WO2024021677A1 - 一种双侧超声滚压协同强化系统及其控制方法 - Google Patents

一种双侧超声滚压协同强化系统及其控制方法 Download PDF

Info

Publication number
WO2024021677A1
WO2024021677A1 PCT/CN2023/087266 CN2023087266W WO2024021677A1 WO 2024021677 A1 WO2024021677 A1 WO 2024021677A1 CN 2023087266 W CN2023087266 W CN 2023087266W WO 2024021677 A1 WO2024021677 A1 WO 2024021677A1
Authority
WO
WIPO (PCT)
Prior art keywords
subsystem
strengthening
ultrasonic rolling
ultrasonic
blade
Prior art date
Application number
PCT/CN2023/087266
Other languages
English (en)
French (fr)
Inventor
张显程
王佳伟
朱林
涂善东
张开明
孙兆星
刘爽
程华裔
石俊秒
Original Assignee
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学 filed Critical 华东理工大学
Publication of WO2024021677A1 publication Critical patent/WO2024021677A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the invention relates to the technical field of parts processing, and in particular to a bilateral ultrasonic rolling collaborative strengthening system and a control method thereof.
  • aero engines Due to the long production cycle and high testing cost of aero engines, a large amount of cost needs to be invested in research and development before the production and manufacturing of aero engines meet standards. With the continuous development of aviation technology, aero engines must meet the requirements of ultra-high speed, high altitude, and long endurance. and ultra-long range requirements, and aeroengines must be able to operate in harsh working environments of high temperature, pressure, and high speed. They have a short life cycle and are prone to various defects, such as cracks, wear, distortion, etc., and are a typical life-limited component. Compared with replacing the blades after a certain stroke, it is more economical and safer to extend the working life of the blades.
  • the compressor blades in the engine are thin-walled and complex curved surface parts. Due to their low stiffness, they are easily deformed during the strengthening process. , affecting its working life, so it is also necessary to reduce the processing deformation as much as possible.
  • Ultrasonic rolling strengthening technology is an emerging surface strengthening technology. Its principle is that under the combined action of static pressure and high-frequency and high-speed ultrasonic vibration, the surface of the material undergoes plastic deformation, refines the surface of the part, improves the hardness of the metal surface, and overcomes the traditional The deficiencies in this aspect of the process introduce beneficial residual compressive stress, thereby improving the surface quality and extending the life of the parts. Compared with traditional processes such as grinding and polishing, ultrasonic rolling technology is simpler and more efficient in principle and operation, and has a great impact on the surface quality of the workpiece. However, the ultrasonic rolling process is still in the experimental and exploratory stage, and most of them Parts with regular shapes are processed to test their parameters and effects.
  • the processing equipment mainly integrates ultrasonic strengthening systems on existing lathes. There is less research on the strengthening processing of complex curved surfaces of blades. Due to the limited freedom of the machine tool equipped with the processing head, it is easy to cause The processing head interferes with other parts of the blade, resulting in parts that cannot be fully strengthened or are accidentally scratched and damaged. Moreover, most of the current surface strengthening methods adopt unilateral processing, which can easily cause damage to the compressor. The blades are deformed due to contact forces.
  • the present invention provides a bilateral ultrasonic rolling collaborative strengthening system and its control method to overcome the limited freedom of the machine tool equipped with the processing head, which can easily cause interference between the processing head and other parts of the blade, resulting in incomplete parts. Strengthen technical defects caused by accidental scratches and damage, and achieve double-sided processing.
  • the present invention provides the following solutions:
  • a bilateral ultrasonic rolling collaborative strengthening system includes: a first mechanical arm subsystem, a second mechanical arm subsystem, a first ultrasonic rolling strengthening subsystem, a second ultrasonic rolling strengthening subsystem and a servo turntable ;
  • the servo turntable is used to fix the blade to be processed
  • the first ultrasonic rolling strengthening subsystem is provided at the end of the first robotic arm subsystem
  • the second ultrasonic rolling strengthening subsystem is provided at the end of the second robotic arm subsystem
  • the first robotic arm subsystem is used to drive the first ultrasonic rolling strengthening subsystem to strengthen one side of the blade
  • the second robotic arm subsystem is used to drive the second ultrasonic rolling strengthening.
  • the subsystem performs strengthening processing on the other side of the blade.
  • both the first robot arm subsystem and the second robot arm subsystem include a six-degree-of-freedom robot arm.
  • first robotic arm subsystem and the first ultrasonic rolling strengthening subsystem there are disposed between the first robotic arm subsystem and the first ultrasonic rolling strengthening subsystem and between the second robotic arm subsystem and the second ultrasonic rolling strengthening subsystem.
  • Six-dimensional force sensor there are disposed between the first robotic arm subsystem and the first ultrasonic rolling strengthening subsystem and between the second robotic arm subsystem and the second ultrasonic rolling strengthening subsystem.
  • the first ultrasonic rolling strengthening subsystem and the second ultrasonic rolling strengthening subsystem each include an ultrasonic rolling tool head and an ultrasonic generator;
  • the ultrasonic generator is connected to the ultrasonic transducer in the ultrasonic rolling tool head, and the ultrasonic generator is used to generate a signal of a preset frequency.
  • the ultrasonic rolling tool head includes a sleeve, a transducer pressure plate, an ultrasonic transducer, a horn, a cage and a roller;
  • the sleeve is connected to the six-dimensional force sensor through bolts, the driving end of the ultrasonic transducer is connected to the ultrasonic generator, and the mechanical energy output end of the ultrasonic transducer is connected to the variable speed transducer.
  • One end of the boom is connected by stud bolts;
  • the driving end of the ultrasonic transducer is located in the sleeve, and the transducer pressure plate and the sleeve are connected by bolts for limiting the relative position between the ultrasonic transducer and the sleeve. move;
  • the other end of the horn is connected to the roller through the cage.
