WO2024022419A1 - 一种氢燃料电池的极板复合流道 - Google Patents

一种氢燃料电池的极板复合流道 Download PDF

Info

Publication number
WO2024022419A1
WO2024022419A1 PCT/CN2023/109478 CN2023109478W WO2024022419A1 WO 2024022419 A1 WO2024022419 A1 WO 2024022419A1 CN 2023109478 W CN2023109478 W CN 2023109478W WO 2024022419 A1 WO2024022419 A1 WO 2024022419A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
depth
flow
fuel cell
hydrogen fuel
Prior art date
Application number
PCT/CN2023/109478
Other languages
English (en)
French (fr)
Inventor
麦建明
Original Assignee
上海氢晨新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海氢晨新能源科技有限公司 filed Critical 上海氢晨新能源科技有限公司
Publication of WO2024022419A1 publication Critical patent/WO2024022419A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of fuel cells, and in particular to a plate composite flow channel of a hydrogen fuel cell.
  • a hydrogen fuel cell is a power generation device that directly converts the chemical energy of hydrogen and oxygen into electrical energy.
  • the basic principle is the reverse reaction of electrolyzing water, supplying hydrogen and oxygen to the anode and cathode respectively. After hydrogen diffuses outward through the anode and reacts with the electrolyte, electrons are released and reach the cathode through an external load.
  • the bipolar plate in the hydrogen fuel cell is provided with flow channels to provide regular flow of fluid.
  • the existing flow field design of the fuel cell does not change under different load conditions and different medium flow rates.
  • the publication number is CN213936252U.
  • the utility model discloses a bipolar plate of a hydrogen fuel cell and a hydrogen fuel cell. This results in the fuel cell flow field design having to comprehensively balance different working conditions, which reduces the adaptability of the flow field to different working conditions, such as light load conditions. Water retention and moisture retention, heavy load conditions require drainage and moisture removal, or additional monitoring equipment and control strategies are required to ensure that the stack operates at appropriate humidity conditions under different working conditions.
  • the purpose of the present invention is to overcome the above-mentioned defects in the prior art that the existing flow field design of fuel cells does not change the flow field form under different load conditions and different medium flow rates, thereby reducing the adaptability of the flow field to different working conditions.
  • a plate composite flow channel for a hydrogen fuel cell is provided.
  • a composite flow channel for a hydrogen fuel cell plate including a first depth flow channel and a second depth flow channel.
  • the depth of the first depth flow channel on the hydrogen fuel cell plate is greater than the depth of the second depth flow channel on the hydrogen fuel cell plate.
  • the depth of the hydrogen fuel cell plate, the first depth flow channel and the second depth flow channel are stacked on each other, and both the first depth flow channel and the second depth flow channel are along the fluid flow of the hydrogen fuel cell. Circulation direction distribution.
  • first depth flow channel is a meandering flow channel
  • second depth flow channel is a straight flow channel
  • first depth flow channel is a straight flow channel
  • second depth flow channel is a meandering flow channel
  • the first depth flow channel is a first plurality of parallel meandering flow field flow channels
  • the first depth flow channel is a second plurality of parallel meandering flow field flow channels
  • the first plurality of parallel meandering flow field flow channels are The flow channel parameters of the meandering flow field flow channel and the second multi-channel parallel meandering flow field flow channel are different;
  • the different flow channel parameters are one or more of perimeter, frequency, land width, and flow channel depth.
  • the second depth flow channel alternately penetrates the first depth flow channel and the ridges on both sides of the first depth flow channel, and forms a first height sub-section on the ridges on both sides of the first depth flow channel.
  • ridges and second-height sub-ridges, the first-height sub-ridges and the second-height sub-ridges are alternately distributed along the extension direction of the corresponding ridge, and the height of the second-height sub-ridges is smaller than the height of the first-height sub-ridges.
  • the ridges on both sides of the second depth flow channel are composed of first height sub-ridges on both sides of each second height sub-ridge located in the extension direction of the second depth flow channel.
  • the number of the first depth flow channels and the second depth flow channels is multiple;
  • Each second depth flow channel alternately penetrates the plurality of first depth flow channels and the ridges on both sides of the first depth flow channel along the extension direction.
  • first depth flow channel includes alternately connected inclined portions and bent portions, and the angle between the second depth flow channel and the inclined portion is within the range of 15-75 degrees.
  • the ratio between the cross-sectional width of the first depth flow channel and the cross-sectional width of the second depth flow channel is within the range of 2-0.5.
  • the composite flow channel of the electrode plate of the hydrogen fuel cell is arranged on the electrode plate to form ridges with corresponding heights of the flow channels of different depths.
  • the electrode plate is a metal electrode plate, a graphite electrode plate or a composite electrode plate.
  • the composite electrode plate The material of the electrode plate includes one or more of graphite material, metal material, and composite material;
  • the ridge is a single-material structure or a multi-material structure, the material of the single-material structure is graphite or metal, and the multi-material structure includes graphite materials and metal materials;
  • the multi-material structure of the ridge is that metal and graphite are combined in different proportions in the height direction to form ridges of different heights.
  • the present invention has the following advantages:
  • the invention utilizes a mixed structure of two or more flow fields with different depths to realize changes in flow field forms under different working conditions, such as flow mainly through deep flow channels under light load conditions and shallow flow under heavy load conditions.
  • the combined flow of the channel flow field and the deep channel flow field increases the degree of freedom in flow field design to better meet the operating needs of the stack under different working conditions and improves the operating effects of the stack under different working conditions.
