WO2024021936A1 - 光通信装置以及光网络设备 - Google Patents

光通信装置以及光网络设备 Download PDF

Info

Publication number
WO2024021936A1
WO2024021936A1 PCT/CN2023/101308 CN2023101308W WO2024021936A1 WO 2024021936 A1 WO2024021936 A1 WO 2024021936A1 CN 2023101308 W CN2023101308 W CN 2023101308W WO 2024021936 A1 WO2024021936 A1 WO 2024021936A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
transmission channel
coupler
component
wavelength
Prior art date
Application number
PCT/CN2023/101308
Other languages
English (en)
French (fr)
Inventor
刘霖瑜
张迎
周恩宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024021936A1 publication Critical patent/WO2024021936A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • the present application relates to the field of optical communications, and in particular, to an optical communications device and optical network equipment.
  • the uplink optical signal of the optical network unit (ONU) is transmitted to the optical line terminal (OLT) side through the optical fiber and is received by the OLT.
  • the downlink optical signal of the OLT is transmitted to the ONU side through the optical fiber and is received by the ONU.
  • Normal uplink or downlink communication can be carried out between the ONU and the OLT, but it is impossible to know which fibers in the optical distribution network (ODN) are occupied, idle or broken.
  • ODN optical distribution network
  • a red light pen is mainly used to access the optical fiber to determine whether the optical fiber is broken to achieve visual management of the ODN network.
  • the red light pen is independent of the PON network and cannot achieve automated visual management of the ODN network.
  • This application provides an optical communication device and optical network equipment, which realizes automatic detection of optical fibers in an ODN network and integrates the communication function and visualization function of the optical communication device.
  • a first aspect of this application provides an optical communication device, including: a first optical component and a second optical component.
  • the first optical component is used to send a first wavelength optical signal.
  • the first wavelength optical signal is a visible light signal or a near-infrared light signal.
  • the second optical component is used to send a second wavelength optical signal and/or receive a third wavelength optical signal, and the second wavelength optical signal and the third wavelength optical signal carry service data.
  • the optical communication device integrates a first optical component and a second optical component.
  • the first optical component is used to send a first wavelength optical signal, and the first wavelength optical signal is a visible light signal or a near-infrared optical signal;
  • the second optical component The component is used to send a second wavelength optical signal and/or receive a third wavelength optical signal, and the second wavelength optical signal and the third wavelength optical signal carry service data. Since the wavelength of the first wavelength optical signal is a visible light signal or a near-infrared light signal, human eyes can identify the light generated by the first wavelength optical signal.
  • the optical fiber in the ODN network can be automatically detected through the first wavelength optical signal, and the automatic visual management of the ODN network can be realized.
  • the first wavelength optical signal is used to detect whether the optical fiber in the ODN network is occupied, whether it is idle, or whether the fiber is broken, etc.
  • the second wavelength optical signal and the third wavelength optical signal can carry business data, thereby integrating the communication function and visualization function of the optical communication device.
  • the optical communication device further includes: a first coupler and a first optical fiber connection port, the first optical component is connected to the first end of the first coupler, and the second optical component is connected to the first end of the first coupler.
  • the second end of the first coupler is connected, and the third end of the first coupler is connected to the first optical fiber connection port;
  • the first optical component is used to send the first wavelength optical signal to the first coupler, and the second optical component is used to send the first wavelength optical signal to the first coupler.
  • the second optical component may be an emitting light component, that is, the optical communication device includes a unidirectional optical component, on which the first optical component is integrated.
  • the communication function and visualization function of the optical communication device are integrated.
  • the optical communication device further includes: a first coupler and a first optical fiber connection port, the first optical component is connected to the first end of the first coupler, and the second optical component is connected to the first end of the first coupler.
  • the second end of the first coupler is connected, and the third end of the first coupler is connected to the first optical fiber connection port;
  • the first optical component is used to send a first wavelength optical signal to the first coupler, and the second optical component is used to receive a third wavelength optical signal; the first coupler is used to separate the first wavelength optical signal from the first optical fiber connection port.
  • the third wavelength optical signal causes the first wavelength optical signal to be sent to the first optical fiber connection port and the third wavelength optical signal to be sent to the second optical component.
  • the second optical component is a receiving optical component, that is, the optical communication device includes a unidirectional optical component, on which the first optical component is integrated.
  • the communication function and visualization function of the optical communication device are integrated.
  • the optical communication device further includes a first coupler and a first optical fiber connection port; the first optical component is connected to the first end of the first coupler, and the second optical component is connected to the first optical fiber connection port.
  • the second end of a coupler is connected, and the third end of the first coupler is connected to the first optical fiber connection port;
  • the first optical component is used to send a first wavelength optical signal to the first coupler; the second optical component is used to send a second wavelength optical signal to the first coupler; the first coupler is used to combine the first wavelength optical signal with the second wavelength optical signal.
  • the wavelength optical signals are coupled to obtain a combined signal, and the combined signal is sent to the first optical fiber connection port; and the first optical component is used to send the first wavelength optical signal to the first coupler; the second optical component is used to receive the first optical fiber signal.
  • Three wavelength optical signals; the first coupler is used to separate the first wavelength optical signal and the third wavelength optical signal from the first optical fiber connection port, so that the first wavelength optical signal is sent to the first optical fiber connection port and the third wavelength optical signal is sent to the second optical component.
  • the second optical component is a receiving and receiving light component, that is, the optical communication device includes a bidirectional optical component, on which the first optical component is integrated to form a three-way optical component.
  • the communication function and visualization function of the optical communication device are integrated.
  • the optical communication device further includes: a third optical component, a first coupler, a second coupler, and a first optical fiber connection port;
  • the first optical component is connected to the first end of the first coupler, the second optical component is connected to the second end of the first coupler, the third end of the first coupler is connected to the first end of the second coupler, and the The second end of the second coupler is connected to the third optical component, and the third end of the second coupler is connected to the first optical fiber connection port;
  • the first optical component is used to send the first wavelength optical signal to the first coupler;
  • the second The optical component is used to send a second wavelength optical signal to the first coupler;
  • the third optical component is used to receive a fourth wavelength optical signal, and the fourth wavelength optical signal carries service data;
  • the first coupler is used to convert the first wavelength optical signal It is coupled with the second wavelength optical signal to obtain a multiplexed signal, and sends the multiplexed signal to the second coupler;
  • the second coupler is used to send the multiplexed signal to the first optical fiber connection port, and receive the multiplexed signal from the first optical fiber connection port.
  • the optical communication device includes a transmitting optical component and a receiving optical component. That is, the optical communication device includes a bidirectional optical component, on which the first optical component is integrated to form a three-way optical component. Thus, the communication function and visualization function of the optical communication device are integrated.
  • the above implementation provides a specific structure of the three-way optical component.
  • the optical communication device further includes: a third optical component, a first coupler, a second coupler, and a first optical fiber connection port;
  • the first optical component is connected to the first end of the first coupler
  • the third optical component is connected to the second end of the first coupler
  • the third end of the first coupler is connected to the first end of the second coupler
  • the third optical component is connected to the first end of the first coupler.
  • the second end of the second coupler is connected to the second optical component
  • the second The third end of the coupler is connected to the first optical fiber connection port;
  • the first optical component is used to send a first wavelength optical signal to the first coupler; the second optical component is used to send a second wavelength optical signal to the second coupler; the third optical component is used to receive a fourth wavelength optical signal;
  • the four-wavelength optical signal carries service data; the first coupler is used to separate the first wavelength optical signal and the fourth wavelength optical signal from the second coupler, so that the first wavelength optical signal is sent to the first coupler and the fourth wavelength optical signal.
  • the signal is sent to the third optical component; the second coupler is used to couple the first wavelength optical signal and the second wavelength optical signal to obtain a multiplexed signal, send the multiplexed signal to the first optical fiber connection port, and receive the signal from the first optical fiber connection port.
  • the optical fiber connects the fourth wavelength optical signal of the port and sends the fourth wavelength optical signal to the first coupler.
  • the optical communication device includes a transmitting optical component and a receiving optical component. That is, the optical communication device includes a bidirectional optical component, on which the first optical component is integrated to form a three-way optical component. Thus, the communication function and visualization function of the optical communication device are integrated.
  • the above implementation provides another specific structure of the three-way optical component.
  • the optical communication device further includes: a third optical component, a first coupler, a second coupler, and a first optical fiber connection port;
  • the first optical component is connected to the first end of the second coupler, the second optical component is connected to the first end of the first coupler, the third optical component is connected to the second end of the first coupler, and the first optical component is connected to the first end of the first coupler.
  • the third end is connected to the second end of the second coupler, and the third end of the second coupler is connected to the first optical fiber connection port;
  • the first optical component is used to send a first wavelength optical signal to the second coupler; the second optical component is used to send a second wavelength optical signal to the first coupler; the third optical component is used to receive a fourth wavelength optical signal;
  • the four-wavelength optical signal carries service data; the first coupler is used to separate the second wavelength optical signal and the fourth wavelength optical signal from the second coupler, so that the second wavelength optical signal is sent to the second coupler and the fourth wavelength optical signal.
  • the signal is sent to the third optical component; the second coupler is used to couple the first wavelength optical signal and the second wavelength optical signal to obtain a multiplexed signal, send the multiplexed signal to the first optical fiber connection port, and receive the signal from the first optical fiber connection port.
  • the optical fiber connects the fourth wavelength optical signal of the port and sends the fourth wavelength optical signal to the first coupler.
  • the optical communication device includes a transmitting optical component and a receiving optical component. That is, the optical communication device includes a bidirectional optical component, on which the first optical component is integrated to form a three-way optical component. Thus, the communication function and visualization function of the optical communication device are integrated.
  • the above implementation provides another specific structure of the three-way optical component.
  • the first optical component and the first end of the first coupler are connected through the first optical transmission channel, and the second optical component and the second end of the second coupler are connected through the second The optical transmission channel is connected, and the third end of the first coupler is connected to the first optical fiber connection port through the third optical transmission channel.
  • a connection method between the first optical component and the first coupler, a connection method between the second optical component and the second coupler, and a connection method between the second coupler and the first coupler are shown.
  • a type of connection to a fiber optic connection port is shown.
  • the first optical transmission channel is a first optical fiber
  • the second optical transmission channel is a second optical fiber
  • the third optical transmission channel is a third optical fiber.
  • the optical transmission channel may be an optical fiber, thereby facilitating the implementation of the solution.
  • the optical communication device when the second optical component is an emitting optical component, the optical communication device further includes a first housing, a first optical transmission channel, a second optical transmission channel and a third optical transmission channel.
  • the channel is an optical transmission channel provided on the first housing; the first coupler is provided at the intersection of the first optical transmission channel and the second optical transmission channel; the first housing is provided with a third optical transmission channel connected to the first optical transmission channel.
  • the second optical component is an emitting light component
  • the first optical component and the second optical component can be integrated in the first housing, thereby achieving integration of the first optical component and the second optical component in the optical communication device. , realizing the integration of communication functions and visualization functions of optical communication devices.
  • the optical communication device when the second optical component is a receiving optical component, the optical communication device also It includes a first housing, the first optical transmission channel, the second optical transmission channel and the third optical transmission channel are optical transmission channels provided on the first housing; the first coupler is provided between the first optical transmission channel and the second optical transmission channel.
  • the junction of the transmission channels; the first housing is provided with a first optical sending port connected to the first optical transmission channel and an optical receiving port connected to the second optical transmission channel; the first optical component is packaged in the first optical sending port , the second optical component is packaged in the light receiving port.
  • the second optical component is a receiving optical component
  • the first optical component and the second optical component can be integrated in the first housing, thereby realizing the integration of the first optical component and the second optical component in the optical communication device. , realizing the integration of communication functions and visualization functions of optical communication devices.
  • the optical communication device when the second optical component is a receiving and receiving light component, the optical communication device further includes a first housing, a first optical transmission channel, a second optical transmission channel and a third optical transmission channel.
  • the channel is an optical transmission channel provided on the first housing; the first coupler is provided at the intersection of the first optical transmission channel and the second optical transmission channel; the first housing is provided with a third optical transmission channel connected to the first optical transmission channel.
  • the second optical component is a receiving and receiving light component
  • the first optical component and the second optical component can be integrated in the first housing, thereby realizing the integration of the first optical component and the second optical component in the optical communication device. , realizing the integration of communication functions and visualization functions of optical communication devices.
  • the first optical component and the first end of the first coupler are connected through the first optical transmission channel, and the second optical component and the second end of the first coupler are connected through the second The optical transmission channel is connected.
  • the third end of the first coupler is connected to the first end of the second coupler through the third optical transmission channel.
  • the second end of the second coupler is connected to the third optical component through the fourth optical transmission channel.
  • the third end of the second coupler is connected to the first optical fiber connection port through the fifth optical transmission channel.
  • a connection method of the first optical component, the second optical component, the third optical component, the first coupler, the second coupler and the first optical fiber connection port is shown, which facilitates the implementation of the solution.
  • the optical communication device further includes a first housing; a first optical transmission channel, a second optical transmission channel, a third optical transmission channel, a fourth optical transmission channel and a fifth optical transmission channel.
  • the transmission channel is an optical transmission channel provided on the first housing; the first coupler is arranged at the intersection of the first optical transmission channel and the second optical transmission channel, and the second coupler is arranged between the third optical transmission channel and the The junction of the fourth optical transmission channel; the first housing is provided with a first optical transmission port connected to the first optical transmission channel, a second optical sending port connected to the second optical transmission channel, and a second optical transmission port connected to the fourth optical transmission channel.
  • a channel-connected optical receiving port; the first optical component is packaged in the first optical transmitting port, the second optical component is packaged in the second optical transmitting port, and the third optical component is packaged in the optical receiving port.
  • the first optical component, the second optical component and the third optical component can be integrated in the first housing, thereby realizing the integration of the first optical component, the second optical component and the third optical component in the optical communication device.
  • the optical communication device further includes a second housing and a third housing; the first optical transmission channel and the second optical transmission channel are optical transmission channels provided on the second housing. ;
  • the fourth optical transmission channel and the fifth optical transmission channel are optical transmission channels provided on the third housing;
  • the third optical transmission channel is provided between the second housing and the third housing;
  • the first coupler is provided on the third housing
  • the second optical transmission channel is at the intersection of the first optical transmission channel and the second optical transmission channel.
  • the second coupler is disposed at the intersection of the third optical transmission channel and the fourth optical transmission channel.
  • the second housing is provided with a connector connected to the first optical transmission channel.
  • a first optical sending port and a second optical sending port connected to the second optical transmission channel; an optical receiving port connected to the fourth optical transmission channel is provided on the third housing; the first optical component is packaged in the first optical sending port , the second optical component is packaged in the second optical transmitting port, and the third optical component is packaged in the optical receiving port.
  • the first optical component and the second optical component can be integrated in the second housing, and the second housing and the third optical component can be integrated in the third housing, thereby achieving integration in the optical communication device.
  • the first optical component, the second optical component and the third Optical components realize the integration of communication functions and visualization functions of optical communication devices.
  • the first optical component and the first end of the first coupler are connected through the first optical transmission channel, and the third optical component and the second end of the first coupler are connected through the second The optical transmission channel is connected.
  • the third end of the first coupler is connected to the first end of the second coupler through the third optical transmission channel.
  • the second end of the second coupler is connected to the second optical component through the fourth optical transmission channel.
  • the third end of the second coupler is connected to the first optical fiber connection port through the fifth optical transmission channel.
  • another connection method of the first optical component, the second optical component, the third optical component, the first coupler, the second coupler and the first optical fiber connection port is shown, which facilitates the implementation of the solution. .
  • the optical communication device further includes a first housing; a first optical transmission channel, a second optical transmission channel, a third optical transmission channel, a fourth optical transmission channel and a fifth optical transmission channel.
  • the transmission channel is an optical transmission channel provided on the first housing; the first coupler is arranged at the intersection of the first optical transmission channel and the second optical transmission channel, and the second coupler is arranged at the intersection of the third optical transmission channel and the fourth optical transmission channel.
  • the junction of the transmission channels; the first housing is provided with a first optical sending port connected to the first optical transmission channel, an optical receiving port connected to the second optical transmission channel, and a second optical sending port connected to the fourth optical transmission channel.
  • the first optical component is packaged in the first optical transmitting port
  • the second optical component is packaged in the optical receiving port
  • the third optical component is packaged in the second optical transmitting port.
  • the first optical component, the second optical component and the third optical component can be integrated in the first housing, thereby realizing the integration of the first optical component, the second optical component and the third optical component in the optical communication device.
  • the optical communication device further includes a second housing and a third housing; the first optical transmission channel and the second optical transmission channel are optical transmission channels provided on the second housing. ;
  • the fourth optical transmission channel and the fifth optical transmission channel are optical transmission channels provided on the third housing;
  • the third optical transmission channel is provided between the second housing and the third housing;
  • the first coupler is provided on the third housing
  • the second optical transmission channel is at the intersection of the first optical transmission channel and the second optical transmission channel.
  • the second coupler is disposed at the intersection of the third optical transmission channel and the fourth optical transmission channel.
  • the second housing is provided with a connector connected to the first optical transmission channel.
  • a first optical sending port and an optical receiving port connected to the second optical transmission channel; a second optical sending port connected to the fourth optical transmission channel is provided on the third housing; the first optical component is packaged in the first optical sending port , the second optical component is packaged in the optical receiving port, and the third optical component is packaged in the second optical transmitting port.
  • the first optical component and the third optical component can be integrated in the second housing, and the second housing and the second optical component can be integrated in the third housing, thereby achieving integration in the optical communication device.
  • the first optical component, the second optical component and the third optical component realize the integration of communication function and visualization function of the optical communication device.
  • the first optical component and the first end of the second coupler are connected through a first optical transmission channel, and the second optical component and the first end of the first coupler are connected through The second optical transmission channel is connected.
  • the third optical component is connected to the second end of the first coupler through the third optical transmission channel.
  • the third end of the first coupler is connected to the second end of the second coupler through the fourth optical transmission channel.
  • Channel connection, the third end of the second coupler is connected to the first optical fiber connection port through the fifth optical transmission channel.
  • another connection method of the first optical component, the second optical component, the third optical component, the first coupler and the second coupler is shown to facilitate the implementation of the solution.
  • the optical communication device further includes a first housing, a first optical transmission channel, a second optical transmission channel, a third optical transmission channel, a fourth optical transmission channel and a fifth optical transmission channel.
  • the transmission channel is an optical transmission channel provided on the first housing; the first coupler is arranged at the intersection of the second optical transmission channel and the third optical transmission channel, and the second coupler is arranged at the intersection of the first optical transmission channel and the fourth optical transmission channel.
  • the junction of the transmission channels; the first housing is provided with a first optical sending port connected to the second optical transmission channel, an optical receiving port connected to the third optical transmission channel, and a second optical sending port connected to the first optical transmission channel.
  • the first optical component is packaged in the second optical transmitting port
  • the second optical component is packaged in the first optical transmitting port
  • the third optical component is packaged in the optical receiving port.
  • the first optical component, the second optical component and the third optical component can be integrated in the first housing, thereby realizing the integration of the first optical component, the second optical component and the third optical component in the optical communication device.
  • the optical communication device further includes a second housing and a third housing; the second optical transmission channel and the third optical transmission channel are optical transmission channels provided on the second housing. ;
  • the first optical transmission channel and the fifth optical transmission channel are optical transmission channels provided on the third housing;
  • the fourth optical transmission channel is provided between the second housing and the third housing;
  • the first coupler is provided on the third housing At the intersection of the second optical transmission channel and the third optical transmission channel, a second coupler is provided at the intersection of the first optical transmission channel and the fourth optical transmission channel; the second housing is provided with a connector connected to the second optical transmission channel.
  • a first optical sending port and an optical receiving port connected to the third optical transmission channel; a second optical sending port connected to the first optical transmission channel is provided on the third housing; the first optical component is packaged in the second optical sending port , the second optical component is packaged in the first optical transmitting port, and the third optical component is packaged in the optical receiving port.
  • the second optical component and the third optical component can be integrated in the second housing, and the second housing and the first optical component can be integrated in the third housing, thereby achieving integration in the optical communication device.
  • the first optical component, the second optical component and the third optical component realize the integration of communication function and visualization function of the optical communication device.
  • the first optical transmission channel is a first optical fiber
  • the second optical transmission channel is a second optical fiber
  • the third optical transmission channel is a third optical fiber
  • the fourth optical transmission channel is a third optical fiber.
  • the fifth optical transmission channel is the fifth optical fiber.
  • the first optical component, the second optical component, the third optical component, the first coupler and the second coupler can be connected through optical fibers, thereby realizing the integration of the first optical component in the optical communication device, Realize the integration of communication functions and visualization functions of optical-optical communication devices.
  • the first optical component includes a first laser diode (LD), and the anode of the first laser diode is powered by a rigid-flex board or a flexible board and the second optical component. Pin connections.
  • LD first laser diode
  • the power supply pin of the second optical component is connected to one end of the rigid-flex board or the flexible board, and the anode of the first laser diode is connected to the other end of the rigid-flex board or the flexible board. That is, power is taken from the power supply pin of the second optical component through a rigid-flex board or a flexible board, thereby supplying power to the first optical component.
  • the optical network equipment for example, OLT or ONU, where the optical communication device is deployed.
  • the first optical component further includes a power locking structure, the power locking structure is connected to the first laser diode, and the power locking structure is used to control the first wavelength optical signal output by the first laser diode. of power.
  • the power of the first wavelength optical signal can be locked through the power locking structure, which can ensure that the human eye can realize the visible light signal or the near-infrared light signal. , to achieve visual management of ODN networks.
  • locking the power of the first wavelength optical signal is beneficial to extending the life of the optical communication device. For example, if an optical communication device is integrated into a chip, the power of the first wavelength optical signal is locked at a constant value or within a range, which is beneficial to extending the life of the chip.
  • the power locking structure includes a backlight photodiode, a metal-oxide-semiconductor field-effect transistor (MOS) tube, an operational amplifier, a first resistor, the second resistor, the third resistor and the fourth resistor; the drain of the MOS tube is connected to the cathode of the first laser diode, the gate of the MOS tube is connected to the output port of the operational amplifier, and the source of the MOS tube is connected to one end of the first resistor.
  • MOS metal-oxide-semiconductor field-effect transistor
  • the other end of the first resistor is grounded; the cathode of the backlight photodiode is connected to the power supply pin, the anode of the backlight photodiode is connected in parallel with one end of the second resistor and the negative input port of the operational amplifier, and the other end of the second resistor is connected to ground; One end of the third resistor and one end of the fourth resistor are connected in parallel to the positive input port of the operational amplifier, the other end of the third resistor is connected to the power supply pin, and the other end of the fourth resistor is connected to ground.
  • a possible circuit structure of a power locking structure in which a low driving capability operational amplifier and a MOS tube jointly drive the first laser diode.
  • the above power locking structure utilizes a negative feedback loop formed by optical coupling between the first laser diode and the backlight photodiode to achieve power on the first wavelength optical signal output by the first laser diode. rate control.
  • the power locking structure includes a backlight photodiode, an operational amplifier, a first resistor, a second resistor, a third resistor and a fourth resistor; one end of the first resistor is connected to the first laser diode
  • the negative electrode is connected, the other end of the first resistor is connected to the output port of the operational amplifier;
  • the negative electrode of the backlight photodiode is connected to the power supply pin, the positive electrode of the backlight photodiode is connected in parallel with one end of the second resistor and the negative input port of the operational amplifier,
  • the other end of the second resistor is connected to ground; one end of the third resistor and one end of the fourth resistor are connected in parallel with the positive input port of the operational amplifier, the other end of the third resistor is connected to the power supply pin, and the other end of the fourth resistor is connected to ground.
  • the first laser diode is directly driven through an operational amplifier with strong driving capability.
  • the above power locking structure utilizes a negative feedback loop formed by optical coupling between the first laser diode and the backlight photodiode to achieve power control of the first wavelength optical signal output by the first laser diode.
  • the power locking structure further includes a capacitor, one end of the capacitor is connected to the output port of the operational amplifier, and the other end of the capacitor is connected to the negative input port of the operational amplifier.
  • a capacitor is connected between the output port and the negative input port of the operational amplifier to prevent self-oscillation of the operational amplifier.
  • the first optical component and the second optical component are packaged in the same coaxial tube shell (transistor-outline can, TO-CAN); or, the first optical component and the second optical component are packaged in the same coaxial tube (transistor-outline can, TO-CAN);
  • the three optical components are packaged in the same coaxial tube; or the second optical component and the third optical component are packaged in the same coaxial tube.
  • any two optical components among the first optical component, the second optical component and the third optical component in the optical communication device may be packaged in the same coaxial tube housing.
  • the first optical component and the second optical component are packaged in the same coaxial tube, thereby achieving dual emission of visible light or near-infrared light and communication light in the same coaxial tube.
  • the first optical component and the third optical component are packaged in the same coaxial tube, thereby realizing the integration of visible light or near-infrared light and communication light transceiver in the same coaxial tube housing.
  • the second optical component and the third optical component are packaged in the same coaxial tube, thereby achieving integrated communication optical transceiver in the same coaxial tube.
  • the first optical component includes a first laser diode (laser diode, LD), the second optical component includes a second laser diode, and the third optical component includes an avalanche photodiode ( avalanche photodiode, APD).
  • LD laser diode
  • APD avalanche photodiode
  • the second wavelength optical signal and the third wavelength optical signal are both communication optical signals.
  • the first wavelength optical signal is used for optical fiber detection.
  • a second aspect of the present application provides an optical network device, including the optical communication device in the technical solution of the first aspect.
  • the optical network device may be an OLT or an ONU.
  • Figure 1 is a schematic diagram of the network structure of the PON scenario according to the embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a light-emitting and receiving component according to an embodiment of the present application
  • Figure 3 is a schematic structural diagram of the emitting light component and the receiving light component being packaged in a coaxial tube according to the embodiment of the present application;
  • Figure 4 is a schematic structural diagram of an optical communication device according to an embodiment of the present application.
  • Figure 5 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 6 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 7 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 8 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 9 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 10 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 11 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 12 is a schematic diagram of the first housing according to the embodiment of the present application.
  • Figure 13 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 14 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 15 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 16 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 17 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 18 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 19 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 20 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 21 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 22 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 23 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 24 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • Figure 25 is a schematic diagram of the power locking structure of the embodiment of the present application.
  • Figure 26 is another schematic diagram of the power locking structure according to the embodiment of the present application.
  • Embodiments of the present application provide an optical communication device and optical network equipment.
  • the optical communication device integrates a first optical component and a second optical component.
  • the first optical component is used to send a first wavelength optical signal.
  • the first wavelength optical signal is a visible light signal or a near-infrared light signal.
  • the second optical component is used to send a second wavelength optical signal and/or receive a third wavelength optical signal, and the second wavelength optical signal and the third wavelength optical signal carry service data.
  • the communication function and visualization function of the optical communication device are integrated.
  • Passive optical network refers to the optical distribution network (optical distribution network) between the optical line terminal (OLT) and the optical network unit (ONU). ODN) without any active electronics.
  • PON systems include, for example, next-generation PON (next-generation PON, NG-PON), NG-PON, etc.
  • ODN optical distribution network
  • Wavelength division multiplexing is the combination of two or more optical carrier signals (carrying various information) of different wavelengths at the transmitting end through a multiplexer (also called a combiner) technology of transmitting together and coupling to the same optical fiber of the optical line; at the receiving end, the optical carriers of various wavelengths are separated by a demultiplexer (also called a wavelength splitter or a demultiplexer), and then The optical receiver performs further processing to restore the original signal.
  • This technology of transmitting two or many optical signals of different wavelengths simultaneously in the same optical fiber is called wavelength division multiplexing.
  • Emitting light component The function of the emitting light component is to convert electrical signals into optical signals and input them into optical fibers for transmission.
  • Receiving optical component The function of the receiving optical component is to receive the optical signal transmitted from the optical fiber and convert it into an electrical signal.
  • Receive and receive light components mainly include emitting light components and receiving light components.
  • This application is mainly used in passive optical networks (PON). Under the overall situation of comprehensive popularization of optical networks, a huge number of communication equipment is required, such as OLT and ONU, etc. Related The communication equipment is mainly composed of optical modules (also called optical communication devices), single boards and chassis on which the optical modules are placed. Each optical module corresponds to an ODN and serves a certain number of users (each ONU represents one user). As a key component in the optical network, the optical modules in OLT and ONU are responsible for photoelectric conversion and transmission of network signals, which is the basis for normal communication of the entire network.
  • optical modules also called optical communication devices
  • Each optical module corresponds to an ODN and serves a certain number of users (each ONU represents one user).
  • the optical modules in OLT and ONU are responsible for photoelectric conversion and transmission of network signals, which is the basis for normal communication of the entire network.
  • the optical communication device may include a unidirectional optical component, such as a transmitting light component or a receiving light component, or a bidirectional optical component, such as a receiving and receiving light component.
  • a unidirectional optical component such as a transmitting light component or a receiving light component
  • a bidirectional optical component such as a receiving and receiving light component.
  • the following is a schematic structural diagram of a possible light-emitting and receiving component with reference to FIG. 2 .
  • the light-receiving component includes a housing 201, a transmitting light component 202 embedded in the housing 201, a receiving light component 203, a WDM structure 204 (multiplexer or demultiplexer) provided in the housing 201, and a light-emitting component connected to the housing 201.
  • the optical fiber at the end of 201 connects the ferrule 205 and the optical fiber 206 .
  • the function of the light emitting component 202 is to convert the electrical signal into an optical signal and input it into the optical fiber 206 for transmission.
  • the function of the receiving optical component 203 is to receive the optical signal transmitted by the optical fiber and convert it into an electrical signal.
  • the WDM structure 204 since the wavelengths of the transmitted and received light are different, it is necessary to place the WDM structure 204 in the metal shell. These two types of wavelengths are separated, and the function of the WDM structure 204 is to transmit light of certain wavelengths while reflecting light of other wavelengths.
  • the light transmission path is shown by the solid arrow in Figure 2.
  • the light emitted by the emitting optical component 202 is transmitted straight through the WDM structure 204, and then enters the optical fiber 206 for transmission; the light receiving path is shown by the dotted arrow in Figure 2.
  • the light is transmitted through the optical fiber 206.
  • the light-transmitting and transmitting components shown in FIG. 2 include optical fiber connecting ferrules 205 and optical fibers 206. In practical applications, the light-transmitting and transmitting components may not include the optical fiber connecting ferrules 205 and optical fibers 206.
  • different optical components can be packaged in the form of a coaxial tube (transistor-outline can, TO-CAN).
  • the following takes the emitting light component and the receiving light component that can be packaged in the form of a coaxial tube shell (transistor-outline can, TO-CAN) as an example to introduce the packaging form of the coaxial tube shell.
  • the emitting light component and the receiving light component can be packaged in the form of a coaxial tube shell. They are both composed of a metal base with pins and a tube cap with a lens. Laser diode (laser diode, LD) and photodiode (PD) are placed on the metal base in a certain form.
  • the pins on the base are connected to the signal electrodes on the LD and the trans-impedance amplifier (TIA) using gold wires, so that external electrical signals can be transmitted to the LD for electro-optical conversion.
  • the pins and the base are separated by glass glue. The two are electrically isolated.
  • the entire base is used as a ground plane and is connected to the external ground through a special pin connected to the base. , the various connections mentioned above can be achieved by gold wire welding.
  • the emitting light component and the receiving light component are connected to the peripheral circuit through the transceiver pins, and then installed into the optical module housing to form the optical module structure.
  • a red light pen is mainly used to access the optical fiber to determine whether the optical fiber is broken to achieve visual management of the ODN network.
  • the red light pen is independent of the PON network and cannot achieve automated visual management of the ODN network.
  • the red light pen can only be used to detect whether the optical fiber is broken, and the optical fiber detection function is relatively single.
  • This application provides a corresponding technical solution to detect whether the optical fiber in the ODN network is occupied, idle, or fiber-broken through the first wavelength optical signal emitted by the first optical component in the optical communication device. Realize automatic detection of optical fibers in the ODN network, realize automated visual management of the ODN network, and make the optical fiber detection function more comprehensive.
  • the second optical component is used to send a second wavelength optical signal and/or receive a third wavelength optical signal, and the second wavelength optical signal and the third wavelength optical signal carry service data.
  • the communication function and visualization function of the optical communication device are integrated.
  • An embodiment of the present application provides an optical communication device.
  • the optical communication device includes: a first optical component and a second optical component.
  • the first optical component is used to send a first wavelength optical signal.
  • the first wavelength light signal is a visible light signal or a near-infrared light signal.
  • the second optical component is used to send a second wavelength optical signal and/or receive a third wavelength optical signal, and the second wavelength optical signal and the third wavelength optical signal carry service data.
  • the first wavelength optical signal is used for optical fiber detection.
  • the wavelength of the first wavelength optical signal may be a wavelength of light that can be identified by human eyes.
  • the wavelength of visible light is between 360 nanometers and 830 nanometers
  • the wavelength of near-infrared light is between 780 nanometers and 1100 nanometers.
  • the wavelength of the first wavelength optical signal may be one of visible light or near-infrared light.
  • the wavelength of the first wavelength optical signal is 650 nanometers.
  • the first wavelength optical signal is used to detect whether the optical fiber is idle, occupied, or broken.
  • the optical communication device is deployed in an OLT, and the first wavelength optical signal can be used to detect whether the optical fiber between the OLT and the ODN network is idle, occupied, or broken.
  • the optical communication device is deployed in an ONU, and the first wavelength optical signal can be used to detect whether the optical fiber between the ONU and the ODN network is idle, occupied, or broken.
  • the second wavelength optical signal and the third wavelength optical signal may be communication optical signals.
  • the wavelength of communication light is between 1260 nanometers and 1600 nanometers.
  • the wavelength of the second wavelength optical signal is between 1260 nanometers and 1330 nanometers
  • the wavelength of the third wavelength optical signal is between 1340 nanometers and 1600 nanometers.
  • the wavelength of the second wavelength optical signal is between 1340 nanometers and 1600 nanometers
  • the wavelength of the third wavelength optical signal is between 1260 nanometers and 1330 nanometers.
  • the second light component may be a light-emitting component, a light-receiving component, or a light-receiving component.
  • the optical communication device is deployed in an OLT
  • the second wavelength optical signal may be the downlink communication optical signal sent by the OLT to the ONU.
  • the third wavelength optical signal is the uplink communication optical signal that the OLT receives from the ONU.
  • the optical communication device is deployed in an ONU, and the second wavelength optical signal may be an uplink communication optical signal sent by the ONU to the OLT.
  • the third wavelength optical signal is the ONU receiving the downlink communication optical signal sent from the OLT.
