, est directement déposée sur la pièce à protéger en superalliage à base de nickel, aussi appelée substrat, par exemple une aube. L'étape de dépôt est suivie d’une étape de diffusion de la sous-couche dans le superalliage. Le dépôt et la diffusion peuvent également être réalisés lors d’une seule étape. Les matériaux généralement utilisés pour réaliser cette sous-couche comprennent des alliages métalliques aluminoformeurs de type MCrAlY (M = Ni (nickel) ou Co (cobalt)) ou un mélange de Ni et de Co, Cr = chrome, Al = aluminium et Y = yttrium, ou des alliages de type aluminiure de nickel (NixAly), certains contenant également du platine (NixAlyPtz). La deuxième couche, généralement appelée barrière thermique ou « TBC » conformément à l’acronyme anglais pour « Thermal Barrier Coating », est un revêtement céramique comprenant par exemple de la zircone yttriée, aussi appelée « YSZ » conformément à l’acronyme anglais pour « Yttria Stabilized Zirconia » ou « YPSZ » conformément à l’acronyme anglais pour « Yttria Partially Stabilized Zirconia » et présentant une structure poreuse. Cette couche peut être déposée par différents procédés, tels que l’évaporation sous faisceau d’électrons (« EB-PVD » conformément à l’acronyme anglais pour « Electron Beam Physical Vapor Deposition »), la projection thermique (« APS » conformément à l’acronyme anglais pour « Atmospheric Plasma Spraying » ou « SPS » conformément à l’acronyme anglais pour « Suspension Plasma Spraying »), ou tout autre procédé permettant d’obtenir un revêtement céramique poreux à faible conductivité thermique. [0006] Typically, a complete protection system comprises at least two layers. The first layer, also called sub-layer or bonding layer, is directly deposited on the nickel-based superalloy part to be protected, also called substrate, for example a blade. The deposition step is followed by a diffusion step of the sublayer in the superalloy. Deposit and distribution can also be carried out in a single step. The materials generally used to make this underlayer include aluminoforming metal alloys of the MCrAlY type (M = Ni (nickel) or Co (cobalt)) or a mixture of Ni and Co, Cr = chromium, Al = aluminum and Y = yttrium, or nickel aluminide type alloys (NixAly), some also containing platinum (NixAlyPtz). The second layer, generally called thermal barrier or "TBC" in accordance with the English acronym for "Thermal Barrier Coating", is a ceramic coating comprising for example yttriated zirconia, also called "YSZ" in accordance with the English acronym for " Yttria Stabilized Zirconia” or “YPSZ” in accordance with the English acronym for “Yttria Partially Stabilized Zirconia” and having a porous structure. This layer can be deposited by different processes, such as electron beam evaporation (“EB-PVD” in accordance with the English acronym for “Electron Beam Physical Vapor Deposition”), thermal spraying (“APS” in accordance with the English acronym for “Atmospheric Plasma Spraying” or “SPS” in accordance with the English acronym for “Suspension Plasma Spraying”), or any other process making it possible to obtain a porous ceramic coating with low thermal conductivity.
[0007] Du fait de l’utilisation de ces matériaux à haute température, par exemple de 650°C à 1250°C, il se produit des phénomènes d’inter-diffusion à l’échelle microscopique entre le superalliage à base de nickel du substrat et l’alliage métallique de la sous-couche. Ces phénomènes d’inter-diffusion, associés à l’oxydation de la sous-couche, modifient notamment la composition chimique, la microstructure et par conséquent les propriétés mécaniques de la sous-couche dès la fabrication du revêtement, puis pendant l’utilisation de l’aube dans la turbine. Ces phénomènes d’inter-diffusion modifient également la composition chimique, la microstructure et par conséquent les propriétés mécaniques du superalliage du substrat sous le revêtement. Dans les superalliages très chargés en éléments réfractaires, notamment en rhénium, il peut ainsi se former dans le superalliage sous la sous-couche une zone de réaction secondaire (ZRS) sur une profondeur de plusieurs dizaines, voire centaines, de micromètres. Les caractéristiques mécaniques de cette ZRS sont nettement inférieures à celles du superalliage du substrat. La formation de ZRS est indésirable car elle conduit à une réduction significative de la résistance mécanique du superalliage en facilitant l’initiation de fissures aux joints de grains et interfaces, ce qui est d’autant plus critique au niveau des parois minces des aubes de turbine. [0007] Due to the use of these materials at high temperature, for example from 650°C to 1250°C, inter-diffusion phenomena occur on the microscopic scale between the nickel-based superalloy of the substrate and the metal alloy of the underlayer. These inter-diffusion phenomena, associated with the oxidation of the sub-layer, modify in particular the chemical composition, the microstructure and therefore the mechanical properties of the sub-layer. from the manufacturing of the coating, then during the use of the blade in the turbine. These inter-diffusion phenomena also modify the chemical composition, the microstructure and consequently the mechanical properties of the superalloy of the substrate under the coating. In superalloys heavily loaded with refractory elements, particularly rhenium, a secondary reaction zone (ZRS) can thus form in the superalloy under the sub-layer to a depth of several tens, or even hundreds, of micrometers. The mechanical characteristics of this ZRS are significantly lower than those of the substrate superalloy. The formation of ZRS is undesirable because it leads to a significant reduction in the mechanical strength of the superalloy by facilitating the initiation of cracks at grain boundaries and interfaces, which is all the more critical at the level of the thin walls of the turbine blades. .
