WO2024021814A1 - 一种恒包络正交频分复用系统多址接入方法 - Google Patents

一种恒包络正交频分复用系统多址接入方法 Download PDF

Info

Publication number
WO2024021814A1
WO2024021814A1 PCT/CN2023/096069 CN2023096069W WO2024021814A1 WO 2024021814 A1 WO2024021814 A1 WO 2024021814A1 CN 2023096069 W CN2023096069 W CN 2023096069W WO 2024021814 A1 WO2024021814 A1 WO 2024021814A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
user
time domain
signal
transformation
Prior art date
Application number
PCT/CN2023/096069
Other languages
English (en)
French (fr)
Inventor
但黎琳
胡元杰
季海梦
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Priority to US18/517,215 priority Critical patent/US20240106685A1/en
Publication of WO2024021814A1 publication Critical patent/WO2024021814A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0266Arrangements for providing Galvanic isolation, e.g. by means of magnetic or capacitive coupling
    • H04L25/0268Arrangements for providing Galvanic isolation, e.g. by means of magnetic or capacitive coupling with modulation and subsequent demodulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2003Modulator circuits; Transmitter circuits for continuous phase modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention belongs to the field of wireless communication technology and relates to a multiple access method based on phase rotation of Constant Envelope Orthogonal Frequency Division Multiplexing (CE-OFDM).
  • CE-OFDM Constant Envelope Orthogonal Frequency Division Multiplexing
  • Orthogonal Frequency Division Multiple Access combines OFDM and frequency division multiple access (FDMA) technologies and has good anti-multipath effects and multi-user interference capabilities. It has become the third Physical layer multiple access solutions for wireless communication systems such as mobile communications and wireless LAN from generation to fifth generation.
  • the signal sent by the OFDMA system has a peak to average power ratio (PAPR) that is too high compared to the single carrier waveform, thereby reducing the power utilization of the power amplifier and affecting the wireless access network, especially uplink multiple access. Effective coverage.
  • PAPR peak to average power ratio
  • CE-OFDM technology further modulates the OFDM time domain symbols to the phase of the constant envelope carrier signal through phase modulation, forming a CE-OFDM baseband transmission waveform with 0dB PAPR characteristics, ensuring that the power amplifier work efficiency.
  • the present invention proposes a new multiple access method suitable for CE-OFDM. This method improves user carrier offset, alleviates data aliasing between users, reduces interference between users, and can effectively improve system transmission performance.
  • the present invention proposes a multiple access method with user carrier offset. Different users use different phase rotations to reduce subcarrier component aliasing of different users, reduce inter-user interference caused by phase modulation, and realize sub-band frequency division. Reuse.
  • the number of subcarriers is N
  • the total number of users is U
  • the oversampling multiple is Q
  • the transmitting end :
  • N zp N(Q-1), ( ⁇ ) * represents conjugation, 0 1 ⁇ N represents a zero vector with one row and N columns;
  • Frequency domain-time domain transformation convert Generate the time domain OFDM symbol of the i-th user through N FFT point IFFT transformation
  • the signal x i [n] at the n-th sampling point of the i-th user is expressed as:
  • Phase modulation Phase modulate the time domain OFDM symbol x i of the i-th user to obtain a discrete time domain CE-OFDM signal