  • the optical communication device further includes a first coupler and a first optical fiber connection port.
  • the first optical component is connected to the first end of the first coupler
  • the second optical component is connected to the second end of the first coupler
  • the third end of the first coupler is connected to the first optical fiber connection port.
  • the first optical component is connected to the first end of the first coupler through the first optical transmission channel
  • the second optical component is connected to the second end of the first coupler through the second optical transmission channel
  • the first coupler The third end is connected to the first optical fiber connection port through a third optical transmission channel.
  • the function of the first coupler is introduced in conjunction with the function of the second optical component.
  • the coupling mode of the first coupler may be a wavelength division coupling mode, a power division coupling mode, or a polarization division coupling mode, which is not specifically limited in this application.
  • the first coupler may be a WDM structure or a prism.
  • Method 1 The first optical transmission channel is the first optical fiber, the second optical transmission channel is the second optical fiber, and the third optical transmission channel is the third optical fiber.
  • Figure 4 is a schematic structural diagram of an optical communication device according to an embodiment of the present application.
  • the optical communication device 400 includes a first optical component 401 , a second optical component 402 , a first coupler 403 and a first optical fiber connection port 404 .
  • the first optical component 401 is connected to the first end of the first coupler 403 through the first optical fiber 405.
  • the second optical component 402 is connected to the second end of the first coupler 403 through the second optical fiber 406.
  • the third end of the first coupler 403 is connected to the first optical fiber connection port 404 through a third optical fiber 407 .
  • the first optical component 401, the second optical component 402 and the first coupler 403 are connected through optical fibers, and this connection method may be called an external coupling connection.
  • the first optical component 401 can be connected to the first end of the first coupler 403 through the optical fiber connection port in the first optical component 401, and the second optical component 402 can be connected through the optical fiber in the second optical component 402.
  • the port is connected to the second end of the first coupler 403 .
  • the function of the first coupler 403 will be introduced below in conjunction with the type of the second optical component 402 .
  • the second optical component 402 is a receiving and receiving light component.
  • the first optical component 401 is used to send the first wavelength optical signal to the first coupler 403 through the first optical fiber 405.
  • the second optical component 402 is used to send a second wavelength optical signal to the first coupler 403 through the second optical fiber 406, and to receive a third wavelength optical signal through the second optical fiber 406.
  • the first coupler 403 is used to receive the first wavelength optical signal from the first optical component 401 through the first optical fiber 405 and the second wavelength optical signal from the second optical component 403 through the second optical fiber 406; and then convert the first wavelength optical signal
  • the optical signal and the second wavelength optical signal are coupled to obtain a multiplexed signal, and the multiplexed signal is sent to the first optical fiber connection port 407 through the third optical fiber 407 .
  • the first coupler 403 is used to receive the third wavelength optical signal from the first optical fiber connection port 404 through the third optical fiber 407, and to send the third wavelength optical signal to the second optical component 402 through the second optical fiber 406.
  • the second light component 402 is an emitting light component.
  • the first optical component 401 is used to send the first wavelength optical signal to the first coupler 403 through the first optical fiber 405.
  • the second optical component 402 is used to send the second wavelength optical signal to the first coupler 403 through the second optical fiber 406.
  • the first coupler 403 is used to receive the first wavelength optical signal sent from the first optical component 401 through the first optical fiber 405 and to receive the second wavelength optical signal from the second optical component 403 through the second optical fiber 406;
  • the wavelength optical signal and the second wavelength optical signal are coupled to obtain a multiplexed signal, and the multiplexed signal is sent to the first optical fiber connection port 407 through the third optical fiber 407 .
  • This enables the optical communication device 400 to transmit the multiplexed signal through the optical fiber connected to the first optical fiber connection port 404 .
  • the second optical component 402 is a receiving optical component.
  • the first optical component 401 is used to send the first wavelength optical signal to the first coupler 403 through the first optical fiber 405.
  • the second optical component 402 is used to receive the third wavelength optical signal through the second optical fiber 406.
  • the first coupler 403 is used to receive the third wavelength optical signal from the first optical fiber connection port 404 through the third optical fiber 407, and to send the third wavelength optical signal to the second optical component 402 through the second optical fiber 406.
  • the first optical transmission channel, the second optical transmission channel and the third optical transmission channel are optical transmission channels provided in the first housing. Specifically, they can be understood as pipe spaces in the first housing for transmission of optical signals.
  • FIG. 5 is a schematic structural diagram of an optical communication device according to an embodiment of the present application.
  • the optical communication device 500 includes a first optical component 501 , a second optical component 502 , a first coupler 503 , a first optical fiber connection port 504 and a first housing 505 .
  • the first housing 505 is provided with a first optical transmission channel 506, a second optical transmission channel 507 and a third optical transmission channel 508.
  • the first coupler 503 is disposed at the intersection of the first optical transmission channel 506 and the second optical transmission channel 507 .
  • the first housing 505 is provided with a first optical transmission port connected to the first optical transmission channel 506 .
  • the first optical component 501 is packaged in the first optical transmission port.
  • the first housing 505 is provided with an optical transceiving port connected to the second optical transmission channel 507 .
  • the second optical component 502 is packaged in the optical transceiver port.
  • the first optical component 501 is used to send the first wavelength optical signal to the first coupler 503 through the first optical transmission channel 506.
  • the second optical component 502 is used to send a second wavelength optical signal to the first coupler 503 through the second optical transmission channel 506 and receive a third wavelength optical signal through the second optical transmission channel 506 .
  • the first coupler 503 is used to couple the first wavelength optical signal and the second wavelength optical signal to obtain a multiplexed signal, and send the multiplexed signal to the first optical fiber connection port 504 through the third optical transmission channel 508 .
  • the first coupler 503 is used to separate the first wavelength optical signal and the third wavelength optical signal from the first optical fiber connection port 504, so that the first wavelength optical signal is sent to the first optical fiber connection port 504 through the third optical transmission channel 508 and The third wavelength optical signal is sent to the second optical component 502 through the second optical transmission channel 506.
  • the first housing 505 is provided with a second optical transmission port connected to the second optical transmission channel 507 .
  • the second optical component 502 is packaged in the second optical transmission port.
  • the first optical component 501 is used to send the first wavelength optical signal to the first coupler 503 through the first optical transmission channel 506.
  • the second optical component 502 is used to send the second wavelength optical signal to the first coupler 503 through the second transmission channel 507.
  • the first coupler is used to receive the first wavelength optical signal through the first optical transmission channel 506 and the second wavelength optical signal through the second optical transmission channel 507, and then couple the first wavelength optical signal and the second wavelength optical signal to obtain a combined result. wave signal, and sends the combined wave signal to the first optical fiber connection port 504 through the third optical transmission channel 508.
  • the first housing 505 is provided with a light receiving port connected to the second optical transmission channel 507 .
  • the second optical component 502 is packaged in the light receiving port.
  • the first optical component 501 is used to send the first wavelength optical signal to the first coupler 503 through the first optical transmission channel 506.
  • the second optical component 502 is used to receive the third wavelength optical signal through the second optical transmission channel 507 .
  • the first coupler 503 is used to receive the third wavelength optical signal from the first optical fiber connection port 504 through the third optical transmission channel 508 and to send the third wavelength optical signal to the second optical component 502 through the second optical transmission channel 507, and receiving the first wavelength optical signal through the first optical transmission channel 506 and sending the first wavelength optical signal to the first optical fiber connection port 504 through the third optical transmission channel 508 .
  • the first housing may be a coaxial tube housing, that is, the first optical component and the second optical component are integrated into the same coaxial tube housing. This achieves the integration of visible light or near-infrared light and communication light in the same coaxial tube.
  • the first optical component includes a first laser diode.
  • the second optical component is an emitting light component
  • the second optical component includes a second laser diode, and the first laser diode and the second laser diode are packaged in the same coaxial tube housing.
  • the first optical component includes a first laser diode.
  • the second light component is a receiving light component
  • the second light component includes an avalanche photodiode.
  • the first laser diode and the avalanche photodiode are packaged in the same coaxial tube shell.
  • the first housing is a metal housing.
  • the metal shell can be a metal square shell with corresponding circular openings opening on six sides of the metal square shell.
  • the first optical component is located in the opening on the first surface, and the second optical component is located in the opening on the second surface.
  • the first optical fiber connection port may be located at the opening of the third side.
  • the second light component is a light-receiving component.
  • the technical solution of the present application can be understood as adding a first optical component to the openings on the remaining four sides of the metal housing on the basis of a conventional two-way optical component to form a three-way optical component.
  • the communication function and the visualization function of the optical communication device are realized, and the communication function and the visualization function are integrated.
  • the first optical component can be understood as a visible light emitting coaxial tube or a near-infrared light emitting coaxial tube
  • the second optical component is a communication light emitting coaxial tube or a communication light receiving coaxial tube.
  • communication optical transceiver coaxial tube shell Two coaxial tube shells are integrated into the first shell.
  • the following describes two possible structures of the optical communication device in which the second optical component is a light-receiving component and the first coupler is a first wavelength division multiplexing structure in the optical communication device with reference to FIG. 6 and FIG. 7 .
  • Figure 6 is another schematic structural diagram of an optical communication device according to an embodiment of the present application.
  • the optical communication device 600 includes a first optical component 601 , a light-receiving component 602 , a first wavelength division multiplexing structure 603 , a first optical fiber connection port 604 and a first housing 605 .
  • the first housing 605 is provided with a first optical transmission channel 606, a second optical transmission channel 607 and a third optical transmission channel 608.
  • the first wavelength division multiplexing structure 603 is disposed at the intersection of the first optical transmission channel 606 and the second optical transmission channel 607 .
  • the first housing 605 is provided with a first optical transmission port connected to the first optical transmission channel 606 and an optical transceiver port connected to the second optical transmission channel 607 .
  • the first optical component 601 is packaged in the first optical transmission port.
  • the optical transceiver component 602 is packaged in the optical transceiver port.
  • the first optical component 601 is connected to the first wavelength division multiplexing structure 603 through the first optical transmission channel 606.
  • the light-receiving component 602 is connected to the first wavelength division multiplexing structure 603 through the second optical transmission channel 607.
  • the first wavelength division multiplexing structure 603 is connected to the first optical fiber connection port 604 through the third optical transmission channel 608.
  • the first optical component 601 is used to emit a first wavelength optical signal, and the first wavelength optical signal is emitted to the first wavelength division multiplexing structure 603 through the first optical transmission channel 606 .
  • the light-receiving component 602 is used to transmit the second wavelength optical signal and transmit the light signal through the second optical signal.
  • the transmission channel 607 receives the third wavelength optical signal, and the second wavelength optical signal is transmitted to the first wavelength division multiplexing structure 603 through the second optical transmission channel 607.
  • the first wavelength division multiplexing structure 603 is used to reflect the first wavelength optical signal to the first optical fiber connection port 604, transmit the second wavelength optical signal to the first optical fiber connection port 604, and transmit the third wavelength optical signal to the transceiver.
  • the first wavelength division multiplexing structure 603 multiplexes the first wavelength optical signal and the second wavelength optical signal to obtain a multiplexed signal, and transmits the multiplexed signal to the first optical fiber connection through the third optical transmission channel 608 Port 604.
  • the first wavelength division multiplexing structure 603 receives the third wavelength optical signal from the first optical fiber connection port 604 through the third optical transmission channel 608, and transmits it to the light-receiving and receiving component 602 through the second optical transmission channel 607.
  • FIG. 7 is another schematic structural diagram of an optical communication device according to an embodiment of the present application.
  • the structure of the optical communication device shown in FIG. 7 is similar to that of the optical communication device shown in FIG. 6 , except that the first optical component 701 and the light-receiving component 702 exchange positions.
  • the optical communication device 700 is shown in FIG. 7 .
  • the first optical component 701 is used to emit a first wavelength optical signal, and the first wavelength optical signal is emitted to the first wavelength division multiplexing structure 703 through the first optical transmission channel 706 .
  • the light-receiving component 702 is used to transmit a second wavelength optical signal and receive a third wavelength optical signal through the second optical transmission channel 707.
  • the second wavelength optical signal is transmitted to the first wavelength division multiplexing structure 703 through the second optical transmission channel 707. .
  • the first wavelength division multiplexing structure 703 is used to transmit the first wavelength optical signal to the first optical fiber connection port 704, transmit the second wavelength optical signal to the first optical fiber connection port 704, and reflect the third wavelength optical signal to the transceiver.
  • the first wavelength division multiplexing structure 703 multiplexes the first wavelength optical signal and the second wavelength optical signal to obtain a multiplexed signal, and transmits the multiplexed signal to the first optical fiber connection through the third optical transmission channel 708 Port 704.
  • the first wavelength division multiplexing structure 703 receives the third wavelength optical signal from the first optical fiber connection port 704 through the optical transmission channel 708, and then reflects the third wavelength optical signal.
  • the light-receiving component 602 is located on the reflected light path, so that the third wavelength optical signal is sent to the light-receiving component 702 through the second optical transmission channel 707 .
  • the optical communication device can be integrated with the light-receiving component and the first optical component.
  • the optical signal of the first wavelength emitted by the first optical component is used to detect the optical fiber of the ODN network.
  • the first wavelength optical signal is used to detect whether the optical fiber in the ODN network is occupied, whether it is idle, or whether the fiber is broken, etc. Realize automatic detection of optical fibers in the ODN network and realize automatic and visual management of the ODN network.
  • the second optical component is a light-receiving component, and the light-receiving component is used to send a second wavelength optical signal and receive a third wavelength optical signal.
  • the second wavelength optical signal and the third wavelength optical signal are communication optical signals.
  • the communication function and visualization function of the optical communication device are integrated.
  • the second optical component is a transmitting optical component and the first coupler is a first wavelength division multiplexing structure in the optical communication device with reference to Figures 8 and 9.
  • Figure 8 is another schematic structural diagram of an optical communication device according to an embodiment of the present application.
  • the optical communication device 800 includes a first optical component 801 , a transmitting optical component 802 , a first wavelength division multiplexing structure 803 , a first optical fiber connection port 804 and a first housing 805 .
  • the first housing 805 is provided with a first optical transmission channel 806, a second optical transmission channel 807 and a third optical transmission channel 808.
  • the first wavelength division multiplexing structure 803 is disposed at the intersection of the first optical transmission channel 806 and the second optical transmission channel 807 .
  • the first housing 805 is provided with a first optical transmission port connected to the first optical transmission channel 806 and a second optical transmission port connected to the second optical transmission channel 807 .
  • the first optical component 801 is packaged in the first optical transmission port.
  • the emitting light component 802 is packaged in the second light transmitting port.
  • the first optical component 801 is connected to the first wavelength division multiplexing structure 803 through the first optical transmission channel 806, and the emitting optical component 802 is connected to the first wavelength division multiplexing structure 803 through the second optical transmission channel 807.
  • the first wavelength division multiplexing structure 803 is connected to the first optical fiber connection port 804 through the third optical transmission channel 808.
  • the first optical component 801 is used to emit a first wavelength optical signal, and the first wavelength optical signal is emitted to the first wavelength division multiplexing structure 803 through the first optical transmission channel 806 .
  • the emitting light component 802 is used to emit a second wavelength optical signal, and the second wavelength optical signal is emitted to the first wavelength division multiplexing structure 803 through the second optical transmission channel 807 .
  • the first wavelength division multiplexing structure 803 is used to multiplex the first wavelength optical signal and the second wavelength optical signal to obtain a multiplexed signal, and transmit the multiplexed signal to the first optical fiber connection port through the third optical transmission channel 808 804.
  • the first wavelength division multiplexing structure 803 is used to reflect the first wavelength optical signal to the first optical fiber connection port 804 and transmit the second wavelength optical signal to the first optical fiber connection port 804 .
  • Figure 9 is another schematic structural diagram of an optical communication device according to an embodiment of the present application.
  • the structure of the optical communication device shown in FIG. 9 is similar to that of the optical communication device shown in FIG. 8 , except that the first optical component 901 and the emitting light component 902 exchange positions.
  • the optical communication device 900 is shown in Figure 9.
  • the first optical component 901 is used to emit a first wavelength optical signal, and the first wavelength optical signal is emitted to the first wavelength division multiplexing structure 903 through the first optical transmission channel 906 .
  • the transmitting component 902 is used to transmit a second wavelength optical signal, and the second wavelength optical signal is transmitted to the first wavelength division multiplexing structure 903 through the second optical transmission channel 907.
  • the first wavelength division multiplexing structure 903 is used to transmit the first wavelength optical signal to the first optical fiber connection port 904 and reflect the second wavelength optical signal to the first optical fiber connection port 904 .
  • the first wavelength division multiplexing structure 903 multiplexes the first wavelength optical signal and the second wavelength optical signal to obtain a multiplexed signal, and transmits the multiplexed signal to the first optical fiber connection through the third optical transmission channel 908 Port 904.
  • the following describes two possible structures of the optical communication device in which the second optical component is a receiving optical component and the first coupler is a first wavelength division multiplexing structure in the optical communication device with reference to FIG. 10 and FIG. 11 .
  • Figure 10 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • the optical communication device 1000 includes a first optical component 1001 , a receiving optical component 1002 , a first wavelength division multiplexing structure 1003 , a first optical fiber connection port 1004 and a first housing 1005 .
  • the first housing 1005 is provided with a first optical transmission channel 1006, a second optical transmission channel 1007 and a third optical transmission channel 1008.
  • the first wavelength division multiplexing structure 1003 is disposed at the intersection of the first optical transmission channel 1006 and the second optical transmission channel 1007.
  • the first housing 1005 is provided with a first optical transmitting port connected to the first optical transmission channel 1006 and a receiving optical port connected to the second optical transmission channel 1007 .
  • the first optical component 1001 is packaged in the first optical transmission port.
  • the light-transmitting component 1002 is packaged in the light-receiving port.
  • the first optical component 1001 is connected to the first wavelength division multiplexing structure 1003 through the first optical transmission channel 1006, and the receiving optical component 1002 is connected to the first wavelength division multiplexing structure 1003 through the second optical transmission channel 1007.
  • the first wavelength division multiplexing structure 1003 is connected to the first optical fiber connection port 1004 through the third optical transmission channel 1008.
  • the first optical component 1001 is used to emit a first wavelength optical signal, and the first wavelength optical signal is emitted to the first wavelength division multiplexing structure 1003 through the first optical transmission channel 1006.
  • the receiving optical component 1002 is used to receive the third wavelength optical signal through the second optical transmission channel 1007.
  • the first wavelength division multiplexing structure 1003 is used to reflect the first wavelength optical signal to the first optical fiber connection port 1004 and transmit the third wavelength optical signal to the receiving optical component 1002.
  • the first wavelength division multiplexing structure 1003 reflects the first wavelength optical signal to the first optical fiber connection port 1004.
  • the first wavelength division multiplexing structure 1003 receives the third wavelength optical signal from the first optical fiber connection port 1004 through the third optical transmission channel 1008, and transmits the third wavelength optical signal to the receiving optical component 1002 through the second optical transmission channel 1007. .
  • Figure 11 is another schematic structural diagram of an optical communication device according to an embodiment of the present application.
  • the structure of the optical communication device shown in FIG. 11 is similar to that of the optical communication device shown in FIG. 10 , except that the first optical component 1101 and the receiving optical component 1102 exchange positions. The details are shown in Figure 11.
  • the first optical component 1101 is used to emit a first wavelength optical signal, and the first wavelength optical signal is emitted to the first wavelength division multiplexing structure 1103 through the first optical transmission channel 1106 .
  • the receiving component 1102 is used to receive the third wavelength optical signal through the second optical transmission channel 1107.
  • the first wavelength division multiplexing structure 1103 is used to reflect the first wavelength optical signal to the first optical fiber connection port 1104 and transmit the third wavelength optical signal to the receiving optical component 1102.
  • the first wavelength division multiplexing structure 1103 transmits the first wavelength optical signal to the first optical fiber connection port 1104 through the third optical transmission channel 1108.
  • the first wavelength division multiplexing structure 1103 receives the third wavelength optical signal from the first optical fiber connection port 1104 through the third optical transmission channel 1108, and transmits the third wavelength optical signal to the receiving component 1102 through the second optical transmission channel 1107.
  • the optical communication device can integrate a unidirectional optical component and a first optical component.
  • the first optical component is used to send a first wavelength optical signal
  • the first wavelength optical signal is a visible light signal or a near-infrared light signal.
  • the detection of the optical fiber through the first wavelength optical signal emitted by the first optical component in the optical communication device is achieved.
  • the second optical component is used to send a second wavelength optical signal or receive a third wavelength optical signal.
  • the second wavelength optical signal and the third wavelength optical signal may be communication optical signals, thereby integrating the communication function and visualization function of the optical communication device.
  • the optical communication device is deployed in an OLT, and the OLT emits a first wavelength optical signal through a first optical component in the optical communication device.
  • the first wavelength optical signal can be used to connect the OLT to the ODN network (for example, an optical splitter). fiber for testing.
  • the optical communication device is deployed on the ONU, and the ONU emits a first wavelength optical signal through a first optical component in the optical communication device.
  • the first wavelength optical signal can be used to connect the ONU to the ODN network (for example, an optical splitter).
  • An optical fiber (which may include at least one optical fiber) is used for detection.
  • the red light leakage on a certain optical fiber is obvious after the first optical component emits the first wavelength optical signal, then it can be known that the optical fiber is broken. After the first optical component emits an optical signal of the first wavelength, if the corresponding port of the optical fiber flashes red at the port on the splitter side, it means that the optical fiber is occupied. If the port corresponding to the optical fiber on the splitter side does not light up, it means that the optical fiber is idle.
  • An embodiment of the present application provides another optical communication device.
  • the optical communication device includes: a first optical component, a second optical component, a third optical component, a first coupler, a second coupler and a first optical fiber connection port.
  • the coupling mode of the second coupler is similar to the coupling mode of the first coupler.
  • Connection method 1 The first optical component is connected to the first end of the first coupler, the second optical component is connected to the second end of the first coupler, and the third end of the first coupler is connected to the first end of the second coupler.
  • the second end of the second coupler is connected to the third optical component, and the third end of the second coupler is connected to the first optical fiber connection port.
  • the first optical component is connected to the first end of the first coupler through the first optical transmission channel
  • the second optical component is connected to the second end of the first coupler through the second optical transmission channel
  • the first coupler The third end of the second coupler is connected to the first end of the second coupler through the third optical transmission channel
  • the second end of the second coupler is connected to the third optical component through the fourth optical transmission channel
  • the third end of the second coupler It is connected to the first optical fiber connection port through the fifth optical transmission channel.
  • Connection method two the second optical component is connected to the first end of the first coupler, and the third optical component is connected to the first end of the first coupler.
  • the second end is connected, the third end of the first coupler is connected to the first end of the second coupler, the second end of the second coupler is connected to the first optical component, the third end of the second coupler is connected to the first Fiber optic connection port connection.
  • the second optical component is connected to the first end of the first coupler through the first optical transmission channel
  • the third optical component is connected to the second end of the first coupler through the second optical transmission channel.
  • the third end of the coupler is connected to the first end of the second coupler through a third optical transmission channel
  • the second end of the second coupler is connected to the first optical component through a fourth optical transmission channel
  • the third end of the second coupler is connected to the first optical component through a fourth optical transmission channel.
  • the three ends are connected to the first optical fiber connection port through the fifth optical transmission channel.
  • the second optical component is a transmitting light component
  • the third optical component is a receiving light component.
  • the second optical component is used to send a second wavelength optical signal.
  • the third optical component is used to receive the fourth wavelength optical signal.
  • the fourth wavelength optical signal is a communication light wavelength optical signal.
  • the wavelength of the fourth wavelength optical signal falls between 1260 nanometers and 1600 nanometers.
  • the fourth wavelength optical signal is between 1340 nanometers and 1600 nanometers.
  • the optical communication device is deployed in an OLT.
  • the second wavelength optical signal may be the OLT sending a downlink communication optical signal to the ONU, and the fourth wavelength optical signal is the OLT receiving the uplink communication optical signal sent from the ONU.
  • the optical communication device is deployed in an ONU
  • the second wavelength optical signal may be an uplink communication optical signal sent by the ONU to the OLT.
  • the fourth wavelength optical signal may be the ONU receiving a downlink communication optical signal sent from the OLT.
  • the second optical component is a receiving light component
  • the third optical component is a transmitting light component.
  • the second optical component is used to receive a third wavelength optical signal.
  • the third optical component is used to send a fifth wavelength optical signal.
  • the fifth wavelength optical signal is a communication optical signal.
  • the fifth wavelength optical signal falls between 1260 nanometers and 1600 nanometers.
  • the wavelength of the fifth wavelength optical signal is between 1260 nanometers and 1330 nanometers.
  • the fifth wavelength optical signal may be the OLT sending a downlink communication optical signal to the ONU
  • the third wavelength optical signal may be the OLT receiving the uplink communication optical signal sent from the ONU.
  • the optical communication device is deployed in an ONU
  • the fifth wavelength optical signal may be an uplink communication optical signal sent by the ONU to the OLT.
  • the third wavelength optical signal may be the ONU receiving the downlink communication optical signal sent from the OLT.
  • the first optical transmission channel is the first optical fiber
  • the second optical transmission channel is the second optical fiber
  • the third optical transmission channel is the third optical fiber
  • the fourth optical transmission channel is the fourth optical fiber
  • the fifth optical transmission channel is Fifth fiber.
  • FIG. 13 is another schematic structural diagram of an optical communication device according to an embodiment of the present application.
  • the optical communication device 1300 includes a first optical component 1301 , a second optical component 1302 , a third optical component 1303 , a first coupler 1304 , a second coupler 1305 and a first optical fiber connection port 1306 .
  • the first optical component 1301 is connected to the first end of the first coupler 1304 through the first optical fiber 1307.
  • the second optical component 1302 is connected to the second end of the first coupler 1304 through the second optical fiber 1308.
  • the third end of the first coupler is connected to the first end of the second coupler 1305 through the third optical fiber 1310.
  • the second end of the second coupler is connected to the third optical component 1303 through the fourth optical fiber 1309.
  • the third end of the second coupler is connected to the first optical fiber connection port 1306 through the fifth optical fiber 1311.
  • the first optical component 1301, the second optical component 1302 and the third optical component 1303 are connected through optical fibers, and this connection method may be called an external coupling connection.
  • the first optical component 1301 can be connected to the first end of the first coupler 1304 through an optical fiber connection port in the first optical component 1301 .
  • the second optical component 1302 can be connected to the second end of the first coupler 1304 through the optical fiber connection port in the second optical component 1302 .
  • the third optical component 1303 can be connected to the second end of the second coupler 1305 through the optical fiber connection port in the third optical component 1303 .
  • the functions of the first coupler 1304 and the second coupler 1305 are introduced below based on the types of the second optical component and the third optical component.
  • Case 1 The second optical component is the emitting light component, and the third optical component is the receiving light component.
  • the first optical component 1301 is used to send a first wavelength optical signal to the first coupler 1304 through the first optical fiber 1307.
  • the second optical component 1302 is used to send a second wavelength optical signal through the second optical fiber 1308.
  • the third optical component is used to receive the fourth wavelength optical signal through the fourth optical fiber 1309.
  • the first coupler 1304 is used to couple the first wavelength optical signal and the second wavelength optical signal to obtain a multiplexed signal, and send the multiplexed signal to the second coupler 1305 through the third optical fiber 1310 .
  • the second coupler 1305 is configured to receive the combined signal through the third optical fiber 1310 and send the combined signal to the first optical fiber connection port 1306 through the fifth optical fiber 1311.
  • the second coupler 1305 is used to receive the fourth wavelength optical signal from the first optical fiber connection port 1306 through the fifth optical fiber 1311, and to send the fourth wavelength optical signal to the third optical component 1303 through the fourth optical fiber 1309.
  • Case 2 The second optical component is a receiving light component, and the third optical component is a transmitting light component.
  • the first optical component 1301 is used to send a first wavelength optical signal to the first coupler 1304 through the first optical fiber 1307.
  • the second optical component 1302 receives the third wavelength optical signal through the second optical fiber 1308.
  • the third optical component 1303 is used to send the fifth wavelength optical signal to the second coupler 1305 through the fourth optical fiber 1309.
  • the first coupler 1304 is used to receive the first wavelength optical signal through the first optical fiber 1307, and to send the first wavelength optical signal to the second coupler 1305 through the third optical fiber 1310.
  • the first coupler 1304 is used to receive the third wavelength optical signal sent by the second coupler 1305 through the third optical fiber 1310, and to send the third wavelength optical signal to the second optical component 1302 through the second optical fiber 1308.
  • the second coupler 1305 is used to receive the fifth wavelength optical signal through the fourth optical fiber 1309 and the first wavelength optical signal through the third optical fiber 1310, and couple the first wavelength optical signal and the fifth wavelength optical signal to obtain a multiplexed signal. , and sends the combined signal to the first optical fiber connection port 1306 through the fifth optical fiber 1311.
  • the second coupler 1305 is configured to receive the third wavelength optical signal from the first optical fiber connection port 1306 through the fifth optical fiber 1311, and to send the third wavelength optical signal to the first coupler 1304 through the third optical fiber 1310.
  • Figure 14 is another schematic structural diagram of an optical communication device according to an embodiment of the present application.
  • the optical communication device 1400 includes a first optical component 1401 , a second optical component 1402 , a third optical component 1403 , a first coupler 1404 , a second coupler 1405 and a first optical fiber connection port 1406 .
  • the second optical component 1402 is connected to the first end of the first coupler 1404 through the first optical fiber 1407.
  • the third optical component 1403 is connected to the second end of the first coupler 1404 through the second optical fiber 1408.
  • the third end of the first coupler 1404 is connected to the first end of the second coupler 1405 through the third optical fiber 1410.
  • the second end of the second coupler 1405 is connected to the first optical component 1401 through the fourth optical fiber 1409.
  • the third end of the second coupler 1405 is connected to the first optical fiber connection port 1406 through the fifth optical fiber 1411.
  • the first optical component 1401, the second optical component 1402 and the third optical component 1403 are connected through optical fibers, and this connection method may be called an external coupling connection.
  • the first optical component 1401 can be connected to the second end of the second coupler 1405 through the optical fiber connection port in the first optical component 1401 .
  • the second optical component 1402 may be connected to the first end of the first coupler 1404 through an optical fiber connection port in the second optical component 1402 .
  • the third optical component 1403 may be connected to the second end of the first coupler 1404 through the optical fiber connection port in the third optical component 1403 .
  • the functions of the first coupler 1404 and the second coupler 1405 are introduced below based on the types of the second optical component and the third optical component.
  • Case 1 The second optical component is the emitting light component, and the third optical component is the receiving light component.
  • the first optical component 1401 is used to send a first wavelength optical signal to the second coupler 1405 through the fourth optical fiber 1409.
  • the second optical component 1402 is used to send the second wavelength optical signal to the first coupler 1403 through the first optical fiber 1407.
  • the third optical component 1403 is used to receive the fourth wavelength optical signal through the second optical fiber 1408.
  • the first coupler 1404 is configured to receive a second wavelength optical signal through the first optical fiber 1407, and to send the second wavelength optical signal to the second coupler 1405 through the third optical fiber 1410.
  • the first coupler 1404 is configured to receive the fourth wavelength optical signal sent by the first coupler 1404 through the third optical fiber 1410, and to send the fourth wavelength optical signal to the third optical component 1403 through the second optical fiber 1408.
  • the second coupler 1405 is used to receive the second wavelength optical signal through the third optical fiber 1410 and the first wavelength optical signal through the fourth optical fiber 1409, and couple the first wavelength optical signal and the second wavelength optical signal to obtain a multiplexed signal. , and sends the combined signal to the first optical fiber connection port 1406 through the fifth optical fiber 1411.
  • the second coupler 1405 is configured to receive the fourth wavelength optical signal from the first optical fiber connection port 1406 through the fifth optical fiber 1411, and to send the fourth wavelength optical signal to the first coupler 1404 through the third optical fiber 1410.
  • Case 2 The second optical component is a receiving light component, and the third optical component is a transmitting light component.
  • the first optical component 1401 is used to send a first wavelength optical signal to the second coupler 1405 through the fourth optical fiber 1409.
  • the second optical component 1402 is used to receive the third wavelength optical signal through the first optical fiber 1407.
  • the third optical component 1403 is used to send the fifth wavelength optical signal to the first coupler 1404 through the second optical fiber 1408.
  • the first coupler 1404 is used to receive the third wavelength optical signal through the third optical fiber 1410, and to send the third wavelength optical signal to the second optical component 1402 through the first optical fiber 1407.
  • the first coupler 1404 is configured to receive the fifth wavelength optical signal through the second optical fiber 1408, and to send the fifth wavelength optical signal to the second coupler 1405 through the third optical fiber 1410.
  • the second coupler 1405 is used to receive the fifth wavelength optical signal through the third optical fiber 1410 and the first wavelength optical signal through the fourth optical fiber 1409, and couple the first wavelength optical signal and the fifth wavelength optical signal to obtain a multiplexed signal. , and sends the combined signal to the first wavelength optical fiber connection port 1406 through the fifth optical fiber 1411.
  • the second coupler 1405 is used to receive the third wavelength optical signal from the first optical fiber connection port 1406 through the fifth optical fiber 1411, and to send the third wavelength optical signal to the first optical component 1401 through the fourth optical fiber 1409.
  • Mode 2 The first optical transmission channel to the fifth optical transmission channel are optical transmission channels provided in the first housing.
  • the optical transmission channel can be understood as a pipe space in the first housing, which is used for the transmission of optical signals.
  • Figure 15 is another schematic structural diagram of an optical communication device according to an embodiment of the present application.
  • the optical communication device 1500 includes: a first optical component 1501, a second optical component 1502, a third optical component 1503, a first coupler 1504, a second coupler 1505, a first optical fiber connection port 1506 and a first Housing 1507.
  • the first housing 1507 is provided with an optical transmission channel 1508, an optical transmission channel 1509, an optical transmission channel 1511, an optical transmission channel 1510 and an optical transmission channel 1512.
  • the first coupler 1504 is disposed at the intersection of the optical transmission channel 1508 and the optical transmission channel 1509.
  • the second coupler 1505 is disposed at the intersection of the optical transmission channel 1511 and the optical transmission channel 1510 .
  • the first housing 1507 is provided with a first optical transmission port connected to the optical transmission channel 1508.
  • the first optical component 1501 is packaged in the first optical transmission port.
  • the first housing 1507 is provided with a second optical sending port connected to the optical transmission channel 1509 and an optical port connected to the optical transmission channel 1510. Receive port.
  • the second optical component 1502 is packaged in the second optical transmitting port, and the third optical component 1503 is packaged in the optical receiving port.
  • the first optical component 1501 is used to send the first wavelength optical signal to the first coupler 1504 through the optical transmission channel 1508.
  • the second optical component 1502 is used to send the second wavelength optical signal to the first coupler 1504 through the optical transmission channel 1509.
  • the third optical component 1503 is used to receive and send fourth wavelength optical signals through the optical transmission channel 1510.
  • the first coupler 1504 is used to couple the first wavelength optical signal and the second wavelength optical signal to obtain a multiplexed signal, and send the multiplexed signal to the second coupler 1505 through the optical transmission channel 1511.
  • the second coupler 1505 is used to receive the multiplexed signal through the optical transmission channel 1511, and pass The combined signal is sent to the first optical fiber connection port 1506 through the optical transmission channel 1512.
  • the second coupler 1505 is used to receive the fourth wavelength optical signal from the first optical fiber connection port 1506 through the optical transmission channel 1512, and to send the fourth wavelength optical signal to the third optical component 1503 through the optical transmission channel 1510.
  • the first housing 1507 is provided with an optical receiving port connected to the optical transmission channel 1509 and a second optical port connected to the optical transmission channel 1510 Send port.
  • the second optical component 1502 is packaged in the optical receiving port
  • the third optical component 1503 is packaged in the second optical transmitting port.
  • the first optical component 1501 is used to send the first wavelength optical signal to the first coupler 1504 through the optical transmission channel 1508.
  • the second optical component 1502 is used to receive the third wavelength optical signal through the optical transmission channel 1509.
  • the third optical component 1503 is used to send the fifth wavelength optical signal to the second coupler 1505 through the optical transmission channel 1510.
  • the first coupler 1504 is used to receive the first wavelength optical signal through the optical transmission channel 1508, and to send the first wavelength optical signal to the second coupler 1505 through the optical transmission channel 1511.
  • the first coupler 1504 is used to receive the third wavelength optical signal through the optical transmission channel 1511, and to send the third wavelength optical signal to the second optical component 1502 through the optical transmission channel 1509.
  • the second coupler 1505 is used for receiving the first wavelength optical signal through the optical transmission channel 1511 and the fifth wavelength optical signal through the optical transmission channel 1510, and coupling the first wavelength optical signal and the fifth wavelength optical signal to obtain a combined signal.
  • the second coupler 1505 then sends the combined signal to the first optical fiber connection port 1506 through the optical transmission channel 1512.
  • the second coupler 1505 is configured to receive the third wavelength optical signal from the first optical fiber connection port 1506 through the optical transmission channel 1512, and to send the third wavelength optical signal to the first coupler 1504 through the optical transmission channel 1511.
  • first coupler 1504 as the first wavelength division multiplexing structure
  • second coupler 1505 as the second wavelength division multiplexing structure
  • Figure 16 is another schematic structural diagram of an optical communication device according to an embodiment of the present application.
  • the optical communication device 1600 includes: a first optical component 1601, a second optical component 1602, a third optical component 1603, a first coupler 1604, a second coupler 1605, a first optical fiber connection port 1606 and a first Housing 1607.
  • the first housing 1607 is provided with an optical transmission channel 1609, an optical transmission channel 1608, an optical transmission channel 1611, an optical transmission channel 1610 and an optical transmission channel 1612.