[0008] Afin d’éviter ce problème, des procédés ont été proposés, notamment dans les fascicules de demande de brevet français FR 3201 643 A1 et FR 3 113260 A1 pour appliquer par dépôt physique en phase vapeur, sur des superalliages à base de nickel, des revêtements protecteurs plus compatibles avec les teneurs élevées en rhénium. Toutefois, il peut être difficile d’utiliser ces procédés pour l’application d’un tel revêtement protecteur dans des cavités internes de faibles dimensions, telles que par exemple les canaux de refroidissement des aubes de turbine, qui peuvent pourtant aussi être exposées à la corrosion et à l’oxydation.[0008] In order to avoid this problem, methods have been proposed, in particular in French patent application specifications FR 3201 643 A1 and FR 3 113260 A1, for applying by physical vapor deposition to nickel-based superalloys. , protective coatings more compatible with high rhenium contents. However, it may be difficult to use these methods for the application of such a protective coating in small internal cavities, such as for example the cooling channels of turbine blades, which may however also be exposed to the corrosion and oxidation.
Exposé de l’invention Presentation of the invention
[0009] Un premier aspect du présent exposé concerne un procédé d’application de revêtement, utilisable même à l’intérieur de cavités de faibles dimensions, et permettant de protéger un substrat en superalliage à base de nickel de l’oxydation et de la corrosion même dans des environnements agressifs, et notamment aux très hautes températures, sans pour autant affaiblir mécaniquement ce substrat. [0009] A first aspect of the present presentation concerns a process for applying a coating, which can be used even inside small cavities, and which makes it possible to protect a nickel-based superalloy substrate from oxidation and corrosion. even in aggressive environments, and in particular at very high temperatures, without mechanically weakening this substrate.
[0010] Pour cela, le procédé suivant ce premier aspect comprend au moins une première étape de dépôt chimique en phase vapeur, pour déposer du chrome et/ou du cobalt sur une surface du substrat, et une deuxième étape de dépôt chimique en phase vapeur, après diffusion au moins partielle, dans une couche sous-jacente du substrat, du chrome et/ou du cobalt déposés lors de la première étape de dépôt chimique en phase vapeur, pour introduire de l’aluminium jusque dans ladite couche sous-jacente du substrat. [0010] For this, the method according to this first aspect comprises at least a first chemical vapor deposition step, for depositing chromium and/or cobalt on a surface of the substrate, and a second chemical vapor deposition step. , after at least partial diffusion, in an underlying layer of the substrate, chromium and/or cobalt deposited during the first chemical vapor deposition step, to introduce aluminum into said underlying layer of the substrate.
[0011] La diffusion du chrome et/ou cobalt dans la couche sous-jacente du substrat après son dépôt chimique en phase vapeur permet de modifier la microstructure du superalliage dans cette couche sous-jacente, et notamment d’en déplacer le rhénium susceptible de former une zone de réaction secondaire. Le dépôt subséquent d’aluminium permet d’augmenter la concentration d’aluminium dans cette couche sous-jacente, pour éventuellement atteindre entre 5 et 12 % en masse lors de la deuxième étape de dépôt chimique en phase vapeur, et former ainsi un revêtement alumino-formeur de structures de phase 0 ou combinant des phases 0, y et y’. Ce revêtement permet d'offrir une bonne protection environnementale au substrat en superalliage, et cela même dans des passages de dimensions restreintes, comme par exemple des canaux de refroidissement avec une largeur de l’ordre de la centaine de micromètres. Le dépôt chimique en phase vapeur permet aussi d’atteindre avec ce traitement des interstices d’accès difficile. [0011] The diffusion of chromium and/or cobalt in the underlying layer of the substrate after its chemical vapor deposition makes it possible to modify the microstructure of the superalloy in this underlying layer, and in particular to displace the rhenium capable of form a secondary reaction zone. The subsequent deposition of aluminum makes it possible to increase the concentration of aluminum in this underlying layer, possibly reaching between 5 and 12% by mass during the second chemical vapor deposition step, and thus form an aluminum coating. -former of phase 0 structures or combining phases 0, y and y'. This coating makes it possible to offer good environmental protection to the superalloy substrate, even in passages of restricted dimensions, such as for example cooling channels with a width of around a hundred micrometers. Chemical vapor deposition also makes it possible to reach difficult-to-access gaps with this treatment.
[0012] Le superalliage à base de nickel sujet à ce procédé d’application de revêtement peut comprendre au moins 3 % massique de rhénium. Le rhénium permet en effet de ralentir la diffusion des espèces chimiques au sein du superalliage et de limiter la coalescence des précipités de phase y’ en cours de service à haute température, pour ainsi améliorer la résistance du superalliage au fluage à haute température, mais présente l'inconvénient de faciliter, avec des revêtements conventionnels, la formation de zones de réaction secondaire avec le revêtement, dans une couche sous-jacente. Avec le procédé de dépôt de revêtement suivant le premier aspect, il est possible d’éviter cet inconvénient du rhénium dans le superalliage à base de nickel. [0012] The nickel-based superalloy subject to this coating application process may comprise at least 3% by weight of rhenium. Rhenium makes it possible to slow down the diffusion of chemical species within the superalloy and to limit the coalescence of the y' phase precipitates during service at high temperatures, to thus improve the resistance of the superalloy to creep at high temperatures, but presents the disadvantage of facilitating, with conventional coatings, the formation of secondary reaction zones with the coating, in an underlying layer. With the coating deposition process according to the first aspect, it is possible to avoid this disadvantage of rhenium in the nickel-based superalloy.
