EP3710611B1 - Nickel-based superalloy, single-crystal blade and turbomachine - Google Patents

Nickel-based superalloy, single-crystal blade and turbomachine Download PDF

Info

Publication number
EP3710611B1
EP3710611B1 EP18821711.1A EP18821711A EP3710611B1 EP 3710611 B1 EP3710611 B1 EP 3710611B1 EP 18821711 A EP18821711 A EP 18821711A EP 3710611 B1 EP3710611 B1 EP 3710611B1
Authority
EP
European Patent Office
Prior art keywords
nickel
superalloy
hafnium
chromium
rhenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18821711.1A
Other languages
German (de)
French (fr)
Other versions
EP3710611A1 (en
Inventor
Jérémy RAME
Virginie JAQUET
Joël DELAUTRE
Jean-Yves Guedou
Pierre Caron
Odile Lavigne
Didier Locq
Mikael PERRUT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Office National dEtudes et de Recherches Aerospatiales ONERA
Safran SA
Original Assignee
Office National dEtudes et de Recherches Aerospatiales ONERA
Safran SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National dEtudes et de Recherches Aerospatiales ONERA, Safran SA filed Critical Office National dEtudes et de Recherches Aerospatiales ONERA
Publication of EP3710611A1 publication Critical patent/EP3710611A1/en
Application granted granted Critical
Publication of EP3710611B1 publication Critical patent/EP3710611B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades

Definitions

  • This presentation concerns nickel-based superalloys for gas turbines, in particular for the fixed blades, also called distributors or rectifiers, or mobile blades of a gas turbine, for example in the field of aeronautics.
  • nickel-based superalloys for the manufacture of fixed or mobile monocrystalline blades of gas turbines for aircraft or helicopter engines.
  • Gregori et al. shows for example. a nickel-based superalloy: CMSX-10 in “Welding in the World”, Springer, Vol. 51, No. 11/12, pages 34-47 .
  • nickel-based superalloys for single-crystal blades have undergone significant changes in chemical composition, with the particular aim of improving their creep properties at high temperatures while maintaining resistance to the very aggressive environment in which these superalloys are used.
  • metallic coatings suitable for these alloys have been developed in order to increase their resistance to the aggressive environment in which these alloys are used, in particular resistance to oxidation and resistance to corrosion.
  • a ceramic coating of low thermal conductivity, performing a thermal barrier function can be added to reduce the temperature on the metal surface.
  • a complete protection system has at least two layers.
  • the first layer also called sub-layer or bonding layer
  • the first layer is directly deposited on the nickel-based superalloy part to be protected, also called substrate, for example a blade.
  • the deposition step is followed by a diffusion step of the sublayer in the superalloy.
  • Deposit and distribution can also be carried out in a single step.
  • the second layer is a ceramic coating comprising for example yttriated zirconia, also called “YSZ” in accordance with the English acronym for " Yttria Stabilized Zirconia” or “YPSZ” in accordance with the English acronym for “Yttria Partially Stabilized Zirconia” and having a porous structure.
  • This layer can be deposited by different processes, such as electron beam evaporation (“EB-PVD” in accordance with the English acronym for “Electron Beam Physical Vapor Deposition”), thermal spraying (“APS” in accordance with the English acronym for “Atmospheric Plasma Spraying” or “SPS” in accordance with the English acronym for “Suspension Plasma Spraying”), or any other process making it possible to obtain a porous ceramic coating with low thermal conductivity.
  • EB-PVD electron beam evaporation
  • APS in accordance with the English acronym for “Atmospheric Plasma Spraying” or “SPS” in accordance with the English acronym for “Suspension Plasma Spraying”
  • any other process making it possible to obtain a porous ceramic coating with low thermal conductivity.
  • inter-diffusion phenomena occur on a microscopic scale between the nickel-based superalloy of the substrate and the metal alloy of the underlay.
  • These inter-diffusion phenomena associated with the oxidation of the undercoat, modify in particular the chemical composition, the microstructure and consequently the mechanical properties of the undercoat from the manufacture of the coating, then during the use of the coating. the blade in the turbine.
  • These inter-diffusion phenomena also modify the chemical composition, the microstructure and consequently the mechanical properties of the superalloy of the substrate under the coating.
  • a secondary reaction zone can thus form in the superalloy under the sub-layer to a depth of several tens, or even hundreds, of micrometers.
  • the mechanical characteristics of this ZRS are significantly lower than those of the substrate superalloy.
  • There ZRS formation is undesirable because it leads to a significant reduction in the mechanical strength of the superalloy.
  • foundry defects are likely to form in parts, such as blades, during their manufacture by directed solidification. These defects are generally parasitic grains of the “Freckle” type, the presence of which can cause premature failure of the part in service. The presence of these defects, linked to the chemical composition of the superalloy, generally leads to the rejection of the part, which results in an increase in production costs.
  • This presentation aims to propose nickel-based superalloy compositions for the manufacture of monocrystalline components, presenting increased performance in terms of lifespan and mechanical resistance and making it possible to reduce manufacturing costs. production of the part (reduction in scrap rate) compared to existing alloys.
  • These superalloys have a higher temperature creep resistance than existing alloys while showing good microstructural stability in the volume of the superalloy (low sensitivity to the formation of PTC), good microstructural stability under the undercoat coating of the thermal barrier (low sensitivity to the formation of ZRS), good resistance to oxidation and corrosion while avoiding the formation of parasitic grains of the “Freckle” type.
  • the present presentation concerns a nickel-based superalloy comprising, in percentages by weight, 4.0 to 5.5% of rhenium, 3.5 to 12.5% of cobalt, 0.30 to 1.50%. molybdenum, 3.5 to 5.5% chromium, 3.5 to 5.5% tungsten, 4.5 to 6.0% aluminum, 0.35 to 1.50% titanium, 8, 0 to 10.5% tantalum, 0.15 to 0.30% hafnium, preferably 0.16 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, preferably 0. 18 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, preferably 0.08 to 0.12% silicon, even more preferably 0.10% silicon, the remainder consisting of nickel and inevitable impurities.
  • This superalloy is intended for the manufacture of monocrystalline gas turbine components, such as fixed or moving blades.
  • This alloy therefore has improved resistance to creep at high temperatures. This alloy also exhibits improved corrosion and oxidation resistance.
  • These superalloys have a density less than or equal to 9.00 g/cm 3 (gram per cubic centimeter).
  • a single-crystal part made of nickel-based superalloy is obtained by a directed solidification process under thermal gradient in lost wax foundry.
  • the nickel-based monocrystalline superalloy comprises an austenitic matrix with a face-centered cubic structure, a nickel-based solid solution, called the gamma (" ⁇ ") phase.
  • This matrix contains gamma prime hardening phase precipitates (“ ⁇ '”) of ordered cubic structure L1 2 of Ni 3 Al type. The whole (matrix and precipitates) is therefore described as a ⁇ / ⁇ ' superalloy.
  • this composition of the nickel-based superalloy allows the implementation of a heat treatment which puts into solution the ⁇ ' phase precipitates and the ⁇ / ⁇ ' eutectic phases which form during the solidification of the superalloy. It is thus possible to obtain a single-crystal nickel-based superalloy containing ⁇ ' precipitates of controlled size, preferably between 300 and 500 nanometers (nm), and containing a small proportion of ⁇ / ⁇ ' eutectic phases.
  • the heat treatment also makes it possible to control the volume fraction of the ⁇ ' phase precipitates present in the single-crystal nickel-based superalloy.
  • the volume percentage of the ⁇ ' phase precipitates may be greater than or equal to 50%, preferably greater than or equal to 60%, even more preferably equal to 70%.
  • the major addition elements are cobalt (Co), chromium (Cr), molybdenum (Mo), rhenium (Re), tungsten (W), aluminum (AI), titanium (Ti) and tantalum (Ta).
  • the minor addition elements are hafnium (Hf) and silicon (Si), for which the maximum mass content is less than 1% by mass.
  • Unavoidable impurities are defined as those elements which are not intentionally added to the composition and which are brought with other elements.
  • tungsten, chromium, cobalt, rhenium or molybdenum mainly makes it possible to reinforce the ⁇ austenitic matrix with a face-centered cubic (fcc) crystal structure by hardening in solid solution.
  • Rhenium slows down the diffusion of chemical species within the superalloy and limits the coalescence of ⁇ ' phase precipitates during service at high temperatures, a phenomenon which leads to a reduction in mechanical strength. Rhenium thus makes it possible to improve the creep resistance at high temperature of the nickel-based superalloy.
  • too high a concentration of rhenium can lead to the precipitation of PTC intermetallic phases, for example ⁇ phase, P phase or ⁇ phase, which have a negative effect on the mechanical properties of the superalloy. Too high a rhenium concentration can also cause the formation of a secondary reaction zone in the superalloy under the undercoat, which has a negative effect on the mechanical properties of the superalloy.
  • the simultaneous addition of silicon and hafnium makes it possible to improve the resistance to hot oxidation of nickel-based superalloys by increasing the adhesion of the alumina layer (Al 2 O 3 ) which forms on the surface superalloy at high temperature.
  • This alumina layer forms a passivation layer on the surface of the nickel-based superalloy and a barrier to the diffusion of oxygen coming from the outside to the inside of the nickel-based superalloy.
  • hafnium without also adding silicon or conversely add silicon without also adding hafnium and still improve the hot oxidation resistance of the superalloy.
  • chromium or aluminum makes it possible to improve the resistance to oxidation and corrosion at high temperatures of the superalloy.
  • chromium is essential for increasing the hot corrosion resistance of nickel-based superalloys.
  • too high a chromium content tends to reduce the solvus temperature of the ⁇ ' phase of the nickel-based superalloy, that is to say the temperature above which the ⁇ ' phase is completely dissolved in the ⁇ matrix, which is undesirable.
  • the chromium concentration is between 3.5 to 5.5% by mass in order to maintain a high solvus temperature of the ⁇ ' phase of the nickel-based superalloy, for example greater than or equal to 1250°C but also to avoid the formation of topologically compact phases in the ⁇ matrix highly saturated with alloy elements such as rhenium, molybdenum or tungsten.
  • cobalt which is an element close to nickel and which partially replaces nickel, forms a solid solution with nickel in the ⁇ matrix. Cobalt strengthens the ⁇ matrix, reduces sensitivity to PTC precipitation and ZRS formation in the superalloy under the protective coating. However, too high a cobalt content tends to reduce the solvus temperature of the ⁇ ' phase of the nickel-based superalloy, which is undesirable.
  • refractory elements such as molybdenum, tungsten, rhenium or tantalum makes it possible to slow down the mechanisms controlling the creep of nickel-based superalloys and which depend on the diffusion of chemical elements in the superalloy.
  • a very low sulfur content in a nickel-based superalloy makes it possible to increase the resistance to oxidation and hot corrosion as well as the resistance to chipping of the thermal barrier.
  • a low sulfur content less than 2 ppm by mass (part per million by mass), or even ideally less than 0.5 ppm by mass, makes it possible to optimize these properties.
  • Such a mass sulfur content can be obtained by producing a low-sulfur mother casting or by a desulfurization process carried out after the casting. It is notably possible to maintain a low sulfur level by adapting the superalloy production process.
  • nickel-based superalloys we mean superalloys whose nickel mass percentage is the majority. We understand that nickel is therefore the element with the highest mass percentage in the alloy.
  • the superalloy may comprise, in mass percentages, 4.0 to 5.5% of rhenium, 3.5 to 8.5% of cobalt, 0.30 to 1.50% of molybdenum, 3.5 to 5.5% chromium, 3.5 to 4.5% tungsten, 4.5 to 6.0% aluminum, 0.50 to 1.50% titanium, 8.0 to 10.5% tantalum, 0. 15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the remainder being made up of nickel and inevitable impurities.
  • the superalloy may comprise, in mass percentages, 4.0 to 5.5% of rhenium, 3.5 to 12.5% of cobalt, 0.30 to 1.50% of molybdenum, 3.5 to 5.5% chromium, 3.5 to 5.5% tungsten, 5.0 to 6.0% aluminum, 0.35 to 1.50% titanium, 8.0 to 10.5% tantalum, 0. 15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the remainder consisting of nickel and inevitable impurities.
  • the superalloy may comprise, in mass percentages, 4.5 to 5.5% of rhenium, 4.0 to 6.0% of cobalt, 0.30 to 1.00% of molybdenum, 3.5 to 4.5% chromium, 3.5 to 4.5% tungsten, 4.5 to 6.0% aluminum, 0.50 to 1.50% titanium, 8.0 to 10.5% tantalum, 0. 15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the remainder being made up of nickel and inevitable impurities.
  • the superalloy may comprise, in mass percentages, 4.5 to 5.5% of rhenium, 3.5 to 12.5% of cobalt, 0.50 to 1.50% of molybdenum, 3.5 to 4.5% chromium, 3.5 to 4.5% tungsten, 5.0 to 6.0% aluminum, 0.50 to 1.50% titanium, 8.0 to 9.0% tantalum, 0. 15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the remainder being made up of nickel and inevitable impurities.
  • the superalloy may comprise, in mass percentages, 4.5 to 5.5% of rhenium, 7.0 to 9.0% of cobalt, 0.50 to 1.50% of molybdenum, 3.5 to 4.5% chromium, 3.5 to 4.5% tungsten, 5.0 to 6.0% aluminum, 0.50 to 1.50% titanium, 8.0 to 9.0% tantalum, 0. 15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the remainder being made up of nickel and inevitable impurities.
  • the superalloy may comprise, in mass percentages, 4.2 to 5.3% of rhenium, 6.0 to 8.0% of cobalt, 0.30 to 1.00% of molybdenum, 3.5 to 4.5% chromium, 4.5 to 5.5% tungsten, 5.0 to 6.0% aluminum, 0.35 to 1.30% titanium, 8.0 to 9.0% tantalum, 0. 15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the remainder being made up of nickel and possible impurities.
  • the superalloy may comprise, in mass percentages, 4.0 to 5.0% rhenium, 4.0 to 6.0% cobalt, 0.30 to 1.00% molybdenum, 4.5 to 5.5% chromium, 3.5 to 4.5% tungsten, 5.0 to 6.0% aluminum, 0.35 to 1.30% titanium, 8.0 to 10.5% tantalum, 0. 15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the remainder consisting of nickel and inevitable impurities.
  • the superalloy may comprise, in percentages by weight, 5.2% of rhenium, 5.0% of cobalt, 0.50% of molybdenum, 4.0% of chromium, 4.0% of tungsten, 5.4% of aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.
  • the superalloy may comprise, in percentages by weight, 5.2% of rhenium, 5.0% of cobalt, 0.50% of molybdenum, 4.0% of chromium, 4.0% of tungsten, 5.4% of aluminum, 1.00% titanium, 8.5% tantalum, 0.17% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.
  • the superalloy may comprise, in percentages by weight, 5.2% of rhenium, 5.0% of cobalt, 0.50% of molybdenum, 4.0% of chromium, 4.0% of tungsten, 5.1% of aluminum, 1.00% titanium, 10.0% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.
  • the superalloy may comprise, in percentages by weight, 5.0% rhenium, 12.0% cobalt, 1.00% molybdenum, 4.0% chromium, 4.0% tungsten, 5.4% aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.
  • the superalloy may comprise, in percentages by weight, 5.0% rhenium, 4.0% cobalt, 1.00% molybdenum, 4.0% chromium, 4.0% tungsten, 5.4% aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.
  • the superalloy may comprise, in percentages by weight, 4.9% of rhenium, 8.0% of cobalt, 1.00% of molybdenum, 4.2% of chromium, 4.0% of tungsten, 5.4% of aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.
  • the superalloy may comprise, in percentages by weight, 4.9% of rhenium, 8.0% of cobalt, 1.00% of molybdenum, 4.2% of chromium, 4.0% of tungsten, 5.4% of aluminum, 1.00% titanium, 8.5% tantalum, 0.17% hafnium, 0.10% silicon, the remainder consisting of nickel and inevitable impurities.
  • the superalloy may comprise, in percentages by weight, 4.9% of rhenium, 8.0% of cobalt, 1.00% of molybdenum, 4.2% of chromium, 4.0% of tungsten, 5.4% of aluminum, 1.00% titanium, 8.5% tantalum, 0.16% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.
  • the superalloy may comprise, in percentages by weight, 4.7% of rhenium, 7.0% of cobalt, 0.50% of molybdenum, 4.0% of chromium, 5.0% of tungsten, 5.4% of aluminum, 0.80% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.
  • the superalloy may comprise, in percentages by weight, 4.5% of rhenium, 5.0% of cobalt, 0.50% of molybdenum, 5.0% of chromium, 4.0% of tungsten, 5.4% of aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.
  • the superalloy may comprise, in percentages by weight, 4.5% of rhenium, 5.0% of cobalt, 0.50% of molybdenum, 5.0% of chromium, 4.0% of tungsten, 5.4% of aluminum, 0.55% titanium, 10.0% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.
  • the superalloy may comprise, in percentages by weight, 4.3% of rhenium, 5.0% of cobalt, 0.50% of molybdenum, 4.0% of chromium, 4.0% of tungsten, 5.4% of aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.
  • the present presentation also relates to a single-crystal blade for a turbomachine comprising a superalloy as defined above.
  • This blade therefore has improved resistance to creep at high temperatures.
  • the blade may comprise a protective coating comprising a metallic underlayer deposited on the superalloy and a ceramic thermal barrier deposited on the metallic underlayer.
  • the composition of the nickel-based superalloy Thanks to the composition of the nickel-based superalloy, the formation of a secondary reaction zone in the superalloy resulting from inter-diffusion phenomena between the superalloy and the sub-layer is avoided, or limited.
  • the metallic underlayer can be an MCrAlY type alloy or a nickel aluminide type alloy.
  • the ceramic thermal barrier can be a material based on yttriated zirconia or any other ceramic coating (based on zirconia) with low thermal conductivity.
  • the blade may have a structure oriented in a crystallographic direction ⁇ 001>.
  • This orientation generally gives optimal mechanical properties to the blade.
  • This presentation also concerns a turbomachine comprising a blade as defined above.
  • Nickel-based superalloys are intended for the manufacture of single-crystal blades by a directed solidification process in a thermal gradient.
  • the use of a single crystal seed or a grain selector at the start of solidification makes it possible to obtain this single crystal structure.
  • the structure is oriented for example in a crystallographic direction ⁇ 001> which is the orientation which generally confers optimal mechanical properties to superalloys.
  • the raw solidified single-crystal nickel-based superalloys have a dendritic structure and are made up of ⁇ ' Ni 3 (Al, Ti, Ta) precipitates dispersed in a ⁇ matrix of face-centered cubic structure, solid solution based on nickel. These ⁇ ' phase precipitates are distributed heterogeneously in the volume of the single crystal due to chemical segregations resulting from the solidification process. Furthermore, ⁇ / ⁇ ' eutectic phases are present in the inter-dendritic regions and constitute preferential crack initiation sites. These ⁇ / ⁇ ' eutectic phases form at the end of solidification.
  • the ⁇ / ⁇ ' eutectic phases are formed to the detriment of the fine precipitates (size less than a micrometer) of the ⁇ ' hardening phase.
  • These ⁇ ' phase precipitates constitute the main source of hardening of nickel-based superalloys.
  • the presence of residual ⁇ / ⁇ ' eutectic phases does not make it possible to optimize the hot creep resistance of the nickel-based superalloy.
  • the raw solidified nickel-based superalloys are therefore heat treated to obtain the desired distribution of the different phases.
  • the first heat treatment is a microstructure homogenization treatment which aims to dissolve the ⁇ ' phase precipitates and to eliminate the ⁇ / ⁇ ' eutectic phases or to significantly reduce their volume fraction. This treatment is carried out at a temperature higher than the solvus temperature of the ⁇ ' phase and lower than the starting melting temperature of the superalloy (T solidus ). Quenching is then carried out at the end of this first heat treatment to obtain a fine and homogeneous dispersion of the ⁇ ' precipitates. Tempering heat treatments are then carried out in two stages, at temperatures lower than the solvus temperature of the ⁇ ' phase. During a first step, to increase the size of the ⁇ ' precipitates and obtain the desired size, then during a second step, to increase the volume fraction of this phase to approximately 70% at room temperature.
  • FIG. 1 represents, in section along a vertical plane passing through its main axis A, a dual-flow turbojet 10.
  • the dual-flow turbojet 10 comprises, from upstream to downstream according to the circulation of the air flow, a fan 12, a compressor low pressure 14, a high pressure compressor 16, a combustion chamber 18, a high pressure turbine 20, and a low pressure turbine 22.
  • the high pressure turbine 20 comprises a plurality of moving blades 20A rotating with the rotor and rectifiers 20B (fixed blades) mounted on the stator.
  • the stator of the turbine 20 comprises a plurality of stator rings 24 arranged opposite the moving blades 20A of the turbine 20.
  • turbomachine comprising a superalloy as defined previously coated with a protective coating comprising a metallic underlayer
  • a turbomachine can in particular be a turbojet such as a double-flow turbojet 10.
  • the turbomachine can also be a single-flow turbojet, a turboprop or a turboshaft engine.
  • Example 1 to Ex 10 Ten nickel-based monocrystalline superalloys of this presentation (Ex 1 to Ex 10) were studied and compared to four commercial monocrystalline superalloys CMSX-4 (Ex 11), CMSX-4PlusC (Ex 12), CMSX-10 (Ex 13) and René N6 (Ex 14).
  • the chemical composition of each of the single-crystal superalloys is given in Table 1, the composition Ex 13 additionally comprising 0.10% by mass of niobium (Nb) and the composition Ex 14 further comprising 0.05% by mass of carbon (C) and 0.004% by mass of boron (B). All of these superalloys are nickel-based superalloys, that is to say that the 100% complement of the compositions presented consists of nickel and unavoidable impurities.
  • the densities calculated for the alloys of the invention and for the reference alloys are less than 9.00 g/cm 3 (see Table 2).
  • Table 2 presents different parameters for superalloys Ex 1 to Ex 14.
  • Table 2 Estimated density (1) (g/cm 3 ) Measured density (g/cm 3 ) NFP RGP M d [ZRS(%)] 1/2 Ex 1 8.89 8.82 0.84 0.393 0.98 5.3 Ex 2 9.00 8.98 0.99 0.460 0.98 5.2 Ex 3 8.86 - 0.89 0.393 0.99 1.0 Ex 4 8.88 - 0.89 0.393 0.98 3.8 Ex 5 8.86 8.86 0.90 0.393 0.98 3.4 Ex 6 - - 0.88 0.393 - 3.4 Ex 7 8.91 - 0.82 0.386 0.98 3.6 Ex 8 8.83 8.79 0.92 0.393 0.98 -5.9 Ex 9 8.91 - 1.10 0.388 0.98 -6.5 Ex 10 - - 0.94 0.393 - 3.4 Ex 11 8.71 - 0.65 0.358 0.99 -24 Ex 12 8.91 - 0.68 0.371 0.99 8.5 Ex 13 8.99 - 0.67 0.299 0.96 28
  • NFP %Your + 1.5 %Hf + 0.5 %MB ⁇ 0.5 % %Ti ) / %W + 1.2 %D )
  • %Cr, %Ni, ...%X are the contents, expressed in mass percentages, of the elements of the superalloy Cr, Ni, ..., X.
  • the NFP parameter makes it possible to quantify the sensitivity to the formation of parasitic grains of the “Freckles” type during the directed solidification of the part (document US 5,888,451 ). To avoid the formation of “Freckles” type defects, the NFP parameter must be greater than or equal to 0.7.
  • the intrinsic mechanical resistance of the ⁇ ' phase increases with the content of elements replacing aluminum in the Ni 3 Al compound, such as titanium, tantalum and part of the tungsten.
  • the phase compound ⁇ ' can therefore be written as Ni 3 (Al, Ti, Ta, W).
  • RGP parameter is favorable to better mechanical strength of the superalloy. It can be seen in Table 2 that the RGP parameter calculated for superalloys Ex 1 to Ex 10 is greater than the RGP parameter calculated for commercial superalloys Ex 11 to Ex 14.
  • Table 3 presents the Md values for the different elements of the superalloys.
  • Table 3 Element MD Element MD Ti 2,271 Hf 3.02 Cr 1,142 Your 2,224 Co 0.777 W 1,655 Neither 0.717 D 1,267 No. 2,117 HAVE 1.9 MB 1.55 If 1.9 Ru 1.006
  • Sensitivity to PTC formation is determined by the parameter M d, according to the New PHACOMP method which was developed by Morinaga et al. ( Morinaga et al., New PHACOMP and its application to alloy design, Superalloys 1984, edited by M Gell et al., The Metallurgical Society of AIME, Warrendale, PA, USA (1984) pp. 523-532 ). According to this model, the sensitivity of superalloys to PTC formation increases with the value of the parameter M d.
  • the superalloys Ex 1 to Ex 14 present values of the parameter M d substantially equal. These superalloys therefore have similar sensitivities to the formation of PTC, sensitivities which are relatively low.
  • This equation (5) was obtained by multiple linear regression analysis from observations made after aging for 400 hours at 1093°C (degree centigrade) of samples of various alloys with compositions close to the Ex 12 composition under a coating NiPtAI.
  • the values of the parameter [ZRS(%)] 1/2 are either negative or weakly positive and these superalloys therefore have low sensitivity to the formation of ZRS under a NitPtAl coating, much like the commercial superalloy Ex 14 which is known for its low susceptibility to the formation of ZRS.
  • the commercial superalloy EX 13 which is known to be very sensitive to the formation of ZRS under a NiPtAl coating, has a relatively high value of the parameter [ZRS(%)] 1/2 .
  • ThermoCalc software (Ni25 database) based on the CALPHAD method was used to calculate the solvus temperature of the ⁇ ' phase at equilibrium.
  • ThermoCalc software (Ni25 database) based on the CALPHAD method was used to calculate the volume fraction (in volume percentage) of ⁇ ' phase at equilibrium in the superalloys Ex 1 to Ex 14 at 950°C, 1050° C and 1200°C.
  • superalloys Ex 1 to Ex 10 contain ⁇ ' phase volume fractions greater than or comparable to the ⁇ ' phase volume fractions of commercial superalloys Ex 11 to Ex 14.
  • ThermoCalc software (Ni25 database) based on the CALPHAD method was used to calculate the volume fraction (in volume percentage) of phase ⁇ at equilibrium in the superalloys Ex 1 to Ex 14 at 950°C and 1050°C (see table 5).
  • ThermoCalc software (Ni25 database) based on the CALPHAD method was used to calculate chromium content (in mass percentage) in the ⁇ phase at equilibrium in superalloys Ex 1 to Ex 14 at 950°C, 1050° C and 1200°C.
  • the chromium concentrations in the ⁇ phase are higher for the superalloys Ex 1 to Ex 10, compared to the chromium concentrations in the ⁇ phase for commercial superalloys Ex 12 to Ex 14, which is favorable for better resistance to corrosion and hot oxidation.
  • Creep tests were carried out on superalloys Ex 2, Ex 5, Ex 6, Ex 11, Ex 13 and Ex 14. The creep tests are carried out at 1200°C and 80 MPa according to standard NF EN ISO 204 of August 2009 (Guide U125_J).
  • Table 6 presents the results of the creep tests in which the superalloys were placed under load (80 MPa) at 1200°C. The results represent the time in hours (h) at the rupture of the test piece. Table 6 Breaking time (hour) Ex 2 41 Ex 5 65 Ex 6 50 Ex 10 54 Ex 11 9 Ex 13 59 Ex 14 13
  • the Ex 2, Ex 5, Ex 6 and Ex 10 superalloys exhibit better creep behavior than the Ex 11 and Ex 14 alloys.
  • the Ex 13 superalloy also exhibits good creep properties.
  • the superalloys are subjected to one of the thermal cycles as described in INS-TTH-001 and INS-TTH-002: Oxidative cycling test method (Mass loss test and Thermal barrier).
  • a specimen of the superalloy tested (pin having a diameter of 20 mm and a height of 1 mm) is subjected to a thermal cycle, each cycle of which includes a rise to 1150°C in less than 15 min (minutes), a plateau at 1150° C of 60 min and turbine cooling of the test piece for 15 min.
  • the thermal cycle is repeated until a loss in mass of the test piece equal to 20 mg/cm 2 (milligrams per square centimeter) is observed.
  • Ex 2, Ex 5 and Ex 10 superalloys have a much longer lifespan than the superalloys.
  • Ex 11, Ex 12 and Ex 13 Note that the oxidation properties of the Ex 13 superalloy are much worse than those of the Ex 2, Ex 5 and Ex 10 superalloys.