  • A is the carrier signal amplitude
  • 2 ⁇ h is the modulation index
  • Time domain-frequency domain transformation generate the frequency domain signal of the i-th user through N FFT point FFT transformation of s i
  • the signal Si [k] of the i-th user on the k-th subcarrier is expressed as:
  • N CP is the cyclic prefix length
  • K i (i-2)N i ;
  • Equalization offset equalize Y i to obtain the equalization symbol Then do the opposite to the sender operation and change Offset NS i subcarriers to the left to get Expressed as:
  • the beneficial effects of the present invention are: in the CE-OFDMA system, different users perform different phase rotations, thereby reducing data aliasing between users, reducing interference between users, and improving system performance.
  • Figure 1 is a system block diagram of the present invention.
  • a constant envelope orthogonal frequency division multiplexing system multiple access method includes: the transmitting end sequentially undergoes digital modulation, symmetric mapping, frequency domain- Time domain transformation, phase modulation, time domain-frequency domain transformation, frequency domain offset, frequency domain-time domain transformation and adding cyclic prefix to obtain the baseband transmission signal and send it to the receiving end through the channel; the receiving end sequentially passes the time domain on the received signal - Frequency domain transformation, user separation, equalization offset, frequency domain-time domain transformation, phase demodulation, time domain-frequency domain transformation, demapping and decision-making to obtain the detection results of the corresponding user.
  • the method of the embodiment of the present invention specifically includes:
  • the transmitting end :
  • Step S1 digital modulation: map the transmitted bit sequence of user 2 into QPSK symbols to obtain a modulated signal
  • X (2) [0,0.7+0.7J, 0.7+0.7J, -0.7-0.7J, 0.7+0.7J, 0.7-0.7J, -0.7-0.7J, -0.7-0.7J]
  • X i [0,X i (1),X i (2),...,X i (N c -1)] T
  • N FFT 64-point FFT to generate the frequency domain signal of user 2
  • S (2) [7.56+0.019j,-0.472+0.615j,-0.446+0.446j,...,-0.547-0.486j,0.568+0.506j,0.472+0.369j] T
  • Step S10 user separation: separate the frequency domain received signal Y to obtain the frequency domain received signal of user 2
  • Step S11 equalization offset: channel response at this time So Then Offset NS (2) subcarriers to the left to get Right now
  • Step S12 obtain the detection results: convert the results obtained in step S11 Transform to the time domain through IFFT, then use the arctangent function to perform phase demodulation and obtain it through FFT transformation Finally, the valid data of the i-th user is judged to obtain the detection result of the user.
  • the method in the present invention reduces interference between users by performing different frequency domain offsets for different users.
  • this embodiment if different users are mapped to different frequency domains in step S2 and no offset is performed in step S6, it is a traditional uplink CE-OFDM multiple access method. It can be seen from step S7 that this In the invention, the DC components of different users are separated, and compared with the traditional uplink CE-OFDM system, the interference between users is smaller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开了一种恒包络正交频分复用系统多址接入方法,属于无线通信技术领域。本发明方法包括:发射端将各用户的信息比特依次经数字调制、对称映射、频域-时域变换、相位调制、时域-频域变换、频域偏移、频域-时域变换和添加循环前缀得到基带发送信号并通过信道向接收端发送;接收端对接收信号依次经时域-频域变换、用户分离、均衡偏移、频域-时域变换、相位解调、时域-频域变换、解映射和判决得到对应用户的检测结果。本发明通过不同用户进行不同的相位旋转,降低了用户间的数据混叠,减少用户间干扰,提升系统性能。