[0013] La première étape de dépôt chimique en phase vapeur peut former une couche superficielle avec une épaisseur d’entre 5 et 20 μm. Cette épaisseur permet d’obtenir une protection satisfaisante contre la corrosion et l’oxydation sans encombrer indûment des canaux de refroidissement étroits. [0014] Lors de la deuxième phase de dépôt chimique, l’aluminium peut être dopé avec du silicium et/ou au moins une terre rare, comme par exemple le hafnium, l’yttrium ou le zirconium, afin d’augmenter encore la tenue à l’oxydation. The first chemical vapor deposition step can form a surface layer with a thickness of between 5 and 20 μm. This thickness makes it possible to obtain satisfactory protection against corrosion and oxidation without unduly encumbering narrow cooling channels. [0014] During the second chemical deposition phase, the aluminum can be doped with silicon and/or at least one rare earth, such as for example hafnium, yttrium or zirconium, in order to further increase the resistance. to oxidation.
[0015] Pour la première et/ou la deuxième étape de dépôt chimique en phase vapeur il est notamment envisageable d’utiliser un quelconque parmi les procédés de dépôt chimique en phase vapeur amélioré par plasma (en anglais : « Plasma- Enhanced Chemical Vapor Deposition » ou PECVD), dépôt chimique en phase vapeur à basse pression (en anglais : « Low Pressure Chemical Vapor Deposition » ou LPCVD), dépôt chimique en phase vapeur sous vide ultra-élevé (en anglais : « Ultra-High Vacuum Chemical Vapor Deposition » ou UHVCVD) et dépôt chimique en phase vapeur de couche atomique (en anglais : « Atomic Layer Chemical Vapor Deposition » ou ALCVD). En particulier, la première et/ou la deuxième étape de dépôt chimique en phase vapeur peuvent être des dépôts chimiques en phase vapeur à basse pression, s’effectuant ainsi à une température d’entre 900 et 1150°C, par exemple d’entre 1000 et 1100°C, et à une pression d’entre 2 et 50 kPa. Plus particulièrement, la première étape de dépôt chimique en phase vapeur peut s’effectuer à une température d’entre 1040 et 1060°C et à une pression d’entre 5 et 20 kPa ou à une pression d’entre 15 et 25 kPa, de préférence entre 18 et 22 kPa, tandis que la deuxième étape de dépôt chimique en phase vapeur s’effectue à une température d’entre 1050 et 1070°C et à une pression d’environ 20 kPa. [0015] For the first and/or second chemical vapor deposition step, it is in particular possible to use any one of the plasma-enhanced chemical vapor deposition processes (in English: “Plasma-Enhanced Chemical Vapor Deposition”). " or PECVD), low pressure chemical vapor deposition (in English: "Low Pressure Chemical Vapor Deposition" or LPCVD), chemical vapor deposition under ultra-high vacuum (in English: "Ultra-High Vacuum Chemical Vapor Deposition » or UHVCVD) and atomic layer chemical vapor deposition (in English: “Atomic Layer Chemical Vapor Deposition” or ALCVD). In particular, the first and/or the second chemical vapor deposition step may be low pressure chemical vapor deposition, thus taking place at a temperature of between 900 and 1150° C., for example between 1000 and 1100°C, and at a pressure of between 2 and 50 kPa. More particularly, the first chemical vapor deposition step can be carried out at a temperature of between 1040 and 1060° C. and at a pressure of between 5 and 20 kPa or at a pressure of between 15 and 25 kPa, preferably between 18 and 22 kPa, while the second chemical vapor deposition step is carried out at a temperature of between 1050 and 1070°C and at a pressure of approximately 20 kPa.
[0016] Un deuxième aspect du présent exposé concerne une aube de turbine en superalliage à base de nickel avec un revêtement appliqué suivant le procédé du premier aspect. En particulier, cette aube peut comporter un ou plusieurs canaux de refroidissement, et le revêtement être appliqué à l’intérieur des canaux de refroidissement, ce qui est facilité par l’utilisation d’étapes de dépôt chimique en phase vapeur. [0016] A second aspect of the present presentation concerns a turbine blade made of nickel-based superalloy with a coating applied according to the process of the first aspect. In particular, this blade may comprise one or more cooling channels, and the coating be applied inside the cooling channels, which is facilitated by the use of chemical vapor deposition steps.
[0017] Un troisième aspect du présent exposé concerne une turbomachine comprenant l'aube de turbine suivant le deuxième aspect. La turbomachine peut notamment être un turboréacteur à soufflante (en anglais : « turbofan »). D’autres types de turbomachine, comme par exemple un turbopropulseur, un turbomoteur, ou un turboréacteur à simple flux (en anglais : « turbojet »). Brève description des dessins [0017] A third aspect of the present presentation concerns a turbomachine comprising the turbine blade according to the second aspect. The turbomachine may in particular be a fan turbojet (in English: “turbofan”). Other types of turbomachine, such as for example a turboprop, a turboshaft engine, or a single-flow turbojet (in English: “turbojet”). Brief description of the drawings
[0018] Les caractéristiques et avantages précités, ainsi que d'autres, apparaîtront à la lecture de la description suivante de modes de réalisation, donnés à titre d'exemples non limitatifs, en référence aux figures annexées. The aforementioned characteristics and advantages, as well as others, will appear on reading the following description of embodiments, given by way of non-limiting examples, with reference to the appended figures.
[0019] [Fig. 1] La figure 1 est une vue schématique en coupe longitudinale d’une turbomachine. [0019] [Fig. 1] Figure 1 is a schematic view in longitudinal section of a turbomachine.