Description

Le présent exposé concerne des superalliages à base de nickel pour des turbines à gaz, notamment pour les aubes fixes, aussi appelées distributeurs ou redresseurs, ou mobiles d'une turbine à gaz, par exemple dans le domaine de l'aéronautique.This presentation concerns nickel-based superalloys for gas turbines, in particular for the fixed blades, also called distributors or rectifiers, or mobile blades of a gas turbine, for example in the field of aeronautics.

Il est connu d'utiliser des superalliages à base de nickel pour la fabrication d'aubes monocristallines fixes ou mobiles de turbines à gaz pour moteurs d'avion ou d'hélicoptère. Gregori et al. montre par exemple. une superalliage à base de nickel: CMSX-10 en "Welding in the World", Springer, Vol. 51, No. 11/12, pages 34-47 .It is known to use nickel-based superalloys for the manufacture of fixed or mobile monocrystalline blades of gas turbines for aircraft or helicopter engines. Gregori et al. shows for example. a nickel-based superalloy: CMSX-10 in “Welding in the World”, Springer, Vol. 51, No. 11/12, pages 34-47 .

Ces matériaux ont pour principaux avantages de combiner à la fois une résistance au fluage élevée à haute température ainsi qu'une résistance à l'oxydation et à la corrosion.The main advantages of these materials are that they combine both high creep resistance at high temperatures as well as resistance to oxidation and corrosion.

Au cours du temps, les superalliages à base de nickel pour aubes monocristallines ont subi d'importantes évolutions de composition chimique, dans le but notamment d'améliorer leurs propriétés en fluage à haute température tout en conservant une résistance à l'environnement très agressif dans lesquels ces superalliages sont utilisés.Over time, nickel-based superalloys for single-crystal blades have undergone significant changes in chemical composition, with the particular aim of improving their creep properties at high temperatures while maintaining resistance to the very aggressive environment in which these superalloys are used.

Par ailleurs, des revêtements métalliques adaptés à ces alliages ont été développés afin d'augmenter leur résistance à l'environnement agressif dans lequel ces alliages sont utilisés, notamment la résistance à l'oxydation et la résistance à la corrosion. De plus, un revêtement céramique de faible conductivité thermique, remplissant une fonction de barrière thermique, peut être ajouté pour réduire la température à la surface du métal.Furthermore, metallic coatings suitable for these alloys have been developed in order to increase their resistance to the aggressive environment in which these alloys are used, in particular resistance to oxidation and resistance to corrosion. Additionally, a ceramic coating of low thermal conductivity, performing a thermal barrier function, can be added to reduce the temperature on the metal surface.

Typiquement, un système de protection complet comporte au moins deux couches.Typically, a complete protection system has at least two layers.