  • the system also includes a reinforced clamp
  • the servo turntable fixes the blade through the reinforced clamp.
  • a cross-shaped slot is provided at the bottom of the reinforced clamp, and the cross-shaped slot is aligned with the cross-shaped claw provided on the servo turntable and fixed by bolts;
  • the top of the reinforced clamp is provided with a groove, the top surface of the groove is surrounded by first threaded holes, and the side of the groove is provided with second threaded holes; the top of the reinforced clamp is also provided with a pressure Cover, the center of the gland is provided with a through hole;
  • the tenon root of the blade is arranged in the groove, the gland is fastened to the first threaded hole through bolts, the blade passes through the through hole, and the gland is used to limit The movement of the blade in the Z-axis direction; a bolt is screwed into the second threaded hole to limit the movement of the blade in the X-axis direction and the Y-axis direction; the Z-axis direction is the strengthening feed direction, so
  • the X-axis direction is the thickness direction of the blade, and the Y-axis direction is perpendicular to the Z-axis direction and the X-axis direction.
  • a control method for a bilateral ultrasonic rolling collaborative strengthening system is applied to the above-mentioned bilateral ultrasonic rolling collaborative strengthening system.
  • the method includes the following steps:
  • the processing depth of both sides of the blade which are used as the first processing depth and the second processing depth respectively;
  • the action of the second ultrasonic rolling strengthening subsystem is controlled according to the second processing depth.
  • generating the first robot arm movement trajectory and the second robot arm movement trajectory according to the three-dimensional model of the blade specifically includes:
  • the data points of each layer are divided into first plane data points and second plane data points according to the value of the Y axis.
  • the first plane data points are data points located on one side of the blade, and the second plane data points are located on one side of the blade. Data points on the other side of the blade;
  • first plane data point and the second plane data point respectively calculate the first time point when the end of the first manipulator subsystem moves to each first plane data point and the end of the second manipulator subsystem moves to each The first time point of the second plane data point;
  • the first time point and the second time point corresponding to the first plane data point constitute the first robot arm motion trajectory of the layer where the first plane data point is located;
  • the first time point and the second time point corresponding to the second plane data point constitute the second robot arm motion trajectory of the layer where the second plane data point is located.
  • controlling the action of the first ultrasonic rolling strengthening subsystem according to the first processing depth specifically includes:
  • F' m (t) is the compensated pressure data
  • F m (t) is the collected pressure data
  • t represents the sampling time point
  • g 2 is the gravity of the first ultrasonic rolling strengthening subsystem in the sensor coordinate system component
  • F 0 is the zero point value of the six-dimensional force sensor
  • M, B and K are coefficient matrices
  • x is the displacement in the X-axis direction
  • x d is the expected displacement determined by the first processing depth
  • F d (t) is the expected pressure in constant force coordinated control.
  • the present invention discloses the following technical effects:
  • the invention discloses a bilateral ultrasonic rolling collaborative strengthening system and a control method thereof.
  • the system includes: a first mechanical arm subsystem, a second mechanical arm subsystem, a first ultrasonic rolling strengthening subsystem, a second ultrasonic rolling strengthening subsystem, and a second ultrasonic rolling strengthening subsystem.
  • the pressure strengthening subsystem and servo turntable; the servo turntable is used to fix the blade to be processed; the first ultrasonic rolling strengthening subsystem is provided at the end of the first mechanical arm subsystem; the second ultrasonic rolling The strengthening subsystem is arranged at the end of the second robot arm subsystem; the first robot arm subsystem is used to drive the first ultrasonic rolling strengthening subsystem to strengthen one side of the blade, and the third robot arm subsystem is used to drive the first ultrasonic rolling strengthening subsystem to strengthen one side of the blade.
  • the two robotic arm subsystems are used to drive the second ultrasonic rolling strengthening subsystem to perform strengthening processing on the other side of the blade.
  • the present invention uses a mechanical arm equipped with an ultrasonic rolling strengthening device to improve the degree of freedom in blade processing, and is provided with a first mechanical arm subsystem, a second mechanical arm subsystem, a first ultrasonic rolling strengthening subsystem, and a second ultrasonic rolling strengthening device.
  • the enhanced subsystem and servo turntable cooperate to achieve double-sided processing.
  • Figure 1 is a schematic structural diagram of a bilateral ultrasonic rolling collaborative strengthening system provided by an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of an ultrasonic rolling tool head provided by an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of a reinforced clamp provided by an embodiment of the present invention.
  • Figure 4 is a schematic diagram of the installation of the reinforced clamp provided by the embodiment of the present invention.
  • Figure 5 is a schematic structural diagram of the overall framework of the control method of the bilateral ultrasonic rolling collaborative strengthening system provided by the embodiment of the present invention.
  • Figure 6 is a schematic structural diagram of a communication solution provided by an embodiment of the present invention.
  • Figure 7 is a flow chart of trajectory secondary processing optimization provided by an embodiment of the present invention.
  • Figure 8 is a schematic diagram of the enhanced processing path provided by the embodiment of the present invention.
  • Figure 9 is a flow chart of enhanced processing provided by an embodiment of the present invention.
  • Figure 10 shows the strengthening processing based on bilateral ultrasonic rolling collaborative strengthening provided by the embodiment of the present invention. overall layout drawing.
  • the purpose of the present invention is to provide a bilateral ultrasonic rolling collaborative strengthening system and its control method to overcome the limited freedom of the machine tool equipped with the processing head, which can easily cause interference between the processing head and other parts of the blade, resulting in parts that cannot be fully strengthened or It is a technical defect due to accidental scratches and damage, and double-sided processing is achieved.
  • Embodiment 1 of the present invention provides a bilateral ultrasonic rolling collaborative strengthening system.