  • Figure 1 is a schematic structural diagram of a plate composite flow channel of a hydrogen fuel cell provided in an embodiment of the present invention.
  • the first depth flow channel in the plate composite flow channel is a multi-channel parallel meandering flow field, and the second depth flow channel
  • the field is a multi-channel parallel DC field;
  • Figure 2 is a schematic diagram of the multi-channel parallel direct current field of the plate composite flow channel of the hydrogen fuel cell shown in Figure 1;
  • Figure 3 is a schematic diagram of the multi-channel parallel meandering flow field of the plate composite flow channel of the hydrogen fuel cell shown in Figure 1;
  • Figure 4 is a top view of the plate composite flow channel of the hydrogen fuel cell shown in Figure 1;
  • FIG. 5 is a partial schematic diagram of the plate composite flow channel of the hydrogen fuel cell shown in Figure 1;
  • Figure 6 is a schematic diagram of the distribution state of the first height sub-ridges and the second height sub-ridges in the plate composite flow channel of the hydrogen fuel cell shown in Figure 5;
  • First depth flow channel 2.
  • Second depth flow channel 301.
  • First height sub-ridge 302.
  • Second height sub-ridge Second height sub-ridge.
  • first and second are only used for descriptive purposes and cannot be understood as indicating or Implies relative importance or implicitly indicates the quantity of the technical feature indicated. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this application, “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • horizontal does not mean that the component is required to be absolutely horizontal or suspended, but may be slightly tilted.
  • horizontal only means that its direction is more horizontal than “vertical”. It does not mean that the structure must be completely horizontal, but can be slightly tilted.
  • this embodiment provides a plate composite flow channel of a hydrogen fuel cell, including a first depth flow channel 1 and a second depth flow channel 2.
  • the first depth flow channel 1 is on the electrode of the hydrogen fuel cell.
  • the depth of the plate is greater than the depth of the second depth flow channel 2 on the hydrogen fuel cell plate.
  • the first depth flow channel 1 and the second depth flow channel 2 are stacked on each other.
  • the first depth flow channel 1 and the second depth flow channel 2 are distributed along the fluid flow direction of the hydrogen fuel cell.
  • the first depth flow channel 1 and the second depth flow channel 2 form a deep flow channel and a shallow flow channel respectively.
  • the shallow flow channel will form a deep flow channel due to gas diffusion.
  • the distance between layers is close, the cross-sectional area of the shallow flow channel is small, the flow resistance is large, the medium flow rate in the shallow flow channel is small, and the medium mainly flows through the deep flow channel, that is, the main flow field form is the flow field composed of deep flow channels; in heavy flow
  • the medium flow rate is high, the medium flow rate in the shallow channel increases, and the flow field form of the medium becomes a composite form of the shallow channel flow field and the deep channel flow field.
  • the plate composite flow channel proposed by the present invention has at least two flow channels with different depths. Two or more flow channels with different depths can be set according to actual conditions and needs to further improve the performance of the stack at different levels. Operation effect under working conditions.
  • This technical solution uses a mixed structure of two or more flow fields with different depths to achieve changes in flow field forms under different working conditions, thereby increasing the degree of freedom in flow field design to better meet the needs of stacks under different working conditions.
  • Operation requirements improve the operating effect of the stack under different working conditions. For example, under light load conditions, meandering flow channels are used to retain water and moisturize, while under heavy load conditions, straight flow channels are used to achieve drainage and moisture removal.
  • the first depth flow channel 1 is a meandering flow channel
  • the second depth flow channel 2 is a straight flow channel.
  • the second depth flow channel 2 alternately penetrates the first depth flow channel 1 and the ridges on both sides of the first depth flow channel 1 along the same straight line, and forms a first height sub-ridge 301 on the ridges on both sides of the first depth flow channel 1 and the second height sub-ridge 302, the first height sub-ridge 301 and the second height sub-ridge 302 are alternately distributed along the extension direction of the corresponding ridge, the height of the second height sub-ridge 302 is smaller than the height of the first height sub-ridge 301;
  • the height of the above-mentioned first height sub-ridge 301 corresponds to the depth of the first depth flow channel 1, and the second height sub-ridge 302 The height corresponds to the difference between the depth of the first depth flow channel 1 and the depth of the second depth flow channel 2;
  • the first depth channel 1 includes alternately connected inclined portions and bent portions, and the angle between the second depth channel 2 and the inclined portion is within the range of 15-75 degrees, preferably within the range of 30-60 degrees.
  • first depth flow channels 1 to form multiple meandering flow fields on the hydrogen fuel cell plate
  • second depth flow channels 2 to form multiple meandering flow fields on the hydrogen fuel cell plate.
  • each second depth flow channel 2 alternately penetrates the plurality of first depth flow channels 1 and the ridges on both sides of the first depth flow channel 1 along the same straight line.
  • each first depth flow channel 1 is penetrated by a plurality of second depth flow channels 2 .
  • the first depth flow channel 1 and the second depth flow channel 2 form a deep flow channel and a shallow flow channel respectively, and the shallow flow channels alternately penetrate the deep flow channel and the ridges on both sides of the deep flow channel to achieve fluid flow.
  • the flow process it is possible to flow across the channels between the meandering channel and the straight channel, and also realize the flow between two adjacent meandering channels and the flow between two adjacent straight channels;