La première couche, aussi appelée sous-couche ou couche de liaison, est directement déposée sur la pièce à protéger en superalliage à base de nickel, aussi appelée substrat, par exemple une aube. L'étape de dépôt est suivie d'une étape de diffusion de la sous-couche dans le superalliage. Le dépôt et la diffusion peuvent également être réalisés lors d'une seule étape.The first layer, also called sub-layer or bonding layer, is directly deposited on the nickel-based superalloy part to be protected, also called substrate, for example a blade. The deposition step is followed by a diffusion step of the sublayer in the superalloy. Deposit and distribution can also be carried out in a single step.

Les matériaux généralement utilisés pour réaliser cette sous-couche comprennent des alliages métalliques aluminoformeurs de type MCrAlY (M = Ni (nickel) ou Co (cobalt)) ou un mélange de Ni et de Co, Cr = chrome, Al = aluminium et Y = yttrium, ou des alliages de type aluminiure de nickel (NixAly), certains contenant également du platine (NixAlyPtz).The materials generally used to make this underlayer include aluminoforming metal alloys of the MCrAlY type (M = Ni (nickel) or Co (cobalt)) or a mixture of Ni and Co, Cr = chromium, Al = aluminum and Y = yttrium, or nickel aluminide type alloys (Ni x Al y ), some also containing platinum (Ni x Al y Pt z ).

La deuxième couche, généralement appelée barrière thermique ou « TBC » conformément à l'acronyme anglais pour « Thermal Barrier Coating », est un revêtement céramique comprenant par exemple de la zircone yttriée, aussi appelée « YSZ » conformément à l'acronyme anglais pour « Yttria Stabilized Zirconia » ou « YPSZ » conformément à l'acronyme anglais pour « Yttria Partially Stabilized Zirconia » et présentant une structure poreuse. Cette couche peut être déposée par différents procédés, tels que l'évaporation sous faisceau d'électrons (« EB-PVD » conformément à l'acronyme anglais pour « Electron Beam Physical Vapor Déposition »), la projection thermique (« APS » conformément à l'acronyme anglais pour « Atmospheric Plasma Spraying » ou « SPS » conformément à l'acronyme anglais pour « Suspension Plasma Spraying »), ou tout autre procédé permettant d'obtenir un revêtement céramique poreux à faible conductivité thermique.The second layer, generally called thermal barrier or "TBC" in accordance with the English acronym for "Thermal Barrier Coating", is a ceramic coating comprising for example yttriated zirconia, also called "YSZ" in accordance with the English acronym for " Yttria Stabilized Zirconia” or “YPSZ” in accordance with the English acronym for “Yttria Partially Stabilized Zirconia” and having a porous structure. This layer can be deposited by different processes, such as electron beam evaporation (“EB-PVD” in accordance with the English acronym for “Electron Beam Physical Vapor Deposition”), thermal spraying (“APS” in accordance with the English acronym for “Atmospheric Plasma Spraying” or “SPS” in accordance with the English acronym for “Suspension Plasma Spraying”), or any other process making it possible to obtain a porous ceramic coating with low thermal conductivity.

Du fait de l'utilisation de ces matériaux à haute température, par exemple de 650°C à 1150°C, il se produit des phénomènes d'inter-diffusion à l'échelle microscopique entre le superalliage à base de nickel du substrat et l'alliage métallique de la sous-couche. Ces phénomènes d'inter-diffusion, associés à l'oxydation de la sous-couche, modifient notamment la composition chimique, la microstructure et par conséquent les propriétés mécaniques de la sous-couche dès la fabrication du revêtement, puis pendant l'utilisation de l'aube dans la turbine. Ces phénomènes d'inter-diffusion modifient également la composition chimique, la microstructure et par conséquent les propriétés mécaniques du superalliage du substrat sous le revêtement. Dans les superalliages très chargés en éléments réfractaires, notamment en rhénium, il peut ainsi se former dans le superalliage sous la sous-couche une zone de réaction secondaire (ZRS) sur une profondeur de plusieurs dizaines, voire centaines, de micromètres. Les caractéristiques mécaniques de cette ZRS sont nettement inférieures à celles du superalliage du substrat. La formation de ZRS est indésirable car elle conduit à une réduction significative de la résistance mécanique du superalliage.Due to the use of these materials at high temperatures, for example from 650°C to 1150°C, inter-diffusion phenomena occur on a microscopic scale between the nickel-based superalloy of the substrate and the metal alloy of the underlay. These inter-diffusion phenomena, associated with the oxidation of the undercoat, modify in particular the chemical composition, the microstructure and consequently the mechanical properties of the undercoat from the manufacture of the coating, then during the use of the coating. the blade in the turbine. These inter-diffusion phenomena also modify the chemical composition, the microstructure and consequently the mechanical properties of the superalloy of the substrate under the coating. In superalloys heavily loaded with refractory elements, particularly rhenium, a secondary reaction zone (ZRS) can thus form in the superalloy under the sub-layer to a depth of several tens, or even hundreds, of micrometers. The mechanical characteristics of this ZRS are significantly lower than those of the substrate superalloy. There ZRS formation is undesirable because it leads to a significant reduction in the mechanical strength of the superalloy.

Ces évolutions de la couche de liaison, associées aux champs de contraintes liés à la croissance de la couche d'alumine qui se forme en service à la surface de cette couche de liaison, aussi appelée « TGO » conformément à l'acronyme anglais pour « Thermally Grown Oxide », et aux écarts de coefficients de dilatation thermique entre les différentes couches, génèrent des décohésions dans la zone interfaciale entre la sous-couche et le revêtement céramique, qui peuvent conduire à l'écaillage partiel ou total du revêtement céramique. La partie métallique (substrat en superalliage et sous-couche métallique) est alors mise à nu et exposée directement aux gaz de combustion, ce qui augmente les risques d'endommagement de l'aube et donc de la turbine à gaz.These evolutions of the bonding layer, associated with the stress fields linked to the growth of the alumina layer which forms in service on the surface of this bonding layer, also called "TGO" in accordance with the English acronym for " Thermally Grown Oxide”, and differences in thermal expansion coefficients between the different layers, generate decohesion in the interfacial zone between the undercoat and the ceramic coating, which can lead to partial or total chipping of the ceramic coating. The metal part (superalloy substrate and metal underlayer) is then exposed and directly exposed to the combustion gases, which increases the risk of damage to the blade and therefore to the gas turbine.

De plus, la complexité de la chimie de ces alliages peut conduire à une déstabilisation de leur microstructure optimale avec l'apparition de particules de phases indésirables lors de maintiens à haute température des pièces formées à partir de ces alliages. Cette déstabilisation a des conséquences négatives sur les propriétés mécaniques de ces alliages. Ces phases indésirables de structure cristalline complexe et de nature fragile sont dénommées phases topologiquement compactes (« PTC ») ou phases « TCP » conformément au sigle anglais pour « Topologically Close-Packed ».In addition, the complexity of the chemistry of these alloys can lead to a destabilization of their optimal microstructure with the appearance of particles of undesirable phases when holding parts formed from these alloys at high temperatures. This destabilization has negative consequences on the mechanical properties of these alloys. These undesirable phases of complex crystal structure and fragile nature are called topologically compact phases (“PTC”) or “TCP” phases in accordance with the English acronym for “Topologically Close-Packed”.

En outre, des défauts de fonderie sont susceptibles de se former dans les pièces, telles que des aubes, lors de leur fabrication par solidification dirigée. Ces défauts sont généralement des grains parasites du type « Freckle », dont la présence peut provoquer une rupture prématurée de la pièce en service. La présence de ces défauts, liés à la composition chimique du superalliage, conduit généralement au rejet de la pièce, ce qui entraîne une augmentation du coût de production.In addition, foundry defects are likely to form in parts, such as blades, during their manufacture by directed solidification. These defects are generally parasitic grains of the “Freckle” type, the presence of which can cause premature failure of the part in service. The presence of these defects, linked to the chemical composition of the superalloy, generally leads to the rejection of the part, which results in an increase in production costs.

Objet et résumé de l'inventionObject and summary of the invention

Le présent exposé vise à proposer des compositions de superalliages à base de nickel pour la fabrication de composants monocristallins, présentant des performances accrues en terme de durée de vie et de résistance mécanique et permettant de réduire les coûts de production de la pièce (diminution du taux de rebut) par rapport aux alliages existants. Ces superalliages présentent une résistance au fluage à haute température supérieure à celle des alliages existants tout en montrant une bonne stabilité microstructurale dans le volume du superalliage (faible sensibilité à la formation de PTC), une bonne stabilité microstructurale sous la sous-couche de revêtement de la barrière thermique (faible sensibilité à la formation de ZRS), une bonne résistance à l'oxydation et à la corrosion tout en évitant la formation de grains parasites du type « Freckle ».This presentation aims to propose nickel-based superalloy compositions for the manufacture of monocrystalline components, presenting increased performance in terms of lifespan and mechanical resistance and making it possible to reduce manufacturing costs. production of the part (reduction in scrap rate) compared to existing alloys. These superalloys have a higher temperature creep resistance than existing alloys while showing good microstructural stability in the volume of the superalloy (low sensitivity to the formation of PTC), good microstructural stability under the undercoat coating of the thermal barrier (low sensitivity to the formation of ZRS), good resistance to oxidation and corrosion while avoiding the formation of parasitic grains of the “Freckle” type.

A cet effet, le présent exposé concerne un superalliage à base de nickel comprenant, en pourcentages massiques, 4,0 à 5,5 % de rhénium, 3,5 à 12,5 % de cobalt, 0,30 à 1,50 % de molybdène, 3,5 à 5,5 % de chrome, 3,5 à 5,5 %de tungstène, 4,5 à 6,0 % d'aluminium, 0,35 à 1,50 % de titane, 8,0 à 10,5 % de tantale, 0,15 à 0,30 % de hafnium, de préférence 0,16 à 0,30 % de hafnium, de préférence 0,17 à 0,30 % de hafnium, de préférence 0,18 à 0,30 % de hafnium, encore plus de préférence 0,20 à 0,30 % de hafnium, 0,05 à 0,15 % de silicium, de préférence 0,08 à 0,12 % de silicium, encore plus de préférence 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables..For this purpose, the present presentation concerns a nickel-based superalloy comprising, in percentages by weight, 4.0 to 5.5% of rhenium, 3.5 to 12.5% of cobalt, 0.30 to 1.50%. molybdenum, 3.5 to 5.5% chromium, 3.5 to 5.5% tungsten, 4.5 to 6.0% aluminum, 0.35 to 1.50% titanium, 8, 0 to 10.5% tantalum, 0.15 to 0.30% hafnium, preferably 0.16 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, preferably 0. 18 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, preferably 0.08 to 0.12% silicon, even more preferably 0.10% silicon, the remainder consisting of nickel and inevitable impurities.

Ce superalliage est destiné à la fabrication de composants monocristallins de turbine à gaz, tels que des aubes fixes ou mobiles.This superalloy is intended for the manufacture of monocrystalline gas turbine components, such as fixed or moving blades.

Grâce à cette composition du superalliage à base de nickel (Ni), la résistance au fluage est améliorée par rapport aux superalliages existants, en particulier à des températures pouvant aller jusqu'à 1200°C.Thanks to this composition of the nickel (Ni)-based superalloy, creep resistance is improved compared to existing superalloys, in particular at temperatures of up to 1200°C.

Cet alliage présente donc une résistance au fluage à haute température améliorée. Cet alliage présente également une résistance à la corrosion et à l'oxydation améliorée.This alloy therefore has improved resistance to creep at high temperatures. This alloy also exhibits improved corrosion and oxidation resistance.

Ces superalliages présentent une masse volumique inférieure ou égale à 9,00 g/cm3 (gramme par centimètre cube).These superalloys have a density less than or equal to 9.00 g/cm 3 (gram per cubic centimeter).

Une pièce monocristalline en superalliage à base de nickel est obtenue par un procédé de solidification dirigée sous gradient thermique en fonderie à la cire perdue. Le superalliage monocristallin à base de nickel comprend une matrice austénitique de structure cubique à faces centrées, solution solide à base de nickel, dite phase gamma (« γ »). Cette matrice contient des précipités de phase durcissante gamma prime (« γ' ») de structure cubique ordonnée L12 de type Ni3Al. L'ensemble (matrice et précipités) est donc décrit comme un superalliage γ/γ'.A single-crystal part made of nickel-based superalloy is obtained by a directed solidification process under thermal gradient in lost wax foundry. The nickel-based monocrystalline superalloy comprises an austenitic matrix with a face-centered cubic structure, a nickel-based solid solution, called the gamma ("γ") phase. This matrix contains gamma prime hardening phase precipitates (“γ'”) of ordered cubic structure L1 2 of Ni 3 Al type. The whole (matrix and precipitates) is therefore described as a γ/γ' superalloy.

Par ailleurs, cette composition du superalliage à base de nickel autorise la mise en oeuvre d'un traitement thermique qui remet en solution les précipités de phase γ' et les phases eutectiques γ/γ' qui se forment lors de la solidification du superalliage. On peut ainsi obtenir un superalliage monocristallin à base de nickel contenant des précipités γ' de taille contrôlée, de préférence comprise entre 300 et 500 nanomètres (nm), et contenant une faible proportion de phases eutectiques γ/γ'.Furthermore, this composition of the nickel-based superalloy allows the implementation of a heat treatment which puts into solution the γ' phase precipitates and the γ/γ' eutectic phases which form during the solidification of the superalloy. It is thus possible to obtain a single-crystal nickel-based superalloy containing γ' precipitates of controlled size, preferably between 300 and 500 nanometers (nm), and containing a small proportion of γ/γ' eutectic phases.

Le traitement thermique permet également de contrôler la fraction volumique des précipités de phase γ' présente dans le superalliage monocristallin à base de nickel. Le pourcentage en volume des précipités de phase γ' peut être supérieur ou égal à 50%, de préférence supérieur ou égal à 60%, encore plus de préférence égal à 70%.The heat treatment also makes it possible to control the volume fraction of the γ' phase precipitates present in the single-crystal nickel-based superalloy. The volume percentage of the γ' phase precipitates may be greater than or equal to 50%, preferably greater than or equal to 60%, even more preferably equal to 70%.

Les éléments d'addition majeurs sont le cobalt (Co), le chrome (Cr), le molybdène (Mo), le rhénium (Re), le tungstène (W), l'aluminium (AI), le titane (Ti) et le tantale (Ta).The major addition elements are cobalt (Co), chromium (Cr), molybdenum (Mo), rhenium (Re), tungsten (W), aluminum (AI), titanium (Ti) and tantalum (Ta).

Les éléments d'addition mineurs sont le hafnium (Hf) et le silicium (Si), pour lesquels la teneur massique maximale est inférieure à 1 % en masse.The minor addition elements are hafnium (Hf) and silicon (Si), for which the maximum mass content is less than 1% by mass.

Parmi les impuretés inévitables, on peut citer le soufre (S), le carbone (C), le bore (B), l'yttrium (Y), le lanthane (La) et le cérium (Ce). On définit comme impuretés inévitables les éléments qui ne sont pas ajoutés de manière intentionnelle dans la composition et qui sont apportés avec d'autres éléments.Among the unavoidable impurities, we can cite sulfur (S), carbon (C), boron (B), yttrium (Y), lanthanum (La) and cerium (Ce). Unavoidable impurities are defined as those elements which are not intentionally added to the composition and which are brought with other elements.

L'addition de tungstène, de chrome, de cobalt, de rhénium ou de molybdène permet principalement de renforcer la matrice austénitique γ de structure cristalline cubique à faces centrées (cfc) par durcissement en solution solide.The addition of tungsten, chromium, cobalt, rhenium or molybdenum mainly makes it possible to reinforce the γ austenitic matrix with a face-centered cubic (fcc) crystal structure by hardening in solid solution.

