WO2024023161A1 - Composition renouvelable de carburéacteur à teneur élevée en composés naphténiques et procédé de préparation associé - Google Patents

Composition renouvelable de carburéacteur à teneur élevée en composés naphténiques et procédé de préparation associé Download PDF

Info

Publication number
WO2024023161A1
WO2024023161A1 PCT/EP2023/070717 EP2023070717W WO2024023161A1 WO 2024023161 A1 WO2024023161 A1 WO 2024023161A1 EP 2023070717 W EP2023070717 W EP 2023070717W WO 2024023161 A1 WO2024023161 A1 WO 2024023161A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
mass
volume
aromatic
jet fuel
Prior art date
Application number
PCT/EP2023/070717
Other languages
English (en)
Inventor
Florent Picard
France CHAVAIN
Alexandrine CHOFFAT
Original Assignee
Totalenergies Onetech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totalenergies Onetech filed Critical Totalenergies Onetech
Publication of WO2024023161A1 publication Critical patent/WO2024023161A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel

Definitions

  • the present invention relates to the field of jet fuels and in particular to jet fuel derived from renewable feedstocks with a high content of naphthenic compounds.
  • Conventional jet fuel is produced from crude oil and contains a complex mixture of hydrocarbons that typically have 6 to 18 carbon atoms. These hydrocarbons include linear and branched alkanes, cycloalkanes and aromatic hydrocarbons. Due to the petroleum-based feedstock and production processes, conventional jet fuel, also called jet fuel, typically contains up to 25% by volume of aromatic hydrocarbons, more specifically typically 10% to 25% by volume. volume of aromatic hydrocarbons. A significant proportion, usually of the order of less than 5% of aromatic hydrocarbons, are polycyclic (i.e. they contain two or more aromatic rings) and generally of the naphthalene type. Such compounds are harmful to health (e.g. carcinogenic) and have poor combustion properties.
  • renewable fuels derived from biological matter are an alternative to conventional fossil fuels.
  • Conventional jets can be mixed with paraffinic bases from renewable feedstocks as provided for by standard D7566-21, thus allowing the production of alternative aviation fuels.
  • the bases for aviation fuel from renewable feedstocks that can be incorporated into fossil fuels are:
  • SPK paraffinic kerosenes
  • processes such as the Fischer-Tropsch process, the hydrotreatment of esters and fatty acids [HEFA-SPK] or produced by the Alcohol-to-jet route (transformation of alcohol into kerosene) [ATJ-SPK]
  • SPK paraffinic kerosenes
  • renewable fuels are introduced mixed with fossil fuels, but it will quickly be necessary to use pure renewable fuels, without mixing them with fossil fuels. It is therefore necessary to develop renewable fuel formulations that meet current specifications and/or are compatible with current and future aircraft.
  • US Patent 8,629,310 describes a production process for converting oxygenated feedstocks derived from biomass into various fuels, including gas range hydrocarbons, jet fuels and diesel fuels.
  • the compositions obtained comprise more than 50% by mass of naphthenic compounds.
  • Application WO 2021/237030 describes a kerosene composition produced from crude oil and shale oil, and comprising a substantial quantity of aromatic compounds of between 4 and 10% by mass.
  • Application US 2019/0002778 describes a kerosene composition produced by mixing an a) aviation fuel component and a b) diesel fuel component of renewable origin.
  • Application US 2009/0253947 describes a production process, in particular an integrated production process, of a fuel mixture from a component rich in paraffins and a component rich in cyclic compounds, each of the components being generated from a renewable raw material.
  • US Patent 10,087,374 describes a process for converting triacylglycerides into crude oil precursors and/or distilled hydrocarbon fuels.
  • compositions makes it possible to optimize their combustion quality while preserving, or even improving, their properties, such as their compatibility with materials, in particular with seals, their density, their lubricating power, their viscosity and/or their autoignition temperature.
  • the invention relates to a jet fuel composition derived from renewable feedstocks comprising, relative to the total volume of the composition: a. from 50 to 90% by volume of at least one paraffinic base resulting from a hydrotreatment of esters and fatty acids, from a Fischer-Tropsch process or from a process for the production of jet fuel from alcohols, and comprising at least 90% by mass of paraffins relative to the total mass of the paraffinic base, b.
  • Such a composition comprising in particular from 10 to 50% by volume of at least one C8-C16 naphthenic base, makes it possible to resolve the aforementioned technical problems. It presents an improved combustion quality compared to existing jet fuel compositions, while preserving or even improving at least one of their properties chosen from their compatibility with the materials, in particular with the seals, their density, their lubricating power and/or their autoignition temperature.
  • the composition comprises a quantity less than or equal to 15% by volume, preferably less than 8% by volume, preferably less than or equal to 5% by volume of aromatic compounds, relative to the total volume of the composition.
  • the naphthenic base comprises aromatic compounds and naphthenic compounds, and has a mass ratio between the naphthenic compounds and the aromatic compounds greater than or equal to 1, preferably greater than or equal to 2, preferably greater than or equal to 5.
  • the composition further comprises from 1 to 18% by volume, preferably from 1 to 10% by volume, relative to the total volume of the composition, of at least one C8-C16 aromatic base, said aromatic base corresponding to the C8-C16 fraction of a biofuel produced by a process for converting at least one C1 -C6 bioalcohol into fuel and characterized in that said aromatic base contains at least 60% by mass of aromatic compounds, said compounds aromatics including least 50% by mass of benzene substituted by at least m methyl, m being an integer from 1 to 3, and optionally n C2-C5 alkyl, n being an integer from 1 to 3.
  • the biofuel comprises at least 90% by volume of C4-C40 compounds, preferably C4-C20 compounds, relative to the total volume of the biofuel.
  • the invention also relates to a first process for producing a jet fuel composition derived from renewable feedstocks, comprising at least the following steps: a) the production of at least one paraffinic base from a hydrotreatment of esters and fatty acids, a Fischer-Tropsch process or a process for producing jet fuel from alcohols (called jet alcohols), said paraffinic base comprising at least 90% by mass of paraffins, b) the production of at least one C8-C16 naphthenic base comprising at least the following steps: i) the production of a biofuel by a process for converting at least one C1-C6 bioalcohol into fuel, ii) the hydrogenation of the biofuel obtained at the end of step i) and obtaining a hydrogenated biofuel, iii) the recovery of said C8-C16 naphthenic base by fractionation of said hydrogenated biofuel obtained in step ii), and c) the mixing 50% to 90% by volume of the at least one paraffinic base produced in step a) with 10 to
  • the invention also relates to a second process for producing a jet fuel composition derived from renewable feedstocks, comprising at least the following steps: a) the production of at least one paraffinic base from a hydrotreatment of esters and fatty acids, a Fischer-Tropsch process or a process for producing jet fuel from alcohols (called jet alcohols), said paraffinic base comprising at least 90% by mass of paraffins, b) the production of 'a biofuel by a process of converting at least one C1 -C6 bioalcohol into fuel, c) i) mixing 50% to 90% by volume of the at least one paraffinic base produced in step a) with 10 to 50% by volume of the biofuel produced in step b), c) ii) hydrogenating the mixture obtained in step c) i) to obtain a hydrogenated mixture, and c) iii) fractionating the hydrogenated mixture and obtaining a jet fuel composition comprising a paraffinic base and a naphthenic base.
  • the production of the biofuel, the hydrogenation of the mixture and the fractionation of the hydrogenated mixture are as defined for the first process.
  • the invention also relates to a third method for producing a jet fuel composition derived from renewable feedstocks, comprising at least the following steps: a) the production of at least one paraffinic base from a hydrotreatment of esters and d fatty acids, a Fischer-Tropsch process or a process for producing jet fuel from alcohols (called jet alcohols), said paraffinic base comprising at least 90% by mass of paraffins, b) the production of 'a biofuel by a process for converting at least one C1 -C6 bioalcohol into fuel, c) i) the hydrogenation of the biofuel obtained in step b) to obtain a hydrogenated biofuel c) ii) the mixture of 50 % to 90% by volume of the at least one paraffinic base produced in step a) with 10 to 50% by volume of the hydrogenated biofuel produced in step c) i), c) iii) the fractionation of the mixture obtained in step c) ii) and obtaining a jet fuel composition comprising a par
  • the production of the biofuel, the hydrogenation of the biofuel and the fractionation of the mixture are as defined for the first process.
  • the hydrogenation is total.
  • the hydrogenation is partial.
  • the at least one paraffinic base resulting from step a) is produced from one or more oils chosen from vegetable oils, animal fats, preferably highly saturated oils. No edible, used oils, by-products of the refining of vegetable oils or animal oil(s) containing free fatty acids, tall oils, and oils produced by bacteria, yeasts, algae, prokaryotes or eukaryotes .
  • the methods according to the invention further comprise:
  • step d) of producing at least one C8-C16 aromatic base comprising at least the following steps: i) producing a biofuel by a process for converting at least one C1-C6 bioalcohol into fuel , ii) recovering said C8-C16 aromatic base by fractionation of said biofuel obtained in step i), said C8-C16 aromatic base comprising at least 60% by mass of aromatic compounds, said aromatic compounds comprising at least 50 % by mass, preferably at least 80% by mass, of benzene substituted with at least m methyls, m being an integer from 1 to 3, and optionally n C2-C5 alkyl, n being an integer from 1 to 3, and
  • steps a), b), c), and optionally d) and e) when present are carried out in separate processes.
  • % by weight and % by mass have an equivalent meaning and refer to the proportion of the mass of a product compared to 100g of a composition comprising it.
  • % by volume refers to the proportion of the volume of a product compared to 100 L of a composition comprising it.
  • naphthenic compounds C8-C16 cycloalkanes or polycycloalkanes, optionally substituted by C1-C5 alkyls.
  • Paraffinic base means a synthetic paraffinic fuel produced from raw material of non-petroleum origin.
  • Said synthetic paraffinic fuel is advantageously a renewable synthetic paraffinic kerosene (SPK) resulting from a hydrotreatment of esters and fatty acids (SPK-HEFA) or resulting from a Fischer Tropsch process (SPK-FT) or resulting from a process for converting alcohol into isoparaffinic kerosene (SPK-ATJ).
  • SPK renewable synthetic paraffinic kerosene
  • SPK-HEFA hydrotreatment of esters and fatty acids
  • SPK-FT Fischer Tropsch process
  • SPK-ATJ a process for converting alcohol into isoparaffinic kerosene
  • the synthetic paraffinic fuel of the present invention is thus a renewable fuel obtained exclusively from compounds of non-fossil origin.
  • SPK-HEFA renewable paraffinic synthetic fuel can be produced from oil(s) of natural origin by a process of hydrogenation and deoxygenation of fatty acid esters and free fatty acids and subsequent processing of the product comprising hydrocracking, or hydroisomerization, or isomerization, or a combination of these steps, and may include other conventional refining processes.
  • SPK-HEFA renewable paraffinic synthetic fuel is produced from the hydrotreatment of esters and fatty acids from an oil of natural origin. It is preferably compatible with the ASTM D7566:21 Annex 2 specification.
  • oil of natural origin is defined as an oil of biomass origin and containing no mineral oil.
  • oil(s) of natural origin refers indifferently to oils, fats and their mixtures.
  • Said oil(s) of natural origin may contain one or more oils chosen from vegetable oils, animal fats, preferably highly saturated inedible oils, used oils, by-products of the refining of vegetable oil(s). s) or animal oil(s) containing free fatty acids, tall oils and oils produced by bacteria, yeasts, algae, prokaryotes or eukaryotes.
  • Suitable vegetable oils are, for example, palm oil, palm kernel oil, soybean oil, rapeseed oil (rapeseed or canola), sunflower oil, linseed oil, bran oil, rice oil, corn oil, olive oil, castor oil, sesame oil, pine oil, peanut oil, mustard oil, carinata oil, hemp oil, coconut oil, babasu oil, cottonseed oil, linola oil, jatropha oil.
  • Animal fats include tallow, lard, grease (yellow and brown fat), fish oil/fat, butterfat, milk fat.
  • By-products of vegetable or animal oil refining are by-products containing free fatty acids which are removed from crude fats and oils by neutralization or vacuum or steam distillation.
  • a typical example is PFAD (Palm Fatty Acid Distillate).
  • Used oils include used cooking oils (used cooking oils) and oils recovered from waste water, such as such as waste fats/oils, gutter oils, sewage oils, for example from water treatment plants, and used greases from the food industry.
  • Tall oils including crude tall oil, distilled tall oil (DTO) and tall oil fatty acids (TOFA), preferably DTO and TOFA, can also be used in the present invention.
  • Tall oil, or otherwise called tall oil is a liquid by-product of the Kraft wood processing process, making it possible to isolate wood pulp useful for the paper industry.
  • Tall oil is mainly obtained when conifers are used in the Kraft process. After treatment of wood chips with sodium sulfide in aqueous solution, the isolated tall oil is alkaline. The latter is then acidified with sulfuric acid to produce crude tall oil.
  • the oil(s) of natural origin used in the present invention also include oils produced by microorganisms, either natural microorganisms or genetically modified microorganisms, such as bacteria, yeasts, algae, prokaryotes or eukaryotes. In particular, such oils can be recovered by well-known mechanical or chemical extraction methods.
  • the SPK-FT renewable paraffinic synthetic fuel comes from a Fischer-Tropsch process and can be produced from solid biomass. It is preferably compatible with the ASTM D7566:21 Annex 1 specification.
  • the thermochemical conversion of biomass also called BtL (Biomass to Liquid) includes the following steps: conditioning of the biomass (preparation, crushing, roasting), gasification of the biomass (obtaining a synthesis gas), purification of synthesis gas, Fisher-Tropsch synthesis to transform the gas into synthetic biofuel.
  • the synthetic paraffin fuel may have been subjected to an isomerization and/or distillation step before its incorporation into the composition of the invention, in order to eliminate the heaviest linear paraffins which do not would not allow the cold properties of the jet to be respected, in particular the disappearance point of the crystals which must be lower than -47°C for Jet A1.
  • the lightest compounds can also be separated by distillation, in order to respect, in particular, the properties of volatility and flash point of jet A1.
  • the renewable paraffinic synthetic fuel may have one or more of the following characteristics:
  • - a cycloparaffin content of less than 10% by mass, - a freezing point lower than -30°C, preferably lower than -40°C, for example lower than -47°C,
  • SPK-ATJ renewable synthetic paraffinic fuel can conform to ASTM specification D7566:21 Annex 5 but can also be produced from any alcohol of 1 to 6 carbon atoms.