  • the medium Under light load conditions and when the medium flow rate is low, the medium mainly flows through deep flow channels, that is, the main flow field is a flow field composed of deep flow channels to achieve water retention and moisturizing;
  • the flow field form of the medium becomes a composite form of shallow channel flow field and deep channel flow field.
  • the fluid will flow across the channels between the meandering channel and the straight channel, and will also flow between the adjacent channels.
  • the flow between two adjacent meandering channels and the flow between two adjacent straight channels improves flow efficiency and achieves drainage and moisture removal.
  • the above-mentioned plate composite flow channel is equivalent to arranging ridges on both sides of the first depth flow channel 1 on the hydrogen fuel cell plate to form a deeper first depth flow channel 1, and an alternately distributed first depth flow channel 1 is provided on the ridge.
  • the height of the second-height sub-ridge 302 is lower.
  • Two adjacent inclined portions or bending portions in the first depth flow channel 1 are provided with corresponding corresponding ones located on the same.
  • the second height sub-ridge 302 on a straight line and the first height sub-ridge 301 located on both sides of the second height sub-ridge 302 on the same straight line form ridges on both sides of the second depth flow channel 2 .
  • the first depth flow channels 1 are arranged parallel to each other to form a multi-channel parallel meandering flow field, and the convex sides of the bends of each first depth flow channel 1 are located at the previous one.
  • Each second depth flow channel 2 is arranged parallel to each other to form a multi-channel parallel DC field
  • Part of the second depth flow channel 2 penetrates the inclined portion of each first depth flow channel 1, and sequentially penetrates the first depth located in the recessed side of the bend of the first depth flow channel 1 along the straight line where the second depth flow channel 2 is located.
  • the ratio between the cross-sectional width of the first depth flow channel 1 and the cross-sectional width of the second depth flow channel 2 is within the range of 2-0.5, that is, the width of the first depth flow channel 1 can be greater or smaller than the second depth flow channel 2 width.
  • the ratio of the depth of the second depth flow channel 2 to the depth of the first depth flow channel 1 is within the range of 0.1-0.7, preferably between 0.2-0.4. Due to the pressure deformation of the gas diffusion layer, the gas diffusion layer invades the flow channel, causing the height of the flow channel to decrease. Therefore, the depth of the second flow channel cannot be too small to prevent the gas diffusion layer from intruding and preventing the gas from flowing through.
  • the plate composite flow channel of the hydrogen fuel cell is divided into multiple areas, and each area includes one or more flow channels of different depths.
  • the flow channel structure can also be optimized according to the working conditions. Some areas have two flow channels with different depths, and some areas have three or even more. Multiple flow channels with different depths.
  • the plate composite flow channel of the hydrogen fuel cell is set on the plate to form ridges with different depths corresponding to the heights of the flow channels.
  • the plate is a metal plate, a graphite plate or a composite plate.
  • the material of the composite plate includes graphite material, metal One or more of materials and composite materials.
  • the flow field design method of each of the above embodiments can be implemented in a graphite plate or a metal plate; it can also be a composite plate of metal and graphite, or a composite plate of metal and composite materials. , or composite plates made of graphite and composite materials, or composite plates made of metal, graphite, composite materials, etc.
  • the ridge is a single-material structure or a multi-material structure.
  • the material of the single-material structure is graphite or metal
  • the multi-material structure includes graphite materials and metal materials.
  • the multi-material structure of the ridge is that metal and graphite are combined in different proportions in the height direction to form ridges of different heights.
  • corresponding ridges of different heights can be made of different materials.
  • Metal and graphite can be used to form ridges of different heights.
  • Metal and graphite can be combined in various proportions in the height direction to form ridges of different heights. Ridges; flow channels of different depths and corresponding ridges of different heights can adapt to the fluid in the corresponding flow channels to ensure a more stable flow.
  • Embodiment 1 is substantially the same as Embodiment 1, except that the first depth flow channel 1 is a straight flow channel, and the second depth flow channel 2 is a meandering flow channel.
  • the second depth channel 2 includes alternately connected inclined portions and bent portions. The angle between the first depth channel 1 and the inclined portion is within the range of 15-75 degrees, preferably within the range of 30-60 degrees.
  • each second depth flow channel 2 alternately penetrates a plurality of first depth flow channels 1 and the ridges on both sides of the first depth flow channel 1 along the same meandering curve.
  • the number of the above-mentioned meandering flow channels and straight flow channels is multiple.
  • the plurality of meandering flow channels are preferably arranged in parallel to each other in pairs, and the plurality of straight flow channels are preferably arranged in parallel to each other in pairs.
  • the plurality of second depth flow channels 2 may all penetrate the same first depth flow channel 1 .
  • Embodiment 1 is substantially the same as Embodiment 1.
  • the difference is that the first depth flow channel 1 is a first plurality of parallel meandering flow field flows, and the first depth flow channel 1 is a second plurality of parallel meandering flow field flows.
  • the flow channel parameters of the first multi-channel parallel meandering flow field flow channel and the second multi-channel parallel meandering flow field flow channel are different.
  • the different flow channel parameters are perimeter, frequency, ridge width, and flow channel depth. one or more.
  • the multi-channel parallel meandering flow field flow channel includes a plurality of meandering flow channels that are parallel to each other.
  • each second depth flow channel 2 alternately penetrates a plurality of first depth flow channels 1 and the ridges on both sides of the first depth flow channel 1 along the same meandering curve.