Description

一种恒包络正交频分复用系统多址接入方法 技术领域
本发明属于无线通信技术领域,涉及一种基于相位旋转的恒包络正交频分复用(Constant Envelope Orthogonal Frequency Division Multiplexing,CE-OFDM)的多址接入方法。
背景技术
正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)将OFDM和频分多址(frequency division multiple access,FDMA)技术结合,具有良好的抗多径效应和多用户干扰能力,已成为第3代到第五代移动通信、无线局域网等无线通信系统的物理层多址接入方案。但OFDMA系统发送信号较单载波波形存在过高的峰值平均功率比(Peak to Average Power Ratio,PAPR),进而降低功率放大器的功率利用率,影响无线接入网络,特别是上行多址接入的有效覆盖范围。针对传统OFDM波形的高PAPR问题,CE-OFDM技术通过相位调制将OFDM时域符号进一步调制到恒包络载波信号的相位上,形成具有0dB PAPR特性的CE-OFDM基带发送波形,保证了功率放大器的工作效率。
虽然CE-OFDM中的相位调制操作降低了发送信号的PAPR波动,但非线性相位调制过程也破坏了子载波间的正交性,造成用户的子载波分量相互重叠,引入用户间干扰,从而导致系统传输性能降低。针对用户间干扰问题,本发明提出了一种适用于CE-OFDM的新型多址接入方法。该方法通过改进用户载波偏移,缓解了用户间数据混叠,降低用户间干扰,可有效改善系统传输性能。
发明内容
本发明提出了一种用户载波偏移的多址接入方法,不同用户通过不同的相位旋转,减少不同用户的子载波分量混叠,降低相位调制带来的用户间干扰,实现子带频分复用。
本发明的技术方案是:
在CE-OFDMA系统中,其中子载波数为N,总用户数为U,过采样倍数为Q,每个用户所占用的子载波数为Ni=N/U,有效子载波数Nc=Ni/2,其中i=1,2,...,U表示第i个用户。所述方法包括以下步骤:
发射端:
a1.数字调制:将第i个用户的信息比特映射为M阶QAM调制后得到调制信号表示为
Xi=[0,Xi(1),Xi(2),...,Xi(Nc-1)]T
a2.对称映射:将Xi按照如下共轭对称格式进行放置,得到长度为NFFT=NQ的频域符号
其中,Nzp=N(Q-1),(·)*表示共轭,01×N表示一个一行N列的零向量;
a3.频域-时域变换:将通过NFFT点IFFT变换生成第i个用户的时域OFDM符号第i个用户第n个采样点上的信号xi[n]表示为:
a4.相位调制:将第i个用户的时域OFDM符号xi通过相位调制得到离散时域CE-OFDM信号第i个用户第n个采样点上的信号si[n]表示为:

φi=2πhCNxi[n]
其中,A为载波信号幅值,2πh为调制指数;为归一化常数因子,其中此时信号si的相位φi的方差为(2πh)2
a5.时域-频域变换:将si通过NFFT点FFT变换生成第i个用户的频域信号第i个用户第k个子载波上的信号Si[k]表示为:
a6.频域偏移:将Si向右偏移NSi=Ni(i-1)个子载波得到表示为
a7.频域-时域变换:将S'i通过NFFT点IFFT变换得到时域信号第i个用户第n个采样点上的信号s'i[n]表示为:
a8.加入循环前缀(CP)得到基带发送信号
其中,NCP为循环前缀长度;
接收端:
b1.时域-频域变换:将接收信号去除CP并通过NFFT点FFT变换得到频域接收信号表示为
Y=H1S'1+H2S'2+...+HUS'U+W
b2.用户分离:将频域接收信号Y进行分离得到表示为:
其中,Ki=(i-2)Ni
b3.均衡偏移:将Yi通过均衡得到均衡符号接着同发送端操作相反,将向左偏移NSi个子载波得到表示为:
接着通过IFFT变换到时域,再利用反正切函数进行相位解调并通过FFT变换得到最后对第i个用户的有效数据进行判决得到该用户的检测结果
本发明的有益效果是:在CE-OFDMA系统中,通过不同用户进行不同的相位旋转,降低了用户间的数据混叠,减少用户间干扰,提升系统性能。
附图说明
图1为本发明的系统框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例
考虑一个上行CE-OFDM系统,其中子载波数为N=32,总用户数为U=2,过采样倍数为Q=2,每个用户所占用的子载波数为Ni=N/U=16,有效子载波数Nc=Ni/2=8,其中i=1,2,采用QPSK调制。如图1所示,本发明实施例提供的一种恒包络正交频分复用系统多址接入方法包括:发射端将各用户的信息比特依次经数字调制、对称映射、频域-时域变换、相位调制、时域-频域变换、频域偏移、频域-时域变换和添加循环前缀得到基带发送信号并通过信道发送至接收端;接收端对接收信号依次经时域-频域变换、用户分离、均衡偏移、频域-时域变换、相位解调、时域-频域变换、解映射和判决得到对应用户的检测结果。
以用户2为例进行说明,本发明实施例方法具体包括:
发射端:
步骤S1,数字调制:将用户2的发送比特序列映射为QPSK符号后得到调制信号
X(2)=[0,0.7+0.7j,0.7+0.7j,-0.7-0.7j,0.7+0.7j,0.7-0.7j,-0.7-0.7j,-0.7-0.7j]T
Xi=[0,Xi(1),Xi(2),...,Xi(Nc-1)]T
步骤S2,对称映射:将X(2)按照如下共轭对称格式进行放置,得到长度为NFFT=NQ=64的频域符号
步骤S3,频域-时域变换:将通过NFFT=64点IFFT变换后生成第2个用户时域的OFDM符号
x(2)=[0.021,0.054,0.082,...,0.009,-0.005,-0.001]T
步骤S4,相位调制:将上述用户2的时域OFDM符号x(2)通过相位调制得到离散时域CE-OFDM信号令A=1,2πh=0.7,计算得CN=8.2624,则s(2)表示为
s(2)
[0.992+0.126j,0.950+0.310j,0.888+0.458j,...,0.998+0.055j,0.999-0.315j,1.00-0.007j]T
步骤S5,时域-频域变换:将s(2)通过NFFT=64点FFT变换后生成用户2的频域信号
S(2)
[7.56+0.019j,-0.472+0.615j,-0.446+0.446j,...,-0.547-0.486j,0.568+0.506j,0.472+0.369j]T
步骤S6,频域偏移:将S(2)向右偏移NS(2)=16个子载波得到
步骤S7,频域-时域变换:将S'(2)通过NFFT=64点IFFT变换得到时域信号
s'(2)
[0.124+0.015j,-0.038+0.118j,-0.111-0.057j,...,-0.007+0.124j,-0.124+0.003j,-0.001-0.125j]T
步骤S8,令NCP=2,加入循环前缀得到基带发送信号
接收端:
假设信道无衰落和噪声,则接收端的频域接收信号Y=S',其中,S'表示所有用户的频域信号构成的发送端的频域信号。
步骤S9,接收端的时域-频域变换:将接收信号去除CP并通过NFFT=64点IFFT变换得到频域接收信号
步骤S10,用户分离:将频域接收信号Y进行分离得到用户2的频域接收信号
步骤S11,均衡偏移:此时信道响应那么接着将向左偏移NS(2)个子载波得到
步骤S12,获取检测结果:将步骤S11得到的通过IFFT变换到时域,再利用反正切函数进行相位解调并通过FFT变换得到最后对第i个用户的有效数据进行判决得到该用户的检测结果
本发明中的方法通过不同用户进行不同的频域偏移,来降低用户间干扰。以本实施例为例,如果在步骤S2时将不同用户映射到不同的频域,且步骤S6不进行偏移,则为传统上行CE-OFDM多址接入方法,从步骤S7能看出本发明中不同用户的直流分量被分开,同时相比传统上行CE-OFDM系统,用户间的干扰更小。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
以上所述的仅是本发明的一些实施方式。对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (1)