  • the system includes: a first robotic arm subsystem, a second robotic arm subsystem, and a first ultrasonic rolling strengthening subsystem.
  • the first ultrasonic rolling strengthening subsystem is arranged at the end of the first mechanical arm subsystem;
  • the second ultrasonic rolling strengthening subsystem is arranged at the end of the second mechanical arm subsystem;
  • the first mechanical arm subsystem is used to drive the first ultrasonic rolling strengthening subsystem to perform processing on one side of the blade.
  • the second robotic arm subsystem is used to drive the second ultrasonic rolling strengthening subsystem to perform strengthening processing on the other side of the blade.
  • the first robotic arm subsystem includes a first six-degree-of-freedom robotic arm 1
  • the second robotic arm subsystem includes a second six-degree-of-freedom robotic arm 9
  • the first ultrasonic rolling strengthening subsystem includes a first ultrasonic generator 3 and The first ultrasonic rolling tool head 4
  • the second ultrasonic rolling strengthening subsystem includes a second ultrasonic generator 8 and a second ultrasonic rolling tool head 7, a first six-degree-of-freedom robotic arm 1 and a first ultrasonic rolling tool head
  • a first six-dimensional force sensor 2 is provided between 4
  • a second six-dimensional force sensor 11 is provided between the second six-degree-of-freedom mechanical arm 9 and the second ultrasonic rolling tool head 7, and the blade 5 to be processed passes through the reinforced fixture.
  • 6 is set on the servo turntable 13, the first robot control cabinet 14, the second The dotted lines between the robot control cabinet 10, the servo turntable 13 and the host computer 12 represent electrical connections or communication connections.
  • a six-degree-of-freedom robotic arm including a first six-degree-of-freedom robotic arm 1 and a second six-degree-of-freedom robotic arm 9.
  • the ultrasonic rolling tool head (including the first ultrasonic rolling tool head 4 and the second ultrasonic rolling tool head 7) can move with six degrees of freedom in space to achieve ultrasonic rolling strengthening. trajectory movement.
  • the robot control cabinet is the control mechanism of the six-degree-of-freedom robotic arm. It is connected to the robotic arm body through cables. It can power the six-degree-of-freedom robotic arm and drive the joints of the six-degree-of-freedom robotic arm to move. It uses network cables to establish communication with the host computer. In FIG. 1 , dotted lines are used to represent the communication connection between the host computer 12 and the force sensors (including the first six-dimensional force sensor 2 and the second six-dimensional force sensor 11 ).
  • the servo turntable is mainly composed of a servo motor, a reducer and a cross chuck.
  • the servo motor is connected to the reducer to drive the rotation of the cross chuck.
  • the ultrasonic rolling tool head includes a first ultrasonic rolling tool head 4 and a second ultrasonic rolling tool head 7 .
  • Ultrasonic rolling processing is a working method that uses ultrasonic shock combined with static load rolling.
  • the ultrasonic rolling tool head transmits the static pressure and the vibration provided by the ultrasonic generator to the surface of the mechanical parts, and processes the surface of the metal parts, thereby improving the quality of the parts.
  • the surface effect is a more efficient treatment method.
  • the structure of the ultrasonic rolling tool head is shown in Figure 2.
  • the structure includes a sleeve 402, a transducer pressure plate 403, an ultrasonic transducer 404, a horn 407, a cage 408 and a roller 409.
  • the ultrasonic rolling tool head uses a sleeve 402 to connect to the first six-dimensional force sensor 2 through a first bolt 401;
  • the ultrasonic transducer 404 is the vibration source of the entire processing head, and it interacts with the ultrasonic Generator connection can convert the electrical energy generated by the ultrasonic generator 3 into high-frequency vibration mechanical energy.
  • the present invention uses a relatively simple cylindrical transducer, which is easy to install and low in cost; the transducer pressure plate 403 is used to fix the ultrasonic wave.
  • the transducer 404, the sleeve 402 and the transducer pressure plate 403 are connected through the second bolt 405 to fix the ultrasonic transducer 404 throughout the ultrasonic
  • the position in the acoustic rolling tool head; the horn 407 is used to transmit and amplify the mechanical energy of ultrasonic vibration.
  • the particle displacement or speed of the mechanical vibration can be amplified through the horn. It is usually used in combination with a transducer.
  • a horn is connected to the tool head to amplify the mechanical amplitude to the required requirements.
  • the horn 407 in the present invention adopts a stepped horn.
  • the cage 408 is used to connect the horn 407 and the roller 409. There is a threaded hole at the top of the horn 407.
  • the cage 408 can be tightened through the threads and integrated with the horn 407. In other cases, the ball type is used.
  • the ultrasonic rolling head it is necessary to manually adjust the gap between the rolling head and the horn 407 based on experience. An inappropriate gap will affect the strengthening effect of the blade surface, but the present invention avoids errors and uncertainties in adjusting the gap.
  • the ultrasonic generator includes a first ultrasonic generator 3 and a second ultrasonic generator 8 .
  • the ultrasonic generator is an important part of the high-power ultrasonic system. Its output is connected to the ultrasonic transducer 404 in the ultrasonic rolling tool head through an electrical connection. As shown in Figure 2, the 50Hz mains power can be converted into a high-frequency current suitable for the ultrasonic transducer. Considering the conversion efficiency, the ultrasonic power supply usually adopts the circuit form of switching power supply. In the working state, the ultrasonic generator will generate a special frequency signal, which will generate a sinusoidal or pulse signal according to different needs, and this specific frequency is the working frequency of the transducer.
  • the first six-dimensional force sensor 2 is connected to the flange at the end of the first six-degree-of-freedom robotic arm 1 through bolts.
  • the six-dimensional force sensor in the embodiment of the present invention carries a controller, which is used for signal collection, A/D conversion, signal processing and communication.
  • the controller uses a network cable to establish communication with the host computer.
  • the dotted line is used to represent the host computer.
