WO2024021722A1 - 具有不同工作流体两相流循环的均热板 - Google Patents

具有不同工作流体两相流循环的均热板 Download PDF

Info

Publication number
WO2024021722A1
WO2024021722A1 PCT/CN2023/091434 CN2023091434W WO2024021722A1 WO 2024021722 A1 WO2024021722 A1 WO 2024021722A1 CN 2023091434 W CN2023091434 W CN 2023091434W WO 2024021722 A1 WO2024021722 A1 WO 2024021722A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase flow
flow circulation
groove
vapor chamber
different working
Prior art date
Application number
PCT/CN2023/091434
Other languages
English (en)
French (fr)
Inventor
陈振贤
Original Assignee
广州力及热管理科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州力及热管理科技有限公司 filed Critical 广州力及热管理科技有限公司
Publication of WO2024021722A1 publication Critical patent/WO2024021722A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a vapor chamber with two-phase flow circulation of different working fluids.
  • it refers to a vapor chamber that can be applied to efficient work in an environment with a temperature zone above zero degrees Celsius and a temperature zone below zero degrees Celsius at the same time, and solves multiple problems.
  • the problem of uneven temperature distribution caused by the arrangement and combination of heating electronic products reduces the temperature difference between electronic products.
  • two-phase flow circulation is used as a vapor chamber vapor chamber for heat conduction.
  • water H2O
  • the latent heat of vaporization of water is 1718K/kg Joule.
  • water as the working fluid in the two-phase flow circulation of the vapor chamber can maximize the function of the vapor chamber.
  • the vapor chamber usually needs to use a fluid with a lower melting point as the working fluid for two-phase flow circulation, so that its two-phase flow circulation function can cover this low temperature zone.
  • the latent heat of vaporization of working fluids with extremely low melting points is much lower than that of water. Therefore, even if the two-phase flow circulation function still exists in the temperature zone above 0 degrees Celsius, the vapor pressure of the gaseous working fluid is very large, and the vapor pressure of the vapor chamber is Performance drops sharply.
  • the application scenarios of general electronic products, such as battery cells, in high-temperature areas require that the two-phase flow circulation of the vapor chamber can exhibit greater heat dissipation and heat conduction effects to prevent the battery core from overheating.
  • the object of the present invention is to provide a vapor chamber with two-phase flow circulation of different working fluids, which can effectively overcome the shortcomings of the prior art, so that the same vapor chamber can be
  • the working temperature of the two-phase flow cycle can span the temperature zone above zero degrees Celsius and the temperature zone below zero degrees Celsius. At the same time, it can also have better heat conduction effect in the high temperature zone above zero degrees Celsius to solve the two problems of a single working fluid in the previous technology.
  • the ambient operating temperature range of a phase flow circulation vapor chamber greatly exceeds the melting point of water at zero degrees Celsius, there is a problem of vapor chamber failure or a sudden decrease in temperature equalization efficiency.
  • the present invention discloses a vapor chamber with two-phase flow circulation of different working fluids, which is characterized by including:
  • a flat plate has a first groove and a second groove, the first groove is used to accommodate a first two-phase flow circulation cavity, and the second groove is used to accommodate a second two-phase flow circulation cavity. flow circulation cavity;
  • a first capillary structure disposed in the first two-phase flow circulation cavity
  • a second capillary structure disposed in the second two-phase flow circulation cavity
  • a first working fluid is provided in the first two-phase flow circulation cavity
  • a second working fluid is provided in the second two-phase flow circulation cavity
  • the first working fluid is water
  • the working temperature range of the first working fluid two-phase flow cycle is greater than zero degrees Celsius
  • the working temperature range of the second working fluid two-phase flow cycle includes a temperature zone less than zero degrees Celsius
  • the The first two-phase flow circulation cavity and the second two-phase flow circulation cavity are arranged adjacently.
  • the second working fluid is one of acetone, ethanol, tetrafluoroethane and hydrofluorocarbon chemical refrigerants.
  • the cross-sectional dimensions of the first two-phase flow circulation cavity and the second two-phase flow circulation cavity are inconsistent.
  • N first trenches and N first two-phase flow circulation cavities that accommodate them
  • M second trenches and M second two-phase flow chambers that accommodate them.
  • Circulation chambers, N first two-phase flow circulation chambers and M second two-phase flow circulation chambers are staggered with each other, where N and M are natural numbers greater than or equal to 2 respectively.
  • the staggered arrangement is 2 of the first two-phase flow circulation chambers and 1 of the second two-phase flow circulation chambers arranged periodically in sequence, or 1 of the first two-phase flow circulation chambers and 2 of the second two-phase flow circulation chambers.
  • the second two-phase flow circulation cavity is arranged periodically in sequence.
  • N first heat pipes are respectively disposed in the N first grooves and include the first two-phase flow circulation cavity
  • M The second heat pipes are respectively disposed in M second grooves and include the second two-phase flow circulation cavity
  • the material of the first heat pipe is one of copper and copper-aluminum composite materials
  • the third The material of the second heat pipe is aluminum.
  • the second two-phase flow circulation cavity is a plurality of independent two-phase flow circulation sub-cavities.
  • the first capillary structure and the second capillary structure are formed by one of metal powder sintering type, metal mesh type, micro-groove type and slurry printing sintering type.
  • the flat plate includes an upper flat plate and a lower flat plate and is formed by welding the upper flat plate and the lower flat plate.
  • the upper flat plate and the lower flat plate respectively include a first groove and a second groove that match and correspond to each other. grooves to respectively form the first groove and the second groove, or the lower plate includes the first groove and the second groove to form the first groove and the second groove.
  • the cross-sectional shape of the first groove and the cross-sectional shape of the second groove are at least one of square, rectangular, semicircular, circular and trapezoid respectively.
  • the vapor chamber with two-phase flow circulation of different working fluids of the present invention can control the two-phase flow circulation when the temperature is too low by using the working fluid with better performance to dominate the two-phase flow circulation in different working temperature ranges.
  • Two-phase flow circulation can be carried out more effectively when the temperature is too high to avoid the inability of the vapor chamber to operate in electronic product applications at high latitudes or where the ambient temperature is too low, as well as soaking in high temperature scenarios The problem of poor board performance.