[0020] [Fig. 2] La figure 2 illustre schématiquement une aube de turbine de la turbomachine de la figure 1 , avec des canaux de refroidissement. [0020] [Fig. 2] Figure 2 schematically illustrates a turbine blade of the turbomachine of Figure 1, with cooling channels.
[0021] [Fig. 3] La figure 3 illustre schématiquement un substrat en superalliage à base de nickel avec une couche de métal déposée sur la surface du substrat lors d’une première étape de dépôt chimique en phase vapeur. [0021] [Fig. 3] Figure 3 schematically illustrates a nickel-based superalloy substrate with a layer of metal deposited on the surface of the substrate during a first chemical vapor deposition step.
[0022] [Fig. 4] La figure 4 illustre schématiquement le substrat en superalliage à base de nickel après diffusion, dans une couche sous-jacente du substrat, du métal déposé lors de la première étape de dépôt chimique en phase vapeur. [0022] [Fig. 4] Figure 4 schematically illustrates the nickel-based superalloy substrate after diffusion, in an underlying layer of the substrate, of the metal deposited during the first chemical vapor deposition step.
[0023] [Fig. 5] La figure 5 illustre schématiquement le substrat en superalliage à base de nickel avec une couche d’aluminium déposée sur la surface du substrat lors d’une deuxième étape de dépôt chimique en phase vapeur. [0023] [Fig. 5] Figure 5 schematically illustrates the nickel-based superalloy substrate with a layer of aluminum deposited on the surface of the substrate during a second chemical vapor deposition step.
Description détaillée detailed description
[0024] Les superalliages monocristallins à base de nickel sont constitués de précipités y' Ni3(AI, Ti, Ta) dispersés dans une matrice y de structure cubique à feces centrées, solution solide à base de nickel, et présentent des propriétés mécaniques, en particulier à haute température, qui en font des candidats intéressants pour la fabrication de pièces monocristallines destinées aux parties chaudes des turboréacteurs. Ces superalliages peuvent notamment avoir des concentrations de rhénium égales ou supérieures à 3 % massique afin de ralentir la diffusion des espèces chimiques au sein du superalliage et de limiter la coalescence des précipités de phase y’ en cours de service à haute température, phénomène qui entraîne une réduction de la résistance mécanique. Le rhénium permet ainsi d’améliorer la résistance au fluage à haute température du superalliage à base de nickel. On compte notamment, parmi les superalliages à base de nickel aussi riches en rhénium, le CMSX-4 Plus Mod C ®, CMSX-10 ®, et MC-NG. Ces alliages présentent les compositions suivantes, où le complément à 100 % est constitué par du nickel et des impuretés inévitables: [0024] Single-crystal nickel-based superalloys consist of precipitates y' Ni 3 (AI, Ti, Ta) dispersed in a matrix y of cubic structure with centered feces, solid solution based on nickel, and have mechanical properties, particularly at high temperatures, which make them interesting candidates for the manufacture of monocrystalline parts intended for the hot parts of turbojet engines. These superalloys may in particular have rhenium concentrations equal to or greater than 3% by weight in order to slow down the diffusion of chemical species within the superalloy and to limit the coalescence of phase y' precipitates during service at high temperatures, a phenomenon which causes a reduction in mechanical resistance. Rhenium thus makes it possible to improve the creep resistance at high temperatures of the nickel-based superalloy. Among the nickel-based superalloys also rich in rhenium, we include CMSX-4 Plus Mod C ®, CMSX-10 ®, and MC-NG. These alloys have the following compositions, where the 100% complement consists of nickel and unavoidable impurities:
[0025] [Tableau 1]
Figure imgf000009_0001
[0025] [Table 1]
Figure imgf000009_0001
[0026] En particulier, ces superalliages à base de nickel peuvent être destinés à la fabrication d'aubes monocristallines par un procédé de solidification dirigée dans un gradient thermique. L’utilisation d’un germe monocristallin ou d’un sélecteur de grain en début de solidification permet d’obtenir cette structure monocristalline, orientée par exemple selon une direction cristallographique <001 > qui est l'orientation qui confère, en général, les propriétés mécaniques optimales aux superalliages. [0026] In particular, these nickel-based superalloys can be intended for the manufacture of single-crystal blades by a directed solidification process in a thermal gradient. The use of a monocrystalline seed or a grain selector at the start of solidification makes it possible to obtain this monocrystalline structure, oriented for example in a crystallographic direction <001> which is the orientation which confers, in general, the properties optimal mechanics of superalloys.
[0027] La figure 1 représente, en coupe selon un plan vertical passant par son axe principal A, un turboréacteur à soufflante 10. Un tel turboréacteur à soufflante 10 peut comporter, d’amont en aval selon la circulation du flux d’air, une soufflante 12, un compresseur basse pression 14, un compresseur haute pression 16, une chambre de combustion 18, une turbine haute pression 20, et une turbine basse pression 22. [0027] Figure 1 represents, in section along a vertical plane passing through its main axis A, a fan turbojet 10. Such a fan turbojet 10 can comprise, from upstream to downstream depending on the circulation of the air flow, a blower 12, a low pressure compressor 14, a high pressure compressor 16, a combustion chamber 18, a high pressure turbine 20, and a low pressure turbine 22.