  • the first coupler 1604 is disposed at the intersection of the optical transmission channel 1609 and the optical transmission channel 1608 .
  • the second coupler 1605 is disposed at the intersection of the optical transmission channel 1611 and the optical transmission channel 1610 .
  • the first housing 1607 is provided with a first optical transmission port connected to the optical transmission channel 1610, and the first optical component 1601 is packaged in the first optical transmission port.
  • the first housing 1607 is provided with a second optical sending port connected to the optical transmission channel 1609 and an optical port connected to the optical transmission channel 1608. Receive port.
  • the second optical component 1602 is packaged in the second optical transmitting port, and the third optical component 1603 is packaged in the optical receiving port.
  • the first optical component 1601 is used to send the first wavelength optical signal to the second coupler 1605 through the optical transmission channel 1610.
  • the second optical component 1602 is used to send a second wavelength optical signal to the first coupler 1604 through the optical transmission channel 1609.
  • the third optical component 1603 is used to receive the fourth wavelength optical signal through the optical transmission channel 1608.
  • the first coupler 1604 is used to send a second wavelength optical signal to the second coupler 1605 through the optical transmission channel 1611.
  • the first coupler 1604 receives the fourth wavelength optical signal through the optical transmission channel 1611, and sends the fourth wavelength optical signal to the third optical component 1603 through the optical transmission channel 1608.
  • the second coupler 1605 is configured to receive the fourth wavelength optical signal from the first optical fiber connection port 1606 through the optical transmission channel 1612, and to send the fourth wavelength optical signal to the first coupler 1604 through the optical transmission channel 1611.
  • the second coupler 1605 is used to receive the first wavelength optical signal through the optical transmission channel 1610 and the second wavelength optical signal through the optical transmission channel 1611, and The first wavelength optical signal and the second wavelength optical signal are coupled to obtain a multiplexed signal, and the first wavelength optical signal is sent to the first optical fiber connection port 1606 through the optical transmission channel 1612.
  • first coupler 1604 as the first wavelength division multiplexing structure
  • second coupler 1605 as the second wavelength division multiplexing structure
  • the first housing shown in Figure 15 or Figure 16 can be a coaxial tube housing, that is, the first optical component, the second optical component and the third optical component are integrated in the same coaxial inside the tube shell. This achieves the integration of visible light or near-infrared light and communication light in the same coaxial tube shell.
  • the first optical component includes a first laser diode
  • the second optical component when the second optical component is an emitting light component, and the third optical component is a receiving light component, the second optical component includes a second laser diode, and the third optical component includes an avalanche photodiode.
  • the second optical component when the second optical component is a receiving light component and the third optical component is an emitting light component, the second optical component includes an avalanche photodiode and the third optical component includes a second laser diode.
  • the first laser diode, the second laser diode and the avalanche photodiode are packaged in the same coaxial tube shell.
  • the first housing shown in FIG. 15 or FIG. 16 is a metal housing.
  • the first optical component may be understood as a visible light emitting coaxial tube or a near-infrared light emitting coaxial tube.
  • the second optical component is a communication light emitting coaxial tube shell
  • the third optical component is a communication light receiving coaxial tube shell.
  • the second optical component is a communication light receiving coaxial tube shell
  • the third optical component is a communication light emitting coaxial tube shell.
  • Mode 3 The first optical transmission channel and the second optical transmission channel are optical transmission channels provided in the second housing.
  • the fourth optical transmission channel and the fifth optical transmission channel are optical transmission channels provided in the third housing.
  • the third optical transmission channel is provided between the second housing and the third housing.
  • the first light transmission channel and the second light transmission channel can be understood as the pipe space in the first housing
  • the fourth light transmission channel and the fifth light transmission channel can be understood as the pipe space in the second housing
  • the third light transmission channel can be understood as a pipe space for connecting the second housing and the third housing.
  • Figure 17 is another schematic structural diagram of an optical communication device according to an embodiment of the present application.
  • the optical communication device 1700 includes a first optical component 1701, a second optical component 1702, a third optical component 1703, a first coupler 1704, a second coupler 1705, a first optical fiber connection port 1706, a second housing body 1708 and the third housing 1709.
  • the second housing 1708 is provided with a light transmission channel 1710 and a light transmission channel 1711.
  • the second housing 1709 is provided with a light transmission channel 1713, a light transmission channel 1712 and a light transmission channel 1714.
  • the first coupler 1704 is disposed at the intersection of the optical transmission channel 1710 and the optical transmission channel 1711.
  • the second coupler 1705 is disposed at the intersection of the optical transmission channel 1713 and the optical transmission channel 1712 .
  • the second housing 1708 is provided with a first optical transmission port connected to the optical transmission channel 1710, and the first optical component 1701 is packaged in the first optical transmission port.
  • the second housing 1708 When the second optical component 1702 is a transmitting optical component and the third optical component 1703 is a receiving optical component, the second housing 1708 is provided with a second optical sending port connected to the optical transmission channel 1711, and the second optical component is packaged in the first optical component. Two optical transmit ports.
  • the third housing 1709 is provided with a third optical sending port connected to the optical transmission channel 1713 and an optical receiving port connected to the optical transmission channel 1712 .
  • the second housing 1708 is packaged in the third optical transmitting port, and the third optical component 1703 is packaged in the optical receiving port.
  • the first optical component 1701 is used to send the first wavelength optical signal to the first coupler 1704 through the optical transmission channel 1710.
  • the second optical component 1702 is used to send the second wavelength optical signal to the first coupler 1704 through the optical transmission channel 1711.
  • the third optical component 1703 is used to receive the fourth wavelength optical signal through the optical transmission channel 1712.
  • the first coupler 1704 is used to couple the first wavelength optical signal and the second wavelength optical signal to obtain a multiplexed signal, and send the multiplexed signal to the second coupler 1705 through the optical transmission channel 1713.
  • the second coupler 1705 is configured to receive the multiplexed signal through the optical transmission channel 1713 and send the multiplexed signal to the first optical fiber connection port 1706 through the optical transmission channel 1714.
  • the second coupler 1705 is used to receive the fourth wavelength optical signal from the first optical fiber connection port 1706 through the optical transmission channel 1714, and to send the fourth wavelength optical signal to the third optical component 1703 through the optical transmission channel 1712.
  • the second housing 1708 When the second optical component 1702 is a receiving light component and the third optical component 1703 is a transmitting light component, the second housing 1708 is provided with a light receiving port connected to the optical transmission channel 1711, and the second optical component is packaged in the light receiving port. .
  • the third housing 1709 is provided with an optical transceiver port connected to the optical transmission channel 1713 and a second optical sending port connected to the optical transmission channel 1712 .
  • the second housing 1708 is packaged in the optical transceiver port, and the third optical component 1703 is packaged in the second optical transmitter port.
  • the first optical component 1701 is used to send the first wavelength optical signal to the first coupler 1704 through the optical transmission channel 1710.
  • the second optical component 1702 is used to receive the third wavelength optical signal through the optical transmission channel 1711.
  • the third optical component 1703 is used to send the fifth wavelength optical signal through the optical transmission channel 1712.
  • the first coupler 1704 is used to send the first wavelength optical signal to the second coupler 1705 through the optical transmission channel 1713, and to receive the third wavelength optical signal sent by the second coupler 1705 through the optical transmission channel 1713, and to receive the third wavelength optical signal through the optical transmission channel 1713.
  • 1711 sends the third wavelength optical signal to the second optical component 1702.
  • the second coupler 1705 is configured to receive the third wavelength optical signal from the first optical fiber connection port 1706 through the optical transmission channel 1714, and to send the third wavelength optical signal to the first coupler 1704 through the optical transmission channel 1713.
  • the second coupler 1705 receives the fifth wavelength optical signal sent by the third optical component 1703 through the optical transmission channel 1712 and the first wavelength optical signal through the optical transmission channel 1713, and conducts the first wavelength optical signal and the fifth wavelength optical signal.
  • the combined signal is obtained by coupling, and the combined signal is sent to the first optical fiber connection port 1706 through the optical transmission channel 1714.
  • Figure 18 is another structural schematic diagram of an optical communication device according to an embodiment of the present application.
  • the optical communication device 1800 includes a first optical component 1801, a second optical component 1802, a third optical component 1803, a first coupler 1804, a second coupler 1805, a first optical fiber connection port 1806, a second housing body 1808 and the third housing 1809.
  • the second housing 1808 is provided with a light transmission channel 1810 and a light transmission channel 1811.
  • the third housing 1809 is provided with a light transmission channel 1813, a light transmission channel 1812 and a light transmission channel 1814.
  • the first coupler 1804 is disposed at the intersection of the optical transmission channel 1810 and the optical transmission channel 1811.
  • the second coupler 1805 is disposed at the intersection of the optical transmission channel 1813 and the optical transmission channel 1812 .
  • the third housing 1809 is provided with a first optical transmission port connected to the optical transmission channel 1812, and the first optical component 1801 is packaged in the first optical transmission port.
  • the second housing 1808 is provided with a second optical sending port connected to the optical transmission channel 1811, and a second optical sending port connected to the optical transmission channel 1810.
  • Optical receiving port The second optical component 1802 is packaged in the second optical transmitting port, and the third optical component 1803 is packaged in the optical receiving port.
  • the third housing 1809 is also provided with an optical transceiver port connected to the optical transmission channel 1813, and the second housing 1808 is packaged in the optical transceiver port.
  • the first optical component 1801 sends the first wavelength optical signal to the second coupler 1805 through the optical transmission channel 1812.
  • the second optical component 1802 sends the second wavelength optical signal to the first coupler 1804 through the optical transmission channel 1811.
  • the third optical component 1803 receives the fourth wavelength optical signal through the optical transmission channel 1810.
  • the first coupler 1804 is used to receive the fourth wavelength optical signal through the optical transmission channel 1813, and to send the fourth wavelength optical signal to the third optical component 1803 through the optical transmission channel 1810.
  • the second coupler 1805 is used to receive the second wavelength optical signal through the optical transmission channel 1813 and the first wavelength optical signal through the optical transmission channel 1812 .
  • the second coupler 1805 couples the first wavelength optical signal and the second wavelength optical signal to obtain a multiplexed signal, and sends the multiplexed signal to the first optical fiber connection port 1806 through the optical transmission channel 1814.
  • Second coupler 1805 pass The optical transmission channel 1814 receives the fourth wavelength optical signal from the first optical fiber connection port 1806 and sends the fourth wavelength optical signal to the first coupler 1804 through the optical transmission channel 1813 .
  • the second housing 1808 is provided with a second optical sending port connected to the optical transmission channel 1810 and an optical receiving port connected to the optical transmission channel 1811 port.
  • the second optical component 1802 is packaged in the optical receiving port, and the third optical component 1803 is packaged in the second optical transmitting port.
  • the third housing 1809 is also provided with an optical transceiver port connected to the optical transmission channel 1813, and the second housing 1808 is packaged in the optical transceiver port.
  • the first optical component 1801 sends the first wavelength optical signal to the first coupler 1805 through the optical transmission channel 1812.
  • the second optical component 1802 is used to receive the third wavelength optical signal through the optical transmission channel 1811.
  • the third optical component 1803 sends the fifth wavelength optical signal to the first coupler 1804 through the optical transmission channel 1810.
  • the first coupler 1804 receives the third wavelength optical signal through the optical transmission channel 1813, and sends the third wavelength optical signal to the second optical component 1802 through the optical transmission channel 1811.
  • the first coupler 1804 receives the fifth wavelength optical signal through the optical transmission channel 1810, and sends the fifth wavelength optical signal to the second coupler 1805 through the optical transmission channel 1813.
  • the second coupler 1805 receives the fifth wavelength optical signal through the optical transmission channel 1813 and the first wavelength optical signal through the optical transmission channel 1812 .
  • the second coupler 1805 couples the first wavelength optical signal and the fifth wavelength optical signal to obtain a multiplexed signal, and sends the multiplexed signal to the first optical fiber connection port 1806 through the fifth optical transmission channel 1814 .
  • the second coupler 1805 receives the third wavelength optical signal from the first optical fiber connection port 1806 through the optical transmission channel 1814, and sends the third wavelength optical signal to the first coupler 1804 through the optical transmission channel 1813.
  • the second housing may be a coaxial tube housing
  • the third housing may be a metal housing.
  • coaxial tube shell and metal shell please refer to the relevant introduction in the previous article and will not go into details here.
  • the second optical component is an emitting light component
  • the third optical component is a receiving light component.
  • the first optical component and the second optical component are packaged in a coaxial tube, and the third optical component is packaged in another coaxial tube, thereby achieving dual emission of visible light or near-infrared light and communication light in the same coaxial tube.
  • the first optical component and the third optical component are packaged in one coaxial tube, and the second optical component is packaged in another coaxial tube. This enables the integration of visible light or near-infrared light and communication light transceiver in the same coaxial tube.
  • the second optical component and the third optical component are packaged in one coaxial tube, and the first optical component is packaged in another coaxial tube. This enables the integration of communication optical transceivers in the same coaxial tube.
  • the first optical component includes a first laser diode
  • the second optical component includes a second laser diode
  • the third optical component includes an avalanche photodiode.
  • the first laser diode and the second laser diode are packaged in the same coaxial tube TO.
  • the first laser diode and the avalanche photodiode are packaged in the same coaxial tube TO.
  • the second laser diode and the avalanche photodiode are packaged in the same coaxial tube TO.
  • both the second housing and the third housing are metal housings.
  • the first optical component, the second optical component and the third optical component are three coaxial tube housings.
  • the first optical component is a visible light emitting coaxial tube or a near-infrared light emitting coaxial tube
  • the second optical component is a communication light emitting coaxial tube
  • the third optical component is a communication light receiving Coaxial tube housing.
  • the visible light emitting coaxial tube shell or the near infrared light emitting coaxial tube shell and the communication light emitting coaxial tube shell are integrated into the second housing, and the second housing and the communication light receiving coaxial tube shell are integrated into the third housing.
  • Figure 19 is another structural schematic diagram of an optical communication device according to an embodiment of the present application. Please refer to Figure 19.
  • the optical communication device 1900 includes: a first optical component 1901, a transmitting optical component 1902, a receiving optical component 1903, a first wavelength division multiplexing structure 1904, a second wavelength division multiplexing structure 1905, and a first optical fiber connection port. 1906 and first housing 1907.
  • the first housing 1907 is provided with an optical transmission channel 1908, an optical transmission channel 1909, an optical transmission channel 1910, an optical transmission channel 1911 and an optical transmission channel 1912.
  • the first wavelength division multiplexing structure 1904 is disposed at the intersection of the optical transmission channel 1908 and the optical transmission channel 1909.
  • the second wavelength division multiplexing structure 1905 is provided at the intersection of the optical transmission channel 1910 and the optical transmission channel 1911.
  • the first housing 1907 is provided with a first optical sending port connected to the optical transmission channel 1908, a second optical sending port connected to the optical transmission channel 1909, and an optical receiving port connected to the optical transmission channel 1910.
  • the first optical component 1901 is packaged in the first optical transmitting port
  • the emitting optical component 1902 is packaged in the second optical transmitting port
  • the receiving optical component 1903 is packaged in the optical receiving port.
  • the first wavelength division multiplexing structure 1904 can reflect the first wavelength optical signal emitted by the first optical component 1901 to the second wavelength division multiplexing structure 1905, and transmit the second wavelength optical signal emitted by the emitting optical component 1902 to the second wavelength division multiplexing structure 1905.
  • Wavelength Division Multiplexing Structure 1905 The second wavelength division multiplexing structure 1905 can multiplex the first wavelength optical signal and the second wavelength optical signal, transmit them to the first optical fiber connection port 1906, and reflect the fourth wavelength optical signal from the first optical fiber connection port 1906. to the receiving light component 1903.
  • the first wavelength optical signal emitted by the first optical component 1901 is reflected when passing through the first wavelength division multiplexing structure 1904, and is reflected to the second wavelength division multiplexing structure 1905.
  • the first wavelength optical signal passes through the second wavelength division multiplexing structure 1905.
  • the structure 1905 is used, it is directly transmitted to the first optical fiber connection port 1906.
  • the second wavelength optical signal emitted by the emitting light component 1902 is directly transmitted through the first wavelength division multiplexing structure 1904 and transmitted to the second wavelength division multiplexing structure 1905.
  • the second wavelength optical signal passes through the second wavelength division multiplexing structure 1905, it is directly transmitted to the first optical fiber connection port 1906.
  • the optical signal of the fourth wavelength introduced from the first optical fiber connection port 1906 is reflected when passing through the second wavelength division multiplexing structure 1905, and the receiving optical component 1903 is exactly located on the reflected optical path, thereby realizing the reception of the optical signal of the fourth wavelength.
  • FIG 20 is another schematic structural diagram of an optical communication device according to an embodiment of the present application. Please refer to Figure 20.
  • the optical communication device 2000 includes: a first optical component 2001, a transmitting optical component 2002, a receiving optical component 2003, a first wavelength division multiplexing structure 2004, a second wavelength division multiplexing structure 2005, and a first optical fiber connection port. 2006 and first shell 2007.
  • FIG. 20 The structure of the optical communication device shown in FIG. 20 is similar to that of the optical communication device shown in FIG. 19. The difference lies in that the positions of the first optical component 2001 and the emitting light component 2002 are changed. As shown in Figure 20, the first wavelength division multiplexing structure 2004 is provided at the intersection of the optical transmission channel 2008 and the optical transmission channel 2009. The second wavelength division multiplexing structure 2005 is provided at the intersection of the optical transmission channel 2010 and the optical transmission channel 2011.
  • the first housing 2007 is provided with a first optical sending port connected to the optical transmission channel 2008, a second optical sending port connected to the optical transmission channel 2009, and an optical receiving port connected to the optical transmission channel 2010.
  • the first optical component 2001 is packaged in the second optical transmitting port
  • the emitting optical component 2002 is packaged in the first optical transmitting port
  • the receiving optical component 2003 is packaged in the optical receiving port.
  • the first wavelength division multiplexing structure 2004 can transmit the first wavelength optical signal emitted by the first optical component 2001 to the second wavelength division multiplexing structure 2005, and reflect the second wavelength optical signal emitted by the emitting optical component 2002 to the second wavelength division multiplexing structure 2005.
  • Wavelength Division Multiplexing Architecture 2005 The second wavelength division multiplexing structure 2005 can multiplex the first wavelength optical signal and the second wavelength optical signal, transmit them to the first optical fiber connection port 2006, and reflect the fourth wavelength optical signal from the first optical fiber connection port 2006. to the receiving light component 2003.
  • the first wavelength optical signal emitted by the first optical component 2001 is transmitted through the first wavelength division multiplexing structure 2004 and is transmitted to the second wavelength division multiplexing structure 2005.
  • the first wavelength optical signal passes through the second wavelength division multiplexing structure 2005. Transmission occurs when the structure 2005 is used, so that the first wavelength optical signal is transmitted to the first optical fiber connection port 2006 .
  • the second wavelength optical signal emitted by the emitting light component 2002 is reflected when passing through the first wavelength division multiplexing structure 2004, so that the second wavelength optical signal is reflected to the second wavelength division multiplexing structure 2005.
  • the second wavelength optical signal passes through the second wavelength division multiplexing structure 2005, it is directly transmitted to the first optical fiber connection port 2006.
  • the fourth wavelength optical signal incoming from the first optical fiber connection port 2006 is reflected when passing through the second wavelength division multiplexing structure 2005, and the receiving optical component 2003 is exactly located on the reflected optical path, thereby realizing the reception of the fourth wavelength optical signal.
  • FIG 21 is a schematic diagram of another embodiment of the optical communication device according to the embodiment of the present application. Please refer to Figure 21.
  • the optical communication device 2100 includes: a first optical component 2101, a receiving optical component 2102, a transmitting optical component 2103, a first wavelength division multiplexing structure 2104, a second wavelength division multiplexing structure 2105, and a first optical fiber connection port. 2106 and the first housing 2107.
  • the first housing 2107 is provided with a light transmission channel 2108 to a light transmission channel 2112.
  • the first housing is provided with a first optical sending port connected to the optical transmission channel 2108, an optical receiving port connected to the optical transmission channel 2109, and a second optical sending port connected to the optical transmission channel 2110.
  • the first optical component 2101 is packaged in the first optical transmitting port
  • the receiving optical component 2102 is packaged in the optical receiving port.
  • the emitting light component 2103 is packaged in the second optical sending port.
  • the first wavelength division multiplexing structure 2104 is disposed at the intersection between the optical transmission channel 2108 and the optical transmission channel 2109, and the second wavelength division multiplexing structure 2105 is disposed at the intersection between the optical transmission channel 2110 and the optical transmission channel 2111.
  • the first wavelength division multiplexing structure 2104 is capable of transmitting the first wavelength optical signal emitted by the first optical component 2101 to the second wavelength division multiplexing structure 2105, and transmitting the fourth wavelength optical signal from the second wavelength division multiplexing structure 2105. Reflected to the light receiving component 2102.
  • the second wavelength division multiplexing structure 2105 can multiplex the first wavelength optical signal and the second wavelength optical signal and transmit them to the first optical fiber connection port 2106, and combine the fourth wavelength optical signal from the first optical fiber connection port 2106. Transmitted to the first wavelength division multiplexing structure 2104.
  • the first wavelength optical signal emitted by the first optical component 2101 is directly transmitted through the first wavelength division multiplexing structure 2104 and transmitted to the second wavelength division multiplexing structure 2105.
  • the fourth wavelength optical signal incoming from the first optical fiber connection port 2106 is directly transmitted through the second wavelength division multiplexing structure 2105 and transmitted to the first wavelength division multiplexing structure 2104.
  • the optical signal of the fourth wavelength is reflected when passing through the first wavelength division multiplexing structure 2104, and the receiving optical component 2102 is exactly located on the reflected optical path, thereby realizing the reception of the optical signal of the fourth wavelength.
  • the second wavelength optical signal emitted by the emitting optical component 2103 is reflected when passing through the second wavelength division multiplexing structure 2105, and is reflected to the first optical fiber connection interface 2106.
  • FIG 22 is a schematic diagram of another embodiment of the optical communication device according to the embodiment of the present application. Please refer to Figure 22.
  • the optical communication device 2200 includes: a first optical component 2201, a receiving optical component 2202, a transmitting optical component 2203, a first wavelength division multiplexing structure 2204, a second wavelength division multiplexing structure 2205, and a first optical fiber connection port. 2206 and the first housing 2207.
  • the first housing 2207 is provided with a light transmission channel 2208 to a light transmission channel 2212.
  • the first housing is provided with a first optical sending port connected to the optical transmission channel 2208, an optical receiving port connected to the optical transmission channel 2209, and a second optical sending port connected to the optical transmission channel 2210.
  • the first optical component 2201 is packaged in the first optical transmitting port
  • the receiving optical component 2202 is packaged in the optical receiving port.
  • the emitting light component 2203 is packaged in the second optical sending port.
  • the first wavelength division multiplexing structure 2204 is disposed at the intersection between the optical transmission channel 2208 and the optical transmission channel 2209, and the second wavelength division multiplexing structure 2205 is disposed at the intersection between the optical transmission channel 2210 and the optical transmission channel 2211.
  • the first wavelength division multiplexing structure 2204 can reflect the first wavelength optical signal emitted by the first optical component 2201 to the second wavelength division multiplexing structure 2205, and reflect the third wavelength optical signal from the second wavelength division multiplexing structure 2205. Transmitted to the light receiving component 2202.
  • the second wavelength division multiplexing structure 2005 can multiplex the first wavelength optical signal and the fifth wavelength optical signal to obtain a multiplexed signal, and sends the multiplexed signal to the first optical fiber connection port 2206, and transmits the multiplexed signal from the first optical fiber.
  • the third wavelength optical signal of the connection port 2206 is transmitted to the first wavelength division multiplexing structure 2204.
  • the first wavelength optical signal emitted by the first optical component 2201 is reflected when passing through the first wavelength division multiplexing structure 2204, and is reflected to the second wavelength division multiplexing structure 2205.
  • the first wavelength optical signal is directly transmitted through the second wavelength division multiplexing structure 2205 and transmitted to the first optical fiber connection port 2206.
  • the third wavelength optical signal incoming from the first optical fiber connection port 2206 is directly transmitted through the second wavelength division multiplexing structure 2205 and transmitted to the first wavelength division multiplexing structure 2204.
  • Third wavelength optical signal It is directly transmitted through the first wavelength division multiplexing structure 2204 and transmitted to the receiving optical component 2202, thereby realizing the receiving optical signal of the third wavelength by the receiving optical component 2202.
  • the second wavelength optical signal emitted by the emitting optical component 2203 is reflected when passing through the second wavelength division multiplexing structure 2205, and is reflected to the first optical fiber connection port 2206.
  • FIG 23 is another schematic structural diagram of an optical communication device according to an embodiment of the present application. Please refer to Figure 23.
  • the optical communication device 2300 includes: a first optical component 2301, a transmitting optical component 2302, a receiving optical component 2303, a first wavelength division multiplexing structure 2304, a second wavelength division multiplexing structure 2305, and a first optical fiber connection port. 2306 and the first housing 2307.
  • the first housing 2307 is provided with a light transmission channel 2308 to a light transmission channel 2312.
  • the first housing is provided with a first optical sending port connected to the optical transmission channel 2308, a second optical sending port connected to the optical transmission channel 2309, and an optical receiving port connected to the optical transmission channel 2310.
  • the first optical component 2301 is packaged in the first optical transmission port, and the emitting optical component 2302 is packaged in the second optical transmission port.
  • the light receiving component 2303 is packaged in the light receiving port.
  • the first wavelength division multiplexing structure 2304 is disposed at the intersection between the optical transmission channel 2309 and the optical transmission channel 2310, and the second wavelength division multiplexing structure 2305 is disposed at the intersection between the optical transmission channel 2308 and the optical transmission channel 2311.
  • the first wavelength division multiplexing structure 2304 can reflect the second wavelength optical signal emitted by the emitting optical component 2302 to the second wavelength division multiplexing structure 2305, and transmit the fourth wavelength optical signal from the second wavelength division multiplexing structure 2305. to the receiving light component 2303.
  • the second wavelength division multiplexing structure 2305 can transmit the fourth wavelength optical signal from the first optical fiber connection port 2306 to the first wavelength division multiplexing structure 2304.
  • the second wavelength division multiplexing structure 2305 multiplexes the second wavelength optical signal and the first wavelength optical signal from the first optical component 2301 to obtain a multiplexed signal, and sends the multiplexed signal to the first optical fiber connection port 2306 .
  • the second wavelength optical signal emitted by the emitting light component 2302 is reflected when passing through the first wavelength division multiplexing structure 2304, and is reflected to the second wavelength division multiplexing structure 2305.
  • the fourth wavelength optical signal incoming from the first optical fiber connection port 2306 is directly transmitted through the second wavelength division multiplexing structure 2305 and transmitted to the first wavelength division multiplexing structure 2304.
  • the fourth wavelength optical signal passes through the first wavelength division multiplexing structure 2304.
  • the receiving light component 2303 is just on the transmitted light path, thereby realizing the reception of the fourth wavelength optical signal.
  • the first wavelength optical signal emitted by the first optical component 2301 is reflected when passing through the second wavelength division multiplexing structure 2305, and is reflected to the first optical fiber connection port 2306.
  • the second wavelength optical signal is directly transmitted through the second wavelength division multiplexing structure 2305 and transmitted to the first optical fiber connection port 2306.
  • FIG 24 is another schematic structural diagram of an optical communication device according to an embodiment of the present application. Please refer to Figure 24.
  • the optical communication device 2400 includes: a first optical component 2401, a transmitting optical component 2402, a receiving optical component 2403, a first wavelength division multiplexing structure 2404, a second wavelength division multiplexing structure 2405, and a first optical fiber connection port. 2406 and first housing 2407.
  • the first housing 2407 is provided with a light transmission channel 2408 to a light transmission channel 2412.
  • the first housing 2407 is provided with a first optical sending port connected to the optical transmission channel 2408, a second optical sending port connected to the optical transmission channel 2409, and an optical receiving port connected to the optical transmission channel 2410.
  • the first optical component 2401 is packaged in the first optical transmission port
  • the emitting optical component 2402 is packaged in the second optical transmission port.
  • the light receiving component 2403 is packaged in the light receiving port.
  • the first wavelength division multiplexing structure 2404 is disposed at the intersection between the optical transmission channel 2409 and the optical transmission channel 2410, and the second wavelength division multiplexing structure 2405 is disposed at the intersection between the optical transmission channel 2408 and the optical transmission channel 2411.
  • the first wavelength division multiplexing structure 2404 can transmit the fifth wavelength optical signal emitted by the emitting optical component 2402 to the second wavelength division multiplexing structure 2405, and reflect the third wavelength optical signal from the second wavelength division multiplexing structure 2405. to the receiving light component 2403.
  • the second wavelength division multiplexing structure 2405 can transmit the third wavelength optical signal from the first optical fiber connection port 2406 to the first wavelength division multiplexing structure 2404.
  • the second wavelength division multiplexing structure 2405 can multiplex the fifth wavelength optical signal and the first wavelength optical signal from the first optical component 2401 to obtain a multiplexed signal, and send the multiplexed signal to the first optical fiber connection port 2406.
  • the fifth wavelength optical signal emitted by the emitting light component 2402 is directly transmitted through the first wavelength division multiplexing structure 2404 and transmitted to the second wavelength division multiplexing structure 2405.
  • the first optical component 2401 sends the first wavelength optical signal.
  • the second wavelength division multiplexing structure 3405 multiplexes the first wavelength optical signal and the fifth wavelength optical signal to obtain a multiplexed signal, and sends the multiplexed signal to the first optical fiber connection port 2406.
  • the third wavelength optical signal incoming from the first optical fiber connection port 2406 is directly transmitted through the second wavelength division multiplexing structure 2405 and transmitted to the first wavelength division multiplexing structure 2404.
  • the third wavelength optical signal passes through the first wavelength division multiplexing structure 2404.
  • the optical communication device can integrate a transmitting optical component, a receiving optical component and a first optical component.
  • the optical signal of the first wavelength emitted by the first optical component is used to detect the optical fiber of the ODN network.
  • the first wavelength optical signal can be used to detect whether the optical fiber in the ODN network is occupied, idle, or broken. Realize automated and visual management of ODN networks.
  • the optical signal emitted by the transmitting optical component and the optical signal received by the receiving optical component both carry business data, thereby integrating the communication function and visualization function of the optical communication device.
  • the optical communication device includes a first optical component and a second optical component
  • the optical communication device further combines a rigid and soft board or a flexible board
  • the first optical component includes a first laser diode.
  • the anode of the first laser diode is connected to the power supply pin of the second optical component through the rigid-flex board or flexible board.
  • the power supply pin of the second optical component can be understood as a pin in the second optical component that can provide voltage or current to the first optical component.
  • a pin in the second optical component that can provide voltage or current can be selected first, and when the pin is connected to the rigid-flex board or the flexible board, the signal of the pin will not be affected.
  • the pin is connected to one end of the rigid-flex board or the flexible board, and the anode of the first laser diode is connected to the other end of the rigid-flex board or the flexible board. That is, power is taken from the power supply pin of the second optical component through a rigid-flex board or a flexible board, thereby supplying power to the first optical component.
  • the optical network equipment for example, OLT or ONU, where the optical communication device is deployed.
  • OLT passive optical LAN
  • ONT passive optical LAN
  • the ODN network can be implemented visualization function.
  • the cathode of the first laser diode can be directly grounded, or can be connected to one end of the first resistor, and the other end of the first resistor is grounded.
  • the power supply pin 2510 of the second optical component is a 3.3V (volt) power supply pin, and the anode of the first laser diode 2501 is connected to the power supply pin 2510 .
  • the optical communication device includes a first optical component, a second optical component and a third optical component
  • the optical communication device further combines a rigid and flexible board or a flexible board
  • the first optical component includes a first laser diode.
  • the anode of the first laser diode is connected to the power supply pin of the second optical component or the power supply pin of the third optical component through the rigid-flex board or flexible board.
  • the first optical component is connected to the power supply pin of the second optical component or the power supply pin of the third optical component through the rigid-flex board or flexible board to realize power supply for the first optical component.
  • the first optical component can also be connected to the power supply pin on the single board, so that the single board supplies power to the first optical component, which is not specifically limited in this application.
  • the first optical component further includes a power locking structure connected to the first laser diode, and the power locking structure is used to control the power of the first wavelength optical signal output by the first laser diode.
  • the power of the first wavelength optical signal can be locked through the power locking structure to ensure that the human eye can realize the optical signal of visible light or near-infrared light, realizing the ODN network of Visual management. Furthermore, locking the power of the first wavelength optical signal is beneficial to extending the life of the optical communication device. For example, if an optical communication device is integrated into a chip, the power of the first wavelength optical signal is locked at a constant value or within a range, which is beneficial to extending the life of the chip.
  • the power locking structure can be integrated into a soft-hard board or a flexible board.
  • Figure 25 is a structural schematic diagram of the power locking structure according to the embodiment of the present application.
  • the power locking structure includes a first laser diode 2501, a MOS tube 2502, a backlight photodiode 2503, an operational amplifier 2504, a first resistor 2505, a second resistor 2506, a third resistor 2507 and a fourth resistor 2508.
  • the anode of the first laser diode 2501 is connected to the power supply pin 2510 of the second optical component, the drain of the MOS tube 2502 is connected to the cathode of the first laser diode 2501, and the gate of the MOS tube 2502 is connected to the output port of the operational amplifier 2504.
  • the source of the MOS transistor 2502 is connected to one end of the first resistor 2505, and the other end of the first resistor 2505 is connected to ground.
  • the cathode of the backlight photodiode 2503 is connected to the power supply pin 2510 of the second light component.
  • the anode of the backlight photodiode 2503 is connected in parallel with one end of the second resistor 2506 and the negative input port of the operational amplifier 2504. The other end of the second resistor 2506 is grounded. .
  • One end of the third resistor 2507 and one end of the fourth resistor 2508 are connected in parallel to the positive input port of the operational amplifier 2504.
  • the other end of the third resistor 2507 is connected to the power supply pin 2510 of the second optical component.
  • the other end of the fourth resistor 2508 Ground.
  • the power locking structure also includes a capacitor 2509.
  • One end of the capacitor 2509 is connected to the output port of the operational amplifier 2504, and the other end of the capacitor 2509 is connected to the negative input port of the operational amplifier 2504. This prevents the operational amplifier from self-oscillating.
  • the positive electrode of the operational amplifier 2504 is connected in parallel with the third resistor 2507 and the fourth resistor 2508. These two resistors can be fixed value resistors.
  • the ratio of the third resistor 2507 and the fourth resistor 2508 The voltage dividing ratio is set to set the input voltage of the operational amplifier 2504, thereby setting the target value of the power of the first wavelength optical signal.
  • the backlight photodiode 2503 absorbs the visible light or near-infrared light emitted by the first laser diode 2501. Due to the If the power of a wavelength optical signal changes, then the current of the branch where the backlight photodiode 2503 is located changes, and the operational amplifier 2504 adjusts its output voltage. When the output voltage of the operational amplifier 2504 changes, causing the conduction depth of the MOS tube 2502 to be different, the current passing through the first laser diode 2501 will also change, thereby realizing the first wavelength optical signal output by the first laser diode 2501. Power control.
  • the resistance of the second resistor 2506 affects the adjustment range of the power of the second wavelength optical signal.
  • the power locking structure shown in FIG. 25 above drives the first laser diode 2501 through the operational amplifier 2504 and the MOS transistor 2502 with low driving capability.
  • the power of the first wavelength optical signal output by the first laser diode 2501 can be locked through the power locking structure shown in FIG. 25, or the power of the first wavelength optical signal output by the first laser diode 2501 can be controlled to fall within a certain range.
  • Figure 26 is another structural schematic diagram of the power locking structure according to the embodiment of the present application.
  • the power locking structure includes: a first laser diode 2601, a backlight photodiode 2602, an operational amplifier 2603, a first resistor 2604, a second resistor 2605, a third resistor 2606 and a fourth resistor 2607.
  • the anode of the first laser diode 2601 is connected to the power supply pin 2609 of the second optical component, one end of the first resistor 2604 is connected to the cathode of the first laser diode 2601, and the other end of the first resistor 2604 is connected to the output port of the operational amplifier 2603. .
  • the cathode of the backlight photodiode 2602 is connected to the power supply pin 2609 of the second light component.
  • the anode of the backlight photodiode 2602 is connected in parallel with one end of the second resistor 2605 and the negative input port of the operational amplifier 2603. The other end of the second resistor 2605 is grounded. .
  • One end of the third resistor 2606 and one end of the fourth resistor 2607 are connected in parallel to the positive input port of the operational amplifier 2603.
  • the other end of the third resistor 2606 is connected to the power supply pin 2609 of the second optical component.
  • the other end of the fourth resistor 2607 Ground.
  • the functions of the third resistor 2606 and the fourth resistor 2607 in the power locking structure shown in FIG. 26 are similar to the functions of the third resistor 2507 and the fourth resistor 2508 in the power locking structure shown in FIG. 25.
  • the functions of the third resistor 2606 and the fourth resistor 2607 in the power locking structure shown in FIG. 26 are similar to the functions of the third resistor 2507 and the fourth resistor 2508 in the power locking structure shown in FIG. 25.
  • the backlight photodiode 2602 absorbs the visible light or near-infrared light emitted by the first laser diode 2601.
  • the current of the branch where the backlight photodiode 2602 is located changes, and the operational amplifier 2603 adjusts its output voltage, and the output voltage of the operational amplifier 2603 changes, thereby causing the first laser diode 2601
  • the supported current changes, thereby controlling the power of the first wavelength optical signal output by the first laser diode 2601.
  • the power locking structure shown in FIG. 26 above directly drives the first laser diode 2601 through the operational amplifier 2603 with strong driving capability.
  • the resistance of the second resistor 2605 affects the adjustment range of the power of the second wavelength optical signal.
  • the power locking structure also includes a capacitor 2608.
  • One end of the capacitor 2608 is connected to the output port of the operational amplifier 2603, and the other end of the capacitor 2608 is connected to the negative input port of the operational amplifier 2603. Thereby preventing the operational amplifier 2603 from self-oscillation.
  • the power locking structure shown in Figure 25 or Figure 26 above utilizes the negative feedback loop formed by the optical coupling between the first laser diode and the backlight photodiode to realize the first wavelength optical signal output by the first laser diode.
  • Power control i.e. visible light output optical power, or near-infrared light output optical power.
  • different optical components in the optical communication device are packaged using coaxial tubes.
  • This application is also applicable to other packaging methods, and the specific application is not limited.
  • different optical components are packaged using chips on board (COB).
  • the second optical component can be electrically connected to peripheral electronic components.
  • the second optical component and the third optical component can be electrically connected to peripheral electronic components.
  • the above-mentioned optical communication device is connected to a single board and placed in a chassis to form an optical network device.
  • the optical network device can be an OLT, an ONU, or an optical transport network (OTN). ), the specifics are not limited here.