  • SPK-ATJ renewable fuel is obtained by dehydrating alcohols to produce olefins, then oligomerizing the olefins to obtain unsaturated hydrocarbon molecules in the boiling temperature range of SAF. These unsaturated hydrocarbon molecules are then hydrogenated to produce the paraffinic base.
  • the paraffinic base preferably complies with the ASTM D7566:21 specification.
  • the second and third processes according to the invention can be implemented whether or not the paraffinic base complies with the ASTM D7566:21 specification.
  • the C8-C16 naphthenic base is produced by hydrogenation of a biofuel obtained by a process of converting at least one C1-C6 bioalcohol into fuel, followed by fractionation of the hydrogenated biofuel.
  • the production of the biofuel can be carried out by conversion of at least one C1 -C6 bioalcohol, in a catalytic process.
  • the catalytic process can be carried out on a bed of aluminosilicate, preferably of the zeolite type.
  • C1 -C6 bioalcohol mainly contains alcohols such as methanol, ethanol, propanols (n-propanol, i-propanol), butanols (n-butanol, i-butanol), pentanols (n-pentanols, i pentanol) and hexanols.
  • the C1 -C6 bioalcohol preferably contains more than 80% by mass of C1 to C6 alcohols, preferably more than 90% by mass of C1 to C6 alcohols.
  • the C1 -C6 bioalcohol can be:
  • Biomass may include wood fuels from natural forests and woodlands (e.g. sawdust), agricultural residues (e.g. rice husks, straw manure), energy crops that are grown exclusively for energy production (e.g. corn and oil palm), urban waste (e.g. wood waste, rice, straw manure), energy crops that are grown exclusively for the production of energy (e.g. corn and oil palm), urban waste (e.g. municipal solid waste and sewage) and waste-derived biomass fuel (e.g. wood pellets).
  • Methanol of renewable origin can in particular be obtained by conversion of a synthetic gas rich in CO/H2, this synthetic gas coming from biomass.
  • Biomass can for example be gasified to produce a synthetic gas (or “syngas” in English) rich in CO/H2, this synthetic gas then being converted into methanol in the presence of a catalyst.
  • a method of this type is for example described in the document WO2018134853A1.
  • a synthetic gas suitable for subsequent conversion into methanol can also be obtained by partial oxidation in the presence of dioxygen of a biogas containing methane and CO2, this biogas resulting for example from the anaerobic digestion of biomass in the presence of one or more microorganisms.
  • a process of this type is for example described in document W02019060988A1.
  • the sugars are composed of chains of 6 or 5 carbons, such as glucose, sucrose (glucose and fructose dimer), xylose and arabinose.
  • This substrate can for example include, or come directly from agri-food plants, sugar cane, sugar beet, sugar sorghum, or by depolymerization of starch from corn, wheat, barley, rye, sorghum, triticale, potato, sweet potato, cassava, and/or cellulose and hemicellulose of lignocellulosic biomass.
  • the sugar-rich substrate can also be derived from lignocellullosic biomass by a treatment comprising (i) a step of separating the lignin, cellulose and hemicellulose contained in the lignocellullosic biomass, followed (ii) by a step of conversion of cellulose and/or hemicellulose into sugars.
  • a treatment comprising (i) a step of separating the lignin, cellulose and hemicellulose contained in the lignocellullosic biomass, followed (ii) by a step of conversion of cellulose and/or hemicellulose into sugars.
  • Obtaining this type of substrate from lignocellulosic biomass is well known to those skilled in the art.
  • the sugar-rich substrate is then subjected to fermentation, for example using microorganisms.
  • Ethanol can also be produced by anaerobic fermentation of a gas comprising CO.
  • the substrate is then a gaseous substrate (a gas) containing CO.
  • This gaseous substrate may be a by-product of an industrial process, such as the manufacturing of ferrous metal products, including steel mills, the manufacturing of non-ferrous products, petroleum refining processes, the gasification of coal and/or biomass or biochar, the production of electrical energy, the production of carbon black, the production of ammonia, the production of methanol, the manufacture of coke, catalytic cracking (in particular during the regeneration of the catalyst monoxide of carbon is produced) and the reforming of methane.
  • an industrial process such as the manufacturing of ferrous metal products, including steel mills, the manufacturing of non-ferrous products, petroleum refining processes, the gasification of coal and/or biomass or biochar, the production of electrical energy, the production of carbon black, the production of ammonia, the production of methanol, the manufacture of coke, catalytic cracking (
  • the gaseous substrate may come from the gasification of biomass, such as biomass byproducts obtained during the extraction and processing of food products.
  • the gasification process involves partial combustion of biomass in a restricted supply of air or oxygen.
  • the resulting gas typically comprises primarily CO and H2, with minor volumes of CO2, methane, ethylene and ethane.
  • the CO content of the gaseous substrate is typically 15% to 100% by volume, 15% to 95% by volume, 40% to 95% by volume, 40% to 60% by volume, and 45% to 95% by volume. 55% by volume or is in any interval defined by two of these limits.
  • Any microorganism capable of fermenting a gaseous substrate comprising CO to produce ethanol can be used.
  • Biomass can for example be gasified to produce a synthesis gas (or “syngas” in English) rich in CO/H 2 , this synthetic gas then being converted into methanol in the presence of a catalyst.
  • a synthesis gas or “syngas” in English
  • CO/H 2 a gas rich in CO/H 2
  • a process of this type is for example described in the document WO2012003901.
  • ABE fermentation a bacterial fermentation producing a mixture of ethanol, acetone and butanol from carbohydrates such as glucose or starch;
  • the hydrogenation of the biofuel partially or completely hydrogenates the unsaturated compounds included in the biofuel, in particular partially or completely hydrogenates the aromatic compounds included in the biofuel.
  • Hydrogenation is for example carried out in one or more reactors in a fixed bed (descending or ascending) and in mixed phase, the fraction to be hydrogenated being mainly in the liquid phase.
  • the hydrogenation is for example carried out at a temperature between 50°C and 350°C, in particular between 100°C and 300°C. It is carried out under a pressure preferably greater than 10 bara and in particular between 20 bara and 80 bara.
  • a stream of hydrogen is fed into the or each reactor mixed with the aromatic base stream to be hydrogenated.
  • the ratio of the volume flow of the hydrogen flow to the volume flow of aromatic base (not counting the recycled flow) to be hydrogenated is advantageously between 50 NL/L and 3000NL/L, in particular between 100 NL/L and 500 NL/L.
  • Hydrogen can be added to the biofuel stream in several stages along the catalyst bed.
  • the hourly space speed is advantageously between 0.5 and 3 and in particular between 1 and 2 h -1 . Excess hydrogen can be recycled into the reaction zone after separation and compression.
  • the reaction is carried out in the presence of at least one catalyst comprising one or more group VIII metals (typically Pt, Pd, Ni) supported on a support such as silica, alumina or any mixture of these two compounds or carbon.
  • the reaction can also be carried out in the presence of a sulfide type catalyst containing an element from group VIB (Cr, Mo, W) and an element from group VII IB (Fe, Ru, Co, Os, Co, Rh, Ir, Pd, Ni, Pt) or mixtures of these two groups of metals.
  • the hydrogenation step is preferably followed by a step for separating the light compounds, generally carried out by stripping or distillation. This separation step makes it possible to produce a hydrogenated cut of type C8-C16, suitable for incorporation into aviation fuel.
  • the hydrogenation of the biofuel is complete. This means that the aromatic compounds contained in the biofuel are more than 99% hydrogenated.
  • the hydrogenation of the biofuel is partial.
  • the hydrogenated biofuel obtained during step ii) is fractionated to recover the C8-C16 naphthenic fraction.
  • the naphthenic base recovered by fractionation of the partially hydrogenated biofuel comprises a mixture of aromatic compounds and naphthenic compounds.
  • the naphthenic base preferably comprises at least 60% by mass of naphthenic compounds, preferably from 70% to 95% by mass of naphthenic compounds, preferably from 75% to 95% by mass of naphthenic compounds.
  • the naphthenic base preferably has a mass ratio between the naphthenic compounds and the aromatic compounds greater than or equal to 1, preferably greater than or equal to 2, preferably greater than or equal to 5, preferably between 1 and 99 , preferably between 5 and 24, preferably between 5 and 10.
  • the naphthenic base has a mass ratio between the mass quantity of C9-C10 naphthenic compounds of the naphthenic base and the mass quantity of C9-C14 naphthenic compounds of the naphthenic base, greater than or equal to 0.10, of preferably greater than or equal to 0.40, preferably greater than or equal to 0.50, preferably greater than or equal to 0.6, preferably between 0.70 and 0.95.
  • the naphthenic base has a mass ratio between the mass quantity of C9-C12 naphthenic compounds of the naphthenic base and the mass quantity of C9-C14 naphthenic compounds of the naphthenic base, greater than or equal to 0.60, of preferably greater than or equal to 0.70, preferably greater than or equal to 0.80, preferably greater than or equal to 0.90, preferably between 0.80 and 0.999.
  • paraffinic and naphthenic bases according to the invention can be carried out from different renewable sources, and in particular by separate processes.
  • Aromatic base according to the invention is aromatic base according to the invention.
  • composition according to the invention may also comprise a C8-C16 aromatic base.
  • the C8-C16 aromatic base can be produced according to the following steps: i) production of a biofuel by subjecting at least one C1-C6 bioalcohol from at least one renewable feedstock to a process for converting alcohol into fuel, ii) recovery by fractionation of said C8-C16 aromatic base from of said biofuel obtained in step i).
  • Step i) of producing the biofuel is identical to that described above for the production of the naphthenic base.
  • the biofuel obtained during step i) is fractionated to recover the C8-C16 fraction in order to satisfy the volatility properties of aviation fuels.
  • the C8-C16 aromatic base according to the invention may have one or more of the following characteristics:
  • C8-C16 aromatic compounds in particular monoaromatic compounds, said aromatic compounds comprising at least 50% by mass, preferably at least 80% by mass, of benzene substituted by at least m methyl, m being an integer from 1 to 3, and optionally n C2-C5 alkyl, n being an integer from 1 to 3,
  • aromatic compounds present in a content of at least 60% by mass, comprise benzene substituted by at least m methyl and optionally n C2-C5 alkyl.
  • aromatic compounds can thus comprise a mixture of benzene molecules substituted by at least m methyls, m being an integer ranging from 1 to 3, and optionally benzene molecules substituted by at least m methyls, m being an integer ranging from 1 to 3. 3, and/or n C2-C5 alkyl, n being an integer ranging from 1 to 3.
  • paraffinic and naphthenic bases according to the invention can be carried out from different renewable sources, and in particular by separate processes.
  • the composition according to the invention comprises from 50% to 85% by volume, preferably from 55% to 80% by volume, preferably from 55% to 75% by volume of the at least one paraffinic base.
  • the composition according to the invention comprises from 15% to 50% by volume, preferably from 20% to 45% by volume, preferably from 25% to 45% by volume of the at least one naphthenic base.
  • the composition according to the invention comprises less than 18% by volume, preferably less than 10% by volume, preferably less than 8% by volume, preferably less than 5% by volume, preferably from 1% to 18% by volume, preferably from 1 to 10% by volume of at least one aromatic base.
  • the composition according to the invention has a mass ratio of naphthenic compounds/aromatic compounds greater than or equal to 1, preferably greater than or equal to 2, preferably greater than or equal to 3, preferably between 3 and 5.
  • the composition according to the invention comprises from 15% to 48% by mass of naphthenic compounds, preferably from 25% to 45% by mass of naphthenic compounds.
  • the composition according to the invention comprises a quantity less than or equal to 15% by volume of aromatic compounds, preferably less than or equal to 8% by volume, preferably less than or equal to 5% by volume, relative to the total volume. of the composition.
  • the composition according to the invention comprises a quantity of aromatic compounds of between 1 and 15% by volume, preferably between 1 and 8% by volume, relative to the total volume of the composition.
  • the quantity of aromatic compounds included in the composition according to the invention is defined by volume in accordance with the specifications of standard ASTM D7566:21.
  • the jet fuel composition according to the invention can comply with the Jet A or Jet A1 requirements as defined in the ASTM D7566:21 standard of July 2021 or in the DefStan 91 -091 Issue which refers to the ASTM D7566 standard: 21.
  • the composition according to the invention has a density of between 755 kg/m 3 and 840 kg/m 3 , preferably between 775 kg/m 3 and 840 kg/m 3 .
  • the contents of paraffinic base, naphthenic base, and aromatic base when present, in the jet fuel composition according to the invention can be chosen such that the jet fuel composition according to the invention complies with these requirements.
  • the at least one paraffinic base and the at least one naphthenic base come from separate treatments of renewable charges (from distinct processes), in particular from distinct renewable charges.
  • the jet fuel composition according to the invention consists of paraffinic, naphthenic, and aromatic bases when present, derived from renewable feedstocks.
  • the jet fuel composition according to the invention is free of components of petroleum origin.
  • compositions C1 and C2 according to the invention are prepared.
  • C1 comprises 68% by volume of HEFA conforming to the paraffinic base a) according to the invention and 32% by volume of the naphthenic base b).
  • C2 comprises 61% by volume of HEFA conforming to the paraffinic base a) according to the invention and 39% by volume of the naphthenic base b).
  • composition of naphthenic base b) is presented in the following Table 1, and was determined by a GC2D method.
  • naphthenic base b) to a paraffinic base a) therefore makes it possible to obtain compositions with improved properties.
  • the addition of naphthenic base b) surprisingly improves the viscosity at - 40°C of the paraffinic base, as well as its lubricity (BOCLE). This shows that it is possible to replace at least part of the aromatic base, frequently used in combination with paraffinic bases, by a naphthenic base, and thus reduce the formation of fine particles and the presence of streaks.
  • Example 2 Comparative composition comprising a naphthenic base of fossil origin
  • a comparative composition C3* comprising 61% by volume of HEFA conforming to the paraffinic base a) according to the invention (that of Example 1) and 39% by volume of the fossil naphthenic base b') was prepared.
  • composition of the naphthenic base b’ was determined by GC2D and is as described in the following table
  • the comparative composition C3* as well as the HEFA base and the naphthenic base b’) present the characteristics detailed in the following table (these characteristics were determined according to the standards specified in each column):
  • the naphthenic base b') of fossil origin comprises compounds having a higher average carbon number than the naphthenic base b) according to the invention used in example 1.
  • the C3* composition has too high a viscosity and does not comply with the ASTM D7566 standard.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