[0028] La turbine haute pression 20 peut comprendre une pluralité d'aubes 20A tournant avec le rotor et des aubes 20B fixes, appelées aussi redresseurs, montées sur le stator. Le stator de la turbine 20 peut comprendre une pluralité d’anneaux 24 de stator disposés en vis-à-vis des aubes tournantes 20A de la turbine 20. The high pressure turbine 20 may comprise a plurality of blades 20A rotating with the rotor and fixed blades 20B, also called rectifiers, mounted on the stator. The stator of the turbine 20 may comprise a plurality of stator rings 24 arranged opposite the rotating blades 20A of the turbine 20.
[0029] On peut donc fabriquer une aube 20A, 20B pour turbomachine comprenant un superalliage à base de nickel. Néanmoins, malgré la bonne tenue de ces superalliages aux hautes températures, celles régnant au sein des parties chaudes de turbomachines peuvent nécessiter le refroidissement des aubes 20A, 20B. Pour assurer ce refroidissement, une telle aube 20A, 20B peut comporter des cavités internes, notamment sous la forme de canaux de refroidissement 21 , pour permettre la circulation d'un fluide de refroidissement tel que, par exemple, de l’air prélevé sur les compresseurs 14, 16. La largeur des canaux de refroidissement 21 est toutefois restreinte par la forme et les dimensions de ces aubes 20A, 20B, et peut être de l’ordre du dixième de millimètre, c’est-à-dire de la centaine de micromètres. It is therefore possible to manufacture a blade 20A, 20B for a turbomachine comprising a nickel-based superalloy. However, despite the good resistance of these superalloys to high temperatures, those prevailing within the hot parts of turbomachines may require cooling of the 20A blades, 20B. To ensure this cooling, such a blade 20A, 20B may include internal cavities, in particular in the form of cooling channels 21, to allow the circulation of a cooling fluid such as, for example, air taken from the compressors 14, 16. The width of the cooling channels 21 is however restricted by the shape and dimensions of these blades 20A, 20B, and can be of the order of a tenth of a millimeter, that is to say a hundred of micrometers.
[0030] Afin de protéger de l’oxydation et de la corrosion la surface du superalliage autour de ces cavités, un revêtement peut être appliqué sur cette surface suivant un procédé comprenant deux étapes consécutives de dépôt chimique en phase vapeur. Ces deux étapes consécutives peuvent être réalisées dans le même dispositif de dépôt chimique en phase vapeur. Dans une première étape de dépôt chimique en phase vapeur, du chrome peut être déposé, par exemple à une température d’entre 1040 et 1060°C et à une pression d’entre 15 et 25 kPa, de préférence entre 18 et 22 kPa, sur la surface de ce substrat 100 en superalliage à base de nickel, comme illustré sur la figure 3, pour former une couche superficielle 101, superposée au substrat 100, avec une épaisseur ei de, par exemple, entre 5 et 20 pm. Du cobalt peut toutefois être déposé alternativement ou en complément au chrome lors de cette première étape de dépôt chimique en phase vapeur. [0030] In order to protect the surface of the superalloy around these cavities from oxidation and corrosion, a coating can be applied to this surface following a process comprising two consecutive stages of chemical vapor deposition. These two consecutive steps can be carried out in the same chemical vapor deposition device. In a first chemical vapor deposition step, chromium can be deposited, for example at a temperature of between 1040 and 1060°C and at a pressure of between 15 and 25 kPa, preferably between 18 and 22 kPa, on the surface of this nickel-based superalloy substrate 100, as illustrated in Figure 3, to form a surface layer 101, superimposed on the substrate 100, with a thickness ei of, for example, between 5 and 20 pm. Cobalt can, however, be deposited alternatively or in addition to chromium during this first chemical vapor deposition step.
[0031] Le chrome et/ou cobalt déposés pendant la première étape de dépôt chimique en phase vapeur peuvent ensuite se diffuser dans le substrat 100, pour y former une couche sous-jacente 102, riche en chrome et/ou cobalt et pauvre en rhénium. Ainsi, après une première étape de dépôt chimique de chrome en phase vapeur sur un substrat 100 en superalliage CMSX-4 Plus Mod C ® et la diffusion subséquente de ce chrome dans la couche sous-jacente 102, cette couche sous-jacente 102, pouvant avoir une épaisseur 62 normalement inférieure à l’épaisseur initiale ei de la couche superficielle 101 avant la diffusion, comme illustré sur la figure 4, peut présenter une composition, en pourcentages massiques, de 40 à 55 % de nickel, 10 à 30 % de chrome, 7 à 8 % de cobalt, 1 à 2 % d’aluminium, et pratiquement aucun rhénium, celui-ci ayant été déplacé de cette couche sous-jacente 102 par le chrome. Cette diffusion peut notamment être facilitée par un traitement thermique, par exemple à une température supérieure à 1000°C et une pression d'entre 10-3 et 10-4 Pa jusqu’à 4 heures ou sous une pression partielle d’un gaz neutre tel que l’Argon d’entre 0,1 à 1 Pa pendant 2 à 4h. Pendant ce traitement thermique, bien que des éléments de la couche sous-jacente 102 du substrat 100 peuvent aussi remonter vers la couche superficielle 101 pendant ce traitement thermique pour y remplacer du cuivre et/ou du cobalt diffusé vers la couche superficielle, l’épaisseur de la couche superficielle 101 peut diminuer sensiblement. The chromium and/or cobalt deposited during the first chemical vapor deposition step can then diffuse into the substrate 100, to form an underlying layer 102, rich in chromium and/or cobalt and poor in rhenium. . Thus, after a first step of chemical deposition of chromium in the vapor phase on a substrate 100 in CMSX-4 Plus Mod C ® superalloy and the subsequent diffusion of this chromium in the underlying layer 102, this underlying layer 102, being able to have a thickness 62 normally less than the initial thickness ei of the surface layer 101 before diffusion, as illustrated in Figure 4, can have a composition, in mass percentages, of 40 to 55% of nickel, 10 to 30% of chromium, 7 to 8% cobalt, 1 to 2% aluminum, and practically no rhenium, this having been displaced from this underlying layer 102 by the chromium. This diffusion can in particular be facilitated by a heat treatment, for example at a temperature greater than 1000°C and a pressure of between 10 -3 and 10 -4 Pa for up to 4 hours or under a partial pressure of a neutral gas such as Argon of between 0.1 to 1 Pa for 2 at 4 a.m. During this heat treatment, although elements of the underlying layer 102 of the substrate 100 can also rise towards the surface layer 101 during this heat treatment to replace the copper and/or cobalt diffused towards the surface layer, the thickness of the surface layer 101 can decrease significantly.
