WO2024023055A1 - Hydrometallurgical process for recovering palladium from a spent catalyst - Google Patents

Hydrometallurgical process for recovering palladium from a spent catalyst Download PDF

Info

Publication number
WO2024023055A1
WO2024023055A1 PCT/EP2023/070520 EP2023070520W WO2024023055A1 WO 2024023055 A1 WO2024023055 A1 WO 2024023055A1 EP 2023070520 W EP2023070520 W EP 2023070520W WO 2024023055 A1 WO2024023055 A1 WO 2024023055A1
Authority
WO
WIPO (PCT)
Prior art keywords
palladium
catalyst
process according
hydrogen peroxide
leaching
Prior art date
Application number
PCT/EP2023/070520
Other languages
French (fr)
Inventor
Leonardo TITERICZ
Patrick Markus Dhaese
Arnaud LEMAIRE
Rafael PETRUY
Original Assignee
Solvay Sa
Peroxidos Do Brasil Ltda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay Sa, Peroxidos Do Brasil Ltda filed Critical Solvay Sa
Publication of WO2024023055A1 publication Critical patent/WO2024023055A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/048Recovery of noble metals from waste materials from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a new hydrometallurgical process for recovering palladium from a spent catalyst.
  • Palladium (Pd) and its complexes is used in many industrial applications.
  • One important example is the use of palladium in catalysts, in particular in carrier supported catalysts, e.g. automobile exhaust catalysts, pharmaceutical catalysts or hydrogenation catalysts. Due to its low natural abundance, there is the need to recover and refine palladium from different containing spent materials.
  • a critical issue of the recovery procedure is its efficiency regarding complete separation of the palladium from its support (carrier).
  • Several palladium recovery processes are known in the prior art. These methods can be divided into two main categories: Pyrometallurgy and hydrometallurgy processes.
  • the spent catalyst is smelt and enriched at high temperature and the palladium is recovered by traditional methods.
  • This type of recovery processes is used commonly in large scale up processes and has to be carried out by specialized companies.
  • the process is characterized by high energy consumption and thus high CO 2 emissions.
  • a high investment cost is related with the design of such a plant. That is why typically the source streams of many types of catalysts are combined into one smelter and this application is not dedicated for one particular catalyst (see Dong, H., et al.; International Journal of Mineral Processing; 2015; 145; p. 108-113).
  • hydrometallurgy recovery is less convenient to treat a mix of different catalysts, but when one specific catalyst needs to be recycled, it is more efficient than pyrometallurgy processes.
  • the hydrometallurgy recovery process can be divided into two sub-types: a carrier dissolution process and a palladium dissolution process.
  • the support is dissolved with a non-oxidizing acid or base where palladium is not dissolved and remained as sludge; see for example CN 1063667595 A.
  • this process requires large amounts of reagents and thus is not suitable for large scale up recovery processes.
  • the carrier of the spent catalyst includes usually inorganic and/or organic impurities. Their presence during the recovery process also results into a reduction of the palladium recovery rate, as for example described in CN 104032143 A.
  • the present invention relates to a process for recycling palladium from a spent catalyst containing palladium deposited on a carrier, comprising the following consecutive steps:
  • the process of the invention has a palladium recovery rate of at least 99.5 %.
  • the process is simple and can be done on-site. Furthermore, the process is cost-efficient and allows that the recovered palladium can be directly used in the production of a fresh catalyst.
  • a compound means one compound or more than one compound.
  • the term “average” refers to number average unless indicated otherwise.
  • % by weight As used herein, the terms “% by weight”, “wt.- %”, “weight percentage”, or “percentage by weight” are used interchangeably. The same applies to the terms “% by volume”, “vol.- %”, “vol. percentage”, or “percentage by volume”, or “% by mol”, “mol- %”, “mol percentage”, or “percentage by mol”.
  • endpoints includes all integer numbers and, where appropriate, fractions subsumed within that range (e.g. 1 to 5 can include 1, 2, 3, 4 when referring to, for example, a number of elements, and can also include 1.5, 2, 2.75 and 3.80, when referring to, for example, measurements).
  • the recitation of end points also includes the end point values themselves (e.g. from 1.0 to 5.0 includes both 1.0 and 5.0). Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
  • carrier and “support” as used herein are synonymously to each other.
  • the present application provides a recovery process for palladium from a spent catalyst characterized by the following combination of consecutive process steps:
  • the spent catalyst treated by the process according to the invention can be any type of spent catalyst that comprises palladium.
  • the catalyst is a slurry catalyst comprising palladium.
  • the catalyst is a hydrogenation catalyst used for the production of hydrogen peroxide, in particular used in an Anthraquinone- Auto- Oxidation-process (AO-process) for the production of hydrogen peroxide.
  • AO-process Anthraquinone- Auto- Oxidation-process
  • the support/carrier of the catalyst can be any suitable support known in the prior art.
  • the carrier is selected from the group consisting of carbon, silica, alumina, alumino-silicate, zirconia, zircon-silicate, and magnesium aluminate, more preferably the carrier is selected from the group consisting of silica, alumina, alumino-silicate, zirconia, zircon-silicate, and magnesium aluminate, and even more preferred the carrier is an alumina or an aluminosilicate support.
  • the carrier of a spent catalyst includes inorganic and/or organic impurities, which influence the efficiency of the metal (palladium) recovery process.
  • the carrier of a catalyst used an AO- process includes significant amounts of organic impurities.
  • the presence of the impurities may result into undesired by-products during the recovery process. Therefore, it is preferred to remove the impurities from the carrier at the beginning of the recovery process.
  • One possibility seems to be to calcine the spent catalyst.
  • the calcination should be carried out at a temperature, which is high enough to remove the impurities, in particular the organic impurities, from the carrier. However, it has been found by the inventors that above a certain temperature a further increase of the temperature has no influence on the effectivity of the calcination. Therefore, according to the invention, a calcination temperature from 450 °to 650 °C is preferred, more preferred is a temperature from 500 to 600 °C, more preferred is a temperature from 510 to 560 °C and most preferred is a temperature from 520 to 530 °C.
  • the calcination should be carried out for a duration sufficient to remove the impurities from the carrier.
  • the calcination is carried out for at least 60 minutes, more preferably for at least 90 minutes, at least 120 minutes or at least 180 minutes.
  • a duration of 270 minutes or less, for example of 260 minutes, 250 minutes or 240 minutes may be sufficient to complete the calcination step.
  • the catalyst may be grinded before calcination by grinding method usually used in the prior art.
  • the calcined catalyst is cooled, preferably cooled down to room temperature (approx. 20 to 25 °C), and afterwards water, more preferably demineralized water (DMW), is added to the calcined catalyst.
  • room temperature approximately 20 to 25 °C
  • water more preferably demineralized water (DMW)
  • a reducing agent is added to the calcined catalyst.
  • the reducing agent is added to the calcined catalyst after water, preferably DMW was added to the calcined catalyst.
  • the reducing agent is selected preferably from the group consisting of formic acid, sodium formate, sodium hypophosphite, sodium borohydrade, hydrogen gas, formaldehyde and mixtures thereof, preferably the reducing agent is formic acid. If the reducing agent is formic acid an aqueous solution of formic acid preferably is used. This solution has preferably a formic acid concentration of 60 to 95 %, more preferably of 70 to 90 %, most preferably of 75 to 85 %.
  • the reduction step (b) is carried out with a liquid to solid (L/S) ratio of 2 to 7, more preferred with a L/S ratio of 3 to 5.