L'addition d'aluminium, de titane ou de tantale (Ta) favorise la précipitation de la phase durcissante γ'-Ni3(Al, Ti, Ta).The addition of aluminum, titanium or tantalum (Ta) promotes the precipitation of the hardening phase γ'-Ni 3 (Al, Ti, Ta).

Le rhénium permet de ralentir la diffusion des espèces chimiques au sein du superalliage et de limiter la coalescence des précipités de phase γ' en cours de service à haute température, phénomène qui entraîne une réduction de la résistance mécanique. Le rhénium permet ainsi d'améliorer la résistance au fluage à haute température du superalliage à base de nickel. Toutefois, une concentration trop élevée de rhénium peut entraîner la précipitation de phases intermétalliques PTC, par exemple phase σ, phase P ou phase µ, qui ont un effet négatif sur les propriétés mécaniques du superalliage. Une concentration trop élevée en rhénium peut également provoquer la formation d'une zone de réaction secondaire dans le superalliage sous la sous-couche, ce qui a un effet négatif sur les propriétés mécaniques du superalliage.Rhenium slows down the diffusion of chemical species within the superalloy and limits the coalescence of γ' phase precipitates during service at high temperatures, a phenomenon which leads to a reduction in mechanical strength. Rhenium thus makes it possible to improve the creep resistance at high temperature of the nickel-based superalloy. However, too high a concentration of rhenium can lead to the precipitation of PTC intermetallic phases, for example σ phase, P phase or µ phase, which have a negative effect on the mechanical properties of the superalloy. Too high a rhenium concentration can also cause the formation of a secondary reaction zone in the superalloy under the undercoat, which has a negative effect on the mechanical properties of the superalloy.

L'addition simultanée de silicium et de hafnium permet d'améliorer la tenue à l'oxydation à chaud des superalliages à base de nickel en augmentant l'adhérence de la couche d'alumine (Al2O3) qui se forme à la surface du superalliage à haute température. Cette couche d'alumine forme une couche de passivation en surface du superalliage à base de nickel et une barrière à la diffusion de l'oxygène venant de l'extérieur vers l'intérieur du superalliage à base de nickel. Toutefois on peut ajouter du hafnium sans ajouter également de silicium ou inversement ajouter du silicium sans ajouter également du hafnium et quand même améliorer la tenue à l'oxydation à chaud du superalliage.The simultaneous addition of silicon and hafnium makes it possible to improve the resistance to hot oxidation of nickel-based superalloys by increasing the adhesion of the alumina layer (Al 2 O 3 ) which forms on the surface superalloy at high temperature. This alumina layer forms a passivation layer on the surface of the nickel-based superalloy and a barrier to the diffusion of oxygen coming from the outside to the inside of the nickel-based superalloy. However, we can add hafnium without also adding silicon or conversely add silicon without also adding hafnium and still improve the hot oxidation resistance of the superalloy.

Par ailleurs, l'addition de chrome ou d'aluminium permet d'améliorer la résistance à l'oxydation et à la corrosion à haute température du superalliage. En particulier, le chrome est essentiel pour augmenter la résistance à la corrosion à chaud des superalliages à base de nickel. Toutefois, une teneur trop élevée en chrome tend à réduire la température de solvus de la phase γ' du superalliage à base de nickel, c'est-à-dire la température au-dessus de laquelle la phase γ' est totalement dissoute dans la matrice γ, ce qui est indésirable. Aussi, la concentration en chrome est comprise entre 3,5 à 5,5% en masse afin de conserver une température élevée de solvus de la phase γ' du superalliage à base de nickel, par exemple supérieure ou égale à 1250°C mais également pour éviter la formation de phases topologiquement compactes dans la matrice γ fortement saturée en éléments d'alliages tels que rhénium, le molybdène ou le tungstène.Furthermore, the addition of chromium or aluminum makes it possible to improve the resistance to oxidation and corrosion at high temperatures of the superalloy. In particular, chromium is essential for increasing the hot corrosion resistance of nickel-based superalloys. However, too high a chromium content tends to reduce the solvus temperature of the γ' phase of the nickel-based superalloy, that is to say the temperature above which the γ' phase is completely dissolved in the γ matrix, which is undesirable. Also, the chromium concentration is between 3.5 to 5.5% by mass in order to maintain a high solvus temperature of the γ' phase of the nickel-based superalloy, for example greater than or equal to 1250°C but also to avoid the formation of topologically compact phases in the γ matrix highly saturated with alloy elements such as rhenium, molybdenum or tungsten.

L'addition de cobalt, qui est un élément proche du nickel et qui se substitue partiellement au nickel, forme une solution solide avec le nickel dans la matrice γ. Le cobalt permet de renforcer la matrice γ, de réduire la sensibilité à la précipitation de PTC et à la formation de ZRS dans le superalliage sous le revêtement de protection. Cependant, une teneur trop élevée en cobalt tend à réduire la température de solvus de la phase γ' du superalliage à base de nickel, ce qui est indésirable.The addition of cobalt, which is an element close to nickel and which partially replaces nickel, forms a solid solution with nickel in the γ matrix. Cobalt strengthens the γ matrix, reduces sensitivity to PTC precipitation and ZRS formation in the superalloy under the protective coating. However, too high a cobalt content tends to reduce the solvus temperature of the γ' phase of the nickel-based superalloy, which is undesirable.

L'addition d'éléments réfractaires, tels que le molybdène, le tungstène, le rhénium ou le tantale permet de ralentir les mécanismes contrôlant le fluage des superalliages à base de nickel et qui dépendent de la diffusion des éléments chimiques dans le superalliage.The addition of refractory elements, such as molybdenum, tungsten, rhenium or tantalum makes it possible to slow down the mechanisms controlling the creep of nickel-based superalloys and which depend on the diffusion of chemical elements in the superalloy.

Une teneur très basse en soufre dans un superalliage à base de nickel permet d'augmenter la résistance à l'oxydation et à la corrosion à chaud ainsi que la tenue à l'écaillage de la barrière thermique. Ainsi, une faible teneur en soufre, inférieure à 2 ppm en masse (partie par million en masse), voire idéalement inférieure à 0,5 ppm en masse, permet d'optimiser ces propriétés. Une telle teneur massique en soufre peut être obtenue par élaboration d'une coulée mère à bas soufre ou par un procédé de désulfurisation réalisé après la coulée. Il est notamment possible de maintenir un bas taux de soufre en adaptant le procédé d'élaboration du superalliage.A very low sulfur content in a nickel-based superalloy makes it possible to increase the resistance to oxidation and hot corrosion as well as the resistance to chipping of the thermal barrier. Thus, a low sulfur content, less than 2 ppm by mass (part per million by mass), or even ideally less than 0.5 ppm by mass, makes it possible to optimize these properties. Such a mass sulfur content can be obtained by producing a low-sulfur mother casting or by a desulfurization process carried out after the casting. It is notably possible to maintain a low sulfur level by adapting the superalloy production process.

On entend par superalliages à base de nickel, des superalliages dont le pourcentage massique en nickel est majoritaire. On comprend que le nickel est donc l'élément dont le pourcentage massique dans l'alliage est le plus élevé.By nickel-based superalloys we mean superalloys whose nickel mass percentage is the majority. We understand that nickel is therefore the element with the highest mass percentage in the alloy.

Le superalliage peut comprendre, en pourcentages massiques, 4,0 à 5,5 % de rhénium, 3,5 à 8,5 % de cobalt, 0,30 à 1,50 % de molybdène, 3,5 à 5,5 % de chrome, 3,5 à 4,5 % de tungstène, 4,5 à 6,0 % d'aluminium, 0,50 à 1,50 % de titane, 8,0 à 10,5 % de tantale, 0,15 à 0,30 % de hafnium, de préférence 0,17 à 0,30 % de hafnium, encore plus de préférence 0,20 à 0,30 % de hafnium, 0,05 à 0,15 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in mass percentages, 4.0 to 5.5% of rhenium, 3.5 to 8.5% of cobalt, 0.30 to 1.50% of molybdenum, 3.5 to 5.5% chromium, 3.5 to 4.5% tungsten, 4.5 to 6.0% aluminum, 0.50 to 1.50% titanium, 8.0 to 10.5% tantalum, 0. 15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the remainder being made up of nickel and inevitable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 4,0 à 5,5 % de rhénium, 3,5 à 12,5 % de cobalt, 0,30 à 1,50 % de molybdène, 3,5 à 5,5 % de chrome, 3,5 à 5,5 % de tungstène, 5,0 à 6,0 % d'aluminium, 0,35 à 1,50 % de titane, 8,0 à 10,5 % de tantale, 0,15 à 0,30 % de hafnium, de préférence 0,17 à 0,30 % de hafnium, encore plus de préférence 0,20 à 0,30 % de hafnium, 0,05 à 0,15 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in mass percentages, 4.0 to 5.5% of rhenium, 3.5 to 12.5% of cobalt, 0.30 to 1.50% of molybdenum, 3.5 to 5.5% chromium, 3.5 to 5.5% tungsten, 5.0 to 6.0% aluminum, 0.35 to 1.50% titanium, 8.0 to 10.5% tantalum, 0. 15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the remainder consisting of nickel and inevitable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 4,5 à 5,5 % de rhénium, 4,0 à 6,0 % de cobalt, 0,30 à 1,00 % de molybdène, 3,5 à 4,5 % de chrome, 3,5 à 4,5 % de tungstène, 4,5 à 6,0 % d'aluminium, 0,50 à 1,50 % de titane, 8,0 à 10,5 % de tantale, 0,15 à 0,30 % de hafnium, de préférence 0,17 à 0,30 % de hafnium, encore plus de préférence 0,20 à 0,30 % de hafnium, 0,05 à 0,15 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in mass percentages, 4.5 to 5.5% of rhenium, 4.0 to 6.0% of cobalt, 0.30 to 1.00% of molybdenum, 3.5 to 4.5% chromium, 3.5 to 4.5% tungsten, 4.5 to 6.0% aluminum, 0.50 to 1.50% titanium, 8.0 to 10.5% tantalum, 0. 15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the remainder being made up of nickel and inevitable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 4,5 à 5,5 % de rhénium, 3,5 à 12,5 % de cobalt, 0,50 à 1,50 % de molybdène, 3,5 à 4,5 % de chrome, 3,5 à 4,5 % de tungstène, 5,0 à 6,0 % d'aluminium, 0,50 à 1,50 % de titane, 8,0 à 9,0 % de tantale, 0,15 à 0,30 % de hafnium, de préférence 0,17 à 0,30 % de hafnium, encore plus de préférence 0,20 à 0,30 % de hafnium, 0,05 à 0,15 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in mass percentages, 4.5 to 5.5% of rhenium, 3.5 to 12.5% of cobalt, 0.50 to 1.50% of molybdenum, 3.5 to 4.5% chromium, 3.5 to 4.5% tungsten, 5.0 to 6.0% aluminum, 0.50 to 1.50% titanium, 8.0 to 9.0% tantalum, 0. 15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the remainder being made up of nickel and inevitable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 4,5 à 5,5 % de rhénium, 7,0 à 9,0 % de cobalt, 0,50 à 1,50 % de molybdène, 3,5 à 4,5 % de chrome, 3,5 à 4,5 % de tungstène, 5,0 à 6,0 % d'aluminium, 0,50 à 1,50 % de titane, 8,0 à 9,0 % de tantale, 0,15 à 0,30 % de hafnium, de préférence 0,17 à 0,30 % de hafnium, encore plus de préférence 0,20 à 0,30 % de hafnium, 0,05 à 0,15 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in mass percentages, 4.5 to 5.5% of rhenium, 7.0 to 9.0% of cobalt, 0.50 to 1.50% of molybdenum, 3.5 to 4.5% chromium, 3.5 to 4.5% tungsten, 5.0 to 6.0% aluminum, 0.50 to 1.50% titanium, 8.0 to 9.0% tantalum, 0. 15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the remainder being made up of nickel and inevitable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 4,2 à 5,3 % de rhénium, 6,0 à 8,0 % de cobalt, 0,30 à 1,00 % de molybdène, 3,5 à 4,5 % de chrome, 4,5 à 5,5 % de tungstène, 5,0 à 6,0 % d'aluminium, 0,35 à 1,30 % de titane, 8,0 à 9,0 % de tantale, 0,15 à 0,30 % de hafnium, de préférence 0,17 à 0,30 % de hafnium, encore plus de préférence 0,20 à 0,30 % de hafnium, 0,05 à 0,15 % de silicium, le complément étant constitué par du nickel et des impuretés éventuelles.The superalloy may comprise, in mass percentages, 4.2 to 5.3% of rhenium, 6.0 to 8.0% of cobalt, 0.30 to 1.00% of molybdenum, 3.5 to 4.5% chromium, 4.5 to 5.5% tungsten, 5.0 to 6.0% aluminum, 0.35 to 1.30% titanium, 8.0 to 9.0% tantalum, 0. 15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the remainder being made up of nickel and possible impurities.