La présente invention concerne une composition de carburéacteur issue de charges renouvelables comprenant, par rapport au volume total de la composition : a. de 50 à 90% en volume d'au moins une base paraffinique issue d'un hydrotraitement d'esters et d'acides gras, d'un procédé Fischer-Tropsch ou d'un procédé de production de carburéacteur à partir d'alcools, et comprenant au moins 90% en masse de paraffines par rapport à la masse totale de la base paraffinique, b. de 10 à 50% en volume d'au moins une base naphténique en C8-C16, ladite base naphténique étant issue de l'hydrogénation d'une base aromatique en C8-C16, ladite base aromatique correspondant à la fraction C8-C16 d'un biocarburant produit par un procédé de conversion en carburant d'au moins un bioalcool en C1-C6, et ladite base aromatique contenant au moins 60% en masse de composés aromatiques par rapport à la masse totale de la base aromatique, lesdits composés aromatiques comprenant au moins 50% en masse, de préférence au moins 80% en masse, de benzène substitué par au moins m méthyles, m étant un entier de 1 à 3, et éventuellement n alkyle en C2-C5, n étant un entier de 1 à 3, dans laquelle ladite composition de carburéacteur comprend de 10 à 49% en masse de composés naphténiques par rapport à la masse totale de la composition

Description

Composition renouvelable de carburéacteur à teneur élevée en composés naphténiques et procédé de préparation associé
DOMAINE TECHNIQUE
La présente invention concerne le domaine des carburéacteurs et en particulier un carburéacteur issu de charges renouvelables à teneur élevée en composés naphténiques.
CONTEXTE DE L’INVENTION
Le carburant conventionnel de type carburéacteur est produit à partir de pétrole brut et contient un mélange complexe d'hydrocarbures qui ont typiquement 6 à 18 atomes de carbone. Ces hydrocarbures comprennent des alcanes linéaires et ramifiés, des cycloalcanes et des hydrocarbures aromatiques. En raison de la charge d’origine pétrolière et des procédés de production, le carburant conventionnel de type carburéacteur, appelé également jet, contient typiquement jusqu'à 25 % en volume d'hydrocarbures aromatiques, plus spécifiquement typiquement de 10% à 25% en volume d'hydrocarbures aromatiques. Une proportion significative, habituellement de l'ordre de moins de 5 % d’hydrocarbures aromatiques, sont polycycliques (c'est-à-dire qu’ils contiennent deux ou plusieurs cycles aromatiques) et généralement de type naphtalènes. De tels composés sont nocifs pour la santé (par exemple cancérigènes) et ont de mauvaises propriétés de combustion.
Les contraintes environnementales, économiques et énergétiques ont encouragé la diversification des ressources énergétiques et le développement de nouveaux carburants en particulier dans le domaine de l’aviation.
Les carburants renouvelables dérivés de la matière biologique sont une alternative aux combustibles fossiles conventionnels. Les jets conventionnels peuvent être mélangés à des bases paraffiniques issues de charges renouvelables telles que prévues par la norme D7566-21 , permettant ainsi la production de carburants d’aviation alternatifs. Les bases pour carburant d’aviation issues de charges renouvelables pouvant être incorporées à du jet fossile sont :
- les kérosènes paraffiniques synthétiques [SPK], issus de procédés tels que le procédé Fischer-Tropsch, l’hydrotraitement d’esters et d’acides gras [HEFA- SPK] ou produit par la voie Alcohol-to-jet (transformation d’alcool en kérosène) [ATJ-SPK],
- les isoparaffines synthétiques produites par hydrotraitement à partir de sucres fermentés [SIP-HFS], les kérosènes aromatiques synthétiques obtenus par alkylation d’aromatiques légers de source non-pétrolière [SPK/A],
- les kérosènes de synthèse obtenus à partir de la conversion hydrothermale d’esters d’acide gras et d’acide gras, et
- les kérosènes paraffiniques synthétiques [SPK] obtenus à partir d’hydrocarbures, d’esters et d’acides gras hydrotraités.
A court terme, les carburants renouvelables sont introduits en mélange avec les carburants fossiles, mais il sera rapidement nécessaire d’utiliser des carburants renouvelables purs, sans les mélanger à du jet fossile. Il est donc nécessaire de développer des formulations de carburants renouvelables qui répondent aux spécifications en vigueur et/ou qui soient compatibles avec les avions actuels et futurs
Actuellement, les bases de carburant d’aviation renouvelables ne peuvent pour la plupart être utilisées seules en raison de leur composition très éloignée des jets fossiles, qui posent notamment des problèmes de compatibilité avec les matériaux des éléments avec lesquels le carburant est en contact. Ceci provient du fait que ces bases sont principalement constituées de paraffines. Elles présentent donc de bonnes propriétés de combustion, mais posent des problèmes d’utilisation dans les avions actuels, notamment des problèmes de compatibilité de matériaux, de faible densité, de faible pouvoir lubrifiant, de température d’auto-inflammation trop basse. Une possibilité pour résoudre ce problème est d’ajouter une base aromatique à la base paraffinique. L’article - Kramer S, Andac G, Heyne J, Ellsworth J, Herzig P and Lewis KC (2022) Perspectives on Fully Synthesized Sustainable Aviation Fuels: Direction and Opportunities. Front. Energy Res. 9:782823. doi: 10.3389/fenrg.2021 .782823 - présente ainsi les voies probables de production de SAF dits 100% drop-in, par mélange de bases paraffiniques et de bases aromatiques. Toutefois, même si les composés aromatiques améliorent la lubrification et la tenue des joints, ils ont un impact négatif sur les émissions en combustion, principalement sur la formation de particules fines et la présence de trainées.
ETAT DE LA TECHNIQUE
Le brevet US 8,629,310 décrit un procédé de production permettant de convertir des matières premières oxygénées dérivées de la biomasse en différents carburants, notamment des hydrocarbures de la gamme des gaz, des carbu réacteurs et des carburants diesel. Les compositions obtenues comprennent plus de 50% en masse de composés naphténiques. La demande WO 2021/237030 décrit une composition de kérosène produite à partir de pétrole brut et d’huile de schiste, et comprenant une quantité substantielle de composés aromatiques comprise entre 4 et 10% en masse.
La demande US 2019/0002778 décrit une composition de kérosène produite par mélange d’un a) composant de carburant de gamme aviation et d’un b) composant de carburant de gamme diesel d'origine renouvelable.
La demande US 2009/0253947 décrit un procédé de production, en particulier un procédé de production intégré, d'un mélange de carburant à partir d'un composant riche en paraffines et d'un composant riche en composés cycliques, chacun des composants étant généré à partir d'une matière première renouvelable.
Le brevet US 10,087,374 décrit un procédé de conversion de triacylglycérides en précurseurs de pétrole brut et/ou en combustibles hydrocarbonés distillés.
Aucune de ces compositions ne permet d’optimiser leur qualité de combustion tout en préservant, voire en améliorant, leurs propriétés, telles que leur compatibilité avec les matériaux, en particulier avec les joints, leur densité, leur pouvoir lubrifiant, leur viscosité et/ou leur température d’auto-inflammation.
Il existe donc un besoin de nouvelles compositions de carburéacteur issues exclusivement de charges renouvelables, présentant une qualité de combustion améliorée par rapport aux compositions de carburéacteur existantes, tout en préservant, voire améliorant au moins une de leurs propriétés choisies parmi leur compatibilité avec les matériaux, en particulier avec les joints, leur densité, leur densité énergétique, leur pouvoir lubrifiant et/ou leur température d’auto-inflammation.
Il existe également un besoin pour un procédé permettant la préparation de compositions de carburéacteur issues exclusivement de charges renouvelables et présentant une qualité de combustion améliorée par rapport aux compositions de carburéacteur existantes, tout en préservant, voire améliorant au moins une de leurs propriétés choisies parmi leur compatibilité avec les matériaux, en particulier avec les joints, leur densité, leur pouvoir lubrifiant, leur viscosité, leur température d’auto-inflammation, et/ou en améliorant leur impact environnemental.
DESCRIPTION DE L’INVENTION
A cet effet, l’invention concerne une composition de carburéacteur issue de charges renouvelables comprenant, par rapport au volume total de la composition : a. de 50 à 90% en volume d’au moins une base paraffinique issue d’un hydrotraitement d’esters et d’acides gras, d’un procédé Fischer-Tropsch ou d’un procédé de production de carburéacteur à partir d’alcools, et comprenant au moins 90% en masse de paraffines par rapport à la masse totale de la base paraffinique, b. de 10 à 50% en volume d’au moins une base naphténique en C8-C16, ladite base naphténique étant issue de l’hydrogénation d’une base aromatique en C8-C16, ladite base aromatique correspondant à la fraction C8-C16 d’un biocarburant produit par un procédé de conversion en carburant d’au moins un bioalcool en C1-C6, et ladite base aromatique contenant au moins 60% en masse de composés aromatiques par rapport à la masse totale de la base aromatique, lesdits composés aromatiques comprenant au moins 50% en masse, de préférence au moins 80% en masse, de benzène substitué par au moins m méthyle, m étant un entier de 1 à 3, et éventuellement n alkyle en C2-C5, n étant un entier de 1 à 3, dans laquelle ladite composition de carburéacteur comprend de 10 à 49% en masse de composés naphténiques par rapport à la masse totale de la composition.
Les inventeurs ont découvert qu’une telle composition, comprenant notamment de 10 à 50% en volume d’au moins une base naphténique en C8-C16, permet de résoudre les problèmes techniques précités. Elle présente une qualité de combustion améliorée par rapport aux compositions de carburéacteur existantes, tout en préservant, voire améliorant au moins une de leurs propriétés choisies parmi leur compatibilité avec les matériaux, en particulier avec les joints, leur densité, leur pouvoir lubrifiant et/ou leur température d’autoinflammation.
De préférence, la composition comprend une quantité inférieure ou égale à 15% en volume, de préférence inférieure à 8% en volume, de préférence inférieure ou égale à 5% en volume de composés aromatiques, par rapport au volume total de la composition.
De préférence, la base naphténique comprend des composés aromatiques et des composés naphténiques, et présente un ratio massique entre les composés naphténiques et les composés aromatiques supérieur ou égal à 1 , de préférence supérieur ou égal à 2, de préférence supérieur ou égal à 5.
De préférence, la composition comprend en outre de 1 à 18% en volume, de préférence de 1 à 10% en volume, par rapport au volume total de la composition, d’au moins une base aromatique en C8-C16, ladite base aromatique correspondant à la fraction C8-C16 d’un biocarburant produit par un procédé de conversion en carburant d’au moins un bioalcool en C1 -C6 et caractérisée en ce que ladite base aromatique contient au moins 60% en masse de composés aromatiques, lesdits composés aromatiques comprenant au moins 50% en masse de benzène substitué par au moins m méthyle, m étant un entier de 1 à 3, et éventuellement n alkyle en C2-C5, n étant un entier de 1 à 3.