  • the ratio of reducing agent to calcined catalyst is preferably between 1 : 8 and 1 : 20, more preferably between 1 :9 and 1 : 15.
  • the reduction step (b) of the invention is carried out preferably at a temperature between 50 and 80 °C, more preferably between 55 and 70 °C, most preferably between 60 and 65 °C.
  • the duration time of reduction step (b) is preferably at least 30 minutes. More preferred is that the reduction step is carried out for at least 45 minutes. 60 minutes may be sufficient to reduce the palladium oxide present in the calcined catalyst to palladium.
  • the reduction step (b) of the process according to the claimed invention results into a reduced slurry of the catalyst.
  • the obtained reduced catalyst slurry is leached to separate the palladium from the carrier. This is done by dissolving the palladium with the aid of a leaching medium.
  • inorganic acids in combination with oxidants may be used.
  • the inorganic acid can be hydrochloric acid or sulfuric acid and the oxidants can be hypochlorite, hydrogen peroxide, sodium chlorate or nitric acid or mixtures thereof.
  • the conditions of the leaching step have to be chosen such that the dissolution of the carrier into the leaching mixture is reduced or even avoided.
  • hydrochloric acid in combination with hydrogen peroxide as a leaching medium, more preferably to use an aqueous solution of hydrochloric acid in combination with an aqueous solution of hydrogen peroxide as leaching medium.
  • the addition of the leaching medium to the reduced catalyst slurry can be carried out such that a leaching medium comprising / consisting of simultaneously hydrochloric acid and hydrogen peroxide, preferably in form of aqueous solutions, is added to the reduced catalyst slurry or an aqueous solution of hydrochloric acid and an aqueous solution of hydrogen peroxide are added separately from each other to the reduced catalyst slurry.
  • a leaching mixture is formed comprising / consisting of the reduced catalyst slurry and the leaching medium.
  • the palladium can be dissolved with the help of hydrogen peroxide as oxidizing agent in the presence of the acid medium (hydrochloric acid) by the following chemical equitation:
  • the palladium forms stable chloro-complexes such PdCl + , PdCh, PdCh' and PdCl 4 2 ' in the hydrochloric acid solution.
  • the formation of these complexes in solution enhances the dissolution of palladium from the carrier material.
  • the hydrochloric acid is used in form of an aqueous solution having a hydrochloric acid concentration of 30 to 45%, more preferably of 33 to 37%.
  • the solution is added preferably to the reduced catalyst slurry at a temperature preferably from 55 to 100 °C, more preferably from 60 to 98 °C, most preferably from 65 to 95 °C.
  • the hydrogen peroxide is used in form of aqueous solution, which has a hydrogen peroxide concentration of 55 to 65 %, preferably of 60%.
  • the solution is added preferably with a constant flow to the system of reduced catalyst slurry and hydrochloric acid to obtain the leaching mixture.
  • the weight ratio of hydrogen peroxide to hydrochloric acid is between 1 : 1.5 and 1 :2.5, more preferably, between 1 :1.7 and 1 :2.2.
  • the leaching step is carried out for at least 60 minutes, more preferably for at least 90 minutes.
  • the leaching step is carried out for 60 to 120 minutes, preferably for 90 to 100 minutes.
  • the leaching step is carried out with a liquid to solid ratio (L/S ratio) from 4: 1 to 15: 1, more preferably from 5: 1 to 10: 1 most preferably with L/S ratio of 5 : 1.
  • L/S ratio liquid to solid ratio
  • the leaching mixture is continuously stirred, for example at a stirring speed of 60 to 100 rpm or of 80 to 90 rpm.
  • the leaching mixture is filtrated to obtain a liquor containing the dissolved palladium. Furthermore, it is preferred that after filtration of the leaching mixture, the precipitated carrier is washed with demineralized water and the used washing solution is combined with the filtrate to obtain the liquor containing the dissolved palladium.
  • a reducing agent which is suitable to reduce Pd 2+ to Pd°, in combination with an alkali metal hydroxide, preferably in combination with sodium hydroxide or potassium hydroxide, even more preferred in combination with the sodium hydroxide.
  • the reducing agent is selected preferably from the group consisting of formic acid, sodium formate, zinc, iron, aluminium, sodium hypophosphite, sodium borohydrade, hydrogen gas and formaldehyde, preferably the reducing agent is formic acid and/or sodium formate. Most preferably, the reducing agent is the same reducing agent as used in process step (b) of the invention. If the reducing agent is formic acid, an aqueous solution of formic acid is used in the process of the invention having preferably a formic acid concentration of 60 to 95%, more preferably of 70 to 90 %, most preferably of 75 to 85%.
  • the alkali metal hydroxide preferably sodium hydroxide
  • the alkali metal hydroxide is used in form of an aqueous solution having an alkali metal hydroxide concentration preferably of 40 to 60%, more preferably of 45 to 55 %.
  • the reducing agent is used in an amount of 1.5 to 3.5 wt.-%, more preferably of 2 to 3 wt.-%, and the alkali metal hydroxide, preferably sodium hydroxide, in an amount of 2.0 and 3.5 wt.-%, more preferably of 2.5 to 3.0 wt.-%, based on the total weight of the liquor treated in step (d).
  • the alkali metal hydroxide preferably sodium hydroxide
  • the reduction step (d) of the process according to the invention is preferably carried out at a temperature of 75 to 120 °C, more preferably of 80 to 110 °C, most preferably at a temperature of 85 to 100 °C.
  • the duration time of this process step is preferably between 100 and 300 minutes, more preferably between 120 and 250 minutes. Additionally, it is preferred to stir the mixture at a speed of 50 to 80 rpm, more preferably of 55 to 75 rpm.
  • the reduced palladium is obtained in form of a sponge by filtration.
  • the obtained palladium sponge can be optionally further treated with hydrochloric acid and hydrogen peroxide to obtain a solution of palladium.
  • the hydrochloric acid is used in form of an aqueous solution having a hydrochloric acid concentration of 30 to 45%, more preferably of 33 to 37%.
  • the hydrogen peroxide is used in form of aqueous solution, which has preferably a hydrogen peroxide concentration of 55 to 65 %, preferably of 60%.
  • the weight ratio of hydrochloric acid to hydrogen peroxide is preferably between 1 : 1 and 1 : 1.5, more preferably between 1.1 and 1 : 1.2.
  • the re-dissolution step is preferably carried out at a temperature of 50 to 70 °C, more preferably of 55 to 65 °C.
  • the duration time of this process step is preferably 90 to 150 minutes, more preferably of 100 to 120 minutes. Additionally, it is preferred to stir the mixture at a speed of 50 to 80 rpm, more preferably of 55 to 75 rpm.
  • the solution After cooling, the solution can be directly used in different applications.
  • the process of the invention is simple and can be carried out in a lab, a middle scale or in a large scale mode.
  • the palladium recovered by the process of the invention or solution thereof can be for example directly used in the production of a fresh catalyst. In that case it is possible to provide a new catalyst in one week. Moreover, since the process of the invention is simple, there is no need to outsource the recovery process, and the process is cost-efficient.
  • Example 1 was carried out to determine the optimal conditions, i.e. temperature and time, for calcination of a spent catalyst, in particular of a slurry catalyst.
  • a graphical counter plot of these data shows that the maximum mass loss (impurity loss) for the slurry catalyst is obtained at a temperature of 525 °C and a duration of 255 minutes.
  • Example 2 the process of the invention was carried in lab scale mode.
  • the catalyst was a sodium silico-aluminate catalyst, which was calcinated at a temperature of 550°C and for a period of 240 minutes.
  • the palladium recovery rate was 99.75%.
  • Example 3 the process of the invention was carried in a middle scale mode.
  • the catalyst was a silico-aluminate catalyst, which was calcinated at a temperature of 550°C and for a period of 240 minutes.
  • Example 4 the process step (b) and (c) of the invention was carried with spent silico-aluminate catalyst, which was not calcined, i.e. process step (a) of the invention was not carried out.