  1. 一种基于恒包络正交频分复用的多址接入方法,用于CE-OFDMA系统,系统中子载波数为N,总用户数为U,过采样倍数为Q,每个用户所占用的子载波数为Ni=N/U,有效子载波数Nc=Ni/2,其中i=1,2,...,U表示第i个用户,其特征在于,所述方法包括以下步骤:
    发射端:
    a1.数字调制:将第i个用户的信息比特映射为M阶QAM调制后得到调制信号表示为
    Xi=[0,Xi(1),Xi(2),...,Xi(Nc-1)]T
    a2.对称映射:将Xi按照如下共轭对称格式进行放置,得到长度为NFFT=NQ的频域符号
    其中,Nzp=N(Q-1),(·)*表示共轭,01×N表示一个一行N列的零向量;
    a3.频域-时域变换:将通过NFFT点IFFT变换生成第i个用户的时域OFDM符号第i个用户第n个采样点上的信号xi[n]表示为:
    a4.相位调制:将第i个用户的时域OFDM符号xi通过相位调制得到离散时域CE-OFDM信号第i个用户第n个采样点上的信号si[n]表示为:
    φi=2πhCNxi[n]
    其中,A为载波信号幅值,2πh为调制指数;为归一化常数因子,其中此时信号si的相位φi的方差为(2πh)2
    a5.时域-频域变换:将si通过NFFT点FFT变换生成第i个用户的频域信号第i个用户第k个子载波上的信号Si[k]表示为:
    a6.频域偏移:将Si向右偏移NSi=Ni(i-1)个子载波得到表示为
    a7.频域-时域变换:将S'i通过NFFT点IFFT变换得到时域信号第i个用户第n个采样点上的信号s'i[n]表示为:
    a8.加入循环前缀得到基带发送信号
    其中,NCP为循环前缀长度;
    接收端:
    b1.时域-频域变换:将接收信号去除CP并通过NFFT点FFT变换得到频域接收信号表示为
    Y=H1S'1+H2S'2+...+HUS'U+W
    b2.用户分离:将频域接收信号Y进行分离得到表示为:
    其中,Ki=(i-2)Ni
    b3.均衡偏移:将Yi通过均衡得到均衡符号接着同发送端操作相反,将向左偏移NSi个子载波得到表示为:
    接着通过IFFT变换到时域,再利用反正切函数进行相位解调并通过FFT变换得到最后对第i个用户的有效数据进行判决得到该用户的检测结果
PCT/CN2023/096069 2022-07-25 2023-05-24 一种恒包络正交频分复用系统多址接入方法 WO2024021814A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/517,215 US20240106685A1 (en) 2022-07-25 2023-11-22 Multiple-access constant envelope orthogonal frequency division multiplexing method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210874982.1 2022-07-25
CN202210874982.1A CN115001918B (zh) 2022-07-25 2022-07-25 一种恒包络正交频分复用系统多址接入方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/517,215 Continuation US20240106685A1 (en) 2022-07-25 2023-11-22 Multiple-access constant envelope orthogonal frequency division multiplexing method and system

Publications (1)

Publication Number Publication Date
WO2024021814A1 true WO2024021814A1 (zh) 2024-02-01

Family

ID=83021745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096069 WO2024021814A1 (zh) 2022-07-25 2023-05-24 一种恒包络正交频分复用系统多址接入方法

Country Status (3)