Abstract

本申请实施例公开了一种光通信装置以及光网络设备。本申请提供的光通信装置包括:第一光组件和第二光组件,所述第一光组件用于发送第一波长光信号,所述第一波长光信号为可见光信号或近红外光信号;所述第二光组件用于发送第二波长光信号和/或接收第三波长光信号,所述第二波长光信号和所述第三波长光信号中承载业务数据。由此可知,上述技术方案通过第一光组件发射的第一波长光信号实现对光纤的检测。从而实现光纤分布网络的可视化功能。第二波长光信号和第三波长光信号中承载业务数据,实现光通信装置的通信功能和可视化功能于一体。

Description

光通信装置以及光网络设备
本申请要求于2022年7月28日提交中国国家知识产权局、申请号为202210899858.0、申请名称为“光模块以及光网络设备”的中国专利申请的优先权,以及要求于2022年11月17日提交中国国家知识产权局、申请号为202211441862.9、申请名称为“光通信装置以及光网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及一种光通信装置以及光网络设备。
背景技术
目前,在无源光网络(passive optical network,PON)中,光网络单元(optical network unit,ONU)的上行光信号经过光纤传输到光线路终端(optical line terminal,OLT)侧,并被OLT接收。同理,OLT的下行光信号经过光纤传输至ONU侧,并被ONU接收。
ONU与OLT之间可以进行正常的上行通信或下行通信,但是无法知晓光纤分布网络(optical distribution network,ODN)中哪些光纤被占用、空闲或断纤。目前主要采用红光笔接入光纤从而判断光纤是否发生断纤实现对ODN网络的可视化管理。
但是,红光笔作为断纤检测手段独立于PON网络,无法实现对ODN网络的自动化地可视化管理。
发明内容
本申请提供了一种光通信装置以及光网络设备,实现对ODN网络中的光纤进行自动化检测,实现光通信装置的通信功能和可视化功能于一体。
本申请第一方面提供一种光通信装置,包括:第一光组件和第二光组件,第一光组件用于发送第一波长光信号,第一波长光信号为可见光信号或近红外光信号;第二光组件用于发送第二波长光信号和/或接收第三波长光信号,第二波长光信号和所述第三波长光信号中承载业务数据。
上述技术方案中,光通信装置中集成第一光组件和第二光组件,第一光组件用于发送第一波长光信号,第一波长光信号为可见光信号或近红外光信号;第二光组件用于发送第二波长光信号和/或接收第三波长光信号,第二波长光信号和第三波长光信号中承载业务数据。由于第一波长光信号的波长是可见光信号或近红外光信号,人眼可以对该第一波长光信号产生的光进行识别。从而通过第一波长光信号实现对ODN网络中的光纤进行自动化检测,实现ODN网络的自动化地可视化管理。例如,通过第一波长光信号检测ODN网络中的光纤是否被占用、是否空闲或是否发生断纤等。第二波长光信号和第三波长光信号中可以承载业务数据,实现光通信装置的通信功能和可视化功能于一体。
基于第一方面,一种可能的实现方式中,光通信装置还包括:第一耦合器和第一光纤连接端口,第一光组件与第一耦合器的第一端连接,第二光组件与第一耦合器的第二端连接,第一耦合器的第三端与第一光纤连接端口连接;
第一光组件用于向第一耦合器发送所述第一波长光信号,第二光组件用于向第一耦合器 发送第二波长光信号;第一耦合器用于将第一波长光信号和第二波长光信号进行耦合得到合波信号,并将合波信号发送至第一光纤连接端口。
在该实现方式中,该第二光组件可以为发射光组件,也就是光通信装置包括单向光组件,该基础上集成了第一光组件。从而实现光通信装置的通信功能和可视化功能一体化。
基于第一方面,一种可能的实现方式中,光通信装置还包括:第一耦合器和第一光纤连接端口,第一光组件与第一耦合器的第一端连接,第二光组件与第一耦合器的第二端连接,第一耦合器的第三端与第一光纤连接端口连接;
第一光组件用于向第一耦合器发送第一波长光信号,第二光组件用于接收第三波长光信号;第一耦合器用于分离第一波长光信号和来自第一光纤连接端口的第三波长光信号,使得第一波长光信号发送至第一光纤连接端口以及第三波长光信号发送至第二光组件。
在该实现方式中,该第二光组件为接收光组件,也就是光通信装置包括单向光组件,该基础上集成了第一光组件。从而实现光通信装置的通信功能和可视化功能一体化。
基于第一方面,一种可能的实现方式中,光通信装置还包括第一耦合器和第一光纤连接端口;第一光组件与第一耦合器的第一端连接,第二光组件与第一耦合器的第二端连接,第一耦合器的第三端与第一光纤连接端口连接;
第一光组件用于向第一耦合器发送第一波长光信号;第二光组件用于向第一耦合器发送第二波长光信号;第一耦合器用于将第一波长光信号和第二波长光信号进行耦合得到合波信号,并将合波信号发送至第一光纤连接端口;以及第一光组件用于向第一耦合器发送第一波长光信号;第二光组件用于接收第三波长光信号;第一耦合器用于分离第一波长光信号和来自第一光纤连接端口的第三波长光信号,使得第一波长光信号发送至第一光纤连接端口以及第三波长光信号发送至第二光组件。
在该实现方式中,该第二光组件为收发光组件,也就是光通信装置中包括双向光组件,在该基础上集成了第一光组件形成三向光组件。从而实现光通信装置的通信功能和可视化功能一体化。
基于第一方面,一种可能的实现方式中,光通信装置还包括:第三光组件、第一耦合器、第二耦合器和第一光纤连接端口;
第一光组件与第一耦合器的第一端连接,第二光组件与第一耦合器的第二端连接,第一耦合器的第三端与第二耦合器的第一端连接,第二耦合器的第二端与第三光组件连接,第二耦合器的第三端与第一光纤连接端口连接;第一光组件用于向第一耦合器发送第一波长光信号;第二光组件用于向第一耦合器发送第二波长光信号;第三光组件用于接收第四波长光信号,第四波长光信号中承载业务数据;第一耦合器用于将第一波长光信号和第二波长光信号进行耦合得到合波信号,并向第二耦合器发送合波信号;第二耦合器用于将合波信号发送至第一光纤连接端口,以及接收来自第一光纤连接端口的第四波长光信号,并向第三光组件发送第四波长光信号。
在该实现方式中,光通信装置包括发射光组件和接收光组件,也就是光通信装置中包括双向光组件,在该基础上集成了第一光组件形成三向光组件。从而实现光通信装置的通信功能和可视化功能一体化。上述实现方式提供了三向光组件的一种具体的结构。
基于第一方面,一种可能的实现方式中,光通信装置还包括:第三光组件、第一耦合器、第二耦合器和第一光纤连接端口;
第一光组件与第一耦合器的第一端连接,第三光组件与第一耦合器的第二端连接,第一耦合器的第三端与第二耦合器的第一端连接,第二耦合器的第二端与第二光组件连接,第二 耦合器的第三端与第一光纤连接端口连接;
第一光组件用于向第一耦合器发送第一波长光信号;第二光组件用于向第二耦合器发送第二波长光信号,第三光组件用于接收第四波长光信号,第四波长光信号中承载业务数据;第一耦合器用于分离第一波长光信号和来自第二耦合器的第四波长光信号,使得第一波长光信号发送至第一耦合器以及第四波长光信号发送至第三光组件;第二耦合器用于将第一波长光信号和第二波长光信号进行耦合得到合波信号,并将合波信号发送至第一光纤连接端口,以及接收来自第一光纤连接端口的第四波长光信号,并将第四波长光信号发送至第一耦合器。
在该实现方式中,光通信装置包括发射光组件和接收光组件,也就是光通信装置中包括双向光组件,在该基础上集成了第一光组件形成三向光组件。从而实现光通信装置的通信功能和可视化功能一体化。上述实现方式提供了三向光组件的另一种具体的结构。
基于第一方面,一种可能的实现方式中,光通信装置还包括:第三光组件、第一耦合器、第二耦合器和第一光纤连接端口;
第一光组件与第二耦合器的第一端连接,第二光组件与第一耦合器的第一端连接,第三光组件与第一耦合器的第二端连接,第一耦合器的第三端与第二耦合器的第二端连接,第二耦合器的第三端与第一光纤连接端口连接;
第一光组件用于向第二耦合器发送第一波长光信号;第二光组件用于向第一耦合器发送第二波长光信号,第三光组件用于接收第四波长光信号,第四波长光信号中承载业务数据;第一耦合器用于分离第二波长光信号和来自第二耦合器的第四波长光信号,使得第二波长光信号发送至第二耦合器以及第四波长光信号发送至第三光组件;第二耦合器用于将第一波长光信号和第二波长光信号进行耦合得到合波信号,并将合波信号发送至第一光纤连接端口,以及接收来自第一光纤连接端口的第四波长光信号,并将第四波长光信号发送至第一耦合器。
在该实现方式中,光通信装置包括发射光组件和接收光组件,也就是光通信装置中包括双向光组件,在该基础上集成了第一光组件形成三向光组件。从而实现光通信装置的通信功能和可视化功能一体化。上述实现方式提供了三向光组件的另一种具体的结构。
基于第一方面,一种可能的实现方式中,第一光组件与第一耦合器的第一端通过第一光传输通道连接,第二光组件与第二耦合器的第二端通过第二光传输通道连接,第一耦合器的第三端与第一光纤连接端口通过第三光传输通道连接。在该实现方式中,示出了第一光组件与第一耦合器之间的一种连接方式,第二光组件与第二耦合器之间的一种连接方式以及第二耦合器与第一光纤连接端口的一种连接方式。
基于第一方面,一种可能的实现方式中,第一光传输通道为第一光纤,第二光传输通道为第二光纤,第三光传输通道为第三光纤。在该实现方式中,光传输通道可以是光纤,从而便于方案的实施。
基于第一方面,一种可能的实现方式中,当第二光组件为发射光组件时,光通信装置还包括第一壳体,第一光传输通道、第二光传输通道和第三光传输通道是第一壳体上设置的光传输通道;第一耦合器设置于第一光传输通道与第二光传输通道的交接处;第一壳体上设置有与第一光传输通道连通的第一光发送端口以及与第二光传输通道连通的第二光发送端口;第一光组件封装于第一光发送端口,第二光组件封装于第二光发送端口。
在该实现方式中,第二光组件为发射光组件,第一光组件和第二光组件可以集成在第一壳体中,从而实现在光通信装置中集成第一光组件和第二光组件,实现光通信装置的通信功能和可视化功能一体化。
基于第一方面,一种可能的实现方式中,当第二光组件为接收光组件时,光通信装置还 包括第一壳体,第一光传输通道、第二光传输通道和第三光传输通道是第一壳体上设置的光传输通道;第一耦合器设置于第一光传输通道与第二光传输通道的交接处;第一壳体上设置有与第一光传输通道连通的第一光发送端口以及与第二光传输通道连通的光接收端口;第一光组件封装于第一光发送端口,第二光组件封装于光接收端口。
在该实现方式中,第二光组件为接收光组件,第一光组件和第二光组件可以集成在第一壳体中,从而实现在光通信装置中集成第一光组件和第二光组件,实现光通信装置的通信功能和可视化功能一体化。
基于第一方面,一种可能的实现方式中,当第二光组件为收发光组件时,光通信装置还包括第一壳体,第一光传输通道、第二光传输通道和第三光传输通道是第一壳体上设置的光传输通道;第一耦合器设置于第一光传输通道与第二光传输通道的交接处;第一壳体上设置有与第一光传输通道连通的第一光发送端口以及与第二光传输通道连通的光收发端口;第一光组件封装于第一光发送端口,第二光组件封装于光收发端口。
在该实现方式中,第二光组件为收发光组件,第一光组件和第二光组件可以集成在第一壳体中,从而实现在光通信装置中集成第一光组件和第二光组件,实现光通信装置的通信功能和可视化功能一体化。
基于第一方面,一种可能的实现方式中,第一光组件与第一耦合器的第一端通过第一光传输通道连接,第二光组件与第一耦合器的第二端通过第二光传输通道连接,第一耦合器的第三端与第二耦合器的第一端通过第三光传输通道连接,第二耦合器的第二端与第三光组件通过第四光传输通道连接,第二耦合器的第三端与第一光纤连接端口通过第五光传输通道连接。在该实现方式中,示出了第一光组件、第二光组件、第三光组件、第一耦合器、第二耦合器和第一光纤连接端口的一种连接方式,方便方案的实施。
基于第一方面,一种可能的实现方式中,光通信装置还包括第一壳体;第一光传输通道、第二光传输通道、第三光传输通道、第四光传输通道和第五光传输通道是第一壳体上设置的光传输通道;第一耦合器设置于第一光传输通道与第二光传输通道的交接处,第二耦合器设置于所述第三光传输通道与所述第四光传输通道的交接处;第一壳体上设置有与第一光传输通道连通的第一光发送端口、与第二光传输通道连通的第二光发送端口以及与第四光传输通道连通的光接收端口;第一光组件封装于第一光发送端口,第二光组件封装于第二光发送端口,第三光组件封装于所述光接收端口。
在该实现方式中,第一光组件、第二光组件和第三光组件可以集成在第一壳体中,从而实现在光通信装置中集成第一光组件、第二光组件和第三光组件,实现光通信装置的通信功能和可视化功能一体化。
基于第一方面,一种可能的实现方式中,光通信装置还包括第二壳体和第三壳体;第一光传输通道和第二光传输通道是第二壳体上设置的光传输通道;第四光传输通道与第五光传输通道是第三壳体上设置的光传输通道;第三光传输通道设置于第二壳体和第三壳体之间;第一耦合器设置于第一光传输通道与第二光传输通道的交接处,第二耦合器设置于第三光传输通道与第四光传输通道的交接处;第二壳体上设置有与第一光传输通道连通的第一光发送端口以及与第二光传输通道连通的第二光发送端口;第三壳体上设置有与第四光传输通道连通的光接收端口;第一光组件封装于第一光发送端口,第二光组件封装于第二光发送端口,第三光组件封装于光接收端口。
在该实现方式中,第一光组件和第二光组件可以集成在第二壳体中,第二壳体和第三光组件可以集成在第三壳体中,从而实现在光通信装置中集成第一光组件、第二光组件和第三 光组件,实现光通信装置的通信功能和可视化功能一体化。
基于第一方面,一种可能的实现方式中,第一光组件与第一耦合器的第一端通过第一光传输通道连接,第三光组件与第一耦合器的第二端通过第二光传输通道连接,第一耦合器的第三端与第二耦合器的第一端通过第三光传输通道连接,第二耦合器的第二端与第二光组件通过第四光传输通道连接,第二耦合器的第三端与第一光纤连接端口通过第五光传输通道连接。在该实现方式中,示出了第一光组件、第二光组件、第三光组件、第一耦合器、第二耦合器和第一光纤连接端口的另一种连接方式,方便方案的实施。
基于第一方面,一种可能的实现方式中,光通信装置还包括第一壳体;第一光传输通道、第二光传输通道、第三光传输通道、第四光传输通道和第五光传输通道是第一壳体上设置的光传输通道;第一耦合器设置于第一光传输通道与第二光传输通道的交接处,第二耦合器设置于第三光传输通道与第四光传输通道的交接处;第一壳体上设置与第一光传输通道连通的第一光发送端口、与第二光传输通道连通的光接收端口以及与第四光传输通道连通的第二光发送端口;第一光组件封装于第一光发送端口,第二光组件封装于光接收端口,第三光组件封装于第二光发送端口。在该实现方式中,第一光组件、第二光组件和第三光组件可以集成在第一壳体中,从而实现在光通信装置中集成第一光组件、第二光组件和第三光组件,实现光通信装置的通信功能和可视化功能一体化。
基于第一方面,一种可能的实现方式中,光通信装置还包括第二壳体和第三壳体;第一光传输通道和第二光传输通道是第二壳体上设置的光传输通道;第四光传输通道与第五光传输通道是第三壳体上设置的光传输通道;第三光传输通道设置于第二壳体和第三壳体之间;第一耦合器设置于第一光传输通道与第二光传输通道的交接处,第二耦合器设置于第三光传输通道与第四光传输通道的交接处;第二壳体上设置有与第一光传输通道连通的第一光发送端口以及与第二光传输通道连通的光接收端口;第三壳体上设置有与第四光传输通道连通的第二光发送端口;第一光组件封装于第一光发送端口,第二光组件封装于光接收端口,第三光组件封装于第二光发送端口。在该实现方式中,第一光组件和第三光组件可以集成在第二壳体中,第二壳体和第二光组件可以集成在第三壳体中,从而实现在光通信装置中集成第一光组件、第二光组件和第三光组件,实现光通信装置的通信功能和可视化功能一体化。
基于第一方面,一种可能的实现方式中,第一光组件与第二耦合器的第一端通过第一光传输通道连接,第二光组件与所述第一耦合器的第一端通过第二光传输通道连接,第三光组件与第一耦合器的第二端通过第三光传输通道连接,第一耦合器的第三端与第二耦合器的第二端通过第四光传输通道连接,第二耦合器的第三端与第一光纤连接端口通过第五光传输通道连接。在该实现方式中,示出了第一光组件、第二光组件、第三光组件、第一耦合器和第二耦合器的另一种连接方式,便于方案的实施。
基于第一方面,一种可能的实现方式中,光通信装置还包括第一壳体,第一光传输通道、第二光传输通道、第三光传输通道、第四光传输通道和第五光传输通道是第一壳体上设置的光传输通道;第一耦合器设置于第二光传输通道与第三光传输通道的交接处,第二耦合器设置于第一光传输通道与第四光传输通道的交接处;第一壳体上设置与第二光传输通道连通的第一光发送端口、与第三光传输通道连通的光接收端口以及与第一光传输通道连通的第二光发送端口;第一光组件封装于第二光发送端口,第二光组件封装于第一光发送端口,第三光组件封装于光接收端口。在该实现方式中,第一光组件、第二光组件和第三光组件可以集成在第一壳体中,从而实现在光通信装置中集成第一光组件、第二光组件和第三光组件,实现光通信装置的通信功能和可视化功能一体化。
基于第一方面,一种可能的实现方式中,光通信装置还包括第二壳体和第三壳体;第二光传输通道和第三光传输通道是第二壳体上设置的光传输通道;第一光传输通道和第五光传输通道是第三壳体上设置的光传输通道;第四光传输通道设置于第二壳体和第三壳体之间;第一耦合器设置于第二光传输通道与第三光传输通道的交接处,第二耦合器设置于第一光传输通道与第四光传输通道的交接处;第二壳体上设置有与第二光传输通道连通的第一光发送端口以及与第三光传输通道连通的光接收端口;第三壳体上设置有与第一光传输通道连通的第二光发送端口;第一光组件封装于第二光发送端口,第二光组件封装于第一光发送端口,第三光组件封装于光接收端口。
在该实现方式中,第二光组件和第三光组件可以集成在第二壳体中,第二壳体和第一光组件可以集成在第三壳体中,从而实现在光通信装置中集成第一光组件、第二光组件和第三光组件,实现光通信装置的通信功能和可视化功能一体化。
基于第一方面,一种可能的实现方式中,第一光传输通道为第一光纤,第二光传输通道为第二光纤,第三光传输通道为第三光纤,第四光传输通道为第四光纤,第五光传输通道为第五光纤。在该实现方式中,第一光组件、第二光组件、第三光组件、第一耦合器和第二耦合器之间可以通过光纤连接,从而实现在光通信装置中集成第一光组件,实现光光通信装置的通信功能和可视化功能一体化。
基于第一方面,一种可能的实现方式中,第一光组件包括第一激光二极管(laser diode,LD),第一激光二极管的正极通过软硬结合板或柔板与第二光组件的供电管脚连接。
在该实现方式中,第二光组件的供电管脚与软硬结合板或柔板的一端连接,而第一激光二极管的正极与该软硬结合板或柔板的另一端连接。也就是通过软硬结合板或柔板从第二光组件的供电管脚处取电,从而实现为第一光组件供电。无需改变光网络设备(例如,OLT或ONU,光通信装置部署于该OLT或ONU)中的单板形态。
基于第一方面,一种可能的实现方式中,第一光组件还包括功率锁定结构,功率锁定结构与第一激光二极管连接,功率锁定结构用于控制第一激光二极管输出的第一波长光信号的功率。
在该实现方式中,由于人眼能够识别的光信号的功率是有下限的,通过功率锁定结构可以对第一波长光信号的功率的锁定,可以保证人眼能够实现该可见光信号或近红外光信号,实现对ODN网络的可视化管理。进一步的,锁定第一波长光信号的功率,有利于延长光通信装置的寿命。例如,光通信装置集成在芯片中,第一波长光信号的功率锁定在一个恒定值或一个范围内,有利于延长芯片的寿命。
基于第一方面,一种可能的实现方式中,功率锁定结构包括背光光电二极管、金属氧化物半导体场效应晶体(metal-oxide-semiconductor field-effect transistor,MOS)管、运算放大器、第一电阻、第二电阻、第三电阻和第四电阻;MOS管的漏极与第一激光二极管的负极连接,MOS管的栅极与运算放大器的输出端口连接,MOS管的源极与第一电阻的一端连接,第一电阻的另一端接地;背光光电二极管的负极与供电管脚连接,背光光电二极管的正极与第二电阻的一端与运算放大器的负极输入端口并联连接,第二电阻的另一端接地;第三电阻的一端和第四电阻的一端与运算放大器的正极输入端口并联连接,第三电阻的另一端与供电管脚连接,所四电阻的另一端接地。
在该实现方式中,提供了功率锁定结构的一种可能的电路结构,通过低驱动能力的运算放大器和MOS管共同驱动第一激光二极管。上述功率锁定结构利用第一激光二极管与背光光电二极管之间的光耦合形成的负反馈回路实现对第一激光二极管输出的第一波长光信号的功 率控制。
基于第一方面,一种可能的实现方式中,功率锁定结构包括背光光电二极管、运算放大器、第一电阻、第二电阻、第三电阻和第四电阻;第一电阻的一端与第一激光二极管的负极连接,第一电阻的另一端与运算放大器的输出端口连接;背光光电二极管的负极与供电管脚连接,背光光电二极管的正极与第二电阻的一端与运算放大器的负极输入端口并联连接,第二电阻的另一端接地;第三电阻的一端和第四电阻的一端与运算放大器的正极输入端口并联连接,第三电阻的另一端与供电管脚连接,第四电阻的另一端接地。
在该实现方式中,提供了功率锁定结构的另一种可能的电路结构,通过驱动能力较强的运算放大器直接驱动该第一激光二极管。上述功率锁定结构利用第一激光二极管与背光光电二极管之间的光耦合形成的负反馈回路实现对第一激光二极管输出的第一波长光信号的功率控制。
基于第一方面,一种可能的实现方式中,功率锁定结构还包括电容,电容的一端与运算放大器的输出端口连接,电容的另一端与运算放大器的负极输入端口连接。在该实现方式中,运算放大器的输出端口和负极输入端口之间连接电容,从而防止运算放大器自激振荡。
基于第一方面,一种可能的实现方式中,第一光组件与第二光组件封装在同一个同轴管壳(transistor-outline can,TO-CAN)内;或者,第一光组件与第三光组件封装在同一个同轴管壳内;或者,第二光组件与第三光组件封装在同一个同轴管壳内。
在该实现方式中,光通信装置中的第一光组件、第二光组件和第三光组件中可以是任意两个光组件封装在同一个同轴管壳内。例如,第一光组件和第二光组件封装于同一个同轴管壳内,从而实现同一同轴管壳内可见光或近红外光和通信光双发合一。例如,第一光组件与第三光组件封装在同一个同轴管内,从而实现同一同轴管壳内可见光或近红外光和通信光收发合一。例如,第二光组件与第三光组件封装在同一个同轴管壳内,从而实现同一同轴管壳内通信光收发合一。
基于第一方面,一种可能的实现方式中,第一光组件包括第一激光二极管激光二极管(laser diode,LD),第二光组件包括第二激光二极管,第三光组件包括雪崩光电二极管(avalanche photo diode,APD)。
基于第一方面,一种可能的实现方式中,第二波长光信号和第三波长光信号均为通信光信号。
基于第一方面,一种可能的实现方式中,第一波长光信号用于光纤检测。
本申请第二方面提供一种光网络设备,包括如第一方面的技术方案中的光通信装置。
可选地,在一些可能的实施方式中,该光网络设备可以OLT或ONU。
附图说明
图1为本申请实施例PON场景的网络结构示意图;
图2为本申请实施例收发光组件的结构示意图;
图3为本申请实施例发射光组件以及接收光组件采用同轴管壳封装的结构示意图;
图4为本申请实施例光通信装置的一个结构示意图;
图5为本申请实施例光通信装置的另一个结构示意图;
图6为本申请实施例光通信装置的另一个结构示意图;
图7为本申请实施例光通信装置的另一个结构示意图;
图8为本申请实施例光通信装置的另一个结构示意图;
图9为本申请实施例光通信装置的另一个结构示意图;
图10为本申请实施例光通信装置的另一个结构示意图;
图11为本申请实施例光通信装置的另一个结构示意图;
图12为本申请实施例第一壳体的一个示意图;
图13为本申请实施例光通信装置的另一个结构示意图;
图14为本申请实施例光通信装置的另一个结构示意图;
图15为本申请实施例光通信装置的另一个结构示意图;
图16为本申请实施例光通信装置的另一个结构示意图;
图17为本申请实施例光通信装置的另一个结构示意图;
图18为本申请实施例光通信装置的另一个结构示意图;
图19为本申请实施例光通信装置的另一个结构示意图;
图20为本申请实施例光通信装置的另一个结构示意图;
图21为本申请实施例光通信装置的另一个结构示意图;
图22为本申请实施例光通信装置的另一个结构示意图;
图23为本申请实施例光通信装置的另一个结构示意图;
图24为本申请实施例光通信装置的另一个结构示意图;
图25为本申请实施例功率锁定结构的一个示意图;
图26为本申请实施例功率锁定结构的另一个示意图。
具体实施方式
本申请实施例提供了一种光通信装置以及光网络设备。光通信装置中集成第一光组件和第二光组件,第一光组件用于发送第一波长光信号,第一波长光信号为可见光信号或近红外光信号。从而实现通过光通信装置中第一光组件发射的第一波长光信号检测ODN网络中的光纤是否被占用、是否空闲或是否发生断纤等。实现对ODN网络的自动化地可视化管理。而第二光组件用于发送第二波长光信号和/或接收第三波长光信号,第二波长光信号和第三波长光信号中承载业务数据。从而实现光通信装置的通信功能和可视化功能于一体。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。
下面对本申请实施例涉及到的概念进行说明:
无源光网络(passive optical network,PON):无源光网络是指在光线路终端(optical line terminal,OLT)和光网络单元(optical network unit,ONU)之间是光纤分布网络(optical distribution network,ODN),没有任何有源电子设备。
本申请实施例的技术方案可以应用于各种无源光网络(passive optical network,PON)系统之间的兼容,PON系统例如包括,下一代PON(next-generation PON,NG-PON)、NG-PON1、NG-PON2、千兆比特PON(gigabit-capable PON,GPON)、10吉比特每秒PON(10gigabit per second PON,XG-PON)、对称10吉比特无源光网络(10-gigabit-capable symmetric passive optical network,XGS-PON)、以太网PON(Ethernet PON,EPON)、10吉比特每秒EPON(10 gigabit per second EPON,10G-EPON)、下一代EPON(next-generation EPON,NG-EPON)、波分复用(wavelength-division multiplexing,WDM)PON、时分波分堆叠复用(time-and  wavelength-division multiplexing,TWDM)PON、点对点(point-to-point,P2P)WDM PON(P2P-WDM PON)、异步传输模式PON(asynchronous transfer mode PON,APON)、宽带PON(broadband PON,BPON),等等,以及25吉比特每秒PON(25 gigabit per second PON,25G-PON)、50吉比特每秒PON(50 gigabit per second PON,50G-PON)、100吉比特每秒PON(100 gigabit per second PON,100G-PON)、25吉比特每秒EPON(25 gigabit per second EPON,25G-EPON)、50吉比特每秒EPON(50 gigabit per second EPON,50G-EPON)、100吉比特每秒EPON(100 gigabit per second EPON,100G-EPON),以及其他速率的GPON、EPON等。
光纤分布网络(optical distribution network,ODN):ODN是基于PON设备的光纤到户光缆网络。其作用是为OLT和ONU之间提供光传输通道。
波分复用(wavelength division multiplexing,WDM):波分复用是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
发射光组件:发射光组件的作用是将电信号转化为光信号,并输入光纤进行传输。
接收光组件:接收光组件的作用是接收由光纤传入的光信号,并对其进行电信号转化。
收发光组件:主要包括发射光组件和接收光组件。
请参阅图1,本申请主要应用于无源光网络(passive optical network,PON)中,在光网络全面普及的整体形势之下,需要用到数量巨大的通信设备,如OLT以及ONU等,相关的通信设备主要由光模块(也可以称为光通信装置)及放置光模块的单板及机框组成,每个光模块对应一个ODN并服务一定数目的用户(每个ONU表示一个用户)。作为光网络中的关键构成,OLT及ONU里面的光模块担负着将网络信号进行光电转换及传输的任务,是整个网络能够正常通信的基础。
本申请的技术方案中,光通信装置中可以包括单向光组件,例如,发射光组件或接收光组件,也可以包括双向光组件,例如,收发光组件。具体本申请不做限定。
下面结合图2介绍一种可能的收发光组件的结构示意图。
请参阅图2,光模块中重要的部件为收发光组件,借助该收发光组件实现对光信号的发送以及接收。从图2可知,收发光组件包括外壳201、嵌入外壳201设置的发射光组件202、接收光组件203、设置在外壳201内的WDM结构204(合波器或分波器)、以及连接在外壳201端部的光纤连接插芯205和光纤206。其中,发射光组件202的作用是将电信号转化为光信号,并输入光纤206进行传输。接收光组件203的作用是接收由光纤传入的光信号,并对其进行电信号转化,一般情况下,由于发送和接收的光的波长不同,因此需要在金属外壳内放置WDM结构204,将这两类波长进行分离,WDM结构204的功能是:透射某些波长的光,而同时反射其他波长的光。光发送路径如图2中实线箭头所示,发射光组件202发出的光经过WDM结构204时直线透射,然后进入光纤206传输;光接收路径如图2中虚线箭头所示,光纤206传入的光信号经过WDM结构204时发生反射,接收光组件203正好位于反射光路上,从而实现光信号的接收。
需要说明的是,上述图2所示的收发光组件中包含光纤连接插芯205和光纤206,实际应用中,收发光组件也可以没有该光纤连接插芯205和光纤206。
可选的,不同光组件可以采用同轴管壳(transistor-outline can,TO-CAN)的形式进行封装。下面以发射光组件以及接收光组件可以采用同轴管壳(transistor-outline can,TO-CAN)的形式进行封装为例介绍同轴管壳的封装形式。
请参阅图3,发射光组件以及接收光组件可以采用同轴管壳的形式进行封装,都是采用一个带管脚的金属底座外加一个带透镜的管帽集合而成,激光二极管(laser diode,LD)和光电二极管(photodiode,PD)均按照一定的形式放置在金属底座上。底座上的管脚,利用金线分别与LD、跨阻放大器(trans-impedance amplifier,TIA)上的信号电极进行连接,这样就可以将外部的电信号传输到LD上进行电光转化。一般的,管脚与基底之间是采用玻璃胶隔开的,两者之间在电气上处于隔离状态,整个基底用于做地线平面,通过一个与基底相连的特殊管脚与外界地相连,上述的各种连接,均可以采用金线焊接实现。发射光组件以及接收光组件通过收发的管脚与外围的电路进行连接,然后装入光模块壳体,构成了光模块结构。
在PON网络中,ONT与OLT之间可以进行正常的上行通信或下行通信,但是无法知晓ODN中哪些光纤被占用、空闲或断纤。目前主要采用红光笔接入光纤从而判断光纤是否发生断纤实现对ODN网络的可视化管理。但是,红光笔作为断纤检测手段独立于PON网络,无法实现对ODN网络的自动化地可视化管理。进一步的,红光笔只能用于检测光纤是否断纤,光纤检测功能较为单一。
本申请提供了相应的技术方案,实现通过光通信装置中第一光组件发射的第一波长光信号检测ODN网络中的光纤是否被占用、是否空闲或是否发生断纤等。实现对ODN网络中的光纤进行自动化检测,实现对ODN网络的自动化地可视化管理,光纤检测功能更为全面。而第二光组件用于发送第二波长光信号和/或接收第三波长光信号,第二波长光信号和第三波长光信号中承载业务数据。从而实现光通信装置的通信功能和可视化功能于一体。
下面结合具体实施例介绍本申请的技术方案。
本申请实施例提供一种光通信装置,光通信装置包括:第一光组件和第二光组件。
其中,第一光组件用于发送第一波长光信号。第一波长光信号为可见光信号或近红外光信号。第二光组件用于发送第二波长光信号和/或接收第三波长光信号,第二波长光信号和第三波长光信号中承载业务数据。可选的,第一波长光信号用于光纤检测。
可以理解的是,第一波长光信号的波长可以是人眼能够识别的光的波长。例如,可见光的波长在360纳米至830纳米之间,近红外光的波长在780纳米至1100纳米。第一波长光信号的波长可以是可见光或近红外光的其中一个波长。例如,第一波长光信号的波长为650纳米。