  • 12 is connected to the communication between the first six-dimensional force sensor 2 and the second six-dimensional force sensor 11 respectively.
  • the reinforced clamp 6 is used to clamp the blade 4 and maintain the blade position. Its structure is shown in Figure 3. There is a cross-shaped slot 604 at the bottom of the reinforced clamp 6. First, connect the cross-shaped slot 604 with the servo The cross-shaped claws on the turntable 13 are aligned, as shown in Figure 4. There are bolt holes on the cross-shaped claws. By adjusting the expansion or contraction of the claws, the third bolt 605 passes through the bolt holes of the reinforced clamp 6 and is aligned with the cross-shaped claws.
  • the bolt hole of the claw is used to fix the reinforced clamp 6 on the servo turntable 13, put the tenon root of the blade into the groove, and fasten the gland 602 with the reinforced clamp 6 through four fourth bolts 601 to ensure that the blade is in place There is no movement in the Z direction shown in Figure 3.
  • the host computer 12 is used to establish mutual communication with the six-degree-of-freedom manipulator and the six-dimensional force sensor, and can display the relevant information changes of the six-degree-of-freedom manipulator and the six-dimensional force sensor during the strengthening process, and send corresponding data through the host computer 12 and commands to control the movement of the robotic arm.
  • Specific connection method First, fix the reinforced clamp 6 on the cross claw according to the above installation method.
  • the blade 5 is fixed on the reinforced clamp 6 using the fourth bolt 601 and the fifth bolt 603 in two directions. After the fixation is completed, it can be
  • the servo turntable 13 is controlled to adjust the initial attitude of the blade 5.
  • first six-dimensional force sensor 2 Connect the first six-dimensional force sensor 2 to the end of the first six-degree-of-freedom mechanical arm 1 through flanges and bolts, and then fix the sleeve 402 in the first ultrasonic rolling tool head 4 with the first six-dimensional force sensor using bolts.
  • fasten the ultrasonic transducer 404 and the horn 407 with the stud bolts 406 and put them into the sleeve 402 then fix them with the second bolt 405 through the transducer pressure plate 403, and finally put the roller 409 on
  • the cage 408 is screwed into the bolt hole at the top of the horn 407 and tightened to complete the installation of the ultrasonic rolling tool head.
  • the configuration of the arm 9 is the same as that of the first six-degree-of-freedom robotic arm 1.
  • the first six-degree-of-freedom robotic arm 1 and the second six-degree-of-freedom robotic arm 9 are fixed on both sides of the servo turntable 13, keeping a certain distance from them to facilitate the operation of the robotic arms.
  • Embodiment 2 of the present invention provides a control method for a bilateral ultrasonic rolling collaborative strengthening system.
  • the present invention relates to the field of robot control.
  • the host computer communicates with the six robots through UDP communication.
  • the robot arm communicates with the six-dimensional force sensor to realize real-time control and adjustment of the six-degree-of-freedom robot arm during the ultrasonic rolling strengthening process. Its overall architecture is shown in Figure 5.
  • the communication module physically connects the host computer to the six-degree-of-freedom manipulator and six-dimensional force sensor using network cables, establishes communication through the UDP communication protocol, and realizes two-way data transmission.
  • the more specific system communication scheme is shown in Figure 6.
  • the configuration file for the communication between the DOF manipulator and the six-dimensional force sensor realizes the communication connection between the host computer and the entire system, thereby obtaining the current status of the six-DOF manipulator, such as the Cartesian position in the current coordinate system, the position of each axis joint, The data of the six-dimensional force sensor converted by A/D, as well as the movement mode and communication status.
  • the data values obtained through the communication module are displayed on the host computer in real time through the display module.
  • the motion mode refers to the corresponding status according to the selection of different control methods in the control module.
  • the data values of the six-dimensional force sensor can also be drawn into a curve graph, so that the changes in the applied load during the current work can be intuitively known.
  • Basic motions such as Cartesian coordinate system motion and axis joint motion are set in the control module.
  • the robot arm can be controlled to move to a specified position by inputting specific coordinates or joint data.
  • the trajectory motion data can be obtained by reading files. Trajectory motion control allows movement along the desired trajectory.
  • the method is applied to the above-mentioned bilateral ultrasonic rolling collaborative strengthening system, and the method includes the following steps:
  • a first robot arm movement trajectory and a second robot arm movement trajectory are generated.
  • the blade surface enhancement trajectory planning method to be processed uses the UG software CAM module and MATLAB to generate a txt data file that can be read by the control module.
  • the entire generation method includes the following steps:
  • MATLAB reads the initial trajectory.
  • the final output is the position data XYZ and attitude data ABC that can be recognized by the robot arm, and are saved in a TXT file.
  • the direction is first set according to the coordinate system in Figure 3, where X is the thickness direction of the thin wall and Z is the direction of enhanced feed.
  • the adjacent subscripts are the division points of the two surfaces.
  • the trajectory of one layer is divided into two surfaces, L and R.
  • the coordinates of the two surfaces on the same layer are x l , respectively.
  • y l ,x r ,y r Use the distance formula Obtain the distance between adjacent points, and calculate the time sequence t i required from the starting point to each data point based on the required movement speed v, and compare the time point sequence t i according to the host computer and the six-degree-of-freedom robotic arm.
  • the communication frequency ⁇ t is divided into new time series t j , and the coordinate values corresponding to several known points ti are used to make appropriate specific functions, and then linear interpolation is performed based on the new t j value to calculate a new coordinate point sequence.
  • the trajectory point of the six-degree-of-freedom robotic arm that is, the XYZ value
  • the posture of the robotic arm has not yet been determined.
  • Movement posture first set the blade according to The vector formed by the connection between the tool contact point CP and the tool position point LP is the normal vector of the tool along the surface. Calculate the angle between the normal vector and the direction of the workpiece coordinate system, and finally convert into the ZYX Euler angle of the robot arm.