[0032] La diffusion du chrome et/ou du cobalt dans la couche sous-jacente 102 peut être suivie de la deuxième étape de dépôt chimique en phase vapeur. Dans cette deuxième étape de dépôt chimique en phase vapeur, qui peut prendre la forme d’une aluminisation de type « flash », et qui peut par exemple être effectuée à une température d’entre 900 et 1150° C, notamment entre 1050 et 1070°C, à une pression comprise entre 2 et 50 kPa, par exemple à environ 20 kPa, et/ou pendant une durée d’entre 30 minutes et 8 heures, en particulier entre 30 et 60 minutes, de l’aluminium peut être introduit jusque dans la couche sous-jacente 102, comme illustré sur la figure 5, où il pourra atteindre une concentration de 5 à 12 % massique. Dans la couche superficielle 101, la concentration de l'aluminium pourrait même atteindre jusqu’à 20%. Cet aluminium dans les couches superficielle 101 et sous-jacente 102 pourra ensuite, en service, former de l’alumine, contribuant ainsi à protéger les autres éléments d’alliage. Dans la deuxième étape de dépôt physique en phase vapeur, l'aluminium peut être déposé pur ou dopé avec du silicium et/ou une ou plusieurs terres rares, comme par exemple le hafnium, l’yttrium ou le zirconium, qui pourront ainsi atteindre chacun des concentrations massiques de, par exemple 0,5 à 2% dans les couches superficielle 101 et sous-jacente 102. The diffusion of chromium and/or cobalt in the underlying layer 102 can be followed by the second chemical vapor deposition step. In this second chemical vapor deposition step, which can take the form of a “flash” type aluminization, and which can for example be carried out at a temperature of between 900 and 1150° C, in particular between 1050 and 1070 °C, at a pressure of between 2 and 50 kPa, for example at approximately 20 kPa, and/or for a period of between 30 minutes and 8 hours, in particular between 30 and 60 minutes, aluminum can be introduced up into the underlying layer 102, as illustrated in Figure 5, where it can reach a concentration of 5 to 12% by weight. In the surface layer 101, the concentration of aluminum could even reach up to 20%. This aluminum in the surface 101 and underlying 102 layers can then, in service, form alumina, thus helping to protect the other alloy elements. In the second physical vapor deposition step, the aluminum can be deposited pure or doped with silicon and/or one or more rare earths, such as for example hafnium, yttrium or zirconium, which can thus reach each mass concentrations of, for example 0.5 to 2% in the surface layers 101 and underlying layers 102.
[0033] Il est envisageable que la pièce formant le substrat 100 soit extraite, avant la deuxième étape de dépôt chimique en phase vapeur, d'une enceinte dans laquelle la première étape de dépôt chimique a été effectuée, notamment si lesdites première et deuxième étapes de dépôt chimique en phase vapeur doivent être effectuées dans deux enceintes différentes pour répondre à des contraintes industrielles. Dans ce cas, le traitement thermique pour la diffusion, vers la couche sous-jacente 102, du chrome et/ou du cobalt déposés lors de la première étape de dépôt chimique en phase vapeur pourrait être effectué dans une enceinte servant à la deuxième étape de dépôt chimique en phase vapeur, pendant sa montée en température préalable à la mise en œuvre de la deuxième étape de dépôt chimique en phase vapeur. [0033] It is conceivable that the part forming the substrate 100 is extracted, before the second chemical vapor deposition step, from an enclosure in which the first chemical deposition step has been carried out, in particular if said first and second steps chemical vapor deposition must be carried out in two different enclosures to meet industrial constraints. In this case, the heat treatment for the diffusion, towards the underlying layer 102, of the chromium and/or cobalt deposited during the first chemical vapor deposition step could be carried out in an enclosure used for the second stage of chemical vapor deposition, during its rise in temperature prior to the implementation of the second stage of chemical vapor deposition.
[0034] Alternativement toutefois, les première et deuxième étapes de dépôt chimique en phase vapeur pourraient être effectuées dans une même enceinte, maintenue à la température et à la pression requises pendant le temps approprié pour le traitement thermique servant à la diffusion, dans l’intervalle entre les première et deuxième étapes de dépôt chimique en phase vapeur. Alternatively, however, the first and second chemical vapor deposition steps could be carried out in the same enclosure, maintained at the required temperature and pressure for the appropriate time for the heat treatment used for diffusion, in the interval between the first and second chemical vapor deposition steps.