De préférence, le biocarburant comprend au moins 90% en volume de composés en C4-C40, préférentiellement de composés en C4-C20, par rapport au volume total du biocarburant.
L’invention concerne également un premier procédé de production d’une composition de carburéacteur issue de charges renouvelables, comprenant au moins les étapes suivantes : a) la production d’au moins une base paraffinique à partir d’un hydrotraitement d’esters et d’acides gras, d’un procédé Fischer-Tropsch ou d’un procédé de production de carburéacteur à partir d’alcools (dits alcools to jet), ladite base paraffinique comprenant au moins 90% en masse de paraffines, b) la production d’au moins une base naphténique en C8-C16 comprenant au moins les étapes suivantes : i) la production d’un biocarburant par un procédé de conversion en carburant d’au moins un bioalcool en C1-C6, ii) l’hydrogénation du biocarburant obtenu à l’issue de l’étape i) et l’obtention d’un biocarburant hydrogéné, iii) la récupération de ladite base naphténique en C8-C16 par fractionnement dudit biocarburant hydrogéné obtenu à l’étape ii), et c) le mélange de 50% à 90% en volume de l’au moins une base paraffinique produite à l’étape a) avec 10 à 50% en volume de la base naphténique produite à l’étape b), et l’obtention d’une composition de carburéacteur comprenant une base paraffinique et une base naphténique.
L’invention concerne également un deuxième procédé de production d’une composition de carburéacteur issue de charges renouvelables, comprenant au moins les étapes suivantes : a) la production d’au moins une base paraffinique à partir d’un hydrotraitement d’esters et d’acides gras, d’un procédé Fischer-Tropsch ou d’un procédé de production de carburéacteur à partir d’alcools (dits alcools to jet), ladite base paraffinique comprenant au moins 90% en masse de paraffines, b) la production d’un biocarburant par un procédé de conversion en carburant d’au moins un bioalcool en C1 -C6, c) i) le mélange de 50% à 90% en volume de l’au moins une base paraffinique produite à l’étape a) avec 10 à 50% en volume du biocarburant produit à l’étape b), c) ii) l’hydrogénation du mélange obtenu à l’étape c) i) pour obtenir un mélange hydrogéné, et c) iii) le fractionnement du mélange hydrogéné et l’obtention d’une composition de carburéacteur comprenant une base paraffinique et une base naphténique.
La production du biocarburant, l’hydrogénation du mélange et le fractionnement du mélange hydrogéné sont tels que définis pour le premier procédé.
L’invention concerne également un troisième procédé de production d’une composition de carburéacteur issue de charges renouvelables, comprenant au moins les étapes suivantes : a) la production d’au moins une base paraffinique à partir d’un hydrotraitement d’esters et d’acides gras, d’un procédé Fischer-Tropsch ou d’un procédé de production de carburéacteur à partir d’alcools (dits alcools to jet), ladite base paraffinique comprenant au moins 90% en masse de paraffines, b) la production d’un biocarburant par un procédé de conversion en carburant d’au moins un bioalcool en C1 -C6, c) i) l’hydrogénation du biocarburant obtenu à l’étape b) pour obtenir un biocarburant hydrogéné c) ii) le mélange de 50% à 90% en volume de l’au moins une base paraffinique produite à l’étape a) avec 10 à 50% en volume du biocarburant hydrogéné produit à l’étape c) i), c) iii) le fractionnement du mélange obtenu à l’étape c) ii) et l’obtention d’une composition de carburéacteur comprenant une base paraffinique et une base naphténique.
La production du biocarburant, l’hydrogénation du biocarburant et le fractionnement du mélange sont tels que définis pour le premier procédé.
Selon un mode de réalisation, dans les procédés selon l’invention, l’hydrogénation est totale.
Selon un autre mode de réalisation, dans les procédés selon l’invention, l’hydrogénation est partielle.
De préférence, dans les procédés selon l’invention, l’au moins une base paraffinique issue de l’étape a) est produite à partir d'une ou plusieurs huiles choisies parmi les huiles végétales, les graisses animales, préférentiellement les huiles hautement saturées non comestibles, les huiles usagées, les sous-produits du raffinage des huiles végétales ou d'huile(s) animale(s) contenant des acides gras libres, des tallols, et des huiles produites par des bactéries, levures, algues, procaryotes ou eucaryotes.
De préférence, les procédés selon l’invention comprennent en outre :
- une étape d) de production d’au moins une base aromatique en C8-C16 comprenant au moins les étapes suivantes : i) la production d’un biocarburant par un procédé de conversion en carburant d’au moins un bioalcool en C1-C6, ii) la récupération de ladite base aromatique en C8-C16 par fractionnement dudit biocarburant obtenu à l’étape i), ladite base aromatique en C8-C16 comprenant au moins 60 % en masse de composés aromatiques, lesdits composés aromatiques comprenant au moins 50% en masse, de préférence au moins 80% en masse, de benzène substitué par au moins m méthyles, m étant un entier de 1 à 3, et éventuellement n alkyle en C2-C5, n étant un entier de 1 à 3, et
- une étape e) d’ajout de 1% à 18% en volume par rapport au volume total de la composition, de préférence de 1 % à 10% en volume, de la base aromatique produite à l’étape b) dans la composition de carburéacteur comprenant une base paraffinique et une base naphténique obtenue à l’issue de l’étape c).
De préférence, dans les procédés selon l’invention, les étapes a), b), c), et éventuellement d) et e) lorsque présentes, sont opérées dans des procédés distincts.
DESCRIPTION DETAILLEE DE L’INVENTION
Les termes « comprenant » et « comprend » tels qu’utilisés ici sont synonymes avec « incluant », « inclut » ou « contient », « contenant », et sont inclusifs ou sans bornes et n’excluent pas de caractéristiques additionnelles, d’éléments ou d’étapes de méthodes non spécifiés.
Les expressions % en poids et % en masse ont une signification équivalente et se réfèrent à la proportion de la masse d’un produit rapportée à 100g d’une composition le comprenant.
L’expression % en volume se réfère à la proportion du volume d’un produit rapportée à 100 L d’une composition le comprenant.
Par « composés naphténiques », on entend des cycloalcanes ou des polycycloalcanes en C8-C16, éventuellement substitués par des alkyles en C1 -C5.
Base paraffinique selon l’invention On entend par base paraffinique un carburant synthétique paraffinique produit à partir de matière première d’origine non pétrolière.
Ledit carburant synthétique paraffinique est avantageusement un kérosène paraffinique synthétique (SPK) renouvelable issu d’un hydrotraitement d’esters et d’acides gras (SPK-HEFA) ou issu d’un procédé Fischer Tropsch (SPK-FT) ou issu d’un procédé de transformation d’alcool en kérosène isoparaffinique (SPK-ATJ).
Le carburant synthétique paraffinique de la présente invention est ainsi un carburant renouvelable obtenu exclusivement à partir de composés d’origine non fossile.
Le carburant synthétique paraffinique renouvelable SPK-HEFA peut être produit à partir d'huile(s) d'origine naturelle par un procédé d'hydrogénation et de désoxygénation d'esters d'acides gras et d'acides gras libres et du traitement ultérieur du produit comprenant l'hydrocraquage, ou l'hydroisomérisation, ou l'isomérisation, ou une combinaison de ces étapes, et peut inclure d'autres procédés de raffinage conventionnels. En d'autres termes, le carburant synthétique paraffinique renouvelable SPK-HEFA est produit à partir de l’hydrotraitement d'esters et d'acides gras d’une huile d’origine naturelle. Il est de préférence compatible avec la spécification ASTM D7566:21 Annexe 2.
Une huile d'origine naturelle est définie comme une huile d'origine biomasse et ne contenant aucune huile minérale. Dans la description « huile(s) d'origine naturelle » désigne indifféremment les huiles, les graisses et leurs mélanges. La ou lesdites huiles d'origine naturelle peuvent contenir une ou plusieurs huiles choisies parmi les huiles végétales, les graisses animales, préférentiellement les huiles hautement saturées non comestibles, les huiles usagées, les sous-produits du raffinage d'huile(s) végétale(s) ou d'huile(s) animale(s) contenant les acides gras libres, les tallols et les huiles produites par des bactéries, des levures, des algues, des procaryotes ou des eucaryotes. Les huiles végétales appropriées sont par exemple l'huile de palme, l'huile de palmiste, l'huile de soja, l'huile de colza (colza ou canola), l'huile de tournesol, l'huile de lin, l'huile de son, l’huile de riz, l'huile de maïs, l'huile d'olive, l'huile de ricin, l’huile de sésame, l’huile de pin, l’huile d'arachide, l’huile de moutarde, l’huile de carinata, l’huile de chanvre, l’huile de noix de coco, l’huile de babasu, l’huile de coton, l’huile de linola, l’huile de jatropha. Les graisses animales comprennent le suif, le saindoux, la graisse (graisse jaune et brune), l'h uile/la graisse de poisson, la matière grasse, les graisses de lait.
Les sous-produits du raffinage des huiles végétales ou animales sont des sous- produits contenant des acides gras libres qui sont éliminés des graisses et huiles brutes par neutralisation ou distillation sous vide ou à la vapeur. Un exemple typique est le PFAD (Palm Fatty Acid Distillate). Les huiles usagées comprennent les huiles de cuisson usagées (huiles alimentaires usagées) et les huiles récupérées à partir des eaux résiduelles, telles que les graisses/huiles de vidange, les huiles de gouttière, les huiles d'égout, par exemple des stations d'épuration des eaux, et les graisses usagées de l'industrie alimentaire. Les tall oil, y compris les tall oil bruts, les tall oil distillés (DTO) et les acides gras de tall oil (TOFA), de préférence le DTO et le TOFA, peuvent également être utilisés dans la présente invention. Le tall oil, ou autrement appelé tallol, est un sous-produit liquide du procédé Kraft de transformation du bois, permettant d'isoler d'une part la pâte de bois utile à l'industrie papetière. Le tall oil est essentiellement obtenu lorsque les conifères sont utilisés dans le procédé Kraft. Après traitement des copeaux de bois avec du sulfure de sodium en solution aqueuse, le tall oil isolé est alcalin. Ce dernier est ensuite acidifié avec de l'acide sulfurique pour produire du tall oil brut. La ou les huiles d'origine naturelle utilisées dans la présente invention comprennent également des huiles produites par des micro-organismes, soit des micro-organismes naturels soit des micro-organismes génétiquement modifiés, tels que des bactéries, des levures, des algues, des procaryotes ou des eucaryotes. En particulier de telles huiles peuvent être récupérées par des méthodes d'extraction mécanique ou chimique bien connues.
Le carburant synthétique paraffinique renouvelable SPK-FT est issu d’un procédé de Fischer-Tropsch et peut être produit à partir de biomasse solide. Il est de préférence compatible avec la spécification ASTM D7566:21 Annexe 1 . La conversion thermochimique de la biomasse (gazéification et synthèse Fisher-Tropsch), aussi appelée BtL (Biomass to Liquid), comprend les étapes suivantes : conditionnement de la biomasse (préparation, trituration, torréfaction), gazéification de la biomasse (obtention d’un gaz de synthèse), purification du gaz de synthèse, synthèse Fisher-Tropsch pour transformer le gaz en biocarburant de synthèse.