Abstract

本发明涉及一种氢燃料电池的极板复合流道,包括第一深度流道和第二深度流道,第一深度流道在氢燃料电池极板上的深度大于第二深度流道在氢燃料电池极板上的深度,第一深度流道与第二深度流道相互层叠设置,第一深度流道与第二深度流道均沿氢燃料电池的流体流通方向分布。与现有技术相比,本发明利用深浅不同的两个或多个流场的混合结构,实现不同工况下的流场形式变化,如轻载工况下的主要通过深流道流动、重载工况下的浅流道流场与深流道流场复合流动;从而提升了流场设计的自由度,以更好满足不同工况下的电堆运行需求,提升了电堆在不同工况下的运行效果。

Description

一种氢燃料电池的极板复合流道 技术领域
本发明涉及燃料电池技术领域,尤其是涉及一种氢燃料电池的极板复合流道。
背景技术
氢燃料电池是将氢气和氧气的化学能直接转换成电能的发电装置。其基本原理是电解水的逆反应,把氢和氧分别供给阳极和阴极,氢通过阳极向外扩散和电解质发生反应后,放出电子通过外部的负载到达阴极。
氢燃料电池中的双极板上通过设置流道供流体有规律的流动,燃料电池现有流场设计在不同负载工况,不同介质流量下的流场形式没有变化,如公开号为CN213936252U的实用新型公开的一种氢燃料电池的双极板及氢燃料电池,这导致燃料电池流场设计必须综合平衡不同工况,降低了流场对不同工况的适应性,例如轻载工况需要保水保湿,重载工况需要排水排湿,或者需要额外的监测设备和控制策略来保证电堆在不同工况下运行在各自合适的湿度条件。
发明内容
本发明的目的就是为了克服上述现有技术存在燃料电池现有流场设计在不同负载工况,不同介质流量下的流场形式没有变化,降低了流场对不同工况的适应性的缺陷而提供一种氢燃料电池的极板复合流道。
本发明的目的可以通过以下技术方案来实现:
一种氢燃料电池的极板复合流道,包括第一深度流道和第二深度流道,所述第一深度流道在氢燃料电池极板上的深度大于所述第二深度流道在氢燃料电池极板上的深度,所述第一深度流道与所述第二深度流道相互层叠设置,所述第一深度流道与所述第二深度流道均沿氢燃料电池的流体流通方向分布。
进一步地,所述第一深度流道为蜿蜒流道,所述第二深度流道为直流道。
进一步地,所述第一深度流道为直流道,所述第二深度流道为蜿蜒流道。
进一步地,所述第一深度流道为第一多道平行蜿蜒流场流道,所述第一深度流道为第二多道平行蜿蜒流场流道,所述第一多道平行蜿蜒流场流道和第二多道平行蜿蜒流场流道的流道参数不同;
不同的流道参数为周长、频率、槽脊宽度、流道深度的一个或多个。
进一步地,所述第二深度流道依次交替贯通所述第一深度流道和第一深度流道两侧的脊,并在所述第一深度流道两侧的脊上形成第一高度子脊和第二高度子脊,所述第一高度子脊和第二高度子脊沿对应脊的延伸方向交替分布,所述第二高度子脊的高度小于所述第一高度子脊的高度。
进一步地,所述第二深度流道两侧的脊由位于该第二深度流道延伸方向上的各个第二高度子脊两侧的第一高度子脊构成。
进一步地,所述第一深度流道和第二深度流道的数量均为多个;
各第二深度流道均沿延伸方向依次交替贯通多个第一深度流道和第一深度流道两侧的脊。
进一步地,所述第一深度流道包括交替连接的倾斜部和弯折部,所述第二深度流道与所述倾斜部之间的夹角在15-75度范围以内。
进一步地,所述第一深度流道的截面宽度和第二深度流道的截面宽度之间的比值在2-0.5范围以内。
进一步地,所述氢燃料电池的极板复合流道设置在极板上,形成不同深度流道对应高度的脊,所述极板为金属极板、石墨极板或复合极板,所述复合极板的材料包括石墨材料、金属材料、复合材料中的一个或多个;
所述脊为单材料结构或多材料结构,所述单材料结构的材料为石墨或金属,所述多材料结构包括石墨材料和金属材料;
所述脊的多材料结构为金属和石墨在高度方向以不同比例组合形成不同高度的脊。
与现有技术相比,本发明具有以下优点:
本发明利用深浅不同的两个或多个流场的混合结构,实现不同工况下的流场形式变化,如轻载工况下的主要通过深流道流动、重载工况下的浅流道流场与深流道流场复合流动;从而提升了流场设计的自由度,以更好满足不同工况下的电堆运行需求,提升了电堆在不同工况下的运行效果。