Le superalliage peut comprendre, en pourcentages massiques, 4,0 à 5,0 % de rhénium, 4,0 à 6,0 % de cobalt, 0,30 à 1,00 % de molybdène, 4,5 à 5,5 % de chrome, 3,5 à 4,5 % de tungstène, 5,0 à 6,0 % d'aluminium, 0,35 à 1,30 % de titane, 8,0 à 10,5 % de tantale, 0,15 à 0,30 % de hafnium, de préférence 0,17 à 0,30 % de hafnium, encore plus de préférence 0,20 à 0,30 % de hafnium, 0,05 à 0,15 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in mass percentages, 4.0 to 5.0% rhenium, 4.0 to 6.0% cobalt, 0.30 to 1.00% molybdenum, 4.5 to 5.5% chromium, 3.5 to 4.5% tungsten, 5.0 to 6.0% aluminum, 0.35 to 1.30% titanium, 8.0 to 10.5% tantalum, 0. 15 to 0.30% hafnium, preferably 0.17 to 0.30% hafnium, even more preferably 0.20 to 0.30% hafnium, 0.05 to 0.15% silicon, the remainder consisting of nickel and inevitable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 5,2 % de rhénium, 5,0 % de cobalt, 0,50 % de molybdène, 4,0 % de chrome, 4,0 % de tungstène, 5,4 % d'aluminium, 1,00 % de titane, 8,5 % de tantale, 0,25 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in percentages by weight, 5.2% of rhenium, 5.0% of cobalt, 0.50% of molybdenum, 4.0% of chromium, 4.0% of tungsten, 5.4% of aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 5,2 % de rhénium, 5,0 % de cobalt, 0,50 % de molybdène, 4,0 % de chrome, 4,0 % de tungstène, 5,4 % d'aluminium, 1,00 % de titane, 8,5 % de tantale, 0,17 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in percentages by weight, 5.2% of rhenium, 5.0% of cobalt, 0.50% of molybdenum, 4.0% of chromium, 4.0% of tungsten, 5.4% of aluminum, 1.00% titanium, 8.5% tantalum, 0.17% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 5,2 % de rhénium, 5,0 % de cobalt, 0,50 % de molybdène, 4,0 % de chrome, 4,0 % de tungstène, 5,1 % d'aluminium, 1,00 % de titane, 10,0 % de tantale, 0,25 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in percentages by weight, 5.2% of rhenium, 5.0% of cobalt, 0.50% of molybdenum, 4.0% of chromium, 4.0% of tungsten, 5.1% of aluminum, 1.00% titanium, 10.0% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 5,0 % de rhénium, 12,0 % de cobalt, 1,00 % de molybdène, 4,0 % de chrome, 4,0 % de tungstène, 5,4 % d'aluminium, 1,00 % de titane, 8,5 % de tantale, 0,25 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in percentages by weight, 5.0% rhenium, 12.0% cobalt, 1.00% molybdenum, 4.0% chromium, 4.0% tungsten, 5.4% aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 5,0 % de rhénium, 4,0 % de cobalt, 1,00 % de molybdène, 4,0 % de chrome, 4,0 % de tungstène, 5,4 % d'aluminium, 1,00 % de titane, 8,5 % de tantale, 0,25 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in percentages by weight, 5.0% rhenium, 4.0% cobalt, 1.00% molybdenum, 4.0% chromium, 4.0% tungsten, 5.4% aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 4,9 % de rhénium, 8,0 % de cobalt, 1,00 % de molybdène, 4,2 % de chrome, 4,0 % de tungstène, 5,4 % d'aluminium, 1,00 % de titane, 8,5 % de tantale, 0,25 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in percentages by weight, 4.9% of rhenium, 8.0% of cobalt, 1.00% of molybdenum, 4.2% of chromium, 4.0% of tungsten, 5.4% of aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 4,9 % de rhénium, 8,0 % de cobalt, 1,00 % de molybdène, 4,2 % de chrome, 4,0 % de tungstène, 5,4 % d'aluminium, 1,00 % de titane, 8,5 % de tantale, 0,17 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in percentages by weight, 4.9% of rhenium, 8.0% of cobalt, 1.00% of molybdenum, 4.2% of chromium, 4.0% of tungsten, 5.4% of aluminum, 1.00% titanium, 8.5% tantalum, 0.17% hafnium, 0.10% silicon, the remainder consisting of nickel and inevitable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 4,9 % de rhénium, 8,0 % de cobalt, 1,00 % de molybdène, 4,2 % de chrome, 4,0 % de tungstène, 5,4 % d'aluminium, 1,00 % de titane, 8,5 % de tantale, 0,16 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in percentages by weight, 4.9% of rhenium, 8.0% of cobalt, 1.00% of molybdenum, 4.2% of chromium, 4.0% of tungsten, 5.4% of aluminum, 1.00% titanium, 8.5% tantalum, 0.16% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 4,7 % de rhénium, 7,0 % de cobalt, 0,50 % de molybdène, 4,0 % de chrome, 5,0 % de tungstène, 5,4 % d'aluminium, 0,80 % de titane, 8,5 % de tantale, 0,25 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in percentages by weight, 4.7% of rhenium, 7.0% of cobalt, 0.50% of molybdenum, 4.0% of chromium, 5.0% of tungsten, 5.4% of aluminum, 0.80% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 4,5 % de rhénium, 5,0 % de cobalt, 0,50 % de molybdène, 5,0 % de chrome, 4,0 % de tungstène, 5,4 % d'aluminium, 1,00 % de titane, 8,5 % de tantale, 0,25 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in percentages by weight, 4.5% of rhenium, 5.0% of cobalt, 0.50% of molybdenum, 5.0% of chromium, 4.0% of tungsten, 5.4% of aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 4,5 % de rhénium, 5,0 % de cobalt, 0,50 % de molybdène, 5,0 % de chrome, 4,0 % de tungstène, 5,4 % d'aluminium, 0,55 % de titane, 10,0 % de tantale, 0,25 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in percentages by weight, 4.5% of rhenium, 5.0% of cobalt, 0.50% of molybdenum, 5.0% of chromium, 4.0% of tungsten, 5.4% of aluminum, 0.55% titanium, 10.0% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.

Le superalliage peut comprendre, en pourcentages massiques, 4,3 % de rhénium, 5,0 % de cobalt, 0,50 % de molybdène, 4,0 % de chrome, 4,0 % de tungstène, 5,4 % d'aluminium, 1,00 % de titane, 8,5 % de tantale, 0,25 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.The superalloy may comprise, in percentages by weight, 4.3% of rhenium, 5.0% of cobalt, 0.50% of molybdenum, 4.0% of chromium, 4.0% of tungsten, 5.4% of aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the remainder consisting of nickel and unavoidable impurities.

Le présent exposé concerne également une aube monocristalline pour turbomachine comprenant un superalliage tel que défini précédemment.The present presentation also relates to a single-crystal blade for a turbomachine comprising a superalloy as defined above.

Cette aube présente donc une résistance au fluage à haute température améliorée.This blade therefore has improved resistance to creep at high temperatures.

L'aube peut comprendre un revêtement de protection comportant une sous-couche métallique déposée sur le superalliage et une barrière thermique céramique déposée sur la sous-couche métallique.The blade may comprise a protective coating comprising a metallic underlayer deposited on the superalloy and a ceramic thermal barrier deposited on the metallic underlayer.

Grâce à la composition du superalliage à base de nickel, la formation d'une zone de réaction secondaire dans le superalliage résultant des phénomènes d'inter-diffusion entre le superalliage et la sous-couche est évitée, ou limitée.Thanks to the composition of the nickel-based superalloy, the formation of a secondary reaction zone in the superalloy resulting from inter-diffusion phenomena between the superalloy and the sub-layer is avoided, or limited.

La sous-couche métallique peut être un alliage de type MCrAlY ou un alliage de type aluminiure de nickel.The metallic underlayer can be an MCrAlY type alloy or a nickel aluminide type alloy.

La barrière thermique céramique peut être un matériau à base de zircone yttriée ou tout autre revêtement céramique (à base de zircone) à faible conductivité thermique.The ceramic thermal barrier can be a material based on yttriated zirconia or any other ceramic coating (based on zirconia) with low thermal conductivity.

L'aube peut présenter une structure orientée selon une direction cristallographique <001>.The blade may have a structure oriented in a crystallographic direction <001>.

Cette orientation confère généralement les propriétés mécaniques optimales à l'aube.This orientation generally gives optimal mechanical properties to the blade.

Le présent exposé concerne aussi une turbomachine comprenant une aube telle que définie précédemment.This presentation also concerns a turbomachine comprising a blade as defined above.

Brève description des dessinsBrief description of the drawings

D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence à la figure unique annexée, sur lesquelles :

  • la figure 1 est une vue schématique en coupe longitudinale d'une turbomachine ;
  • la figure 2 est un graphique représentant le paramètre NFP (No-Freckles Parameter) pour différents superalliages ;
  • la figure 3 est un graphique représentant la fraction volumique de phase γ' à différentes températures et pour différents superalliages.
Other characteristics and advantages of the invention will emerge from the following description of embodiments of the invention, given by way of non-limiting examples, with reference to the single appended figure, in which:
  • there figure 1 is a schematic view in longitudinal section of a turbomachine;
  • there figure 2 is a graph representing the No-Freckles Parameter (NFP) for different superalloys;
  • there Figure 3 is a graph representing the phase volume fraction γ' at different temperatures and for different superalloys.

Description détaillée de l'inventionDetailed description of the invention

Les superalliages à base de nickel sont destinés à la fabrication d'aubes monocristallines par un procédé de solidification dirigée dans un gradient thermique. L'utilisation d'un germe monocristallin ou d'un sélecteur de grain en début de solidification permet d'obtenir cette structure monocristalline. La structure est orientée par exemple selon une direction cristallographique <001> qui est l'orientation qui confère, en général, les propriétés mécaniques optimales aux superalliages.Nickel-based superalloys are intended for the manufacture of single-crystal blades by a directed solidification process in a thermal gradient. The use of a single crystal seed or a grain selector at the start of solidification makes it possible to obtain this single crystal structure. The structure is oriented for example in a crystallographic direction <001> which is the orientation which generally confers optimal mechanical properties to superalloys.

Les superalliages monocristallins à base de nickel bruts de solidification ont une structure dendritique et sont constitués de précipités γ' Ni3(Al, Ti, Ta) dispersés dans une matrice γ de structure cubique à faces centrées, solution solide à base de nickel. Ces précipités de phase γ' sont répartis de façon hétérogène dans le volume du monocristal du fait de ségrégations chimiques résultant du procédé de solidification. Par ailleurs, des phases eutectiques γ/γ' sont présentes dans les régions inter-dendritiques et constituent des sites préférentiels d'amorçage de fissures. Ces phases eutectiques γ/γ' se forment en fin de solidification. De plus, les phases eutectiques γ/γ' sont formées au détriment des fins précipités (taille inférieure au micromètre) de phase durcissante γ'. Ces précipités de phase γ' constituent la principale source de durcissement des superalliages à base de nickel. Aussi, la présence de phases eutectiques γ/γ' résiduelles ne permet pas d'optimiser la tenue au fluage à chaud du superalliage à base de nickel.The raw solidified single-crystal nickel-based superalloys have a dendritic structure and are made up of γ' Ni 3 (Al, Ti, Ta) precipitates dispersed in a γ matrix of face-centered cubic structure, solid solution based on nickel. These γ' phase precipitates are distributed heterogeneously in the volume of the single crystal due to chemical segregations resulting from the solidification process. Furthermore, γ/γ' eutectic phases are present in the inter-dendritic regions and constitute preferential crack initiation sites. These γ/γ' eutectic phases form at the end of solidification. In addition, the γ/γ' eutectic phases are formed to the detriment of the fine precipitates (size less than a micrometer) of the γ' hardening phase. These γ' phase precipitates constitute the main source of hardening of nickel-based superalloys. Also, the presence of residual γ/γ' eutectic phases does not make it possible to optimize the hot creep resistance of the nickel-based superalloy.

Il a en effet été montré que les propriétés mécaniques des superalliages, en particulier la résistance au fluage, étaient optimales lorsque la précipitation des précipités γ' était ordonnée, c'est-à-dire que les précipités de phase γ' sont alignés de manière régulière, avec une taille allant de 300 à 500 nm, et lorsque la totalité des phases eutectiques γ/γ' était remise en solution.It has in fact been shown that the mechanical properties of superalloys, in particular creep resistance, were optimal when the precipitation of the γ' precipitates was ordered, that is to say that the γ' phase precipitates are aligned in such a way. regular, with a size ranging from 300 to 500 nm, and when all of the γ/γ' eutectic phases were put back into solution.

Les superalliages à base de nickel bruts de solidification sont donc traités thermiquement pour obtenir la répartition désirée des différentes phases. Le premier traitement thermique est un traitement d'homogénéisation de la microstructure qui a pour objectif de dissoudre les précipités de phase γ' et d'éliminer les phases eutectiques γ/γ' ou de réduire de manière significative leur fraction volumique. Ce traitement est réalisé à une température supérieure à la température de solvus de la phase γ' et inférieure à la température de fusion commençante du superalliage (Tsolidus). Une trempe est ensuite réalisée à la fin de ce premier traitement thermique pour obtenir une dispersion fine et homogène des précipités γ'. Des traitements thermiques de revenu sont ensuite réalisés en deux étapes, à des températures inférieures à la température de solvus de la phase γ'. Lors d'une première étape, pour faire grossir les précipités γ' et obtenir la taille désirée, puis lors d'une seconde étape, pour faire croître la fraction volumique de cette phase jusqu'à environ 70% à température ambiante.The raw solidified nickel-based superalloys are therefore heat treated to obtain the desired distribution of the different phases. The first heat treatment is a microstructure homogenization treatment which aims to dissolve the γ' phase precipitates and to eliminate the γ/γ' eutectic phases or to significantly reduce their volume fraction. This treatment is carried out at a temperature higher than the solvus temperature of the γ' phase and lower than the starting melting temperature of the superalloy (T solidus ). Quenching is then carried out at the end of this first heat treatment to obtain a fine and homogeneous dispersion of the γ' precipitates. Tempering heat treatments are then carried out in two stages, at temperatures lower than the solvus temperature of the γ' phase. During a first step, to increase the size of the γ' precipitates and obtain the desired size, then during a second step, to increase the volume fraction of this phase to approximately 70% at room temperature.

La figure 1 représente, en coupe selon un plan vertical passant par son axe principal A, un turboréacteur à double flux 10. Le turboréacteur à double flux 10 comporte, d'amont en aval selon la circulation du flux d'air, une soufflante 12, un compresseur basse pression 14, un compresseur haute pression 16, une chambre de combustion 18, une turbine haute pression 20, et une turbine basse pression 22.There figure 1 represents, in section along a vertical plane passing through its main axis A, a dual-flow turbojet 10. The dual-flow turbojet 10 comprises, from upstream to downstream according to the circulation of the air flow, a fan 12, a compressor low pressure 14, a high pressure compressor 16, a combustion chamber 18, a high pressure turbine 20, and a low pressure turbine 22.

La turbine haute pression 20 comprend une pluralité d'aubes mobiles 20A tournant avec le rotor et de redresseurs 20B (aubes fixes) montés sur le stator. Le stator de la turbine 20 comprend une pluralité d'anneaux 24 de stator disposés en vis-à-vis des aubes mobiles 20A de la turbine 20.The high pressure turbine 20 comprises a plurality of moving blades 20A rotating with the rotor and rectifiers 20B (fixed blades) mounted on the stator. The stator of the turbine 20 comprises a plurality of stator rings 24 arranged opposite the moving blades 20A of the turbine 20.

Ces propriétés font ainsi de ces superalliages des candidats intéressants pour la fabrication de pièces monocristallines destinées aux parties chaudes des turboréacteurs.These properties make these superalloys interesting candidates for the manufacture of monocrystalline parts intended for the hot parts of turbojet engines.

On peut donc fabriquer une aube mobile 20A ou un redresseur 20B pour turbomachine comprenant un superalliage tel que défini précédemment.It is therefore possible to manufacture a moving blade 20A or a rectifier 20B for a turbomachine comprising a superalloy as defined above.

On peut également fabriquer une aube mobile 20A ou un redresseur 20B pour turbomachine comprenant un superalliage tel que défini(e) précédemment revêtu(e) d'un revêtement de protection comprenant une sous-couche métallique
Une turbomachine peut notamment être un turboréacteur tel qu'un turboréacteur à double flux 10. La turbomachine peut également être un turboréacteur à simple flux, un turbopropulseur ou un turbomoteur.
It is also possible to manufacture a moving blade 20A or a rectifier 20B for a turbomachine comprising a superalloy as defined previously coated with a protective coating comprising a metallic underlayer
A turbomachine can in particular be a turbojet such as a double-flow turbojet 10. The turbomachine can also be a single-flow turbojet, a turboprop or a turboshaft engine.