Quel que soit le procédé précité utilisé, le carburant synthétique paraffinique peut avoir été soumis à une étape d’isomérisation et/ou de distillation avant son incorporation dans la composition de l’invention, afin d’éliminer les paraffines linéaires les plus lourdes qui ne permettraient pas de respecter les propriétés à froid du jet, en particulier le point de disparition des cristaux qui doit être inférieur à -47°C pour le Jet A1 . Les composés les plus légers peuvent également être séparés par distillation, afin de respecter, notamment, les propriétés de volatilité et du point éclair du jet A1 . Quel que soit le procédé précité utilisé, le carburant synthétique paraffinique renouvelable peut présenter une ou plusieurs des caractéristiques suivantes :
- une teneur en paraffines supérieure à 90% en masse,
- une teneur en cycloparaffines inférieure à 10 % en masse, - un point de congélation inférieur à -30°C, de préférence inférieur à -40°C, par exemple inférieur à -47°C,
- une densité à 15°C comprise entre 730 et 780kg/m3,
- un intervalle de distillation de 145°C à 315°C,
- une teneur en isoparaffines de 70 % en masse ou plus.
Le carburant synthétique paraffinique renouvelable SPK-ATJ peut être conforme à la spécification ASTM D7566:21 Annexe 5 mais peut également être produit à partir de tout alcool de 1 à 6 atomes de carbone. Le carburant renouvelable SPK-ATJ est obtenu par déshydratation d’alcools pour produire des oléfines, puis par oligomérisation des oléfines pour obtenir des molécules hydrocarbonées insaturées dans la plage de température d’ébullition du SAF. Ces molécules hydrocarbonées insaturées sont ensuite hydrogénées pour produire la base paraffinique.
Pour la mise en œuvre du premier procédé selon l’invention, la base paraffinique est de préférence conforme avec la spécification ASTM D7566:21 .
Les deuxième et troisième procédés selon l’invention peuvent être mis en œuvre que la base paraffinique soit conforme ou non à la spécification ASTM D7566:21 .
Base naphténique selon l’invention
La base naphténique en C8-C16 est produite par hydrogénation d’un biocarburant obtenu par un procédé de conversion en carburant d’au moins un bioalcool en C1-C6, suivi du fractionnement du biocarburant hydrogéné.
Etape i) : production d’un biocarburant
La production du biocarburant peut être mise en oeuvre par conversion d’au moins un bioalcool en C1 -C6, dans un procédé catalytique. Le procédé catalytique peut être réalisé sur un lit d'aluminosilicate, de préférence de type zéolithe.
Le bioalcool en C1 -C6 contient majoritairement des alcools tels que le méthanol, l’éthanol, les propanols (n-propanol, i-propanol), les butanols (n-butanol, i-butanol), les pentanols (n-pentanols, i pentanol) et les hexanols. Le bioalcool en C1 -C6 contient de préférence plus de 80% en masse d’alcools en C1 à C6, de préférence plus de 90% en masse d’alcools en C1 à C6.
Le bioalcool en C1 -C6 peut être :
- Du méthanol obtenu à partir de biomasse : La biomasse peut notamment comprendre les combustibles ligneux provenant de forêts et de terres boisées naturelles (par exemple, la sciure de bois), les résidus agricoles (par exemple, les balles de riz, le fumier de paille), les cultures énergétiques qui sont cultivées exclusivement pour la production d'énergie (par exemple, le maïs et le palmier à huile), les déchets urbains (par exemple, les déchets de bois, riz, fumier de paille), les cultures énergétiques qui sont cultivées exclusivement pour la production d'énergie (par exemple, le maïs et le palmier à huile), les déchets urbains (par exemple, les déchets solides municipaux et les eaux usées) et le combustible de biomasse dérivé de déchets (par exemple, les granulés de bois). Le méthanol d’origine renouvelable peut notamment être obtenu par conversion d’un gaz synthétique riche en CO/H2, ce gaz synthétique étant issu de la biomasse. La biomasse peut par exemple être gazéifiée pour produire un gaz synthétique (ou « syngas » en anglais) riche en CO/H2, ce gaz synthétique étant ensuite converti en méthanol en présence d’un catalyseur. Un procédé de ce type est par exemple décrit dans le document WO2018134853A1 . Un gaz synthétique convenant à une conversion ultérieure en méthanol peut encore être obtenu par oxydation partielle en présence de dioxygène d’un biogaz contenant du méthane et du CO2, ce biogaz résultant par exemple de la digestion anaérobie de biomasse en présence d’un ou plusieurs microorganismes. Un procédé de ce type est par exemple décrit dans le document W02019060988A1.
- Du méthanol obtenu à partir de dioxyde de carbone :
Plusieurs voies de transformation existent. On peut citer par exemple la conversion catalytique de dioxyde de carbone en méthanol en présence d’hydrogène. Une autre voie consiste à convertir le dioxyde de carbone en monoxyde de carbone par électroconversion ou par réaction du gaz à l’eau inverse en présence d’hydrogène. Le monoxyde de carbone est alors converti par conversion catalytique en méthanol, en présence d’hydrogène. L’hydrogène utilisé pour les différentes opérations décrites précédemment est obtenu notamment par reformage du méthane à la vapeur, par réaction du gaz à l’eau, ou est produit par électrolyse à partir d’énergies renouvelables tel que l’énergie solaire, le vent, la géothermie, les vagues ou les courants.
- Du bioéthanol produit à partir de la fermentation éthanolique par l’action fermentaire de micro-organismes, de levures et/ou de bactéries d’au moins une matière première d’origine végétale :
Le bioéthanol peut être avantageusement être obtenu par :
- fermentation anaérobie d’un substrat riche en sucres issu de biomasse, ou - fermentation anaérobie d’un gaz comprenant du CO, lequel peut être issu de biomasse ou non.
Pour la fermentation anaérobie d’un substrat riche en sucres, les sucres sont composés des chaînes de 6 ou 5 carbones, comme le glucose, le saccharose (dimère de glucose et de fructose), le xylose et l’arabinose.
Ce substrat peut par exemple comprendre, ou provenir directement des plantes agroalimentaires, de la canne à sucre, de la betterave sucrière, du sorgho sucrier, ou par dépolymérisation de l’amidon du maïs, du blé, de l’orge, du seigle, du sorgho, du triticale, de la pomme de terre, de la patate douce, du manioc, et/ou de la cellulose et de l’hémicellulose de la biomasse lignocellulosique.
Le substrat riche en sucres peut aussi être issu de biomasse lignocellullosique par un traitement comprenant (i) une étape de séparation de la lignine, de la cellulose et de l’hémicellulose contenus dans la biomasse lignocellullosique, suivie (ii) d’une étape de conversion de la cellulose et/ou de l’hémicellulose en sucres. L’obtention de ce type de substrat à partir de biomasse lignocellulosique est bien connue de l’homme du métier. Le substrat riche en sucres est ensuite soumis à la fermentation, par exemple en utilisant des microorganismes.
De l’éthanol peut également être produit par fermentation anaérobie d’un gaz comprenant du CO. Le substrat est alors un substrat gazeux (un gaz) contenant du CO. Ce substrat gazeux peut être un sous-produit d'un procédé industriel, comme la fabrication de produits en métal ferreux, notamment les aciéries, la fabrication de produits non ferreux, les procédés de raffinage du pétrole, la gazéification du charbon et/ou de la biomasse ou biochar, la production d'énergie électrique, la production de noir de carbone, la production d'ammoniac, la production de méthanol, la fabrication de coke, le craquage catalytique (en particulier lors de la régénération du catalyseur le monoxyde de carbone est produite) et le reformage du méthane.
Dans d'autres modes de réalisation, le substrat gazeux peut provenir de la gazéification de la biomasse, comme les sous-produits de la biomasse obtenus au cours de l'extraction et du traitement de produits alimentaires. Le processus de gazéification implique une combustion partielle de la biomasse dans un apport restreint d'air ou d'oxygène. Le gaz résultant comprend généralement principalement du CO et du H2, avec des volumes minimes de CO2, de méthane, d'éthylène et d'éthane. La teneur en CO du substrat gazeux est typiquement de 15% à 100% en volume, de 15% à 95% en volume, de 40% à 95% en volume, de 40% à 60% en volume, et de 45% à 55% en volume ou est dans tout intervalle défini par deux de ces limites. Tout microorganisme capable de fermenter un substrat gazeux comprenant du CO pour produire de l'éthanol peuvent être utilisé.
- Du bioéthanol produit à partir à partir de la biomasse par conversion d’un gaz de synthèse riche en CO/H2, ce gaz synthétique étant issu de la biomasse.
La biomasse peut par exemple être gazéifiée pour produire un gaz de synthèse (ou « syngas » en anglais) riche en CO/H2, ce gaz synthétique étant ensuite converti en méthanol en présence d’un catalyseur. Un procédé de ce type est par exemple décrit dans le document WO2012003901 .
- Tout autre alcool comprenant de 3 à 6 atomes de carbone obtenu par exemple par :
- réaction catalytique d’hydrogène avec du dioxyde de carbone ou monoxyde de carbone ;
- réaction catalytique d’hydrogène avec des carbohydrates ;
- fermentation ABE, une fermentation bactérienne produisant un mélange d’éthanol, d’acétone et de butanol à partir d’hydrates de carbone tels que glucose ou amidon ;
- fermentation anaérobique de sucres issus de biomasse notamment pour obtenir du propanol (iso ou n), du butanol (iso ou n) ou de l’isoamyle alcool ;
- fermentation anaérobique d’un mélange contenant au moins du monoxyde de carbone, du dioxyde de carbone et de l’hydrogène pour obtenir notamment du propanol (iso ou n), du butanol (iso ou n) ou de l’isoamyle alcool.
Etape ii) : hydrogénation du biocarburant
L’hydrogénation du biocarburant hydrogène partiellement ou totalement les composés insaturés compris dans le biocarburant, en particulier hydrogène partiellement ou totalement les composés aromatiques compris dans le biocarburant.
L’hydrogénation est par exemple réalisée dans un ou plusieurs réacteurs en lit fixe (descendant ou ascendant) et en phase mixte, la fraction à hydrogéner étant principalement en phase liquide.
L’hydrogénation est par exemple effectuée à une température comprise entre 50°C et 350°C, notamment entre 100°C et 300°C. Elle est réalisée sous une pression de préférence supérieure à 10 bara et notamment comprise entre 20 bara et 80 bara.
Un flux d’hydrogène est alimenté dans le ou chaque réacteur en mélange avec le courant de base aromatique à hydrogéner. Le rapport du débit volumique du flux d’hydrogène au débit volumique de base aromatique (sans compter le flux recyclé) à hydrogéner est compris avantageusement entre 50 NL/L et 3000NL/L, notamment entre 100 NL/L et 500 NL/L. L’hydrogène peut être ajouté au courant de biocarburant en plusieurs étages le long du lit catalytique. La vitesse spatiale horaire est comprise avantageusement entre 0.5 et 3 et notamment entre 1 et 2 h-1. L’excès d’hydrogène peut être recyclé dans la zone réactionnelle après séparation et compression.
La réaction est mise en œuvre en présence d’au moins un catalyseur comprenant un ou plusieurs métaux du groupe VIII (typiquement Pt, Pd, Ni) supporté sur un support tel que la silice, l’alumine ou tout mélange de ces deux composés ou du carbone. La réaction peut également être mise en œuvre en présence d’un catalyseur de type sulfure contenant un élément du groupe VIB (Cr, Mo, W) et un élément du groupe VII IB (Fe, Ru, Co, Os, Co, Rh, Ir, Pd, Ni, Pt) ou des mélanges de ces deux groupes de métaux.