附图说明
图1为本发明实施例中提供的一种氢燃料电池的极板复合流道的结构示意图,该极板复合流道中的第一深度流道为多道平行蜿蜒流场,第二深度流场为多道平行直流场;
图2为图1所示氢燃料电池的极板复合流道的多道平行直流场的示意图;
图3为图1所示氢燃料电池的极板复合流道的多道平行蜿蜒流场的示意图;
图4为图1所示氢燃料电池的极板复合流道的俯视图;
图5为图1所示氢燃料电池的极板复合流道的局部示意图;
图6为图5所示氢燃料电池的极板复合流道中的第一高度子脊和第二高度子脊的分布状态示意图;
图中,1、第一深度流道,2、第二深度流道,301、第一高度子脊,302、第二高度子脊。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或 暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
此外,术语“水平”、“竖直”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
实施例1
如图1-6所示,本实施例提供一种氢燃料电池的极板复合流道,包括第一深度流道1和第二深度流道2,第一深度流道1在氢燃料电池极板上的深度大于第二深度流道2在氢燃料电池极板上的深度,第一深度流道1与第二深度流道2相互层叠设置,第一深度流道1与第二深度流道2均沿氢燃料电池的流体流通方向分布。
该技术方案的机理是:第一深度流道1和第二深度流道2分别形成深流道和浅流道,在轻载工况,介质流量较低的时候,浅流道由于与气体扩散层距离较近,浅流道截面积小,流动阻力较大,浅流道中的介质流量较少,介质主要通过深流道流动,即主要流场形式为深流道组成的流场;在重载工况,介质流量较高的时候,浅流道中的介质流量有所提升,介质的流场形式就变成浅流道流场与深流道流场复合的形式。
需要说明的是,本发明提出的极板复合流道是至少具有两种不同深度的流道,可根据实际情况和需求设置两个或两个以上不同深度的流道,进一步提升电堆在不同工况下的运行效果。
本技术方案利用深浅不同的两个或两个以上流场的混合结构,实现不同工况下的流场形式变化,从而提升流场设计的自由度,以更好满足不同工况下的电堆运行需求,提升电堆在不同工况下的运行效果,例如轻载工况下使用蜿蜒流道实现保水保湿,而重载工况下使用直流道实现排水排湿。
本实施例中,第一深度流道1为蜿蜒流道,第二深度流道2为直流道。第二深度流道2沿同一直线依次交替贯通第一深度流道1和第一深度流道1两侧的脊,并在第一深度流道1两侧的脊上形成第一高度子脊301和第二高度子脊302,第一高度子脊301和第二高度子脊302沿对应脊的延伸方向交替分布,第二高度子脊302的高度小于第一高度子脊301的高度;
上述第一高度子脊301的高度对应第一深度流道1的深度,第二高度子脊302 的高度对应第一深度流道1的深度与第二深度流道2的深度的差值;
第一深度流道1包括交替连接的倾斜部和弯折部,第二深度流道2与倾斜部之间的夹角在15-75度范围以内,优选为在30-60度范围以内。
优选的,第一深度流道1的数量为多个,在氢燃料电池极板上形成多道蜿蜒流场;第二深度流道2的数量为多个,在氢燃料电池极板上形成多道直流场;
在流体流通方向的方向上,各第二深度流道2均沿同一直线依次交替贯通多个第一深度流道1和第一深度流道1两侧的脊。
在垂直于流体流通方向的方向上,各第一深度流道1均被多个第二深度流道2贯通。
该技术方案的机理是:第一深度流道1和第二深度流道2分别形成深流道和浅流道,且浅流道交替贯通深流道和深流道两侧的脊,实现流体流动过程中既可以在蜿蜒流道和直流道之间跨流道流动,还可实现相邻两个蜿蜒流道之间的流动和相邻两个直流道之间的流动;
在轻载工况,介质流量较低的时候,介质主要通过深流道流动,即主要流场形式为深流道组成的流场,实现保水保湿;