  • the final robot arm executable data file is obtained through the combination of trajectory points and attitude, which can be read by the control module.
  • generating the first robot arm movement trajectory and the second robot arm movement trajectory according to the three-dimensional model of the blade specifically includes: using data points with the same value on the Z axis as a layer, and comparing the three-dimensional model to Perform stratification; the data points of each layer are divided into first plane data points and second plane data points according to the value of the Y axis.
  • the first plane data points are data points located on one side of the blade, and the second plane data points are located on one side of the blade.
  • the data points are data points located on the other side of the blade; for the first plane data point and the second plane data point, the sum of the first time points when the end of the first manipulator subsystem moves to each first plane data point is calculated respectively.
  • the end of the second manipulator subsystem moves to the first time point of each second plane data point; multiple second time points are inserted between two adjacent first time points; the first plane data The first time point and the second time point corresponding to the point constitute the first robot arm motion trajectory of the layer where the first plane data point is located; the first time point and the second time point corresponding to the second plane data point constitute the second plane The motion trajectory of the second robot arm in the layer where the data point is located.
  • the processing depths of both sides of the blade are determined, which are used as the first processing depth and the second processing depth respectively.
  • the action of the first ultrasonic rolling strengthening subsystem is controlled according to the first processing depth.
  • the action of the second ultrasonic rolling strengthening subsystem is controlled according to the second processing depth.
  • the gravity of the ultrasonic rolling tool head measured in the world coordinate system and the initial value of the six-dimensional force sensor are converted into the component forces in the sensor coordinate system, that is, the conversion relationship between the sensor coordinates and the base coordinates is established.
  • the robot base coordinate system is recorded as O 1 -X 1 Y 1 Z 1 , assuming that O 1 -X 1 Y 1 Z 1 can pass through the world coordinate system O 0 -X 0 Y 0 Z 0 is obtained by first rotating the angle U around the X axis, and then rotating the angle V around the Y1 axis. Then the attitude transformation matrix from O 1 -X 1 Y 1 Z 1 1 to O 0 -X 0 Y 0 Z 0 is:
  • the vector of gravity G of the ultrasonic rolling tool head in the sensor coordinate system can be obtained as:
  • the data obtained by the six-dimensional force sensor is the components of the ultrasonic rolling tool head in the sensor coordinate system [F x , F y , F z ]' and the six-dimensional force sensor
  • the pointing vectors of the end of the robot need to be non-coplanar in at least three postures.
  • the initial force of the force sensor can be obtained by solving multiple sets of manipulator posture values and force sensor values. With the value of the tool's gravity changing with the attitude, the actual contact force during the machining process can finally be obtained, providing static pressure data for constant force control.
  • the data value of the force sensor is compared with the expected value, and the data points of the robot arm movement are slightly adjusted according to the size of the error to change the size of the error, thereby reducing the load change during the strengthening process.
  • First establish the relationship between the force error value and displacement such as equation (4).
  • the mechanical arm displacement change value ⁇ x corresponding to the force error value F e is obtained, and is added to the real-time
  • the original offline trajectory is removed to achieve online real-time closed-loop adjustment.
  • File reading realizes obtaining offline trajectory point data, and converting it into motion instructions through the control module to control the robotic arm to complete specific behaviors.
  • the first ultrasonic rolling strengthening subsystem is controlled according to the first processing depth.
  • System actions specifically including:
  • F m '(t) is the compensated pressure data
  • F m (t) is the collected pressure data
  • t represents the sampling time point
  • g 2 is the gravity of the first ultrasonic rolling strengthening subsystem in the sensor coordinate system component
  • F 0 is the zero point value of the six-dimensional force sensor.
  • M, B and K are coefficient matrices
  • x is the displacement in the X-axis direction
  • x d is the expected displacement determined by the first processing depth
  • F d (t) is the expected pressure in constant force coordinated control.
  • Embodiment 3 of the present invention provides a strengthening processing process based on the bilateral ultrasonic rolling collaborative strengthening system provided in Embodiment 1 and the control method provided in Embodiment 2. As shown in Figure 9, the processing process includes the following steps:
  • the host computer After completing the gravity compensation, the host computer sends movement instructions to the control cabinet to control the movement of the robotic arm to the strengthening start position.
  • Step 1 in the processing trajectory read, and then send the movement trajectory data to the robot arm control cabinet in real time through the communication module to control the movement of the six-degree-of-freedom robot arm.
  • the host computer display module can display the current position of the robot arm in real time. Position and attitude as well as sensor data, while the file storage module in the control module records the current position and posture of the manipulator, force sensor data and other corresponding data in real time until the entire strengthening process is finally completed.
  • two six-degree-of-freedom robotic arms equipped with ultrasonic rolling tools combined with a self-developed control system are used to strengthen the processing of the blades.
  • the ultrasonic rolling tool head and the end of the six-degree-of-freedom robotic arm are fixed with bolts.
  • the blade clamping method in Figure 3 use bolts to fix the blades to ensure that they will not move during the processing.
  • start the control part set the six-degree-of-freedom robotic arm to automatic mode, open the control program, establish communication with the six-degree-of-freedom robotic arm and the six-dimensional force sensor, and there are disassembled and assembled parts on the ultrasonic rolling tool head.
  • control the six-degree-of-freedom robotic arm it is necessary to control the six-degree-of-freedom robotic arm through the control module to complete the gravity compensation in the new state, control the six-degree-of-freedom robotic arm to move to the starting position of blade strengthening, click to read the offline planned processing trajectory, set the load to 200N and start the strengthening processing. , set the ultrasonic gear to 10% and turn on the processing lubrication device. You can read the current status of the strengthening process through the display interface. After the strengthening is completed, the robot arm will stop moving in place. Close the program and you can get detailed information during the processing. Processing data information, which can be used for subsequent data analysis.