[0035] Quoique le présent exposé ait été décrit en se référant à des exemples de réalisation spécifiques, il est évident que des différentes modifications et changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l'invention telle que définie par les revendications. En outre, des caractéristiques individuelles des différents modes de réalisation évoqués peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif. [0035] Although the present presentation has been described with reference to specific examples of embodiment, it is obvious that various modifications and changes can be made to these examples without departing from the general scope of the invention as defined by the claims. Furthermore, individual features of the different embodiments discussed may be combined in additional embodiments. Therefore, the description and drawings should be considered in an illustrative rather than a restrictive sense.

Claims

Revendications Claims
[Revendication 1] Procédé d'application de revêtement sur un substrat (100) en superalliage à base de nickel, le procédé comprenant au moins : une première étape de dépôt chimique en phase vapeur, pour déposer du chrome et/ou du cobalt sur une surface du substrat (100), et une deuxième étape de dépôt chimique en phase vapeur, après diffusion au moins partielle, dans une couche sous-jacente (102) du substrat (100), du chrome et/ou du cobalt déposés lors de la première étape de dépôt chimique en phase vapeur, pour introduire de l'aluminium jusque dans ladite couche sous- jacente (102) du substrat (100). [Claim 1] Method for applying a coating to a nickel-based superalloy substrate (100), the method comprising at least: a first chemical vapor deposition step, for depositing chromium and/or cobalt on a surface of the substrate (100), and a second step of chemical vapor deposition, after at least partial diffusion, in an underlying layer (102) of the substrate (100), of the chromium and/or cobalt deposited during the first step of chemical vapor deposition, to introduce aluminum into said underlying layer (102) of the substrate (100).
[Revendication 2] Procédé suivant la revendication 1, dans lequel le superalliage à base de nickel comprend au moins 3 % massique de rhénium. [Claim 2] A method according to claim 1, wherein the nickel-based superalloy comprises at least 3% by weight of rhenium.
[Revendication 3] Procédé suivant l'une quelconque des revendications 1 ou 2, dans lequel la première étape de dépôt chimique en phase vapeur forme une couche superficielle (101) avec une épaisseur (e1) d'entre 5 et 20 pm. [Claim 3] A method according to any one of claims 1 or 2, wherein the first chemical vapor deposition step forms a surface layer (101) with a thickness (e 1 ) of between 5 and 20 pm.
[Revendication 4] Procédé suivant l'une quelconque des revendications 1 à 3, dans lequel l'aluminium atteint une concentration d'entre 5 et 12% massique dans ladite couche sous-jacente (102) lors de la deuxième étape de dépôt chimique en phase vapeur. [Claim 4] Method according to any one of claims 1 to 3, in which the aluminum reaches a concentration of between 5 and 12% by weight in said underlying layer (102) during the second chemical deposition step in vapor phase.
[Revendication 5] Procédé suivant l'une quelconque des revendications 1 à 4, dans lequel, lors de la deuxième phase de dépôt chimique, l'aluminium est dopé avec du silicium et/ou au moins une terre rare. [Claim 5] Method according to any one of claims 1 to 4, in which, during the second chemical deposition phase, the aluminum is doped with silicon and/or at least one rare earth.
[Revendication 6] Procédé suivant l'une quelconque des revendications 1 à 5, dans lequel la première et/ou la deuxième étape de dépôt chimique en phase vapeur s'effectuent à une température d'entre 900 et 1150°C et à une pression d'entre 2 et 50 kPa. [Claim 6] Method according to any one of claims 1 to 5, in which the first and/or second chemical vapor deposition step is carried out at a temperature of between 900 and 1150°C and at a pressure between 2 and 50 kPa.
[Revendication 7] Procédé suivant l'une quelconque des revendications 1 à 6, dans lequel la première étape de dépôt chimique en phase vapeur s'effectue à une température d'entre 1040 et 1060°C et à une pression d'entre 15 et 25 kPa, de préférence entre 18 et 22 kPa. [Claim 7] Method according to any one of claims 1 to 6, wherein the first chemical vapor deposition step is carried out at a temperature of between 1040 and 1060°C and at a pressure of between 15 and 1060°C. 25 kPa, preferably between 18 and 22 kPa.
[Revendication 8] Procédé suivant l'une quelconque des revendications 1 à 7, dans lequel la deuxième étape de dépôt chimique en phase vapeur s'effectue à une température d'entre 1050 et 1070°C et à une pression d'environ 20 kPa. [Claim 8] A method according to any one of claims 1 to 7, wherein the second chemical vapor deposition step is carried out at a temperature of between 1050 and 1070°C and at a pressure of approximately 20 kPa .
[Revendication 9] Aube de turbine (20A, 20B) en superalliage à base de nickel avec un revêtement appliqué suivant le procédé de l'une quelconque des revendications 1 à 8. [Claim 9] Turbine blade (20A, 20B) made of nickel-based superalloy with a coating applied according to the method of any one of claims 1 to 8.
[Revendication 10] Aube de turbine (20A, 20B) suivant la revendication 9, comportant un ou plusieurs canaux de refroidissement (21), et dans laquelle le revêtement est appliqué à l'intérieur des canaux de refroidissement (21). [Claim 10] A turbine blade (20A, 20B) according to claim 9, comprising one or more cooling channels (21), and wherein the coating is applied inside the cooling channels (21).
[Revendication 11] Turbomachine comprenant l'aube de turbine (20A, 20B) de l'une quelconque des revendications 9 ou 10. [Claim 11] Turbomachine comprising the turbine blade (20A, 20B) of any one of claims 9 or 10.