可选的,第一波长光信号用于检测光纤是否空闲、或被占用、或断纤。从而实现对ODN网络的可视化管理。例如,该光通信装置部署于OLT中,该第一波长光信号可以用于检测OLT与ODN网络之间的光纤是否空闲、或被占用、或断纤。例如,该光通信装置部署于ONU中,该第一波长光信号可以用于检测ONU与ODN网络之间的光纤是否空闲、或被占用、或断纤。
第二波长光信号和第三波长光信号可以是通信光信号。例如,通信光波长在1260纳米至1600纳米。例如,第二波长光信号的波长在1260纳米至1330纳米之间,第三波长光信号的波长在1340纳米至1600纳米之间。或者,第二波长光信号的波长在1340纳米至1600纳米之间,第三波长光信号的波长在1260纳米至1330纳米之间。
可选的,第二光组件可以为发射光组件、接收光组件或收发光组件。
例如,该光通信装置部署于OLT中,第二波长光信号可以是OLT向ONU发送下行通信光 信号。第三波长光信号是OLT接收来自ONU发送的上行通信光信号。从而实现光通信装置的通信功能和可视化功能于一体。
例如,该光通信装置部署于ONU中,第二波长光信号可以是ONU向OLT发送的上行通信光信号。第三波长光信号是ONU接收来自OLT发送的下行通信光信号。从而实现光通信装置的通信功能和可视化功能于一体。
可选的,光通信装置还包括第一耦合器和第一光纤连接端口。第一光组件与第一耦合器的第一端连接,第二光组件与第一耦合器的第二端连接,第一耦合器的第三端与第一光纤连接端口连接。
可选的,第一光组件通过第一光传输通道与第一耦合器的第一端连接,第二光组件通过第二光传输通道与第一耦合器的第二端连接,第一耦合器的第三端通过第三光传输通道与第一光纤连接端口连接。在后文的实施例中,结合第二光组件的功能介绍该第一耦合器的功能。
需要说明的是,可选的,第一耦合器的耦合方式可以为波分耦合方式、功分耦合方式、或偏振分耦合方式,具体本申请不做限定。
可选的,第一耦合器可以为WDM结构或棱镜。
下面介绍第一光传输通道、第二光传输通道和第三光传输通道的两种可能的实现方式。
方式1:第一光传输通道为第一光纤,第二光传输通道为第二光纤,第三光传输通道为第三光纤。
下面结合图4所示的光通信装置进行介绍。图4为本申请实施例光通信装置的一个结构示意图。请参阅图4,光通信装置400包括第一光组件401、第二光组件402、第一耦合器403和第一光纤连接端口404。
第一光组件401通过第一光纤405与第一耦合器403的第一端连接。第二光组件402通过第二光纤406与第一耦合器403的第二端连接。第一耦合器403的第三端通过第三光纤407与第一光纤连接端口404连接。
第一光组件401、第二光组件402和第一耦合器403之间通过光纤连接,该连接方式可以称为外耦合连接。
可选的,第一光组件401可以通过第一光组件401中的光纤连接端口与该第一耦合器403的第一端连接,第二光组件402可以通过第二光组件402中的光纤连接端口与该第一耦合器403的第二端连接。
下面结合第二光组件402的类型介绍第一耦合器403的功能。
情况1:第二光组件402为收发光组件。
具体的,第一光组件401用于通过第一光纤405向第一耦合器403发送第一波长光信号。第二光组件402用于通过第二光纤406向第一耦合器403发送第二波长光信号,以及通过第二光纤406接收第三波长光信号。第一耦合器403用于通过第一光纤405接收来自第一光组件401的第一波长光信号以及通过第二光纤406接收来自第二光组件403的第二波长光信号;再将第一波长光信号和第二波长光信号进行耦合得到合波信号,并通过第三光纤407将合波信号发送至第一光纤连接端口407。从而实现光通信装置400通过与该第一光纤连接端口404连接的光纤将合波信号发射出去。第一耦合器403用于通过第三光纤407接收来自第一光纤连接端口404的第三波长光信号,并通过第二光纤406将第三波长光信号发送至第二光组件402。
情况2:第二光组件402为发射光组件。
具体的,第一光组件401用于通过第一光纤405向第一耦合器403发送第一波长光信号。第二光组件402用于通过第二光纤406向第一耦合器403发送第二波长光信号。第一耦合器403用于通过第一光纤405接收来自第一光组件401发送的第一波长光信号以及通过第二光纤406接收来自第二光组件403的第二波长光信号;再将第一波长光信号和第二波长光信号进行耦合得到合波信号,并通过第三光纤407将合波信号发送至第一光纤连接端口407。从而实现光通信装置400通过与该第一光纤连接端口404连接的光纤将合波信号发射出去。
情况3:第二光组件402为接收光组件。
具体的,第一光组件401用于通过第一光纤405向第一耦合器403发送第一波长光信号。第二光组件402用于通过第二光纤406接收第三波长光信号。第一耦合器403用于通过第三光纤407接收来自第一光纤连接端口404的第三波长光信号,并通过第二光纤406将第三波长光信号发送至第二光组件402。
方式2:第一光传输通道、第二光传输通道和第三光传输通道是第一壳体内设置的光传输通道,具体可以理解为第一壳体内的管道空间,用于光信号的传输。
下面结合图5所示的光通信装置进行介绍。图5为本申请实施例光通信装置的一个结构示意图。请参阅图5,光通信装置500包括第一光组件501、第二光组件502、第一耦合器503、第一光纤连接端口504和第一壳体505。
第一壳体505上设置有第一光传输通道506、第二光传输通道507和第三光传输通道508。第一耦合器503设置于第一光传输通道506和第二光传输通道507的交接处。第一壳体505设置有与第一光传输通道506连通的第一光发送端口。第一光组件501封装于第一光发送端口。
当第二光组件502为收发光组件时,第一壳体505设置有与第二光传输通道507连通的光收发端口。第二光组件502封装于光收发端口。
具体的,第一光组件501用于通过第一光传输通道506向第一耦合器503发送第一波长光信号。第二光组件502用于通过第二光传输通道506向第一耦合器503发送第二波长光信号以及通过第二光传输通道506接收第三波长光信号。第一耦合器503用于将第一波长光信号和第二波长光信号进行耦合得到合波信号,并通过第三光传输通道508将合波信号发送至第一光纤连接端口504。第一耦合器503用于分离第一波长光信号和来自第一光纤连接端口504的第三波长光信号,使得第一波长光信号通过第三光传输通道508发送至第一光纤连接端口504以及第三波长光信号通过第二光传输通道506发送至第二光组件502。
对于该实现方式,后文以第一耦合器503为第一波分复用结构详细介绍光通信装置的两种可能的结构,具体请参阅后文图6和图7的相关介绍。
当第二光组件502为发射光组件时,第一壳体505设置有与第二光传输通道507连通的第二光发送端口。第二光组件502封装于第二光发送端口。
具体的,第一光组件501用于通过第一光传输通道506向第一耦合器503发送第一波长光信号。第二光组件502用于通过第二传输通道507向第一耦合器503发送第二波长光信号。第一耦合器用于通过第一光传输通道506接收第一波长光信号以及通过第二光传输通道507接收第二波长光信号,再将第一波长光信号和第二波长光信号进行耦合得到合波信号,并通过第三光传输通道508将合波信号发送至第一光纤连接端口504。
对于该实现方式,后文以第一耦合器503为第一波分复用结构详细介绍光通信装置的两种可能的结构,具体请参阅后文图8和图9的相关介绍。
当第二光组件502为光接收组件时,第一壳体505设置有与第二光传输通道507连通的光接收端口。第二光组件502封装于光接收端口。
具体的,第一光组件501用于通过第一光传输通道506向第一耦合器503发送第一波长光信号。第二光组件502用于通过第二光传输通道507接收第三波长光信号。第一耦合器503用于通过第三光传输通道508接收来自第一光纤连接端口504的第三波长光信号并通过第二光传输通道507将第三波长光信号发送至第二光组件502,以及通过第一光传输通道506接收第一波长光信号并通过第三光传输通道508将第一波长光信号发送至第一光纤连接端口504。
对于该实现方式,后文以第一耦合器503为第一波分复用结构详细介绍光通信装置的两种可能的结构,具体请参阅后文图10和图11的相关介绍。
一种可能的实现方式中,第一壳体可以是同轴管壳,也就是第一光组件和第二光组件集成于同一个同轴管壳内。从而实现同一同轴管壳内可见光或近红外光和通信光双发合一。
例如,第一光组件包括第一激光二极管。当第二光组件为发射光组件时,第二光组件包括第二激光二极管,第一激光二极管和第二激光二极管封装于同一个同轴管壳内。
例如,第一光组件包括第一激光二极管。当第二光组件为接收光组件时,第二光组件包括雪崩光电二极管。第一激光二极管与雪崩光电二极管封装于同一个同轴管壳内。
另一种可能的实现方式中,第一壳体是金属壳体。
例如,如图12所示,金属壳体可以为金属正方壳体,该金属正方壳体的六个面都打通相应的圆形开口。第一光组件位于第一面的开口,第二光组件位于第二面的开口。第一光纤连接端口可以位于第三面的开口处。
例如,第二光组件为收发光组件。本申请的技术方案可以理解为在常规的双向光组件的基础上,在金属壳体中剩余的四个面的开口处增加第一光组件,形成三向光组件。从而实现光通信装置的通信功能和可视化功能,实现通信功能和可视化功能合一。
在该实现方式中,第一光组件可以理解为可见光发射同轴管壳或近红外光发射同轴管壳,第二光组件为通信光发射同轴管壳,或通信光接收同轴管壳,或通信光收发同轴管壳。两个同轴管壳集成在第一壳体内。
下面结合图6和图7介绍在光通信装置中第二光组件为收发光组件,第一耦合器为第一波分复用结构的情况,光通信装置的两种可能的结构。
图6为本申请实施例光通信装置的另一个结构示意图。请参阅图6,光通信装置600包括第一光组件601、收发光组件602、第一波分复用结构603、第一光纤连接端口604和第一壳体605。
第一壳体605上设置有第一光传输通道606、第二光传输通道607和第三光传输通道608。第一波分复用结构603设置于第一光传输通道606和第二光传输通道607的交接处。
第一壳体605设置有与第一光传输通道606连通的第一光发送端口以及与第二光传输通道607连通的光收发端口。第一光组件601封装于第一光发送端口。收发光组件602封装于该光收发端口。
第一光组件601通过第一光传输通道606与第一波分复用结构603连接。收发光组件602通过第二光传输通道607与第一波分复用结构603连接。第一波分复用结构603通过第三光传输通道608与第一光纤连接端口604连接。
第一光组件601用于发射第一波长光信号,该第一波长光信号通过第一光传输通道606发射至第一波分复用结构603。收发光组件602用于发射第二波长光信号以及通过第二光传 输通道607接收第三波长光信号,该第二波长光信号通过第二光传输通道607透射至第一波分复用结构603。
第一波分复用结构603用于将第一波长光信号反射至第一光纤连接端口604,将第二波长光信号透射至第一光纤连接端口604,以及将第三波长光信号透射至收发光组件602。
具体的,第一波分复用结构603将第一波长光信号和第二波长光信号进行合波得到合波信号,并通过第三光传输通道608将该合波信号透射至第一光纤连接端口604。第一波分复用结构603通过第三光传输通道608接收来自第一光纤连接端口604的第三波长光信号,并通过第二光传输通道607透射至收发光组件602。
图7为本申请实施例光通信装置的另一个结构示意图。图7所示的光通信装置与图6所示的光通信装置的结构类似,不同的地方在于:第一光组件701和收发光组件702之间互换位置。具体如图7所示的光通信装置700。
在图7所示的实现方式下,第一光组件701用于发射第一波长光信号,该第一波长光信号通过第一光传输通道706发射至第一波分复用结构703。收发光组件702用于发射第二波长光信号以及通过第二光传输通道707接收第三波长光信号,该第二波长光信号通过第二光传输通道707发射至第一波分复用结构703。
第一波分复用结构703用于将第一波长光信号透射至第一光纤连接端口704,将第二波长光信号透射至第一光纤连接端口704,以及将第三波长光信号反射至收发光组件702。
具体的,第一波分复用结构703将第一波长光信号和第二波长光信号进行合波得到合波信号,并通过第三光传输通道708将该合波信号透射至第一光纤连接端口704。第一波分复用结构703通过光传输通道708接收来自第一光纤连接端口704的第三波长光信号,再反射该第三波长光信号。收发光组件602位于反射光路上,使得该第三波长光信号通过第二光传输通道707发送至收发光组件702。
由上述图6和图7可知,本申请的技术方案中,光通信装置中可以集成收发光组件和第一光组件。从而实现通过第一光组件发射的第一波长光信号实现对ODN网络的光纤的检测。例如,通过第一波长光信号检测ODN网络中的光纤是否被占用、是否空闲或是否发生断纤等。实现对ODN网络中的光纤进行自动化检测,实现对ODN网络的自动化地可视化管理。而第二光组件为收发光组件,该收发光组件用于发送第二波长光信号和接收第三波长光信号,第二波长光信号和第三波长光信号是通信光信号。从而实现光通信装置的通信功能和可视化功能于一体。
下面结合图8和图9介绍在光通信装置中第二光组件为发射光组件,第一耦合器为第一波分复用结构的情况,光通信装置的两种可能的结构。
图8为本申请实施例光通信装置的另一个结构示意图。请参阅图8,光通信装置800包括第一光组件801、发射光组件802、第一波分复用结构803、第一光纤连接端口804和第一壳体805。
第一壳体805上设置有第一光传输通道806、第二光传输通道807和第三光传输通道808。第一波分复用结构803设置于第一光传输通道806和第二光传输通道807的交接处。
第一壳体805设置有与第一光传输通道806连通的第一光发送端口以及与第二光传输通道807连通的第二光发送端口。第一光组件801封装于第一光发送端口。发射光组件802封装于该第二光发送端口。
第一光组件801通过第一光传输通道806与第一波分复用结构803连接,发射光组件802通过第二光传输通道807与第一波分复用结构803连接。第一波分复用结构803通过第三光传输通道808与第一光纤连接端口804连接。
第一光组件801用于发射第一波长光信号,该第一波长光信号通过第一光传输通道806发射至第一波分复用结构803。发射光组件802用于发射第二波长光信号,该第二波长光信号通过第二光传输通道807发射至第一波分复用结构803。第一波分复用结构803用于将第一波长光信号和第二波长光信号进行合波得到合波信号,并通过第三光传输通道808将该合波信号透射至第一光纤连接端口804。具体的,第一波分复用结构803用于将第一波长光信号反射至第一光纤连接端口804,将第二波长光信号透射至第一光纤连接端口804。
图9为本申请实施例光通信装置的另一个结构示意图。图9所示的光通信装置与图8所示的光通信装置的结构类似,不同的地方在于:第一光组件901和发射光组件902之间互换位置。具体如图9所示的光通信装置900。
在图9所示的实现方式下,第一光组件901用于发射第一波长光信号,该第一波长光信号通过第一光传输通道906发射至第一波分复用结构903。发射组件902用于发射第二波长光信号,该第二波长光信号通过第二光传输通道907发射至第一波分复用结构903。
第一波分复用结构903用于将第一波长光信号透射至第一光纤连接端口904,将第二波长光信号反射至第一光纤连接端口904。
具体的,第一波分复用结构903将第一波长光信号和第二波长光信号进行合波得到合波信号,并通过第三光传输通道908将该合波信号透射至第一光纤连接端口904。
下面结合图10和图11介绍在光通信装置中第二光组件为接收光组件,第一耦合器为第一波分复用结构的情况,光通信装置的两种可能的结构。
图10为本申请实施例光通信装置的另一个结构示意图。请参阅图10,光通信装置1000包括第一光组件1001、接收光组件1002、第一波分复用结构1003、第一光纤连接端口1004和第一壳体1005。
第一壳体1005上设置有第一光传输通道1006、第二光传输通道1007和第三光传输通道1008。第一波分复用结构1003设置于第一光传输通道1006和第二光传输通道1007的交接处。
第一壳体1005设置有与第一光传输通道1006连通的第一光发送端口以及与第二光传输通道1007连通的接收光端口。第一光组件1001封装于第一光发送端口。收发光组件1002封装于该接收光端口。
第一光组件1001通过第一光传输通道1006与第一波分复用结构1003连接,接收光组件1002通过第二光传输通道1007与第一波分复用结构1003连接。第一波分复用结构1003通过第三光传输通道1008与第一光纤连接端口1004连接。
第一光组件1001用于发射第一波长光信号,该第一波长光信号通过第一光传输通道1006发射至第一波分复用结构1003。接收光组件1002用于通过第二光传输通道1007接收第三波长光信号。
第一波分复用结构1003用于将第一波长光信号反射至第一光纤连接端口1004,将第三波长光信号透射至接收光组件1002。
具体的,第一波分复用结构1003将第一波长光信号反射至第一光纤连接端口1004。第一波分复用结构1003通过第三光传输通道1008接收来自第一光纤连接端口1004的第三波长光信号,并通过第二光传输通道1007将第三波长光信号透射至接收光组件1002。
图11为本申请实施例光通信装置的另一个结构示意图。图11所示的光通信装置与图10所示的光通信装置的结构类似,不同的地方在于:第一光组件1101和接收光组件1102之间互换位置。具体如图11所示。
在图11所示的实现方式下,第一光组件1101用于发射第一波长光信号,该第一波长光信号通过第一光传输通道1106发射至第一波分复用结构1103。接收组件1102用于通过第二光传输通道1107接收第三波长光信号。
第一波分复用结构1103用于将第一波长光信号反射至第一光纤连接端口1104,将第三波长光信号透射至接收光组件1102。
具体的,第一波分复用结构1103通过第三光传输通道1108将第一波长光信号透射至第一光纤连接端口1104。第一波分复用结构1103通过第三光传输通道1108接收来自第一光纤连接端口1104的第三波长光信号,并通过第二光传输通道1107将第三波长光信号透射至接收组件1102。
由上述图8至图11可知,本申请的技术方案中,光通信装置可以集成单向光组件和第一光组件。第一光组件用于发送第一波长光信号,第一波长光信号为可见光信号或近红外光信号。从而实现通过光通信装置中第一光组件发射的第一波长光信号对光纤的检测。实现对ODN网络的自动化地可视化管理。而第二光组件用于发送第二波长光信号或接收第三波长光信号。第二波长光信号和第三波长光信号可以是通信光信号,从而实现光通信装置的通信功能和可视化功能于一体。
例如,光通信装置部署于OLT中,OLT通过光通信装置中的第一光组件发射第一波长光信号,该第一波长光信号可以用于对OLT与ODN网络(例如,分光器)之间的光纤进行检测。例如,光通信装置部署于ONU,ONU通过光通信装置中的第一光组件发射第一波长光信号,该第一波长光信号可以用于对ONU与ODN网络(例如,分光器)之间的光纤(可以包括至少一条光纤)进行检测。
进一步的,如果第一光组件发射第一波长光信号之后,某个光纤上的红光漏光很明显,那么可知该光纤发生断纤。第一光组件发射第一波长光信号之后,如果光纤对应的在分光器侧的端口处闪红灯,则代表该光纤被占用。如果该光纤对应的在分光器侧的端口处不亮,则代表该光纤空闲。
本申请实施例提供另一种光通信装置,光通信装置包括:第一光组件、第二光组件、第三光组件、第一耦合器、第二耦合器和第一光纤连接端口。
第二耦合器的耦合方式与第一耦合器的耦合方式类似,具体可以参阅前述关于第一耦合器的耦合方式的相关介绍。
下面结合第二光组件和第二光组件的功能介绍光通信装置中的各个器件之间的几种可能的连接方式。
连接方式一:第一光组件与第一耦合器的第一端连接,第二光组件与第一耦合器的第二端连接,第一耦合器的第三端与第二耦合器的第一端连接,第二耦合器的第二端与第三光组件连接,第二耦合器的第三端与第一光纤连接端口连接。
可选的,第一光组件通过第一光传输通道与第一耦合器的第一端连接,第二光组件通过第二光传输通道与第一耦合器的第二端连接,第一耦合器的第三端通过第三光传输通道与第二耦合器的第一端连接,第二耦合器的第二端通过第四光传输通道与第三光组件连接,第二耦合器的第三端通过第五光传输通道与第一光纤连接端口连接。
连接方式二:第二光组件与第一耦合器的第一端连接,第三光组件与所述第一耦合器的 第二端连接,第一耦合器的第三端与第二耦合器的第一端连接,第二耦合器的第二端与第一光组件连接,第二耦合器的第三端与第一光纤连接端口连接。
可选的,第二光组件通过第一光传输通道与第一耦合器的第一端连接,第三光组件通过第二光传输通道与所述第一耦合器的第二端连接,第一耦合器的第三端通过第三光传输通道与第二耦合器的第一端连接,第二耦合器的第二端通过第四光传输通道与第一光组件连接,第二耦合器的第三端通过第五光传输通道与第一光纤连接端口连接。
上述连接方式一或连接方式二中,可选的,第二光组件为发射光组件,第三光组件为接收光组件。第二光组件用于发送第二波长光信号。第三光组件用于接收第四波长光信号。
关于第二波长光信号请参阅前文的相关介绍。第四波长光信号为通信光波长光信号。例如,第四波长光信号的波长落在1260纳米至1600纳米。例如,第四波长光信号在1340纳米至1600纳米之间。
例如,该光通信装置部署于OLT中,第二波长光信号可以是OLT向ONU发送下行通信光信号,第四波长光信号是OLT接收来自ONU发送的上行通信光信号。
例如,该光通信装置部署于ONU中,第二波长光信号可以是ONU向OLT发送的上行通信光信号。第四波长光信号可以是ONU接收来自OLT发送的下行通信光信号。
上述连接方式一或连接方式二中,可选的,第二光组件为接收光组件,第三光组件为发射光组件。第二光组件用于接收第三波长光信号。第三光组件用于发送第五波长光信号。
关于第三波长光信号请参阅前文的相关介绍,第五波长光信号为通信光信号。例如,第五波长光信号落在1260纳米至1600纳米。例如,第五波长光信号的波长在1260纳米至1330纳米之间。
例如,该光通信装置部署于OLT中,第五波长光信号可以是OLT向ONU发送下行通信光信号,第三波长光信号是OLT接收来自ONU发送的上行通信光信号。
例如,该光通信装置部署于ONU中,第五波长光信号可以是ONU向OLT发送的上行通信光信号。第三波长光信号可以是ONU接收来自OLT发送的下行通信光信号。
下面介绍第一光传输通道至第五光传输通道的两种可能的实现方式。
实现方式1:第一光传输通道为第一光纤,第二光传输通道为第二光纤,第三光传输通道为第三光纤,第四光传输通道为第四光纤,第五光传输通道为第五光纤。
基于上述连接方式一,下面结合图13所示的光通信装置介绍第一光传输通道至第五光传输通道。图13为本申请实施例光通信装置的另一个结构示意图。请参阅图13,光通信装置1300包括第一光组件1301、第二光组件1302、第三光组件1303、第一耦合器1304、第二耦合器1305和第一光纤连接端口1306。
第一光组件1301通过第一光纤1307与第一耦合器1304的第一端连接。第二光组件1302通过第二光纤1308与第一耦合器1304的第二端连接。第一耦合器的第三端通过第三光纤1310与第二耦合器1305的第一端连接。第二耦合器的第二端通过第四光纤1309与第三光组件1303连接。第二耦合器的第三端通过第五光纤1311与第一光纤连接端口1306连接。
第一光组件1301、第二光组件1302和第三光组件1303之间通过光纤连接,该连接方式可以称为外耦合连接。
可选的,第一光组件1301可以通过第一光组件1301中的光纤连接端口与该第一耦合器1304的第一端连接。第二光组件1302可以通过第二光组件1302中的光纤连接端口与该第一耦合器1304的第二端连接。第三光组件1303可以通过第三光组件1303中的光纤连接端口与该第二耦合器1305的第二端连接。
下面结合第二光组件和第三光组件的类型介绍第一耦合器1304和第二耦合器1305的功能。
情况1:第二光组件为发射光组件,第三光组件为接收光组件。
如图13所示,第一光组件1301用于通过第一光纤1307向第一耦合器1304发送第一波长光信号。第二光组件1302用于通过第二光纤1308发送第二波长光信号。第三光组件用于通过第四光纤1309接收第四波长光信号。第一耦合器1304用于将第一波长光信号和第二波长光信号进行耦合得到合波信号,并通过第三光纤1310向第二耦合器1305发送合波信号。第二耦合器1305用于通过第三光纤1310接收合波信号,并通过第五光纤1311将合波信号发送至第一光纤连接端口1306。第二耦合器1305用于通过第五光纤1311接收来自第一光纤连接端口1306的第四波长光信号,并通过第四光纤1309将第四波长光信号发送至第三光组件1303。
情况2:第二光组件为接收光组件,第三光组件为发射光组件。
如图13所示,第一光组件1301用于通过第一光纤1307向第一耦合器1304发送第一波长光信号。第二光组件1302通过第二光纤1308接收第三波长光信号。第三光组件1303用于通过第四光纤1309向第二耦合器1305发送第五波长光信号。第一耦合器1304用于通过第一光纤1307接收第一波长光信号,并通过第三光纤1310向第二耦合器1305发送第一波长光信号。第一耦合器1304用于通过第三光纤1310接收第二耦合器1305发送的第三波长光信号,并通过第二光纤1308向第二光组件1302发送该第三波长光信号。第二耦合器1305用于通过第四光纤1309接收第五波长光信号以及通过第三光纤1310接收第一波长光信号,并将第一波长光信号和第五波长光信号进行耦合得到合波信号,并通过第五光纤1311向第一光纤连接端口1306发送该合波信号。第二耦合器1305用于通过第五光纤1311接收来自第一光纤连接端口1306的第三波长光信号,并通过第三光纤1310向第一耦合器1304发送该第三波长光信号。
基于上述连接方式二,下面结合图14所示的光通信装置介绍第一光传输通道至第五光传输通道。图14为本申请实施例光通信装置的另一个结构示意图。请参阅图14,光通信装置1400包括第一光组件1401、第二光组件1402、第三光组件1403、第一耦合器1404、第二耦合器1405和第一光纤连接端口1406。
第二光组件1402通过第一光纤1407与第一耦合器1404的第一端连接。第三光组件1403通过第二光纤1408与第一耦合器1404的第二端连接。第一耦合器1404的第三端通过第三光纤1410与第二耦合器1405的第一端连接。第二耦合器1405的第二端通过第四光纤1409与第一光组件1401连接。第二耦合器1405的第三端通过第五光纤1411与第一光纤连接端口1406连接。
第一光组件1401、第二光组件1402和第三光组件1403之间通过光纤连接,该连接方式可以称为外耦合连接。
可选的,第一光组件1401可以通过第一光组件1401中的光纤连接端口与第二耦合器1405的第二端连接。第二光组件1402可以通过第二光组件1402中的光纤连接端口与第一耦合器1404的第一端连接。第三光组件1403可以通过第三光组件1403中的光纤连接端口与第一耦合器1404的第二端连接。
下面结合第二光组件和第三光组件的类型介绍第一耦合器1404和第二耦合器1405的功能。
情况1:第二光组件为发射光组件,第三光组件为接收光组件。
如图14所示,第一光组件1401用于通过第四光纤1409向第二耦合器1405发送第一波长光信号。第二光组件1402用于通过第一光纤1407向第一耦合器1403发送第二波长光信号。第三光组件1403用于通过第二光纤1408接收第四波长光信号。第一耦合器1404用于通过第一光纤1407接收第二波长光信号,并通过第三光纤1410向第二耦合器1405发送该第二波长光信号。第一耦合器1404用于通过第三光纤1410接收第一耦合器1404发送的第四波长光信号,并通过第二光纤1408向第三光组件1403发送该第四波长光信号。第二耦合器1405用于通过第三光纤1410接收第二波长光信号以及通过第四光纤1409接收第一波长光信号,并将第一波长光信号和第二波长光信号进行耦合得到合波信号,并通过第五光纤1411向第一光纤连接端口1406发送该合波信号。第二耦合器1405用于通过第五光纤1411接收来自第一光纤连接端口1406的第四波长光信号,并通过第三光纤1410向第一耦合器1404发送该第四波长光信号。
情况2:第二光组件为接收光组件,第三光组件为发射光组件。
如图14所示,第一光组件1401用于通过第四光纤1409向第二耦合器1405发送第一波长光信号。第二光组件1402用于通过第一光纤1407接收第三波长光信号。第三光组件1403用于通过第二光纤1408向第一耦合器1404发送第五波长光信号。第一耦合器1404用于通过第三光纤1410接收第三波长光信号,并通过第一光纤1407向第二光组件1402发送第三波长光信号。第一耦合器1404用于通过第二光纤1408接收第五波长光信号,并通过第三光纤1410向第二耦合器1405发送第五波长光信号。第二耦合器1405用于通过第三光纤1410接收第五波长光信号以及通过第四光纤1409接收第一波长光信号,并将第一波长光信号和第五波长光信号进行耦合得到合波信号,并通过第五光纤1411向第一波长光纤连接端口1406发送该合波信号。第二耦合器1405用于通过第五光纤1411接收来自第一光纤连接端口1406的第三波长光信号,并通过第四光纤1409向第一光组件1401发送第三波长光信号。
方式2:第一光传输通道至第五光传输通道是第一壳体内设置的光传输通道。
在该方式2中,光传输通道可以理解为第一壳体内的管道空间,用于光信号的传输。
基于上述连接方式一,下面结合图15介绍本申请提供的光通信装置。图15为本申请实施例光通信装置的另一个结构示意图。请参阅图15,光通信装置1500包括:第一光组件1501、第二光组件1502、第三光组件1503、第一耦合器1504、第二耦合器1505、第一光纤连接端口1506和第一壳体1507。
第一壳体1507中设置有光传输通道1508、光传输通道1509、光传输通道1511、光传输通道1510和光传输通道1512。第一耦合器1504设置于光传输通道1508和光传输通道1509的交接处。第二耦合器1505设置于光传输通道1511和光传输通道1510的交接处。
第一壳体1507上设置有与光传输通道1508连通的第一光发送端口。第一光组件1501封装于第一光发送端口。
当第二光组件1502为发射光组件,第三光组件1503为接收光组件,第一壳体1507设置有与光传输通道1509连通的第二光发送端口,以及与光传输通道1510连通的光接收端口。第二光组件1502封装于第二光发送端口,第三光组件1503封装于光接收端口。
具体的,第一光组件1501用于通过光传输通道1508向第一耦合器1504发送第一波长光信号。第二光组件1502用于通过光传输通道1509向第一耦合器1504发送第二波长光信号。第三光组件1503用于通过光传输通道1510接收发送第四波长光信号。第一耦合器1504用于将第一波长光信号和第二波长光信号进行耦合得到合波信号,并通过光传输通道1511向第二耦合器1505发送合波信号。第二耦合器1505用于通过光传输通道1511接收合波信号,并通 过光传输通道1512向第一光纤连接端口1506发送合波信号。第二耦合器1505用于通过光传输通道1512接收来自第一光纤连接端口1506的第四波长光信号,并通过光传输通道1510向第三光组件1503发送第四波长光信号。
当第二光组件1502为接收光组件,第三光组件1503为发射光组件,第一壳体1507设置有与光传输通道1509连通的光接收端口,以及与光传输通道1510连通的第二光发送端口。第二光组件1502封装于光接收端口,第三光组件1503封装于第二光发送端口。
具体的,第一光组件1501用于通过光传输通道1508向第一耦合器1504发送第一波长光信号。第二光组件1502用于通过光传输通道1509接收第三波长光信号。第三光组件1503用于通过光传输通道1510向第二耦合器1505发送第五波长光信号。第一耦合器1504用于通过光传输通道1508接收第一波长光信号,并通过光传输通道1511向第二耦合器1505发送第一波长光信号。第一耦合器1504用于通过光传输通道1511接收第三波长光信号,并通过光传输通道1509向第二光组件1502发送第三波长光信号。第二耦合器1505用于光传输通道1511接收第一波长光信号以及通过光传输通道1510接收第五波长光信号,并将第一波长光信号和第五波长光信号进行耦合得到合波信号。第二耦合器1505再通过光传输通道1512向第一光纤连接端口1506发送该合波信号。第二耦合器1505用于通过光传输通道1512接收来自第一光纤连接端口1506的第三波长光信号,并通过光传输通道1511向第一耦合器1504发送该第三波长光信号。
对于该实现方式,后文以第一耦合器1504为第一波分复用结构、第二耦合器1505为第二波分复用结构详细介绍光通信装置的两种可能的结构,具体请参阅后文图19至图22的相关介绍。