Abstract

The present invention relates to a new hydrometallurgical process for recovering palladium from a spent catalyst, wherein a specific order of multiple process-steps is carried out.

Description

Hydrometallurgical Process for Recovering Palladium from a spent Catalyst
This application claims priority of the application filed on 26 July 2022 in EUROPE with Nr 22187068.6, the whole content of this application being incorporated herein by reference for all purposes.
TECHNICAL FIELD
The present invention relates to a new hydrometallurgical process for recovering palladium from a spent catalyst.
TECHNICAL BACKGROUND
Palladium (Pd) and its complexes is used in many industrial applications. One important example is the use of palladium in catalysts, in particular in carrier supported catalysts, e.g. automobile exhaust catalysts, pharmaceutical catalysts or hydrogenation catalysts. Due to its low natural abundance, there is the need to recover and refine palladium from different containing spent materials. A critical issue of the recovery procedure is its efficiency regarding complete separation of the palladium from its support (carrier). Several palladium recovery processes are known in the prior art. These methods can be divided into two main categories: Pyrometallurgy and hydrometallurgy processes.
In pyrometallurgy processes, the spent catalyst is smelt and enriched at high temperature and the palladium is recovered by traditional methods. This type of recovery processes is used commonly in large scale up processes and has to be carried out by specialized companies. The process is characterized by high energy consumption and thus high CO2 emissions. Furthermore, a high investment cost is related with the design of such a plant. That is why typically the source streams of many types of catalysts are combined into one smelter and this application is not dedicated for one particular catalyst (see Dong, H., et al.; International Journal of Mineral Processing; 2015; 145; p. 108-113).
On the other hand, hydrometallurgy recovery is less convenient to treat a mix of different catalysts, but when one specific catalyst needs to be recycled, it is more efficient than pyrometallurgy processes.
The hydrometallurgy recovery process can be divided into two sub-types: a carrier dissolution process and a palladium dissolution process.
In the first type of hydrometallurgy processes, the support is dissolved with a non-oxidizing acid or base where palladium is not dissolved and remained as sludge; see for example CN 1063667595 A. However, this process requires large amounts of reagents and thus is not suitable for large scale up recovery processes.
In the second type of hydrometallurgy recovery processes, palladium is extracted from the support/carrier by an acidic solution of an oxidant, leaving the support. However, often the carrier will be dissolved partially with the palladium and thus interferes with it. Hence, the palladium cannot be completely separated from the carrier. A further problem is that the carrier of the spent catalyst includes usually inorganic and/or organic impurities. Their presence during the recovery process also results into a reduction of the palladium recovery rate, as for example described in CN 104032143 A. Moreover, in hydrometallurgy recovery processes as described in the prior art, for example in CN 101186971 A, CN 104032143 A or CN 111321307, the dissolved palladium, i.e., the palladium separated from the carrier, cannot be obtained by a simple purification step, but several purification steps are necessary to obtain palladium in a form that can be further used. Theses purification steps bears an additional risk of reduction of the palladium recovery rate.
Therefore, there was still the need to provide a palladium recovery process, which is simple, cost-efficient, has a high palladium recovery rate, can be used in large scale up processes, and ensures that no specialized companies are needed to carry out the process.
SUMMARY OF THE INVENTION
The present invention relates to a process for recycling palladium from a spent catalyst containing palladium deposited on a carrier, comprising the following consecutive steps:
(a) calcination of the spent catalyst to obtain a calcined catalyst;
(b) reduction of the calcined catalyst with reducing agent to obtain a reduced catalyst slurry;
(c) leaching the reduced catalyst slurry with a leaching medium by forming a leaching mixture and afterwards filtration of the leaching mixture to obtain a liquor containing palladium;
(d) treatment of the liquor with a reducing agent and an alkali metal hydroxide to obtain a treated liquor;
(e) filtration of the treated liquor to recover a palladium sponge; and (f) optional treatment of the palladium sponge with hydrochloric acid and hydrogen peroxide to a solution of palladium.
The process of the invention has a palladium recovery rate of at least 99.5 %. The process is simple and can be done on-site. Furthermore, the process is cost-efficient and allows that the recovered palladium can be directly used in the production of a fresh catalyst.
DETAILED DESCRIPTION OF THE INVENTION
Before the present process of the invention and used thereof is described, it is to be understood that this invention is not limited to specific process conditions described, since such conditions may, of course, vary. It is also to be understood that the terminology used herein is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
As used herein, the singular forms "a", "an", and "the" include both singular and plural referents unless the context clearly dictates otherwise. By way of example, "a compound" means one compound or more than one compound.
The terms "containing", "contains" and "contained of' as used herein are synonymous with "including", "includes" or " comprising", "comprises", and are inclusive or open-ended and do not exclude additional, non-recited members, elements or process steps. It will be appreciated that the terms “containing”, “contains”, "comprising", "comprises" and "comprised of' as used herein comprise the terms "consisting of, "consists" and "consists of.
Throughout this application, the term "about" is used to indicate that a value includes the standard deviation of error for the device or method being employed to determine the value.
As used herein, the term “average” refers to number average unless indicated otherwise.