ExemplesExamples

Dix superalliages monocristallins à base de nickel du présent exposé (Ex 1 à Ex 10) ont été étudiés et comparés à quatre superalliages monocristallins commerciaux CMSX-4 (Ex 11), CMSX-4PlusC (Ex 12), CMSX-10 (Ex 13) et René N6 (Ex 14). La composition chimique de chacun des superalliages monocristallins est donnée dans le tableau 1, la composition Ex 13 comportant de plus 0,10 % en masse de niobium (Nb) et la composition Ex 14 comportant en outre 0,05 % en masse de carbone (C) et 0,004 % en masse de bore (B). Tous ces superalliages sont des superalliages à base de nickel, c'est-à-dire que le complément à 100 % des compositions présentées est constitué par du nickel et des impuretés inévitables. Tableau 1 Re Co Mo Cr W AI Ti Ta Hf Si Ex 1 5,2 5,0 0,50 4,0 4,0 5,4 1,00 8,5 0,25 0,10 Ex 2 5,2 5,0 0,50 4,0 4,0 5,1 1,00 10,0 0,25 0,10 Ex 3 5,0 12,0 1,00 4,0 4,0 5,4 1,00 8,5 0,25 0,10 Ex 4 5,0 4,0 1,00 4,0 4,0 5,4 1,00 8,5 0,25 0,10 Ex 5 4,9 8,0 1,00 4,2 4,0 5,4 1,00 8,5 0,25 0,10 EX 6 4,9 8,0 1,00 4,2 4,0 5,4 1,00 8,5 0,16 0,10 Ex 7 4,7 7,0 0,50 4,0 5,0 5,4 0,80 8,5 0,25 0,10 Ex 8 4,5 5,0 0,50 5,0 4,0 5,4 1,00 8,5 0,25 0,10 Ex 9 4,5 5,0 0,50 5,0 4,0 5,4 0,55 10,0 0,25 0,10 Ex 10 4,3 5,0 0,50 4,0 4,0 5,4 1,00 8,5 0,25 0,10 Ex 11 3,0 9,6 0,60 6,5 6,4 5,6 1,00 6,5 0,10 0,00 Ex 12 4,8 10,0 0,60 3,5 6,0 5,7 0,85 8,0 0,10 0,00 Ex 13 6,0 3,0 0,40 2,0 5,0 5,7 0,20 8,0 0,03 0,00 Ex 14 5,3 12,2 1,10 4,4 5,7 6,0 0,00 7,5 0,15 0,00 Ten nickel-based monocrystalline superalloys of this presentation (Ex 1 to Ex 10) were studied and compared to four commercial monocrystalline superalloys CMSX-4 (Ex 11), CMSX-4PlusC (Ex 12), CMSX-10 (Ex 13) and René N6 (Ex 14). The chemical composition of each of the single-crystal superalloys is given in Table 1, the composition Ex 13 additionally comprising 0.10% by mass of niobium (Nb) and the composition Ex 14 further comprising 0.05% by mass of carbon (C) and 0.004% by mass of boron (B). All of these superalloys are nickel-based superalloys, that is to say that the 100% complement of the compositions presented consists of nickel and unavoidable impurities. Table 1 D Co MB Cr W HAVE Ti Your Hf If Ex 1 5.2 5.0 0.50 4.0 4.0 5.4 1.00 8.5 0.25 0.10 Ex 2 5.2 5.0 0.50 4.0 4.0 5.1 1.00 10.0 0.25 0.10 Ex 3 5.0 12.0 1.00 4.0 4.0 5.4 1.00 8.5 0.25 0.10 Ex 4 5.0 4.0 1.00 4.0 4.0 5.4 1.00 8.5 0.25 0.10 Ex 5 4.9 8.0 1.00 4.2 4.0 5.4 1.00 8.5 0.25 0.10 EX 6 4.9 8.0 1.00 4.2 4.0 5.4 1.00 8.5 0.16 0.10 Ex 7 4.7 7.0 0.50 4.0 5.0 5.4 0.80 8.5 0.25 0.10 Ex 8 4.5 5.0 0.50 5.0 4.0 5.4 1.00 8.5 0.25 0.10 Ex 9 4.5 5.0 0.50 5.0 4.0 5.4 0.55 10.0 0.25 0.10 Ex 10 4.3 5.0 0.50 4.0 4.0 5.4 1.00 8.5 0.25 0.10 Ex 11 3.0 9.6 0.60 6.5 6.4 5.6 1.00 6.5 0.10 0.00 Ex 12 4.8 10.0 0.60 3.5 6.0 5.7 0.85 8.0 0.10 0.00 Ex 13 6.0 3.0 0.40 2.0 5.0 5.7 0.20 8.0 0.03 0.00 Ex 14 5.3 12.2 1.10 4.4 5.7 6.0 0.00 7.5 0.15 0.00

Masse volumiqueVolumic mass

La masse volumique à température ambiante de chaque superalliage a été estimée à l'aide d'une version modifiée de la formule de Hull (F.C. Hull, Metai Progress, Novembre 1969, pp139-140). Cette équation empirique a été proposée par Hull. L'équation empirique est basée sur la loi des mélanges et comprend des termes correctifs déduits d'une analyse par régression linéaire de données expérimentales (compositions chimiques et masses volumiques mesurées) concernant 235 superalliages et aciers inox. Cette formule de Hull a été modifiée, notamment pour tenir compte d'éléments comme le rhénium et le ruthénium. La formule de Hull modifiée est la suivante :

  1. (1) D = 27,68 x [D1 + 0,14037 - 0,00137 %Cr - 0,00139 %Ni - 0,00142 %Co - 0,00140 %Fe - 0,00186 %Mo - 0,00125 %W - 0,00134 %V - 0,00119 %Nb - 0,00113 %Ta + 0,0004 %Ti + 0,00388 %C + 0,0000187 (%Mo)2 - 0,0000506 (%Co)x(%Ti) - 0,00096 %Re - 0,001131 %Ru]

    D 1 = 100 / %Cr / D Cr + %Ni / D Ni + + %X / D X
    Figure imgb0001
    • où DCr, DNi,..., DX sont les masses volumiques des éléments Cr, Ni, ..., X exprimées en lb/in3 (livre par pouce cube) et D est la masse volumique du superalliage exprimé en g/cm3.
    • où %Cr, %Ni, ...%X sont les teneurs, exprimées en pourcentages massiques, des éléments du superalliage Cr, Ni, ..., X.
The room temperature density of each superalloy was estimated using a modified version of the Hull formula (FC Hull, Metai Progress, November 1969, pp139-140). This empirical equation was proposed by Hull. The empirical equation is based on the law of mixtures and includes corrective terms deduced from a linear regression analysis of experimental data (chemical compositions and measured densities) concerning 235 superalloys and stainless steels. This Hull formula has been modified, in particular to take into account elements such as rhenium and ruthenium. The modified Hull formula is as follows:
  1. (1) D = 27.68 x [D 1 + 0.14037 - 0.00137 %Cr - 0.00139 %Ni - 0.00142 %Co - 0.00140 %Fe - 0.00186 %Mo - 0.00125 %W - 0.00134 %V - 0.00119 %Nb - 0.00113 %Ta + 0.0004 %Ti + 0.00388 %C + 0.0000187 (%Mo) 2 - 0.0000506 (%Co)x(%Ti) - 0.00096 %Re - 0.001131 %Ru]
    Or
    D 1 = 100 / %Cr / D Cr + %Neither / D Neither + + %X / D X
    Figure imgb0001
    • where D Cr , D Ni ,..., D X are the density of the elements Cr, Ni, ... , g/cm 3 .
    • where %Cr, %Ni, ...%X are the contents, expressed in mass percentages, of the elements of the superalloy Cr, Ni, ..., X.

Les masses volumiques calculées pour les alliages de l'invention et pour les alliages de référence sont inférieures à 9,00 g/cm3 (voir Tableau 2).The densities calculated for the alloys of the invention and for the reference alloys are less than 9.00 g/cm 3 (see Table 2).

La comparaison entre les masses volumiques estimées et mesurées (voir tableau 2) permet de valider le modèle de Hull modifié (équation (1)). Les masses volumiques estimées et mesurées sont cohérentes.The comparison between the estimated and measured densities (see table 2) makes it possible to validate the modified Hull model (equation (1)). The estimated and measured densities are consistent.

Le tableau 2 présente différents paramètres pour les superalliages Ex 1 à Ex 14. Tableau 2 Masse volumique estimée (1) (g/cm3) Masse volumique mesurée (g/cm3) NFP RGP Md [ZRS(%)]1/2 Ex 1 8,89 8,82 0,84 0,393 0,98 5,3 Ex 2 9,00 8,98 0,99 0,460 0,98 5,2 Ex 3 8,86 - 0,89 0,393 0,99 1,0 Ex 4 8,88 - 0,89 0,393 0,98 3,8 Ex 5 8,86 8,86 0,90 0,393 0,98 3,4 Ex 6 - - 0,88 0,393 - 3,4 Ex 7 8,91 - 0,82 0,386 0,98 3,6 Ex 8 8,83 8,79 0,92 0,393 0,98 -5,9 Ex 9 8,91 - 1,10 0,388 0,98 -6,5 Ex 10 - - 0,94 0,393 - 3,4 Ex 11 8,71 - 0,65 0,358 0,99 -24 Ex 12 8,91 - 0,68 0,371 0,99 8,5 Ex 13 8,99 - 0,67 0,299 0,96 28 Ex 14 8,87 - 0,69 0,256 0,98 1,1 Table 2 presents different parameters for superalloys Ex 1 to Ex 14. Table 2 Estimated density (1) (g/cm 3 ) Measured density (g/cm 3 ) NFP RGP M d [ZRS(%)] 1/2 Ex 1 8.89 8.82 0.84 0.393 0.98 5.3 Ex 2 9.00 8.98 0.99 0.460 0.98 5.2 Ex 3 8.86 - 0.89 0.393 0.99 1.0 Ex 4 8.88 - 0.89 0.393 0.98 3.8 Ex 5 8.86 8.86 0.90 0.393 0.98 3.4 Ex 6 - - 0.88 0.393 - 3.4 Ex 7 8.91 - 0.82 0.386 0.98 3.6 Ex 8 8.83 8.79 0.92 0.393 0.98 -5.9 Ex 9 8.91 - 1.10 0.388 0.98 -6.5 Ex 10 - - 0.94 0.393 - 3.4 Ex 11 8.71 - 0.65 0.358 0.99 -24 Ex 12 8.91 - 0.68 0.371 0.99 8.5 Ex 13 8.99 - 0.67 0.299 0.96 28 Ex 14 8.87 - 0.69 0.256 0.98 1.1

No-Freckles Parameter (NFP)No-Freckles Parameter (NFP)

NFP = %Ta + 1,5 %Hf + 0,5 %Mo 0,5 % %Ti ) / %W + 1,2 %Re )

Figure imgb0002
où %Cr, %Ni, ...%X sont les teneurs, exprimées en pourcentages massiques, des éléments du superalliage Cr, Ni, ..., X. NFP = %Your + 1.5 %Hf + 0.5 %MB 0.5 % %Ti ) / %W + 1.2 %D )
Figure imgb0002
where %Cr, %Ni, ...%X are the contents, expressed in mass percentages, of the elements of the superalloy Cr, Ni, ..., X.

Le paramètre NFP permet de quantifier la sensibilité à la formation de grains parasites de type « Freckles » au cours de la solidification dirigée de la pièce (document US 5,888,451 ). Pour éviter la formation de défauts de type « Freckles », le paramètre NFP doit être supérieur ou égal à 0,7.The NFP parameter makes it possible to quantify the sensitivity to the formation of parasitic grains of the “Freckles” type during the directed solidification of the part (document US 5,888,451 ). To avoid the formation of “Freckles” type defects, the NFP parameter must be greater than or equal to 0.7.

Comme on peut le voir dans le tableau 2 et sur la figure 2, les superalliages Ex 1 à Ex 10 présentent tous un paramètre NFP supérieur ou égal à 0,7 alors que les superalliages commerciaux Ex 11 à Ex 14 présentent un paramètre NFP inférieur à 0,7.As can be seen in Table 2 and on the figure 2 , superalloys Ex 1 to Ex 10 all have an NFP parameter greater than or equal to 0.7 while commercial superalloys Ex 11 to Ex 14 have an NFP parameter less than 0.7.

Résistance Gamma Prime (RGP)Resistance Gamma Prime (RGP)

La résistance mécanique intrinsèque de la phase γ' augmente avec la teneur en éléments venant se substituer à l'aluminium dans le composé Ni3Al, comme le titane, le tantale et une partie du tungstène. Le composé de phase γ' peut donc s'écrire Ni3(Al, Ti, Ta, W). Le paramètre RGP permet d'estimer le niveau de durcissement de la phase γ' : RGP = C Ti + C Ta + C W / 2 / C Al

Figure imgb0003
où CTi, CTa, Cw et CAl sont les concentrations, exprimées en pourcentage atomique, respectives des éléments Ti, Ta, W et AI dans le superalliage.The intrinsic mechanical resistance of the γ' phase increases with the content of elements replacing aluminum in the Ni 3 Al compound, such as titanium, tantalum and part of the tungsten. The phase compound γ' can therefore be written as Ni 3 (Al, Ti, Ta, W). The RGP parameter makes it possible to estimate the level of hardening of the γ' phase: RGP = VS Ti + VS Your + VS W / 2 / VS Al
Figure imgb0003
where C Ti , C Ta , Cw and C Al are the respective concentrations, expressed in atomic percentage, of the elements Ti, Ta, W and AI in the superalloy.

Un paramètre RGP plus élevé est favorable à une meilleure résistance mécanique du superalliage. On peut voir dans le tableau 2 que le paramètre RGP calculé pour les superalliages Ex 1 à Ex 10 est supérieur au paramètre RGP calculé pour les superalliages commerciaux Ex 11 à Ex 14.A higher RGP parameter is favorable to better mechanical strength of the superalloy. It can be seen in Table 2 that the RGP parameter calculated for superalloys Ex 1 to Ex 10 is greater than the RGP parameter calculated for commercial superalloys Ex 11 to Ex 14.

Sensibilité à la formation de PTC ( M d) Sensitivity to PTC formation ( M d )

Le paramètre Md est défini comme suit : M d = i = 1 n X i Md i

Figure imgb0004
où Xi est la fraction de l'élément i dans le superalliage exprimée en pourcentage atomique, (Md)i est la valeur du paramètre Md pour l'élément i.The parameter M d is defined as follows: M d = i = 1 not X i MD i
Figure imgb0004
where X i is the fraction of element i in the superalloy expressed as an atomic percentage, (Md) i is the value of the parameter Md for element i.

Le tableau 3 présente les valeurs de Md pour les différents éléments des superalliages. Tableau 3 Elément Md Elément Md Ti 2,271 Hf 3,02 Cr 1,142 Ta 2,224 Co 0,777 W 1,655 Ni 0,717 Re 1,267 Nb 2,117 AI 1,9 Mo 1,55 Si 1,9 Ru 1,006 Table 3 presents the Md values for the different elements of the superalloys. Table 3 Element MD Element MD Ti 2,271 Hf 3.02 Cr 1,142 Your 2,224 Co 0.777 W 1,655 Neither 0.717 D 1,267 No. 2,117 HAVE 1.9 MB 1.55 If 1.9 Ru 1.006

La sensibilité à la formation de PTC est déterminée par le paramètre Md, selon la méthode New PHACOMP qui a été développée par Morinaga et al. ( Morinaga et al., New PHACOMP and its application to alloy design, Superalloys 1984, édité par M Gell et al., The Metallurgical Society of AIME, Warrendale, PA, USA (1984) pp. 523-532 ). Selon ce modèle, la sensibilité des superalliages à la formation de PTC augmente avec la valeur du paramètre Md.Sensitivity to PTC formation is determined by the parameter M d, according to the New PHACOMP method which was developed by Morinaga et al. ( Morinaga et al., New PHACOMP and its application to alloy design, Superalloys 1984, edited by M Gell et al., The Metallurgical Society of AIME, Warrendale, PA, USA (1984) pp. 523-532 ). According to this model, the sensitivity of superalloys to PTC formation increases with the value of the parameter M d.

Comme on peut le constater dans le tableau 2, les superalliages Ex 1 à Ex 14 présentent des valeurs du paramètre Md sensiblement égales. Ces superalliages présentent donc des sensibilités similaires à la formation de PTC, sensibilités qui sont relativement faibles.As can be seen in Table 2, the superalloys Ex 1 to Ex 14 present values of the parameter M d substantially equal. These superalloys therefore have similar sensitivities to the formation of PTC, sensitivities which are relatively low.

Sensibilité à la formation de ZRSSensitivity to ZRS formation

Pour estimer la sensibilité de superalliages à base de nickel contenant du rhénium à la formation de ZRS, Walston (document US 5,270,123 ) a établi l'équation suivante : ZRS % 1 / 2 = 13,88 %Re + 4,10 %W 7,07 %Cr 2,94 %Mo 0,33 %Co + 12,13

Figure imgb0005
où ZRS(%) est le pourcentage linéique de ZRS dans le superalliage sous le revêtement et où les concentrations des éléments d'alliage sont en pourcentages atomiques.To estimate the sensitivity of nickel-based superalloys containing rhenium to the formation of ZRS, Walston (document US 5,270,123 ) established the following equation: ZRS % 1 / 2 = 13.88 %D + 4.10 %W 7.07 %Cr 2.94 %MB 0.33 %Co + 12.13
Figure imgb0005
where ZRS(%) is the linear percentage of ZRS in the superalloy under the coating and where the concentrations of the alloying elements are in atomic percentages.