基于上述连接方式二,下面结合图16介绍本申请提供的光通信装置。图16为本申请实施例光通信装置的另一个结构示意图。请参阅图16,光通信装置1600包括:第一光组件1601、第二光组件1602、第三光组件1603、第一耦合器1604、第二耦合器1605、第一光纤连接端口1606和第一壳体1607。
第一壳体1607中设置有光传输通道1609、光传输通道1608、光传输通道1611、光传输通道1610和光传输通道1612。
第一耦合器1604设置于光传输通道1609与光传输通道1608的交接处。第二耦合器1605设置于光传输通道1611与光传输通道1610的交接处。
第一壳体1607上设置有与光传输通道1610连通的第一光发送端口,第一光组件1601封装于第一光发送端口。
当第二光组件1602为发射光组件,第三光组件1603为接收光组件,第一壳体1607设置有与光传输通道1609连通的第二光发送端口,以及与光传输通道1608连通的光接收端口。第二光组件1602封装于第二光发送端口,第三光组件1603封装于光接收端口。
具体的,第一光组件1601用于通过光传输通道1610向第二耦合器1605发送第一波长光信号。第二光组件1602用于通过光传输通道1609向第一耦合器1604发送第二波长光信号。第三光组件1603用于通过光传输通道1608接收第四波长光信号。第一耦合器1604用于通过光传输通道1611向第二耦合器1605发送第二波长光信号。第一耦合器1604通过光传输通道1611接收第四波长光信号,并通过光传输通道1608向第三光组件1603发送第四波长光信号。第二耦合器1605用于通过光传输通道1612接收来自第一光纤连接端口1606的第四波长光信号,并通过光传输通道1611向第一耦合器1604发送第四波长光信号。第二耦合器1605用于通过光传输通道1610接收第一波长光信号和通过光传输通道1611接收第二波长光信号,并 将第一波长光信号和第二波长光信号进行耦合得到合波信号,并通过光传输通道1612向第一光纤连接端口1606发送第一波长光信号。
对于该实现方式,后文以第一耦合器1604为第一波分复用结构、第二耦合器1605为第二波分复用结构详细介绍光通信装置的两种可能的结构,具体请参阅后文图23至图24的相关介绍。
一种可能的实现方式中,上述图15或图16所示的第一壳体可以是同轴管壳,也就是第一光组件、第二光组件和第三光组件集成于同一个同轴管壳内。从而实现同一同轴管壳内可见光或近红外光和通信光合一。
例如,第一光组件包括第一激光二极管,当第二光组件为发射光组件,第三光组件为接收光组件时,第二光组件包括第二激光二极管,第三光组件包括雪崩光电二极管。或者,当第二光组件为接收光组件,第三光组件为发射光组件时,第二光组件包括雪崩光电二极管,第三光组件包括第二激光二极管。第一激光二极管、第二激光二极管和雪崩光电二极管封装于同一个同轴管壳内。
另一种可能的实现方式中,上述图15或图16所示的第一壳体是金属壳体。
在该实现方式中,第一光组件可以理解为可见光发射同轴管壳或近红外光发射同轴管壳。第二光组件为通信光发射同轴管壳,第三光组件为通信光接收同轴管壳。或者,第二光组件为通信光接收同轴管壳,第三光组件为通信光发射同轴管壳。这三个同轴管壳集成在第一壳体内。
方式3:第一光传输通道和第二光传输通道是第二壳体内设置的光传输通道。第四光传输通道和第五光传输通道是第三壳体内设置的光传输通道。第三光传输通道设置在第二壳体与第三壳体之间。
在该方式3中,第一光传输通道和第二光传输通道可以理解为第一壳体内的管道空间,第四光传输通道和第五光传输通道可以理解为第二壳体内的管道空间。第三光传输通道可以理解为管道空间,用于连接第二壳体与第三壳体。
基于上述连接方式一,下面结合图17介绍本申请提供的光通信装置。图17为本申请实施例光通信装置的另一个结构示意图。请参阅图17,光通信装置1700包括第一光组件1701、第二光组件1702、第三光组件1703、第一耦合器1704、第二耦合器1705、第一光纤连接端口1706、第二壳体1708和第三壳体1709。
第二壳体1708中设置有光传输通道1710和光传输通道1711。第二壳体1709设置有光传输通道1713、光传输通道1712和光传输通道1714。
第一耦合器1704设置于光传输通道1710和光传输通道1711的交接处。第二耦合器1705设置于光传输道1713和光传输通道1712的交接处。
第二壳体1708上设置有与光传输通道1710连通的第一光发送端口,第一光组件1701封装于第一光发送端口。
当第二光组件1702为发射光组件,第三光组件1703为接收光组件,第二壳体1708上设置有与光传输通道1711连通的第二光发送端口,第二光组件封装于该第二光发送端口。第三壳体1709上设置有与光传输通道1713连通的第三光发送端口以及与该光传输通道1712连通的光接收端口。第二壳体1708封装于第三光发送端口,第三光组件1703封装于该光接收端口。
具体的,第一光组件1701用于通过光传输通道1710向第一耦合器1704发送第一波长光信号。第二光组件1702用于通过光传输通道1711向第一耦合器1704发送第二波长光信号。 第三光组件1703用于通过光传输通道1712接收第四波长光信号。第一耦合器1704用于将第一波长光信号和第二波长光信号进行耦合得到合波信号,并通过光传输通道1713向第二耦合器1705发送合波信号。第二耦合器1705用于通过光传输通道1713接收合波信号,并通过光传输通道1714向第一光纤连接端口1706发送该合波信号。第二耦合器1705用于通过光传输通道1714接收来自第一光纤连接端口1706的第四波长光信号,并通过光传输通道1712向第三光组件1703发送该第四波长光信号。
当第二光组件1702为接收光组件,第三光组件1703为发射光组件,第二壳体1708上设置有与光传输通道1711连通的光接收端口,第二光组件封装于该光接收端口。第三壳体1709上设置有与光传输通道1713连通的光收发端口以及与光传输通道1712连通的第二光发送端口。第二壳体1708封装于该光收发端口,第三光组件1703封装于第二光发送端口。
具体的,第一光组件1701用于通过光传输通道1710向第一耦合器1704发送第一波长光信号。第二光组件1702用于通过光传输通道1711接收第三波长光信号。第三光组件1703用于通过光传输通道1712发送第五波长光信号。第一耦合器1704用于通过光传输通道1713向第二耦合器1705发送第一波长光信号,并通过光传输通道1713接收第二耦合器1705发送的第三波长光信号,并通过光传输通道1711向第二光组件1702发送该第三波长光信号。第二耦合器1705用于通过光传输通道1714接收来自第一光纤连接端口1706的第三波长光信号,并通过光传输通道1713向第一耦合器1704发送该第三波长光信号。第二耦合器1705通过光传输通道1712接收第三光组件1703发送的第五波长光信号以及通过光传输通道1713接收第一波长光信号,并将第一波长光信号和第五波长光信号进行耦合得到合波信号,并通过光传输通道1714向第一光纤连接端口1706发送合波信号。
基于上述连接方式二,下面结合图18介绍本申请提供的光通信装置。图18为本申请实施例光通信装置的另一个结构示意图。请参阅图18,光通信装置1800包括第一光组件1801、第二光组件1802、第三光组件1803、第一耦合器1804、第二耦合器1805、第一光纤连接端口1806、第二壳体1808和第三壳体1809。
第二壳体1808中设置有光传输通道1810和光传输通道1811。第三壳体1809设置有光传输通道1813、光传输通道1812和光传输通道1814。
第一耦合器1804设置于光传输通道1810和光传输通道1811的交接处。第二耦合器1805设置于光传输道1813和光传输通道1812的交接处。
第三壳体1809上设置有与光传输通道1812连通的第一光发送端口,第一光组件1801封装于第一光发送端口。
当第二光组件1802为发射光组件,第三光组件1803为接收光组件,第二壳体1808上设置有与光传输通道1811连通的第二光发送端口,以及与光传输通道1810连通的光接收端口。第二光组件1802封装于第二光发送端口,第三光组件1803封装于光接收端口。第三壳体1809上还设置有与光传输通道1813连通的光收发端口,第二壳体1808封装于该光收发端口。
具体的,第一光组件1801通过光传输通道1812向第二耦合器1805发送第一波长光信号。第二光组件1802通过光传输通道1811向第一耦合器1804发送第二波长光信号。第三光组件1803通过光传输通道1810接收第四波长光信号。第一耦合器1804用于通过光传输通道1813接收第四波长光信号,并通过光传输通道1810向第三光组件1803发送第四波长光信号。第二耦合器1805用于通过光传输通道1813接收第二波长光信号以及通过光传输通道1812接收第一波长光信号。第二耦合器1805将第一波长光信号和第二波长光信号进行耦合得到合波信号,并通过光传输通道1814向第一光纤连接端口1806发送该合波信号。第二耦合器1805通 过光传输通道1814接收来自第一光纤连接端口1806的第四波长光信号,并通过光传输通道1813向第一耦合器1804发送第四波长光信号。
当第二光组件1802为接收光组件,第三光组件1803为发射光组件,第二壳体1808上设置有与光传输通道1810连通的第二光发送端口以及光传输通道1811连通的光接收端口。第二光组件1802封装于光接收端口,第三光组件1803封装于第二光发送端口。第三壳体1809上还设置有与光传输通道1813连通的光收发端口,第二壳体1808封装于该光收发端口。
具体的,第一光组件1801通过光传输通道1812向第一耦合器1805发送第一波长光信号。第二光组件1802用于通过光传输通道1811接收第三波长光信号。第三光组件1803通过光传输通道1810向第一耦合器1804发送第五波长光信号。第一耦合器1804通过光传输通道1813接收第三波长光信号,并通过光传输通道1811向第二光组件1802发送第三波长光信号。第一耦合器1804通过光传输通道1810接收第五波长光信号,并通过光传输通道1813向第二耦合器1805发送第五波长光信号。第二耦合器1805通过光传输通道1813接收第五波长光信号和通过光传输通道1812接收第一波长光信号。第二耦合器1805将第一波长光信号和第五波长光信号进行耦合得到合波信号,并通过第五光传输通道1814向第一光纤连接端口1806发送该合波信号。第二耦合器1805通过光传输通道1814接收来自第一光纤连接端口1806的第三波长光信号,并通过光传输通道1813向第一耦合器1804发送第三波长光信号。
一种可能的实现方式中,上述图17或图18所示的光通信装置中,第二壳体可以为同轴管壳,第三壳体可以为金属壳体。关于同轴管壳和金属壳体可以参阅前文的相关介绍,这里不再赘述。
例如,第二光组件为发射光组件,第三光组件为接收光组件。第一光组件和第二光组件封装于一个同轴管壳内,第三光组件封装于另外一个同轴管壳,从而实现同一同轴管壳内可见光或近红外光和通信光双发合一。或者,第一光组件与第三光组件封装在一个同轴管壳内,第二光组件封装于另一个同轴管壳内。从而实现同一同轴管壳内可见光或近红外光和通信光收发合一。或者,第二光组件与第三光组件封装在一个同轴管壳内,第一光组件封装于另一个同轴管壳内。从而实现同一同轴管壳内通信光收发合一。
例如,第一光组件包括第一激光二极管,第二光组件包括第二激光二极管,第三光组件包括雪崩光电二极管。第一激光二极管和第二激光二极管封装于同一个同轴管壳TO内。或者,第一激光二极管与雪崩光电二极管封装于同一个同轴管壳TO内。或者,第二激光二极管与雪崩光电二极管封装于同一个同轴管壳TO内。
另一种可能的实现方式中,上述图17或图18所示的光通信装置中,第二壳体和第三壳体均为金属壳体。
在该实现方式中,第一光组件、第二光组件和第三光组件是三个同轴管壳。
例如,如图17所示,第一光组件为可见光发射同轴管壳或近红外光发射同轴管壳,第二光组件为通信光发射同轴管壳,第三光组件为通信光接收同轴管壳。可见光发射同轴管壳或近红外光发射同轴管壳与通信光发射同轴管壳集成为第二壳体内,第二壳体和通信光接收同轴管壳集成在第三壳体内。
下面以第一耦合器为第一波分复用结构,第二耦合器为第二波分复用结构介绍光通信装置的一些可能的结构。
图19为本申请实施例光通信装置的另一个结构示意图。请参阅图19,光通信装置1900包括:第一光组件1901、发射光组件1902、接收光组件1903、第一波分复用结构1904、第二波分复用结构1905、第一光纤连接端口1906和第一壳体1907。
第一壳体1907上设置有光传输通道1908、光传输通道1909、光传输通道1910、光传输通道1911和光传输通道1912。
第一波分复用结构1904设置于光传输通道1908与光传输通道1909的交接处。第二波分复用结构1905设置于光传输通道1910与光传输通道1911的交接处。
第一壳体1907上设有与光传输通道1908连通的第一光发送端口,与光传输通道1909连通的第二光发送端口以及与光传输通道1910连通的光接收端口。第一光组件1901封装于第一光发送端口,发射光组件1902封装于第二光发送端口,接收光组件1903封装于光接收端口。
第一波分复用结构1904能够将第一光组件1901发出的第一波长光信号反射至第二波分复用结构1905,以及将发射光组件1902发出的第二波长光信号透射至第二波分复用结构1905。第二波分复用结构1905能够第一波长光信号和第二波长光信号进行合波,并传输至第一光纤连接端口1906,以及将来自第一光纤连接端口1906的第四波长光信号反射至接收光组件1903。
具体的,第一光组件1901发出的第一波长光信号经过第一波分复用结构1904时发生反射,反射至第二波分复用结构1905,第一波长光信号经过第二波分复用结构1905时直接透射至第一光纤连接端口1906。发射光组件1902发出的第二波长光信号经过第一波分复用结构1904时直接透射,透射至第二波分复用结构1905。第二波长光信号经过第二波分复用结构1905时直接透射至第一光纤连接端口1906。第一光纤连接端口1906传入的第四波长光信号经过第二波分复用结构1905时发生反射,接收光组件1903正好位于反射光路上,从而实现对第四波长光信号的接收。
图20为本申请实施例光通信装置的另一个结构示意图。请参阅图20,光通信装置2000包括:第一光组件2001、发射光组件2002、接收光组件2003、第一波分复用结构2004、第二波分复用结构2005、第一光纤连接端口2006和第一壳体2007。
请参阅图20,图20所示的光通信装置与图19所示的光通信装置的结构类似,不同的地方在于:第一光组件2001和发射光组件2002的位置发生变化。如图20所示,第一波分复用结构2004设置于光传输通道2008与光传输通道2009的交接处。第二波分复用结构2005设置于光传输通道2010与光传输通道2011的交接处。
第一壳体2007上设有与光传输通道2008连通的第一光发送端口,与光传输通道2009连通的第二光发送端口以及与光传输通道2010连通的光接收端口。第一光组件2001封装于第二光发送端口,发射光组件2002封装于第一光发送端口,接收光组件2003封装于光接收端口。
第一波分复用结构2004能够将第一光组件2001发出的第一波长光信号透射至第二波分复用结构2005,以及将发射光组件2002发出的第二波长光信号反射至第二波分复用结构2005。第二波分复用结构2005能够第一波长光信号和第二波长光信号进行合波,并传输至第一光纤连接端口2006,以及将来自第一光纤连接端口2006的第四波长光信号反射至接收光组件2003。
具体的,第一光组件2001发出的第一波长光信号经过第一波分复用结构2004时发生透射,透射至第二波分复用结构2005,第一波长光信号经过第二波分复用结构2005时发生透射,使得第一波长光信号透射至第一光纤连接端口2006。发射光组件2002发出的第二波长光信号经过第一波分复用结构2004时发生反射,使得第二波长光信号反射至第二波分复用结构2005。第二波长光信号经过第二波分复用结构2005时直接透射至第一光纤连接端口2006。 第一光纤连接端口2006传入的第四波长光信号经过第二波分复用结构2005时发生反射,接收光组件2003正好位于反射光路上,从而实现对第四波长光信号的接收。
图21为本申请实施例光通信装置的另一个实施例示意图。请参阅图21,光通信装置2100包括:第一光组件2101、接收光组件2102、发射光组件2103、第一波分复用结构2104、第二波分复用结构2105、第一光纤连接端口2106和第一壳体2107。
第一壳体2107上设置有光传输通道2108至光传输通道2112。第一壳体上设置有与光传输通道2108连通的第一光发送端口、与光传输通道2109连通的光接收端口以及与光传输通道2110连通的第二光发送端口。第一光组件2101封装于第一光发送端口,接收光组件2102封装于光接收端口。发射光组件2103封装于第二光发送端口。
第一波分复用结构2104设置于光传输通道2108与光传输通道2109之间的交接处,第二波分复用结构2105设置于光传输通道2110与光传输通道2111之间的交接处。
第一波分复用结构2104能够将第一光组件2101发出的第一波长光信号透射至第二波分复用结构2105,以及将来自第二波分复用结构2105的第四波长光信号反射至接收光组件2102。第二波分复用结构2105能够将第一波长光信号和第二波长光信号进行合波,并传输至第一光纤连接端口2106,以及将来自第一光纤连接端口2106的第四波长光信号透射至第一波分复用结构2104。
具体的,第一光组件2101发出的第一波长光信号经过第一波分复用结构2104时直接透射,且透射至第二波分复用结构2105。第一光纤连接端口2106传入的第四波长光信号经过第二波分复用结构2105时直接透射,且透射至第一波分复用结构2104。第四波长光信号经过第一波分复用结构2104时发生反射,接收光组件2102正好位于反射光路上,从而实现对第四波长光信号的接收。发射光组件2103发出的第二波长光信号经过第二波分复用结构2105时发生反射,且反射至第一光纤连接接口2106。
图22为本申请实施例光通信装置的另一个实施例示意图。请参阅图22,光通信装置2200包括:第一光组件2201、接收光组件2202、发射光组件2203、第一波分复用结构2204、第二波分复用结构2205、第一光纤连接端口2206和第一壳体2207。
第一壳体2207上设置有光传输通道2208至光传输通道2212。第一壳体上设置有与光传输通道2208连通的第一光发送端口以及与光传输通道2209连通的光接收端口以及与光传输通道2210连通的第二光发送端口。第一光组件2201封装于第一光发送端口,接收光组件2202封装于光接收端口。发射光组件2203封装于第二光发送端口。
第一波分复用结构2204设置于光传输通道2208与光传输通道2209之间的交接处,第二波分复用结构2205设置于光传输通道2210与光传输通道2211之间的交接处。
第一波分复用结构2204能够将第一光组件2201发出的第一波长光信号反射至第二波分复用结构2205,以及将来自第二波分复用结构2205的第三波长光信号透射至接收光组件2202。
第二波分复用结构2005能够第一波长光信号和第五波长光信号进行合波得到合波信号,并将将该合波信号发送至第一光纤连接端口2206,以及将来自第一光纤连接端口2206的第三波长光信号透射至第一波分复用结构2204。
具体的,第一光组件2201发出的第一波长光信号经过第一波分复用结构2204时发生反射,且反射至第二波分复用结构2205。第一波长光信号经过第二波分复用结构2205时直接透射,且透射至第一光纤连接端口2206。第一光纤连接端口2206传入的第三波长光信号经过第二波分复用结构2205时直接透射,且透射至第一波分复用结构2204。第三波长光信号 经过第一波分复用结构2204时直接透射,且透射至接收光组件2202,实现接收光组件2202对第三波长光信号的接收。发射光组件2203发出的第二波长光信号经过第二波分复用结构2205时发生反射,且反射至第一光纤连接端口2206。
图23为本申请实施例光通信装置的另一个结构示意图。请参阅图23,光通信装置2300包括:第一光组件2301、发射光组件2302、接收光组件2303、第一波分复用结构2304、第二波分复用结构2305、第一光纤连接端口2306和第一壳体2307。
第一壳体2307上设置有光传输通道2308至光传输通道2312。第一壳体上设置有与光传输通道2308连通的第一光发送端口、与光传输通道2309连通的第二光发送端口以及与光传输通道2310连通的光接收端口。第一光组件2301封装于第一光发送端口,发射光组件2302封装于第二光发送端口。接收光组件2303封装于光接收端口。
第一波分复用结构2304设置于光传输通道2309与光传输通道2310之间的交接处,第二波分复用结构2305设置于光传输通道2308与光传输通道2311之间的交接处。
第一波分复用结构2304能够将发射光组件2302发出的第二波长光信号反射至第二波分复用结构2305,以及将来自第二波分复用结构2305的第四波长光信号透射至接收光组件2303。第二波分复用结构2305能够将来自第一光纤连接端口2306的第四波长光信号透射至第一波分复用结构2304。第二波分复用结构2305将第二波长光信号和将来自第一光组件2301的第一波长光信号进行合波得到合波信号,并将该合波信号发送至第一光纤连接端口2306。
具体的,发射光组件2302发出的第二波长光信号经过第一波分复用结构2304时发生反射,且反射至第二波分复用结构2305。第一光纤连接端口2306传入的第四波长光信号经过第二波分复用结构2305时直接透射,且透射至第一波分复用结构2304,第四波长光信号经过第一波分复用结构2304时直接透射,接收光组件2303正好处于透射光路上,从而实现对第四波长光信号的接收。第一光组件2301发出的第一波长光信号经过第二波分复用结构2305时发生反射,且反射至第一光纤连接端口2306。第二波长光信号经过第二波分复用结构2305时直接透射,透射至第一光纤连接端口2306。
图24为本申请实施例光通信装置的另一个结构示意图。请参阅图24,光通信装置2400包括:第一光组件2401、发射光组件2402、接收光组件2403、第一波分复用结构2404、第二波分复用结构2405、第一光纤连接端口2406和第一壳体2407。
第一壳体2407上设置有光传输通道2408至光传输通道2412。第一壳体2407上设置有与光传输通道2408连通的第一光发送端口、与光传输通道2409连通的第二光发送端口以及与光传输通道2410连通的光接收端口。第一光组件2401封装于第一光发送端口,发射光组件2402封装于第二光发送端口。接收光组件2403封装于光接收端口。
第一波分复用结构2404设置于光传输通道2409与光传输通道2410之间的交接处,第二波分复用结构2405设置于光传输通道2408与光传输通道2411之间的交接处。
第一波分复用结构2404能够将发射光组件2402发出的第五波长光信号透射至第二波分复用结构2405,以及将来自第二波分复用结构2405的第三波长光信号反射至接收光组件2403。第二波分复用结构2405能够将来自第一光纤连接端口2406的第三波长光信号透射至第一波分复用结构2404。第二波分复用结构2405可以将第五波长光信号和来自第一光组件2401的第一波长光信号进行合波得到合波信号,并将合波信号发送至第一光纤连接端口2406。
具体的,发射光组件2402发出的第五波长光信号经过第一波分复用结构2404时直接透射,且透射至第二波分复用结构2405。第一光组件2401向第二波分复用结构2405发送第一 波长光信号。第二波分复用结构3405将第一波长光信号和第五波长光信号进行合波,得到合波信号,并将该合波信号发送至第一光纤连接端口2406。第一光纤连接端口2406传入的第三波长光信号经过第二波分复用结构2405时直接透射,且透射至第一波分复用结构2404,第三波长光信号经过第一波分复用结构2404时发生反射,接收光组件2403正好处于反射光路上,从而实现对第三波长光信号的接收。
由上述图19至图24可知,本申请的技术方案中,光通信装置可以集成发射光组件、接收光组件和第一光组件。从而实现通过第一光组件发射的第一波长光信号实现对ODN网络的光纤的检测。例如,第一波长光信号可以用于检测ODN网络中的光纤是否被占用、是否空闲或是否发生断纤等。实现对ODN网络的自动化地可视化管理。而发射光组件发射的光信号和接收光组件接收的光信号中都承载业务数据,从而实现光通信装置的通信功能和可视化功能于一体。
下面介绍本申请的技术方案中为第一光组件供电的一种可能的实现方式。
对于光通信装置包括第一光组件和第二光组件的情况,可选的,光通信装置还软硬结合板或柔板,第一光组件包括第一激光二极管。第一激光二极管的正极通过该软硬结合板或柔板与第二光组件的供电管脚连接。
其中,第二光组件的供电管脚可以理解为第二光组件中能够为第一光组件提供电压或电流的管脚。可选的,可以优先选择第二光组件中能够提供电压或电流的管脚,且通过该管脚引线到软硬结合板或柔板时,对该管脚的信号不产生影响。
该管脚与软硬结合板或柔板的一端连接,而第一激光二极管的正极与该软硬结合板或柔板的另一端连接。也就是通过软硬结合板或柔板从第二光组件的供电管脚处取电,从而实现为第一光组件供电。无需改变光网络设备(例如,OLT或ONU,光通信装置部署于该OLT或ONU)中的单板形态。例如,在无源光纤局域网(passive optical LAN,POL)园区场景下有数十款OLT,不改变OLT的单板形态的场景需求很大,在不改变单板形态的情况下,实现对ODN网络的可视化功能。
该第一激光二极管的负极可以直接接地,也可以与第一电阻的一端连接,而该第一电阻的另一端接地。
例如,如图25所示,第二光组件的供电管脚2510是3.3V(伏特)的供电管脚,第一激光二极管2501的正极与该供电管脚2510连接。
对于光通信装置包括第一光组件、第二光组件和第三光组件的情况,可选的,光通信装置还软硬结合板或柔板,第一光组件包括第一激光二极管。第一激光二极管的正极通过该软硬结合板或柔板与第二光组件的供电管脚或第三光组件的供电管脚连接。
关于第三光组件的供电管脚可以参阅前述关于第二光组件的供电管脚的相关介绍。
上述介绍了第一光组件通过该软硬结合板或柔板与第二光组件的供电管脚或第三光组件的供电管脚连接实现为第一光组件供电的方案。实际应用中,第一光组件也可以与单板上的供电管脚连接,从而实现由单板为第一光组件供电,具体本申请不做限定。
后文主要以第一激光二极管的正极与该第二光组件的供电管脚连接的实现方式为例介绍本申请的技术方案。
可选的,第一光组件还包括功率锁定结构,该功率锁定结构与第一激光二极管连接,功率锁定结构用于控制第一激光二极管输出的第一波长光信号的功率。
由于人眼能够识别的光信号的功率是有下限的,因此通过功率锁定结构可以对第一波长光信号的功率的锁定,保证人眼能够实现该可见光或近红外光的光信号,实现对ODN网络的 可视化管理。进一步的,锁定第一波长光信号的功率,有利于延长光通信装置的寿命。例如,光通信装置集成在芯片中,第一波长光信号的功率锁定在一个恒定值或一个范围内,有利于延长芯片的寿命。
可选的,该功率锁定结构可以集成于软硬结合板或柔板上。
下面介绍功率锁定结构的两种可能的实现方式。对于其他实现方式本申请仍适用,下述两种实现方式不属于对本申请技术方案的限定。
图25为本申请实施例功率锁定结构的一个结构示意图。请参阅图25,功率锁定结构包括第一激光二极管2501、MOS管2502、背光光电二极管2503、运算放大器2504、第一电阻2505、第二电阻2506、第三电阻2507和第四电阻2508。
第一激光二极管2501的正极与第二光组件的供电管脚2510连接,MOS管2502的漏极与第一激光二极管2501的负极连接,MOS管2502的栅极与运算放大器2504的输出端口连接,MOS管2502的源极与第一电阻2505的一端连接,第一电阻2505的另一端接地。
背光光电二极管2503的负极与第二光组件的供电管脚2510连接,背光光电二极管2503的正极与第二电阻2506的一端与运算放大器2504的负极输入端口并联连接,第二电阻2506的另一端接地。
第三电阻2507的一端和第四电阻2508的一端与运算放大器2504的正极输入端口并联连接,第三电阻2507的另一端与第二光组件的供电管脚2510连接,第四电阻2508的另一端接地。
可选的,功率锁定结构还包括电容2509,该电容2509的一端与运算放大器2504的输出端口连接,电容2509的另一端与运算放大器2504的负极输入端口连接。从而防止运算放大器自激振荡。
上述图25所示的功率锁定结构中,运算放大器2504的正极并联第三电阻2507和第四电阻2508,这两个电阻可以是定值电阻,通过该第三电阻2507和第四电阻2508的比值进行分压比的设定,从而设定运算放大器2504的输入电压,从而实现设定第一波长光信号的功率的目标值。
运算放大器2504的正极输入端口的电压不变,第一激光二极管2501输出的第一波长光信号的功率发生变化时,背光光电二极管2503吸收第一激光二极管2501发射的可见光或近红外光,由于第一波长光信号的功率发生变化,那么背光光电二极管2503所在的支路的电流发生变化,则运算放大器2504调节其输出电压。运算放大器2504的输出电压发生变化,导致MOS管2502的导通深度不一样,那么通过第一激光二极管2501的电流也会发生变化,从而实现对第一激光二极管2501输出的第一波长光信号的功率的控制。第二电阻2506的阻值影响第二波长光信号的功率的调节范围。上述图25所示的功率锁定结构通过低驱动能力的运算放大器2504和MOS管2502共同驱动第一激光二极管2501。通过上述图25所示的功率锁定结构可以锁定第一激光二极管2501输出的第一波长光信号的功率,或者控制第一激光二极管2501输出的第一波长光信号的功率落在一定范围内。
图26为本申请实施例功率锁定结构的另一个结构示意图。请参阅图26,功率锁定结构包括:第一激光二极管2601、背光光电二极管2602、运算放大器2603、第一电阻2604、第二电阻2605、第三电阻2606和第四电阻2607。
第一激光二极管2601的正极与第二光组件的供电管脚2609连接,第一电阻2604的一端与第一激光二极管2601的负极连接,第一电阻2604的另一端与运算放大器2603的输出端口连接。
背光光电二极管2602的负极与第二光组件的供电管脚2609连接,背光光电二极管2602的正极与第二电阻2605的一端与运算放大器2603的负极输入端口并联连接,第二电阻2605的另一端接地。
第三电阻2606的一端和第四电阻2607的一端与运算放大器2603的正极输入端口并联连接,第三电阻2606的另一端与第二光组件的供电管脚2609连接,第四电阻2607的另一端接地。
上述图26所示的功率锁定结构中第三电阻2606和第四电阻2607的作用与前述图25所示的功率锁定结构中的第三电阻2507和第四电阻2508的作用类似,具体可以参阅前述的相关介绍。
运算放大器2603的正极输入端口的电压不变,第一激光二极管2601输出的第一波长光信号的功率发生变化时,背光光电二极管2602吸收第一激光二极管2601发射的可见光或近红外光。由于第一波长光信号的功率发生变化,那么背光光电二极管2602所在的支路的电流发生变化,则运算放大器2603调节其输出电压,运算放大器2603的输出电压发生变化,从而使得第一激光二极管2601所在支持的电流发生变化,从而实现对第一激光二极管2601输出的第一波长光信号的功率的控制。上述图26所示的功率锁定结构通过驱动能力较强的运算放大器2603直接驱动该第一激光二极管2601。第二电阻2605的阻值影响第二波长光信号的功率的调节范围。
可选的,功率锁定结构还包括电容2608,该电容2608的一端与运算放大器2603的输出端口连接,电容2608的另一端与运算放大器2603的负极输入端口连接。从而防止运算放大器2603自激振荡。
由此可知,上述图25或图26所示的功率锁定结构是利用第一激光二极管与背光光电二极管之间的光耦合形成的负反馈回路实现对第一激光二极管输出的第一波长光信号的功率控制(即可见光输出光功率,或近红外光输出光功率)。
需要说明的是,上述实施例主要是以光通信装置中的不同光组件之间采用同轴管壳的封装方式进行封装。对于其他封装方式本申请也适用,具体本申请不做限定。例如,不同光组件之间采用板上芯片封装(chips on board,COB)进行封装。
上述图5至图11所示的光通信装置中,第二光组件可以与外围的电子组件进行电连接。
上述图13至图24所示的光通信装置中,第二光组件和第三光组件可以与外围的电子组件进行电连接。
将上述光通信装置连接单板并放置于机框内则构成了光网络设备,其中,该光网络设备可以是OLT,也可以是ONU,又或者还可以是光传送网(optical transport network,OTN)中的光传输设备,具体此处不做限定。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (30)