As used herein, the terms “% by weight”, “wt.- %”, “weight percentage”, or “percentage by weight” are used interchangeably. The same applies to the terms “% by volume”, “vol.- %”, “vol. percentage”, or “percentage by volume”, or “% by mol”, “mol- %”, “mol percentage”, or “percentage by mol”.
The recitation of numerical ranges by endpoints includes all integer numbers and, where appropriate, fractions subsumed within that range (e.g. 1 to 5 can include 1, 2, 3, 4 when referring to, for example, a number of elements, and can also include 1.5, 2, 2.75 and 3.80, when referring to, for example, measurements). The recitation of end points also includes the end point values themselves (e.g. from 1.0 to 5.0 includes both 1.0 and 5.0). Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
All references cited in the present specification are hereby incorporated by reference in their entirety. In particular, the teachings of all references herein specifically referred to are incorporated by reference. Should the disclosure of any patents, patent applications, and publications which are incorporated herein by reference conflict with the description of the present application to the extent that it may render a term unclear, the present description shall take precedence.
Unless otherwise defined, all terms used in disclosing the invention, including technical and scientific terms, have the meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. By means of further guidance, term definitions are included to better appreciate the teaching of the present invention.
The terms “carrier” and “support” as used herein are synonymously to each other.
In the following passages, different alternatives, embodiments and variants of the invention are defined in more detail. Each alternative and embodiment so defined may be combined with any other alternative and embodiment, and this for each variant unless clearly indicated to the contrary or clearly incompatible when the value range of a same parameter is disjoined. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous.
Furthermore, the particular features, structures or characteristics described in present description may be combined in any suitable manner, as would be apparent to a person skilled in the art from this disclosure, in one or more embodiments. Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention, and from different embodiments, as would be understood by those in the art.
In order to overcome the disadvantages of the processes known in the prior art, the present application provides a recovery process for palladium from a spent catalyst characterized by the following combination of consecutive process steps:
(a) calcination of the spent catalyst to obtain a calcined catalyst;
(b) reduction of the calcined catalyst with reducing agent to obtain a reduced catalyst slurry;
(c) leaching the reduced catalyst slurry with a leaching medium by forming a leaching mixture and afterwards filtration of the leaching mixture to obtain a liquor containing dissolved palladium;
(d) treatment of the liquor with a reducing agent and an alkali metal hydroxide to obtain a treated liquor;
(e) filtration of the treated liquor to recover a palladium sponge; and
(f) optional treatment of the palladium sponge with hydrochloric acid and hydrogen peroxide to a solution of palladium.
The spent catalyst treated by the process according to the invention can be any type of spent catalyst that comprises palladium. According to the invention, it is preferred that the catalyst is a slurry catalyst comprising palladium. In particular it is preferred that the catalyst is a hydrogenation catalyst used for the production of hydrogen peroxide, in particular used in an Anthraquinone- Auto- Oxidation-process (AO-process) for the production of hydrogen peroxide.
The support/carrier of the catalyst can be any suitable support known in the prior art. Preferably, the carrier is selected from the group consisting of carbon, silica, alumina, alumino-silicate, zirconia, zircon-silicate, and magnesium aluminate, more preferably the carrier is selected from the group consisting of silica, alumina, alumino-silicate, zirconia, zircon-silicate, and magnesium aluminate, and even more preferred the carrier is an alumina or an aluminosilicate support.
It is state of the art that the carrier of a spent catalyst includes inorganic and/or organic impurities, which influence the efficiency of the metal (palladium) recovery process. For example, the carrier of a catalyst used an AO- process includes significant amounts of organic impurities. The presence of the impurities may result into undesired by-products during the recovery process. Therefore, it is preferred to remove the impurities from the carrier at the beginning of the recovery process. One possibility seems to be to calcine the spent catalyst. However, as for example mentioned in the scientific publication of Barakat et al., Applied Catalysis A, General 301 (2006), pages 182-186, such a heat treatment of the supported catalyst results into an undesired low recovery rate of palladium, because during the calcination there is the high risk that the palladium will be trapped in the carrier. This is particular the case when the carrier is an alumina or an alumina-silicate support, and thus it is not possible to separate the palladium from the carrier in a sufficient manner.
However, the inventors of the present application surprisingly found that by using the multiple step procedure of the invention, a previously calcination of the spent catalyst to remove the impurities increases the amount of recovered palladium.
The calcination should be carried out at a temperature, which is high enough to remove the impurities, in particular the organic impurities, from the carrier. However, it has been found by the inventors that above a certain temperature a further increase of the temperature has no influence on the effectivity of the calcination. Therefore, according to the invention, a calcination temperature from 450 °to 650 °C is preferred, more preferred is a temperature from 500 to 600 °C, more preferred is a temperature from 510 to 560 °C and most preferred is a temperature from 520 to 530 °C.
Furthermore, the calcination should be carried out for a duration sufficient to remove the impurities from the carrier. Preferably, the calcination is carried out for at least 60 minutes, more preferably for at least 90 minutes, at least 120 minutes or at least 180 minutes. A duration of 270 minutes or less, for example of 260 minutes, 250 minutes or 240 minutes may be sufficient to complete the calcination step. In particular preferred is a duration of from 230 to 270 minutes, more preferably from 240 to 260 minutes.