  • the surface integrity of the parts strengthened by ultrasonic rolling is tested using three-dimensional topography, XRD and other instruments.
  • the results obtained are good and are improved compared to the original unstrengthened state, and have been significantly improved after fatigue life verification.
  • the invention is suitable for aviation engines
  • the ultrasonic rolling strengthening system for compressor blades meets the requirements for blade strengthening processing.
  • Embodiment 4 of the present invention provides an overall arrangement for enhanced processing based on bilateral ultrasonic rolling collaborative strengthening, as shown in Figure 10.
  • the overall arrangement includes: a robotic arm control subsystem, an ultrasonic rolling strengthening subsystem, and an auxiliary Processing subsystem.
  • the robotic arm control subsystem includes a six-degree-of-freedom robotic arm and controller, and an additional external servo turntable. This is the main part of the system's movement. The movement of the robotic arm is controlled by the controller.
  • the ultrasonic rolling strengthening subsystem includes ultrasonic rolling tools and ultrasonic rolling generating devices, which are the main tools for surface strengthening and are in direct contact with the workpiece surface.
  • the auxiliary processing subsystem includes a six-dimensional force sensor, which is used to obtain real-time processing load data during the processing and feed it back to the control system, and a lubrication system, which is used to ensure the surface quality during the strengthening process.
  • This invention uses ultrasonic rolling bilateral collaborative strengthening technology to improve the surface quality and surface integrity of thin-walled blades and improve their fatigue life, which is an important idea of the invention.
  • the technical effects of the present invention include: (1) compared with existing equipment, the overall processing freedom and efficiency are improved; (2) ultrasonic rolling introduces residual compressive stress and refines grains to the surface of thin-walled blades, improving the overall Surface integrity and service life, eliminating manual polishing and other procedures to improve surface roughness; (3) This ultrasonic rolling strengthening equipment improves the efficiency of thin-walled blade strengthening and applies the same force to both sides of the thin-walled blade.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manipulator (AREA)

Abstract

一种双侧超声滚压协同强化系统及其控制方法,所述系统包括:第一机械臂子系统、第二机械臂子系统、第一超声滚压强化子系统、第二超声滚压强化子系统和伺服转台(13);伺服转台(13)用于固定待加工的叶片;第一超声滚压强化子系统设置在第一机械臂子系统的末端;第二超声滚压强化子系统设置在第二机械臂子系统的末端。机械臂搭载超声滚压强化装置的方式提高了叶片加工的自由度,并设置第一机械臂子系统、第二机械臂子系统、第一超声滚压强化子系统、第二超声滚压强化子系统和伺服转台(13)进行配合实现双面加工。

Description

一种双侧超声滚压协同强化系统及其控制方法