Cette équation (5) a été obtenue par analyse par régression linéaire multiple à partir d'observations faites après vieillissement de 400 heures à 1093°C (degré centigrade) d'échantillons de divers alliages de compositions proches de la composition Ex 12 sous un revêtement NiPtAI.This equation (5) was obtained by multiple linear regression analysis from observations made after aging for 400 hours at 1093°C (degree centigrade) of samples of various alloys with compositions close to the Ex 12 composition under a coating NiPtAI.

Plus la valeur du paramètre [ZRS(%)]1/2 est élevée, plus le superalliage est sensible à la formation de ZRS. Ainsi, comme on peut le voir dans le tableau 2, pour les superalliages Ex 1 à Ex 10, les valeurs du paramètre [ZRS(%)]1/2 sont soit négatives, soit faiblement positives et ces superalliages présentent donc une faible sensibilité à la formation de ZRS sous un revêtement NitPtAl, tout comme le superalliage commercial Ex 14 qui est connu pour sa faible sensibilité à la formation de ZRS. A titre d'exemple, le superalliage commercial EX 13, qui est connu pour être très sensible à la formation de ZRS sous un révêtement NiPtAl, présente une valeur du paramètre [ZRS(%)]1/2 relativement élevée.The higher the value of the parameter [ZRS(%)] 1/2 , the more sensitive the superalloy is to the formation of ZRS. Thus, as can be seen in Table 2, for superalloys Ex 1 to Ex 10, the values of the parameter [ZRS(%)] 1/2 are either negative or weakly positive and these superalloys therefore have low sensitivity to the formation of ZRS under a NitPtAl coating, much like the commercial superalloy Ex 14 which is known for its low susceptibility to the formation of ZRS. For example, the commercial superalloy EX 13, which is known to be very sensitive to the formation of ZRS under a NiPtAl coating, has a relatively high value of the parameter [ZRS(%)] 1/2 .

Température de solvus de la phase γ'Solvus temperature of the γ' phase

Le logiciel ThermoCalc (base de donnée Ni25) basé sur la méthode CALPHAD a été utilisé pour calculer la température de solvus de la phase γ' à l'équilibre.The ThermoCalc software (Ni25 database) based on the CALPHAD method was used to calculate the solvus temperature of the γ' phase at equilibrium.

Comme on peut le constater dans le tableau 4, les superalliages Ex 1 à Ex 10 présentent une température de solvus γ' supérieure à la température de solvus γ' des superalliages Ex 11, Ex 12 et Ex 14.As can be seen in Table 4, superalloys Ex 1 to Ex 10 have a solvus temperature γ' higher than the solvus temperature γ' of superalloys Ex 11, Ex 12 and Ex 14.

Fraction volumique de phase y'Volume fraction of phase y'

Le logiciel ThermoCalc (base de donnée Ni25) basé sur la méthode CALPHAD a été utilisé pour calculer la fraction volumique (en pourcentage volumique) de phase γ' à l'équilibre dans les superalliages Ex 1 à Ex 14 à 950°C, 1050°C et 1200°C.The ThermoCalc software (Ni25 database) based on the CALPHAD method was used to calculate the volume fraction (in volume percentage) of γ' phase at equilibrium in the superalloys Ex 1 to Ex 14 at 950°C, 1050° C and 1200°C.

Comme on peut le constater dans le tableau 4 et sur la figure 3, les superalliages Ex 1 à Ex 10 contiennent des fractions volumiques de phase γ' supérieures ou comparables aux fractions volumiques de phase γ' des superalliages commerciaux Ex 11 à Ex 14.As can be seen in Table 4 and on the Figure 3 , superalloys Ex 1 to Ex 10 contain γ' phase volume fractions greater than or comparable to the γ' phase volume fractions of commercial superalloys Ex 11 to Ex 14.

Ainsi, la combinaison d'une température de solvus γ' élevée et de fractions volumiques de phase γ' élevées pour les superalliages Ex 1 à Ex 10 est favorable à une bonne résistance au fluage à haute température et très haute température, par exemple à 1200°C. Cette résistance doit être ainsi supérieure à la résistance au fluage des superalliages commerciaux Ex 11 à Ex 14 et proche de celle du superalliage commercial Ex 13. Tableau 4 Tsolvus γ' (°C) Fraction volumique de phase γ' (% vol) 950°C 1050°C 1200°C Ex 1 1347 64 59 44 Ex 2 1353 66 61 47 Ex 3 1280 67 62 44 Ex 4 1346 68 63 47 Ex 5 1328 61 55 38 Ex 6 1314 64 57 36 Ex 7 1328 64 58 38 Ex 8 1342 63 58 43 Ex 9 1347 65 60 46 Ex 10 1336 66 61 43 Ex 11 1290 58 48 25 Ex 12 1320 63 57 36 Ex 13 1374 65 60 46 Ex 14 1283 60 51 24 Thus, the combination of a high γ' solvus temperature and high γ' phase volume fractions for superalloys Ex 1 to Ex 10 is favorable for good creep resistance at high temperatures and very high temperatures, for example at 1200 °C. This resistance must therefore be greater than the creep resistance of superalloys. commercial Ex 11 to Ex 14 and close to that of the commercial superalloy Ex 13. Table 4 T solvus γ' (°C) Phase volume fraction γ' (% vol) 950°C 1050°C 1200°C Ex 1 1347 64 59 44 Ex 2 1353 66 61 47 Ex 3 1280 67 62 44 Ex 4 1346 68 63 47 Ex 5 1328 61 55 38 Ex 6 1314 64 57 36 Ex 7 1328 64 58 38 Ex 8 1342 63 58 43 Ex 9 1347 65 60 46 Ex 10 1336 66 61 43 Ex 11 1290 58 48 25 Ex 12 1320 63 57 36 Ex 13 1374 65 60 46 Ex 14 1283 60 51 24

Fraction volumique de PTC de type σVolume fraction of σ type PTC

Le logiciel ThermoCalc (base de donnée Ni25) basé sur la méthode CALPHAD a été utilisé pour calculer la fraction volumique (en pourcentage volumique) de phase σ à l'équilibre dans les superalliages Ex 1 à Ex 14 à 950°C et 1050°C (voir tableau 5).The ThermoCalc software (Ni25 database) based on the CALPHAD method was used to calculate the volume fraction (in volume percentage) of phase σ at equilibrium in the superalloys Ex 1 to Ex 14 at 950°C and 1050°C (see table 5).

Les fractions volumiques calculées de phase σ sont relativement faibles, ce qui traduit une faible sensibilité à la précipitation de PTC. Ces résultats corroborent donc les résultats obtenus avec la méthode New PHACOMP (paramètre Md).The calculated σ phase volume fractions are relatively low, reflecting low sensitivity to PTC precipitation. These results therefore corroborate the results obtained with the New PHACOMP method (parameter M d).

Concentration massique de chrome dissous dans la matrice γMass concentration of chromium dissolved in the γ matrix

Le logiciel ThermoCalc (base de donnée Ni25) basé sur la méthode CALPHAD a été utilisé pour calculer teneur en chrome (en pourcentage massique) dans la phase γ à l'équilibre dans les superalliages Ex 1 à Ex 14 à 950°C, 1050°C et 1200°C.The ThermoCalc software (Ni25 database) based on the CALPHAD method was used to calculate chromium content (in mass percentage) in the γ phase at equilibrium in superalloys Ex 1 to Ex 14 at 950°C, 1050° C and 1200°C.

Comme on peut le constater dans le tableau 5, les concentrations en chrome dans la phase γ sont supérieures pour les superalliages Ex 1 à Ex 10, comparées aux concentrations en chrome dans la phase γ pour les superalliages commerciaux Ex 12 à Ex 14, ce qui est favorable à une meilleure résistance à la corrosion et à l'oxydation à chaud. Tableau 5 Fraction volumique de PTC de type σ (en % vol) Teneur en chrome dans la phase γ (en % massique) 950°C 1050°C 950°C 1050°C 1200°C Ex 1 1,1 0,5 8,63 7,65 5,79 Ex 2 1,4 0,7 9,02 8,03 6,25 Ex 3 1,2 0,6 8,63 7,64 5,79 Ex 4 1,4 0,7 8,77 7,82 5,96 Ex 5 1,2 0,1 8,86 7,81 6,05 Ex 6 0,9 0,1 11,00 9,50 6,80 Ex 7 0,8 0,6 8,35 7,30 5,45 Ex 8 0,9 0,2 10,83 9,63 7,57 Ex 9 1,2 0,5 11,25 9,95 7,71 Ex 10 0,4 0,0 10,40 9,20 6,80 Ex 11 0,7 - 12,80 10,90 7,84 Ex 12 1,2 0,5 7,40 6,43 4,82 Ex 13 0,9 0,4 3,62 3,36 2,77 Ex 14 1,0 0,3 8,37 7,10 5,25 As can be seen in Table 5, the chromium concentrations in the γ phase are higher for the superalloys Ex 1 to Ex 10, compared to the chromium concentrations in the γ phase for commercial superalloys Ex 12 to Ex 14, which is favorable for better resistance to corrosion and hot oxidation. Table 5 Volume fraction of σ type PTC (in % vol) Chromium content in the γ phase (in % by mass) 950°C 1050°C 950°C 1050°C 1200°C Ex 1 1.1 0.5 8.63 7.65 5.79 Ex 2 1.4 0.7 9.02 8.03 6.25 Ex 3 1.2 0.6 8.63 7.64 5.79 Ex 4 1.4 0.7 8.77 7.82 5.96 Ex 5 1.2 0.1 8.86 7.81 6.05 Ex 6 0.9 0.1 11.00 9.50 6.80 Ex 7 0.8 0.6 8.35 7.30 5.45 Ex 8 0.9 0.2 10.83 9.63 7.57 Ex 9 1.2 0.5 11.25 9.95 7.71 Ex 10 0.4 0.0 10.40 9.20 6.80 Ex 11 0.7 - 12.80 10.90 7.84 Ex 12 1.2 0.5 7.40 6.43 4.82 Ex 13 0.9 0.4 3.62 3.36 2.77 Ex 14 1.0 0.3 8.37 7.10 5.25

Propriété en fluage à très haute températureCreep property at very high temperature

Des essais en fluage ont été réalisés sur les superalliages Ex 2, Ex 5, Ex 6, Ex 11, Ex 13 et Ex 14. Les essais de fluage sont réalisés à 1200°C et 80 MPa selon la norme NF EN ISO 204 d'août 2009 (Guide U125_J).Creep tests were carried out on superalloys Ex 2, Ex 5, Ex 6, Ex 11, Ex 13 and Ex 14. The creep tests are carried out at 1200°C and 80 MPa according to standard NF EN ISO 204 of August 2009 (Guide U125_J).

On a présenté dans le tableau 6 les résultats des essais en fluage dans lesquels les superalliages ont été mis sous charge (80 MPa) à 1200°C. Les résultats représentent le temps en heure (h) à la rupture de l'éprouvette. Tableau 6 Temps à rupture (heure) Ex 2 41 Ex 5 65 Ex 6 50 Ex 10 54 Ex 11 9 Ex 13 59 Ex 14 13 Table 6 presents the results of the creep tests in which the superalloys were placed under load (80 MPa) at 1200°C. The results represent the time in hours (h) at the rupture of the test piece. Table 6 Breaking time (hour) Ex 2 41 Ex 5 65 Ex 6 50 Ex 10 54 Ex 11 9 Ex 13 59 Ex 14 13

Les superalliages Ex 2, Ex 5, Ex 6 et Ex 10 présentent un meilleur comportement en fluage que les alliages Ex 11 et Ex 14. Le superalliage Ex 13 présente également de bonnes propriétés en fluage.The Ex 2, Ex 5, Ex 6 and Ex 10 superalloys exhibit better creep behavior than the Ex 11 and Ex 14 alloys. The Ex 13 superalloy also exhibits good creep properties.

Propriété en oxydation cyclique à 1150°CCyclic oxidation property at 1150°C

Les superalliages sont soumis à un des cycles thermiques tels que décrits dans INS-TTH-001 et INS-TTH-002 : Méthode d'essai de cyclage oxydant (Essai de perte de masse et Barrière thermique).The superalloys are subjected to one of the thermal cycles as described in INS-TTH-001 and INS-TTH-002: Oxidative cycling test method (Mass loss test and Thermal barrier).

Une éprouvette du superalliage testé (pion ayant un diamètre de 20 mm et une hauteur de 1 mm) est soumise à un cyclage thermique dont chaque cycle comprend une montée à 1150°C en moins de 15 min (minutes), un palier à 1150°C de 60 min et un refroidissement turbiné de l'éprouvette pendant 15 min.A specimen of the superalloy tested (pin having a diameter of 20 mm and a height of 1 mm) is subjected to a thermal cycle, each cycle of which includes a rise to 1150°C in less than 15 min (minutes), a plateau at 1150° C of 60 min and turbine cooling of the test piece for 15 min.

Le cycle thermique est répété jusqu'à observation d'une perte de masse de l'éprouvette égale à 20 mg/cm2 (milligrammes par centimètres carrés).The thermal cycle is repeated until a loss in mass of the test piece equal to 20 mg/cm 2 (milligrams per square centimeter) is observed.

La durée de vie des superalliages testés est présentée au tableau 7. Tableau 7 Durée de vie (heures) Ex 2 1310 Ex 5 > 1700 Ex 10 > 1700 Ex 11 ~ 230 Ex 12 ~ 480 Ex 13 ~ 100 The lifespan of the tested superalloys is presented in Table 7. Table 7 Lifespan (hours) Ex 2 1310 Ex 5 > 1700 Ex 10 > 1700 Ex 11 ~230 Ex 12 ~480 Ex 13 ~100

On constate que les superalliages Ex 2, Ex 5 et Ex 10 présentent une durée de vie bien supérieure à celle des superalliages Ex 11, Ex 12 et Ex 13. On notera que les propriétés en oxydation du superalliage Ex 13 sont beaucoup moins bonnes que celle des superalliages Ex 2, Ex 5 et Ex 10.It can be seen that the Ex 2, Ex 5 and Ex 10 superalloys have a much longer lifespan than the superalloys. Ex 11, Ex 12 and Ex 13. Note that the oxidation properties of the Ex 13 superalloy are much worse than those of the Ex 2, Ex 5 and Ex 10 superalloys.

Stabilité microstructuraleMicrostructural stability

Après un vieillissement de 300 heures à 1050°C, aucune phase PTC n'est observée pour le superalliage Ex 6 par analyse d'image en microscopie électronique à balayage.After aging for 300 hours at 1050°C, no PTC phase is observed for the Ex 6 superalloy by scanning electron microscopy image analysis.

Sensibilité à la formation de défauts de fonderieSusceptibility to the formation of foundry defects

Après la mise en forme par procédé de type cire perdue et solidification dirigée en four Bidgman, aucun défaut résultant du procédé de fonderie, notamment de type « Freckles », n'a été observé dans les superalliages Ex 2, Ex 5, Ex 6 et Ex 10. Les défauts de type « Freckels » sont observés après immersion de l'éprouvette dans une solution à base de HNO3/H2SO4.After forming by a lost wax type process and directed solidification in a Bidgman furnace, no defects resulting from the foundry process, in particular of the "Freckles" type, were observed in the superalloys Ex 2, Ex 5, Ex 6 and Ex 10. “Freckels” type defects are observed after immersion of the test piece in a solution based on HNO 3 /H 2 SO 4 .