Furthermore, if necessary, according to the invention, the catalyst may be grinded before calcination by grinding method usually used in the prior art.
In a preferred embodiment, after calcination of the spent catalyst, the calcined catalyst is cooled, preferably cooled down to room temperature (approx. 20 to 25 °C), and afterwards water, more preferably demineralized water (DMW), is added to the calcined catalyst.
In process step (b) of the invention, a reducing agent is added to the calcined catalyst. Preferably, the reducing agent is added to the calcined catalyst after water, preferably DMW was added to the calcined catalyst.
The reducing agent is selected preferably from the group consisting of formic acid, sodium formate, sodium hypophosphite, sodium borohydrade, hydrogen gas, formaldehyde and mixtures thereof, preferably the reducing agent is formic acid. If the reducing agent is formic acid an aqueous solution of formic acid preferably is used. This solution has preferably a formic acid concentration of 60 to 95 %, more preferably of 70 to 90 %, most preferably of 75 to 85 %.
Additionally, it is preferred that the reduction step (b) is carried out with a liquid to solid (L/S) ratio of 2 to 7, more preferred with a L/S ratio of 3 to 5.
Furthermore, according to the invention, the ratio of reducing agent to calcined catalyst is preferably between 1 : 8 and 1 : 20, more preferably between 1 :9 and 1 : 15.
Moreover, the reduction step (b) of the invention is carried out preferably at a temperature between 50 and 80 °C, more preferably between 55 and 70 °C, most preferably between 60 and 65 °C.
The duration time of reduction step (b) is preferably at least 30 minutes. More preferred is that the reduction step is carried out for at least 45 minutes. 60 minutes may be sufficient to reduce the palladium oxide present in the calcined catalyst to palladium.
The reduction step (b) of the process according to the claimed invention results into a reduced slurry of the catalyst.
Afterwards, according to the invention, the obtained reduced catalyst slurry is leached to separate the palladium from the carrier. This is done by dissolving the palladium with the aid of a leaching medium.
For leaching the reduced slurry obtained in step (b) inorganic acids in combination with oxidants may be used. For example, the inorganic acid can be hydrochloric acid or sulfuric acid and the oxidants can be hypochlorite, hydrogen peroxide, sodium chlorate or nitric acid or mixtures thereof.
The conditions of the leaching step have to be chosen such that the dissolution of the carrier into the leaching mixture is reduced or even avoided. According to the invention, it is preferred to use hydrochloric acid in combination with hydrogen peroxide as a leaching medium, more preferably to use an aqueous solution of hydrochloric acid in combination with an aqueous solution of hydrogen peroxide as leaching medium. According to the invention, the addition of the leaching medium to the reduced catalyst slurry can be carried out such that a leaching medium comprising / consisting of simultaneously hydrochloric acid and hydrogen peroxide, preferably in form of aqueous solutions, is added to the reduced catalyst slurry or an aqueous solution of hydrochloric acid and an aqueous solution of hydrogen peroxide are added separately from each other to the reduced catalyst slurry. In both cases a leaching mixture is formed comprising / consisting of the reduced catalyst slurry and the leaching medium.
The palladium can be dissolved with the help of hydrogen peroxide as oxidizing agent in the presence of the acid medium (hydrochloric acid) by the following chemical equitation:
Pd + H2O2 + 4 HC1 = H2PdCl4 + H2O.
The palladium forms stable chloro-complexes such PdCl+, PdCh, PdCh' and PdCl4 2' in the hydrochloric acid solution. The formation of these complexes in solution enhances the dissolution of palladium from the carrier material.
According to the invention, it is preferred that the hydrochloric acid is used in form of an aqueous solution having a hydrochloric acid concentration of 30 to 45%, more preferably of 33 to 37%. The solution is added preferably to the reduced catalyst slurry at a temperature preferably from 55 to 100 °C, more preferably from 60 to 98 °C, most preferably from 65 to 95 °C.
Additionally, it is preferred that the hydrogen peroxide is used in form of aqueous solution, which has a hydrogen peroxide concentration of 55 to 65 %, preferably of 60%. The solution is added preferably with a constant flow to the system of reduced catalyst slurry and hydrochloric acid to obtain the leaching mixture.
It is further preferred that the weight ratio of hydrogen peroxide to hydrochloric acid is between 1 : 1.5 and 1 :2.5, more preferably, between 1 :1.7 and 1 :2.2.
It is preferred that the leaching step is carried out for at least 60 minutes, more preferably for at least 90 minutes. Preferably, the leaching step is carried out for 60 to 120 minutes, preferably for 90 to 100 minutes.
Furthermore, it is preferred that the leaching step is carried out with a liquid to solid ratio (L/S ratio) from 4: 1 to 15: 1, more preferably from 5: 1 to 10: 1 most preferably with L/S ratio of 5 : 1.
Additionally, it is preferred that the leaching mixture is continuously stirred, for example at a stirring speed of 60 to 100 rpm or of 80 to 90 rpm.
Subsequently, preferably when the room temperature is reached, the leaching mixture is filtrated to obtain a liquor containing the dissolved palladium. Furthermore, it is preferred that after filtration of the leaching mixture, the precipitated carrier is washed with demineralized water and the used washing solution is combined with the filtrate to obtain the liquor containing the dissolved palladium. In order to separate the dissolved palladium from the liquor obtained in process step (c) of the invention, it is sufficient to use a reducing agent, which is suitable to reduce Pd2+ to Pd°, in combination with an alkali metal hydroxide, preferably in combination with sodium hydroxide or potassium hydroxide, even more preferred in combination with the sodium hydroxide.