PCT/FR2023/051143 2022-07-28 2023-07-21 Coating application method and turbine blade with coating applied according to this method WO2024023428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2207780A FR3138451A1 (en) 2022-07-28 2022-07-28 Coating application method and turbine blade with coating applied according to this process
FRFR2207780 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024023428A1 true WO2024023428A1 (en) 2024-02-01

Family

ID=83996519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/051143 WO2024023428A1 (en) 2022-07-28 2023-07-21 Coating application method and turbine blade with coating applied according to this method

Country Status (2)

Country Link
FR (1) FR3138451A1 (en)
WO (1) WO2024023428A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2292370A1 (en) * 1998-12-22 2000-06-22 Ge Aviation Services Operation (Pte) Ltd. Improved coating and method for minimizing consumption of base material during high temperature service
US20070264126A1 (en) * 2004-12-11 2007-11-15 Paul Box Method of Protecting a Component Against Hot Corrosion
US8596985B2 (en) * 2006-06-24 2013-12-03 Siemens Aktiengesellschaft Method of protecting a component against hot corrosion and a component protected by said method
FR3113260A1 (en) 2020-08-06 2022-02-11 Safran UNDERCOAT FOR NICKEL-BASED SUPERALLOY ENABLING IMPROVEMENT OF THE LIFETIME OF PARTS AND ITS PROCEDURE FOR IMPLEMENTATION
US11396685B2 (en) * 2017-11-14 2022-07-26 Safran Nickel-based superalloy, single-crystal blade and turbomachine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2292370A1 (en) * 1998-12-22 2000-06-22 Ge Aviation Services Operation (Pte) Ltd. Improved coating and method for minimizing consumption of base material during high temperature service
US20070264126A1 (en) * 2004-12-11 2007-11-15 Paul Box Method of Protecting a Component Against Hot Corrosion
US8596985B2 (en) * 2006-06-24 2013-12-03 Siemens Aktiengesellschaft Method of protecting a component against hot corrosion and a component protected by said method
US11396685B2 (en) * 2017-11-14 2022-07-26 Safran Nickel-based superalloy, single-crystal blade and turbomachine
FR3113260A1 (en) 2020-08-06 2022-02-11 Safran UNDERCOAT FOR NICKEL-BASED SUPERALLOY ENABLING IMPROVEMENT OF THE LIFETIME OF PARTS AND ITS PROCEDURE FOR IMPLEMENTATION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROMANOWSKA JOLANTA: "Aluminum diffusion in aluminide coatings deposited by the CVD method on pure nickel", CALPHAD. COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, vol. 44, 1 March 2014 (2014-03-01), US, pages 114 - 118, XP093025112, ISSN: 0364-5916, DOI: 10.1016/j.calphad.2013.09.003 *

Also Published As

Publication number Publication date
FR3138451A1 (en) 2024-02-02

Similar Documents

Publication Publication Date Title
EP3532648B1 (en) Nickel based superalloy, single crystal blade and turbomachine
US6921251B2 (en) Aluminide or chromide coating of turbine engine rotor component
EP3710610B1 (en) Nickel-based superalloy, single-crystal blade and turbomachine
EP3710611B1 (en) Nickel-based superalloy, single-crystal blade and turbomachine
US20170226621A1 (en) Thermal barrier coating with high corrosion resistance
FR2941965A1 (en) Depositing a protection layer on a metallic piece e.g. turbine blade using mold, comprises depositing precursor coating on piece and/or inner walls of mold, and depositing piece in the mold and then mold in a compression enclosure
FR2718464A1 (en) Superalloy article and method of mfr.
WO2024023428A1 (en) Coating application method and turbine blade with coating applied according to this method
EP3601634B1 (en) Turbine component made from superalloy and associated manufacturing method
FR3081883A1 (en) NICKEL-BASED SUPERALLOY, MONOCRYSTALLINE VANE AND TURBOMACHINE
EP3685018B1 (en) Turbine part made of superalloy comprising rhenium and/or ruthenium and associated manufacturing method
WO2020128394A1 (en) Turbine part made of superalloy comprising rhenium and/or ruthenium and associated manufacturing method
WO2018078246A1 (en) Part comprising a nickel-based monocrystalline superalloy substrate and method for manufacturing same
EP1522607B1 (en) Method for fabricating a coated superalloy stabilized against the formation of secondary reaction zone
WO2024047315A1 (en) Nickel-based superalloy, single-crystal blade and turbine engine
FR2966167A1 (en) METHOD FOR DEPOSITING OXIDATION PROTECTION COATING AND HOT CORROSION ON A SUPERALLIATION SUBSTRATE, COATING OBTAINED
WO2021089945A1 (en) Superalloy aircraft part comprising a cooling channel
WO2022269158A1 (en) Nickel-based superalloy, single-crystal blade and turbomachine
EP4314370A1 (en) Nickel-based superalloy, single-crystal blade and turbomachine
FR3113255A1 (en) Protection against oxidation or corrosion of a hollow superalloy part
WO2022269177A1 (en) Nickel-based superalloy, single-crystal blade and turbomachine
WO2022029388A1 (en) Protection against oxidation or corrosion of a hollow part made of a superalloy
FR2999611A1 (en) Forming coating on metal substrate of thermochemical component e.g. turbine blade, by providing superalloy article, and forming metallic sub-layer by depositing platinum group metal on substrate layer and providing aluminum in vapor phase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23755459

Country of ref document: EP

Kind code of ref document: A1