  • the vapor chamber of the present invention with two-phase flow circulation of different working fluids can be arranged in different arrangements according to the design and position of the product to improve heat conduction and temperature equalization efficiency.
  • the vapor chamber with two-phase flow circulation of different working fluids of the present invention uses two different working fluids so that the vapor chamber first runs the two-phase flow circulation with the second working fluid with a lower melting point when the temperature is lower than a specific temperature. , and when the temperature is higher than a specific temperature, the first working fluid and the second working fluid can run at the same time and the first working fluid dominates the two-phase flow cycle, thereby improving the heat conduction and temperature equalization efficiency of the vapor chamber.
  • FIG. 1 is a schematic diagram of a vapor chamber with two-phase flow circulation of different working fluids in an embodiment of the present invention.
  • FIG. 2A is a schematic diagram of a vapor chamber with two-phase flow circulation of different working fluids according to FIG. 1 from another perspective.
  • FIG. 2B is a schematic structural cross-sectional view of a vapor chamber with two-phase flow circulation of different working fluids along line segment A-A in FIG. 2A.
  • Figure 2C is a partial enlarged view of a vapor chamber with two-phase flow circulation of different working fluids according to Figure 2B.
  • FIG. 3A is a schematic cross-sectional structural view of a vapor chamber with two-phase flow circulation of different working fluids in a specific embodiment of the present invention.
  • 3B is a schematic cross-sectional structural view of a vapor chamber with two-phase flow circulation of different working fluids in a specific embodiment of the present invention.
  • 4A to 4C are schematic cross-sectional views of the first trench and the second trench in various embodiments of the present invention.
  • FIG. 5A is a schematic diagram of a vapor chamber with two-phase flow circulation of different working fluids in an embodiment of the present invention.
  • FIG. 5B is a schematic structural cross-sectional view of a vapor chamber with two-phase flow circulation of different working fluids along line segment B-B in FIG. 5A.
  • FIG. 5C is a schematic cross-sectional view of the structure of a vapor chamber with two-phase flow circulation of different working fluids along line segment C-C in FIG. 5A .
  • FIG. 6 is a schematic diagram of a vapor chamber with two-phase flow circulation of different working fluids in an embodiment of the present invention.
  • FIG. 7 is a partial cross-sectional view of a vapor chamber with two-phase flow circulation of different working fluids according to FIG. 6 .
  • FIG. 8 is a partial cross-sectional view of a vapor chamber with two-phase flow circulation of different working fluids in an embodiment of the present invention.
  • Figure 1 is a schematic diagram of a vapor chamber 1 with two-phase flow circulation of different working fluids in a specific embodiment of the present invention.
  • FIG. 2A is a schematic diagram of the vapor chamber 1 with two-phase flow circulation of different working fluids according to FIG. 1 from another perspective.
  • FIG. 2B is a schematic structural cross-sectional view of the vapor chamber 1 with two-phase flow circulation of different working fluids along line segment A-A in FIG. 2A.
  • Figure 2C is a partial enlarged view of the vapor chamber 1 with two-phase flow circulation of different working fluids according to Figure 2B.
  • the vapor chamber 1 for two-phase flow circulation of different working fluids includes a flat plate 10 and a plurality of two-phase flow circulation cavities 110 .
  • the plate 10 includes a plurality of grooves, and the two-phase flow circulation chambers 110 are respectively accommodated in the grooves.
  • the flat plate 10 has a first plane 100 , and a plurality of grooves 101 are recessed inwardly from the first plane 100 .
  • the plurality of trenches 101 are arranged in parallel along the same direction and include N first trenches 101A and M second trenches 101B.
  • the plurality of two-phase flow circulation cavities 110 include N first two-phase flow circulation cavities 110A and M second two-phase flow circulation cavities 110B, and the first two-phase flow circulation cavities 110A are respectively provided at in the first trench 101A, and the second two-phase flow circulation chambers 110B are respectively disposed in the second trench 101B.
  • the groove 101 of the flat plate 10 can be formed after processing, and the two-phase flow circulation cavity 110 is accommodated behind the groove 101.
  • the shape of the two-phase flow circulation cavity 11 can correspond to the shape of the groove 101.
  • the number of the first trench 101A and the second trench 101B is not limited to the number in the figure. In practice, the number of the first trench 101A and the second trench 101B can be determined according to the design, and the above N and M can also be natural numbers greater than or equal to 2 respectively.
  • the dimensions (ie, length, width and depth) of the first trench 101A, the second trench 101B, the first two-phase flow circulation cavity 110A and the second two-phase flow circulation cavity 110B in the figure are the same,
  • the cross-sectional dimensions of the first groove 101A, the second groove 101B, the first two-phase flow circulation chamber 110A and the second two-phase flow circulation chamber 110B may also be inconsistent, and the grooves of the vapor chamber and The corresponding two-phase flow circulation cavity can be determined according to the size, design or needs of the vapor chamber.
  • the vapor chamber 1 for two-phase flow circulation of different working fluids includes a plurality of heat pipes 11 , and each heat pipe 11 includes a two-phase flow circulation cavity 110 .
  • the plurality of heat pipes 11 include N first The heat pipe 11A and the M second heat pipes 11B, that is, the first heat pipe 11A includes the first two-phase flow circulation cavity 110A, and the second heat pipe 11B includes the second two-phase flow circulation cavity 110B.
  • the first heat pipes 11A are respectively disposed in the first grooves 101A
  • the second heat pipes 11B are respectively disposed in the second grooves 101B. Because the heat pipe 11 is a hollow tube and can be shaped.
  • the flat plate 10 can pressurize or grind the first plane 100 so that the heat pipe 11 and the first plane 100 form a flat surface, and the shape of the heat pipe 11 can follow the shape of the heat pipe 11.
  • the shape of the groove 101 is deformed and embedded in the groove 101 .
  • the first plane 100 of the flat plate 105 can contact the heating element, and the evaporation area of the heat pipe 11 can be disposed at the heat source.
  • the first heat pipe 11A includes a first two-phase flow circulation cavity 110A, a first capillary structure 111A and a first working fluid 112A
  • the second heat pipe 11B includes a second two-phase flow circulation cavity 110B.
  • the second capillary structure 111B and the second working fluid 112B may be copper or copper-aluminum composite material
  • the material of the second heat pipe 11B may be aluminum
  • the first heat pipe 11A and the second heat pipe 11B include tube walls.
  • the tube walls of the first heat pipe 11A and the second heat pipe 11B will be close to the first groove respectively.
  • the first two-phase flow circulation cavity 110A of the first heat pipe 11A is accommodated in the first groove 101A