The reducing agent is selected preferably from the group consisting of formic acid, sodium formate, zinc, iron, aluminium, sodium hypophosphite, sodium borohydrade, hydrogen gas and formaldehyde, preferably the reducing agent is formic acid and/or sodium formate. Most preferably, the reducing agent is the same reducing agent as used in process step (b) of the invention. If the reducing agent is formic acid, an aqueous solution of formic acid is used in the process of the invention having preferably a formic acid concentration of 60 to 95%, more preferably of 70 to 90 %, most preferably of 75 to 85%.
Furthermore, according to the invention, it is preferred that the alkali metal hydroxide, preferably sodium hydroxide, is used in form of an aqueous solution having an alkali metal hydroxide concentration preferably of 40 to 60%, more preferably of 45 to 55 %.
In one embodiment of the invention, it is preferred that the reducing agent is used in an amount of 1.5 to 3.5 wt.-%, more preferably of 2 to 3 wt.-%, and the alkali metal hydroxide, preferably sodium hydroxide, in an amount of 2.0 and 3.5 wt.-%, more preferably of 2.5 to 3.0 wt.-%, based on the total weight of the liquor treated in step (d).
The reduction step (d) of the process according to the invention is preferably carried out at a temperature of 75 to 120 °C, more preferably of 80 to 110 °C, most preferably at a temperature of 85 to 100 °C. The duration time of this process step is preferably between 100 and 300 minutes, more preferably between 120 and 250 minutes. Additionally, it is preferred to stir the mixture at a speed of 50 to 80 rpm, more preferably of 55 to 75 rpm.
The reduced palladium is obtained in form of a sponge by filtration.
The obtained palladium sponge can be optionally further treated with hydrochloric acid and hydrogen peroxide to obtain a solution of palladium.
According to the invention, it is preferred that the hydrochloric acid is used in form of an aqueous solution having a hydrochloric acid concentration of 30 to 45%, more preferably of 33 to 37%. Additionally, it is preferred that the hydrogen peroxide is used in form of aqueous solution, which has preferably a hydrogen peroxide concentration of 55 to 65 %, preferably of 60%.
Moreover, the weight ratio of hydrochloric acid to hydrogen peroxide is preferably between 1 : 1 and 1 : 1.5, more preferably between 1.1 and 1 : 1.2.
The re-dissolution step is preferably carried out at a temperature of 50 to 70 °C, more preferably of 55 to 65 °C. The duration time of this process step is preferably 90 to 150 minutes, more preferably of 100 to 120 minutes. Additionally, it is preferred to stir the mixture at a speed of 50 to 80 rpm, more preferably of 55 to 75 rpm.
After cooling, the solution can be directly used in different applications.
The process of the invention is simple and can be carried out in a lab, a middle scale or in a large scale mode.
By using the process of the invention, it is possible to recover at least 99.5 %, at least 99.8 %, or at least 99.9 % of the palladium present in the spent catalyst.
The palladium recovered by the process of the invention or solution thereof can be for example directly used in the production of a fresh catalyst. In that case it is possible to provide a new catalyst in one week. Moreover, since the process of the invention is simple, there is no need to outsource the recovery process, and the process is cost-efficient.
The present invention is further illustrated by the following examples. It should be understood that the following examples are for illustration purposes only, and are not used to limit the present invention thereto.
EXAMPLES
Example 1
Example 1 was carried out to determine the optimal conditions, i.e. temperature and time, for calcination of a spent catalyst, in particular of a slurry catalyst.
Procedure of calcination
For all essays done, 10 g of the catalyst were weighted in lab scale on compatible crucible. In the meantime, the lab control oven (muffle furnace) was set with such temperature estimated previously. When the temperature achieves the set point, the crucible was positioned in the middle of the furnace with the frontal door opened (during 10 minutes), and only after, with the door closed, the counting of the time starts. After the achievement of time expected, the sample was removed from the furnace and cooled down inside a desiccator during 30 minutes. The determination of best temperature and time where obtained by a central composite design study, based in the loss of mass of each test.
In Table 1 the results from Design of Experiments done for the slurry catalyst are summarized.
Figure imgf000012_0001
Table 1
A graphical counter plot of these data shows that the maximum mass loss (impurity loss) for the slurry catalyst is obtained at a temperature of 525 °C and a duration of 255 minutes.
Example 2 (invention)
In Example 2 the process of the invention was carried in lab scale mode. The catalyst was a sodium silico-aluminate catalyst, which was calcinated at a temperature of 550°C and for a period of 240 minutes.
The conditions used in the process steps according to the invention were:
Figure imgf000012_0002
Figure imgf000013_0001
Table 2
The palladium recovery rate was 99.75%.
For a better understanding regarding the order of process steps, in Figure 1 a flow chart of the steps used in Example 2 are shown. Example 3 (invention)
In Example 3 the process of the invention was carried in a middle scale mode. The catalyst was a silico-aluminate catalyst, which was calcinated at a temperature of 550°C and for a period of 240 minutes.
The conditions used in the process steps according to the invention were:
Figure imgf000013_0002
Table 3
The palladium recovery rate was 99.89%. For a better understanding regarding the order of process steps, in Figure 2 a flow chart of the steps used in Example 3 are shown.
Example 4 (comparative example)
In Example 4 the process step (b) and (c) of the invention was carried with spent silico-aluminate catalyst, which was not calcined, i.e. process step (a) of the invention was not carried out.
The conditions used in the process steps (b) and (c) were:
Figure imgf000014_0001
Table 4
It was not possible to separate the palladium dissolved in the leaching mixture from the carrier by filtration in a sufficient manner due to the clogging of the filter by the leaching mixture. Therefore, no further purification steps to recover the palladium were carried out.
Hence, without calcination of the catalyst it is not possible to recover the palladium in a sufficient amount.