L’étape d’hydrogénation est suivie de préférence d’une étape de séparation des composés légers, généralement réalisée par strippage ou distillation. Cette étape de séparation permet de produire une coupe hydrogénée de type C8-C16, conforme pour incorporation dans le carburant aviation.
Selon une variante, l’hydrogénation du biocarburant est totale. Cela signifie que les composés aromatiques contenus dans le biocarburant sont hydrogénés à plus de 99%.
Selon une autre variante, l’hydrogénation du biocarburant est partielle. De préférence, entre 10% et 99%, de préférence entre 10% et 90% en masse des composés aromatiques contenus dans le biocarburant à hydrogéner, de préférence entre 30% en masse et 80% en masse des composés aromatiques contenus dans le biocarburant à hydrogéner, sont hydrogénés en composés naphténiques.
L’ensemble des caractéristiques et variantes ci-dessus concernant l’hydrogénation du biocarburant du premier procédé s’applique également à l’hydrogénation du mélange du deuxième procédé selon l’invention, et à l’hydrogénation du biocarburant du troisième procédé selon l’invention.
Etape iii) : récupération de la base naphténique en C8-C16
Le biocarburant hydrogéné obtenu lors de l’étape ii) est fractionné pour récupérer la fraction naphténique en C8-C16.
Selon la variante du procédé dans laquelle le biocarburant est partiellement hydrogéné, la base naphténique récupérée par fractionnement du biocarburant partiellement hydrogéné comprend un mélange de composés aromatiques et de composés naphténiques. Selon cette variante, la base naphténique comprend de préférence au moins 60% en masse de composés naphténiques, de préférence de 70% à 95% en masse de composés naphténiques, préférentiellement de 75% à 95% en masse de composés naphténiques.
Selon cette variante, la base naphténique présente de préférence un ratio massique entre les composés naphténiques et les composés aromatiques supérieur ou égal à 1 , de préférence supérieur ou égal à 2, de préférence supérieur ou égal à 5, de préférence compris entre 1 et 99, de préférence comprise entre 5 et 24, de préférence compris entre 5 et 10.
De préférence, la base naphténique présente un ratio massique entre la quantité massique de composés naphténiques en C9-C10 de la base naphténique et la quantité massique de composés naphténiques en C9-C14 de la base naphténique, supérieur ou égal à 0,10, de préférence supérieur ou égal à 0,40, de préférence supérieur ou égal à 0,50, de préférence supérieur ou égal à 0,6 de préférence compris entre 0,70 et 0,95.
De préférence, la base naphténique présente un ratio massique entre la quantité massique de composés naphténiques en C9-C12 de la base naphténique et la quantité massique de composés naphténiques en C9-C14 de la base naphténique, supérieur ou égal à 0,60, de préférence supérieur ou égal à 0,70, de préférence supérieur ou égal à 0,80, de préférence supérieur ou égal à 0,90, de préférence compris entre 0,80 et 0,999.
En particulier, la production des bases paraffinique et naphténique selon l’invention peut être réalisée à partir de sources renouvelables différentes, et notamment par des procédés séparés.
L’ensemble des caractéristiques et variantes ci-dessus concernant l’étape de fractionnement du biocarburant hydrogéné du premier procédé s’applique également à l’étape de fractionnement du mélange hydrogéné du deuxième procédé selon l’invention et à l’étape de fractionnement du mélange du troisième procédé selon l’invention.
Base aromatique selon l’invention
La composition selon l’invention peut en outre comprendre une base aromatique en C8-C16.
La base aromatique en C8-C16 peut être produite selon les étapes suivantes : i) production d’un biocarburant en soumettant au moins un bioalcool en C1 - C6 issu d’au moins une charge renouvelable à un procédé de conversion d’alcool en carburant, ii) récupération par fractionnement de ladite base aromatique en C8-C16 issue dudit biocarburant obtenu à l’étape i).
L’étape i) de production du biocarburant est identique à celle décrite ci-dessus pour la production de la base naphténique.
Etape ii) : récupération de la base aromatique en C8-C16
Le biocarburant obtenu lors de l’étape i) est fractionné pour récupérer la fraction C8- C16 afin de satisfaire aux propriétés de volatilité des carburants aviation.
La base aromatique en C8-C16 selon l’invention peut présenter une ou plusieurs des caractéristiques suivantes :
- au moins 60 % en masse de composés aromatiques en C8-C16, notamment de composés monoaromatiques, lesdits composés aromatiques comprenant au moins 50% en masse, de préférence au moins 80% en masse, de benzène substitué par au moins m méthyle, m étant un entier de 1 à 3, et éventuellement n alkyle en C2-C5, n étant un entier de 1 à 3,
- de 8% en masse à 15% en masse de composés naphténiques,
- de 5% en masse à 15% en masse d’isoparaffines,
- moins de 5% en masse de n-paraffines.
On notera que lesdits composés aromatiques, présents en une teneur d’au moins 60% en masse, comprennent du benzène substitué par au moins m méthyle et éventuellement n alkyle en C2-C5. Ces composés aromatiques peuvent ainsi comprendre un mélange de molécules de benzène substitué par au moins m méthyles, m étant un entier allant de 1 à 3, et optionnellement des molécules de benzène substitué par au moins m méthyles, m étant un entier allant de 1 à 3, et/ou n alkyle en C2-C5, n étant un entier allant de 1 à 3.
En particulier, la production des bases paraffiniques et naphténiques selon l’invention peut être réalisée à partir de sources renouvelables différentes, et notamment par des procédés séparés.
Composition de carburéacteur selon l’invention De préférence, la composition selon l’invention comprend de 50% à 85% en volume, de préférence de 55% à 80% en volume, préférentiellement de 55% à 75% en volume de l’au moins une base paraffinique.
De préférence, la composition selon l’invention comprend de 15% à 50% en volume, de préférence de 20% à 45% en volume, préférentiellement de 25% à 45% en volume de l’au moins une base naphténique.
De préférence, la composition selon l’invention comprend moins de 18% en volume, de préférence moins de 10% en volume, de préférence moins de 8% en volume, de préférence moins de 5% en volume, de préférence de 1 % à 18% en volume, de préférence de 1 à 10% en volume de l’au moins une base aromatique.
De préférence, la composition selon l’invention présente un ratio massique composés naphténiques/composés aromatiques supérieur ou égal à 1 , de préférence supérieur ou égal à 2, de préférence supérieur ou égal à 3, de préférence entre 3 et 5.
De préférence, la composition selon l’invention comprend de 15% à 48% en masse de composés naphténiques, préférentiellement de 25% à 45% en masse de composés naphténiques.
De préférence, la composition selon l’invention comprend une quantité inférieure ou égale à 15% en volume de composés aromatiques, de préférence inférieure ou égale à 8% en volume, préférentiellement inférieure ou égale à 5% en volume, par rapport au volume total de la composition. De préférence, la composition selon l’invention comprend une quantité de composés aromatiques comprise entre 1 et 15% en volume, de préférence entre 1 et 8% en volume, par rapport au volume total de la composition.
La quantité de composés aromatiques compris dans la composition selon l’invention est définie en volume conformément aux spécifications de la norme ASTM D7566:21 .
Avantageusement, la composition de carburéacteur selon l'invention peut être conforme aux exigences Jet A ou Jet A1 telles que définies dans la norme ASTM D7566 :21 de juillet 2021 ou dans la DefStan 91 -091 Issue qui fait référence à la norme ASTM D7566:21 .
Par exemple, la composition selon l’invention présente une densité comprise entre 755 kg/m3 et 840 kg/m3, de préférence comprise entre 775 kg/m3 et 840 kg/m3.
En particulier, les teneurs en base paraffinique, en base naphténique, et en base aromatique lorsque présente, dans la composition de carburéacteur selon l’invention peuvent être choisies de telle sorte que la composition de carburéacteur selon l’invention soit conforme à ces exigences. Dans un mode de réalisation avantageux, l’au moins une base paraffinique et l’au moins une base naphténique sont issues de traitements séparés de charges renouvelables (de procédés distincts), notamment de charges renouvelables distinctes. Dans un mode de réalisation préféré, la composition de carburéacteur selon l’invention est constituée des bases paraffinique, naphténique, et aromatique lorsque présente, issues de charges renouvelables.
Selon un mode de réalisation, la composition de carburéacteur selon l’invention est exempte de composants d’origine pétrolière.
L’exemple ci-dessous illustre l’invention sans pour autant en limiter la portée.
EXEMPLES
Exemple 1
Deux compositions C1 et C2 selon l’invention sont préparées.
C1 comprend 68% en volume d’HEFA conforme à la base paraffinique a) selon l’invention et 32% en volume de la base naphténique b).
C2 comprend 61% en volume d’HEFA conforme à la base paraffinique a) selon l’invention et 39% en volume de la base naphténique b).
La composition de la base naphténique b) est présentée dans le tableau 1 suivant, et a été déterminée par une méthode GC2D.
[Tableau 1 ] - Composition de la base naphténique b
Figure imgf000019_0001
Les compositions C1 et C2, ainsi que la base HEFA conforme à la base paraffinique a) et la base naphténique b) présentent les caractéristiques détaillées dans le tableau suivant (ces caractéristiques ont été déterminées selon les normes précisées dans chaque colonne) : [T ableau 2]
Figure imgf000020_0001
L’ajout de la base naphténique b) à une base paraffinique a) permet donc d’obtenir des compositions présentant des propriétés améliorées. En particulier, l’ajout de de la base naphténique b) améliore de manière surprenante la viscosité à - 40°C de la base paraffinique, ainsi que sa lubrifiance (BOCLE). Ceci montre qu’il est possible de remplacer au moins une partie de la base aromatique, fréquemment utilisée en combinaison avec les bases paraffiniques, par une base naphténique, et ainsi réduire la formation de particules fines et la présence de traînées.
Exemple 2 - Composition comparative comprenant une base naphténique d’origine fossile Une composition comparative C3* comprenant 61% en volume d’HEFA conforme à la base paraffinique a) selon l’invention (celle de l’exemple 1) et 39% en volume de la base naphténique fossile b’) a été préparée.
La composition de la base naphténique b’) a été déterminée par GC2D et est telle que décrite dans le tableau suivant
[Tableau 3] - Composition de la base naphténique b’)
Figure imgf000021_0001
La compositions comparative C3* ainsi que la base HEFA et la base naphténique b’) présentent les caractéristiques détaillées dans le tableau suivant (ces caractéristiques ont été déterminées selon les normes précisées dans chaque colonne) :
[T ableau 4]
Figure imgf000021_0002
Figure imgf000022_0001
La base naphténique b’) d’origine fossile comprend des composés ayant un nombre de carbone moyen plus élevé que la base naphténique b) selon l’invention utilisée dans l’exemple 1 . La composition C3* présente une viscosité trop élevée, et n’est pas conforme à la norme ASTM D7566.

