WO2024022407A1 - 目镜系统及近眼显示装置 - Google Patents

目镜系统及近眼显示装置 Download PDF

Info

Publication number
WO2024022407A1
WO2024022407A1 PCT/CN2023/109404 CN2023109404W WO2024022407A1 WO 2024022407 A1 WO2024022407 A1 WO 2024022407A1 CN 2023109404 W CN2023109404 W CN 2023109404W WO 2024022407 A1 WO2024022407 A1 WO 2024022407A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
equal
object side
less
image side
Prior art date
Application number
PCT/CN2023/109404
Other languages
English (en)
French (fr)
Other versions
WO2024022407A9 (zh
Inventor
王晨如
董瑞君
张�浩
陈丽莉
武玉龙
白家荣
韩娜
黄海涛
苗傲帝
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024022407A1 publication Critical patent/WO2024022407A1/zh
Publication of WO2024022407A9 publication Critical patent/WO2024022407A9/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features

Definitions

  • the present disclosure relates to the field of near-eye display technology, and in particular to an eyepiece system and a near-eye display device.
  • NED Near-Eye Display
  • VR Virtual Reality, virtual reality
  • AR Augmented Reality, augmented reality
  • MR Mated Reality, mixed reality
  • the purpose of this disclosure is to provide an eyepiece system and a near-eye display device, which can realize miniaturization of the eyepiece system and further realize miniaturization of the near-eye display device.
  • an eyepiece system which is applied to a near-eye display device.
  • the eyepiece system includes:
  • a plurality of lenses are arranged sequentially along the same optical axis from the image side to the object side, the refractive index of the plurality of lenses is greater than 1.65, and the total system length of the plurality of lenses along the main optical axis is less than or equal to 25 mm.
  • a plurality of the lenses are arranged along the same linear direction.
  • the optical power of the eyepiece system is greater than or equal to 50 m -1 and less than or equal to 65 m -1 .
  • a plurality of the lenses include sequentially arranged along the same optical axis from the image side to the object side:
  • the first lens has a convex image side and a concave or flat object side;
  • the second lens has a convex surface on the image side and a concave surface on the object side;
  • the third lens has a convex surface on the image side and a concave surface on the object side;
  • the fourth lens has a convex surface on the image side and a concave surface on the object side;
  • the fifth lens has a convex image side and a convex object side, or a convex image side and a flat object side;
  • the sixth lens has a concave surface on the image side and a convex surface on the object side;
  • the seventh lens has a convex image side and a concave object side; or a flat image side and a convex object side.
  • the first lens, the second lens, the third lens, the fifth lens and the seventh lens are all positive power lenses, and the fourth lens and the sixth lens are both negative power lenses.
  • the image side and object side of the plurality of lenses are spherical; or,
  • the image side and object side, the image side and object side of the sixth lens, and the object side of the seventh lens are all spherical surfaces, and the image side of the second lens and the image side of the seventh lens are all spherical. Aspheric; or,
  • the image side and object side of the first lens, the object side of the second lens, the image side and object side of the third lens, the image side and object side of the fourth lens, the fifth lens are all spherical surfaces.
  • the image side of the second lens, the image side of the sixth lens, and the seventh lens are all spherical.
  • the image side surfaces of the lens are all aspherical.
  • the central thickness of the first lens is greater than or equal to 2.6 mm and less than or equal to 3.4 mm;
  • the center thickness of the second lens is greater than or equal to 1.4 mm and less than or equal to 2.1 mm;
  • the center thickness of the third lens is greater than or equal to 2.4 mm and less than or equal to 3.5 mm;
  • the center thickness of the fourth lens is greater than or equal to 1.3 mm and less than or equal to 1.6 mm;
  • the central thickness of the fifth lens is greater than or equal to 1.7 mm and less than or equal to 2.4 mm;
  • the central thickness of the sixth lens is greater than or equal to 0.5 mm and less than or equal to 2.4 mm;
  • the central thickness of the seventh lens is greater than or equal to 1.8 mm and less than or equal to 3.8 mm.
  • the radius of curvature of the image side of the first lens is greater than or equal to 10 mm and less than or equal to 20 mm, and the radius of curvature of the object side is greater than or equal to 30 mm;
  • the radius of curvature of the image side of the second lens is greater than or equal to 5 mm and less than or equal to 20 mm, and the radius of curvature of the object side is greater than or equal to 5 mm and less than or equal to 25 mm;
  • the radius of curvature of the image side of the third lens is greater than or equal to 5 mm and less than or equal to 15 mm, and the radius of curvature of the object side is greater than or equal to 15 mm and less than or equal to 55 mm;
  • the radius of curvature of the image side of the fourth lens is greater than or equal to 15 mm and less than or equal to 55 mm, and the radius of curvature of the object side is less than or equal to 10 mm;
  • the radius of curvature of the image side of the fifth lens is greater than or equal to 5 mm and less than or equal to 110 mm, and the radius of curvature of the object side is greater than or equal to 10 mm;
  • the radius of curvature of the image side of the sixth lens is less than or equal to 50 mm, and the radius of curvature of the object side is greater than or equal to 10 mm and less than or equal to 40 mm;
  • the seventh lens has an image side surface with a radius of curvature greater than or equal to 5 mm, and a curvature radius of the object side surface is greater than or equal to 10 mm and less than or equal to 50 mm.
  • the object side of the third lens and the image side of the fourth lens are both spherical and have the same radius of curvature
  • the object side of the third lens and the image side of the fourth lens are glued together with optical glue.
  • the refractive index of the first lens is greater than or equal to 1.72 and less than or equal to 1.74;
  • the refractive index of the second lens is greater than or equal to 1.78 and less than or equal to 1.84;
  • the refractive index of the third lens is greater than or equal to 1.65 and less than or equal to 1.80;
  • the refractive index of the fourth lens is greater than or equal to 1.80 and less than or equal to 1.95;
  • the refractive index of the fifth lens is greater than or equal to 1.75 and less than or equal to 1.85;
  • the refractive index of the sixth lens and the seventh lens are both greater than or equal to 1.70 and less than or equal to 1.80.
  • the Abbe number of the first lens and the Abbe number of the third lens are both greater than or equal to 45 and less than or equal to 60;
  • the Abbe number of the second lens and the Abbe number of the fifth lens are both greater than or equal to 40 and less than or equal to 50;
  • the Abbe number of the fourth lens, the Abbe number of the sixth lens, and the Abbe number of the seventh lens are all greater than or equal to 20 and less than or equal to 30.
  • the material of the lens is glass or resin.
  • a near-eye display device including:
  • Image source used to output image light
  • the eyepiece system described in the above aspect is disposed in the light emitting direction of the image source.
  • the refractive index of each lens included in the eyepiece system is greater than 1.65. In this way, the total length of the system of multiple lenses can be minimized on the premise that the eyepiece system has high refractive power, thereby ensuring that the eyepiece system has high imaging quality. , realizing the miniaturization of the eyepiece system.
  • FIG. 1 is a schematic structural diagram of an eyepiece system provided by an embodiment of the present disclosure.
  • FIG. 2 is a schematic optical path diagram of an eyepiece system provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of another eyepiece system provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of yet another eyepiece system provided by an embodiment of the present disclosure.
  • Figure 5 is an MTF curve diagram of an eyepiece system provided by an embodiment of the present disclosure.
  • FIG. 6 is a point diagram of an eyepiece system provided by an embodiment of the present disclosure.
  • Figure 7 is an MTF curve diagram of another eyepiece system provided by an embodiment of the present disclosure.
  • FIG. 8 is a point diagram of another eyepiece system provided by an embodiment of the present disclosure.
  • Figure 9 is an MTF curve of yet another eyepiece system provided by an embodiment of the present disclosure.
  • Figure 10 is a point diagram of yet another eyepiece system provided by an embodiment of the present disclosure.
  • Figure 11 is an MTF curve of yet another eyepiece system provided by an embodiment of the present disclosure.
  • Figure 12 is a point diagram of yet another eyepiece system provided by an embodiment of the present disclosure.
  • Figure 13 is an MTF curve of yet another eyepiece system provided by an embodiment of the present disclosure.
  • FIG. 14 is a point diagram of yet another eyepiece system provided by an embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concepts of the example embodiments.
  • the same reference numerals in the drawings indicate the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • the embodiment of the present disclosure provides a schematic structural diagram of an eyepiece system 10 .
  • the eyepiece system 10 includes a plurality of lenses arranged sequentially along the same optical axis from the image side to the object side.
  • the refractive index of the multiple lenses is greater than 1.65, and the total system length TL of the multiple lenses along the main optical axis is less than or equal to 25 mm.
  • the refractive index of each lens included in the eyepiece system 10 is greater than 1.65, such as This reduces the total system length TL of the multiple lenses L on the premise that the eyepiece system 10 has high refractive power.
  • the focal length of the eyepiece system 10 is reduced simultaneously to ensure that the eyepiece system 10 While having higher imaging quality, the eyepiece system 10 can be miniaturized.
  • the total system length TL of multiple lenses refers to the distance from the image side of the lens farthest from the microdisplay screen 20 among the multiple lenses along the main optical axis to the center of the microdisplay screen 20 .
  • the total system length of the multiple lenses along the main optical axis may be less than or equal to 21 mm to further achieve miniaturization of the eyepiece system 10 .
  • the total system lengths of multiple lenses along the main optical axis are 19 mm, 20 mm, and 21 mm.
  • the eyepiece system 10 is usually used in combination with a microdisplay screen 20, and the microdisplay screen 20 and the eyepiece system 10 are distributed along the propagation direction of the light path.
  • the image light emitted by the micro display screen 20 is incident on the light entrance side of the eyepiece system 10, and is refracted by the eyepiece system 10 for collimation and amplification; the refracted light is emitted from the light exit side of the eyepiece system 10, and It is incident into the user's pupil 30 to provide the user with intuitive images, videos or text information in the user's near eye range.
  • the micro display screen 20 can be a micro display screen using an LCD, OLED, LCOS or LED screen, and the screen size of the micro display screen 20 is 0.3 inches to 0.5 inches.
  • the materials of the lenses included in the eyepiece system 10 may be glass, resin, or plastic.
  • the materials of the multiple lenses may be all the same, may be different, or may not be all the same.
  • the number of lenses L included in the eyepiece system 10 may be five, six, seven, eight, etc., as long as the total length TL of the system of multiple lenses can be realized to be less than or equal to 25 mm. This is not the case in the embodiment of the present disclosure. Make limitations.
  • multiple lenses are arranged along the same straight line direction.
  • the eyepiece system is prevented from having a larger size in the radial direction of the lens.