本申请要求于2022年07月28日提交中国专利局、申请号为202210894490.9、发明名称为“一种双侧超声滚压协同强化系统及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及零件加工技术领域,特别是涉及一种双侧超声滚压协同强化系统及其控制方法。
背景技术
由于航空发动机的生产周期长且测试成本高,在航空发动机的生产和制造达到标准之前需要投入大量的成本进行研发,随着航空科技的不断发展,航空发动机必须满足超高速、高空、长航时和超远航程的需求,并且航空发动机要能在高温高压高速的恶劣工作环境中运行,生命周期较短,易产生各种缺陷,如裂纹、磨损、扭曲等,是一种典型限寿部件。相比于在一定行程后去更换叶片,更加经济而且安全的做法是提升叶片的工作寿命,发动机中压气机叶片属于薄壁复杂曲面零件,由于其刚度较低的缺点,在强化过程中容易变形,影响其工作寿命,因此还需要尽可能减小加工变形。
超声滚压强化技术是一种新兴的表面强化技术,其原理是在静压力和高频高速的超声振动联合作用下,材料表面产生塑性变形,细化零件表层,提高金属表层硬度,克服了传统工艺在这方面的不足,引入有益的残余压应力,从而改善了表面的质量,提高零件的寿命。相比于磨削、抛光等传统工艺,超声滚压技术在原理上和操作上更加的简单、高效,并且对工件表面质量的有很大影响,但是超声滚压工艺仍处于实验摸索阶段,大多加工在形状规则的零件上来测试其参数和效果,加工设备主要在现有的车床上集成超声强化系统,对叶片复杂曲面的强化加工研究较少,由于搭载加工头的机床自由度有限,容易造成加工头与叶片其他部位造成干涉,导致零件不能完全的强化或是意外的划伤和损坏。而且目前表面强化方式大多采用单侧加工,单侧加工的方式容易造成压气机 叶片受到接触力而产生变形。
发明内容
有鉴于此,本发明提供了一种双侧超声滚压协同强化系统及其控制方法,以克服搭载加工头的机床自由度有限,容易造成加工头与叶片其他部位造成干涉,导致零件不能完全的强化或是意外划伤和损坏的技术缺陷,并实现双面加工。
为实现上述目的,本发明提供了如下方案:
一种双侧超声滚压协同强化系统,所述系统包括:第一机械臂子系统、第二机械臂子系统、第一超声滚压强化子系统、第二超声滚压强化子系统和伺服转台;
所述伺服转台用于固定待加工的叶片;
所述第一超声滚压强化子系统设置在所述第一机械臂子系统的末端;
所述第二超声滚压强化子系统设置在所述第二机械臂子系统的末端;
所述第一机械臂子系统用于带动所述第一超声滚压强化子系统对所述叶片的一面进行强化加工,所述第二机械臂子系统用于带动所述第二超声滚压强化子系统对所述叶片的另一面进行强化加工。
可选的,所述第一机械臂子系统和所述第二机械臂子系统均包括六自由度机械臂。
可选的,所述第一机械臂子系统和所述第一超声滚压强化子系统之间及所述第二机械臂子系统和所述第二超声滚压强化子系统之间均设置有六维力传感器。
可选的,所述第一超声滚压强化子系统和所述第二超声滚压强化子系统均包括超声滚压工具头和超声发生器;
所述超声发生器与所述超声滚压工具头中的超声波换能器连接,所述超声发生器用于产生预设频率的信号。
可选的,所述超声滚压工具头包括套筒、换能器压盘、超声波换能器、变幅杆、保持架和滚轮;
所述套筒通过螺栓与六维力传感器连接,所述超声波换能器的驱动端与所述超声发生器连接,所述超声波换能器的机械能输出端与所述变 幅杆的一端通过双头螺栓连接;
所述超声波换能器的驱动端位于所述套筒内,所述换能器压盘与所述套筒通过螺栓连接,用于限制所述超声波换能器与所述套筒之间的相对移动;
所述变幅杆的另一端通过所述保持架与所述滚轮连接。
可选的,所述系统还包括强化夹具;
所述伺服转台通过所述强化夹具固定所述叶片。
可选的,所述强化夹具的底部设置有十字形卡槽,所述十字形卡槽与所述伺服转台上设置的十字形卡爪对准,并通过螺栓固定;
所述强化夹具的顶部设置有凹槽,所述凹槽的顶面的四周设置在第一螺纹孔,所述凹槽的侧面设置有第二螺纹孔;所述强化夹具的顶部还设置有压盖,所述压盖的中心设置有通孔;
工作时,所述叶片的榫根设置在所述凹槽内,所述压盖通过螺栓与所述第一螺纹孔紧固,所述叶片穿过所述通孔,所述压盖用于限制所述叶片在Z轴方向的移动;所述第二螺纹孔内拧入螺栓,用于限制所述叶片在X轴方向和Y轴方向的移动;所述Z轴方向为强化进给方向,所述X轴方向为叶片的厚度方向,所述Y轴方向为与所述Z轴方向和所述X轴方向垂直的方向。
一种双侧超声滚压协同强化系统的控制方法,所述方法应用于上述双侧超声滚压协同强化系统,所述方法包括如下步骤:
将待加工的叶片固定在伺服转台上;
根据所述叶片的三维模型,生成第一机械臂运动轨迹和第二机械臂运动轨迹;
根据所述第一机械臂运动轨迹控制第一机械臂子系统动作;
根据所述第二机械臂运动轨迹控制第二机械臂子系统动作;
根据叶片的三维模型,确定叶片两面的加工深度,分别作为第一加工深度和第二加工深度;
根据所述第一加工深度控制第一超声滚压强化子系统动作;
根据所述第二加工深度控制第二超声滚压强化子系统动作。
可选的,所述根据所述叶片的三维模型,生成第一机械臂运动轨迹和第二机械臂运动轨迹,具体包括:
将Z轴的数值相同的数据点作为一层,对所述三维模型进行分层;
对于每层的数据点根据Y轴的数值划分为第一平面数据点和第二平面数据点,所述第一平面数据点为位于叶片的一面的数据点,所述第二平面数据点为位于叶片的另一面的数据点;
对于第一平面数据点和第二平面数据点,分别计算第一机械臂子系统的末端移动到每个第一平面数据点的第一时间点和第二机械臂子系统的末端移动到每个第二平面数据点的第一时间点;
在相邻两个所述第一时间点之间插入多个第二时间点;
所述第一平面数据点对应的第一时间点和第二时间点组成第一平面数据点所在层的第一机械臂运动轨迹;
所述第二平面数据点对应的第一时间点和第二时间点组成第二平面数据点所在层的第二机械臂运动轨迹。
可选的,所述根据所述第一加工深度控制第一超声滚压强化子系统动作,具体包括:
获取设置在第一机械臂子系统和所述第一超声滚压强化子系统之间的六维力传感器,采集的压力数据;
利用如下公式对所述压力数据进行重力补偿,获得补偿后的压力数据;
F'm(t)=Fm(t)-g2-F0
其中,F'm(t)为补偿后的压力数据,Fm(t)为采集的压力数据,t表示采样时间点,g2为第一超声滚压强化子系统的重力在传感器坐标系中的分量,F0为六维力传感器的零点值;
基于恒力协调控制原理,根据补偿后的压力数据和所述第一加工深度,采用如下公式控制第一超声滚压强化子系统动作;