Claims

C L A I M S
1. Process for recycling palladium from a spent catalyst containing palladium deposited on a carrier, comprising the following consecutive steps:
(a) calcination of the spent catalyst to obtain a calcined catalyst;
(b) reduction of the calcined catalyst with a reducing agent to obtain a reduced catalyst slurry;
(c) leaching the reduced catalyst slurry with a leaching medium by forming a leaching mixture and afterwards filtration of the leaching mixture to obtain a liquor containing dissolved palladium;
(d) treatment of the liquor with a reducing agent and an alkali metal hydroxide to obtain a treated liquor;
(e) filtration of the treated liquor to recover a palladium sponge; and
(f) optional treatment of the palladium sponge with hydrochloric acid and hydrogen peroxide to obtain a solution of palladium.
2. Process according to claim 1, wherein the carrier of the catalyst is selected from the group consisting of carbon, silica, alumina, alumino-silicate, zirconia, zircon-silicate, and magnesium aluminate.
3. Process according to claim 1 or 2, wherein the calcination of the spent catalyst is carried out at a temperature of 450 °C to 650 °C for 60 to 270 minutes.
4. The process according to any one of the proceeding claims, wherein the reducing agent of step (b) and/or of (d) is selected independently from each other from the group consisting of formic acid, sodium hypophosphite, sodium borohydrade, hydrogen gas and formaldehyde and mixtures thereof, preferably the reducing agent of step (b) and/or of step (c) is formic acid.
5. Process according to any one of the preceding claims, wherein the reduction step (b) is carried out at a temperature of 50 to 80 °C for 30 to 60 minutes.
6. Process according to any one of the preceding claims, wherein the leaching medium comprises hydrochloric acid and hydrogen peroxide.
7. Process according to claim 6, wherein in step (c) the hydrochloric acid is added to the reduced catalyst slurry in form of an aqueous solution having a hydrochloric acid concentration of 30 to 45% and the hydrogen peroxide is added to the reduced catalyst slurry in form of aqueous solution having a hydrogen peroxide concentration of 55 to 65% to form the leaching mixture.
8. Process according to any one of the preceding claims, wherein the step (c) is carried out with a liquid to solid ratio (L/S ratio) from 4: 1 to 15: 1.
9. Process according to any one of the preceding claims, wherein the leaching of the reduced catalyst slurry in step (c) is carried out at a temperature between 55 and 100 °C for 60 to 120 minutes.
10. Process according to any one of the preceding claims, wherein in step (d) an aqueous solution of sodium hydroxide having a sodium hydroxide concentration of 40 to 60% is used.
11. Process according to any one of the preceding claims, wherein step (d) is carried out at a temperature of 75 to 120 °C for 100 to 300 minutes.
12. Process according to any one of the preceding claims, wherein in the optional step (f) an aqueous solution of hydrochloric acid having a hydrochloric acid concentration of 30 to 45 % and an aqueous solution of hydrogen peroxide having a hydrogen peroxide concentration of 55 to 65% is used.
13. Process according to any one of the preceding claims, wherein optional step (f) is carried out at a temperature of 50 to 70 °C for 90 to 150 minutes.
14. Process according to any one of the preceding claims, wherein the spent catalyst is a hydrogenation catalyst used in the production of hydrogen peroxide.
15. Use of the palladium recovered by the process as defined in any one of the claims 1 to 14 in the manufacturing of a catalyst.
PCT/EP2023/070520 2022-07-26 2023-07-25 Hydrometallurgical process for recovering palladium from a spent catalyst WO2024023055A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP22187068.6 2022-07-26
EP22187068 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024023055A1 true WO2024023055A1 (en) 2024-02-01