  • the second two-phase flow circulation cavity 110B of the second heat pipe 11B is accommodated in the second groove. in slot 101B.
  • the first capillary structure 111A and the second capillary structure 111B can be formed on the inner walls of the first heat pipe 11A and the second heat pipe 11B respectively by metal powder sintering, metal mesh, micro-groove or slurry printing and sintering.
  • the capillary structure can first be formed on the inner surface of the plate, and then the plate is processed to form a tubular structure. Then, the working fluid is injected into the tubular structure and evacuated, and then both ends of the tubular structure are sealed to form a heat pipe.
  • the material, manufacturing process, distribution and thickness of the first capillary structure 111A and the second capillary structure 111B may be the same, but are not limited thereto.
  • the first capillary structure 111A and the second capillary structure 111B may also be formed according to the first capillary structure 111B. It is designed based on the characteristics of the working fluid 112A and the second working fluid 112B.
  • the first working fluid 112A is water (H 2 O), and the working temperature range is greater than zero degrees Celsius.
  • the working temperature range of the second working fluid 112B includes less than zero degrees Celsius. That is to say, the working temperature range of the second working fluid 112B can Covers low temperature areas below zero degrees Celsius.
  • the second working fluid 112B may be acetone, ammonia, methanol, ethanol, tetrafluoroethane, hydrofluorocarbon chemical refrigerants, etc.
  • the vapor chamber 1 for two-phase flow circulation of different working fluids of the present invention can circulate the liquid phase and the gas phase in a working environment below 0°C through the second two-phase flow circulation cavity 110B until the working temperature is greater than 0°C. °C, the liquid phase and gas phase circulation of the first two-phase flow circulation chamber 110A is started. It is worth noting that two different patterns represent different working fluids in the diagram.
  • N first heat pipes 11A and M second heat pipes 11B are arranged staggered with each other in sequence, and the first heat pipes 11A and the second heat pipes 11B are The distance between them is smaller than the respective widths of the first heat pipe 11A and the second heat pipe 11B.
  • the first heat pipe 11A and the second The heat pipe 11B can be regarded as a group of coordinated two-phase flow circulation units in the vapor chamber.
  • the first working fluid 11A i.e., water
  • the second working fluid 11B in 11B is still in liquid phase.
  • the liquid-phase second working fluid 11B located in the second capillary structure 111B in the evaporation zone will first transform into a gas-phase working fluid, release latent heat and move towards the condensation zone. Fast-moving. That is to say, the second heat pipe 11B will conduct heat energy from the evaporation zone to the condensation zone.
  • the first heat pipe 11A adjacent to the second heat pipe 11B will receive the thermal energy of the second heat pipe 11B to melt the solid phase first working fluid 11A into a liquid phase, so that the first heat pipe
  • the two-phase flow cycle in 11A works.
  • the two-phase flow circulation in the first heat pipe 11A and the two-phase flow circulation in the second heat pipe 11B can operate simultaneously to improve the efficiency of heat transfer.
  • the two-phase flow circulation efficiency in the first heat pipe 11A becomes better, while the two-phase flow circulation efficiency in the second heat pipe 11B becomes worse.
  • the two-phase flow circulation efficiencies of two adjacent two-phase flow circulation cavities at different operating temperatures compensate for each other, so that the vapor chamber can still maintain a certain heat conduction and heat equalization function to avoid electronic products that come into contact with the heat source. Distributed temperature produces excessive temperature differences. Therefore, the vapor chamber with two-phase flow circulation of different working fluids of the present invention can achieve heat conduction and heat equalization when the temperature is too low through working fluids in different working temperature ranges, and can also effectively conduct heat when the temperature is too high. Conduct heat conduction and heat equalization.
  • Figure 3A is a schematic cross-sectional structural view of a vapor chamber 1' with two-phase flow circulation of different working fluids in a specific embodiment of the present invention.
  • Figure 3B is a schematic structural cross-sectional view of a vapor chamber 1" with two-phase flow circulation of different working fluids in a specific embodiment of the present invention.
  • a vapor chamber 1 with two-phase flow circulation of different working fluids The arrangement of the heat pipes in ' is that two first heat pipes 11A and one second heat pipe 11B are arranged periodically in sequence. That is to say, the vapor chamber 1' with two-phase flow circulation of different working fluids is 2 A first two-phase flow circulation cavity and a second two-phase flow circulation cavity are arranged periodically in sequence.
  • the heat pipe in the vapor chamber 1" with two-phase flow circulation of different working fluids The arrangement is that one first heat pipe 11A and two second heat pipes 11B are arranged periodically in sequence. That is to say, the vapor chamber 1" with two-phase flow circulation of different working fluids is a first two-phase flow.
  • the circulation cavity and the two second two-phase flow circulation cavities are arranged periodically in sequence. Since the first heat pipe 11A and the second heat pipe 11B have different heat removal powers, the two with smaller heat removal power need to be arranged side by side for matching. The purpose of deheating power is to enhance the temperature equalization capability at different operating temperatures. Therefore, the vapor chamber with two-phase flow circulation of different working fluids of the present invention can adjust the first heat pipe and the heat pipe according to different functional requirements.
  • the arrangement of the second heat pipes is to improve the overall heat conduction and temperature equalization efficiency of the vapor chamber at different operating temperatures. It is worth noting that the arrangement of the heat pipes in the vapor chamber is not limited to the above arrangement. Can be decided according to needs.
  • the cross-sectional shape of the grooves of the vapor chamber with two-phase flow circulation of different working fluids of the present invention may be in other shapes in addition to the shapes in the foregoing specific embodiments.
  • FIG. 4A to 4C are schematic cross-sectional views of the first trench and the second trench in various embodiments of the present invention.
  • the cross-sectional shapes of the first groove and the second groove are square.
  • the cross-sectional shapes of the first trench 101A' and the second trench 101B' may also be a trapezoid as shown in FIG. 4A.
  • the cross-sectional shape of the first trench 101A′′ and the second trench 101B′′ may be a rectangle as shown in FIG. 4B.
  • the cross-sectional shapes of the first groove 101A"' and the second groove 101B"' may be semicircular as shown in FIG. 4C.
  • the cross-sectional shapes of the first groove and the second groove are not limited to this, and may also be determined according to the size or installation space of the vapor chamber.