在重载工况,介质的流场形式就变成浅流道流场与深流道流场复合的形式,流体会在蜿蜒流道和直流道之间跨流道流动,还会在相邻两个蜿蜒流道之间的流动和相邻两个直流道之间的流动,提升流动效率,实现排水排湿。
上述极板复合流道相当于,在氢燃料电池极板上设置第一深度流道1两侧的脊,形成较深的第一深度流道1,在该脊上设置为交替分布的第一高度子脊301和第二高度子脊302的形式,第二高度子脊302的高度较低,第一深度流道1中相邻两个倾斜部或弯折部均设有相互对应的位于同一直线上的第二高度子脊302,位于同一直线上的第二高度子脊302两侧的第一高度子脊301形成第二深度流道2两侧的脊。
可选的,本实施例中,各个第一深度流道1之间相互平行设置,构成多道平行蜿蜒流场,各个第一深度流道1的弯折处的凸起侧均位于前一第一深度流道1的弯折处的凹陷侧;
各个第二深度流道2之间相互平行设置,构成多道平行直流场;
部分第二深度流道2贯通各个第一深度流道1的倾斜部,并依次沿第二深度流道2所在的直线贯通位于该第一深度流道1弯折处凹陷侧内的第一深度流道1的倾斜部或弯折部。
第一深度流道1的截面宽度和第二深度流道2的截面宽度之间的比值在2-0.5范围以内,即第一深度流道1的宽度可大于也可小于第二深度流道2的宽度。
第二深度流道2的深度与第一深度流道1的深度的比值范围在0.1-0.7范围以内,优选为在0.2-0.4之间。由于气体扩散层受压变形,气体扩散层侵入流道,使得流道高度减小。所以第二流道深度不能太小,以免气体扩散层侵入导致气体无法流过。
作为一种可选的实施方式,氢燃料电池的极板复合流道分为多个区域,各个区域均包括一个或多个不同深度的流道。
在流场的不同区域,有深浅复合流道的区域,也有单一流道深度的区域;也可以根据工况优化流道结构,部分区域有两种深度不同的流道,部分区域有三种甚至更多的深度不同的流道。
氢燃料电池的极板复合流道设置在极板上,形成不同深度流道对应高度的脊,极板为金属极板、石墨极板或复合极板,复合极板的材料包括石墨材料、金属材料、复合材料中的一个或多个。
相当于,上述各实施方式的流场设计方式既可在石墨极板中实现,也可在金属极板中实现;还可以是金属和石墨的复合极板,或者金属和复合材料的复合极板,或者石墨与复合材料的复合极板,或者金属、石墨、复合材料等组合而成的复合极板。
脊为单材料结构或多材料结构,单材料结构的材料为石墨或金属,多材料结构包括石墨材料和金属材料。
优选地,脊的多材料结构为金属和石墨在高度方向以不同比例组合形成不同高度的脊。
相当于,不同深度流道,相应的不同高度的脊,可以是由不同材料构成,可以采用金属和石墨形成不同高度的脊,可以采用金属和石墨在高度方向以各种比例组合形成不同高度的脊;不同深度流道,相应的不同高度的脊能适应对应流道的流体,保证流动更加稳定。
实施例2
本实施例与实施例1大体相同,不同点在于,第一深度流道1为直流道,第二深度流道2为蜿蜒流道。第二深度流道2包括交替连接的倾斜部和弯折部,第一深度流道1与倾斜部之间的夹角在15-75度范围以内,优选为在30-60度范围以内。
在流体流通方向的方向上,各第二深度流道2均沿同一蜿蜒曲线依次交替贯通多个第一深度流道1和第一深度流道1两侧的脊。
上述蜿蜒流道和直流道的数量均为多个,多个蜿蜒流道优选为两两相互平行设置,多个直流道优选为两两相互平行设置。
在流体流通方向的方向上,多个第二深度流道2可均贯通同一第一深度流道1。
实施例3
本实施例与实施例1大体相同,不同点在于,第一深度流道1为第一多道平行蜿蜒流场流道,第一深度流道1为第二多道平行蜿蜒流场流道,第一多道平行蜿蜒流场流道和第二多道平行蜿蜒流场流道的流道参数不同,不同的流道参数为周长、频率、槽脊宽度、流道深度的一个或多个。
多道平行蜿蜒流场流道包括多个两两相互平行的蜿蜒流道。
在流体流通方向的方向上,各第二深度流道2均沿同一蜿蜒曲线依次交替贯通多个第一深度流道1和第一深度流道1两侧的脊。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