Family

ID=82742699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/070520 WO2024023055A1 (en) 2022-07-26 2023-07-25 Hydrometallurgical process for recovering palladium from a spent catalyst

Country Status (1)

Country Link
WO (1) WO2024023055A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186971A (en) 2006-11-17 2008-05-28 南化集团研究院 Method for reclaiming precious metal palladium from waste palladium-carbon catalyst
CN102352440A (en) * 2011-08-06 2012-02-15 河南兴发精细化工有限公司 Method for recovering palladium sponge and bismuth from multi-metal catalyst utilized in sodium gluconate production
CN104032143A (en) 2014-05-15 2014-09-10 浙江省冶金研究院有限公司 Recycling and purifying method of waste palladium-carbon catalyst
CN104232900A (en) * 2014-08-27 2014-12-24 昆明贵金属研究所 Method for recovering palladium from waste palladium/alumina catalyst
CN106367595A (en) 2016-08-26 2017-02-01 中南大学 Method for comprehensively recycling waste Pd/Al2O3 catalyst
CN109957659A (en) * 2019-04-30 2019-07-02 厦门英科恒生环保咨询有限公司 A kind of recovery method containing Used palladium catalyst
CN110358922A (en) * 2019-08-20 2019-10-22 泉州丰鹏环保科技有限公司 A kind of recovery method containing Used palladium catalyst
CN111321307A (en) 2020-03-07 2020-06-23 江苏北矿金属循环利用科技有限公司 Process for efficiently recovering palladium from palladium-containing waste catalyst

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186971A (en) 2006-11-17 2008-05-28 南化集团研究院 Method for reclaiming precious metal palladium from waste palladium-carbon catalyst
CN100567528C (en) * 2006-11-17 2009-12-09 南化集团研究院 A kind of method that from waste palladium carbon catalyst, reclaims precious metal palladium
CN102352440A (en) * 2011-08-06 2012-02-15 河南兴发精细化工有限公司 Method for recovering palladium sponge and bismuth from multi-metal catalyst utilized in sodium gluconate production
CN104032143A (en) 2014-05-15 2014-09-10 浙江省冶金研究院有限公司 Recycling and purifying method of waste palladium-carbon catalyst
CN104232900A (en) * 2014-08-27 2014-12-24 昆明贵金属研究所 Method for recovering palladium from waste palladium/alumina catalyst
CN106367595A (en) 2016-08-26 2017-02-01 中南大学 Method for comprehensively recycling waste Pd/Al2O3 catalyst
CN109957659A (en) * 2019-04-30 2019-07-02 厦门英科恒生环保咨询有限公司 A kind of recovery method containing Used palladium catalyst
CN110358922A (en) * 2019-08-20 2019-10-22 泉州丰鹏环保科技有限公司 A kind of recovery method containing Used palladium catalyst
CN111321307A (en) 2020-03-07 2020-06-23 江苏北矿金属循环利用科技有限公司 Process for efficiently recovering palladium from palladium-containing waste catalyst

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BARAKAT ET AL., APPLIED CATALYSIS A, GENERAL, vol. 301, 2006, pages 182 - 186
DONG, H. ET AL., INTERNATIONAL JOURNAL OF MINERAL PROCESSING, vol. 145, 2015, pages 108 - 113
MANIS KUMAR JHA ET AL: "Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: A review", HYDROMETALLURGY., vol. 133, 1 February 2013 (2013-02-01), NL, pages 23 - 32, XP055296220, ISSN: 0304-386X, DOI: 10.1016/j.hydromet.2012.11.012 *

Similar Documents

Publication Publication Date Title
CN103031438B (en) Recovery process for rare earth and noble metal in automobile tail gas purification catalyst
CN111793753B (en) Process for extracting and separating platinum group metals from waste catalyst
CN110055423B (en) Method for enriching platinum group metals and rare earth in spent automobile exhaust purification catalyst
JPH07252548A (en) Method for recovering valuable metal from waste catalyst
CN112981105B (en) Method for recovering noble metal from waste alumina carrier noble metal catalyst
CN104928475A (en) Recycling method of rare earth-containing aluminum silicon waste material
CN109609783B (en) Method for efficiently separating and purifying palladium and rhodium from alloy sheet containing palladium and rhodium alloy
US6733564B1 (en) Process for recovery of nickel from spent catalyst
CN111455180B (en) Method for enriching platinum and co-producing metal aluminum from spent alumina platinum catalyst
US5783062A (en) Process for the treatment, by an electrochemical route, of compositions containing precious metals with a view to their recovery
WO2024023055A1 (en) Hydrometallurgical process for recovering palladium from a spent catalyst
RU2562183C1 (en) Method of producing of scandium concentrate from red slime
CN102936658A (en) Recovery method for platinum, aluminium and rhenium from waste reforming catalyst
AU738731B2 (en) Oxidising leaching of contaminated sludge containing iron with separation of zinc and lead
AU2002242946B2 (en) Process for the recovery of nickel from spent catalyst
CN114317997A (en) Novel process for purifying high-purity platinum
CN108425014B (en) A method of extracting high pure metal palladium from useless palladium-aluminium oxide catalyst
CN113005301A (en) Method for recovering rare and precious metals from waste petrochemical catalyst
RU2261284C2 (en) Method of complex reworking of decontaminated platinum-rhenium catalysts
US6337056B1 (en) Process for refining noble metals from auriferous mines
JP2011195935A (en) Method for separating and recovering platinum group element
CN115074542B (en) Method for separating arsenic and antimony in arsenic alkali residue by catalytic oxidation leaching process
RU2817811C1 (en) Method of extracting palladium metal
CN115109930A (en) From TiO 2 -ZrO 2 Method for recovering valuable metal from carrier-loaded copper-manganese-platinum catalyst
CN115700286B (en) Waste Pd/Al 2 O 3 Method for recovering Pd in catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745525

Country of ref document: EP

Kind code of ref document: A1