  • FIG. 5A is a schematic diagram of a vapor chamber 2 with two-phase flow circulation of different working fluids in a specific embodiment of the present invention.
  • FIG. 5B is a schematic cross-sectional view of the structure of the vapor chamber 2 with two-phase flow circulation of different working fluids along line segment B-B in FIG. 5A.
  • FIG. 5C is a schematic cross-sectional view of the structure of the vapor chamber 2 with two-phase flow circulation of different working fluids along line segment C-C in FIG. 5A.
  • the vapor chamber 2 with two-phase flow circulation of different working fluids includes two rows of grooves 201 , and the cross-sectional shapes of the grooves 201 in each row are different (No. One column is a rectangle and the second column is a semicircle).
  • the length, number and arrangement of the trenches 201 in each row may be the same or different. Therefore, the vapor chamber 2 with two-phase flow circulation of different working fluids of the present invention can be arranged in different arrangements according to the design and position of the product to improve heat conduction and heat soaking efficiency.
  • the second two-phase flow circulation cavity is a plurality of independent two-phase flow circulation sub-cavities.
  • the vapor chamber may include a plurality of independent second heat pipes disposed in the second trench.
  • the second two-phase flow circulation cavity may include multiple independent two-phase flow circulation sub-cavities.
  • FIG. 6 is a schematic diagram of a vapor chamber 3 with two-phase flow circulation of different working fluids in a specific embodiment of the present invention.
  • FIG. 7 is a partial cross-sectional view of the vapor chamber 3 with two-phase flow circulation of different working fluids according to FIG. 6 .
  • Figures 6 and 7 show another form of the vapor chamber 3 of the present invention in which different working fluids are circulated in two-phase flow.
  • the flat plate 30 of the vapor chamber 3 with two-phase flow circulation of different working fluids includes an upper flat plate 30A and a lower flat plate 30B, and the flat plate 30 is an upper flat plate 30A and a lower flat plate 30B. Made by welding.
  • the upper plate 30A and the lower plate 30B respectively include matching and corresponding first grooves and second grooves to form first grooves 301A and second grooves 301B respectively.
  • the first groove 301A forms a first two-phase flow circulation cavity 310A
  • the second groove 301B forms a second two-phase flow circulation cavity 310B.
  • the first capillary structure 31A and the first working fluid 32A are disposed in the first two-phase flow circulation cavity 310A
  • the second capillary structure 31B and the second working fluid 32B are disposed in the second two-phase flow circulation cavity 310B. middle.
  • the upper plate 30A and the lower plate 30B can be processed to form a plurality of matching and corresponding grooves. Then, the first capillary structure 31A and the second capillary structure 31B can be respectively formed on the inner walls of the first groove of the upper plate 30A and the second groove of the lower plate 30B in the aforementioned manner. Then, the first working fluid 32A and the second working fluid 32B are respectively injected into the first groove and the second groove, and then the upper plate 30A and the lower plate 30B are combined with each other. When the upper plate 30A and the lower plate 30B are combined, the inner walls of the upper plate 30A and the lower plate 30B directly form a closed two-phase flow circulation cavity. At this time, the grooves formed by each groove have the heat conduction function of the heat pipe. .
  • the upper flat plate 31A and the upper plate 30B can be fixed to each other by welding, welding or other methods.
  • the inner walls of the upper plate 30A and the lower plate 30B directly form a closed two-phase flow circulation cavity and can be regarded as the tube walls of the heat pipe, when the upper plate 3 of the present invention uses two-phase flow circulation of different working fluids,
  • the first working fluid 32A and the second working fluid 32B located in the first two-phase flow circulation cavity 310A and the second two-phase flow circulation cavity 310B can receive the heat generated by the heating element. operates by the heat source emitted.
  • the materials, processes and functions of the first capillary structure, the second capillary structure, the first working fluid and the second working fluid in this specific embodiment are the same as the corresponding components in the previous specific implementation, and will not be described again.
  • FIG. 8 is a partial cross-sectional view of the vapor chamber 4 with two-phase flow circulation of different working fluids in a specific embodiment of the present invention.
  • the difference between this specific embodiment and the previous specific embodiments is that the upper flat plate 40A of the vapor chamber 4 of this specific embodiment has no grooves, while the lower flat plate 40B has a first groove 401A and First trench 401B.
  • the lower plate 40B may first be processed to form a plurality of first grooves 401A and 401B.
  • the first capillary structure 41A and the second capillary structure 41B can be formed on the inner walls of the first groove 401A and the first groove 401B of the lower plate 40B respectively in the aforementioned manner. Then, the upper plate 40A and the lower plate 40B are combined and welded to each other, and then the first working fluid and the second working fluid are injected into the first groove and the second groove respectively. When the upper flat plate 40A and the lower flat plate 40B are combined and welded, the inner walls of the upper flat plate 40A and the lower flat plate 40B directly form a closed two-phase flow circulation cavity.
  • the vapor chamber with two-phase flow circulation of different working fluids of the present invention can conduct heat when the temperature is too low and can effectively conduct heat when the temperature is too high through working fluids in different working temperature ranges. By conducting heat conduction, it can work normally in high and low temperature scenarios where the ambient temperature exceeds zero degrees Celsius, thus improving the practicality of the vapor chamber.
  • the vapor chamber with two-phase flow circulation of different working fluids of the present invention can plan different two-phase flow circulation cavity arrangements according to the design and position of the heat source product to improve heat conduction and temperature equalization efficiency.
  • the vapor chamber of the present invention with two-phase flow circulation of different working fluids uses two different working fluids and a two-phase flow circulation cavity to enable the vapor chamber to first operate with the second working fluid when the temperature is lower than a specific temperature. And when the temperature is higher than a specific temperature, the first working fluid and the second working fluid can run at the same time, thereby improving the heat conduction and temperature equalization efficiency of the vapor chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明提供一种具有不同工作流体两相流循环的均热板,包含平行交错排列的第一沟槽及第二沟槽,并且第一沟槽及第二沟槽分别容置第一两相流循环腔体及第二两相流循环腔体。第一毛细结构及第一工作流体设置于第一两相流循环腔体中,第二毛细结构及第二工作流体设置于第二两相流循环腔体中。其中,第一工作流体的两相流循环工作温度范围大于摄氏零度,第二工作流体的两相流循环工作温度范围可盖低于摄氏零度的温区。本发明透过一个均热板内具有二种不同工作流体两相流循环在不同温度下协同运作,使得该均热板可以同时适用于摄氏零度以上的高温区以及摄氏零度以下的低温工作,解决多个发热的电子产品因排列组合在一起所造成的温度不均匀分布问题,降低各电子产品之间的温度差异。