Country Link
US (1) US20240106685A1 (zh)
CN (1) CN115001918B (zh)
WO (1) WO2024021814A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115001918B (zh) * 2022-07-25 2023-05-26 电子科技大学 一种恒包络正交频分复用系统多址接入方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130033947A (ko) * 2011-09-27 2013-04-04 한국전자통신연구원 데이터 송수신 장치 및 방법
CN107426126A (zh) * 2017-07-28 2017-12-01 中国传媒大学 调频调制恒包络ofdm系统
CN112866838A (zh) * 2020-12-31 2021-05-28 海鹰企业集团有限责任公司 一种适用于通探一体化声纳的ce_ofdm信号设计方法
CN114157542A (zh) * 2021-11-29 2022-03-08 电子科技大学 一种基于直流分量分离的ce-ofdma系统信号收发方法
CN115001918A (zh) * 2022-07-25 2022-09-02 电子科技大学 一种恒包络正交频分复用系统多址接入方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130077714A1 (en) * 2011-09-27 2013-03-28 Electronics And Telecommunications Research Institute Apparatus and method for transmitting and receiving data
US9729378B1 (en) * 2015-04-13 2017-08-08 The United States Of America As Represented By The Secretary Of The Navy Receiver architecture for constant envelope OFDM
US9853849B1 (en) * 2016-06-22 2017-12-26 Frontier Analytics, LLC Systems and methods to produce a cyclically generated, continuous phase, frequency shift keying waveform
CN106453186B (zh) * 2016-09-23 2019-06-18 北京邮电大学 恒包络正交频分复用系统中基于空闲子载波的频偏估计及补偿方法
CN110071890B (zh) * 2019-04-24 2021-11-02 哈尔滨工业大学(深圳) 一种低峰均比fbmc-oqam信号处理方法和系统
CN113612716B (zh) * 2021-08-09 2022-06-07 电子科技大学 基于恒定包络正交频分复用的多用户通信雷达一体化系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130033947A (ko) * 2011-09-27 2013-04-04 한국전자통신연구원 데이터 송수신 장치 및 방법
CN107426126A (zh) * 2017-07-28 2017-12-01 中国传媒大学 调频调制恒包络ofdm系统
CN112866838A (zh) * 2020-12-31 2021-05-28 海鹰企业集团有限责任公司 一种适用于通探一体化声纳的ce_ofdm信号设计方法
CN114157542A (zh) * 2021-11-29 2022-03-08 电子科技大学 一种基于直流分量分离的ce-ofdma系统信号收发方法
CN115001918A (zh) * 2022-07-25 2022-09-02 电子科技大学 一种恒包络正交频分复用系统多址接入方法

Also Published As

Publication number Publication date
CN115001918A (zh) 2022-09-02
CN115001918B (zh) 2023-05-26
US20240106685A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
US6654431B1 (en) Multicarrier personal access communication system
JP2014526201A (ja) フィルタバンク・マルチキャリア・システムにおいてpaprを低減させるための方法および装置
KR20000053406A (ko) 전송 방법에 기초하여 오에프디엠을 이용한 동기 심벌 구조
CN109688082B (zh) 一种基于ofdm载波联合优化的通信雷达一体化系统
WO2024021814A1 (zh) 一种恒包络正交频分复用系统多址接入方法
EP1276288A1 (en) Reference symbols for channel estimation with multicarrier transmission
US10212014B2 (en) Communication with I-Q decoupled OFDM modulation
CN110071890B (zh) 一种低峰均比fbmc-oqam信号处理方法和系统
Shi et al. A novel ICI self-cancellation scheme for OFDM systems
Patel et al. A comparative performance analysis of OFDM using MATLAB simulation with M-PSK and M-QAM mapping
CN112702298A (zh) 一种扩展混合载波预编码的ofdm信号传输方法
WO2011015119A1 (zh) 一种带外功率抑制方法及装置
Yadav Pulse Based GFDM Modulation Technique for Future Generation Communication Systems
Rony et al. Performance analysis of OFDM signal using BPSK and QPSK modulation techniques
CN101783782B (zh) 一种自动适应信道特性变化的上行多址接入方法
CN107204953B (zh) 一种cp-fbmc通信系统中的盲频偏估计方法
CN109412995B (zh) 基于可变子载波带宽的多流准恒包络多载波传输方法
CN108234368A (zh) 一种高谱效安全截短正交频分复用传输方法
CN109861938A (zh) 高数据传输效率的抑制信号中相位旋转误差的方法
Akila et al. Performance analysis of filter bank multicarrier system for 5G networks
Haripriya et al. Analysis of carrier frequency offset in WFRFT-OFDM systems using MLE
Arora et al. Analysis of ICI Self Cancellation Techniques Used In Wireless Lan Systems
Dumari et al. Research Article BER and PSD Improvement of FBMC with Higher Order QAM Using Hermite Filter for 5G Wireless Communication and beyond
Shaheen et al. Capacity of FBMC/OQAM Transceiver System with SRRC Filter and Intrinsic Interference for 5G Wireless Communication System
WO2018227326A1 (zh) 多载波调制解调方法、装置以及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845028

Country of ref document: EP

Kind code of ref document: A1