  1. 一种氢燃料电池的极板复合流道,其特征在于,包括第一深度流道(1)和第二深度流道(2),所述第一深度流道(1)在氢燃料电池极板上的深度大于所述第二深度流道(2)在氢燃料电池极板上的深度,所述第一深度流道(1)与所述第二深度流道(2)相互层叠设置,所述第一深度流道(1)与所述第二深度流道(2)均沿氢燃料电池的流体流通方向分布。
  2. 根据权利要求1所述的一种氢燃料电池的极板复合流道,其特征在于,所述第一深度流道(1)为蜿蜒流道,所述第二深度流道(2)为直流道。
  3. 根据权利要求1所述的一种氢燃料电池的极板复合流道,其特征在于,所述第一深度流道(1)为直流道,所述第二深度流道(2)为蜿蜒流道。
  4. 根据权利要求1所述的一种氢燃料电池的极板复合流道,其特征在于,所述所述第一深度流道(1)为第一多道平行蜿蜒流场流道,所述第一深度流道(1)为第二多道平行蜿蜒流场流道,所述第一多道平行蜿蜒流场流道和第二多道平行蜿蜒流场流道的流道参数不同;
    不同的流道参数为周长、频率、槽脊宽度、流道深度的一个或多个。
  5. 根据权利要求2-4任一所述的一种氢燃料电池的极板复合流道,其特征在于,所述第二深度流道(2)依次交替贯通所述第一深度流道(1)和第一深度流道(1)两侧的脊,并在所述第一深度流道(1)两侧的脊上形成第一高度子脊(301)和第二高度子脊(302),所述第一高度子脊(301)和第二高度子脊(302)沿对应脊的延伸方向交替分布,所述第二高度子脊(302)的高度小于所述第一高度子脊(301)的高度。
  6. 根据权利要求5所述的一种氢燃料电池的极板复合流道,其特征在于,所述第二深度流道(2)两侧的脊由位于该第二深度流道(2)延伸方向上的各个第二高度子脊(302)两侧的第一高度子脊(301)构成。
  7. 根据权利要求5所述的一种氢燃料电池的极板复合流道,其特征在于,所述第一深度流道(1)和第二深度流道(2)的数量均为多个;
    各第二深度流道(2)均沿延伸方向依次交替贯通多个第一深度流道(1)和第一深度流道(1)两侧的脊。
  8. 根据权利要求2所述的一种氢燃料电池的极板复合流道,其特征在于,所述第一深度流道(1)包括交替连接的倾斜部和弯折部,所述第二深度流道(2)与所述倾斜部之间的夹角在15-75度范围以内,优选为在30-60度范围以内。
  9. 根据权利要求1所述的一种氢燃料电池的极板复合流道,其特征在于,所述第一深度流道(1)的截面宽度和第二深度流道(2)的截面宽度之间的比值在2-0.5范围以内;
    所述第二深度流道(2)的深度与第一深度流道(1)的深度的比值范围在0.1-0.7范围以内,优选为在0.2-0.4之间。
  10. 根据权利要求1所述的一种氢燃料电池的极板复合流道,其特征在于,所述氢燃料电池的极板复合流道设置在极板上,形成不同深度流道对应高度的脊,所述极板为金属极板、石墨极板或复合极板,所述复合极板的材料包括石墨材料、金属材料、复合材料中的一个或多个;
    所述脊为单材料结构或多材料结构,所述单材料结构的材料为石墨或金属,所述多材料结构包括石墨材料和金属材料;
    所述脊的多材料结构为金属和石墨在高度方向以不同比例组合形成不同高度的脊。
PCT/CN2023/109478 2022-07-27 2023-07-27 一种氢燃料电池的极板复合流道 WO2024022419A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210889853.XA CN115172795A (zh) 2022-07-27 2022-07-27 一种氢燃料电池的极板复合流道
CN202210889853.X 2022-07-27
CN202310925621.X 2023-07-26
CN202310925621.XA CN116885226A (zh) 2022-07-27 2023-07-26 一种氢燃料电池的极板复合流道