  1. 一种光通信装置,其特征在于,所述光通信装置包括:第一光组件和第二光组件,所述第一光组件用于发送第一波长光信号,所述第一波长光信号为可见光信号或近红外光信号,所述第二光组件用于发送第二波长光信号和/或接收第三波长光信号,所述第二波长光信号和所述第三波长光信号中承载业务数据。
  2. 根据权利要求1所述的光通信装置,其特征在于,所述光通信装置还包括:第一耦合器和第一光纤连接端口;
    所述第一光组件与所述第一耦合器的第一端连接,所述第二光组件与所述第一耦合器的第二端连接,所述第一耦合器的第三端与所述第一光纤连接端口连接;
    所述第一光组件用于向所述第一耦合器发送所述第一波长光信号;所述第二光组件用于向所述第一耦合器发送所述第二波长光信号;所述第一耦合器用于将所述第一波长光信号和所述第二波长光信号进行耦合得到合波信号,并将所述合波信号发送至所述第一光纤连接端口。
  3. 根据权利要求1所述的光通信装置,其特征在于,所述光通信装置还包括:第一耦合器和第一光纤连接端口;所述第一光组件与所述第一耦合器的第一端连接,所述第二光组件与所述第一耦合器的第二端连接,所述第一耦合器的第三端与所述第一光纤连接端口连接;
    所述第一光组件用于向所述第一耦合器发送所述第一波长光信号;所述第二光组件用于接收所述第三波长光信号;所述第一耦合器用于分离所述第一波长光信号和来自所述第一光纤连接端口的所述第三波长光信号,使得所述第一波长光信号发送至所述第一光纤连接端口以及所述第三波长光信号发送至所述第二光组件。
  4. 根据权利要求1所述的光通信装置,其特征在于,所述光通信装置还包括:第一耦合器和第一光纤连接端口;
    所述第一光组件与所述第一耦合器的第一端连接,所述第二光组件与所述第一耦合器的第二端连接,所述第一耦合器的第三端与所述第一光纤连接端口连接;
    所述第一光组件用于向所述第一耦合器发送所述第一波长光信号;所述第二光组件用于向所述第一耦合器发送所述第二波长光信号;所述第一耦合器用于将所述第一波长光信号和所述第二波长光信号进行耦合得到合波信号,并将所述合波信号发送至所述第一光纤连接端口;以及所述第一光组件用于向所述第一耦合器发送所述第一波长光信号;所述第二光组件用于接收所述第三波长光信号;所述第一耦合器用于分离所述第一波长光信号和来自所述第一光纤连接端口的所述第三波长光信号,使得所述第一波长光信号发送至所述第一光纤连接端口以及所述第三波长光信号发送至所述第二光组件。
  5. 根据权利要求1所述的光通信装置,其特征在于,所述光通信装置还包括:第三光组件、第一耦合器、第二耦合器和第一光纤连接端口;
    所述第一光组件与所述第一耦合器的第一端连接,所述第二光组件与所述第一耦合器的第二端连接,所述第一耦合器的第三端与所述第二耦合器的第一端连接,所述第二耦合器的第二端与所述第三光组件连接,所述第二耦合器的第三端与所述第一光纤连接端口连接;
    所述第一光组件用于向所述第一耦合器发送所述第一波长光信号;
    所述第二光组件用于向所述第一耦合器发送所述第二波长光信号;所述第三光组件用于 接收第四波长光信号,所述第四波长光信号中承载业务数据;所述第一耦合器用于将所述第一波长光信号和所述第二波长光信号进行耦合得到合波信号,并向所述第二耦合器发送所述合波信号;所述第二耦合器用于将所述合波信号发送至所述第一光纤连接端口,以及接收来自所述第一光纤连接端口的所述第四波长光信号,并向所述第三光组件发送所述第四波长光信号。
  6. 根据权利要求1所述的光通信装置,其特征在于,所述光通信装置还包括:第三光组件、第一耦合器、第二耦合器和第一光纤连接端口;
    所述第一光组件与所述第一耦合器的第一端连接,所述第三光组件与所述第一耦合器的第二端连接,所述第一耦合器的第三端与所述第二耦合器的第一端连接,所述第二耦合器的第二端与所述第二光组件连接,所述第二耦合器的第三端与所述第一光纤连接端口连接;
    所述第一光组件用于向所述第一耦合器发送所述第一波长光信号;
    所述第二光组件用于向所述第二耦合器发送所述第二波长光信号,所述第三光组件用于接收第四波长光信号,所述第四波长光信号中承载业务数据;所述第一耦合器用于分离所述第一波长光信号和来自所述第二耦合器的所述第四波长光信号,使得所述第一波长光信号发送至所述第一耦合器以及所述第四波长光信号发送至所述第三光组件;所述第二耦合器用于将所述第一波长光信号和所述第二波长光信号进行耦合得到合波信号,并将所述合波信号发送至所述第一光纤连接端口,以及接收来自所述第一光纤连接端口的所述第四波长光信号,并将所述第四波长光信号发送至所述第一耦合器。
  7. 根据权利要求1所述的光通信装置,其特征在于,所述光通信装置还包括:第三光组件、第一耦合器、第二耦合器和第一光纤连接端口;
    所述第一光组件与所述第二耦合器的第一端连接,所述第二光组件与所述第一耦合器的第一端连接,所述第三光组件与所述第一耦合器的第二端连接,所述第一耦合器的第三端与所述第二耦合器的第二端连接,所述第二耦合器的第三端与所述第一光纤连接端口连接;
    所述第一光组件用于向所述第二耦合器发送所述第一波长光信号;
    所述第二光组件用于向所述第一耦合器发送所述第二波长光信号,所述第三光组件用于接收第四波长光信号,所述第四波长光信号中承载业务数据;所述第一耦合器用于分离所述第二波长光信号和来自所述第二耦合器的第四波长光信号,使得所述第二波长光信号发送至所述第二耦合器以及所述第四波长光信号发送至所述第三光组件;所述第二耦合器用于将所述第一波长光信号和所述第二波长光信号进行耦合得到合波信号,并将所述合波信号发送至所述第一光纤连接端口,以及接收来自所述第一光纤连接端口的所述第四波长光信号,并将所述第四波长光信号发送至所述第一耦合器。
  8. 根据权利要求2至4中任一项所述的光通信装置,其特征在于,所述第一光组件与所述第一耦合器的第一端通过第一光传输通道连接,所述第二光组件与所述第二耦合器的第二端通过第二光传输通道连接,所述第一耦合器的第三端与所述第一光纤连接端口通过第三光传输通道连接。
  9. 根据权利要求8所述的光通信装置,其特征在于,所述第一光传输通道为第一光纤,所述第二光传输通道为第二光纤,所述第三光传输通道为第三光纤。
  10. 根据权利要求8所述的光通信装置,其特征在于,当所述第二光组件为发射光组件时,所述光通信装置还包括第一壳体,所述第一光传输通道、所述第二光传输通道和所述第三光传输通道是所述第一壳体上设置的光传输通道;
    所述第一耦合器设置于所述第一光传输通道与所述第二光传输通道的交接处;
    所述第一壳体上设置有与所述第一光传输通道连通的第一光发送端口以及与所述第二光传输通道连通的第二光发送端口;
    所述第一光组件封装于所述第一光发送端口,所述第二光组件封装于所述第二光发送端口。
  11. 根据权利要求8所述的光通信装置,其特征在于,当所述第二光组件为接收光组件时,所述光通信装置还包括第一壳体,所述第一光传输通道、所述第二光传输通道和所述第三光传输通道是所述第一壳体上设置的光传输通道;
    所述第一耦合器设置于所述第一光传输通道与所述第二光传输通道的交接处;
    所述第一壳体上设置有与所述第一光传输通道连通的第一光发送端口以及与所述第二光传输通道连通的光接收端口;
    所述第一光组件封装于所述第一光发送端口,所述第二光组件封装于所述光接收端口。
  12. 根据权利要求8所述的光通信装置,其特征在于,当所述第二光组件为收发光组件时,所述光通信装置还包括第一壳体,所述第一光传输通道、所述第二光传输通道和所述第三光传输通道是所述第一壳体上设置的光传输通道;
    所述第一耦合器设置于所述第一光传输通道与所述第二光传输通道的交接处;
    所述第一壳体上设置有与所述第一光传输通道连通的第一光发送端口以及与所述第二光传输通道连通的光收发端口;
    所述第一光组件封装于所述第一光发送端口,所述第二光组件封装于所述光收发端口。
  13. 根据权利要求5所述的光通信装置,其特征在于,所述第一光组件与所述第一耦合器的第一端通过第一光传输通道连接,所述第二光组件与所述第一耦合器的第二端通过第二光传输通道连接,所述第一耦合器的第三端与所述第二耦合器的第一端通过第三光传输通道连接,所述第二耦合器的第二端与所述第三光组件通过第四光传输通道连接,所述第二耦合器的第三端与所述第一光纤连接端口通过第五光传输通道连接。
  14. 根据权利要求13所述的光通信装置,其特征在于,所述光通信装置还包括第一壳体;所述第一光传输通道、所述第二光传输通道、所述第三光传输通道、所述第四光传输通道和所述第五光传输通道是所述第一壳体上设置的光传输通道;
    所述第一耦合器设置于所述第一光传输通道与所述第二光传输通道的交接处,所述第二耦合器设置于所述第三光传输通道与所述第四光传输通道的交接处;
    所述第一壳体上设置有与所述第一光传输通道连通的第一光发送端口、与所述第二光传输通道连通的第二光发送端口以及与所述第四光传输通道连通的光接收端口;
    所述第一光组件封装于所述第一光发送端口,所述第二光组件封装于所述第二光发送端口,所述第三光组件封装于所述光接收端口。
  15. 根据权利要求13所述的光通信装置,其特征在于,所述光通信装置还包括第二壳体和第三壳体;所述第一光传输通道和所述第二光传输通道是所述第二壳体上设置的光传输通道;所述第四光传输通道与所述第五光传输通道是所述第三壳体上设置的光传输通道;所述第三光传输通道设置于所述第二壳体和所述第三壳体之间;
    所述第一耦合器设置于所述第一光传输通道与所述第二光传输通道的交接处,所述第二耦合器设置于所述第三光传输通道与所述第四光传输通道的交接处;
    所述第二壳体上设置有与所述第一光传输通道连通的第一光发送端口以及与所述第二光 传输通道连通的第二光发送端口;所述第三壳体上设置有与所述第四光传输通道连通的光接收端口;
    所述第一光组件封装于所述第一光发送端口,所述第二光组件封装于所述第二光发送端口,所述第三光组件封装于所述光接收端口。
  16. 根据权利要求6所述的光通信装置,其特征在于,所述第一光组件与所述第一耦合器的第一端通过第一光传输通道连接,所述第三光组件与所述第一耦合器的第二端通过第二光传输通道连接,所述第一耦合器的第三端与所述第二耦合器的第一端通过第三光传输通道连接,所述第二耦合器的第二端与所述第二光组件通过第四光传输通道连接,所述第二耦合器的第三端与所述第一光纤连接端口通过第五光传输通道连接。
  17. 根据权利要求16所述的光通信装置,其特征在于,所述光通信装置还包括第一壳体;所述第一光传输通道、所述第二光传输通道、所述第三光传输通道、所述第四光传输通道和所述第五光传输通道是所述第一壳体上设置的光传输通道;
    所述第一耦合器设置于所述第一光传输通道与所述第二光传输通道的交接处,所述第二耦合器设置于所述第三光传输通道与所述第四光传输通道的交接处;
    所述第一壳体上设置与所述第一光传输通道连通的第一光发送端口、与所述第二光传输通道连通的光接收端口以及与所述第四光传输通道连通的第二光发送端口;
    所述第一光组件封装于所述第一光发送端口,所述第二光组件封装于所述光接收端口,所述第三光组件封装于所述第二光发送端口。
  18. 根据权利要求16所述的光通信装置,其特征在于,所述光通信装置还包括第二壳体和第三壳体;所述第一光传输通道和所述第二光传输通道是所述第二壳体上设置的光传输通道;所述第四光传输通道与所述第五光传输通道是所述第三壳体上设置的光传输通道;所述第三光传输通道设置于所述第二壳体和所述第三壳体之间;
    所述第一耦合器设置于所述第一光传输通道与所述第二光传输通道的交接处,所述第二耦合器设置于所述第三光传输通道与所述第四光传输通道的交接处;
    所述第二壳体上设置有与所述第一光传输通道连通的第一光发送端口以及与所述第二光传输通道连通的光接收端口;所述第三壳体上设置有与所述第四光传输通道连通的第二光发送端口;
    所述第一光组件封装于所述第一光发送端口,所述第二光组件封装于所述光接收端口,所述第三光组件封装于所述第二光发送端口。
  19. 根据权利要求7所述的光通信装置,其特征在于,所述第一光组件与所述第二耦合器的第一端通过第一光传输通道连接,所述第二光组件与所述第一耦合器的第一端通过第二光传输通道连接,所述第三光组件与所述第一耦合器的第二端通过第三光传输通道连接,所述第一耦合器的第三端与所述第二耦合器的第二端通过第四光传输通道连接,所述第二耦合器的第三端与所述第一光纤连接端口通过第五光传输通道连接。
  20. 根据权利要求19所述的光通信装置,其特征在于,所述光通信装置还包括第一壳体,所述第一光传输通道、所述第二光传输通道、所述第三光传输通道、所述第四光传输通道和所述第五光传输通道是所述第一壳体上设置的光传输通道;
    所述第一耦合器设置于所述第二光传输通道与所述第三光传输通道的交接处,所述第二耦合器设置于所述第一光传输通道与所述第四光传输通道的交接处;
    所述第一壳体上设置与所述第二光传输通道连通的第一光发送端口、与所述第三光传输 通道连通的光接收端口以及与所述第一光传输通道连通的第二光发送端口;
    所述第一光组件封装于所述第二光发送端口,所述第二光组件封装于所述第一光发送端口,所述第三光组件封装于所述光接收端口。
  21. 根据权利要求19所述的光通信装置,其特征在于,所述光通信装置还包括第二壳体和第三壳体;所述第二光传输通道和所述第三光传输通道是所述第二壳体上设置的光传输通道;所述第一光传输通道和所述第五光传输通道是所述第三壳体上设置的光传输通道;所述第四光传输通道设置于所述第二壳体和所述第三壳体之间;
    所述第一耦合器设置于所述第二光传输通道与所述第三光传输通道的交接处,所述第二耦合器设置于所述第一光传输通道与所述第四光传输通道的交接处;
    所述第二壳体上设置有与所述第二光传输通道连通的第一光发送端口以及与所述第三光传输通道连通的光接收端口;所述第三壳体上设置有与所述第一光传输通道连通的第二光发送端口;
    所述第一光组件封装于所述第二光发送端口,所述第二光组件封装于所述第一光发送端口,所述第三光组件封装于所述光接收端口。
  22. 根据权利要求13、16或19所述的光通信装置,其特征在于,所述第一光传输通道为第一光纤,所述第二光传输通道为第二光纤,所述第三光传输通道为第三光纤,所述第四光传输通道为第四光纤,所述第五光传输通道为第五光纤。
  23. 根据权利要求1至22中任一项所述的光通信装置,其特征在于,所述第一光组件包括第一激光二极管LD,所述第一激光二极管的正极通过软硬结合板或柔板与所述第二光组件的供电管脚连接。
  24. 根据权利要求23所述的光通信装置,其特征在于,所述第一光组件还包括功率锁定结构,所述功率锁定结构与所述第一激光二极管连接,所述功率锁定结构用于控制所述第一激光二极管输出的第一波长光信号的功率。
  25. 根据权利要求24所述的光通信装置,其特征在于,所述功率锁定结构包括背光光电二极管、金属氧化物半导体场效应晶体MOS管、运算放大器、第一电阻、第二电阻、第三电阻和第四电阻;
    所述MOS管的漏极与所述第一激光二极管的负极连接,所述MOS管的栅极与所述运算放大器的输出端口连接,所述MOS管的源极与所述第一电阻的一端连接,所述第一电阻的另一端接地;
    所述背光光电二极管的负极与所述供电管脚连接,所述背光光电二极管的正极与所述第二电阻的一端与所述运算放大器的负极输入端口并联连接,所述第二电阻的另一端接地;
    所述第三电阻的一端和所述第四电阻的一端与所述运算放大器的正极输入端口并联连接,所述第三电阻的另一端与所述供电管脚连接,所述第四电阻的另一端接地。
  26. 根据权利要求24所述的光通信装置,其特征在于,所述功率锁定结构包括背光光电二极管、运算放大器、第一电阻、第二电阻、第三电阻和第四电阻;
    所述第一电阻的一端与所述第一激光二极管的负极连接,所述第一电阻的另一端与所述运算放大器的输出端口连接;
    所述背光光电二极管的负极与所述供电管脚连接,所述背光光电二极管的正极与所述第二电阻的一端与所述运算放大器的负极输入端口并联连接,所述第二电阻的另一端接地;
    所述第三电阻的一端和所述第四电阻的一端与所述运算放大器的正极输入端口并联连 接,所述第三电阻的另一端与所述供电管脚连接,所述第四电阻的另一端接地。
  27. 根据权利要求25或26所述的光通信装置,其特征在于,所述功率锁定结构还包括电容,所述电容的一端与所述运算放大器的输出端口连接,所述电容的另一端与所述运算放大器的负极输入端口连接。
  28. 根据权利要求1至27中任一项所述的光通信装置,其特征在于,所述第二波长光信号和所述第三波长光信号均为通信光信号。
  29. 一种光网络设备,其特征在于,包括权利要求1至28中任一项所述的光通信装置。
  30. 根据权利要求29所述的光网络设备,其特征在于,所述光网络设备包括光线路终端OLT或光网络单元ONU。
PCT/CN2023/101308 2022-07-28 2023-06-20 光通信装置以及光网络设备 WO2024021936A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210899858 2022-07-28
CN202210899858.0 2022-07-28
CN202211441862.9A CN117479053A (zh) 2022-07-28 2022-11-17 光通信装置以及光网络设备
CN202211441862.9 2022-11-17