Claims

REVENDICATIONS
1. Composition de carburéacteur issue de charges renouvelables comprenant, par rapport au volume total de la composition : a. de 50 à 90% en volume d’au moins une base paraffinique issue d’un hydrotraitement d’esters et d’acides gras, d’un procédé Fischer-Tropsch ou d’un procédé de production de carburéacteur à partir d’alcools, et comprenant au moins 90% en masse de paraffines par rapport à la masse totale de la base paraffinique, b. de 10 à 50% en volume d’au moins une base naphténique en C8-C16, ladite base naphténique étant issue de l’hydrogénation d’une base aromatique en C8-C16, ladite base aromatique correspondant à la fraction C8-C16 d’un biocarburant produit par un procédé de conversion en carburant d’au moins un bioalcool en C1-C6, et ladite base aromatique contenant au moins 60% en masse de composés aromatiques par rapport à la masse totale de la base aromatique, lesdits composés aromatiques comprenant au moins 50% en masse, de préférence au moins 80% en masse, de benzène substitué par au moins m méthyles, m étant un entier de 1 à 3, et éventuellement n alkyle en C2-C5, n étant un entier de 1 à 3, dans laquelle ladite composition de carburéacteur comprend de 10 à 49% en masse de composés naphténiques par rapport à la masse totale de la composition.
2. Composition de carburéacteur selon la revendication 1 , comprenant une quantité inférieure ou égale à 15% en volume, de préférence inférieure à 8% en volume, de préférence inférieure ou égale à 5% en volume de composés aromatiques, par rapport au volume total de la composition.
3. Composition de carburéacteur selon la revendication 1 ou 2, dans laquelle la base naphténique comprend des composés aromatiques et des composés naphténiques, et présente un ratio massique entre les composés naphténiques et les composés aromatiques supérieur ou égal à 1 , de préférence supérieur ou égal à 2, de préférence supérieur ou égal à 5.
4. Composition de carburéacteur selon l’une quelconque des revendications précédentes, dans laquelle la base naphténique présente un ratio massique entre la quantité massique de composés naphténiques en C9-C10 de la base naphténique et la quantité massique de composés naphténiques en C9-C14 de la base naphténique, supérieur ou égal à 0,10, de préférence supérieur ou égal à 0,40, de préférence supérieur ou égal à 0,50, de préférence supérieur ou égal à 0,6 de préférence compris entre 0,70 et 0,95.
5. Composition de carburéacteur selon l’une quelconque des revendications précédentes, comprenant en outre de 1 à 18% en volume, de préférence de 1 à 10% en volume, par rapport au volume total de la composition, d’au moins une base aromatique en C8-C16, ladite base aromatique correspondant à la fraction C8-C16 d’un biocarburant produit par un procédé de conversion en carburant d’au moins un bioalcool en C1 -C6 et caractérisée en ce que ladite base aromatique contient au moins 60% en masse de composés aromatiques, lesdits composés aromatiques comprenant au moins 50% en masse de benzène substitué par au moins m méthyle, m étant un entier de 1 à 3, et éventuellement n alkyle en C2-C5, n étant un entier de 1 à 3.
6. Procédé de production d’une composition de carburéacteur issue de charges renouvelables, comprenant au moins les étapes suivantes : a) la production d’au moins une base paraffinique à partir d’un hydrotraitement d’esters et d’acides gras, d’un procédé Fischer-Tropsch ou d’un procédé de production de carburéacteur à partir d’alcools, ladite au moins une base paraffinique comprenant au moins 90% en masse de paraffines, b) la production d’au moins une base naphténique en C8-C16 comprenant au moins les étapes suivantes : i) la production d’un biocarburant par un procédé de conversion en carburant d’au moins un bioalcool en C1-C6, ii) l’hydrogénation du biocarburant obtenu à l’issue de l’étape i) et l’obtention d’un biocarburant hydrogéné, iii) la récupération de ladite base naphténique en C8-C16 par fractionnement dudit biocarburant hydrogéné obtenu à l’étape ii), et c) le mélange de 50% à 90% en volume de l’au moins une base paraffinique produite à l’étape a) avec 10 à 50% en volume de la base naphténique produite à l’étape b), et l’obtention d’une composition de carburéacteur comprenant une base paraffinique et une base naphténique.
7. Procédé de production d’une composition de carburéacteur issue de charges renouvelables selon la revendication 6, dans lequel l’hydrogénation est totale.
8. Procédé de production d’une composition de carburéacteur issue de charges renouvelables selon la revendication 6, dans lequel l’hydrogénation est partielle.
9. Procédé de production d’une composition de carburéacteur issue de charges renouvelables selon l’une quelconque des revendications 6 à 8, dans lequel l’au moins une base paraffinique issue de l’étape a) est produite à partir d'une ou plusieurs huiles choisies parmi les huiles végétales, les graisses animales, préférentiellement les huiles hautement saturées non comestibles, les huiles usagées, les sous-produits du raffinage des huiles végétales ou d'huile(s) animale(s) contenant des acides gras libres, des tallols, et des huiles produites par des bactéries, levures, algues, procaryotes ou eucaryotes.
10. Procédé de production d’une composition de carburéacteur selon l’une quelconque des revendications 6 à 9 comprenant en outre :
- une étape d) de production d’au moins une base aromatique en C8-C16 comprenant au moins les étapes suivantes : i) la production d’un biocarburant par un procédé de conversion en carburant d’au moins un bioalcool en C1-C6, ii) la récupération de ladite base aromatique en C8-C16 par fractionnement dudit biocarburant obtenu à l’étape i), ladite base aromatique en C8-C16 comprenant au moins 60 % en masse de composés aromatiques, lesdits composés aromatiques comprenant au moins 50% en masse, de préférence au moins 80% en masse, de benzène substitué par au moins m méthyles, m étant un entier de 1 à 3, et éventuellement n alkyle en C2-C5, n étant un entier de 1 à 3, et
- une étape e) d’ajout de 1% à 18% en volume par rapport au volume total de la composition, de préférence de 1 % à 10% en volume, de la base aromatique produite à l’étape b) dans la composition de carburéacteur comprenant une base paraffinique et une base naphténique obtenue à l’issue de l’étape c).
11. Procédé de production d’une composition de carburéacteur selon l’une quelconque des revendications 6 à 10, dans lequel les étapes a), b), c), et éventuellement d) et e) lorsque présentes, sont opérées dans des procédés distincts.
PCT/EP2023/070717 2022-07-27 2023-07-26 Composition renouvelable de carburéacteur à teneur élevée en composés naphténiques et procédé de préparation associé WO2024023161A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2207729A FR3138444A1 (fr) 2022-07-27 2022-07-27 Composition renouvelable de carburéacteur à teneur élevée en composés naphténiques et procédé de préparation associé
FRFR2207729 2022-07-27