  • the physical radius of the middle lens can be set to be the smallest, and the concave surfaces of some of the image-side lenses located on the image side of the middle lens are all facing the object side. , and the physical radius of the image-side lens increases in the direction away from the object side; the concave surfaces of some of the object-side lenses located on the object side of the middle lens all face the image side, and the physical radius of the object-side lens in the direction away from the image side incrementally. In this way, the image-side lenses and object-side lenses on both sides of the middle lens can be moved as close as possible to the middle lens, thereby reducing the total system length of the eyepiece system 10 .
  • the middle lens may be multiple lenses.
  • the middlemost lens in the mirror can also be the lens adjacent to the middlemost lens.
  • the middle lens may be any one of the two middlemost lenses among the plurality of lenses.
  • the optical power of the eyepiece system 10 is greater than or equal to 50 m -1 and less than or equal to 65 m -1 .
  • the image light emitted from the microdisplay 20 can be diffusely refracted through the eyepiece system 10 to ensure a large collimation effect on the image light, and at the same time, the exit pupil area that exits to the pupil 30 is 5 mm * 17 mm without distortion. Less than 3%. In this way, the advantages of a large exit pupil, small distortion or even no distortion of the virtual image can be achieved.
  • the optical power of the eyepiece system 10 can also be other values, as long as the eyepiece system 10 can ensure a large collimation effect on the image light.
  • the eyepiece system 10 includes seven lenses as an example for description.
  • a plurality of lenses include a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens arranged sequentially from the image side to the object side along the same optical axis.
  • the image side of the first lens L1 is convex and the object side is concave or flat; the image side of the second lens L2 is convex and the object side is concave; the image side of the third lens L3 is convex and the object side is concave.
  • the image side of the fourth lens L4 is convex and the object side is concave;
  • the image side of the fifth lens L5 is convex and the object side is convex, or its image side is convex and the object side is flat;
  • the image side of the sixth lens L6 is a concave surface and the object side is a convex surface;
  • the image side of the seventh lens L7 is a convex surface and the object side is a concave surface; or the image side is a flat surface and the object side is a convex surface.
  • the seven lenses can shape the image light through the cooperation of the convex surface, the concave surface and the flat surface, thereby achieving high-quality imaging quality, that is, improving the image imaging quality of the eyepiece system 10 .
  • the above-mentioned image side refers to the curved surface on the side of the lens close to the pupil 30 along the same optical axis
  • the object side refers to the curved surface on the side of the lens close to the microdisplay 20 along the same optical axis.
  • Example 1 as shown in Figure 1 or 2, the image side of the first lens L1 is convex and the object side is concave; the image side of the second lens L2 is convex and the object side is concave; the image side of the third lens L3 is The image side of the fourth lens L4 is convex and the object side is concave; the image side of the fifth lens L5 is convex and the object side is convex; the image side of the sixth lens L6 is concave and the object side is Convex surface; the image side of the seventh lens L7 is convex, and the object side is concave.
  • Example 2 as shown in Figure 3, the image side of the first lens L1 is convex and the object side is flat; the image side of the second lens L2 is convex and the object side is concave; the image side of the third lens L3 is convex.
  • the object side is concave; the image side of the fourth lens L4 is convex and the object side is concave; the image side of the fifth lens L5 is convex and the object side is convex; the image side of the sixth lens L6 is concave and the object side is convex;
  • the seventh lens L7 has a convex image side surface and a convex object side surface.
  • Example 3 as shown in Figure 4, the first lens L1 has a convex side surface and a concave object side surface; the second lens L2 has a convex image side surface and a concave object side surface; the third lens L3 has a convex image side surface and an object side surface.
  • the image side and object side of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 and the seventh lens L7 can be spherical, or they can be It is an aspherical surface.
  • the image side or object side of some lenses can also be flat.
  • Example 1 The image side and object side of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 and the seventh lens L7 are all spherical surfaces.
  • Example 2 the image side and object side of the first lens L1, the object side of the second lens L2, the image side and object side of the third lens L3, the image side and object side of the fourth lens L4, and the image of the fifth lens L5
  • the side surface and object side surface, the image side surface and object side surface of the sixth lens L6, and the object side surface of the seventh lens L7 are all spherical surfaces.
  • the image side surfaces of the second lens L2 and the image side surface of the seventh lens L7 are all aspherical surfaces.
  • Example 3 the image side and object side of the first lens L1, the object side of the second lens L2, the image side and object side of the third lens L3, the image side and object side of the fourth lens L4, and the image of the fifth lens L5
  • the side surface and object side surface, the object side surface of the sixth lens L6, and the object side surface of the seventh lens L7 are all spherical surfaces.
  • the image side surface of the second lens L2, the image side surface of the sixth lens L6, and the image side surface of the seventh lens L7 are all non-spherical surfaces. spherical surface.
  • the curved surface is a spherical surface
  • its surface shape satisfies the following first formula:
  • z is the sag of the spherical surface
  • c is the radius of curvature of the curved surface
  • k is the conic coefficient of the curved surface
  • a constant of 0 is taken for the spherical surface
  • r is the physical radius of the lens corresponding to the curved surface.
  • z is the sagittal height of the aspheric surface
  • c is the radius of curvature of the curved surface
  • k is the conic coefficient of the curved surface
  • r is the physical radius of the lens corresponding to the curved surface
  • a 2i is the 2*i order coefficient of the aspheric surface
  • i is greater than Or an integer equal to 1.
  • the details may be determined according to the actual situation.
  • the center thickness of the first lens L1 is greater than or equal to 2.6 mm and less than or equal to 3.4 mm
  • the center thickness of the second lens is greater than or equal to 1.4 mm and less than or equal to 2.1 mm
  • the center thickness of the third lens L3 is greater than or equal to 2.4 mm and less than or equal to 3.5 mm
  • the center thickness of the fourth lens L4 is greater than or equal to 1.3 mm and less than or equal to 1.6 mm
  • the center thickness of the fifth lens L5 is greater than or equal to 1.7 mm and less than or equal to 2.4 mm
  • the center thickness of L6 is greater than or equal to 0.5 mm and less than or equal to 2.4 mm
  • the center thickness of the seventh lens L7 is greater than or equal to 1.8 mm and less than or equal to 3.8 mm.
  • the above-mentioned central thickness refers to the thickness of the lens along the direction of the main optical axis.
  • the intermediate distance between two adjacent lenses can be determined based on the surface shape of the opposite curved surfaces of the two adjacent lenses. Specifically, if the surface shapes of the opposing curved surfaces of two adjacent lenses match, the center distance between the two adjacent lenses can be 0; if the surface shapes of the opposing curved surfaces of the two adjacent lenses do not match (different curvature radii) ), in order to avoid interference between the two lenses, it is necessary to determine the center distance between the two adjacent lenses based on the curvature radii of the two opposite curved surfaces. Furthermore, for two adjacent lenses whose center distance is not 0, in order to further ensure the collimation and amplification effect of the image light, the center distance between the two adjacent lenses is greater than or equal to 0.1 mm.
  • the radius of curvature of the image side of the first lens L1 is greater than or equal to 10 mm and less than or equal to 20 mm, and the radius of curvature of the object side is greater than or equal to 30 mm;
  • the radius of curvature of the image side of the second lens L2 is greater than or equal to 5 mm and less than or equal to 20 mm, the radius of curvature of the object side is greater than or equal to 5 mm and less than or equal to 25 mm;
  • the radius of curvature of the image side of the third lens L3 is greater than or equal to 5 mm and less than or equal to 15 mm, the radius of curvature of the object side
  • the radius of curvature of the fourth lens L4 is greater than or equal to 15 mm and less than or equal to 55 mm;
  • the radius of curvature of the image side of the fourth lens L4 is greater than or equal to 15 mm and less than or equal to 55 mm, and the radius of curvature of the object side is less than or
  • the curvature radii of the image side and object side of each lens if the surface shapes of the two opposite curved surfaces are both spherical and the curvature radii are equal, the corresponding two lenses can be glued to reduce the number of separate components. Thus, the assembly efficiency of the eyepiece system 10 is improved.
  • the object side of the third lens L3 and the image side of the fourth lens L4 are both spherical and have the same curvature radius; as shown in Figure 1 or Figure 2, the image of the object side of the third lens L3 and the image of the fourth lens L4 are The sides are glued to realize the glueing of the third lens L3 and the fourth lens L4.
  • the third lens L3 and the fourth lens L4 can be glued together by optical glue such as photo-curing glue, epoxy resin glue.
  • optical glue such as photo-curing glue, epoxy resin glue.
  • the third lens L3 and the fourth lens L4 can also be glued together through light-transmitting glue, which is not limited in the embodiment of the present disclosure.
  • the refractive index of the first lens L1 is greater than or equal to 1.72 and less than or equal to 1.74; the refractive index of the second lens L2 is greater than or equal to 1.78 and less than or equal to 1.84; the refractive index of the third lens L3 is greater than or equal to 1.65 and less than or equal to 1.80; the refractive index of the fourth lens L4 is greater than or equal to 1.80 and less than or equal to 1.95; the refractive index of the fifth lens L5 is greater than or equal to 1.75 and less than or equal to 1.85; the refractive index of the sixth lens L6, the seventh lens The refractive index of L7 is greater than or equal to 1.70 and less than or equal to 1.80.
  • the refractive power of the eyepiece system 10 is enhanced, so as to reduce the total system length TL of the eyepiece system 10 and at the same time reduce the length of the eyepiece system 10 . focal length.
  • the Abbe number of the first lens L1 and the Abbe number of the third lens L3 are both greater than or equal to 45 and less than or equal to 45; the Abbe number of the second lens L2 and the Abbe number of the fifth lens L5 are both greater than Or equal to 40 and less than or equal to; the Abbe number of the fourth lens L4, the Abbe number of the sixth lens L6, and the Abbe number of the seventh lens L7 are all greater than or equal to 20 and less than or equal to 30.
  • the dispersion effect of each lens on the image light is coordinated to reduce the dispersion of the image light, thereby improving the imaging quality of the eyepiece system 10 .
  • the first lens L1, the second lens L2, the third lens L3, the fifth lens L5 and the seventh lens L7 are all positive optical power lenses
  • the fourth lens L4 and the sixth lens L6 are all negative optical power lenses. lens.
  • the image light emitted by the micro display screen 20 can be diffused and refracted through the seventh lens L7,
  • the convergent refraction of the sixth lens L6, the diffuse refraction of the fifth lens L5, the convergent refraction of the fourth lens L4, and the diffuse refraction of the third lens L3, the second lens L2, and the first lens L1 are collimated and magnified, and emitted to the pupil.
  • the exit pupil area of 30mm is 5 mm * 17 mm, and the distortion is less than 3%, thus realizing the advantages of large exit pupil, small distortion or even no distortion of the virtual picture.
  • the optical power of the first lens L1 is greater than or equal to 32m -1 and less than or equal to 48m -1
  • the optical power of the second lens L2 The optical power of the cemented lens (the third lens L3 and the fourth lens L4 ) is greater than or equal to -68m -1 and less than or equal to -45m -1
  • the fifth The optical power of lens L5 is greater than or equal to 52m -1 and less than or equal to 80m -1
  • the optical power of the sixth lens L6 is greater than or equal to -55m -1 and less than or equal to -25m -1
  • the optical power of the seventh lens L7 The focal power is greater than or equal to 50m -1 and less than or equal to 65m -1 .
  • the sixth lens may be a positive power lens and the seventh lens may be a negative power lens.
  • the optical power of the sixth lens is greater than 0 and less than or equal to 8 m -1
  • the optical power of the seventh lens is greater than or equal to -15 m -1 and less than 0.
  • Embodiment 1 This disclosure shows various parameters of the seven lenses included in the eyepiece system 10 in conjunction with Table 1 below.
  • f is the focal length
  • TL is the total length of the system
  • k is the cone coefficient
  • FOV is the field of view
  • R is the radius of curvature
  • T is the center thickness
  • L is itself, the object side and the adjacent lens or micro display
  • the center distance is
  • is the optical power (the third lens and the fourth lens are cemented)
  • n is the refractive index
  • V is the Abbe number.
  • the positive and negative radii of curvature of the image side and object side refer to the relative position of the center of the curved surface and the corresponding surface.
  • the center of the circle of the image side of the first lens L1 is located on the object side of the image side
  • the center of the circle of the object side of the fifth lens is located on the image side of the object side.
  • Figure 5 is an MTF (Modulation Transfer Function, modulation transfer function) curve diagram of the eyepiece system 10 shown in Table 1 provided by Embodiment 1 of the present disclosure.
  • FIG. 6 is a point diagram of the eyepiece system 10 shown in Table 1 provided by Embodiment 1 of the present disclosure.
  • the horizontal axis is the spatial frequency, which represents the number of line pairs per millimeter, and the unit is 1p/mm.
  • the vertical axis represents the percentage of imaging quality that reaches the physical condition, from 0 to 1.
  • the MTF of the eyepiece system 10 is greater than 0.45@50lp/mm, that is, when the spatial frequency is 50lp/mm, the imaging quality reaches at least 45% of the actual condition, and the central field of view of the eyepiece system 10
  • the RMS (Root Mean Square, root mean square) radius is less than 5 ⁇ m. This shows that the size of the diffusion spot of the eyepiece system 10 is small, the imaging quality is excellent, and the distortion is not detectable by the human eye, so as to achieve high-quality imaging effects.
  • Embodiment 2 This disclosure shows various parameters of the seven lenses included in the eyepiece system 10 in conjunction with Table 2 below.
  • f is the focal length
  • TL is the total length of the system
  • k is the cone coefficient
  • FOV is the field of view
  • R is the radius of curvature
  • T is the center thickness
  • L is itself, the object side and the adjacent lens or micro display
  • the center distance is
  • is the optical power (the third lens and the fourth lens are cemented)
  • n is the refractive index
  • V is the Abbe number.
  • the positive and negative radii of curvature of the image side and object side refer to the relative position of the center of the curved surface and the corresponding surface.
  • the center of the circle of the image side of the first lens L1 is located on the object side of the image side
  • the center of the circle of the object side of the fifth lens is located on the image side of the object side.
  • Figure 7 is an MTF (Modulation Transfer Function, modulation transfer function) curve diagram of the eyepiece system 10 shown in Table 2 provided by Embodiment 1 of the present disclosure.
  • FIG. 8 is a point diagram of the eyepiece system 10 shown in Table 2 provided by Embodiment 1 of the present disclosure.
  • the horizontal axis is the spatial frequency, which represents the number of line pairs per millimeter, and the unit is 1p/mm.
  • the vertical axis represents the percentage of imaging quality that reaches the physical condition, from 0 to 1.
  • the MTF of the eyepiece system 10 is greater than 0.45@50lp/mm, that is, when the spatial frequency is 50lp/mm, the imaging quality reaches at least 45% of the actual condition, and the central field of view of the eyepiece system 10
  • the RMS (Root Mean Square, root mean square) radius is less than 6.5 ⁇ m. This shows that the size of the diffusion spot of the eyepiece system 10 is small, the imaging quality is excellent, and the distortion is not detectable by the human eye, so as to achieve high-quality imaging effects.
  • Embodiment 3 This disclosure shows various parameters of the seven lenses included in the eyepiece system 10 in combination with Table 3 and Table 4 below.
  • f is the focal length
  • TL is the total length of the system
  • k is the cone coefficient
  • FOV is the field of view
  • R is the radius of curvature
  • T is the center thickness
  • L is the object side and the adjacent lens or The center distance of the micro display screen
  • is the optical power (the third lens and the fourth lens are cemented)
  • n is the refractive index
  • V is the Abbe number
  • a 4 , A 6 . is the 2*i order coefficient of the aspheric surface
  • i is an integer greater than or equal to 1.
  • the positive and negative radius of curvature of the side and object side refers to the relative position of the center of the curved surface and the corresponding surface.
  • the center of the circle of the image side of the first lens L1 is located on the object side of the image side
  • the center of the circle of the object side of the fifth lens is located on the image side of the object side.
  • Figure 9 is an MTF (Modulation Transfer Function, modulation transfer function) curve diagram of the eyepiece system 10 shown in Table 3 and Table 4 provided in the first embodiment of the present disclosure.
  • FIG. 10 is a point diagram of the eyepiece system 10 shown in Table 3 and Table 4 provided by Embodiment 1 of the present disclosure.
  • the horizontal axis is the spatial frequency, which represents the number of line pairs per millimeter, and the unit is 1p/mm.
  • the vertical axis represents the percentage of imaging quality that reaches the physical condition, from 0 to 1.
  • the MTF of the eyepiece system 10 is greater than or equal to 0.6@50lp/mm, that is, when the spatial frequency is 50lp/mm, the imaging quality reaches at least 60% of the actual condition, and the center of the eyepiece system 10
  • the RMS (Root Mean Square) radius of the field of view is less than 3 ⁇ m. This shows that the size of the diffusion spot of the eyepiece system 10 is small, the imaging quality is excellent, and the distortion is not detectable by the human eye, so as to achieve high-quality imaging effects.
  • Embodiment 4 This disclosure shows various parameters of the seven lenses included in the eyepiece system 10 in combination with Table 5 and Table 6 below.
  • f is the focal length
  • TL is the total length of the system
  • k is the cone coefficient
  • FOV is the field of view
  • R is the radius of curvature
  • T is the center thickness
  • L is the object side and the adjacent lens or The center distance of the micro display screen
  • is the optical power (the third lens and the fourth lens are cemented)
  • n is the refractive index
  • V is the Abbe number
  • a 4 , A 6 . is the 2*i order coefficient of the aspheric surface
  • i is an integer greater than or equal to 1.
  • the positive and negative radii of curvature of the image side and object side refer to the relative position of the center of the curved surface and the corresponding surface.
  • the center of the circle of the image side of the first lens L1 is located on the object side of the image side
  • the center of the circle of the object side of the fifth lens is located on the image side of the object side.
  • Figure 11 is an MTF (Modulation Transfer Function, modulation transfer function) curve diagram of the eyepiece system 10 shown in Table 5 and Table 6 provided in Embodiment 1 of the present disclosure.
  • FIG. 12 is a point diagram of the eyepiece system 10 shown in Table 5 and Table 6 provided in Embodiment 1 of the present disclosure.
  • the horizontal axis is the spatial frequency, which represents the number of line pairs per millimeter, and the unit is 1p/mm.
  • the vertical axis represents the percentage of imaging quality that reaches the physical condition, from 0 to 1.
  • the MTF of the eyepiece system 10 is greater than or equal to 0.65@50lp/mm, that is, when the spatial frequency is 50lp/mm, the imaging quality reaches at least 65% of the actual condition, and the center of the eyepiece system 10
  • the RMS (Root Mean Square) radius of the field of view is less than 2.5 ⁇ m.
  • Embodiment 5 This disclosure shows various parameters of the seven lenses included in the eyepiece system 10 in combination with Table 7 and Table 8 below.
  • f is the focal length
  • TL is the total length of the system
  • k is the cone coefficient
  • FOV is the field of view
  • R is the radius of curvature
  • T is the center thickness
  • L is the object side and the adjacent lens or The center distance of the micro display screen
  • is the optical power (the third lens and the fourth lens are cemented)
  • n is the refractive index
  • V is the Abbe number
  • a 4 , A 6 . is the 2*i order coefficient of the aspheric surface
  • i is an integer greater than or equal to 1.
  • the positive and negative radii of curvature of the image side and object side refer to the relative position of the center of the curved surface and the corresponding surface.
  • the center of the image side of the first lens L1 is located on the object side of the image side
  • the center of the image side of the sixth lens is located on the image side of the object side.
  • Figure 13 is an MTF (Modulation Transfer Function, modulation transfer function) curve diagram of the eyepiece system 10 shown in Table 7 and Table 8 provided in Embodiment 1 of the present disclosure.
  • FIG. 14 is a point diagram of the eyepiece system 10 shown in Table 7 and Table 8 provided in Embodiment 1 of the present disclosure.
  • the horizontal axis is the spatial frequency, which represents the number of line pairs per millimeter, and the unit is 1p/mm.
  • the vertical axis represents the percentage of imaging quality that reaches the physical condition, from 0 to 1.
  • the MTF of the eyepiece system 10 is greater than or equal to 0.5@50lp/mm, that is, when the spatial frequency is 50lp/mm, the imaging quality reaches at least 50% of the actual condition, and the center of the eyepiece system 10
  • the RMS (Root Mean Square) radius of the field of view is less than 5 ⁇ m. This shows that the size of the diffusion spot of the eyepiece system 10 is small, the imaging quality is excellent, and the distortion is not detectable by the human eye, so as to achieve high-quality imaging effects.
  • Embodiments of the present disclosure also provide a near-eye display device, which includes: an image source for outputting image light; and the eyepiece system 10 described in the above embodiments is located in the light emitting direction of the image source.
  • the near-eye display device can be AR glasses, VR helmets, etc.
  • the image source can be the micro-display screen mentioned above, or it can be other monitors with display functions.
  • the near-eye display device can be miniaturized while miniaturizing the eyepiece system 10.
  • the eyepiece system 10 has good imaging quality, thereby ensuring that the near-eye display device achieves high-quality imaging.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种目镜系统(10)及近眼显示装置。该目镜系统(10)包括自像侧至物侧沿同一光轴依次设置的多个透镜,多个透镜的折射率均大于1.65,且多个透镜沿主光轴的系统总长(TL)小于或等于25毫米。在目镜系统(10)具有高折光能力的前提下减小多个透镜的系统总长,以保证目镜系统(10)具有较高成像质量的同时,实现目镜系统(10)的小型化。

Description

目镜系统及近眼显示装置
交叉引用
本公开要求于2022年07月28日提交的申请号为202210903874.2名称为“目镜系统及近眼显示装置”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及近眼显示技术领域,特别涉及一种目镜系统及近眼显示装置。
背景技术
NED(Near-Eye Display,近眼显示)是指通过光学技术,将微型图像光源发出的图像光,通过目镜系统引导到用户的瞳孔,在用户的近眼范围实现虚拟、放大的图像,实现向用户提供直观的图像、视频或文字信息,目前市面上近眼显示技术通常被广泛应用于VR(Virtual Reality,虚拟现实)系统、AR(Augmented Reality,增强现实)系统、MR(Mixed Reality,混合现实)系统等。
随着用户对虚拟图像、文字等信息的交互性和沉浸性的需求越来越高,相关近眼显示装置例如头戴显示器、AR眼镜和VR头盔等近眼显示装置得到了人们更多的青睐。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种目镜系统及近眼显示装置,能够实现目镜系统的小型化,进而实现近眼显示装置的小型化。
根据本公开的一方面,提供一种目镜系统,应用于近眼显示装置,所述目镜系统,包括:
自像侧至物侧沿同一光轴依次设置的多个透镜,多个所述透镜的折射率均大于1.65,且多个所述透镜沿主光轴的系统总长小于或等于25毫米。
根据本公开所述的目镜系统,多个所述透镜沿同一直线方向设置。
根据本公开所述的目镜系统,所述目镜系统的光焦度大于或等于50m-1,且小于或等于65m-1
根据本公开所述的目镜系统,多个所述透镜包括自像侧至物侧沿同一光轴依次设置的:
第一透镜,其像侧面为凸面,物侧面为凹面或平面;
第二透镜,其像侧面为凸面,物侧面为凹面;
第三透镜,其像侧面为凸面,物侧面为凹面;
第四透镜,其像侧面为凸面,物侧面为凹面;
第五透镜,其像侧面为凸面,物侧面为凸面,或者其像侧面为凸面,物侧面为平面;
第六透镜,其像侧面为凹面,物侧面为凸面;
第七透镜,其像侧面为凸面,物侧面为凹面;或者其像侧面为平面,物侧面为凸面。
根据本公开所述的目镜系统,所述第一透镜、所述第二透镜、所述第三透镜、所述第五透镜和所述第七透镜均为正光焦度透镜,所述第四透镜和所述第六透镜均为负光焦度透镜。
根据本公开所述的目镜系统,多个所述透镜的像侧面、物侧面均为球面;或者,
所述第一透镜的像侧面和物侧面、所述第二透镜的物侧面、所述第三透镜的像侧面和物侧面、所述第四透镜的像侧面和物侧面、所述第五透镜的像侧面和物侧面、所述第六透镜的像侧面和物侧面、所述第七透镜的物侧面均为球面,所述第二透镜的像侧面、所述第七透镜的像侧面均为非球面;或者,
所述第一透镜的像侧面和物侧面、所述第二透镜的物侧面、所述第三透镜的像侧面和物侧面、所述第四透镜的像侧面和物侧面、所述第五透镜的像侧面和物侧面、所述第六透镜的物侧面、所述第七透镜的物侧面均为球面,所述第二透镜的像侧面、所述第六透镜的像侧面、所述第七透镜的像侧面均为非球面。
根据本公开所述的目镜系统,
所述第一透镜的中心厚度大于或等于2.6毫米且小于或等于3.4毫米;
所述第二透镜的中心厚度大于或等于1.4毫米且小于或等于2.1毫米;
所述第三透镜的中心厚度大于或等于2.4毫米且小于或等于3.5毫米;
所述第四透镜的中心厚度大于或等于1.3毫米且小于或等于1.6毫米;
所述第五透镜的中心厚度大于或等于1.7毫米且小于或等于2.4毫米;
所述第六透镜的中心厚度大于或等于0.5毫米且小于或等于2.4毫米;
所述第七透镜的中心厚度大于或等于1.8毫米且小于或等于3.8毫米。
根据本公开所述的目镜系统,
所述第一透镜的像侧面的曲率半径大于或等于10毫米且小于或等于20毫米,物侧面的曲率半径大于或等于30毫米;
所述第二透镜的像侧面的曲率半径大于或等于5毫米且小于或等于20毫米,物侧面的曲率半径大于或等于5毫米且小于或等于25毫米;
所述第三透镜的像侧面的曲率半径大于或等于5毫米且小于或等于15毫米,物侧面的曲率半径大于或等于15毫米且小于或等于55毫米;
所述第四透镜的像侧面的曲率半径大于或等于15毫米且小于或等于55毫米,物侧面的曲率半径小于或等于10毫米;
所述第五透镜的像侧面的曲率半径大于或等于5毫米且小于或等于110毫米,物侧面的曲率半径大于或等于10毫米;
所述第六透镜的像侧面的曲率半径小于或等于50毫米,物侧面的曲率半径大于或等于10毫米且小于或等于40毫米;
所述第七透镜的像侧面的曲率半径大于或等于5毫米,物侧面的曲率半径大于或等于10毫米且小于或等于50毫米。
根据本公开所述的目镜系统,所述第三透镜的物侧面与所述第四透镜的像侧面均为球面,且曲率半径相同;
所述第三透镜的物侧面与所述第四透镜的像侧面通过光学胶胶合。
根据本公开所述的目镜系统,
所述第一透镜的折射率大于或等于1.72且小于或等于1.74;
所述第二透镜的折射率大于或等于1.78且小于或等于1.84;
所述第三透镜的折射率大于或等于1.65且小于或等于1.80;
所述第四透镜的折射率大于或等于1.80且小于或等于1.95;
所述第五透镜的折射率大于或等于1.75且小于或等于1.85;
所述第六透镜的折射率、所述第七透镜的折射率均大于或等于1.70且小于或等于1.80。
根据本公开所述的目镜系统,
所述第一透镜的阿贝数、所述第三透镜的阿贝数均大于或等于45且小于或等于60;
所述第二透镜的阿贝数、所述第五透镜的阿贝数均大于或等于40且小于或等于50;
所述第四透镜的阿贝数、所述第六透镜的阿贝数、所述第七透镜的阿贝数均大于或等于20且小于或等于30。
根据本公开所述的目镜系统,所述透镜的材料为玻璃或树脂。
根据本公开的一方面,提供一种近眼显示装置,包括:
图像源,用于输出图像光线;
上述一方面所述的目镜系统,设于所述图像源的出光方向上。
本公开实施方式至少包括以下技术效果:
本公开实施方式中,目镜系统包括的各透镜的折射率均大于1.65,如此在目镜系统具有高折光能力的前提小减小多个透镜的系统总长,以保证目镜系统具有较高成像质量的同时,实现目镜系统的小型化。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施方式提供的一种目镜系统的的结构示意图。
图2为本公开实施方式提供的一种目镜系统的光路示意图。
图3为本公开实施方式提供的另一种目镜系统的结构示意图。
图4为本公开实施方式提供的又一种目镜系统的结构示意图。
图5为本公开实施方式提供的一种目镜系统的MTF曲线图。
图6为本公开实施方式提供的一种目镜系统的点列图。
图7为本公开实施方式提供的另一种目镜系统的MTF曲线图。
图8为本公开实施方式提供的另一种目镜系统的点列图。
图9为本公开实施方式提供的又一种目镜系统的MTF曲线图。
图10为本公开实施方式提供的又一种目镜系统的点列图。
图11为本公开实施方式提供的又一种目镜系统的MTF曲线图。
图12为本公开实施方式提供的又一种目镜系统的点列图。
图13为本公开实施方式提供的再一种目镜系统的MTF曲线图。
图14为本公开实施方式提供的再一种目镜系统的点列图。
附图标记:
10、目镜系统;20、微显示屏;30、瞳孔。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”和“第三”等仅作为标记使用,不是对其对象的数量限制。
随着近眼显示技术的不断发展,对于智能穿戴装置,以AR眼镜为例,为了满足消费级眼镜的使用需求,用户对AR眼镜的体积需求越来越小。因此,在智能穿戴装置保证近眼显示的图像质量的同时,需要实现小型化。
本公开实施方式提供了一种目镜系统10的结构示意图。如图1所示,目镜系统10包括自像侧至物侧沿同一光轴依次设置的多个透镜,多个透镜的折射率均大于1.65,且多个透镜沿主光轴的系统总长TL小于或等于25毫米。
本公开实施方式中,目镜系统10包括的各透镜的折射率均大于1.65,如 此在目镜系统10具有高折光能力的前提下减小多个透镜L的系统总长TL,在多个透镜的系统总长减小的情况下,目镜系统10的焦距同步减小,以保证目镜系统10具有较高成像质量的同时,实现目镜系统10的小型化。
其中,多个透镜的系统总长TL是指多个透镜中距离微显示屏20最远的一个透镜的像侧沿主光轴到微显示屏20的中心之间的距离。可选地,多个透镜沿主光轴的系统总长也可以小于或等于21毫米,以进一步实现目镜系统10的小型化。示例地,多个透镜沿主光轴的系统总长为19毫米、20毫米、21毫米。
目镜系统10通常与微显示屏20结合使用,且微显示屏20和目镜系统10沿光路传播方向分布。如图2所示,微显示屏20发出的图像光入射到目镜系统10的入光侧,经过目镜系统10折射,以进行准直放大;折射后的光线由目镜系统10的出光侧出射,并入射至用户瞳孔30中,以在用户的近眼范围向用户提供直观的图像、视频或文字信息。
其中,微显示屏20可以为采用LCD、OLED、LCOS或LED等屏幕的微型显示屏,微显示屏20的屏幕尺寸为0.3英寸~0.5英寸。
本公开实施方式中,目镜系统10包括的透镜的材料可以为玻璃、可以为树脂、也可以为塑料,多个透镜的材料可以全部相同,也可以全部不同,也可以不全相同。
目镜系统10包括的透镜L的个数可以是五个、六个、七个、八个等,只要能够实现多个透镜的系统总长TL小于或等于25毫米即可,本公开实施方式对此不做限定。
可选地,多个透镜沿同一直线方向设置。如此,通过设置多个透镜沿同一直线方向分布,避免了目镜系统在透镜的径向方向上尺寸较大的情况。
可选地,多个透镜沿同一光轴依次设置,为了有效减小目镜系统10的系统总长,可以设置中部透镜的物理半径最小,位于中部透镜像侧的部分像侧透镜的凹面均朝向物侧,且在背向物侧的方向上像侧透镜的物理半径递增;位于中部透镜物侧的部分物侧透镜的凹面均朝向像侧,且在背向像侧的方向上物侧透镜的物理半径递增。如此,可最大限度的将该中部透镜两侧的像侧透镜和物侧透镜向中部透镜靠近,以减小目镜系统10的系统总长。
其中,当目镜系统10包括的透镜总数为奇数时,中部透镜可以是多个透 镜中位于最中间的一个透镜,也可以是与最中间透镜相邻的一个透镜。当目镜系统10包括的透镜总数为偶数时,中部透镜可以是多个透镜中位于最中间的两个透镜中的任一透镜。
可选地,目镜系统10的光焦度大于或等于50m-1,且小于或等于65m-1。如此,可通过目镜系统10对微显示屏20发出的图像光进行扩散折射,以保证对图像光准直方大的效果,同时使得出射至瞳孔30的出瞳区域为5毫米*17毫米,且畸变小于3%。如此实现虚拟画面的大出瞳、小畸变甚至无畸变的优点。当然,目镜系统10的光焦度除了为上述范围内的任一数值外,也可以为其他数值,只要能够保证目镜系统10对图像光的准直方大效果即可。
接下来以目镜系统10包括七个透镜为例进行说明。
如图1或图2所示,多个透镜包括自像侧至物侧沿同一光轴依次设置的:第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4,第五透镜L5、第六透镜L6和第七透镜L7。
可选地,第一透镜L1的像侧面为凸面,物侧面为凹面或平面;第二透镜L2的像侧面为凸面,物侧面为凹面;第三透镜L3的像侧面为凸面,物侧面为凹面;第四透镜L4的像侧面为凸面,物侧面为凹面;第五透镜L5的像侧面为凸面,物侧面为凸面,或者其像侧面为凸面,物侧面为平面;第六透镜L6的像侧面为凹面,物侧面为凸面;第七透镜L7的像侧面为凸面,物侧面为凹面;或者像侧面为平面,物侧面为凸面。如图,通过凸面、凹面和平面的配合实现七个透镜对图像光的整形,从而实现优质的成像质量,也即是提高目镜系统10的画面成像质量。
其中,上述所述的像侧面是指沿同一光轴的方向透镜靠近瞳孔30一侧的曲面,物侧面是指沿同一光轴的方向透镜靠近微显示屏20一侧的曲面。
示例1,如图1或图2所示,第一透镜L1的像侧面为凸面,物侧面为凹面;第二透镜L2的像侧面为凸面,物侧面为凹面;第三透镜L3的像侧面为凸面,物侧面为凹面;第四透镜L4的像侧面为凸面,物侧面为凹面;第五透镜L5的像侧面为凸面,物侧面为凸面;第六透镜L6的像侧面为凹面,物侧面为凸面;第七透镜L7的像侧面为凸面,物侧面为凹面。
示例2,如图3所示,第一透镜L1的像侧面为凸面,物侧面为平面;第二透镜L2的像侧面为凸面,物侧面为凹面;第三透镜L3的像侧面为凸面, 物侧面为凹面;第四透镜L4的像侧面为凸面,物侧面为凹面;第五透镜L5的像侧面为凸面,物侧面为凸面;第六透镜L6的像侧面为凹面,物侧面为凸面;第七透镜L7的像侧面为凸面,物侧面为凸面。
示例3,如图4所示,第一透镜L1侧面为凸面,物侧面为凹面;第二透镜L2的像侧面为凸面,物侧面为凹面;第三透镜L3的像侧面为凸面,物侧面为凹面;第四透镜L4的像侧面为凸面,物侧面为凹面;第五透镜L5的像侧面为凸面,物侧面为平面;第六透镜L6的像侧面为凹面,物侧面为凸面;第七透镜L7的像侧面为平面,物侧面为凸面。
可选地,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7的像侧面、物侧面可以为球面,也可以为非球面,当然部分透镜的像侧面或物侧面也可以为平面。
示例1,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7的像侧面、物侧面均为球面。
示例2,第一透镜L1的像侧面和物侧面、第二透镜L2的物侧面、第三透镜L3的像侧面和物侧面、第四透镜L4的像侧面和物侧面、第五透镜L5的像侧面和物侧面、第六透镜L6的像侧面和物侧面、第七透镜L7的物侧面均为球面,第二透镜L2的像侧面、第七透镜L7的像侧面均为非球面。
示例3,第一透镜L1的像侧面和物侧面、第二透镜L2的物侧面、第三透镜L3的像侧面和物侧面、第四透镜L4的像侧面和物侧面、第五透镜L5的像侧面和物侧面、第六透镜L6的物侧面、第七透镜L7的物侧面均为球面,第二透镜L2的像侧面、第六透镜L6的像侧面、第七透镜L7的像侧面均为非球面。
其中,对于曲面为球面的情况,其面型满足如下第一公式:
上述第一公式中,z为球面矢高,c为曲面的曲率半径,k为曲面的圆锥系数,对于球面取常数0,r为曲面对应透镜的物理半径。
对于曲面为非球面的情况,其面型满足如下第二公式:
上述第二公式中,z为非球面矢高,c为曲面的曲率半径,k为曲面的圆锥系数,r为曲面对应透镜的物理半径,A2i为非球面的2*i阶系数,i为大于或等于1的整数。
通常,对于非球面的多阶系数,通常考虑i=2的四阶系数和i=3的六阶系数;当然,也可以考虑i=1的二阶系数、i=4的八阶系数等,具体可根据实际情况而定。
可选地,第一透镜L1的中心厚度大于或等于2.6毫米且小于或等于3.4毫米,二透镜的中心厚度大于或等于1.4毫米且小于或等于2.1毫米,第三透镜L3的中心厚度大于或等于2.4毫米且小于或等于3.5毫米,第四透镜L4的中心厚度大于或等于1.3毫米且小于或等于1.6毫米,第五透镜L5的中心厚度大于或等于1.7毫米且小于或等于2.4毫米,第六透镜L6的中心厚度大于或等于0.5毫米且小于或等于2.4毫米,第七透镜L7的中心厚度大于或等于1.8毫米且小于或等于3.8毫米。如此,通过对各透镜的中心厚度的限定,便于使得七个透镜构成的目镜系统10的系统总长TL较小。其中,上述所述的中心厚度是指沿主光轴的方向透镜的厚度。
另外,对于相邻两个透镜之间的中间间距,可根据相邻两个透镜相对的曲面的面型确定。具体地,若相邻两个透镜相对的曲面的面型匹配,则该相邻两个透镜之间的中心间距可以为0;若相邻两个透镜相对的曲面面型不匹配(曲率半径不同)时,则为了避免两个透镜之间存在干涉,需要结合相对的两个曲面的曲率半径确定相邻两个透镜之间的中心间距。进一步,对于中心间距不为0的两个相邻透镜,为了进一步保证图像光的准直放大效果,两个相邻透镜之间的中心间距大于或等于0.1毫米。
可选地,第一透镜L1的像侧面的曲率半径大于或等于10毫米且小于或等于20毫米,物侧面的曲率半径大于或等于30毫米;第二透镜L2的像侧面的曲率半径大于或等于5毫米且小于或等于20毫米,物侧面的曲率半径大于或等于5毫米且小于或等于25毫米;第三透镜L3的像侧面的曲率半径大于或等于5毫米且小于或等于15毫米,物侧面的曲率半径大于或等于15毫米且小于或等于55毫米;第四透镜L4的像侧面的曲率半径大于或等于15毫米且小于或等于55毫米,物侧面的曲率半径小于或等于10毫米;第五透镜L5的像侧面的曲率半径大于或等于5毫米且小于或等于110毫米,物侧面的曲率半径大 于或等于10毫米;第六透镜L6的像侧面的曲率半径小于或等于50毫米,物侧面的曲率半径大于或等于10毫米且小于或等于40毫米;第七透镜L7的像侧面的曲率半径大于或等于5毫米,物侧面的曲率半径大于或等于10毫米且小于或等于50毫米。
其中,对于各透镜的像侧面、物侧面的曲率半径,若相对的两个曲面的面型均为球面,且曲率半径相等,则对应的两个透镜可进行胶合,以减少单独构件的数量,从而提高目镜系统10的组装效率。
示例地,第三透镜L3的物侧面与第四透镜L4的像侧面均为球面,且曲率半径相同;如图1或图2所示,第三透镜L3的物侧面与第四透镜L4的像侧面胶合,以实现第三透镜L3和第四透镜L4的胶合。
其中,第三透镜L3与第四透镜L4可通过光固化胶、环氧树脂胶等光学胶进行胶合。当然,第三透镜L3与第四透镜L4也可通过透光胶进行胶合,本公开实施方式对此不做限定。
可选地,第一透镜L1的折射率大于或等于1.72且小于或等于1.74;第二透镜L2的折射率大于或等于1.78且小于或等于1.84;第三透镜L3的折射率大于或等于1.65且小于或等于1.80;第四透镜L4的折射率大于或等于1.80且小于或等于1.95;第五透镜L5的折射率大于或等于1.75且小于或等于1.85;第六透镜L6的折射率、第七透镜L7的折射率均大于或等于1.70且小于或等于1.80。如此,通过对各透镜的折射率的限定,以通过七个透镜之间折射率的配合,增强目镜系统10的折光能力,以减小目镜系统10的系统总长TL,同时减小目镜系统10的焦距。
可选地,第一透镜L1的阿贝数、第三透镜L3的阿贝数均大于或等于45且小于或等于;第二透镜L2的阿贝数、第五透镜L5的阿贝数均大于或等于40且小于或等于;第四透镜L4的阿贝数、第六透镜L6的阿贝数、第七透镜L7的阿贝数均大于或等于20且小于或等于30。如此,通过对目镜系统10的各透镜的阿贝数的限定,从而使得各透镜对图像光的色散效果配合后,减小图像光的色散,以改善目镜系统10的成像质量。
可选地,第一透镜L1、第二透镜L2、第三透镜L3、第五透镜L5和第七透镜L7均为正光焦度透镜,第四透镜L4和第六透镜L6均为负光焦度透镜。
其中,对于微显示屏20发出的图像光,可通过第七透镜L7的扩散折射、 第六透镜L6的汇聚折射、第五透镜L5的扩散折射、第四透镜L4的汇聚折射,以及第三透镜L3、第二透镜L2和第一透镜L1的扩散折射进行准直放大,出射至瞳孔30的出瞳区域为5毫米*17毫米,且畸变小于3%,如此实现虚拟画面的大出瞳、小畸变甚至无畸变的优点。
示例地,结合上述所述的第三透镜L3和第四透镜L4胶合的情况,第一透镜L1的光焦度大于或等于32m-1且小于或等于48m-1,第二透镜L2的光焦度大于或等于12m-1且小于或等于26m-1,胶合透镜(第三透镜L3和第四透镜L4)的光焦度大于或等于-68m-1且小于或等于-45m-1,第五透镜L5的光焦度大于或等于52m-1且小于或等于80m-1,第六透镜L6的光焦度大于或等于-55m-1且小于或等于-25m-1,第七透镜L7的光焦度大于或等于50m-1且小于或等于65m-1
当然,本公开实施方式中,对于第六透镜和第七透镜,也可以是第六透镜为正光焦度透镜,第七透镜为负光焦度透镜。示例地,第六透镜的光焦度大于0且小于或等于8m-1,第七透镜的光焦度大于或等于-15m-1且小于0。
实施例一、本公开结合如下表1示出了目镜系统10包括的七个透镜的各项参数。
表1

上述表1中,f为焦距,TL为系统总长,k为圆锥系数,FOV为视场角,R为曲率半径,T为中心厚度,L为自身与物侧与相邻的透镜或微显示屏的中心间距,Φ为光焦度(第三透镜和第四透镜胶合),n为折射率,V为阿贝数。另外,像侧面、物侧面的曲率半径的正负是指曲面的圆心与对应面的相对位置。示例地,第一透镜L1的像侧面的圆心位于像侧面的物侧,第五透镜的物侧面的圆心位于物侧面的像侧。
图5为本公开实施例一提供的表1所示的目镜系统10的MTF(Modulation Transfer Function,调制传递函数)曲线图。图6为本公开实施例一提供的表1所示的目镜系统10的点列图。图5中横轴为空间频率,代表每毫米的线对数,单位为1p/mm,纵轴代表成像质量达到实物状况的百分比,从0到1。
由图5和图6可知,该目镜系统10的MTF大于0.45@50lp/mm,即在空间频率为50lp/mm时,成像质量最少达到实物状况的45%,且该目镜系统10的中心视场的RMS(Root Mean Square,均方根)半径小于5μm。由此表明该目镜系统10的弥散斑尺寸较小,成像质量优良,且畸变人眼不可察觉,以实现优质的成像效果。
实施例二、本公开结合如下表2示出了目镜系统10包括的七个透镜的各项参数。
表2

上述表2中,f为焦距,TL为系统总长,k为圆锥系数,FOV为视场角,R为曲率半径,T为中心厚度,L为自身与物侧与相邻的透镜或微显示屏的中心间距,Φ为光焦度(第三透镜和第四透镜胶合),n为折射率,V为阿贝数。另外,像侧面、物侧面的曲率半径的正负是指曲面的圆心与对应面的相对位置。示例地,第一透镜L1的像侧面的圆心位于像侧面的物侧,第五透镜的物侧面的圆心位于物侧面的像侧。
图7为本公开实施例一提供的表2所示的目镜系统10的MTF(Modulation Transfer Function,调制传递函数)曲线图。图8为本公开实施例一提供的表2所示的目镜系统10的点列图。图7中横轴为空间频率,代表每毫米的线对数,单位为1p/mm,纵轴代表成像质量达到实物状况的百分比,从0到1。
由图7和图8可知,该目镜系统10的MTF大于0.45@50lp/mm,即在空间频率为50lp/mm时,成像质量最少达到实物状况的45%,且该目镜系统10的中心视场的RMS(Root Mean Square,均方根)半径小于6.5μm。由此表明该目镜系统10的弥散斑尺寸较小,成像质量优良,且畸变人眼不可察觉,以实现优质的成像效果。
实施例三、本公开结合如下表3和表4示出了目镜系统10包括的七个透镜的各项参数。
表3
表4
上述表3和表4中,f为焦距,TL为系统总长,k为圆锥系数,FOV为视场角,R为曲率半径,T为中心厚度,L为自身与物侧与相邻的透镜或微显示屏的中心间距,Φ为光焦度(第三透镜和第四透镜胶合),n为折射率,V为阿贝数,A4、A6。为非球面的2*i阶系数,i为大于或等于1的整数。另外,像 侧面、物侧面的曲率半径的正负是指曲面的圆心与对应面的相对位置。示例地,第一透镜L1的像侧面的圆心位于像侧面的物侧,第五透镜的物侧面的圆心位于物侧面的像侧。
图9为本公开实施例一提供的表3和表4所示的目镜系统10的MTF(Modulation Transfer Function,调制传递函数)曲线图。图10为本公开实施例一提供的表3和表4所示的目镜系统10的点列图。图9中横轴为空间频率,代表每毫米的线对数,单位为1p/mm,纵轴代表成像质量达到实物状况的百分比,从0到1。
由图9和图10可知,该目镜系统10的MTF大于或等于0.6@50lp/mm,即在空间频率为50lp/mm时,成像质量最少达到实物状况的60%,且该目镜系统10的中心视场的RMS(Root Mean Square,均方根)半径小于3μm。由此表明该目镜系统10的弥散斑尺寸较小,成像质量优良,且畸变人眼不可察觉,以实现优质的成像效果。
实施例四、本公开结合如下表5和表6示出了目镜系统10包括的七个透镜的各项参数。
表5

表6
上述表5和表6中,f为焦距,TL为系统总长,k为圆锥系数,FOV为视场角,R为曲率半径,T为中心厚度,L为自身与物侧与相邻的透镜或微显示屏的中心间距,Φ为光焦度(第三透镜和第四透镜胶合),n为折射率,V为阿贝数,A4、A6。为非球面的2*i阶系数,i为大于或等于1的整数。另外,像侧面、物侧面的曲率半径的正负是指曲面的圆心与对应面的相对位置。示例地,第一透镜L1的像侧面的圆心位于像侧面的物侧,第五透镜的物侧面的圆心位于物侧面的像侧。
图11为本公开实施例一提供的表5和表6所示的目镜系统10的MTF(Modulation Transfer Function,调制传递函数)曲线图。图12为本公开实施例一提供的表5和表6所示的目镜系统10的点列图。图11中横轴为空间频率,代表每毫米的线对数,单位为1p/mm,纵轴代表成像质量达到实物状况的百分比,从0到1。
由图11和图12可知,该目镜系统10的MTF大于或等于0.65@50lp/mm,即在空间频率为50lp/mm时,成像质量最少达到实物状况的65%,且该目镜系统10的中心视场的RMS(Root Mean Square,均方根)半径小于2.5μm。由 此表明该目镜系统10的弥散斑尺寸较小,成像质量优良,且畸变人眼不可察觉,以实现优质的成像效果。
实施例五、本公开结合如下表7和表8示出了目镜系统10包括的七个透镜的各项参数。
表7
表8
上述表7和表8中,f为焦距,TL为系统总长,k为圆锥系数,FOV为视场角,R为曲率半径,T为中心厚度,L为自身与物侧与相邻的透镜或微显示屏的中心间距,Φ为光焦度(第三透镜和第四透镜胶合),n为折射率,V为阿贝数,A4、A6。为非球面的2*i阶系数,i为大于或等于1的整数。另外,像侧面、物侧面的曲率半径的正负是指曲面的圆心与对应面的相对位置。示例地,第一透镜L1的像侧面的圆心位于像侧面的物侧,第六透镜的像侧面的圆心位于物侧面的像侧。
图13为本公开实施例一提供的表7和表8所示的目镜系统10的MTF(Modulation Transfer Function,调制传递函数)曲线图。图14为本公开实施例一提供的表7和表8所示的目镜系统10的点列图。图13中横轴为空间频率,代表每毫米的线对数,单位为1p/mm,纵轴代表成像质量达到实物状况的百分比,从0到1。
由图13和图14可知,该目镜系统10的MTF大于或等于0.5@50lp/mm,即在空间频率为50lp/mm时,成像质量最少达到实物状况的50%,且该目镜系统10的中心视场的RMS(Root Mean Square,均方根)半径小于5μm。由此表明该目镜系统10的弥散斑尺寸较小,成像质量优良,且畸变人眼不可察觉,以实现优质的成像效果。
本公开实施方式还提供了一种近眼显示装置,包括:图像源,用于输出图像光线;上述实施方式所述的目镜系统10,设于图像源的出光方向上。
其中,该近眼显示装置可以为AR眼镜和VR头盔等。图像源可以是上述所述的微显示屏,也可以与其他具有显示功能的显示器。
结合上述实施方式所述的目镜系统10,通过减小目镜系统10的系统总长TL,从而在实现目镜系统10小型化的同时,实现近眼显示装置的小型化。另外,结合目镜系统10包括的各透镜的高折射率、中心厚度、像侧面和物侧面的曲率半径等,保证目镜系统10具有较好的成像质量,从而保证该近眼显示装置实现高质量成像。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化, 这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (13)

  1. 一种目镜系统,其中,应用于近眼显示装置,所述目镜系统包括:
    自像侧至物侧沿同一光轴依次设置的多个透镜,多个所述透镜的折射率均大于1.65,且多个所述透镜沿主光轴的系统总长小于或等于25毫米。
  2. 如权利要求1所述的目镜系统,其中,多个所述透镜沿同一直线方向设置。
  3. 如权利要求1所述的目镜系统,其中,所述目镜系统的光焦度大于或等于50m-1,且小于或等于65m-1
  4. 如权利要求1-3任一所述的目镜系统,其中,多个所述透镜包括自像侧至物侧沿同一光轴依次设置的:
    第一透镜,其像侧面为凸面,物侧面为凹面或平面;
    第二透镜,其像侧面为凸面,物侧面为凹面;
    第三透镜,其像侧面为凸面,物侧面为凹面;
    第四透镜,其像侧面为凸面,物侧面为凹面;
    第五透镜,其像侧面为凸面,物侧面为凸面,或者其像侧面为凸面,物侧面为平面;
    第六透镜,其像侧面为凹面,物侧面为凸面;
    第七透镜,其像侧面为凸面,物侧面为凹面;或者其像侧面为平面,物侧面为凸面。
  5. 如权利要求4所述的目镜系统,其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第五透镜和所述第七透镜均为正光焦度透镜,所述第四透镜和所述第六透镜均为负光焦度透镜。
  6. 如权利要求4所述的目镜系统,其中,多个所述透镜的像侧面、物侧面均为球面;或者,
    所述第一透镜的像侧面和物侧面、所述第二透镜的物侧面、所述第三透镜的像侧面和物侧面、所述第四透镜的像侧面和物侧面、所述第五透镜的像侧面和物侧面、所述第六透镜的像侧面和物侧面、所述第七透镜的物侧面均为球面,所述第二透镜的像侧面、所述第七透镜的像侧面均为非球面;或者,
    所述第一透镜的像侧面和物侧面、所述第二透镜的物侧面、所述第三透镜的像侧面和物侧面、所述第四透镜的像侧面和物侧面、所述第五透镜的像侧面 和物侧面、所述第六透镜的物侧面、所述第七透镜的物侧面均为球面,所述第二透镜的像侧面、所述第六透镜的像侧面、所述第七透镜的像侧面均为非球面。
  7. 如权利要求4所述的目镜系统,其中,
    所述第一透镜的中心厚度大于或等于2.6毫米且小于或等于3.4毫米;
    所述第二透镜的中心厚度大于或等于1.4毫米且小于或等于2.1毫米;
    所述第三透镜的中心厚度大于或等于2.4毫米且小于或等于3.5毫米;
    所述第四透镜的中心厚度大于或等于1.3毫米且小于或等于1.6毫米;
    所述第五透镜的中心厚度大于或等于1.7毫米且小于或等于2.4毫米;
    所述第六透镜的中心厚度大于或等于0.5毫米且小于或等于2.4毫米;
    所述第七透镜的中心厚度大于或等于1.8毫米且小于或等于3.8毫米。
  8. 如权利要求4所述的目镜系统,其中,
    所述第一透镜的像侧面的曲率半径大于或等于10毫米且小于或等于20毫米,物侧面的曲率半径大于或等于30毫米;
    所述第二透镜的像侧面的曲率半径大于或等于5毫米且小于或等于20毫米,物侧面的曲率半径大于或等于5毫米且小于或等于25毫米;
    所述第三透镜的像侧面的曲率半径大于或等于5毫米且小于或等于15毫米,物侧面的曲率半径大于或等于15毫米且小于或等于55毫米;
    所述第四透镜的像侧面的曲率半径大于或等于15毫米且小于或等于55毫米,物侧面的曲率半径小于或等于10毫米;
    所述第五透镜的像侧面的曲率半径大于或等于5毫米且小于或等于110毫米,物侧面的曲率半径大于或等于10毫米;
    所述第六透镜的像侧面的曲率半径小于或等于50毫米,物侧面的曲率半径大于或等于10毫米且小于或等于40毫米;
    所述第七透镜的像侧面的曲率半径大于或等于5毫米,物侧面的曲率半径大于或等于10毫米且小于或等于50毫米。
  9. 如权利要求8所述的目镜系统,其中,所述第三透镜的物侧面与所述第四透镜的像侧面均为球面,且曲率半径相同;
    所述第三透镜的物侧面与所述第四透镜的像侧面通过光学胶胶合。
  10. 如权利要求4所述的目镜系统,其中,
    所述第一透镜的折射率大于或等于1.72且小于或等于1.74;
    所述第二透镜的折射率大于或等于1.78且小于或等于1.84;
    所述第三透镜的折射率大于或等于1.65且小于或等于1.80;
    所述第四透镜的折射率大于或等于1.80且小于或等于1.95;
    所述第五透镜的折射率大于或等于1.75且小于或等于1.85;
    所述第六透镜的折射率、所述第七透镜的折射率均大于或等于1.70且小于或等于1.80。
  11. 如权利要求4所述的目镜系统,其中,
    所述第一透镜的阿贝数、所述第三透镜的阿贝数均大于或等于45且小于或等于60;
    所述第二透镜的阿贝数、所述第五透镜的阿贝数均大于或等于40且小于或等于50;
    所述第四透镜的阿贝数、所述第六透镜的阿贝数、所述第七透镜的阿贝数均大于或等于20且小于或等于30。
  12. 根据权利要求1-3任一所述的目镜系统,其中,所述透镜的材料为玻璃或树脂。
  13. 一种近眼显示装置,其中,包括:
    图像源,用于输出图像光线;
    上述权利要求1-12任一所述的目镜系统,设于所述图像源的出光方向上。
PCT/CN2023/109404 2022-07-28 2023-07-26 目镜系统及近眼显示装置 WO2024022407A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210903874.2 2022-07-28
CN202210903874.2A CN115291382A (zh) 2022-07-28 2022-07-28 目镜系统及近眼显示装置

Publications (2)

Publication Number Publication Date
WO2024022407A1 true WO2024022407A1 (zh) 2024-02-01
WO2024022407A9 WO2024022407A9 (zh) 2024-03-21

Family

ID=83825979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109404 WO2024022407A1 (zh) 2022-07-28 2023-07-26 目镜系统及近眼显示装置

Country Status (2)

Country Link
CN (1) CN115291382A (zh)
WO (1) WO2024022407A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115291382A (zh) * 2022-07-28 2022-11-04 京东方科技集团股份有限公司 目镜系统及近眼显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090290864A1 (en) * 2008-05-21 2009-11-26 Ayako Asakura Viewing optical system and imaging apparatus using the same
JP2010217589A (ja) * 2009-03-17 2010-09-30 Ricoh Co Ltd 接眼拡大観察光学系、電子ビューファインダおよび撮像装置
CN107167913A (zh) * 2016-12-15 2017-09-15 金华唯见科技有限公司 一种短焦距目镜以及vr头戴显示设备
CN108957730A (zh) * 2017-05-19 2018-12-07 北京海鲸科技有限公司 一种目镜及微显示屏头戴显示设备
CN112612135A (zh) * 2020-12-30 2021-04-06 厦门力鼎光电股份有限公司 一种目镜光学系统
CN115291382A (zh) * 2022-07-28 2022-11-04 京东方科技集团股份有限公司 目镜系统及近眼显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090290864A1 (en) * 2008-05-21 2009-11-26 Ayako Asakura Viewing optical system and imaging apparatus using the same
JP2010217589A (ja) * 2009-03-17 2010-09-30 Ricoh Co Ltd 接眼拡大観察光学系、電子ビューファインダおよび撮像装置
CN107167913A (zh) * 2016-12-15 2017-09-15 金华唯见科技有限公司 一种短焦距目镜以及vr头戴显示设备
CN108957730A (zh) * 2017-05-19 2018-12-07 北京海鲸科技有限公司 一种目镜及微显示屏头戴显示设备
CN112612135A (zh) * 2020-12-30 2021-04-06 厦门力鼎光电股份有限公司 一种目镜光学系统
CN115291382A (zh) * 2022-07-28 2022-11-04 京东方科技集团股份有限公司 目镜系统及近眼显示装置

Also Published As

Publication number Publication date
CN115291382A (zh) 2022-11-04
WO2024022407A9 (zh) 2024-03-21

Similar Documents

Publication Publication Date Title
CN107505712B (zh) 光学模组、光学装置及穿戴式显示装置
US20210141211A1 (en) Eyepiece and Display Device
WO2024022407A1 (zh) 目镜系统及近眼显示装置
CN215117019U (zh) 一种光学镜组及近眼显示装置
WO2023184752A1 (zh) 一种光学投影系统以及电子设备
CN208689247U (zh) 一种微型投影镜头及波导近眼显示装置
JP7406028B1 (ja) 光学系
WO2022141385A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN116184639B (zh) 光学镜头及vr设备
JP2019045847A (ja) ヘッドマウント式表示装置及び像形成レンズユニット
WO2021102685A1 (zh) 一种大视场角高像质的目镜光学系统及设备
CN208569195U (zh) 一种紧凑型自由曲面波导近眼显示光学装置
CN116400481A (zh) 光学模组及vr设备
CN111880363B (zh) 光机和ar设备
CN210166569U (zh) 基于自由曲面和光波导的增强现实光学系统
US7675685B2 (en) Image display apparatus
CN114326035A (zh) 一种投影镜头
WO2022141389A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
WO2022141387A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN216013823U (zh) 一种用于智能眼镜的消色散光学系统
CN218896250U (zh) 一种投影透镜
CN221326837U (zh) 投影系统和ar投影装置
CN211905862U (zh) 基于菲涅尔透镜和光波导原理的增强现实光学装置
WO2022141380A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
WO2022141386A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845615

Country of ref document: EP

Kind code of ref document: A1