Description

具有不同工作流体两相流循环的均热板 技术领域
本发明系关于一种具有不同工作流体两相流循环的均热板,尤其是指一种可以同时适用于摄氏零度以上温区以及摄氏零度以下温区的环境下有效率的工作,解决多个发热的电子产品因排列组合在一起所造成的温度不均匀分布问题,降低各电子产品之间的温度差异。
背景技术
一般是以两相流循环做为热传导的蒸气腔均温板,当工作温度范围的要求是介于摄氏0度与100度之间时,大都选择以水(H2O)做为两相流循环的工作流体。水的汽化潜热为1718K/kg焦耳,在此温度区间时,水做为均温板两相流循环的工作流体可以将均温板的功能发挥最大的效益。但由于在温度低于摄氏零度以下的低温的工作环境下毛细结构中的水会结冰,导致液相工作流体及气相工作流体的两相流循环无法在均温板内完成而导致均温板两相流循环功能失效。因此,在摄氏0度以下的低温工作环境下,均温板通常需选用熔点较低的流体来做为两相流循环的工作流体,使其两相流循环的功能能够覆盖此低温区。
一般极低熔点的工作流体的汽化潜热皆远比水低许多,因此在摄氏0度以上的温区即使两相流循环的功能仍存在,但是气态工作流体的蒸气压非常大,均温板的效能则骤减。然而,一般电子产品,例如电池芯,在高温区的应用场景更需要均温板的两相流循环能够展现出较大的解热及热传导功效,来防止电池芯过热现象。因此,对于一些针对均热及导热需求需要跨越摄氏零度以上温区以及摄氏零度以下温区的电子产品而言,在现有的技术中,以上两种不同工作流体的均温板皆无法两全其美,并且皆难满足实际应用场景上的需求。
发明内容
有鉴于此,为了解决以上所述的问题,本发明的目的在于提供一种具有不同工作流体两相流循环的均热板,其能有效克服现有技术的缺陷,使得在同一片均热板的两相流循环的工作温度可以跨越摄氏零度以上温区以及摄氏零度以下温区的同时,在摄氏零度以上的高温区亦能有较好的热传导功效,以解决先前技术的单一工作流体的两相流循环均热板在环境操作温度范围大幅跨越水的熔点摄氏零度所存在的均热板失效或均温效率骤减的问题。
为实现上述目的,本发明公开了一种具有不同工作流体两相流循环的均热板,其特征在于包含:
一平板,具有一第一沟槽和一第二沟槽,该第一沟槽用以容置一第一两相流循环腔体,并且该第二沟槽用以容置一第二两相流循环腔体;
一第一毛细结构,设置于该第一两相流循环腔体内;
一第二毛细结构,设置于该第二两相流循环腔体内;
一第一工作流体,设置于该第一两相流循环腔体中;以及
一第二工作流体,设置于该第二两相流循环腔体中;
其中,该第一工作流体为水,该第一工作流体两相流循环的工作温度范围大于摄氏零度,该第二工作流体两相流循环的工作温度范围包含小于摄氏零度的温区,并且该第一两相流循环腔体以及该第二两相流循环腔体相邻排列。
其中,该第二工作流体为丙酮、乙醇、四氟乙烷及氢氟烃类化学制冷剂的其中之一。
其中,该第一两相流循环腔体与该第二两相流循环腔体的截面尺寸不一致。
其中,进一步包含有N个该第一沟槽及其容置的N个该第一两相流循环腔体、以及M个该第二沟槽及其容置的M个该第二两相流循环腔体,N个该第一两相流循环腔体以及M个该第二两相流循环腔体互相交错排列,其中N和M分别为大于等于2的自然数。
其中,交错排列为2个该第一两相流循环腔体及1个该第二两相流循环腔体依序周期性排列,或1个该第一两相流循环腔体及2个该第二两相流循环腔体依序周期性排列。
其中,进一步包含N个第一热导管以及M个第二热导管,N个该第一热导管分别设置于该N个该第一沟槽并且包含该第一两相流循环腔体,M个该第二热导管分别设置于M个该第二沟槽并且包含该第二两相流循环腔体,其中该第一热导管的材料为铜及铜铝复合材料的其中之一,并且该第二热导管的材料为铝。
其中,该第二两相流循环腔体为多个独立的两相流循环子腔体。
其中,该第一毛细结构及该第二毛细结构由金属粉末烧结式、金属网式、微沟槽式及浆料印刷烧结式的其中之一形成。
其中,该平板包含一上平板以及一下平板并且透过焊合该上平板及该下平板而形成,该上平板及该下平板分别包含互相匹配且对应的一第一凹槽以及一第二凹槽以分别形成该第一沟槽和该第二沟槽,或该下平板包含该第一凹槽以及该第二凹槽以形成该第一沟槽和该第二沟槽。
其中,该第一沟槽的截面形状以及该第二沟槽的截面形状分别为方形、长方形、半圆形、圆形及梯形的至少之一。
综上所述,本发明的具有不同工作流体两相流循环的均热板透过在不同工作温度范围由性能较佳的工作流体来主导两相流循环,可达到在温度过低时可进行两相流循环且在温度过高时也可更有效地进行两相流循环,以避免在高纬度或环境温度过低的电子产品应用场景下均热板无法运作,以及在高温场景下均热板性能不彰的问题。并且,本发明的具有不同工作流体两相流循环的均热板可根据产品的设计及位置规划不同的排列,以提高导热及均温效率。此外,本发明的具有不同工作流体两相流循环的均热板透过二种不同的工作流体使得均热板在低于特定温度时先以熔点较低的第二工作流体运行两相流循环,并且在高于特定温度时,第一工作流体及第二工作流体可同时运行并由第一工作流体主导两相流循环,进而提高均热板的导热均温效率。
附图说明
图1系绘示本发明一具体实施例中具有不同工作流体两相流循环的均热板的示意图。
图2A系根据图1的具有不同工作流体两相流循环的均热板于另一视角的示意图。
图2B系根据图2A中沿着线段A-A的具有不同工作流体两相流循环的均热板的结构剖面示意图。
图2C系根据图2B中具有不同工作流体两相流循环的均热板的局部放大图。
图3A系绘示本发明一具体实施例中具有不同工作流体两相流循环的均热板的结构剖面示意图。
图3B系绘示本发明一具体实施例中具有不同工作流体两相流循环的均热板的结构剖面示意图。
图4A至图4C系绘示本发明多具体实施例中第一沟槽及第二沟槽的剖面示意图。
图5A系绘示本发明一具体实施例中具有不同工作流体两相流循环的均热板的示意图。
图5B系绘示图5A中沿着线段B-B的具有不同工作流体两相流循环的均热板的结构剖面示意图。
图5C系绘示图5A中沿着线段C-C的具有不同工作流体两相流循环的均热板的结构剖面示意图。
图6系绘示本发明一具体实施例中具有不同工作流体两相流循环的均热板的示意图。
图7系根据图6的具有不同工作流体两相流循环的均热板的局部剖面图。
图8系绘示本发明一具体实施例中具有不同工作流体两相流循环的均热板的局部剖面图。
具体实施方式
为了让本发明的优点,精神与特征可以更容易且明确地了解,后续将以具体实施例并参照所附图式进行详述与讨论。需注意的是,这些具体实施例仅为本发明代表性的具体实施例,其中所举例的特定方法、装置、条件、材质等并非用以限定本发明或对应的具体实施例。又,图中各元件仅系用于表达其相对位置且未按其实际比例绘述,本发明的步骤编号仅为区隔不同步骤,并非代表其步骤顺序,合先叙明。