Publications (1)

Publication Number Publication Date
WO2024023161A1 true WO2024023161A1 (fr) 2024-02-01

Family

ID=83506129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/070717 WO2024023161A1 (fr) 2022-07-27 2023-07-26 Composition renouvelable de carburéacteur à teneur élevée en composés naphténiques et procédé de préparation associé

Country Status (2)

Country Link
FR (1) FR3138444A1 (fr)
WO (1) WO2024023161A1 (fr)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090000185A1 (en) * 2007-06-29 2009-01-01 Energy & Environmental Research Center Foundation Aviation-grade kerosene from independently produced blendstocks
US20090253947A1 (en) 2008-04-06 2009-10-08 Brandvold Timothy A Production of Blended Fuel from Renewable Feedstocks
WO2012003901A1 (fr) 2010-07-05 2012-01-12 Haldor Topsøe A/S Procédé pour la préparation d'éthanol et d'alcools supérieurs
US8629310B2 (en) 2012-03-09 2014-01-14 Phillips 66 Company Transportation fuels from biomass oxygenates
RU2510389C1 (ru) * 2012-10-19 2014-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет тонких химических технологий имени М.В. Ломоносова" (МИТХТ им. М.В. Ломоносова) Способ получения реактивного топлива из биоэтанола
WO2018134853A1 (fr) 2017-01-17 2018-07-26 Processi Innovativi Srl Procédé et appareil associé de production de bio-méthanol à partir d'un gaz de synthèse provenant de la gazéification de déchets
US10087374B2 (en) 2012-12-11 2018-10-02 Chevron Lummus Global, Llc Conversion of triacylglycerides-containing oils to hydrocarbons
US20190002778A1 (en) 2015-12-21 2019-01-03 Neste Corporation Aviation fuel composition
WO2019060988A1 (fr) 2017-09-28 2019-04-04 Ultra Clean Ecolene Inc. Production de bio-méthanol
WO2021237030A1 (fr) 2020-05-22 2021-11-25 Exxonmobil Research And Engineering Company Compositions de kérosène à teneur élevée en composés naphténiques
WO2022073087A1 (fr) * 2020-10-09 2022-04-14 Petróleo Brasileiro S.A. - Petrobras Procédé de production de kérosène d'aviation renouvelable

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090000185A1 (en) * 2007-06-29 2009-01-01 Energy & Environmental Research Center Foundation Aviation-grade kerosene from independently produced blendstocks
US20090253947A1 (en) 2008-04-06 2009-10-08 Brandvold Timothy A Production of Blended Fuel from Renewable Feedstocks
WO2012003901A1 (fr) 2010-07-05 2012-01-12 Haldor Topsøe A/S Procédé pour la préparation d'éthanol et d'alcools supérieurs
US8629310B2 (en) 2012-03-09 2014-01-14 Phillips 66 Company Transportation fuels from biomass oxygenates
RU2510389C1 (ru) * 2012-10-19 2014-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет тонких химических технологий имени М.В. Ломоносова" (МИТХТ им. М.В. Ломоносова) Способ получения реактивного топлива из биоэтанола
US10087374B2 (en) 2012-12-11 2018-10-02 Chevron Lummus Global, Llc Conversion of triacylglycerides-containing oils to hydrocarbons
US20190002778A1 (en) 2015-12-21 2019-01-03 Neste Corporation Aviation fuel composition
WO2018134853A1 (fr) 2017-01-17 2018-07-26 Processi Innovativi Srl Procédé et appareil associé de production de bio-méthanol à partir d'un gaz de synthèse provenant de la gazéification de déchets
WO2019060988A1 (fr) 2017-09-28 2019-04-04 Ultra Clean Ecolene Inc. Production de bio-méthanol
WO2021237030A1 (fr) 2020-05-22 2021-11-25 Exxonmobil Research And Engineering Company Compositions de kérosène à teneur élevée en composés naphténiques
WO2022073087A1 (fr) * 2020-10-09 2022-04-14 Petróleo Brasileiro S.A. - Petrobras Procédé de production de kérosène d'aviation renouvelable

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EDWARDS TIM ET AL: "Evaluation of Combustion Performance of Alternative Aviation Fuels", 46TH AIAA/ASME/SAE/ASEE JOINT PROPULSION CONFERENCE & EXHIBIT, 25 July 2010 (2010-07-25), Reston, Virigina, XP055977514, ISBN: 978-1-60086-958-7, DOI: 10.2514/6.2010-7155 *
ELISEO RANZI ET AL: "Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels", INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, WILEY, NEW YORK, NY, US, vol. 46, no. 9, 25 July 2014 (2014-07-25), pages 512 - 542, XP071657903, ISSN: 0538-8066, DOI: 10.1002/KIN.20867 *
TRET'YAKOV V F ET AL: "Production of aviation fuel by bioethanol conversion on zeolite catalysts", PETROLEUM CHEMISTRY, PLEIADES PUBLISHING, MOSCOW, vol. 56, no. 3, 22 May 2016 (2016-05-22), pages 224 - 229, XP035690614, ISSN: 0965-5441, [retrieved on 20160522], DOI: 10.1134/S0965544116030130 *
WOODROFFE JOSANNE-DEE ET AL: "High-Performance, Biobased, Jet Fuel Blends Containing Hydrogenated Monoterpenes and Synthetic Paraffinic Kerosenes", ENERGY & FUELS, vol. 34, no. 5, 21 May 2020 (2020-05-21), WASHINGTON, DC, US., pages 5929 - 5937, XP093028014, ISSN: 0887-0624, DOI: 10.1021/acs.energyfuels.0c00274 *

Also Published As

Publication number Publication date
FR3138444A1 (fr) 2024-02-02

Similar Documents

Publication Publication Date Title
US8241881B2 (en) Production of gasoline from fermentable feedstocks
EP1866266B1 (fr) Production de carburant diesel a partir d'huiles vegetales et animales
US8148579B2 (en) Production of gasoline from fermentable feedstocks
WO2008081101A2 (fr) Procede de conversion de charges issues de sources renouvelables en bases carburants gazoles de bonne qualite
EP2825617B1 (fr) Procede de valorisation de bio-huiles en carburants hydrocarbones
FR2932811A1 (fr) Procede de conversion de charges issues de sources renouvelables en bases carburants gazoles de bonne qualite mettant en oeuvre un catalyseur de type zeolithique
WO2011138520A2 (fr) Procede de production de kerosene a partir de bio-ethanol
FR2932812A1 (fr) Procede de conversion de charges issues de sources renouvelables en bases carburants gazoles de bonne qualite mettant en oeuvre un catalyseur zeolithique sans separation gaz liquide intermediaire
FR2991335A1 (fr) Procede optimise pour la valorisation de bio-huiles en bases aromatiques
EP2176382B1 (fr) Procede d' hydroconversion en lit bouillonnant de charges d'origine bio-renouvelable pour la production de bases carburants
EP2581436B1 (fr) Procédé de production de distillats moyens à partir d'un melange d'une charge issue de sources renouvelables et d'un effluent paraffinique
WO2024023161A1 (fr) Composition renouvelable de carburéacteur à teneur élevée en composés naphténiques et procédé de préparation associé
WO2024023162A1 (fr) Composition renouvelable de carburéacteur à teneur élevée en composés naphténiques
FR3012467A1 (fr) Procede optimise de conversion de la biomasse pour la fabrication de bases petrochimiques
Kiatkittipong et al. Bioresources and biofuels—From classical to perspectives and trends
Malinowski et al. An analysis of physico-chemical properties of the next generation biofuels and their correlation with the requirements of diesel engine
EP4148103A1 (fr) Composition renouvelable de carbureacteur
WO2023170360A1 (fr) Procede de fabrication d'un carbureacteur a partir de charges d'origine renouvelable
WO2023170359A1 (fr) Procede de fabrication d'un carbureacteur a partir de charges d'origine renouvelable
FR3041359A1 (fr) Procede optimise pour la valorisation de bio-huiles en bases aromatiques et olefiniques
WO2023233098A1 (fr) Procede de fabrication de fluides hydrocarbones a partir de charges d'origine renouvelable
EP2880126B2 (fr) Procede d'hydrotraitement et d'hydroisomerisation de charges issues de la biomasse dans lequel l'effluent a hydrotraiter et le flux d'hydrogene contiennent une teneur limitee en monoxyde de carbone
KR20220069151A (ko) 바이오매스로부터 고순도 노말파라핀의 제조방법
FR3129947A1 (fr) Procede de production de kerosene d’aviation a partir d’un flux riche en composes aromatiques de source renouvelable
FR3024156A1 (fr) Procede optimise pour la valorisation de bio-huiles en carburants hydrocarbones

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23751268

Country of ref document: EP

Kind code of ref document: A1