Publications (1)

Publication Number Publication Date
WO2024021936A1 true WO2024021936A1 (zh) 2024-02-01

Family

ID=89626249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101308 WO2024021936A1 (zh) 2022-07-28 2023-06-20 光通信装置以及光网络设备

Country Status (2)

Country Link
CN (1) CN117479053A (zh)
WO (1) WO2024021936A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040023305A (ko) * 2002-09-11 2004-03-18 주식회사 케이티 Otdr을 이용한 wdm-pon 광선로 감시장치
CN101162943A (zh) * 2006-10-10 2008-04-16 英保达股份有限公司 结合断线自动切换保护的光缆监测系统及方法
CN103078676A (zh) * 2013-01-29 2013-05-01 青岛海信宽带多媒体技术有限公司 无源兼容光网络及其光网络单元光模块
CN106452564A (zh) * 2015-08-10 2017-02-22 上海贝尔股份有限公司 一种下行光纤故障的检测方法及装置
CN112055272A (zh) * 2017-12-27 2020-12-08 北京华为数字技术有限公司 光接收、组合收发组件、组合光模块、olt及pon系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040023305A (ko) * 2002-09-11 2004-03-18 주식회사 케이티 Otdr을 이용한 wdm-pon 광선로 감시장치
CN101162943A (zh) * 2006-10-10 2008-04-16 英保达股份有限公司 结合断线自动切换保护的光缆监测系统及方法
CN103078676A (zh) * 2013-01-29 2013-05-01 青岛海信宽带多媒体技术有限公司 无源兼容光网络及其光网络单元光模块
CN106452564A (zh) * 2015-08-10 2017-02-22 上海贝尔股份有限公司 一种下行光纤故障的检测方法及装置
CN112055272A (zh) * 2017-12-27 2020-12-08 北京华为数字技术有限公司 光接收、组合收发组件、组合光模块、olt及pon系统

Also Published As

Publication number Publication date
CN117479053A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
US11121776B2 (en) Faceplate pluggable remote laser source and system incorporating same
US9191118B2 (en) Bidirectional optical data communications module
WO2021004387A1 (zh) 一种tosa、bosa、光模块以及光网络设备
US9703054B2 (en) Aligning and directly optically coupling photodetectors to optical demultiplexer outputs in a multichannel receiver optical subassembly
US9039303B2 (en) Compact multi-channel optical transceiver module
US8543001B2 (en) Cascaded injection locking of fabry-perot laser for wave division multiplexing passive optical networks
US9448367B2 (en) Multi-channel optical transceiver module including dual fiber type direct link adapter for optically coupling optical subassemblies in the transceiver module
CN109981175B (zh) 光模块及信号处理的方法
US11271649B2 (en) Transceiver to transceiver digital optical commands
CN114647030B (zh) 一种用于pon olt系统的硅基光电子的收发集成芯片
WO2022037511A1 (zh) 光源模块和光通信设备
US9847434B2 (en) Multichannel receiver optical subassembly with improved sensitivity
US9473835B2 (en) Optical module and optical device applicable to optical module
WO2011035696A1 (zh) 一种光模块
WO2019173998A1 (zh) 光接收、组合收发组件、组合光模块、olt及pon系统
WO2020253339A1 (zh) 光模块
US9225428B1 (en) Method and system for alignment of photodetector array to optical demultiplexer outputs
US8616786B2 (en) Device, system and method for optical fiber networks
CN113346954A (zh) 一种用于50g以上无源光网络中的局端设备
WO2024021936A1 (zh) 光通信装置以及光网络设备
WO2024021910A1 (zh) 光通信装置以及光网络设备
US11750293B1 (en) Butterfly-type packaged optical transceiver with multiple transmission and reception channels
US20160291267A1 (en) Coupling of photodetector array to optical demultiplexer outputs with index matched material
US11616577B2 (en) Optical transceiver in transistor outline package
WO2022268131A1 (zh) 一种光收发组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845149

Country of ref document: EP

Kind code of ref document: A1