请一并参阅图1、图2A、图2B及图2C。图1系绘示本发明一具体实施例中具有不同工作流体两相流循环的均热板1的示意图。图2A系根据图1的具有不同工作流体两相流循环的均热板1于另一视角的示意图。图2B系根据图2A中沿着线段A-A的具有不同工作流体两相流循环的均热板1的结构剖面示意图。图2C系根据图2B中具有不同工作流体两相流循环的均热板1的局部放大图。图1、图2A至图2C为本发明的不同工作流体两相流循环的均热板1的一种样态。如图1所示,在具体实施例中,不同工作流体两相流循环的均热板1包含平板10以及多个两相流循环腔体110。平板10包含多个沟槽,并且两相流循环腔体110分别容置于沟槽中。
如图1、图2A至图2C所示,在本具体实施例中,平板10具有第一平面100,并且多个沟槽101自第一平面100向内凹陷。多个沟槽101沿着相同的方向平行排列并且包含N个第一沟槽101A以及M个第二沟槽101B。进一步地,多个两相流循环腔体110包含N个第一两相流循环腔体110A以及M个第二两相流循环腔体110B,而第一两相流循环腔体110A分别设置于第一沟槽101A中,并且第二两相流循环腔体110B分别设置于第二沟槽101B中。于实务中,平板10的沟槽101可经加工后形成,并且两相流循环腔体110容置于沟槽101后,两相流循环腔体11的形状可对应沟槽101的形状。值得注意的是,第一沟槽101A以及第二沟槽101B的数量不限于图中的数量,于实务中,第一沟槽101A以及第二沟槽101B的数量可根据设计而决定,并且上述的N和M也可分别为大于等于2自然数。进一步地,图中的第一沟槽101A、第二沟槽101B、第一两相流循环腔体110A以及第二两相流循环腔体110B的尺寸(即长度、宽度及深度)为相同,于实务中,第一沟槽101A、第二沟槽101B、第一两相流循环腔体110A以及第二两相流循环腔体110B的截面尺寸也可不一致,并且均热板的沟槽以及相对应的两相流循环腔体可根据均热板的尺寸、设计或需求而决定。
在具体实施例中,不同工作流体两相流循环的均热板1包含多个热导管11,并且每个热导管11包含两相流循环腔体110。进一步地,多个热导管11包含N个第一 热导管11A以及M个第二热导管11B,也就是说,第一热导管11A包含第一两相流循环腔体110A,并且第二热导管11B包含第二两相流循环腔体110B。而第一热导管11A分别设置于第一沟槽101A中,并且第二热导管11B分别设置于第二沟槽101B中。由于热导管11系为中空管并且可塑形。因此,当热导管11设置于沟槽101后,平板10可加压或磨平第一平面100,以使热导管11与第一平面100形成平整面,并且使热导管11的形状可随着沟槽101的形状变形且嵌入于沟槽101中。实际应用中,平板105的第一平面100可接触发热元件,并且热导管11的蒸发区可以设置于热源处。
在本具体实施例中,第一热导管11A包含第一两相流循环腔体110A、第一毛细结构111A以及第一工作流体112A,第二热导管11B包含第二两相流循环腔体110B、第二毛细结构111B以及第二工作流体112B。于实务中,第一热导管11A的材料可为铜或铜铝复合材料,第二热导管11B的材料则为铝,并且第一热导管11A及第二热导管11B包含管壁。当第一热导管11A及第二热导管11B分别设置于第一沟槽101A及第二沟槽101B时,第一热导管11A及第二热导管11B的管壁会分别紧贴着第一沟槽101A及第二沟槽101B的内壁。进一步地,第一热导管11A的第一两相流循环腔体110A容置于第一沟槽101A中,并且第二热导管11B的第二两相流循环腔体110B容置于第二沟槽101B中。
第一毛细结构111A以及第二毛细结构111B可由金属粉末烧结式、金属网式、微沟槽式或浆料印刷烧结式分别形成于第一热导管11A及第二热导管11B的内壁。于实务中,毛细结构可先形成于板材的内表面,再加工板材形成管状结构,接着,注入工作流体至管状结构中并抽真空,再密封管状结构的两端以形成热导管。值得注意的是,第一毛细结构111A以及第二毛细结构111B的材料、制程、分布及厚度可为相同,但不限于此,第一毛细结构111A以及第二毛细结构111B也可分别根据第一工作流体112A及第二工作流体112B的特性而设计。
在本具体实施例中,第一工作流体112A为水(H2O),并且工作温度范围大于摄氏零度。第二工作流体112B的工作温度范围包含小于摄氏零度,也就是说,第二工作流体112B的工作温度范围可盖摄氏零度以下的低温区。于实务中,第二工作流体112B可为丙酮、氨、甲醇、乙醇、四氟乙烷、氢氟烃类化学制冷剂等。因此,本发明的不同工作流体两相流循环的均热板1可透过第二两相流循环腔体110B于低于0℃的工作环境中进行液相及气相循环,待工作温度大于0℃时则开始启动第一两相流循环腔体110A的液相及气相循环。值得注意的是,图式中系以两种不同的花纹表示不同的工作流体。
如图2A至图2C所示,在本具体实施例中,N个第一热导管11A及M个第二热导管11B互相交错依序排列,并且第一热导管11A以及第二热导管11B之间的距离小于第一热导管11A以及第二热导管11B各自的宽度。于实务中,第一热导管11A以及第二 热导管11B可视为均热板中的一组协同合作的两相流循环单位。
于实际应用中,当环境温度低于0℃时,第一热导管11A中的第一工作流体11A(即水)会形成固相的冰而导致两相流循环无法进行,而第二热导管11B中的第二工作流体11B则仍为液相。当第二热导管11B接触热源时两相流循环会先开始运作,位于蒸发区的第二毛细结构111B中的液相第二工作流体11B会先转变为气相工作流体,释放潜热并且朝向冷凝区快速移动。也就是说,第二热导管11B会将蒸发区的热能导热至冷凝区。此时,相邻设置于第二热导管11B的第一热导管11A将会接收到第二热导管11B的热能,以将固相的第一工作流体11A熔化为液相,使得第一热导管11A中的两相流循环能够运作。进一步地,当工作温度高于0℃时,第一热导管11A中的两相流循环以及第二热导管11B中的两相流循环可同时运作,以提升导热的效率。随着工作温度的逐步升高,第一热导管11A中的两相流循环效率越佳,而第二热导管11B中两相流循环效率则变差。两个相邻设置在一起的两相流循环腔体在不同工作温度下的两相流循环效率互相补偿,使得均热板仍可维持一定的导热及均热功能,以避免接触热源的电子产品分布温度产生过大的温差。因此,本发明的具有不同工作流体两相流循环的均热板透过不同工作温度范围的工作流体,可达到在温度过低时可进行导热及均热且在温度过高时也可有效地进行导热及均热。