Publications (1)

Publication Number Publication Date
WO2024022419A1 true WO2024022419A1 (zh) 2024-02-01

Family

ID=83497326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109478 WO2024022419A1 (zh) 2022-07-27 2023-07-27 一种氢燃料电池的极板复合流道

Country Status (2)

Country Link
CN (2) CN115172795A (zh)
WO (1) WO2024022419A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172795A (zh) * 2022-07-27 2022-10-11 上海氢晨新能源科技有限公司 一种氢燃料电池的极板复合流道

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109496373A (zh) * 2018-03-16 2019-03-19 清华大学 一种燃料电池用复合双极板及其双通道三维流场
CN112133938A (zh) * 2020-09-17 2020-12-25 上海交通大学 一种燃料电池流场板及燃料电池
CN112331878A (zh) * 2020-11-06 2021-02-05 青岛科技大学 质子交换膜燃料电池
CN113659166A (zh) * 2021-08-11 2021-11-16 一汽解放汽车有限公司 双极板和电池堆
CN114744233A (zh) * 2022-05-07 2022-07-12 中汽创智科技有限公司 一种双极板及燃料电池
CN115172795A (zh) * 2022-07-27 2022-10-11 上海氢晨新能源科技有限公司 一种氢燃料电池的极板复合流道

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090186253A1 (en) * 2008-01-17 2009-07-23 Gm Global Technology Operations, Inc. Bipolar Plate Design for Passive Low Load Stability
US20090208803A1 (en) * 2008-02-19 2009-08-20 Simon Farrington Flow field for fuel cell and fuel cell stack
CN101540402A (zh) * 2008-03-22 2009-09-23 江苏新源动力有限公司 空气冷却型质子交换膜燃料电池极板
CN102884663B (zh) * 2010-03-08 2015-11-25 Bdfip控股有限公司 用于电化学燃料电池的流场板
CN109065907B (zh) * 2018-08-21 2022-03-25 上海空间电源研究所 一种燃料电池极板流场结构及燃料电池极板
CN110783596B (zh) * 2019-10-22 2021-04-27 清华大学 燃料电池双极板及其加工方法
CN211507775U (zh) * 2020-01-03 2020-09-15 上海骥翀氢能科技有限公司 一种燃料电池极板及燃料电池
CN111509255B (zh) * 2020-04-30 2023-07-21 上海交通大学 流场自适应的电池极板结构及燃料电池
CN114583204A (zh) * 2020-11-30 2022-06-03 永安行科技股份有限公司 一种空冷型燃料电池电堆及其金属双极板
CN114243050B (zh) * 2021-10-10 2023-11-17 北京工业大学 具有液态水自适应导流结构的深度渐浅流场板
CN113948734B (zh) * 2021-10-16 2023-10-13 素水新材料(上海)有限公司 燃料电池电堆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109496373A (zh) * 2018-03-16 2019-03-19 清华大学 一种燃料电池用复合双极板及其双通道三维流场
CN112133938A (zh) * 2020-09-17 2020-12-25 上海交通大学 一种燃料电池流场板及燃料电池
CN112331878A (zh) * 2020-11-06 2021-02-05 青岛科技大学 质子交换膜燃料电池
CN113659166A (zh) * 2021-08-11 2021-11-16 一汽解放汽车有限公司 双极板和电池堆
CN114744233A (zh) * 2022-05-07 2022-07-12 中汽创智科技有限公司 一种双极板及燃料电池
CN115172795A (zh) * 2022-07-27 2022-10-11 上海氢晨新能源科技有限公司 一种氢燃料电池的极板复合流道

Also Published As

Publication number Publication date
CN116885226A (zh) 2023-10-13
CN115172795A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN1918725B (zh) 用于改进的水管理的流场几何构造
JP5197995B2 (ja) 燃料電池
JP5240282B2 (ja) 燃料電池セル
US7029784B2 (en) Nested fuel cell field plate
US10141583B2 (en) Bipolar plate and fuel cell comprising a bipolar plate of this type
WO2024022419A1 (zh) 一种氢燃料电池的极板复合流道
US8465880B2 (en) Fuel cell stack
WO2018105155A1 (ja) 双極板、セルスタック、及びレドックスフロー電池
JP2012146469A (ja) レドックスフロー電池、レドックスフロー電池セル、及びレドックスフロー電池用セルスタック
US8053125B2 (en) Fuel cell having buffer and seal for coolant
CN104521052B (zh) 燃料电池用集电板及包含其的堆结构物
US8221930B2 (en) Bipolar separators with improved fluid distribution
JP5280468B2 (ja) 燃料電池
US9705148B2 (en) Stacked structure for fuel cell
US7572538B2 (en) Fuel cell
EP2054965B1 (en) Bipolar separators with improved fluid distribution
CN104885274B (zh) 燃料电池用隔板及包括其的燃料电池
US7413825B2 (en) Fuel cell
US20130302717A1 (en) Solid oxide fuel cell stack
CN217955902U (zh) 极板、双极板、燃料电池和车辆
CN110444784B (zh) 一种燃料电池电堆及具有其的燃料电池电堆
CN216054807U (zh) 一种燃料电池的流场流道结构、双极板和燃料电池
US20220336826A1 (en) Separator for fuel cell and fuel cell stack
CN114725423B (zh) 一种双极板及燃料电池
CN215578635U (zh) 一种燃料电池双极板和燃料电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845627

Country of ref document: EP

Kind code of ref document: A1