Quoique le présent exposé ait été décrit en se référant à un exemple de réalisation spécifique, il est évident que différentes modifications et changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l'invention telle que définie par les revendications. En outre, des caractéristiques individuelles des différents modes de réalisation évoqués peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif.Although the present disclosure has been described with reference to a specific embodiment, it is obvious that various modifications and changes can be made to these examples without departing from the general scope of the invention as defined by the claims. Furthermore, individual features of the different embodiments discussed may be combined in additional embodiments. Therefore, the description and drawings should be considered in an illustrative rather than a restrictive sense.

Claims (24)

  1. A nickel-based superalloy comprising, in percentages by mass, 4.0 to 5.5% rhenium, 3.5 to 12.5% cobalt, 0.30 to 1.50% molybdenum, 3.5 to 5.5% chromium, 3.5 to 5.5% tungsten, 4.5 to 6.0% aluminum, 0.35 to 1.50% titanium, 8.0 to 10.5% tantalum, 0.15 to 0.30% hafnium, 0.05 to 0.15% silicon, the balance being nickel and unavoidable impurities.
  2. The superalloy according to claim 1, comprising, in percentages by mass, 4.0 to 5.5% rhenium, 3.5 to 8.5% cobalt, 0.30 to 1.50% molybdenum, 3.5 to 5.5% chromium, 3.5 to 4.5% tungsten, 4.5 to 6.0% aluminum, 0.50 to 1.50% titanium, 8.0 to 10.5% tantalum, 0.15 to 0.30% hafnium, 0.05 to 0.15% silicon, the balance being nickel and unavoidable impurities.
  3. The superalloy according to claim 1, comprising, in percentages by mass, 4.0 to 5.5% rhenium, 3.5 to 12.5% cobalt, 0.30 to 1.50% molybdenum, 3.5 to 5.5% chromium, 3.5 to 5.5% tungsten, 5.0 to 6.0% aluminum, 0.35 to 1.50% titanium, 8.0 to 10.5% tantalum, 0.15 to 0.30% hafnium, 0.05 to 0.15% silicon, the balance being nickel and unavoidable impurities.
  4. The superalloy according to claim 1, comprising, in percentages by mass, 4.5 to 5.5% rhenium, 4.0 to 6.0% cobalt, 0.30 to 1.00% molybdenum, 3.5 to 4.5% chromium, 3.5 to 4.5% tungsten, 4.5 to 6.0% aluminum, 0.50 to 1.50% titanium, 8.0 to 10.5% tantalum, 0.15 to 0.30% hafnium, 0.05 to 0.15% silicon, the balance being nickel and unavoidable impurities.
  5. The superalloy according to claim 1, comprising, in percentages by mass, 4.5 to 5.5% rhenium, 3.5 to 12.5% cobalt, 0.50 to 1.50% molybdenum, 3.5 to 4.5% chromium, 3.5 to 4.5% tungsten, 5.0 to 6.0% aluminum, 0.50 to 1.50% titanium, 8.0 to 9.0% tantalum, 0.15 to 0.30% hafnium, 0.05 to 0.15% silicon, the balance being nickel and unavoidable impurities.
  6. The superalloy according to claim 1, comprising, in percentages by mass, 4.5 to 5.5% rhenium, 7.0 to 9.0% cobalt, 0.50 to 1.50% molybdenum, 3.5 to 4.5% chromium, 3.5 to 4.5% tungsten, 5.0 to 6.0% aluminum, 0.50 to 1.50% titanium, 8.0 to 9.0% tantalum, 0.15 to 0.30% hafnium, 0.05 to 0.15% silicon, the balance being nickel and unavoidable impurities.
  7. The superalloy according to claim 1, comprising, in percentages by mass, 4.2 to 5.3% rhenium, 6.0 to 8.0% cobalt, 0.30 to 1.00% molybdenum, 3.5 to 4.5% chromium, 4.5 to 5.5% tungsten, 5.0 to 6.0% aluminum, 0.35 to 1.30% titanium, 8.0 to 9.0% tantalum, 0.15 to 0.30% hafnium, 0.05 to 0.15% silicon, the balance being nickel and unavoidable impurities.
  8. The superalloy according to claim 1, comprising, in percentages by mass, 4.0 to 5.0% rhenium, 4.0 to 6.0% cobalt, 0.30 to 1.00% molybdenum, 4.5 to 5.5% chromium, 3.5 to 4.5% tungsten, 5.0 to 6.0% aluminum, 0.35 to 1.30% titanium, 8.0 to 10.5% tantalum, 0.15 to 0.30% hafnium, 0.05 to 0.15% silicon, the balance being nickel and unavoidable impurities.
  9. The superalloy according to claim 1, comprising, in percentages by mass, 5.2% rhenium, 5.0% cobalt, 0.50% molybdenum, 4.0% chromium, 4.0% tungsten, 5.4% aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the balance being nickel and unavoidable impurities.
  10. The superalloy according to claim 1, comprising, in percentages by mass, 5.2% rhenium, 5.0% cobalt, 0.50% molybdenum, 4.0% chromium, 4.0% tungsten, 5.4% aluminum, 1.00% titanium, 8.5% tantalum, 0.17% hafnium, 0.10% silicon, the balance being nickel and unavoidable impurities.
  11. The superalloy according to claim 1, comprising, in percentages by mass, 5.2% rhenium, 5.0% cobalt, 0.50% molybdenum, 4.0% chromium, 4.0% tungsten, 5.1% aluminum, 1.00% titanium, 10.0% tantalum, 0.25% hafnium, 0.10% silicon, the balance being nickel and unavoidable impurities.
  12. The superalloy according to claim 1, comprising, in percentages by mass, 5.0% rhenium, 12.0% cobalt, 1.00% molybdenum, 4.0% chromium, 4.0% tungsten, 5.4% aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the balance being nickel and unavoidable impurities.
  13. The superalloy according to claim 1, comprising, in percentages by mass, 5.0% rhenium, 4.0% cobalt, 1.00% molybdenum, 4.0% chromium, 4.0% tungsten, 5.4% aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the balance being nickel and unavoidable impurities.
  14. The superalloy according to claim 1, comprising, in percentages by mass, 4.9% rhenium, 8.0% cobalt, 1.00% molybdenum, 4.2% chromium, 4.0% tungsten, 5.4% aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the balance being nickel and unavoidable impurities.
  15. The superalloy according to claim 1, comprising, in percentages by mass, 4.9% rhenium, 8.0% cobalt, 1.00% molybdenum, 4.2% chromium, 4.0% tungsten, 5.4% aluminum, 1.00% titanium, 8.5% tantalum, 0.17% hafnium, 0.10% silicon, the balance being nickel and unavoidable impurities.
  16. The superalloy according to claim 1, comprising, in percentages by mass, 4.9% rhenium, 8.0% cobalt, 1.00% molybdenum, 4.2% chromium, 4.0% tungsten, 5.4% aluminum, 1.00% titanium, 8.5% tantalum, 0.16% hafnium, 0.10% silicon, the balance being nickel and unavoidable impurities.
  17. The superalloy according to claim 1, comprising, in percentages by mass, 4.7% rhenium, 7.0% cobalt, 0.50% molybdenum, 4.0% chromium, 5.0% tungsten, 5.4% aluminum, 0.80% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the balance being nickel and unavoidable impurities.
  18. The superalloy according to claim 1, comprising, in percentages by mass, 4.5% rhenium, 5.0% cobalt, 0.50% molybdenum, 5.0% chromium, 4.0% tungsten, 5.4% aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the balance being nickel and unavoidable impurities.
  19. The superalloy according to claim 1, comprising, in percentages by mass, 4.5% rhenium, 5.0% cobalt, 0.50% molybdenum, 5.0% chromium, 4.0% tungsten, 5.4% aluminum, 0.55% titanium, 10.0% tantalum, 0.25% hafnium, 0.10% silicon, the balance being nickel and unavoidable impurities.
  20. The superalloy according to claim 1, comprising, in percentages by mass, 4.3% rhenium, 5.0% cobalt, 0.50% molybdenum, 4.0% chromium, 4.0% tungsten, 5.4% aluminum, 1.00% titanium, 8.5% tantalum, 0.25% hafnium, 0.10% silicon, the balance being nickel and unavoidable impurities.
  21. A single-crystal blade (20A, 20B) for a turbomachine comprising a superalloy according to any one of claims 1 to 20.
  22. The blade (20A, 20B) according to claim 21, comprising a protective coating comprising a metallic bond coat deposited on the superalloy and a ceramic thermal barrier deposited on the metallic bond coat.
  23. The blade (20A, 20B) according to claim 21 or 22, having a structure oriented in a <001> crystallographic direction.
  24. A turbomachine comprising a blade (20A, 20B) according to any one of claims 21 to 23.
EP18821711.1A 2017-11-14 2018-11-14 Nickel-based superalloy, single-crystal blade and turbomachine Active EP3710611B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1760675A FR3073526B1 (en) 2017-11-14 2017-11-14 NICKEL-BASED SUPERALLOY, SINGLE-CRYSTALLINE BLADE AND TURBOMACHINE
PCT/FR2018/052840 WO2019097163A1 (en) 2017-11-14 2018-11-14 Nickel-based superalloy, single-crystal blade and turbomachine

Publications (2)

Publication Number Publication Date
EP3710611A1 EP3710611A1 (en) 2020-09-23
EP3710611B1 true EP3710611B1 (en) 2024-01-10

Family

ID=61599306

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18821711.1A Active EP3710611B1 (en) 2017-11-14 2018-11-14 Nickel-based superalloy, single-crystal blade and turbomachine

Country Status (8)

Country Link
US (1) US11268170B2 (en)
EP (1) EP3710611B1 (en)
JP (1) JP7305662B2 (en)
CN (1) CN111655881A (en)
BR (1) BR112020009492B1 (en)
CA (1) CA3081885A1 (en)
FR (1) FR3073526B1 (en)
WO (1) WO2019097163A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3092340B1 (en) 2019-01-31 2021-02-12 Safran Nickel-based superalloy with high mechanical and environmental resistance at high temperature and low density
FR3108365B1 (en) 2020-03-18 2022-09-09 Safran Helicopter Engines BLADE FOR TURBOMACHINE COMPRISING AN ANTI-CORROSION COATING, TURBOMACHINE COMPRISING THE BLADE AND METHOD FOR DEPOSITING THE COATING ON THE BLADE
FR3124195B1 (en) * 2021-06-22 2023-08-25 Safran NICKEL-BASED SUPERALLOY, MONOCRYSTAL BLADE AND TURBOMACHINE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0971041B1 (en) * 1998-07-07 2002-10-02 ONERA (Office National d'Etudes et de Recherches Aérospatiales) Single crystal nickel-based superalloy with high solvus gamma prime phase
US20130129522A1 (en) * 2011-11-17 2013-05-23 Kenneth Harris Rhenium-free single crystal superalloy for turbine blades and vane applications

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270123A (en) 1992-03-05 1993-12-14 General Electric Company Nickel-base superalloy and article with high temperature strength and improved stability
US5366695A (en) * 1992-06-29 1994-11-22 Cannon-Muskegon Corporation Single crystal nickel-based superalloy
DE69423061T2 (en) * 1993-08-06 2000-10-12 Hitachi Ltd Gas turbine blade, method for producing the same and gas turbine with this blade
DE19624055A1 (en) * 1996-06-17 1997-12-18 Abb Research Ltd Nickel-based super alloy
JPH11310839A (en) 1998-04-28 1999-11-09 Hitachi Ltd Grain-oriented solidification casting of high strength nickel-base superalloy
DE59904846D1 (en) * 1999-05-20 2003-05-08 Alstom Switzerland Ltd Nickel-based superalloy
WO2003080882A1 (en) 2002-03-27 2003-10-02 National Institute For Materials Science Ni-BASE DIRECTIONALLY SOLIDIFIED SUPERALLOY AND Ni-BASE SINGLE CRYSTAL SUPERALLOY
RU2293782C1 (en) 2005-08-15 2007-02-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Nickel heat-resistant alloy for monocrystalline castings and article made therefrom
JP5146867B2 (en) 2006-08-18 2013-02-20 独立行政法人物質・材料研究機構 Heat resistant material with excellent high temperature durability
US8771440B2 (en) * 2006-09-13 2014-07-08 National Institute For Materials Science Ni-based single crystal superalloy
US20100126014A1 (en) * 2008-11-26 2010-05-27 General Electric Company Repair method for tbc coated turbine components
JP5645093B2 (en) * 2010-10-19 2014-12-24 独立行政法人物質・材料研究機構 Ni-base superalloy member provided with heat-resistant bond coat layer
CN102732750B (en) * 2011-04-08 2015-06-10 中国科学院金属研究所 Nickel base single crystal superalloy with low cost and low density
US9518311B2 (en) * 2014-05-08 2016-12-13 Cannon-Muskegon Corporation High strength single crystal superalloy
GB2540964A (en) * 2015-07-31 2017-02-08 Univ Oxford Innovation Ltd A nickel-based alloy
DE102016202837A1 (en) * 2016-02-24 2017-08-24 MTU Aero Engines AG Heat treatment process for nickel base superalloy components

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0971041B1 (en) * 1998-07-07 2002-10-02 ONERA (Office National d'Etudes et de Recherches Aérospatiales) Single crystal nickel-based superalloy with high solvus gamma prime phase
US20130129522A1 (en) * 2011-11-17 2013-05-23 Kenneth Harris Rhenium-free single crystal superalloy for turbine blades and vane applications

Also Published As

Publication number Publication date
FR3073526A1 (en) 2019-05-17
CN111655881A (en) 2020-09-11
BR112020009492A2 (en) 2020-10-13
CA3081885A1 (en) 2019-05-23
RU2020119484A (en) 2021-12-15
JP7305662B2 (en) 2023-07-10
WO2019097163A1 (en) 2019-05-23
US20200299808A1 (en) 2020-09-24
RU2020119484A3 (en) 2021-12-15
BR112020009492B1 (en) 2023-04-11
JP2021503045A (en) 2021-02-04
FR3073526B1 (en) 2022-04-29
US11268170B2 (en) 2022-03-08
EP3710611A1 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
EP3710610B1 (en) Nickel-based superalloy, single-crystal blade and turbomachine
EP3532648B1 (en) Nickel based superalloy, single crystal blade and turbomachine
CA2583140A1 (en) Nickel-based alloy
EP3710611B1 (en) Nickel-based superalloy, single-crystal blade and turbomachine
EP3802895B1 (en) Nickel-based superalloy, single-crystal blade and turbomachine
CA3041411C (en) Superalloy based on nickel, monocrystalline blade and turbomachine
WO2024047315A1 (en) Nickel-based superalloy, single-crystal blade and turbine engine
WO2022269158A1 (en) Nickel-based superalloy, single-crystal blade and turbomachine
WO2022269177A1 (en) Nickel-based superalloy, single-crystal blade and turbomachine
FR3121453A1 (en) NICKEL-BASED SUPERALLOY, SINGLE-CRYSTALLINE BLADE AND TURBOMACHINE
EP3911774B1 (en) Nickel based alloy having high mechanical strength at high temperature
WO2023281205A1 (en) Nickel-based superalloy, single-crystal guide vane and turbine engine
RU2780326C2 (en) Nickel-based superalloy, monocrystalline blade and turbomachine
RU2774764C2 (en) Superalloy based on nickel, monocrystal blade and turbomachine
FR3117507A1 (en) METHOD FOR MANUFACTURING A MONOCRYSTALLINE SUPERALLOY PART
FR3117506A1 (en) METHOD FOR MANUFACTURING A MONOCRYSTALLINE SUPERALLOY PART
WO2020260645A1 (en) Method for manufacturing a part made of a monocrystalline superalloy

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230818

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018064060

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH