WO2024022196A1 - 确定方法及终端 - Google Patents

确定方法及终端 Download PDF

Info

Publication number
WO2024022196A1
WO2024022196A1 PCT/CN2023/108158 CN2023108158W WO2024022196A1 WO 2024022196 A1 WO2024022196 A1 WO 2024022196A1 CN 2023108158 W CN2023108158 W CN 2023108158W WO 2024022196 A1 WO2024022196 A1 WO 2024022196A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
information
prb
target data
domain resource
Prior art date
Application number
PCT/CN2023/108158
Other languages
English (en)
French (fr)
Inventor
王理惠
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024022196A1 publication Critical patent/WO2024022196A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a determination method and a terminal.
  • Time Division Duplexing (TDD) system and Frequency Division Duplexing (FDD) system
  • BWP BandWidth Part
  • the flexible/full duplex format supports the asymmetric spectrum of BWP.
  • On the BWP at the same moment/time unit there can be both downlink resources and uplink resources, but at different moments/time units.
  • the location of the downlink resources and uplink resources in the same BWP in the frequency domain that is, the starting physical resource block (PPRB), the ending physical resource block
  • the size that is, the physical resource block they occupy
  • the numbers may be the same or different.
  • the UE may not be able to determine which starting PPRB is occupied by the UE for transmitting data/signals at each moment/time unit. Therefore, a method is urgently needed so that the terminal can determine the starting PPRB occupied by it for transmitting data/signals on each time unit.
  • Embodiments of the present application provide a determination method and a terminal, which enable the terminal to determine the starting PRB occupied by it for transmitting data/signals in each time unit.
  • a determination method is provided, which is applied to a terminal.
  • the method includes: the terminal obtains the target information of the target data to be transmitted, and the target information is information related to the target data transmission; and determines the target of the target data based on the target information.
  • Transmission resources, the target transmission resources include the target starting resource block PRB.
  • a determination device in a second aspect, includes: an acquisition module and a determination module; the acquisition module is used to acquire target information of target data to be transmitted, where the target information is information related to target data transmission.
  • the determination module is used to determine the target transmission resource of the target data according to the target information, and the target transmission resource includes the target starting resource block PRB.
  • a terminal in a third aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the processor is used to obtain target information of target data to be transmitted, where the target information is information related to target data transmission, and according to the target information, The target transmission resource of the target data is determined, and the target transmission resource includes the target starting resource block PRB.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the third aspect.
  • a chip in a sixth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the determination as described in the first aspect. Method steps.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the method described in the first aspect. Identify the steps of the method.
  • the terminal obtains the target information of the target data to be transmitted, and the target information is information related to the target data transmission; based on the target information, the target transmission resources of the target data are determined, and the target transmission resources include the target Starting resource block PRB. Since the terminal can obtain the target information related to the target data to be transmitted, the terminal can determine the target transmission resource for transmitting the target data based on the target information, that is, determine the target starting resource block PRB.
  • Figure 1 is a schematic architectural diagram of a wireless communication system provided by an embodiment of the present application.
  • Figure 2 is one of the schematic diagrams of a determination method provided by an embodiment of the present application.
  • Figure 3 is a second schematic diagram of a determination method provided by an embodiment of the present application.
  • Figure 4 is a third schematic diagram of a determination method provided by an embodiment of the present application.
  • Figure 5 is the fourth schematic diagram of a determination method provided by the embodiment of the present application.
  • Figure 6 is a fifth schematic diagram of a determination method provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram No. 6 of a determination method provided by an embodiment of the present application.
  • Figure 8 is a seventh schematic diagram of a determination method provided by an embodiment of the present application.
  • Figure 9 is the eighth schematic diagram of a determination method provided by the embodiment of the present application.
  • Figure 10 is a ninth schematic diagram of a determination method provided by the embodiment of the present application.
  • Figure 11 is a tenth schematic diagram of a determination method provided by an embodiment of the present application.
  • Figure 12 is an eleventh schematic diagram of a determination method provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of a determination device provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of the hardware structure of a communication device provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of the hardware structure of a terminal provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle-mounted equipment
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • PC personal computers
  • teller machines or self-service Terminal side equipment such as machine Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands, Smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • Access network equipment may include base stations, WLAN access points or WiFi nodes, etc.
  • the base stations may be called Node B, Evolved Node B (eNB), Access Point, Base Transceiver Station (BTS), Radio Base Station , radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node, transmission and reception point (Transmission Reception Point, TRP) or the above
  • eNB Evolved Node B
  • BTS Base Transceiver Station
  • ESS Radio Base Station
  • radio transceiver Basic Service Set
  • BSS Basic Service Set
  • ESS Extended Service Set
  • home B-node home evolved B-node
  • TRP Transmission Reception Point
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), centralized network configuration ( Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • TDD Time Division Duplexing
  • Transmission and reception share the same radio frequency point, and the uplink and downlink use different time slots for communication.
  • TDD can use fragmented frequency bands, which is suitable for services with obvious uplink and downlink asymmetry.
  • TDD transmission time is only about half that of FDD, coverage or throughput is limited; and when FDD systems support asymmetric services, spectrum utilization will be greatly reduced. Therefore, future mobile communications require more flexible use of spectrum.
  • flexible/full duplex on the network side and half-duplex operation on the user/terminal side are considered to be relatively promising technologies, which can improve spectrum utilization, improve uplink coverage and reduce delay-sensitive services. Delay.
  • Figure 2 shows a symmetric spectrum diagram of FDD.
  • the uplink or downlink spectrum of FDD can be semi-statically configured or dynamically indicated as downlink on certain time slots/symbols. or upstream transmission.
  • Figure 3 shows a schematic diagram of an asymmetric spectrum of TDD.
  • different frequency domain resources on certain time slots/symbols of TDD can be semi-statically configured or dynamically indicated as There are both uplink transmission and downlink reception.
  • FIG. 4 and Figure 5 show a schematic spectrum diagram of a half-duplex terminal.
  • a half-duplex terminal can only perform uplink transmission or downlink reception at the same time, that is, at the same time At this time, the terminal cannot both receive and send signals, which correspond to Figure 2 and Figure 3 on the network side respectively.
  • the frequency domain positions and sizes of downlink resources in time units 1, 2, 3, 4, and 7 are different; for UE#2, time units 1, 2, 3, 4, 7 Mileshang Capital
  • the frequency domain location of the source varies in size.
  • BWidth Part, BWP for short the frequency domain positions of downlink resources and uplink resources at different times/time units are the same size.
  • New Radio (NR) networks are deployed in TDD.
  • FDD Frequency Division Duplex
  • Type0 Type0
  • Type1 Dynamic Switch
  • Bitmap allocation method supports continuous and non-continuous resource allocation
  • Type1 is used to indicate: RIV allocation method, which only supports continuous resource allocation;
  • DCI Digital Copyright Identifier
  • PRBs Multiple consecutive PRBs are bundled into the PRBG, and only the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH)/physical uplink shared channel (Physical Uplink Shared Channel, PDSCH) is allocated in multiples of the PRBG.
  • the number of PRBs in PRBs depends on the size and configuration of the BWP, as shown in Table 5.1.2.2.1-1 (i.e. Table 1) in TS38.214.
  • the configuration type namely Configuration 1 or Configuration 2 is determined by the PRBg-size field in PDSCH-Config in the RRC message.
  • the bitmap bitmap in DCI indicates the PRBG number carrying PDSCH or PUSCH data.
  • the PRBG index corresponds to the bit index in the bitmap one-to-one.
  • the bit value is 1, which means that the corresponding PRBG is allocated to the data transmission; the bit value is 0, which means that the corresponding PRBG is not allocated to the data transmission. Transmission of data. Therefore, the PRBG allocated to data transmission can be continuous or non-continuous.
  • the starting PRB of the data transmission denoted as PRB_start, is the first PRB in the smallest PRBG index corresponding to a bit value of 1 in the bitmap.
  • Type1 resources are allocated to one or more consecutive PRBs.
  • the resource allocation area is defined by two parameters: the starting PRB of data transmission, that is, PRB_Start, and the size of the BWP, that is, the number of consecutive PRBs within the BWP.
  • PRB_Start and the number of consecutive PRBs within the BWP are combined into a specific single value called RIV (Resource Indicator Value).
  • RIV is calculated according to the first formula (TS 38.214), as shown in the following example (the same method is used for uplink).
  • the first formula is:
  • a downlink type 1resource allocation field consists of a resource indication value(RIV)corresponding to a starting virtual resource block(RB start )and a length in terms of contiguously allocated resource blocks L RBs .
  • the resource indication value is defined by
  • the terminal determines the PRB_start of data transmission or reception based on the size of the BWP.
  • the number of downlink or uplink PRBs it contains is constant in different time units.
  • Intra-slot frequency hopping means that frequency hopping occurs within each slot, which is suitable for single-slot and multi-slot PUSCH transmission (high-level configuration such as PUSCH with configured grant or dynamic scheduling such as PUSCH scheduled by DCI), where, Multi-slot PUSCH includes:
  • PUSCH repetition Type A (PUSCH repetition Type A)
  • the upper layer configures the parameter pushch-TimeDomainAllocationListForMultiPUSCH; for configured grant PUSCH, the upper layer configures the parameters cg-nrofSlots and cg -nrofPUSCH-InSlot.
  • the starting PRB in each hop is given by:
  • RB start is the starting PRB within the UL BWP, as calculated from the resource block assignment information of resource allocation type 1 (described in Clause 6.1.2.2 .2)or as calculated from the resource assignment for MsgA PUSCH(described in[6,TS 38.213])and RB offset is the frequency offset in PRBs between the two frequency hops.
  • the number of symbols in the first hop is given by the number of symbols in the second hop is given by where is the length of the PUSCH transmission in OFDM symbols in one slot.
  • Inter-slot frequency hopping without enable means that frequency hopping occurs between every two slots, which is suitable for multi-slot PUSCH transmission (high-level configuration such as PUSCH with configured grant or dynamic scheduling such as PUSCH scheduled by DCI), where, Multi-slot PUSCH includes:
  • the upper layer configures the parameter pusch-TimeDomainAllocationListForMultiPUSCH; for configured grant PUSCH, the upper layer configures the parameters cg-nrofSlots and cg-nrofPUSCH-InSlot.
  • the starting PRB during slot is given by:
  • RB start is the starting PRB within the UL BWP,as calculated from the resource block assignment information of resource allocation type 1(described in Clause 6.1 .2.2.2)and RB offset is the frequency offset in PRBs between the two frequency hops.
  • Figure 6 is a schematic diagram of type B transmission without enabled inter-slot frequency hopping provided by the embodiment of the present application. As shown in Figure 6, the Slot number starts from 0:
  • the uplink data/control information/signal transmitted on the even-numbered slot has the same frequency domain position, and the starting position is configured/indicated by the network; it is called the first hop;
  • the uplink data/control information/signal transmitted on the odd-numbered slot has the same frequency domain position, and the starting position is configured/indicated by the network + frequency offset (PRB offset); it is called the second hop;
  • PRB offset network + frequency offset
  • Inter-slot frequency hopping after PUSCH-DMRS-Bundling is enabled
  • the enabled inter-slot frequency hopping is used to indicate that frequency hopping occurs between every two frequency hopping intervals (N_FH), which is suitable for multiple Slotted PUSCH transmission (higher layer configured such as PUSCH with configured grant or dynamically scheduled such as PUSCH scheduled by DCI), where multi-slot PUSCH includes:
  • PUSCH repetition Type A (PUSCH repetition Type A), PUSCH repetition Type B (PUSCH repetition Type B);
  • the upper layer configures the parameter pushch-TimeDomainAllocationListForMultiPUSCH; for configured grant PUSCH, the upper layer configures the parameters cg-nrofSlots and cg -nrofPUSCH-InSlot.
  • the starting RB during slot is given by:
  • n f is the number of the system radio frame containing the current slot, is the number of slots per frame for subcarrier spacing configuration ⁇ of the UL BWP that the PUSCH is transmitted on
  • N FH is the value of the higher layer parameter PUSCH-Frequencyhopping-Interval
  • RB start is the starting PRB within the UL BWP,as calculated from the resource block assignment information of resource allocation type 1(described in Clause 6.1.2.2.2)and RB offset is the frequency offset in RBs between the two frequency hops.
  • the frequency hopping mechanism between repeated transmissions is used to indicate that frequency hopping occurs between every two nominal repeated transmissions, where
  • the starting PRB for an actual repetition within the n-th nominal repetition (as defined in Clause 6.1.2.1) is given by:
  • PRB start is the starting PRB within the UL BWP, as calculated from the resource block assignment information of resource allocation type 1 (described in Clause 6.1.2.2.2) and PRB offset is the frequency offset in PRBs between the two frequency hops.
  • Figure 7 is a schematic diagram of enabled inter-slot frequency hopping type B transmission provided by the embodiment of the present application. As shown in Figure 7,
  • n mod 2 0, indicating that the uplink data/control information/signal transmitted on the even-numbered repetition has the same frequency domain position, and the starting position is configured/indicated by the network; it is called the first hop, first hop;
  • n mod 2 1, indicating that the uplink data/control information/signal transmitted on the odd-numbered repetition has the same frequency domain position, and the starting position is configured/indicated by the network + frequency offset (PRB offset); called the second Jump, second hop;
  • PRB offset network + frequency offset
  • Downlink and uplink resources can exist at the same moment/time unit, but at different moments/time units, downlink resources and uplink resources are in the frequency domain.
  • the location that is, the starting physical resource block and the ending physical resource block
  • the size that is, the number of PPRBs occupied by it, may be different. Therefore, a method is needed so that the terminal can determine the starting PPRB of the uplink data/signal it transmits or the downlink data/signal it receives.
  • the embodiment of the present application provides a determination method.
  • Figure 8 shows the flow of a determination method provided by the embodiment of the present application. Process map.
  • the determination method provided by the embodiment of the present application may include the following steps 201 and 202.
  • Step 201 The terminal obtains the target information of the target data to be transmitted.
  • the target information is information related to target data transmission.
  • the target information includes at least one of the following:
  • the first information is used to indicate the length of the reference frequency domain resource for target data transmission, the starting PRB of the reference frequency domain resource, or the ending PRB of the reference frequency domain resource;
  • the second information is used to indicate the length of the actual frequency domain resource for target data transmission, the starting PRB of the actual frequency domain resource, or the ending PRB of the actual frequency domain resource;
  • the third information is used to indicate the type of time unit for target data transmission
  • the fourth information is used to indicate the data type of the target data
  • the fifth information is used to indicate the transmission type of the target data
  • the sixth information is used to indicate the allocation type of frequency domain resources for target data transmission
  • the seventh information is used to indicate the frequency domain offset of target data transmission.
  • the first information is determined by at least one of the following:
  • the first bandwidth part information is used to indicate the length of the current active uplink bandwidth part, the starting PRB of the active uplink bandwidth part, or the ending PRB of the active uplink bandwidth part;
  • the second bandwidth part information is used to indicate the length of the current active downlink bandwidth part, the starting PRB of the active downlink bandwidth part, or the ending PRB of the active downlink bandwidth part;
  • the third bandwidth part information is used to indicate the length of the initial uplink bandwidth part, the starting PRB of the initial uplink bandwidth part, or the ending PRB of the initial uplink bandwidth part;
  • the fourth bandwidth part information is used to indicate the length of the initial downlink bandwidth part, the starting PRB of the initial downlink bandwidth part, or the ending PRB of the initial downlink bandwidth part;
  • the information of the control resource set is used to indicate the frequency domain length of the control resource set, the frequency domain starting PRB of the control resource set, or the frequency domain ending PRB of the control resource set;
  • the first subband information is used to indicate the length of the uplink subband under the flexible duplex system, the starting PRB of the uplink subband under the flexible duplex system, or the end PRB of the uplink subband under the flexible duplex system;
  • the second subband information is used to indicate the length of the downlink subband under the flexible duplex system, the starting PRB of the downlink subband under the flexible duplex system, or the end PRB of the downlink subband under the flexible duplex system;
  • Network side device configuration and/or instructions configuration and/or instructions.
  • network side device configuration or indication may be understood as network side device configuration and/or indication of the length of the frequency domain resource, the starting PRB of the frequency domain resource, or the ending PRB of the frequency domain resource.
  • the network side device can directly configure or indicate the length of a frequency domain resource, the starting PRB of the frequency domain resource, or the ending PRB of the frequency domain resource.
  • the network side device can configure the length of multiple frequency domain resources, the starting PRB of the frequency domain resource, or the ending PRB of the frequency domain resource. Further, the network side device can configure multiple frequency domain resource lengths. The length, the start PRB of the frequency domain resource, or the end PRB of the frequency domain resource indicates the length of one of the frequency domain resources, the start PRB of the frequency domain resource, or the end PRB of the frequency domain resource.
  • the network side device may configure and/or indicate information of reference frequency domain resources.
  • the network side device may configure and/or indicate that the length of the reference frequency domain resource is the length of the current active uplink bandwidth part, and the starting PRB of the reference frequency domain resource is the starting PRB of the current active uplink bandwidth part.
  • the end PRB of the frequency domain resource is the end PRB of the current active uplink bandwidth part.
  • the network side device may configure and/or indicate that the length of the reference frequency domain resource is the length of the current active downlink bandwidth part, and the starting PRB of the reference frequency domain resource is the starting PRB of the current active downlink bandwidth part.
  • the end PRB of the frequency domain resource is the end PRB of the current active downlink bandwidth part.
  • the network side device may configure and/or indicate that the length of the reference frequency domain resource is the length of the initial uplink bandwidth part, the starting PRB of the reference frequency domain resource is the starting PRB of the initial uplink bandwidth part, and the length of the reference frequency domain resource is the starting PRB of the initial uplink bandwidth part.
  • the end PRB is the end PRB of the initial uplink bandwidth part.
  • the network side device may configure and/or indicate that the length of the reference frequency domain resource is the length of the initial downlink bandwidth part, the starting PRB of the reference frequency domain resource is the starting PRB of the initial downlink bandwidth part, and the length of the reference frequency domain resource is the starting PRB of the initial downlink bandwidth part. End PRB It is the end PRB of the initial downlink bandwidth part.
  • the network side device may configure and/or indicate that the length of the reference frequency domain resource is the length of the uplink subband under the flexible duplex system, and the starting PRB of the reference frequency domain resource is the uplink subband under the flexible duplex system.
  • the start PRB of the reference frequency domain resource is the end PRB of the uplink subband under the flexible duplex system.
  • the network side device may configure and/or indicate that the length of the reference frequency domain resource is the length of the downlink subband under the flexible duplex system, and the starting PRB of the reference frequency domain resource is the downlink subband under the flexible duplex system.
  • the starting PRB of the reference frequency domain resource is the ending PRB of the downlink subband under the flexible duplex system.
  • control resource set is a control resource set configured for the terminal by the terminal's serving cell, or a control resource set whose index is 0 for the terminal.
  • the terminal uses the length of the frequency domain resource occupied by CORESET0, the starting PRB of the frequency domain resource occupied by CORESET0, and The end PRB of the frequency domain resource occupied by CORESET0, otherwise the length of the initial downlink bandwidth part, the starting PRB of the initial downlink bandwidth part, or the end PRB of the initial downlink bandwidth part is used.
  • CORESET0 a control resource set
  • the second information is determined by at least one of the following:
  • the first frequency domain resource information is used to indicate the length of the available frequency domain resources of the target data, the starting PRB of the available frequency domain resources, or the ending PRB of the available frequency domain resources;
  • the third subband information is used to indicate the length of the uplink subband, the starting PRB of the uplink subband, or the ending PRB of the uplink subband;
  • the fourth subband information is used to indicate the length of the downlink subband, the starting PRB of the downlink subband, or the ending PRB of the downlink subband;
  • the second frequency domain resource information is used to indicate the length of the current active BWP minus the length of the frequency domain resource corresponding to the unavailable frequency domain resource of the target data, the start PRB of the active BWP, the end PRB of the active BWP, or
  • the PRB of the frequency domain resource corresponding to the start PRB of the unavailable frequency domain resource of the target data is the end PRB, or the PRB of the frequency domain resource corresponding to the end PRB of the unavailable frequency domain resource of the target data is the start PRB.
  • available frequency domain resources are frequency domain resources whose transmission direction is the same as the transmission direction of the target data, and unavailable frequency domain resources are frequency domain resources whose transmission direction is different from the transmission direction of the target data;
  • Available frequency domain resources are frequency domain resources whose transmission direction is not opposite to the transmission direction of the target data
  • unavailable frequency domain resources are frequency domain resources whose transmission direction is opposite to the transmission direction of the target data
  • the available frequency domain resources are frequency domain resources whose transmission direction is the same as the transmission direction of the target data.
  • the unavailable frequency domain resources are the transmission direction and the transmission of the target data. Frequency domain resources with different directions.
  • the available frequency domain resources are the transmission direction and the transmission direction of the target data. Frequency domain resources that are not opposite.
  • the unavailable frequency domain resources are frequency domain resources whose transmission direction is opposite to the transmission direction of the target data.
  • the third information includes at least one of the following:
  • the first time unit information is used to indicate a conflict-free time unit in the upstream direction of the target data
  • the second time unit information is used to indicate a conflict-free time unit in the downstream direction of the target data
  • the third time unit information is used to indicate the time unit on the uplink
  • the fourth time unit information is used to indicate the time unit on the downlink
  • the fifth time unit information is used to indicate the time unit on the uplink subband
  • the sixth time unit information is used to indicate the time unit on the downlink subband
  • the seventh time unit information is used to indicate that there is no time unit for subband full-duplex SBFD;
  • the eighth time unit information is used to indicate the time unit in which SBFD exists.
  • the time unit includes at least one time slot or at least one orthogonal frequency division multiplexing OFDM symbol.
  • the fourth information is determined by at least one of the following:
  • what is determined by the downlink control information DCI in the common search space may be: determined by the downlink control information DCI format 0_0, 0_1 in the common search control.
  • the fifth information includes at least one of the following:
  • the first type of information is used to indicate the single-slot transmission type
  • the second type of information is used to indicate the multi-slot transmission type.
  • the length of the reference frequency domain resource for target data transmission is the length of the reference frequency domain resource determined by the first type of information, the length of the reference frequency domain resource determined by the first type of information, and the length of the reference frequency domain resource determined by the first type of information.
  • the starting PRB is the starting PRB of the reference frequency domain resource determined by the first type of information
  • the ending PRB of the reference frequency domain resource is the ending PRB of the reference frequency domain resource determined by the first type of information.
  • the length of the reference frequency domain resource for target data transmission is the length of the reference frequency domain resource determined by the terminal based on the target time slot information
  • the length of the reference frequency domain resource The starting PRB of the resource is the starting PRB of the reference frequency domain resource determined by the terminal based on the target time slot information
  • the ending PRB of the reference frequency domain resource is the ending PRB of the reference frequency domain resource determined by the terminal based on the target time slot information
  • the target time slot information is the time slot in which the first nominal transmission of the multi-slot transmission type indicated by the second type of information is located; or it is the time slot in which the first actual transmission of the multi-slot transmission type is located.
  • the seventh information is configured and/or indicated by the network side device.
  • the network side device may configure and/or indicate frequency domain offsets for N target data transmissions for the terminal, where N is an integer greater than or equal to 1.
  • Step 202 The terminal determines the target transmission resource of the target data according to the target information.
  • the target transmission resource includes the target starting resource block PRB.
  • Embodiments of the present application provide a determination method.
  • the terminal obtains the target information of the target data to be transmitted.
  • the target information is information related to the target data transmission.
  • the target transmission resources of the target data are determined.
  • the target transmission resources include the target origin. Start resource block PRB. Since the terminal can obtain the target information related to the target data to be transmitted, the terminal can determine the target transmission resource for transmitting the target data based on the target information, that is, determine the target starting resource block PRB.
  • the terminal may transmit the target data according to the determined target transmission resource.
  • the target starting PRB includes: the reference starting PRB; the target information includes: first information and sixth information; the above step 202 can be specifically implemented through the following step 202a.
  • Step 202a The terminal determines the reference starting PRB based on the first information and the sixth information.
  • step 202a can be specifically implemented through the following step 202a1.
  • Step 202a1 The terminal determines the reference starting PRB according to the length of the reference frequency domain resource and the target allocation method.
  • the target allocation method is the allocation method corresponding to the allocation type indicated by the sixth information.
  • the terminal can determine the reference starting PRB and the actual PRB for target data transmission according to the length of the reference frequency domain resource and according to the target allocation method, that is, Type0 or Type1, and applying the frequency domain resource allocation method of Type0 or Type1. number, that is, N RB .
  • the target starting PRB includes: the actual starting PRB; the target information includes: first information, second information, and seventh information; the above step 202 can be specifically implemented through the following step 202b.
  • Step 202b The terminal determines the actual starting PRB based on the first information, the second information and the seventh information.
  • step 202b may be specifically implemented through the following step 202b1, step 202b2 or step 202b3.
  • Step 202b1 When the length of the reference frequency domain resource for target data transmission is greater than or equal to the actual frequency for target data transmission, The length of the domain resource and the reference starting PRB is greater than or equal to the end PRB of the actual frequency domain resource where the target data transmission is located, the terminal determines the starting point based on the difference between the reference starting PRB and the frequency domain offset of the target data transmission. PRB, or determine the starting PRB based on the starting PRB of the actual frequency domain resource where the target data transmission is located and the first information. The first information is modulo the length of the reference starting PRB and the reference frequency domain resource for the target data transmission. value.
  • Step 202b2 When the length of the reference frequency domain resource for target data transmission is greater than or equal to the length of the actual frequency domain resource for target data transmission, and the reference starting PRB is less than or equal to the end PRB of the actual frequency domain resource for target data transmission. , the terminal determines the starting PRB based on the sum of the reference starting PRB and the frequency domain offset of the target data transmission, or determines the starting PRB based on the starting PRB of the actual frequency domain resource where the target data transmission is located and the first information. Start PRB.
  • Step 202b3 When the length of the reference frequency domain resource for target data transmission is greater than or equal to the length of the actual frequency domain resource for target data transmission, and the reference starting PRB is less than or equal to the end PRB of the actual frequency domain resource for target data transmission, and is greater than or equal to the starting PRB of the actual frequency domain resource where the target data transmission is located, the terminal determines the starting PRB based on the reference starting PRB, or based on the starting PRB of the actual frequency domain resource where the target data transmission is located and the first information Determine the starting PRB.
  • the starting PRB occupied by the target data transmission reference is:
  • the actual starting PRB occupied by the transmission of target data is:
  • the nominal end PRB occupied by the transfer of target data is recorded as:
  • the actual end PRB occupied by the transmission of target data is recorded as:
  • N RB The actual number of PRBs occupied by the transmission of target data is recorded as: N RB ;
  • the N frequency domain offset information of the target data is recorded as:
  • the length information of the nominal frequency domain resource where the target data transmission is located is recorded as:
  • the size information of the actual frequency domain resource where the target data transmission is located is recorded as:
  • the starting PRB of the nominal frequency domain resource where the target data transmission is located is recorded as:
  • the end PRB of the nominal frequency domain resource where the target data transmission is located is recorded as:
  • the size information of the actual frequency domain resource where the target data transmission is located is recorded as:
  • the starting PRB of the actual frequency domain resource where the target data transmission is located is recorded as:
  • the end PRB of the actual frequency domain resource where the target data transmission is located is recorded as:
  • nominal including: nominal
  • reference including: reference
  • virtual including: virtual
  • actual including; actual
  • available including: available
  • the network side device configures the frequency domain resource allocation information (Frequency domain) for the target data or indicated in the DCI.
  • resource assignment, FDRA), OK The target data occupies 12 consecutive PRBs.
  • the terminal does not expect that the target data configured or scheduled by the network side device will have the above situation, or the terminal will give up the transmission or reception of the target data.
  • the determination method provided by the embodiment of the present application further includes the following step 202b4.
  • Step 202b4 When the length of the reference frequency domain resource for target data transmission is less than or equal to the length of the actual frequency domain resource for target data transmission, the terminal determines the difference between the reference start PRB and the frequency domain offset of the target data transmission. Determine the starting PPRB; or, the terminal determines the starting PPRB based on the sum of the reference starting PRB and the frequency domain offset of the target data transmission; or, based on the starting PRB of the actual frequency domain resource where the target data transmission is located Determine the starting PPRB with the first information.
  • the network side device configures the frequency domain resource allocation information (Frequency domain) for the target data or indicated in the DCI.
  • resource assignment, FDRA), OK The target data occupies 12 consecutive PRB.
  • the terminal does not expect that the target data configured or scheduled by the network side device will have the above situation, or the terminal will give up the transmission or reception of the target data.
  • the data transmitted in the example in step 202b1 and the example in step 202b2 may be single time slot transmission or multi-time slot transmission.
  • single-slot transmission that is, the data transmitted by slot #0 and slot #1 can be different TBs, and have their own high-level configuration or DCI scheduling.
  • Multi-slot transmission includes at least one of the following:
  • PUSCH repetition Type A (PUSCH repetition Type A), PUSCH repetition Type B (PUSCH repetition Type B).
  • the upper layer configures the parameter pusch-TimeDomainAllocationListForMultiPUSCH; for configured grant PUSCH, the upper layer configures the parameters cg-nrofSlots and cg-nrofPUSCH-InSlot.
  • the multi-slot transmission is to transmit the target data in 4 time slots.
  • the transmission of the target data in slot #0 is in the reference frequency domain resource transmission or called the physical frequency domain resource transmission. That is, the target data in slot #0 can be transmitted due to certain reasons. There is no transmission due to reasons specified by some protocols.
  • the transmission direction of the target data conflicts with the network indication, the configured transmission direction, or the measurement, transmission, reception, etc. of other data in the time domain and/or frequency domain resources.
  • the target data is not transmitted within the slot.
  • the transmission of target data on slot #1 is actual transmission, that is, the target data is transmitted on slot #1, and no target data/signal is discarded.
  • the length of the reference frequency domain resource for target data transmission is determined by the length determined by the target time slot information
  • the starting PRB of the reference frequency domain resource is determined by the target time slot information.
  • the end PRB of the reference frequency domain resource is determined by the target time slot information, where the target time slot information is the time slot where the first nominal transmission of the multi-slot transmission type indicated by the second type of information is located; or, multi-slot transmission The slot in which the first actual transmission of the type occurs.
  • the length of the reference frequency domain resource, the starting PRB of the reference frequency domain resource, and the ending PRB of the reference frequency domain resource for the target data in each time slot in multiple exercises are the length and starting PRB of the slot#0 uplink subband. and end PRB, i.e.
  • the length of the reference frequency domain resource for target data transmission is determined by the length determined by the target time slot information
  • the starting PRB of the reference frequency domain resource is determined by the target time slot information.
  • the end PRB of the reference frequency domain resource is determined by the target time slot information, where the target time slot information is the time slot where the first nominal transmission of the multi-slot transmission type indicated by the second type of information is located; or, multi-slot transmission The slot in which the first actual transmission of the type occurs.
  • the length of the reference frequency domain resource, the starting PRB of the reference frequency domain resource, and the ending PRB of the reference frequency domain resource of the target data in each time slot in multiple exercises are equal to the length and starting PRB of the uplink subband of slot #1 and end PRB, Right now
  • the determination method provided by the embodiment of the present application further includes the following step 301 or step 302.
  • Step 301 The terminal does not expect the first condition to be met.
  • Step 302 If the first condition is met, the terminal gives up the transmission of the target data.
  • the first condition is: the reference starting PRB is greater than or equal to the ending PRB of the actual frequency domain resource where the target data transmission is located, and the reference starting PRB is less than or equal to the ending PRB of the actual frequency domain resource where the target data transmission is located;
  • the reference starting PRB is greater than or equal to the starting PRB of the actual frequency domain resource where the target data transmission is located, and the reference starting PRB is less than or equal to the starting PRB of the actual frequency domain resource where the target data transmission is located.
  • the first condition is:
  • the determination method provided by the embodiment of the present application further includes step 401.
  • Step 401 When the transmission of target data enables frequency hopping transmission, the terminal determines the starting position information of each frequency hopping transmission.
  • the execution subject may be a determination device.
  • the embodiment of the present application takes the determination method executed by the determination device as an example to describe the determination device provided by the embodiment of the present application.
  • Figure 13 shows a possible structural diagram of a registration device for an Internet of Things device involved in the embodiment of this application.
  • the determination device 40 may include: an acquisition module 41 and a determination module 42;
  • the acquisition module 41 is used to acquire the target information of the target data to be transmitted, where the target information is information related to the target data transmission.
  • the determination module 42 is configured to determine the target transmission resource of the target data according to the target information, where the target transmission resource includes the target starting resource block PRB.
  • Embodiments of the present application provide a determining device.
  • the terminal obtains target information of the target data to be transmitted.
  • the target information is information related to the target data transmission.
  • the target transmission resources of the target data are determined.
  • the target transmission resources include the target origin. Start resource block PRB. Since the terminal can obtain the target information related to the target data to be transmitted, the terminal can determine the target transmission resource for transmitting the target data based on the target information, that is, determine the target starting resource block PRB.
  • the target information includes at least one of the following:
  • the first information is used to indicate the length of the reference frequency domain resource for target data transmission, the starting PRB of the reference frequency domain resource, or the ending PRB of the reference frequency domain resource;
  • the second information is used to indicate the length of the actual frequency domain resource for target data transmission, the starting PRB of the actual frequency domain resource, or the ending PRB of the actual frequency domain resource;
  • the third information is used to indicate the type of time unit for target data transmission
  • the fourth information is used to indicate the data type of the target data
  • the fifth information is used to indicate the transmission type of the target data
  • the sixth information is used to indicate the allocation type of frequency domain resources for target data transmission
  • the seventh information is used to indicate the frequency domain offset of target data transmission.
  • the target starting PRB includes: the reference starting PRB; the target information includes: first information and sixth information; the determination module 42 is specifically configured to determine the reference based on the first information and the sixth information. Start PRB.
  • the determination module 42 is specifically configured to determine the reference starting PRB according to the length of the reference frequency domain resource and the target allocation method, and the target allocation method is the allocation method corresponding to the allocation type indicated by the sixth information.
  • the target starting PRB includes: the actual starting PRB; the target information includes: first information, second information and seventh information; the determination module 42 is specifically used to determine according to the first information, the second information and the seventh information. message and seventh message, Determine the actual starting PRB.
  • the determination module 42 is specifically used to determine when the length of the reference frequency domain resource for the target data transmission is greater than or equal to the length of the actual frequency domain resource for the target data transmission, and the reference starting PRB is greater than or equal to the target.
  • the starting PRB is determined based on the difference between the reference starting PRB and the frequency domain offset of the target data transmission, or based on the actual frequency domain resource where the target data transmission is located.
  • the starting PRB and the first information determine the starting PRB, and the first information is a value modulo the length of the reference starting PRB and the reference frequency domain resource for target data transmission;
  • the determination module 42 is specifically used when the length of the reference frequency domain resource for target data transmission is greater than or equal to the length of the actual frequency domain resource for target data transmission, and the reference starting PRB is less than or equal to the actual frequency domain resource where the target data transmission is located.
  • the starting PRB is determined based on the sum of the reference starting PRB and the frequency domain offset of the target data transmission, or based on the starting PRB of the actual frequency domain resource where the target data transmission is located and the first PRB. The information determines the starting PRB;
  • the determination module 42 is specifically used when the length of the reference frequency domain resource for target data transmission is greater than or equal to the length of the actual frequency domain resource for target data transmission, and the reference starting PRB is less than or equal to the actual frequency domain resource where the target data transmission is located.
  • the starting PRB is determined based on the reference starting PRB, or based on the starting PRB of the actual frequency domain resource where the target data transmission is located.
  • the first information determines the starting PRB.
  • the determination module 42 is specifically configured to determine the reference starting PRB and The starting PRB is determined by the difference in the frequency domain offset of the target data transmission; or, the starting PRB is determined based on the sum of the reference starting PRB and the frequency domain offset of the target data transmission; or, the starting PRB is determined based on the target data The starting PRB of the actual frequency domain resource where the transmission is located and the first information determine the starting PRB.
  • the device further includes: a processing module. a processing module for not expecting the first condition to be met; or a processing module for giving up the transmission of the target data if the first condition is met;
  • the first condition is: the reference starting PRB is greater than or equal to the ending PRB of the actual frequency domain resource where the target data transmission is located, and the reference starting PRB is less than or equal to the ending PRB of the actual frequency domain resource where the target data transmission is located;
  • the reference starting PRB is greater than or equal to the starting PRB of the actual frequency domain resource where the target data transmission is located, and the reference starting PRB is less than or equal to the starting PRB of the actual frequency domain resource where the target data transmission is located.
  • the first information is determined by at least one of the following:
  • the first bandwidth part information is used to indicate the length of the current active uplink bandwidth part, the starting PRB of the active uplink bandwidth part, or the ending PRB of the active uplink bandwidth part;
  • the second bandwidth part information is used to indicate the length of the current active downlink bandwidth part, the starting PRB of the active downlink bandwidth part, or the ending PRB of the active downlink bandwidth part;
  • the third bandwidth part information is used to indicate the length of the initial uplink bandwidth part, the starting PRB of the initial uplink bandwidth part, or the ending PRB of the initial uplink bandwidth part;
  • the fourth bandwidth part information is used to indicate the length of the initial downlink bandwidth part, the starting PRB of the initial downlink bandwidth part, or the ending PRB of the initial downlink bandwidth part;
  • the information of the control resource set is used to indicate the frequency domain length of the control resource set, the frequency domain starting PRB of the control resource set, or the frequency domain ending PRB of the control resource set;
  • the first subband information is used to indicate the length of the uplink subband under the flexible duplex system, the starting PRB of the uplink subband under the flexible duplex system, or the end PRB of the uplink subband under the flexible duplex system;
  • the second subband information is used to indicate the length of the downlink subband under the flexible duplex system, the starting PRB of the downlink subband under the flexible duplex system, or the end PRB of the downlink subband under the flexible duplex system;
  • Network side device configuration or instructions configuration or instructions.
  • control resource set is a control resource set configured for the terminal by the terminal's serving cell, or a control resource set whose index is 0 for the terminal.
  • the second information is determined by at least one of the following:
  • the first frequency domain resource information is used to indicate the length of the available frequency domain resources of the target data, the starting PRB of the available frequency domain resources, or the ending PRB of the available frequency domain resources;
  • the third subband information is used to indicate the length of the uplink subband, the starting PRB of the uplink subband, or the ending PRB of the uplink subband;
  • the fourth subband information is used to indicate the length of the downlink subband, the starting PRB of the downlink subband, or the ending PRB of the downlink subband;
  • the second frequency domain resource information is used to indicate the length of the current active BWP minus the length of the frequency domain resource corresponding to the unavailable frequency domain resource of the target data, the start PRB of the active BWP, the end PRB of the active BWP, or
  • the PRB of the frequency domain resource corresponding to the start PRB of the unavailable frequency domain resource of the target data is the end PRB, or the PRB of the frequency domain resource corresponding to the end PRB of the unavailable frequency domain resource of the target data is the start PRB.
  • the available frequency domain resources are frequency domain resources whose transmission direction is the same as the transmission direction of the target data, and the unavailable frequency domain resources are frequency domain resources whose transmission direction is different from the transmission direction of the target data;
  • Available frequency domain resources are frequency domain resources whose transmission direction is not opposite to the transmission direction of the target data
  • unavailable frequency domain resources are frequency domain resources whose transmission direction is opposite to the transmission direction of the target data
  • the third information includes at least one of the following:
  • the first time unit information is used to indicate a conflict-free time unit in the upstream direction of the target data
  • the second time unit information is used to indicate a conflict-free time unit in the downstream direction of the target data
  • the third time unit information is used to indicate the time unit on the uplink
  • the fourth time unit information is used to indicate the time unit on the downlink
  • the fifth time unit information is used to indicate the time unit on the uplink subband
  • the sixth time unit information is used to indicate the time unit on the downlink subband
  • the seventh time unit information is used to indicate that there is no time unit for subband full-duplex SBFD;
  • the eighth time unit information is used to indicate the time unit in which SBFD exists.
  • the time unit includes at least one time slot or at least one orthogonal frequency division multiplexing OFDM symbol.
  • the fourth information is determined by at least one of the following:
  • the fifth information includes at least one of the following:
  • the first type of information is used to indicate the single-slot transmission type
  • the second type of information is used to indicate the multi-slot transmission type.
  • the length of the reference frequency domain resource for target data transmission is the length of the reference frequency domain resource determined by the first type of information, the starting point of the reference frequency domain resource, and the length of the reference frequency domain resource determined by the first type of information.
  • the starting PRB is the starting PRB of the reference frequency domain resource determined by the first type of information
  • the ending PRB of the reference frequency domain resource is the ending PRB of the reference frequency domain resource determined by the first type of information.
  • the length of the reference frequency domain resource for target data transmission is the length of the reference frequency domain resource determined by the terminal based on the target time slot information
  • the length of the reference frequency domain resource The start PRB is the starting PRB of the reference frequency domain resource determined by the terminal based on the target time slot information
  • the end PRB of the reference frequency domain resource is the end PRB of the reference frequency domain resource determined by the terminal based on the target time slot information
  • the target time slot information is the time slot in which the first nominal transmission of the multi-slot transmission type indicated by the second type of information is located; or it is the time slot in which the first actual transmission of the multi-slot transmission type is located.
  • the seventh information is configured and/or indicated by the network side device.
  • the determination module 42 is also configured to determine the starting position information of each frequency hopping transmission when the transmission of the target data enables frequency hopping transmission.
  • the determining device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the determination device provided by the embodiments of the present application can implement each process implemented by the method embodiments in Figures 1 to 13 and achieve the same technical effect. To avoid duplication, details will not be described here.
  • this embodiment of the present application also provides a communication device 800, which includes a processor 801 and a memory 802.
  • the memory 802 stores programs or instructions that can be run on the processor 801, for example.
  • the communication device 800 is a terminal, when the program or instruction is executed by the processor 801, each step of the above determination method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 800 is a network-side device, when the program or instruction is executed by the processor 801, each step of the above determination method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the details are not repeated here.
  • Embodiments of the present application also provide a terminal, including a processor and a communication interface.
  • the processor is configured to obtain target information of target data to be transmitted, where the target information is information related to target data transmission; and determine the target data based on the target information.
  • the target transmission resource includes the target starting resource block PRB.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 15 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 100 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109, a processor 110, etc. At least some parts.
  • the terminal 100 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 110 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 15 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 104 may include a graphics processing unit (Graphics Processing Unit, GPU) 1041 and a microphone 1042.
  • the graphics processor 1041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 106 may include a display panel 1061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 107 includes a touch panel 1071 and at least one of other input devices 1072 .
  • Touch panel 1071 is also called a touch screen.
  • the touch panel 1071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 1072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 101 after receiving downlink data from the network side device, the radio frequency unit 101 can transmit it to the processor 110 for processing; in addition, the radio frequency unit 101 can send uplink data to the network side device.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • Memory 109 may be used to store software programs or instructions as well as various data.
  • the memory 109 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 109 may include volatile memory or nonvolatile memory, or memory 109 may include both volatile and nonvolatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory
  • the processor 110 may include one or more processing units; optionally, the processor 110 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem The processor may not be integrated into the processor 110.
  • the processor 110 is configured to obtain target information of target data to be transmitted, where the target information is information related to target data transmission.
  • the processor 110 is configured to determine the target transmission resource of the target data according to the target information, where the target transmission resource includes the target starting resource block PRB.
  • Embodiments of the present application provide an electronic device.
  • the terminal obtains target information of target data to be transmitted.
  • the target information is information related to the target data transmission.
  • the target transmission resources of the target data are determined.
  • the target transmission resources include the target origin. Start resource block PRB. Since the terminal can obtain the target information related to the target data to be transmitted, the terminal can determine the target transmission resource for transmitting the target data based on the target information, that is, determine the target starting resource block PRB.
  • the target information includes at least one of the following:
  • the first information is used to indicate the length of the reference frequency domain resource for target data transmission, the starting PRB of the reference frequency domain resource, or the ending PRB of the reference frequency domain resource;
  • the second information is used to indicate the length of the actual frequency domain resource for target data transmission, the starting PRB of the actual frequency domain resource, or the ending PRB of the actual frequency domain resource;
  • the third information is used to indicate the type of time unit for target data transmission
  • the fourth information is used to indicate the data type of the target data
  • the fifth information is used to indicate the transmission type of the target data
  • the sixth information is used to indicate the allocation type of frequency domain resources for target data transmission
  • the seventh information is used to indicate the frequency domain offset of target data transmission.
  • the target starting PRB includes: a reference starting PRB; the target information includes: first information and sixth information; the processor 110 is specifically configured to determine based on the first information and the sixth information. Reference starting PRB.
  • the processor 110 is specifically configured to determine the reference starting PRB according to the length of the reference frequency domain resource and the target allocation method, and the target allocation method is the allocation method corresponding to the allocation type indicated by the sixth information. .
  • the target starting PRB includes: the actual starting PRB; the target information includes: first information, second information, and seventh information; the processor 110 is specifically configured to: The second information and the seventh information determine the actual starting PRB.
  • the processor 110 is specifically configured to operate when the length of the reference frequency domain resource for target data transmission is greater than or equal to the length of the actual frequency domain resource for target data transmission, and the reference starting PRB is greater than or equal to
  • the starting PRB is determined based on the difference between the reference starting PRB and the frequency domain offset of the target data transmission, or based on the actual frequency domain resource where the target data transmission is located.
  • the starting PRB and the first information determine the starting PRB, and the first information is a value modulo the length of the reference starting PRB and the reference frequency domain resource for target data transmission;
  • the processor 110 is specifically configured to operate when the length of the reference frequency domain resource for target data transmission is greater than or equal to the length of the actual frequency domain resource for target data transmission, and the reference starting PRB is less than or equal to the actual frequency domain resource where the target data transmission is located.
  • the starting PRB is determined based on the sum of the reference starting PRB and the frequency domain offset of the target data transmission, or based on the starting PRB of the actual frequency domain resource where the target data transmission is located and the first PRB. The information determines the starting PRB;
  • the processor 110 is specifically configured to operate when the length of the reference frequency domain resource for target data transmission is greater than or equal to the length of the actual frequency domain resource for target data transmission, and the reference starting PRB is less than or equal to the actual frequency domain resource where the target data transmission is located.
  • the starting PRB is determined based on the reference starting PRB, or based on the starting PRB of the actual frequency domain resource where the target data transmission is located.
  • the first information determines the starting PRB.
  • the processor 110 is specifically configured to start the PRB according to the reference when the length of the reference frequency domain resource for the target data transmission is less than or equal to the length of the actual frequency domain resource for the target data transmission.
  • the starting PRB is determined by the difference between the reference starting PRB and the frequency domain offset of the target data transmission; or, the starting PRB is determined based on the sum of the reference starting PRB and the frequency domain offset of the target data transmission; or, the starting PRB is determined based on the target The starting PRB of the actual frequency domain resource where the data is transmitted and the first information determine the starting PRB.
  • the device further includes: a processing module. a processing module for not expecting the first condition to be met; or a processing module for giving up the transmission of the target data if the first condition is met;
  • the first condition is: the reference starting PRB is greater than or equal to the structure of the actual frequency domain resource where the target data transmission is located. Bundle PRB, and the reference starting PRB is less than or equal to the ending PRB of the actual frequency domain resource where the target data transmission is located;
  • the reference starting PRB is greater than or equal to the starting PRB of the actual frequency domain resource where the target data transmission is located, and the reference starting PRB is less than or equal to the starting PRB of the actual frequency domain resource where the target data transmission is located.
  • the first information is determined by at least one of the following:
  • the first bandwidth part information is used to indicate the length of the current active uplink bandwidth part, the starting PRB of the active uplink bandwidth part, or the ending PRB of the active uplink bandwidth part;
  • the second bandwidth part information is used to indicate the length of the current active downlink bandwidth part, the starting PRB of the active downlink bandwidth part, or the ending PRB of the active downlink bandwidth part;
  • the third bandwidth part information is used to indicate the length of the initial uplink bandwidth part, the starting PRB of the initial uplink bandwidth part, or the ending PRB of the initial uplink bandwidth part;
  • the fourth bandwidth part information is used to indicate the length of the initial downlink bandwidth part, the starting PRB of the initial downlink bandwidth part, or the ending PRB of the initial downlink bandwidth part;
  • the information of the control resource set is used to indicate the frequency domain length of the control resource set, the frequency domain starting PRB of the control resource set, or the frequency domain ending PRB of the control resource set;
  • the first subband information is used to indicate the length of the uplink subband under the flexible duplex system, the starting PRB of the uplink subband under the flexible duplex system, or the end PRB of the uplink subband under the flexible duplex system;
  • the second subband information is used to indicate the length of the downlink subband under the flexible duplex system, the starting PRB of the downlink subband under the flexible duplex system, or the end PRB of the downlink subband under the flexible duplex system;
  • Network side device configuration or instructions configuration or instructions.
  • control resource set is a control resource set configured for the terminal by the terminal's serving cell, or a control resource set whose index is 0 for the terminal.
  • the second information is determined by at least one of the following:
  • the first frequency domain resource information is used to indicate the length of the available frequency domain resources of the target data, the starting PRB of the available frequency domain resources, or the ending PRB of the available frequency domain resources;
  • the third subband information is used to indicate the length of the uplink subband, the starting PRB of the uplink subband, or the ending PRB of the uplink subband;
  • the fourth subband information is used to indicate the length of the downlink subband, the starting PRB of the downlink subband, or the ending PRB of the downlink subband;
  • the second frequency domain resource information is used to indicate the length of the current active BWP minus the length of the frequency domain resource corresponding to the unavailable frequency domain resource of the target data, the start PRB of the active BWP, the end PRB of the active BWP, or
  • the PRB of the frequency domain resource corresponding to the start PRB of the unavailable frequency domain resource of the target data is the end PRB, or the PRB of the frequency domain resource corresponding to the end PRB of the unavailable frequency domain resource of the target data is the start PRB.
  • available frequency domain resources are frequency domain resources whose transmission direction is the same as the transmission direction of the target data, and unavailable frequency domain resources are frequency domain resources whose transmission direction is different from the transmission direction of the target data;
  • Available frequency domain resources are frequency domain resources whose transmission direction is not opposite to the transmission direction of the target data
  • unavailable frequency domain resources are frequency domain resources whose transmission direction is opposite to the transmission direction of the target data
  • the third information includes at least one of the following:
  • the first time unit information is used to indicate a conflict-free time unit in the upstream direction of the target data
  • the second time unit information is used to indicate a conflict-free time unit in the downstream direction of the target data
  • the third time unit information is used to indicate the time unit on the uplink
  • the fourth time unit information is used to indicate the time unit on the downlink
  • the fifth time unit information is used to indicate the time unit on the uplink subband
  • the sixth time unit information is used to indicate the time unit on the downlink subband
  • the seventh time unit information is used to indicate that there is no time unit for subband full-duplex SBFD;
  • the eighth time unit information is used to indicate the time unit in which SBFD exists.
  • the time unit includes at least one time slot or at least one orthogonal frequency division multiplexing OFDM symbol.
  • the fourth information is determined by at least one of the following:
  • the fifth information includes at least one of the following:
  • the first type of information is used to indicate the single-slot transmission type
  • the second type of information is used to indicate the multi-slot transmission type.
  • the length of the reference frequency domain resource for target data transmission is the length of the reference frequency domain resource determined by the first type of information, the length of the reference frequency domain resource determined by the first type of information, and the length of the reference frequency domain resource determined by the first type of information.
  • the starting PRB is the starting PRB of the reference frequency domain resource determined by the first type of information
  • the ending PRB of the reference frequency domain resource is the ending PRB of the reference frequency domain resource determined by the first type of information.
  • the length of the reference frequency domain resource for target data transmission is the length of the reference frequency domain resource determined by the terminal based on the target time slot information
  • the length of the reference frequency domain resource The starting PRB of the resource is the starting PRB of the reference frequency domain resource determined by the terminal based on the target time slot information
  • the ending PRB of the reference frequency domain resource is the ending PRB of the reference frequency domain resource determined by the terminal based on the target time slot information
  • the target time slot information is the time slot in which the first nominal transmission of the multi-slot transmission type indicated by the second type of information is located; or it is the time slot in which the first actual transmission of the multi-slot transmission type is located.
  • the seventh information is configured and/or indicated by the network side device.
  • the processor 110 is also configured to determine the starting position information of each frequency hopping transmission when the transmission of target data enables frequency hopping transmission.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above determination method embodiment is implemented and the same can be achieved. To avoid repetition, the technical effects will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement each of the above determination method embodiments. The process can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above determination method embodiment.
  • Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种确定方法及终端,属于通信领域,本申请实施例的确定方法包括:终端获取待传输的目标数据的目标信息,目标信息为与目标数据传输相关的信息;根据目标信息,确定目标数据的目标传输资源,目标传输资源包括目标起始资源块PRB。

Description

确定方法及终端
相关申请的交叉引用
本申请主张在2022年07月25日在中国提交的申请号为202210879046.X的中国专利的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种确定方法及终端。
背景技术
目前,在传统的时分双工(Time Division Duplexing,TDD)制式和频分双工(Frequency Division Duplexing,FDD)制式下,在同一个带宽部分(BandWidth Part,BWP)对称的频谱上,其不同时刻/时间单元里的上行资源和下行资源的频域位置,大小是相同的。
而灵活/全双工(flexible/full duplex)制式支持在BWP非对称的频谱上,同一时刻/时间单元的BWP上,可以既存在下行资源又存在上行资源,而在不同的时刻/时间单元上,同一个BWP中的下行资源和上行资源在频域上的位置(即起始的物理资源块(Physical Resource Block,PPRB),结束的物理资源块)和大小,即其所占用物理资源块的数目可以相同,也可以不相同。如此,在灵活/全双工制式下,可能使得UE无法确定其每个时刻/时间单元上传输数据/信号所占用的起始PPRB具体为哪个PPRB。因此,亟需一种方法使得终端可以确定其在每个时间单元上传输数据/信号所占用的起始PPRB。
发明内容
本申请实施例提供一种确定方法及终端,能够使得终端确定其在每个时间单元上传输数据/信号所占用的起始PRB。
第一方面,提供了一种确定方法,应用于终端,该方法包括:终端获取待传输的目标数据的目标信息,目标信息为与目标数据传输相关的信息;根据目标信息,确定目标数据的目标传输资源,目标传输资源包括目标起始资源块PRB。
第二方面,提供了一种确定装置,该装置包括:获取模块和确定模块;获取模块,用于获取待传输的目标数据的目标信息,目标信息为与目标数据传输相关的信息。确定模块,用于根据目标信息,确定目标数据的目标传输资源,目标传输资源包括目标起始资源块PRB。
第三方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于获取待传输的目标数据的目标信息,目标信息为与目标数据传输相关的信息,并根据目标信息,确定目标数据的目标传输资源,目标传输资源包括目标起始资源块PRB。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的确定方法的步骤。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的确定方法的步骤。
在本申请实施例中,终端获取待传输的目标数据的目标信息,目标信息为与目标数据传输相关的信息;根据目标信息,确定目标数据的目标传输资源,目标传输资源包括目标 起始资源块PRB。由于终端可以获取与待传输的目标数据相关的的目标信息,从而终端可以根据目标信息,确定用于传输目标数据的目标传输资源,即可以确定目标起始资源块PRB。
附图说明
图1是本申请实施例提供的一种无线通信系统的架构示意图;
图2是本申请实施例提供的一种确定方法的示意图之一;
图3是本申请实施例提供的一种确定方法的示意图之二;
图4是本申请实施例提供的一种确定方法的示意图之三;
图5是本申请实施例提供的一种确定方法的示意图之四;
图6是本申请实施例提供的一种确定方法的示意图之五;
图7是本申请实施例提供的一种确定方法的示意图之六;
图8是本申请实施例提供的一种确定方法的示意图之七;
图9是本申请实施例提供的一种确定方法的示意图之八;
图10是本申请实施例提供的一种确定方法的示意图之九;
图11是本申请实施例提供的一种确定方法的示意图之十;
图12是本申请实施例提供的一种确定方法的示意图之十一;
图13是本申请实施例提供的一种确定装置示意图;
图14是本申请实施例提供的一种通信设备的硬件结构示意图;
图15是本申请实施例提供的一种终端的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设 备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的确定方法进行详细地说明。
下面对本申请实施例提供的确定方法、装置、终端及存储介质中涉及的一些概念和/或术语做一下解释说明。
目前,网络部署的频谱制式是固定的,主要有以下两种:
时分双工(Time Division Duplexing,TDD)
收发共用一个射频频点,上行链路、下行链路使用不同的时隙来进行通信。
频分双工(Frequency Division Duplexing,FDD)
收发使用不同的射频频点来进行通信。
上述两种制式各有优缺点。因为TDD系统的上下行由时间区别,不必要求带宽对称的频段,因此TDD可以使用零碎的频段,适合明显上下行不对称业务。但是不利于于时延敏感业务,且由于TDD发射时间只有FDD的大约一半,因此覆盖或吞吐量受限;而FDD系统在支持非对称业务时,频谱利用率将大大降低。因此,未来的移动通信对频谱的使用要求更加灵活。其中,网络侧的灵活/全双工(flexible/full duplex)以及用户/终端侧的半双工操作被认为是比较有潜力的技术,可以提高频谱使用率,提高上行覆盖以及降低时延敏感业务的延迟。
Rel-18网络侧灵活/全双工以及用户/终端侧半双工操作的特点
图2示出了一种FDD的对称频谱示意图,如图2所示,对于FDD的对称频谱,FDD的上行或下行频谱在某些时隙/符号上可以半静态地配置或动态地指示为下行或上行传输。
图3示出了一种TDD的非对称频谱示意图,如图3所示,对于TDD的非对称频谱,TDD某些时隙/符号上的不同频域资源可以半静态地配置或动态地指示为既有上行传输又有下行接收。
图4和图5示出了一种半双工的终端的频谱示意图,如图4和图5所示,对于半双工的终端,在同一时刻只能进行上行发送或者下行接收,即在同一时刻终端不能既接收又发送信号,其分别对应网络侧的图2和图3。如图5所示,对于UE#1,时间单元1,2,3,4,7里下行资源的频域位置,大小各不相同;对于UE#2,时间单元1,2,3,4,7里上行资 源的频域位置,大小各不相同。而传统的TDD,FDD制式下,在同一个带宽部分(BandWidth Part,简称BWP)上,不同时刻/时间单元里的下行资源和上行资源的频域位置,大小是相同的。
数据信道频域资源分配
新空口(New Radio,NR)网络部署在TDD,FDD制式下频域资源分配有三种类型,分别是:Type0、Type1或Dynamic Switch。
其中,Type0用于指示:Bitmap分配方式支持连续和非连续的资源分配;
Type1用于指示:RIV分配方式,只支持连续的资源分配;
Dynamic Switch用于指示:由数字版权唯一标识符(Digital Copyright Identifier,DCI)字段决定使用Type0还是Type1。
Type0
将多个连续的PRB捆绑到PRBG中,并且仅以PRBG的倍数分配物理下行共享信道(Physical Downlink Shared Channel,PDSCH)/物理上行共享信道(Physical Uplink Shared Channel,PDSCH)。PRBs中的PRB数量取决于BWP的大小和配置,如TS38.214中的表Table 5.1.2.2.1-1(即表1)所示。配置类型即Configuration 1或者Configuration 2由RRC消息中PDSCH-Config中的PRBg-size字段确定。在DCI中的位图bitmap指示携带PDSCH或PUSCH数据的PRBG编号。因为由位图指示,PRBG索引和位图中的bit索引一一对应,bit取值为1,代表对应的PRBG分配给了该数据传输;bit取值为0,代表对应的PRBG没有分配给该数据的传输。所以分配给数据传输的PRBG可以是连续的,也可以是非连续的。该数据传输的起始PRB,记作PRB_start是该位图中bit值为1所对应的最小的PRBG索引中的第一个PRB。
表1
Type1:
Type1的资源被分配给一个或多个连续的PRB。资源分配区域由两个参数:数据传输的起始PRB,即PRB_Start和BWP的大小即BWP内连续PRB数定义。当在DCI中指定资源分配时,PRB_Start和BWP内连续PRB的数量被组合成一个特定的单一值,称为RIV(Resource Indicator Value)。RIV按第一公式计算(TS 38.214),以下行为例(上行也是一样的方法)。
其中,第一公式为:
A downlink type 1resource allocation field consists of a resource indication value(RIV)corresponding to a starting virtual resource block(RBstart)and a length in terms of contiguously allocated resource blocks LRBs.The resource indication value is defined by
在TDD,FDD制式下,无论Type0,Type1的频域资源分配方式,终端根据BWP的大小确定数据传输或接收的PRB_start。而对于一个BWP,其包含的下行或上行PRB的数目在不同的时间单元内是不变的。
数据传输跳频方式
时隙内跳频(intra-slot Frequency Hopping,FH)
时隙内跳频是指跳频发生在每个slot内,其适用于单时隙和多时隙的PUSCH传输(高层配置的如PUSCH with configured grant或动态调度的如PUSCH scheduled by DCI),其中,多时隙PUSCH包括:
PUSCH的重复传输类型A(PUSCH repetition Type A)、
多个时隙上的TB处理(TB processing over multiple slots)、
多个PUSCH的传输,该多个PUSCH携带不同的TB在不同的时隙上传输,对于动态调度的PUSCH,高层配置了参数pusch-TimeDomainAllocationListForMultiPUSCH;对于configured grant PUSCH,高层配置了参数cg-nrofSlots和cg-nrofPUSCH-InSlot。
In case of intra-slot frequency hopping,the starting PRB in each hop is given by:
where i=0 and i=1 are the first hop and the second hop respectively,and RBstart is the starting PRB within the UL BWP,as calculated from the resource block assignment information of resource allocation type 1(described in Clause 6.1.2.2.2)or as calculated from the resource assignment for MsgA PUSCH(described in[6,TS 38.213])and RBoffset is the frequency offset in PRBs between the two frequency hops.The number of symbols in the first hop is given bythe number of symbols in the second hop is given bywhereis the length of the PUSCH transmission in OFDM symbols in one slot.
没有使能的时隙间跳频(PUSCH-DMRS-Bundling(inter-slot FH))。
没有使能的时隙间跳频是指跳频发生在每两个slot间,其适用于多时隙PUSCH传输(高层配置的如PUSCH with configured grant或动态调度的如PUSCH scheduled by DCI),其中,多时隙PUSCH包括:
PUSCH的重复传输类型A(PUSCH repetition Type A),PUSCH的重复传输类型B(PUSCH repetition Type B)
多个时隙上的TB处理(TB processing over multiple slots);
多个PUSCH的传输,该多个PUSCH携带不同的TB在不同的时隙上传输;
对于动态调度的PUSCH,高层配置了参数pusch-TimeDomainAllocationListForMultiPUSCH;对于configured grant PUSCH,高层配置了参数cg-nrofSlots和cg-nrofPUSCH-InSlot。
multi-slot PUSCH transmission
In case of inter-slot frequency hopping,the starting PRB during slotis given by:
whereis the current slot number within a radio frame,where a multi-slot PUSCH transmission can take place,RBstart is the starting PRB within the UL BWP,as calculated from the resource block assignment information of resource allocation type 1(described in Clause 6.1.2.2.2)and RBoffset is the frequency offset in PRBs between the two frequency hops.
图6是本申请实施例提供的一种没有使能的时隙间跳频的B类型的传输示意图,如图6所示,Slot编号从0开始:
表明在编号为偶数的slot上传输的上行数据/控制信息/信号,其频域位置相同,起始位置由网络配置/指示;称为第一跳,first hop;
表明在编号为奇数的slot上传输的上行数据/控制信息/信号,其频域位置相同,起始位置由网络配置/指示+频偏(PRB offset);称为第二跳,second hop;
PUSCH-DMRS-Bundling使能后的时隙间跳频(inter-slot FH)
使能后的时隙间跳频用于指示跳频发生在每两个跳频间隔(N_FH)之间,其适用于多 时隙PUSCH传输(高层配置的如PUSCH with configured grant或动态调度的如PUSCH scheduled by DCI),其中,多时隙PUSCH包括:
PUSCH的重复传输类型A(PUSCH repetition Type A),PUSCH的重复传输类型B(PUSCH repetition Type B);
多个时隙上的TB处理(TB processing over multiple slots);
多个PUSCH的传输,该多个PUSCH携带不同的TB在不同的时隙上传输;对于动态调度的PUSCH,高层配置了参数pusch-TimeDomainAllocationListForMultiPUSCH;对于configured grant PUSCH,高层配置了参数cg-nrofSlots和cg-nrofPUSCH-InSlot。
multi-slot PUSCH transmission
In case of inter-slot frequency hopping and when PUSCH-DMRS-Bundling is enabled,and when a PUSCH is not scheduled by RAR UL grant or DCI format 0_0with CRC scrambled by TC-RNTI,the starting RB during slotis given by:
whereis the current slot number within a system radio frame,nf is the number of the system radio frame containing the current slot,is the number of slots per frame for subcarrier spacing configurationμof the UL BWP that the PUSCH is transmitted on,NFH is the value of the higher layer parameter PUSCH-Frequencyhopping-Interval,RBstart is the starting PRB within the UL BWP,as calculated from the resource block assignment information of resource allocation type 1(described in Clause 6.1.2.2.2)and RBoffset is the frequency offset in RBs between the two frequency hops.
重复传输间的跳频机制(Inter-repetition FH)
重复传输间的跳频机制用于指示跳频发生在每两个名义重复传输间,其中
重复传输间的FH只适用于PUSCH repetition Type B。
In case of inter-repetition frequency hopping,the starting PRB for an actual repetition within the n-th nominal repetition(as defined in Clause 6.1.2.1)is given by:
where PRBstart is the starting PRB within the UL BWP,as calculated from the resource block assignment information of resource allocation type 1(described in Clause 6.1.2.2.2)and PRBoffset is the frequency offset in PRBs between the two frequency hops。
图7是本申请实施例提供的一种使能后的时隙间跳频B类型的传输示意图,如图7所示,
Repetition编号从0开始,
n mod 2=0,表明在编号为偶数的repetition上传输的上行数据/控制信息/信号,其频域位置相同,起始位置由网络配置/指示;称为第一跳,first hop;
n mod 2=1,表明在编号为奇数的repetition上传输的上行数据/控制信息/信号,其频域位置相同,起始位置由网络配置/指示+频偏(PRB offset);称为第二跳,second hop;
目前,灵活/全双工网络支持在非对称的频谱上,同一时刻/时间单元可以既存在下行资源又存在上行资源,而在不同的时刻/时间单元上,下行资源和上行资源在频域上的位置(即起始的物理资源块,结束的物理资源块)和大小即其所占用PPRB的数目可以不相同。因此需要一种方法使得终端可以决定其传输的上行数据/信号或者接收的下行数据/信号的起始PPRB。
本申请实施例提供一种确定方法,图8示出了本申请实施例提供的一种确定方法的流 程图。如图8所示,本申请实施例提供的确定方法可以包括下述的步骤201和步骤202。
步骤201、终端获取待传输的目标数据的目标信息。
其中,目标信息为与目标数据传输相关的信息。
可选地,本申请实施例中,目标信息包括以下至少之一:
第一信息,用于指示目标数据传输的参考频域资源的长度、参考频域资源的起始PRB或参考频域资源的结束PRB;
第二信息,用于指示目标数据传输的实际频域资源的长度、实际频域资源的起始PRB或实际频域资源的结束PRB;
第三信息,用于指示目标数据传输的时间单元的类型;
第四信息,用于指示目标数据的数据类型;
第五信息,用于指示目标数据的传输类型;
第六信息,用于指示目标数据传输的频域资源的分配类型;
第七信息,用于指示目标数据传输的频域偏移量。
可选地,本申请实施例中,第一信息由以下至少之一确定:
第一带宽部分信息,用于指示当前的活跃上行带宽部分的长度、活跃上行带宽部分的起始PRB或活跃上行带宽部分的结束PRB;
第二带宽部分信息,用于指示当前的活跃下行带宽部分的长度、活跃下行带宽部分的起始PRB或活跃下行带宽部分的结束PRB;
第三带宽部分信息,用于指示初始上行带宽部分的长度、初始上行带宽部分的起始PRB或初始上行带宽部分的结束PRB;
第四带宽部分信息,用于指示初始下行带宽部分的长度、初始下行带宽部分的起始PRB或初始下行带宽部分的结束PRB;
控制资源集合的信息,用于指示控制资源集合的频域长度、控制资源集合的频域起始PRB或控制资源集合的频域结束PRB;
第一子带信息,用于指示灵活双工制式下的上行子带的长度、灵活双工制式下的上行子带的起始PRB或灵活双工制式下的上行子带的结束PRB;
第二子带信息,用于指示灵活双工制式下的下行子带的长度、灵活双工制式下的下行子带的起始PRB或灵活双工制式下的下行子带的结束PRB;
网络侧设备配置和/或指示的。
可选地,本申请实施例中,网络侧设备配置或指示的可以理解为网络侧设备配置和/或指示频域资源的长度、频域资源的起始PRB或频域资源的结束PRB。
可选地,本申请实施例中,网络侧设备可以直接配置或指示一个频域资源的长度、频域资源的起始PRB或频域资源的结束PRB。
可选地,本申请实施例中,网络侧设备可以配置多个频域资源的长度、频域资源的起始PRB或频域资源的结束PRB,进一步的,,网络侧设备可以在配置的多个频域资源的长度、频域资源的起始PRB或频域资源的结束PRB中指示其中的一个频域资源的长度、频域资源的起始PRB或频域资源的结束PRB。
可选地,本申请实施例中,网络侧设备可以配置和/或指示参考频域资源的信息。
示例性地,网络侧设备可以配置和/或指示参考频域资源的长度为当前的活跃上行带宽部分的长度,参考频域资源的起始PRB为当前的活跃上行带宽部分的起始PRB,参考频域资源的结束PRB为当前的活跃上行带宽部分的结束PRB。
示例性地,网络侧设备可以配置和/或指示参考频域资源的长度为当前的活跃下行带宽部分的长度,参考频域资源的起始PRB为当前的活跃下行带宽部分的起始PRB,参考频域资源的结束PRB为当前的活跃下行带宽部分的结束PRB。
示例性地,网络侧设备可以配置和/或指示参考频域资源的长度为初始上行带宽部分的长度,参考频域资源的起始PRB为初始上行带宽部分的起始PRB,参考频域资源的结束PRB为初始上行带宽部分的结束PRB。
示例性地,网络侧设备可以配置和/或指示参考频域资源的长度为初始下行带宽部分的长度,参考频域资源的起始PRB为初始下行带宽部分的起始PRB,参考频域资源的结束PRB 为初始下行带宽部分的结束PRB。
示例性地,网络侧设备可以配置和/或指示参考频域资源的长度为灵活双工制式下的上行子带的长度,参考频域资源的起始PRB为灵活双工制式下的上行子带的起始PRB,参考频域资源的结束PRB为灵活双工制式下的上行子带的结束PRB。
示例性地,网络侧设备可以配置和/或指示参考频域资源的长度为灵活双工制式下的下行子带的长度,参考频域资源的起始PRB为灵活双工制式下的下行子带的起始PRB,参考频域资源的结束PRB为灵活双工制式下的下行子带的结束PRB。
可选地,本申请实施例中,控制资源集合为终端的服务小区为终端配置的控制资源集合,或者为终端的索引为0的控制资源集合。
可选地,本申请实施例中,若终端当前服务小区配置了控制资源集合(即CORESET0),则终端使用CORESET0所占用的频域资源的长度、CORESET0所占用的频域资源的起始PRB和CORESET0所占用的频域资源的结束PRB,否则使用初始下行带宽部分的长度、所述初始下行带宽部分的起始PRB或所述初始下行带宽部分的结束PRB。
可选地,本申请实施例中,第二信息由以下至少之一确定:
第一频域资源信息,用于指示目标数据的可用频域资源的长度、可用频域资源的起始PRB或可用频域资源的结束PRB;
第三子带信息,用于指示上行子带的长度、上行子带的起始PRB或上行子带的结束PRB;
第四子带信息,用于指示下行子带的长度、下行子带的起始PRB或下行子带的结束PRB;
第二频域资源信息,用于指示当前的活跃BWP的长度减去目标数据的不可用频域资源对应的频域资源的长度后的长度、活跃BWP的起始PRB,活跃BWP的结束PRB或目标数据的不可用频域资源的起始PRB对应的频域资源的PRB为结束PRB、或目标数据的不可用频域资源的结束PRB对应的频域资源的PRB为起始PRB。
可选地,本申请实施例中,可用频域资源为传输方向与目标数据的传输方向相同的频域资源,不可用频域资源为传输方向与目标数据的传输方向不相同的频域资源;
或者,
可用频域资源为传输方向与目标数据的传输方向不相反的频域资源,不可用频域资源为传输方向与目标数据的传输方向相反的频域资源。
示例性地,若可用频域资源的传输方向为上行传输、目标数据的传输方向为上行传输,则可用频域资源为传输方向与目标数据的传输方向相同的频域资源。
示例性地,若可用频域资源的传输方向为上行传输或灵活方向或保护间隔(guard ubband)传输、目标数据的传输方向为上行传输,则不可用频域资源为传输方向与目标数据的传输方向不相同的频域资源。
示例性地,若可用频域资源的传输方向为下行传输或灵活方向或保护间隔(guard ubband)传输、目标数据的传输方向为上行传输,则可用频域资源为传输方向与目标数据的传输方向不相反的频域资源。
示例性地,若可用频域资源的传输方向为下行传输、目标数据的传输方向为上行传输,则不可用频域资源为传输方向与目标数据的传输方向相反的频域资源。
可选地,本申请实施例中,第三信息包括以下至少之一:
第一时间单元信息,用于指示目标数据的上行方向上无冲突的时间单元;
第二时间单元信息,用于指示目标数据的下行方向上无冲突的时间单元;
第三时间单元信息,用于指示上行链路上的时间单元;
第四时间单元信息,用于指示下行链路上的时间单元;
第五时间单元信息,用于指示上行链路子带上的时间单元;
第六时间单元信息,用于指示下行链路子带上的时间单元;
第七时间单元信息,用于指示不存在子带全双工SBFD的时间单元;
第八时间单元信息,用于指示存在SBFD的时间单元。
可选地,本申请实施例中,时间单元包括至少一个时隙或至少一个正交频分复用OFDM 符号。
可选地,本申请实施例中,第四信息由以下至少之一确定:
通过公共搜索空间中的下行控制信息DCI确定的;
通过专用搜索空间中的DCI确定的;
通过网络侧设备配置的。
示例性地,通过公共搜索空间中的下行控制信息DCI确定的可以为:由公共搜索控件中的下行控制信息DCI格式0_0,0_1确定的。
可选地,本申请实施例中,第五信息包括以下至少之一:
第一类型信息,用于指示单时隙传输类型;
第二类型信息,用于指示多时隙传输类型。
可选地,本申请实施例中,当第五信息包括第一类型信息时,目标数据传输的参考频域资源的长度为第一类型信息确定的参考频域资源的长度、参考频域资源的起始PRB为第一类型信息确定的参考频域资源的起始PRB、参考频域资源的结束PRB为第一类型信息确定的参考频域资源的结束PRB。
可选地,本申请实施例中,当第五信息包括第二类型信息时,目标数据传输的参考频域资源的长度为终端基于目标时隙信息确定的参考频域资源的长度、参考频域资源的起始PRB为终端基于目标时隙信息确定的参考频域资源的起始PRB、参考频域资源的结束PRB为终端基于目标时隙信息确定的参考频域资源的结束PRB;
其中,目标时隙信息,为第二类型信息指示的多时隙传输类型的第一个名义传输所在的时隙;或者为,多时隙传输类型的第一个实际传输所在的时隙。
可选地,本申请实施例中,第七信息为网络侧设备配置和/或指示的。
可选地,本申请实施例中,网络侧设备可以为终端配置和/或指示N个目标数据传输的频域偏移量,其中,N为大于或等于1的整数。
步骤202、终端根据目标信息,确定目标数据的目标传输资源。
本申请实施例中,目标传输资源包括目标起始资源块PRB。
本申请实施例提供一种确定方法,终端获取待传输的目标数据的目标信息,目标信息为与目标数据传输相关的信息;根据目标信息,确定目标数据的目标传输资源,目标传输资源包括目标起始资源块PRB。由于终端可以获取与待传输的目标数据相关的目标信息,从而终端可以根据目标信息,确定用于传输目标数据的目标传输资源,即可以确定目标起始资源块PRB。
可选地,本申请实施例中,终端在根据目标信息,确定目标数据的目标传输资源之后,终端可以根据确定的目标传输资源对目标数据进行传输。
可选地,本申请实施例中,目标起始PRB包括:参考起始PRB;目标信息包括:第一信息和第六信息;上述步骤202具体可以通过下述的步骤202a实现。
步骤202a、终端根据第一信息和第六信息,确定参考起始PRB。
可选地,本申请实施例中,上述步骤202a具体可以通过下述的步骤202a1实现。
步骤202a1、终端根据参考频域资源的长度和目标分配方式,确定参考起始PRB,目标分配方式为第六信息指示的分配类型对应的分配方式。
示例性地,终端可以根据参考频域资源的长度,并根据目标分配方式,即Type0或Type1,并应用Type0或Type1的频域资源分配方式,确定参考起始PRB,以及目标数据传输的实际PRB数目,即NRB
其中,
可选地,本申请实施例中,目标起始PRB包括:实际起始PRB;目标信息包括:第一信息、第二信息和第七信息;上述步骤202具体可以通过下述的步骤202b实现。
步骤202b、终端根据第一信息、第二信息和第七信息,确定实际起始PRB。
可选地,本申请实施例中,上述步骤202b具体可以通过下述的步骤202b1、步骤202b2或步骤202b3实现。
步骤202b1、在目标数据传输的参考频域资源的长度大于或等于目标数据传输的实际频 域资源的长度、且参考起始PRB大于或等于目标数据传输所在的实际频域资源的结束PRB情况下,终端根据参考起始PRB和目标数据传输的频域偏移量的差值确定起始PRB,或是根据目标数据传输所在的实际频域资源的起始PRB与第一信息确定起始PRB,第一信息为对参考起始PRB与目标数据传输的参考频域资源的长度取模的值。
可选地,本申请实施例中,
的情况下,或者
步骤202b2、在目标数据传输的参考频域资源的长度大于或等于目标数据传输的实际频域资源的长度、且参考起始PRB小于或等于目标数据传输所在的实际频域资源的结束PRB情况下,终端根据对参考起始PRB和目标数据传输的频域偏移量的取和的值确定起始PRB,或是根据目标数据传输所在的实际频域资源的起始PRB与第一信息确定起始PRB。
可选地,本申请实施例中,
的情况下,或者
步骤202b3、在目标数据传输的参考频域资源的长度大于或等于目标数据传输的实际频域资源的长度、且参考起始PRB小于或等于目标数据传输所在的实际频域资源的结束PRB、大于或等于目标数据传输所在的实际频域资源的起始PRB的情况下,终端根据参考起始PRB确定起始PRB,或是根据目标数据传输所在的实际频域资源的起始PRB与第一信息确定起始PRB。
可选地,本申请实施例中,
的情况下,或者
其中,
目标数据的传输占用参考的起始PRB为:
目标数据的传输占用的实际起始PRB为:
目标数据的传输占用的名义结束PRB记为:
目标数据的传输占用的实际结束PRB记为:
目标数据的传输占用的实际PRB的数目记为:NRB
目标数据的N个频域偏移信息记为:
目标数据传输所在的名义频域资源的长度信息记为:
目标数据传输所在的实际频域资源的尺寸信息记为:
目标数据传输所在的名义频域资源的起始PRB记为:
目标数据传输所在的名义频域资源的结束PRB记为:
目标数据传输所在的实际频域资源的尺寸信息记为:
目标数据传输所在的实际频域资源的起始PRB记为:
目标数据传输所在的实际频域资源的结束PRB记为:
需要说明的是,本申请实施例中:名义(包括:名义上的)、参考(包括:参考的)或虚拟(包括:虚拟上的)所表达的意思相同,其用法可以互换。本申请实施例中:实际(包括;实际的)或可用(包括:可用的)所表达的意思相同,其用法可以互换。
示例性地,如图9所示,
则:
slot#0:
slot#1:
slot#2:
根据目标数据传输的参考频域资源的长度、参考频域资源的起始PRB或参考频域资源的结束PRB,网络侧设备为目标数据配置的或DCI里指示的频域资源分配信息(Frequency domain resource assignment,FDRA),确定目标数据占用了12个连续的PRB。
slot#0:
或者,
slot#1:
slot#2:
终端不期望网络侧设备配置或调度的目标数据出现上述情况,或者终端放弃目标数据的传输或者接收。
可选地,本申请实施例中,本申请实施例提供的确定方法还包括下述的步骤202b4。
步骤202b4、在目标数据传输的参考频域资源的长度小于或等于目标数据传输的实际频域资源的长度的情况下,终端根据参考起始PRB和目标数据传输的频域偏移量的差值确定起始PPRB;或者,终端根据对参考起始PRB和目标数据传输的频域偏移量的取和的值确定起始PPRB;或者,根据目标数据传输所在的实际频域资源的起始PRB与第一信息确定起始PPRB。
的情况下,
或者,
或者,
示例性地,如图10所示,
若:若
则:
slot#0:
slot#1:
slot#2:
根据目标数据传输的参考频域资源的长度、参考频域资源的起始PRB或参考频域资源的结束PRB,网络侧设备为目标数据配置的或DCI里指示的频域资源分配信息(Frequency domain resource assignment,FDRA),确定目标数据占用了12个连续的 PRB。
则:
slot#0:
slot#1:
或者,
slot#2:
终端不期望网络侧设备配置或调度的目标数据出现上述情况,或者终端放弃目标数据的传输或者接收。
需要说明的是,上述步骤202b1中的示例与步骤202b2中的示例所传输的数据可以为单时隙传输或者是多时隙传输。
其中,单时隙传输,即slot#0和slot#1传输的数据可以为不同的TB,且有各自的高层配置或DCI调度的。
多时隙传输包括以下至少之一:
PUSCH的重复传输类型A(PUSCH repetition Type A),PUSCH的重复传输类型B(PUSCH repetition Type B)。
多个时隙上的TB处理(TB processing over multiple slots)
多个PUSCH的传输,该多个PUSCH携带不同的TB在不同的时隙上传输。
对于动态调度的PUSCH,高层配置了参数pusch-TimeDomainAllocationListForMultiPUSCH;对于configured grant PUSCH,高层配置了参数cg-nrofSlots和cg-nrofPUSCH-InSlot。
示例性地,对于多时隙传输,若目标数据传输的参考频域资源的长度由灵活双工制式下的上行子带的长度确定,参考频域资源的起始PRB由灵活双工制式下的上行子带的起始PRB确定,参考频域资源的结束PRB由灵活双工制式下的上行子带的结束PRB确定。则多时隙传输为4个时隙传输目标数据,其中目标数据在slot#0上的传输是在参考频域资源传输或称作物理频域资源传输,即目标数据在slot#0上可以因为某些协议规定的原因没有传输,比如在同一个slot内,目标数据的传输方向和网络指示、配置的传输方向或和其他数据的测量,传输,接收等有时域和/或频域资源的冲突,导致目标数据在该slot内不传输。目标数据在slot#1上的传输是实际上的传输,即目标数据在slot#1上进行了传输,没有发生丢弃目标数据/信号。
示例性地,如图11所示,对于多时隙传输,若目标数据传输的参考频域资源的长度由目标时隙信息确定的长度确定,参考频域资源的起始PRB由目标时隙信息确定的,参考频域资源的结束PRB由目标时隙信息确定的,其中目标时隙信息为第二类型信息指示的多时隙传输类型的第一个名义传输所在的时隙;或者为,多时隙传输类型的第一个实际传输所在的时隙。则多个实习中每个时隙里的目标数据的参考频域资源的长度、参考频域资源的起始PRB、参考频域资源的结束PRB为slot#0上行子带的长度、起始PRB和结束PRB,即
示例性地,如图12所示,对于多时隙传输,若目标数据传输的参考频域资源的长度由目标时隙信息确定的长度确定,参考频域资源的起始PRB由目标时隙信息确定的,参考频域资源的结束PRB由目标时隙信息确定的,其中目标时隙信息为第二类型信息指示的多时隙传输类型的第一个名义传输所在的时隙;或者为,多时隙传输类型的第一个实际传输所在的时隙。则多个实习中每个时隙里的目标数据的参考频域资源的长度、参考频域资源的起始PRB、参考频域资源的结束PRB等于slot#1上行子带的长度、起始PRB和结束PRB, 即
可选地,本申请实施例中,本申请实施例提供的确定方法还包括下述的步骤301或步骤302。
步骤301、终端不期望第一条件满足。
步骤302、在满足第一条件的情况下,终端放弃目标数据的传输。
其中,第一条件为:参考起始PRB大于或等于目标数据传输所在的实际频域资源的结束PRB、且参考起始PRB小于或等于目标数据传输所在的实际频域资源的结束PRB;
或者,
参考起始PRB大于或等于目标数据传输所在的实际频域资源的起始PRB、且参考起始PRB小于或等于目标数据传输所在的实际频域资源的起始PRB。
可选地,本申请实施例中,第一条件为:
或者,
可选地,本申请实施例中,本申请实施例提供的确定方法还包括步骤401。
步骤401、在目标数据的传输使能了跳频传输的情况下,终端确定每次跳频传输的起始位置信息。
可选地,本申请实施例中,对于:时隙内跳频、PUSCH-DMRS-Bundling没有使能的时隙间跳频、PUSCH-DMRS-Bundling使能的时隙间跳频或重复传输间的跳频(Inter-repetition FH),其公式中的RBstart替换为替换为
本申请实施例提供的确定方法,执行主体可以为确定装置。本申请实施例中以确定装置执行确定方法为例,说明本申请实施例提供的确定装置。
图13示出了本申请实施例中涉及的物联网设备的注册装置的一种可能的结构示意图。如图13所示,确定装置40可以包括:获取模块41和确定模块42;
其中,获取模块41,用于获取待传输的目标数据的目标信息,目标信息为与目标数据传输相关的信息。确定模块42,用于根据目标信息,确定目标数据的目标传输资源,目标传输资源包括目标起始资源块PRB。
本申请实施例提供一种确定装置,终端获取待传输的目标数据的目标信息,目标信息为与目标数据传输相关的信息;根据目标信息,确定目标数据的目标传输资源,目标传输资源包括目标起始资源块PRB。由于终端可以获取与待传输的目标数据相关的的目标信息,从而终端可以根据目标信息,确定用于传输目标数据的目标传输资源,即可以确定目标起始资源块PRB。
在一种可能实现的方式中,目标信息包括以下至少之一:
第一信息,用于指示目标数据传输的参考频域资源的长度、参考频域资源的起始PRB或参考频域资源的结束PRB;
第二信息,用于指示目标数据传输的实际频域资源的长度、实际频域资源的起始PRB或实际频域资源的结束PRB;
第三信息,用于指示目标数据传输的时间单元的类型;
第四信息,用于指示目标数据的数据类型;
第五信息,用于指示目标数据的传输类型;
第六信息,用于指示目标数据传输的频域资源的分配类型;
第七信息,用于指示目标数据传输的频域偏移量。
在一种可能实现的方式中,目标起始PRB包括:参考起始PRB;目标信息包括:第一信息和第六信息;确定模块42,具体用于根据第一信息和第六信息,确定参考起始PRB。
在一种可能实现的方式中,确定模块42,具体用于根据参考频域资源的长度和目标分配方式,确定参考起始PRB,目标分配方式为第六信息指示的分配类型对应的分配方式。
在一种可能实现的方式中,目标起始PRB包括:实际起始PRB;目标信息包括:第一信息、第二信息和第七信息;确定模块42,具体用于根据第一信息、第二信息和第七信息, 确定实际起始PRB。
在一种可能实现的方式中,确定模块42,具体用于在目标数据传输的参考频域资源的长度大于或等于目标数据传输的实际频域资源的长度、且参考起始PRB大于或等于目标数据传输所在的实际频域资源的结束PRB情况下,根据参考起始PRB和目标数据传输的频域偏移量的差值确定起始PRB,或是根据目标数据传输所在的实际频域资源的起始PRB与第一信息确定起始PRB,第一信息为对参考起始PRB与目标数据传输的参考频域资源的长度取模的值;
确定模块42,具体用于在目标数据传输的参考频域资源的长度大于或等于目标数据传输的实际频域资源的长度、且参考起始PRB小于或等于目标数据传输所在的实际频域资源的结束PRB情况下,根据对参考起始PRB和目标数据传输的频域偏移量的取和的值确定起始PRB,或是根据目标数据传输所在的实际频域资源的起始PRB与第一信息确定起始PRB;
确定模块42,具体用于在目标数据传输的参考频域资源的长度大于或等于目标数据传输的实际频域资源的长度、且参考起始PRB小于或等于目标数据传输所在的实际频域资源的结束PRB、大于或等于目标数据传输所在的实际频域资源的起始PRB的情况下,根据参考起始PRB确定起始PRB,或是根据目标数据传输所在的实际频域资源的起始PRB与第一信息确定起始PRB。
在一种可能实现的方式中,确定模块42,具体用于在目标数据传输的参考频域资源的长度小于或等于目标数据传输的实际频域资源的长度的情况下,根据参考起始PRB和目标数据传输的频域偏移量的差值确定起始PRB;或者,根据对参考起始PRB和目标数据传输的频域偏移量的取和的值确定起始PRB;或者,根据目标数据传输所在的实际频域资源的起始PRB与第一信息确定起始PRB。
在一种可能实现的方式中,装置还包括:处理模块。处理模块,用于不期望第一条件满足;或者在满足第一条件的情况下,处理模块,用于放弃目标数据的传输;
其中,第一条件为:参考起始PRB大于或等于目标数据传输所在的实际频域资源的结束PRB、且参考起始PRB小于或等于目标数据传输所在的实际频域资源的结束PRB;
或者,
参考起始PRB大于或等于目标数据传输所在的实际频域资源的起始PRB、且参考起始PRB小于或等于目标数据传输所在的实际频域资源的起始PRB。
在一种可能实现的方式中,第一信息由以下至少之一确定:
第一带宽部分信息,用于指示当前的活跃上行带宽部分的长度、活跃上行带宽部分的起始PRB或活跃上行带宽部分的结束PRB;
第二带宽部分信息,用于指示当前的活跃下行带宽部分的长度、活跃下行带宽部分的起始PRB或活跃下行带宽部分的结束PRB;
第三带宽部分信息,用于指示初始上行带宽部分的长度、初始上行带宽部分的起始PRB或初始上行带宽部分的结束PRB;
第四带宽部分信息,用于指示初始下行带宽部分的长度、初始下行带宽部分的起始PRB或初始下行带宽部分的结束PRB;
控制资源集合的信息,用于指示控制资源集合的频域长度、控制资源集合的频域起始PRB或控制资源集合的频域结束PRB;
第一子带信息,用于指示灵活双工制式下的上行子带的长度、灵活双工制式下的上行子带的起始PRB或灵活双工制式下的上行子带的结束PRB;
第二子带信息,用于指示灵活双工制式下的下行子带的长度、灵活双工制式下的下行子带的起始PRB或灵活双工制式下的下行子带的结束PRB;
网络侧设备配置或指示的。
在一种可能实现的方式中,控制资源集合为终端的服务小区为终端配置的控制资源集合,或者为终端的索引为0的控制资源集合。
在一种可能实现的方式中,第二信息由以下至少之一确定:
第一频域资源信息,用于指示目标数据的可用频域资源的长度、可用频域资源的起始PRB或可用频域资源的结束PRB;
第三子带信息,用于指示上行子带的长度、上行子带的起始PRB或上行子带的结束PRB;
第四子带信息,用于指示下行子带的长度、下行子带的起始PRB或下行子带的结束PRB;
第二频域资源信息,用于指示当前的活跃BWP的长度减去目标数据的不可用频域资源对应的频域资源的长度后的长度、活跃BWP的起始PRB,活跃BWP的结束PRB或目标数据的不可用频域资源的起始PRB对应的频域资源的PRB为结束PRB、或目标数据的不可用频域资源的结束PRB对应的频域资源的PRB为起始PRB。
在一种可能实现的方式中,可用频域资源为传输方向与目标数据的传输方向相同的频域资源,不可用频域资源为传输方向与目标数据的传输方向不相同的频域资源;
或者,
可用频域资源为传输方向与目标数据的传输方向不相反的频域资源,不可用频域资源为传输方向与目标数据的传输方向相反的频域资源。
在一种可能实现的方式中,第三信息包括以下至少之一:
第一时间单元信息,用于指示目标数据的上行方向上无冲突的时间单元;
第二时间单元信息,用于指示目标数据的下行方向上无冲突的时间单元;
第三时间单元信息,用于指示上行链路上的时间单元;
第四时间单元信息,用于指示下行链路上的时间单元;
第五时间单元信息,用于指示上行链路子带上的时间单元;
第六时间单元信息,用于指示下行链路子带上的时间单元;
第七时间单元信息,用于指示不存在子带全双工SBFD的时间单元;
第八时间单元信息,用于指示存在SBFD的时间单元。
在一种可能实现的方式中,时间单元包括至少一个时隙或至少一个正交频分复用OFDM符号。
在一种可能实现的方式中,第四信息由以下至少之一确定:
通过公共搜索空间中的下行控制信息DCI确定的;
通过专用搜索空间中的DCI确定的;
通过网络侧设备配置的。
在一种可能实现的方式中,第五信息包括以下至少之一:
第一类型信息,用于指示单时隙传输类型;
第二类型信息,用于指示多时隙传输类型。
在一种可能实现的方式中,当第五信息包括第一类型信息时,目标数据传输的参考频域资源的长度为第一类型信息确定的参考频域资源的长度、参考频域资源的起始PRB为第一类型信息确定的参考频域资源的起始PRB、参考频域资源的结束PRB为第一类型信息确定的参考频域资源的结束PRB。
在一种可能实现的方式中,当第五信息包括第二类型信息时,目标数据传输的参考频域资源的长度为终端基于目标时隙信息确定的参考频域资源的长度、参考频域资源的起始PRB为终端基于目标时隙信息确定的参考频域资源的起始PRB、参考频域资源的结束PRB为终端基于目标时隙信息确定的参考频域资源的结束PRB;
其中,目标时隙信息,为第二类型信息指示的多时隙传输类型的第一个名义传输所在的时隙;或者为,多时隙传输类型的第一个实际传输所在的时隙。
在一种可能实现的方式中,第七信息为网络侧设备配置和/或指示的。
在一种可能实现的方式中,确定模块42,还用于在目标数据的传输使能了跳频传输的情况下,确定每次跳频传输的起始位置信息。
本申请实施例中的确定装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的确定装置能够实现图1至图13的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图14所示,本申请实施例还提供一种通信设备800,包括处理器801和存储器802,存储器802上存储有可在所述处理器801上运行的程序或指令,例如,该通信设备800为终端时,该程序或指令被处理器801执行时实现上述确定方法实施例的各个步骤,且能达到相同的技术效果。该通信设备800为网络侧设备时,该程序或指令被处理器801执行时实现上述确定方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于获取待传输的目标数据的目标信息,该目标信息为与目标数据传输相关的信息;并根据目标信息,确定目标数据的目标传输资源,该目标传输资源包括目标起始资源块PRB。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图15为实现本申请实施例的一种终端的硬件结构示意图。
该终端100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109以及处理器110等中的至少部分部件。
本领域技术人员可以理解,终端100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图15中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元104可以包括图形处理单元(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元106可包括显示面板1061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板1061。用户输入单元107包括触控面板1071以及其他输入设备1072中的至少一种。触控面板1071,也称为触摸屏。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元101接收来自网络侧设备的下行数据后,可以传输给处理器110进行处理;另外,射频单元101可以向网络侧设备发送上行数据。通常,射频单元101包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器109可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器109可以包括易失性存储器或非易失性存储器,或者,存储器109可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器109包括但不限于这些和任意其它适合类型的存储器。
处理器110可包括一个或多个处理单元;可选的,处理器110集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处 理器也可以不集成到处理器110中。
其中,处理器110,用于获取待传输的目标数据的目标信息,目标信息为与目标数据传输相关的信息。处理器110,用于根据目标信息,确定目标数据的目标传输资源,目标传输资源包括目标起始资源块PRB。
本申请实施例提供一种电子设备,终端获取待传输的目标数据的目标信息,目标信息为与目标数据传输相关的信息;根据目标信息,确定目标数据的目标传输资源,目标传输资源包括目标起始资源块PRB。由于终端可以获取与待传输的目标数据相关的的目标信息,从而终端可以根据目标信息,确定用于传输目标数据的目标传输资源,即可以确定目标起始资源块PRB。
可选地,本申请实施例中,目标信息包括以下至少之一:
第一信息,用于指示目标数据传输的参考频域资源的长度、参考频域资源的起始PRB或参考频域资源的结束PRB;
第二信息,用于指示目标数据传输的实际频域资源的长度、实际频域资源的起始PRB或实际频域资源的结束PRB;
第三信息,用于指示目标数据传输的时间单元的类型;
第四信息,用于指示目标数据的数据类型;
第五信息,用于指示目标数据的传输类型;
第六信息,用于指示目标数据传输的频域资源的分配类型;
第七信息,用于指示目标数据传输的频域偏移量。
可选地,本申请实施例中,目标起始PRB包括:参考起始PRB;目标信息包括:第一信息和第六信息;处理器110,具体用于根据第一信息和第六信息,确定参考起始PRB。
可选地,本申请实施例中,处理器110,具体用于根据参考频域资源的长度和目标分配方式,确定参考起始PRB,目标分配方式为第六信息指示的分配类型对应的分配方式。
可选地,本申请实施例中,目标起始PRB包括:实际起始PRB;目标信息包括:第一信息、第二信息和第七信息;处理器110,具体用于根据第一信息、第二信息和第七信息,确定实际起始PRB。
可选地,本申请实施例中,处理器110,具体用于在目标数据传输的参考频域资源的长度大于或等于目标数据传输的实际频域资源的长度、且参考起始PRB大于或等于目标数据传输所在的实际频域资源的结束PRB情况下,根据参考起始PRB和目标数据传输的频域偏移量的差值确定起始PRB,或是根据目标数据传输所在的实际频域资源的起始PRB与第一信息确定起始PRB,第一信息为对参考起始PRB与目标数据传输的参考频域资源的长度取模的值;
处理器110,具体用于在目标数据传输的参考频域资源的长度大于或等于目标数据传输的实际频域资源的长度、且参考起始PRB小于或等于目标数据传输所在的实际频域资源的结束PRB情况下,根据对参考起始PRB和目标数据传输的频域偏移量的取和的值确定起始PRB,或是根据目标数据传输所在的实际频域资源的起始PRB与第一信息确定起始PRB;
处理器110,具体用于在目标数据传输的参考频域资源的长度大于或等于目标数据传输的实际频域资源的长度、且参考起始PRB小于或等于目标数据传输所在的实际频域资源的结束PRB、大于或等于目标数据传输所在的实际频域资源的起始PRB的情况下,根据参考起始PRB确定起始PRB,或是根据目标数据传输所在的实际频域资源的起始PRB与第一信息确定起始PRB。
可选地,本申请实施例中,处理器110,具体用于在目标数据传输的参考频域资源的长度小于或等于目标数据传输的实际频域资源的长度的情况下,根据参考起始PRB和目标数据传输的频域偏移量的差值确定起始PRB;或者,根据对参考起始PRB和目标数据传输的频域偏移量的取和的值确定起始PRB;或者,根据目标数据传输所在的实际频域资源的起始PRB与第一信息确定起始PRB。
可选地,本申请实施例中,装置还包括:处理模块。处理模块,用于不期望第一条件满足;或者在满足第一条件的情况下,处理模块,用于放弃目标数据的传输;
其中,第一条件为:参考起始PRB大于或等于目标数据传输所在的实际频域资源的结 束PRB、且参考起始PRB小于或等于目标数据传输所在的实际频域资源的结束PRB;
或者,
参考起始PRB大于或等于目标数据传输所在的实际频域资源的起始PRB、且参考起始PRB小于或等于目标数据传输所在的实际频域资源的起始PRB。
可选地,本申请实施例中,第一信息由以下至少之一确定:
第一带宽部分信息,用于指示当前的活跃上行带宽部分的长度、活跃上行带宽部分的起始PRB或活跃上行带宽部分的结束PRB;
第二带宽部分信息,用于指示当前的活跃下行带宽部分的长度、活跃下行带宽部分的起始PRB或活跃下行带宽部分的结束PRB;
第三带宽部分信息,用于指示初始上行带宽部分的长度、初始上行带宽部分的起始PRB或初始上行带宽部分的结束PRB;
第四带宽部分信息,用于指示初始下行带宽部分的长度、初始下行带宽部分的起始PRB或初始下行带宽部分的结束PRB;
控制资源集合的信息,用于指示控制资源集合的频域长度、控制资源集合的频域起始PRB或控制资源集合的频域结束PRB;
第一子带信息,用于指示灵活双工制式下的上行子带的长度、灵活双工制式下的上行子带的起始PRB或灵活双工制式下的上行子带的结束PRB;
第二子带信息,用于指示灵活双工制式下的下行子带的长度、灵活双工制式下的下行子带的起始PRB或灵活双工制式下的下行子带的结束PRB;
网络侧设备配置或指示的。
可选地,本申请实施例中,控制资源集合为终端的服务小区为终端配置的控制资源集合,或者为终端的索引为0的控制资源集合。
可选地,本申请实施例中,第二信息由以下至少之一确定:
第一频域资源信息,用于指示目标数据的可用频域资源的长度、可用频域资源的起始PRB或可用频域资源的结束PRB;
第三子带信息,用于指示上行子带的长度、上行子带的起始PRB或上行子带的结束PRB;
第四子带信息,用于指示下行子带的长度、下行子带的起始PRB或下行子带的结束PRB;
第二频域资源信息,用于指示当前的活跃BWP的长度减去目标数据的不可用频域资源对应的频域资源的长度后的长度、活跃BWP的起始PRB,活跃BWP的结束PRB或目标数据的不可用频域资源的起始PRB对应的频域资源的PRB为结束PRB、或目标数据的不可用频域资源的结束PRB对应的频域资源的PRB为起始PRB。
可选地,本申请实施例中,可用频域资源为传输方向与目标数据的传输方向相同的频域资源,不可用频域资源为传输方向与目标数据的传输方向不相同的频域资源;
或者,
可用频域资源为传输方向与目标数据的传输方向不相反的频域资源,不可用频域资源为传输方向与目标数据的传输方向相反的频域资源。
可选地,本申请实施例中,第三信息包括以下至少之一:
第一时间单元信息,用于指示目标数据的上行方向上无冲突的时间单元;
第二时间单元信息,用于指示目标数据的下行方向上无冲突的时间单元;
第三时间单元信息,用于指示上行链路上的时间单元;
第四时间单元信息,用于指示下行链路上的时间单元;
第五时间单元信息,用于指示上行链路子带上的时间单元;
第六时间单元信息,用于指示下行链路子带上的时间单元;
第七时间单元信息,用于指示不存在子带全双工SBFD的时间单元;
第八时间单元信息,用于指示存在SBFD的时间单元。
可选地,本申请实施例中,时间单元包括至少一个时隙或至少一个正交频分复用OFDM符号。
可选地,本申请实施例中,第四信息由以下至少之一确定:
通过公共搜索空间中的下行控制信息DCI确定的;
通过专用搜索空间中的DCI确定的;
通过网络侧设备配置的。
可选地,本申请实施例中,第五信息包括以下至少之一:
第一类型信息,用于指示单时隙传输类型;
第二类型信息,用于指示多时隙传输类型。
可选地,本申请实施例中,当第五信息包括第一类型信息时,目标数据传输的参考频域资源的长度为第一类型信息确定的参考频域资源的长度、参考频域资源的起始PRB为第一类型信息确定的参考频域资源的起始PRB、参考频域资源的结束PRB为第一类型信息确定的参考频域资源的结束PRB。
可选地,本申请实施例中,当第五信息包括第二类型信息时,目标数据传输的参考频域资源的长度为终端基于目标时隙信息确定的参考频域资源的长度、参考频域资源的起始PRB为终端基于目标时隙信息确定的参考频域资源的起始PRB、参考频域资源的结束PRB为终端基于目标时隙信息确定的参考频域资源的结束PRB;
其中,目标时隙信息,为第二类型信息指示的多时隙传输类型的第一个名义传输所在的时隙;或者为,多时隙传输类型的第一个实际传输所在的时隙。
可选地,本申请实施例中,第七信息为网络侧设备配置和/或指示的。
可选地,本申请实施例中,处理器110,还用于在目标数据的传输使能了跳频传输的情况下,确定每次跳频传输的起始位置信息。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (30)

  1. 一种确定方法,所述方法包括:
    终端获取待传输的目标数据的目标信息,所述目标信息为与所述目标数据传输相关的信息;
    终端根据所述目标信息,确定所述目标数据的目标传输资源,所述目标传输资源包括目标起始资源块PRB。
  2. 根据权利要求1所述的方法,其中,所述目标信息包括以下至少之一:
    第一信息,用于指示所述目标数据传输的参考频域资源的长度、所述参考频域资源的起始PRB或所述参考频域资源的结束PRB;
    第二信息,用于指示所述目标数据传输的实际频域资源的长度、所述实际频域资源的起始PRB或所述实际频域资源的结束PRB;
    第三信息,用于指示所述目标数据传输的时间单元的类型;
    第四信息,用于指示所述目标数据的数据类型;
    第五信息,用于指示所述目标数据的传输类型;
    第六信息,用于指示所述目标数据传输的频域资源的分配类型;
    第七信息,用于指示所述目标数据传输的频域偏移量。
  3. 根据权利要求2所述的方法,其中,所述目标起始PRB包括:参考起始PRB;所述目标信息包括:所述第一信息和所述第六信息;
    所述终端根据所述目标信息,确定所述目标数据的目标传输资源,包括:
    根据终端所述第一信息和所述第六信息,确定所述参考起始PRB。
  4. 根据权利要求3所述的方法,其中,
    所述终端根据所述第一信息和所述第六信息,确定所述参考起始PRB,包括:
    所述终端根据所述参考频域资源的长度和目标分配方式,确定所述参考起始PRB,所述目标分配方式为所述第六信息指示的分配类型对应的分配方式。
  5. 根据权利要求3所述的方法,其中,所述目标起始PRB包括:实际起始PRB;所述目标信息包括:所述第一信息、所述第二信息和所述第七信息;
    所述终端根据所述目标信息,确定所述目标数据的目标传输资源,包括:
    所述终端根据所述第一信息、所述第二信息和所述第七信息,确定所述实际起始PRB。
  6. 根据权利要求5所述的方法,其中,
    所述终端根据所述第一信息、所述第二信息和所述第七信息,确定所述实际起始PRB,包括:
    在所述目标数据传输的参考频域资源的长度大于或等于所述目标数据传输的实际频域资源的长度、且参考起始PRB大于或等于所述目标数据传输所在的实际频域资源的结束RB情况下,所述终端根据所述参考起始PRB和所述目标数据传输的频域偏移量的差值确定所述起始PRB,或是根据所述目标数据传输所在的实际频域资源的起始PRB与第一信息确定所述起始PRB,所述第一信息为对所述参考起始PRB与所述目标数据传输的参考频域资源的长度取模的值;
    在所述目标数据传输的参考频域资源的长度大于或等于所述目标数据传输的实际频域资源的长度、且参考起始PRB小于或等于所述目标数据传输所在的实际频域资源的结束PRB情况下,所述终端根据对所述参考起始PRB和所述目标数据传输的频域偏移量的取和的值确定所述起始PRB,或是根据所述目标数据传输所在的实际频域资源的起始PRB与所述第一信息确定所述起始PRB;
    在所述目标数据传输的参考频域资源的长度大于或等于所述目标数据传输的实际频域资源的长度、且参考起始PRB小于或等于所述目标数据传输所在的实际频域资源的结束PRB、大于或等于目标数据传输所在的实际频域资源的起始PRB的情况下,所述终端根据所述参考起始PRB确定所述起始PRB,或是根据所述目标数据传输所在的实际频域资源的起始PRB与所述第一信息确定所述起始PRB。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:
    在所述目标数据传输的参考频域资源的长度小于或等于所述目标数据传输的实际频域资源的长度的情况下,所述终端根据所述参考起始PRB和所述目标数据传输的频域偏移量的差值确定所述起始PRB;或者,所述终端根据对所述参考起始PRB和所述目标数据传输的频域偏移量的取和的值确定所述起始PRB;或者,根据所述目标数据传输所在的实际频域资源的起始PRB与所述第一信息确定所述起始PRB。
  8. 根据权利要求6所述的方法,其中,所述方法还包括:
    所述终端不期望第一条件满足;或者在满足第一条件的情况下,所述终端放弃所述目标数据的传输;
    其中,所述第一条件为:
    所述参考起始PRB大于或等于所述目标数据传输所在的实际频域资源的结束PRB、且所述参考起始PRB小于或等于所述目标数据传输所在的实际频域资源的结束PRB;
    或者,
    所述参考起始PRB大于或等于所述目标数据传输所在的实际频域资源的起始PRB、且所述参考起始PRB小于或等于所述目标数据传输所在的实际频域资源的起始PRB。
  9. 根据权利要求2所述的方法,其中,所述第一信息由以下至少之一确定:
    第一带宽部分信息,用于指示当前的活跃上行带宽部分的长度、所述活跃上行带宽部分的起始PRB或所述活跃上行带宽部分的结束PRB;
    第二带宽部分信息,用于指示当前的活跃下行带宽部分的长度、所述活跃下行带宽部分的起始PRB或所述活跃下行带宽部分的结束PRB;
    第三带宽部分信息,用于指示初始上行带宽部分的长度、所述初始上行带宽部分的起始PRB或所述初始上行带宽部分的结束PRB;
    第四带宽部分信息,用于指示初始下行带宽部分的长度、所述初始下行带宽部分的起始PRB或所述初始下行带宽部分的结束PRB;
    控制资源集合的信息,用于指示所述控制资源集合的频域长度、所述控制资源集合的频域起始PRB或所述控制资源集合的频域结束PRB;
    第一子带信息,用于指示灵活双工制式下的上行子带的长度、所述灵活双工制式下的上行子带的起始PRB或所述灵活双工制式下的上行子带的结束PRB;
    第二子带信息,用于指示灵活双工制式下的下行子带的长度、所述灵活双工制式下的下行子带的起始PRB或所述灵活双工制式下的下行子带的结束PRB;
    网络侧设备配置或指示的。
  10. 根据权利要求9所述的方法,其中,
    所述控制资源集合为所述终端的服务小区为所述终端配置的控制资源集合,或者为所述终端的索引为0的控制资源集合。
  11. 根据权利要求2所述的方法,其中,所述第二信息由以下至少之一确定:
    第一频域资源信息,用于指示所述目标数据的可用频域资源的长度、所述可用频域资源的起始PRB或所述可用频域资源的结束PRB;
    第三子带信息,用于指示上行子带的长度、所述上行子带的起始PRB或所述上行子带的结束PRB;
    第四子带信息,用于指示下行子带的长度、所述下行子带的起始PRB或所述下行子带的结束PRB;
    第二频域资源信息,用于指示当前的活跃BWP的长度减去所述目标数据的不可用频域资源对应的频域资源的长度后的长度、所述活跃BWP的起始PRB,所述活跃BWP的结束PRB或所述目标数据的不可用频域资源的起始PRB对应的频域资源的PRB为结束PRB、或所述目标数据的不可用频域资源的结束PRB对应的频域资源的PRB为起始PRB。
  12. 根据权利要求11所述的方法,其中,
    所述可用频域资源为传输方向与所述目标数据的传输方向相同的频域资源,所述不可用频域资源为传输方向与所述目标数据的传输方向不相同的频域资源;
    或者,
    所述可用频域资源为传输方向与所述目标数据的传输方向不相反的频域资源,所述不 可用频域资源为传输方向与所述目标数据的传输方向相反的频域资源。
  13. 根据权利要求2所述的方法,其中,所述第三信息包括以下至少之一:
    第一时间单元信息,用于指示所述目标数据的上行方向上无冲突的时间单元;
    第二时间单元信息,用于指示所述目标数据的下行方向上无冲突的时间单元;
    第三时间单元信息,用于指示上行链路上的时间单元;
    第四时间单元信息,用于指示下行链路上的时间单元;
    第五时间单元信息,用于指示上行链路子带上的时间单元;
    第六时间单元信息,用于指示下行链路子带上的时间单元;
    第七时间单元信息,用于指示不存在子带全双工SBFD的时间单元;
    第八时间单元信息,用于指示存在SBFD的时间单元。
  14. 根据权利要求13所述的方法,其中,所述时间单元包括至少一个时隙或至少一个正交频分复用OFDM符号。
  15. 根据权利要求2所述的方法,其中,所述第四信息由以下至少之一确定:
    通过公共搜索空间中的下行控制信息DCI确定的;
    通过专用搜索空间中的DCI确定的;
    通过网络侧设备配置的。
  16. 根据权利要求2所述的方法,其中,所述第五信息包括以下至少之一:
    第一类型信息,用于指示单时隙传输类型;
    第二类型信息,用于指示多时隙传输类型。
  17. 根据权利要求16所述的方法,其中,
    当所述第五信息包括所述第一类型信息时,所述目标数据传输的参考频域资源的长度为所述第一类型信息确定的参考频域资源的长度、所述参考频域资源的起始PRB为所述第一类型信息确定的参考频域资源的起始PRB、所述参考频域资源的结束PRB为所述第一类型信息确定的参考频域资源的结束PRB。
  18. 根据权利要求16所述的方法,其中,
    当所述第五信息包括所述第二类型信息时,所述目标数据传输的参考频域资源的长度为所述终端基于目标时隙信息确定的参考频域资源的长度、所述参考频域资源的起始PRB为所述终端基于目标时隙信息确定的参考频域资源的起始PRB、所述参考频域资源的结束PRB为所述终端基于目标时隙信息确定的参考频域资源的结束PRB;
    其中,所述目标时隙信息,为所述第二类型信息指示的所述多时隙传输类型的第一个名义传输所在的时隙;或者为,所述多时隙传输类型的第一个实际传输所在的时隙。
  19. 根据权利要求2所述的方法,其中,所述第七信息为网络侧设备配置和/或指示的。
  20. 根据权利要求1所述的方法,其中,所述方法还包括:
    在所述目标数据的传输使能了跳频传输的情况下,所述终端确定每次跳频传输的起始位置信息。
  21. 一种确定装置,所述装置包括:获取模块和确定模块;
    所述获取模块,用于获取待传输的目标数据的目标信息,所述目标信息为与所述目标数据传输相关的信息;
    所述确定模块,用于根据所述目标信息,确定所述目标数据的目标传输资源,所述目标传输资源包括目标起始资源块PRB。
  22. 根据权利要求21所述的装置,其中,所述目标信息包括以下至少之一:
    第一信息,用于指示所述目标数据传输的参考频域资源的长度、所述参考频域资源的起始PRB或所述参考频域资源的结束PRB;
    第二信息,用于指示所述目标数据传输的实际频域资源的长度、所述实际频域资源的起始PRB或所述实际频域资源的结束PRB;
    第三信息,用于指示所述目标数据传输的时间单元的类型;
    第四信息,用于指示所述目标数据的数据类型;
    第五信息,用于指示所述目标数据的传输类型;
    第六信息,用于指示所述目标数据传输的频域资源的分配类型;
    第七信息,用于指示所述目标数据传输的频域偏移量。
  23. 根据权利要求22所述的装置,其中,所述目标起始PRB包括:参考起始PRB;所述目标信息包括:所述第一信息和所述第六信息;
    所述确定模块,具体用于根据所述第一信息和所述第六信息,确定所述参考起始PRB。
  24. 根据权利要求23所述的装置,其中,
    所述确定模块,具体用于根据所述参考频域资源的长度和目标分配方式,确定所述参考起始PRB,所述目标分配方式为所述第六信息指示的分配类型对应的分配方式。
  25. 根据权利要求23所述的装置,其中,所述目标起始PRB包括:实际起始PRB;所述目标信息包括:所述第一信息、所述第二信息和所述第七信息;
    所述确定模块,具体用于根据所述第一信息、所述第二信息和所述第七信息,确定所述实际起始PRB。
  26. 根据权利要求25所述的装置,其中,所述确定模块,具体用于在所述目标数据传输的参考频域资源的长度大于或等于所述目标数据传输的实际频域资源的长度、且参考起始PRB大于或等于所述目标数据传输所在的实际频域资源的结束PRB情况下,根据所述参考起始PRB和所述目标数据传输的频域偏移量的差值确定所述起始PRB,或是根据所述目标数据传输所在的实际频域资源的起始PRB与第一信息确定所述起始PRB,所述第一信息为对所述参考起始PRB与所述目标数据传输的参考频域资源的长度取模的值;
    所述确定模块,具体用于在所述目标数据传输的参考频域资源的长度大于或等于所述目标数据传输的实际频域资源的长度、且参考起始PRB小于或等于所述目标数据传输所在的实际频域资源的结束PRB情况下,根据对所述参考起始PRB和所述目标数据传输的频域偏移量的取和的值确定所述起始PRB,或是根据所述目标数据传输所在的实际频域资源的起始PRB与所述第一信息确定所述起始PRB;
    所述确定模块,具体用于在所述目标数据传输的参考频域资源的长度大于或等于所述目标数据传输的实际频域资源的长度、且参考起始PRB小于或等于所述目标数据传输所在的实际频域资源的结束PRB、大于或等于目标数据传输所在的实际频域资源的起始PRB的情况下,根据所述参考起始PRB确定所述起始PRB,或是根据所述目标数据传输所在的实际频域资源的起始PRB与所述第一信息确定所述起始PRB。
  27. 根据权利要求26所述的装置,其中,
    所述确定模块,具体用于在所述目标数据传输的参考频域资源的长度小于或等于所述目标数据传输的实际频域资源的长度的情况下,根据所述参考起始PRB和所述目标数据传输的频域偏移量的差值确定所述起始PRB;或者,根据对所述参考起始PRB和所述目标数据传输的频域偏移量的取和的值确定所述起始PRB;或者,根据所述目标数据传输所在的实际频域资源的起始PRB与所述第一信息确定所述起始PRB。
  28. 根据权利要求26所述的装置,其中,所述装置还包括:处理模块;
    所述处理模块,用于不期望第一条件满足;或者在满足第一条件的情况下,所述处理模块,用于放弃所述目标数据的传输;
    其中,所述第一条件为:
    所述参考起始PRB大于或等于所述目标数据传输所在的实际频域资源的结束PRB、且所述参考起始PRB小于或等于所述目标数据传输所在的实际频域资源的结束PRB;
    或者,
    所述参考起始PRB大于或等于所述目标数据传输所在的实际频域资源的起始PRB、且所述参考起始PRB小于或等于所述目标数据传输所在的实际频域资源的起始PRB。
  29. 根据权利要求21所述的装置,其中,所述确定模块,还用于在所述目标数据的传输使能了跳频传输的情况下,确定每次跳频传输的起始位置信息。
  30. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至20任一项所述的确定方法的步骤。
PCT/CN2023/108158 2022-07-25 2023-07-19 确定方法及终端 WO2024022196A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210879046.XA CN117528785A (zh) 2022-07-25 2022-07-25 确定方法及终端
CN202210879046.X 2022-07-25

Publications (1)

Publication Number Publication Date
WO2024022196A1 true WO2024022196A1 (zh) 2024-02-01

Family

ID=89705394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108158 WO2024022196A1 (zh) 2022-07-25 2023-07-19 确定方法及终端

Country Status (2)

Country Link
CN (1) CN117528785A (zh)
WO (1) WO2024022196A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605316A (zh) * 2016-02-04 2018-09-28 华为技术有限公司 数据发送方法、数据接收方法、用户设备及基站
CN113556812A (zh) * 2020-04-15 2021-10-26 展讯通信(上海)有限公司 上行数据传输方法、终端及可读存储介质
US20220225360A1 (en) * 2021-01-08 2022-07-14 Ofinno, Llc Uplink Control Multiplexing of a PUCCH Repetition
CN114765863A (zh) * 2021-01-13 2022-07-19 维沃移动通信有限公司 传输处理方法及相关设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605316A (zh) * 2016-02-04 2018-09-28 华为技术有限公司 数据发送方法、数据接收方法、用户设备及基站
CN113556812A (zh) * 2020-04-15 2021-10-26 展讯通信(上海)有限公司 上行数据传输方法、终端及可读存储介质
US20220225360A1 (en) * 2021-01-08 2022-07-14 Ofinno, Llc Uplink Control Multiplexing of a PUCCH Repetition
CN114765863A (zh) * 2021-01-13 2022-07-19 维沃移动通信有限公司 传输处理方法及相关设备

Also Published As

Publication number Publication date
CN117528785A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
JP2017204741A (ja) 端末装置、基地局装置、通信方法、及びプログラム
WO2016050196A2 (zh) 一种蜂窝通信中的laa传输的基站、ue中的方法和设备
EP4280755A1 (en) Transmission processing method and related device
WO2022194249A1 (zh) Harq ack反馈方法、装置、终端及存储介质
EP3276857B1 (en) Method, device, and system for data transmission
CN108141855A (zh) 用于执行上行链路传输和接收的方法和装置
EP3694278B1 (en) Information sending and receiving method and apparatus
US20230421318A1 (en) Uplink transmission method and apparatus, and terminal
WO2016161661A1 (zh) 一种信息传输方法、设备及系统
WO2023125906A1 (zh) 资源传输方向确定方法、装置及终端
AU2019474027A1 (en) Methods, devices and computer readable media for communication on unlicensed band
WO2022214060A1 (zh) 传输资源确定方法和设备
WO2024022196A1 (zh) 确定方法及终端
CN113839728A (zh) Dci检测方法、发送方法及相关设备
WO2023207785A1 (zh) 终端操作方法、装置、终端及网络侧设备
WO2024061261A1 (zh) 资源配置方法及装置、终端及网络侧设备
WO2024093848A1 (zh) 公共pucch重复传输方法、终端及网络侧设备
WO2023246583A1 (zh) 频域资源确定方法、终端及网络侧设备
WO2023198146A1 (zh) 资源配置方法、装置、设备及介质
WO2023078296A1 (zh) 可用时隙的确定方法、装置及终端
WO2024067277A1 (zh) 公共pucch重复传输方法、终端及网络侧设备
WO2023207976A1 (zh) 物理随机接入信道传输资源确定方法、装置、终端和设备
WO2024032542A1 (zh) 发射通道切换的处理方法、终端及网络侧设备
WO2023131227A1 (zh) 传输确定方法、装置、设备及介质
WO2024093895A1 (zh) 传输方法、装置、终端及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845407

Country of ref document: EP

Kind code of ref document: A1