本发明的具有不同工作流体两相流循环的均热板的沟槽及两相流循环腔体的排列方式,除了可为前述具体实施例的样态之外,也可为其他样态。请参阅图3A以及图3B。图3A系绘示本发明一具体实施例中具有不同工作流体两相流循环的均热板1’的结构剖面示意图。图3B系绘示本发明一具体实施例中具有不同工作流体两相流循环的均热板1”的结构剖面示意图。如图3A所示,具有不同工作流体两相流循环的均热板1’中的热导管的排列方式为2个第一热导管11A及1个第二热导管11B依序周期性排列,也就是说,具有不同工作流体两相流循环的均热板1’为2个第一两相流循环腔体及1个第二两相流循环腔体依序周期性排列。如图3B所示,具有不同工作流体两相流循环的均热板1”中的热导管的排列方式为1个第一热导管11A及2个第二热导管11B依序周期性排列也就是说,具有不同工作流体两相流循环的均热板1”为1个第一两相流循环腔体及2个第二两相流循环腔体依序周期性排列。由于第一热导管11A及第二热导管11B的解热功率不同,解热功率较小的需要并排两个以便匹配解热功率较大的,目的是在于加强在不同工作温度时的均温能力。因此,本发明的具有不同工作流体两相流循环的均热板可根据不同的功能需求调整第一热导管及第二热导管的排列方式,以提高在不同工作温度时的均热板整体的导热及均温效率。值得注意的是,均热板中的导热管的排列方式不限于上述的排列方式,也可根据需求而决定。
进一步地,本发明的具有不同工作流体两相流循环的均热板的沟槽的截面形状除了可为前述具体实施例的样态之外,也可为其他样态。请参阅图4A至图4C。图4A至图4C系绘示本发明多具体实施例中第一沟槽及第二沟槽的剖面示意图。在前述的具体实施例中,第一沟槽及第二沟槽的截面形状为正方形。在一具体实施列中,第一沟槽101A’及第二沟槽101B’的截面形状也可为图4A中的梯形。在一具体实施例中,第一沟槽101A”及第二沟槽101B”的截面形状可为图4B中的长方形。在另一具体实施例中,第一沟槽101A”’及第二沟槽101B”’的截面形状可为图4C中的半圆形。于实务中,第一沟槽及第二沟槽的截面形状不限于此,也可根据均热板的尺寸或设置空间而决定。
此外,本发明的具有不同工作流体两相流循环的均热板的沟槽除了可为图1中的单列的排列方式以外,也可为其他样态。请一并参考图5A、图5B及图5C。图5A系绘示本发明一具体实施例中具有不同工作流体两相流循环的均热板2的示意图。图5B系绘示图5A中沿着线段B-B的具有不同工作流体两相流循环的均热板2的结构剖面示意图。图5C系绘示图5A中沿着线段C-C的具有不同工作流体两相流循环的均热板2的结构剖面示意图。如图5A至图5C所示,在本具体实施例中,具有不同工作流体两相流循环的均热板2包含两列的沟槽201,并且每一列的沟槽201的截面形状不同(第一列为长方形并且第二列为半圆形)。于实务中,每一列的沟槽201的长度、数量及排列方式可为相同或不相同。因此,本发明的具有不同工作流体两相流循环的均热板2可根据产品的设计及位置规划不同的排列,以提高导热及均热效率。
在一具体实施例中,第二两相流循环腔体为多个独立的两相流循环子腔体。于实务中,均热板可包含多个独立的第二热导管设置于第二沟槽中。此时,第二两相流循环腔体可包含多个独立的两相流循环子腔体。
请一并参阅图6及图7。图6系绘示本发明一具体实施例中具有不同工作流体两相流循环的均热板3的示意图。图7系根据图6的具有不同工作流体两相流循环的均热板3的局部剖面图。图6及图7为本发明的不同工作流体两相流循环的均热板3的另一种样态。如图6及图7所示,在具体实施例中,不同工作流体两相流循环的均热板3的平板30包含上平板30A以及下平板30B,并且平板30系上平板30A以及下平板30B经焊接而成。上平板30A以及下平板30B分别包含互相匹配且对应的第一凹槽及第二凹槽以分别形成第一沟槽301A和第二沟槽301B。而第一沟槽301A形成第一两相流循环腔体310A,并且第二沟槽301B形成第二两相流循环腔体310B。进一步地,第一毛细结构31A以及第一工作流体32A设置于第一两相流循环腔体310A中,并且第二毛细结构31B以及第二工作流体32B设置于第二两相流循环腔体310B中。
于实务中,上平板30A及下平板30B可先加工形成多个互相匹配且对应的凹槽。 接着,第一毛细结构31A以及第二毛细结构31B可透过前述的方式分别形成于上平板30A的第一凹槽及下平板30B的第二凹槽的内壁。接着,分别于第一凹槽及第二凹槽注入第一工作流体32A及第二工作流体32B后再将上平板30A及下平板30B互相组合。当上平板30A及下平板30B组合后,上平板30A及下平板30B的内壁直接形成封闭的两相流循环腔体,此时,每一个凹槽所形成的沟槽皆具有导热管的导热功能。而上平板31A及板30B可焊接、熔接等方式互相贴合固定。
由于上平板30A及下平板30B的内壁直接形成封闭的两相流循环腔体并且可视为热导管的管壁,因此,当本发明的不同工作流体两相流循环的均热板3的上平板30A或下平板30B接触发热元件时,位于第一两相流循环腔体310A及第二两相流循环腔体310B中的第一工作流体32A及第二工作流体32B皆可接收发热元件所发出的热源而运作。请注意,本具体实施例中的第一毛细结构、第二毛细结构、第一工作流体及第二工作流体的材料、制程及功能与前述具体实施所对应的元件相同,于此不再赘述。
此外,本发明的具有不同工作流体两相流循环的均热板也可为其他样态。请参阅图8。图8系绘示本发明一具体实施例中具有不同工作流体两相流循环的均热板4的局部剖面图。如图8所示,本具体实施例与前述具体实施例的不同的处,是在于本具体实施例的均热板4的上平板40A没有凹槽,而下平板40B具有第一沟槽401A以及第一沟槽401B。于实务中,下平板40B可先加工形成多个第一沟槽401A以及第一沟槽401B。接着,第一毛细结构41A以及第二毛细结构41B可透过前述的方式分别形成于下平板40B的第一沟槽401A及第一沟槽401B的内壁。接着,再将上平板40A及下平板40B互相组合焊接,然后分别于第一凹槽及第二凹槽注入第一工作流体及第二工作流体。当上平板40A及下平板40B组合焊接后,上平板40A及下平板40B的内壁直接形成封闭的两相流循环腔体。
综上所述,本发明的具有不同工作流体两相流循环的均热板透过不同工作温度范围的工作流体,可达到在温度过低时可进行导热且在温度过高时也可有效地进行导热,可在环境温度横跨摄氏零度的高温及低温场景中正常的工作,进而提升均热板的实用性。并且,本发明的具有不同工作流体两相流循环的均热板可根据热源产品的设计及位置规划不同的两相流循环腔体排列,以提高导热及均温效率。此外,本发明的具有不同工作流体两相流循环的均热板透过二种不同的工作流体及两相流循环腔体使得均热板在低于特定温度时先以第二工作流体运行,并且在高于特定温度时,第一工作流体及第二工作流体可同时运行,进而提高均热板的导热及均温效率。
由以上较佳具体实施例的详述,系希望能更加清楚描述本发明的特征与精神,而并非以上述所揭露的较佳具体实施例来对本发明的范畴加以限制。相反地,其 目的是希望能涵盖各种改变及具相等性的安排于本发明所欲申请的专利范围的范畴内。因此,本发明所申请的专利范围的范畴应该根据上述的说明作最宽广的解释,以致使其涵盖所有可能的改变以及具相等性的安排。

Claims (10)

  1. 一种具有不同工作流体两相流循环的均热板,其特征在于包含:
    一平板,具有一第一沟槽和一第二沟槽,该第一沟槽用以容置一第一两相流循环腔体,并且该第二沟槽用以容置一第二两相流循环腔体;
    一第一毛细结构,设置于该第一两相流循环腔体内;
    一第二毛细结构,设置于该第二两相流循环腔体内;
    一第一工作流体,设置于该第一两相流循环腔体中;以及
    一第二工作流体,设置于该第二两相流循环腔体中;
    其中,该第一工作流体为水,该第一工作流体两相流循环的工作温度范围大于摄氏零度,该第二工作流体两相流循环的工作温度范围包含小于摄氏零度的温区,并且该第一两相流循环腔体以及该第二两相流循环腔体相邻排列。
  2. 如权利要求1所述的具有不同工作流体两相流循环的均热板,其特征在于,该第二工作流体为丙酮、乙醇、四氟乙烷及氢氟烃类化学制冷剂的其中之一。
  3. 如权利要求1所述的具有不同工作流体两相流循环的均热板,其特征在于,该第一两相流循环腔体与该第二两相流循环腔体的截面尺寸不一致。
  4. 如权利要求1所述的具有不同工作流体两相流循环的均热板,其特征在于,进一步包含有N个该第一沟槽及其容置的N个该第一两相流循环腔体、以及M个该第二沟槽及其容置的M个该第二两相流循环腔体,N个该第一两相流循环腔体以及M个该第二两相流循环腔体互相交错排列,其中N和M分别为大于等于2的自然数。
  5. 如权利要求4所述的具有不同工作流体两相流循环的均热板,其特征在于,交错排列为2个该第一两相流循环腔体及1个该第二两相流循环腔体依序周期性排列,或1个该第一两相流循环腔体及2个该第二两相流循环腔体依序周期性排列。
  6. 如权利要求4所述的具有不同工作流体两相流循环的均热板,其特征在于,进一步包含N个第一热导管以及M个第二热导管,N个该第一热导管分别设置于该N个该第一沟槽并且包含该第一两相流循环腔体,M个该第二热导管分别设置于M个该第二沟槽并且包含该第二两相流循环腔体,其中该第一热导管的材料为铜及铜铝复合材料的其中之一,并且该第二热导管的材料为铝。
  7. 如权利要求6所述的具有不同工作流体两相流循环的均热板,其特征在于,该第二两相流循环腔体为多个独立的两相流循环子腔体。
  8. 如权利要求1所述的具有不同工作流体两相流循环的均热板,其特征在于, 该第一毛细结构及该第二毛细结构由金属粉末烧结式、金属网式、微沟槽式及浆料印刷烧结式的其中之一形成。
  9. 如权利要求1所述的具有不同工作流体两相流循环的均热板,其特征在于,该平板包含一上平板以及一下平板并且透过焊合该上平板及该下平板而形成,该上平板及该下平板分别包含互相匹配且对应的一第一凹槽以及一第二凹槽以分别形成该第一沟槽和该第二沟槽,或该下平板包含该第一凹槽以及该第二凹槽以形成该第一沟槽和该第二沟槽。
  10. 如权利要求1所述的具有不同工作流体两相流循环的均热板,其特征在于,该第一沟槽的截面形状以及该第二沟槽的截面形状分别为方形、长方形、半圆形、圆形及梯形的至少之一。
PCT/CN2023/091434 2022-07-27 2023-04-28 具有不同工作流体两相流循环的均热板 WO2024021722A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210888819.0 2022-07-27
CN202210888819.0A CN115930649A (zh) 2022-07-27 2022-07-27 具有不同工作流体两相流循环的均热板

Publications (1)

Publication Number Publication Date
WO2024021722A1 true WO2024021722A1 (zh) 2024-02-01

Family

ID=86696547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091434 WO2024021722A1 (zh) 2022-07-27 2023-04-28 具有不同工作流体两相流循环的均热板

Country Status (2)

Country Link
CN (1) CN115930649A (zh)
WO (1) WO2024021722A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115930649A (zh) * 2022-07-27 2023-04-07 广州力及热管理科技有限公司 具有不同工作流体两相流循环的均热板
CN218270323U (zh) * 2022-08-29 2023-01-10 广州力及热管理科技有限公司 具有两种工作流体两相流循环的均温板组件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1707784A (zh) * 2004-06-11 2005-12-14 鸿富锦精密工业(深圳)有限公司 热管
CN1928484A (zh) * 2005-09-05 2007-03-14 鸿富锦精密工业(深圳)有限公司 热管及其制备方法
TW200712404A (en) * 2005-09-05 2007-04-01 Hon Hai Prec Ind Co Ltd Heat pipe and method for making same
DE202014104726U1 (de) * 2014-10-01 2014-11-17 Asia Vital Components Co., Ltd. Wärmerohr
TW202033923A (zh) * 2019-03-14 2020-09-16 大陸商深圳興奇宏科技有限公司 均溫板結構
CN213094736U (zh) * 2020-08-21 2021-04-30 建准电机工业股份有限公司 均温板结构
CN218210919U (zh) * 2022-07-27 2023-01-03 广州力及热管理科技有限公司 具有不同工作流体两相流循环的均热板
CN218270323U (zh) * 2022-08-29 2023-01-10 广州力及热管理科技有限公司 具有两种工作流体两相流循环的均温板组件
CN115930649A (zh) * 2022-07-27 2023-04-07 广州力及热管理科技有限公司 具有不同工作流体两相流循环的均热板

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1707784A (zh) * 2004-06-11 2005-12-14 鸿富锦精密工业(深圳)有限公司 热管
CN1928484A (zh) * 2005-09-05 2007-03-14 鸿富锦精密工业(深圳)有限公司 热管及其制备方法
TW200712404A (en) * 2005-09-05 2007-04-01 Hon Hai Prec Ind Co Ltd Heat pipe and method for making same
DE202014104726U1 (de) * 2014-10-01 2014-11-17 Asia Vital Components Co., Ltd. Wärmerohr
TW202033923A (zh) * 2019-03-14 2020-09-16 大陸商深圳興奇宏科技有限公司 均溫板結構
US20200292243A1 (en) * 2019-03-14 2020-09-17 Asia Vital Components (China) Co., Ltd. Vapor chamber structure
CN213094736U (zh) * 2020-08-21 2021-04-30 建准电机工业股份有限公司 均温板结构
CN218210919U (zh) * 2022-07-27 2023-01-03 广州力及热管理科技有限公司 具有不同工作流体两相流循环的均热板
CN115930649A (zh) * 2022-07-27 2023-04-07 广州力及热管理科技有限公司 具有不同工作流体两相流循环的均热板
CN218270323U (zh) * 2022-08-29 2023-01-10 广州力及热管理科技有限公司 具有两种工作流体两相流循环的均温板组件

Also Published As

Publication number Publication date
CN115930649A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2024021722A1 (zh) 具有不同工作流体两相流循环的均热板
US10365047B2 (en) Electronics cooling with multi-phase heat exchange and heat spreader
US6233944B1 (en) Thermoelectric module unit
US4046190A (en) Flat-plate heat pipe
WO2017195254A1 (ja) ループヒートパイプ及びその製造方法並びに電子機器
US20130133871A1 (en) Multiple Thermal Circuit Heat Spreader
WO2013111815A1 (ja) 熱輸送装置
JP6564596B2 (ja) リチウムイオン二次電池装置
CN218270323U (zh) 具有两种工作流体两相流循环的均温板组件
CN218210919U (zh) 具有不同工作流体两相流循环的均热板
WO2022007044A1 (zh) 均温板
CN113395867A (zh) 散热齿片及其制备方法、散热装置及电子设备
TWM596329U (zh) 強化沸騰裝置
US10982906B2 (en) Heat pipe with non-condensable gas
CN218122605U (zh) 散热器及电子设备
TWI823693B (zh) 均溫板
CN217818298U (zh) 热传导部件
US20210251106A1 (en) Heat conductive device and electronic device
CN220931410U (zh) 一种半导体制冷装置
CN115189070A (zh) 一种应用于动力电池散热的平板热管
JP7444703B2 (ja) 伝熱部材および伝熱部材を有する冷却デバイス
CN215068111U (zh) 一种用于笔记本电脑的散热底座
TWI731500B (zh) 導熱模組
JP3163996U (ja) 熱対流ヒートシンク板構造
JP3164132U (ja) 圧力勾配駆動式板型ヒートパイプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23844937

Country of ref document: EP

Kind code of ref document: A1