其中,M、B和K均为系数矩阵,x为X轴方向的位移,xd为由第一加工深度确定的期望位移,Fd(t)为恒力协调控制中的期望压力。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明公开一种双侧超声滚压协同强化系统及其控制方法,所述系统包括:第一机械臂子系统、第二机械臂子系统、第一超声滚压强化子系统、第二超声滚压强化子系统和伺服转台;所述伺服转台用于固定待加工的叶片;所述第一超声滚压强化子系统设置在所述第一机械臂子系统的末端;所述第二超声滚压强化子系统设置在所述第二机械臂子系统的末端;所述第一机械臂子系统用于带动所述第一超声滚压强化子系统对所述叶片的一面进行强化加工,所述第二机械臂子系统用于带动所述第二超声滚压强化子系统对所述叶片的另一面进行强化加工。本发明采用机械臂搭载超声滚压强化装置的方式提高叶片加工的自由度,并设置第一机械臂子系统、第二机械臂子系统、第一超声滚压强化子系统、第二超声滚压强化子系统和伺服转台进行配合实现双面加工。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术行人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种双侧超声滚压协同强化系统的结构示意图;
图2为本发明实施例提供的超声滚压工具头的结构示意图;
图3为本发明实施例提供的强化夹具的结构示意图;
图4为本发明实施例提供的强化夹具安装示意图;
图5为本发明实施例提供的双侧超声滚压协同强化系统的控制方法的整体框架的结构示意图;
图6为本发明实施例提供的通讯方案的结构示意图;
图7为本发明实施例提供的轨迹二次处理优化的流程图;
图8为本发明实施例提供的强化加工路径示意图;
图9为本发明实施例提供的强化加工的流程图;
图10为本发明实施例提供的基于双侧超声滚压协同强化的强化加工 的整体布置图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术行人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种双侧超声滚压协同强化系统及其控制方法,以克服搭载加工头的机床自由度有限,容易造成加工头与叶片其他部位造成干涉,导致零件不能完全的强化或是意外划伤和损坏的技术缺陷,并实现双面加工。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例1
如图1所示,本发明实施例1提供一种双侧超声滚压协同强化系统,所述系统包括:第一机械臂子系统、第二机械臂子系统、第一超声滚压强化子系统、第二超声滚压强化子系统和伺服转台13;所述伺服转台用于固定待加工的叶片;所述第一超声滚压强化子系统设置在所述第一机械臂子系统的末端;所述第二超声滚压强化子系统设置在所述第二机械臂子系统的末端;所述第一机械臂子系统用于带动所述第一超声滚压强化子系统对所述叶片的一面进行强化加工,所述第二机械臂子系统用于带动所述第二超声滚压强化子系统对所述叶片的另一面进行强化加工。
其中,第一机械臂子系统包括第一六自由度机械臂1,第二机械臂子系统包括第二六自由度机械臂9,第一超声滚压强化子系统包括第一超声发生器3和第一超声滚压工具头4,第二超声滚压强化子系统包括第二超声发生器8和第二超声滚压工具头7,第一六自由度机械臂1和第一超声滚压工具头4之间设置有第一六维力传感器2、第二六自由度机械臂9和第二超声滚压工具头7之间设置有第二六维力传感器11,待加工的叶片5通过强化夹具6设置在伺服转台13上,第一机器人控制柜14、第二 机器人控制柜10、伺服转台13和上位机12之间的虚线表示电连接或通讯连接。
1、六自由度机械臂,包括第一六自由度机械臂1和第二六自由度机械臂9。
作为整个系统的执行机构,搭载超声滚压工具头(包括第一超声滚压工具头4和第二超声滚压工具头7)在空间中可以进行六个自由度的运动,实现超声滚压强化的轨迹运动。
2、机器人控制柜
机器人控制柜是六自由度机械臂的控制机构,通过电缆与机械臂本体建立连接,可以为六自由度机械臂供电并驱动六自由度机械臂各关节进行运动,利用网线与上位机建立通讯,在图1中利用虚线表示上位机12与力传感器(包括第一六维力传感器2和第二六维力传感器11)之间的通讯连接。
3、伺服转台
伺服转台主要由伺服电机、减速器和十字卡盘组成,通过驱动伺服电机连接减速器从而带动十字卡盘的旋转运动。
4、超声滚压工具头包括第一超声滚压工具头4和第二超声滚压工具头7。
超声滚压加工是利用超声冲击结合静载滚压的工作方法,超声滚压工具头将静压力和超声发生器提供的振动传递到机械零件表面,对金属零部件的表面进行处理,从而提高零件的表面效果,是一种较为高效的处理方式。超声滚压工具头的结构如图2所示,该结构包括套筒402、换能器压盘403、超声波换能器404、变幅杆407、保持架408和滚轮409。
示例性的,如图2所示,超声滚压工具头利用套筒402通过第一螺栓401与第一六维力传感器2连接;超声波换能器404是整个加工头的振动源,它与超声波发生器连接,可以将超声波发生器3产生的电能转化为高频振动的机械能,本发明选用较为简单的柱形换能器,安装方便且成本较低;换能器压盘403用于固定超声波换能器404,套筒402和换能器压盘403通过第二螺栓405连接,固定超声波换能器404在整个超 声滚压工具头中的位置;变幅杆407用以传递并放大超声振动的机械能,机械振动的质点位移或速度通过变幅杆可以得到放大,通常和换能器结合使用,在换能器与工具头之间连接变幅杆,能够把机械振幅放大到所需的要求,本发明中的变幅杆407采用的是阶梯型变幅杆,变幅杆407的一段和超声波换能器404具有相同大小的螺纹孔,通过双头螺柱406将两个零件连接在一起。保持架408用于连接变幅杆407与滚轮409,变幅杆407的顶端开有螺纹孔,保持架408可通过螺纹进行紧固,与变幅杆407成为一体,在其他采用滚球式的超声滚压头中需要人工根据经验调整滚压头与变幅杆407的间隙,不合适的间隙会影响到叶片表面的强化效果,而本发明避免了调整间隙的误差和不确定性。
5、超声发生器包括第一超声发生器3和第二超声发生器8。
超声发生器作为超声振动系统中的驱动电源及控制部分,是大功率超声系统的重要组成部分。其输出通过电连接与超声滚压工具头中的超声波换能器404连接,如图2所示,可将50Hz的市电转换成同超声换能器相适应的高频电流。考虑到转换效率,超声波电源通常会采用开关电源的电路形式。在工作状态下超声发生器会产生一个特频信号,根据需求的不同会产生正弦或脉冲信号,而这个特定的频率就是换能器的工作频率。
6、六维力传感器
能够读取空间中XYZ三个方向上受到的力和力矩能够用于读取在强化过程中超声滚压工具头与零件之间的作用力大小。示例性的,如图2所示,第一六维力传感器2通过螺栓与第一六自由度机械臂1末端的法兰盘连接。本发明实施例中的六维力传感器携带有控制器,用于采集信号、A/D转换、信号处理与通讯,利用网线将控制器与上位机建立通讯,在图1中利用虚线表示上位机12分别与第一六维力传感器2和第二六维力传感器11之间的通讯连接。
7、强化夹具
强化夹具6用于对叶片4的装夹,保持叶片位置。其结构如图3所示,强化夹具6的底部有十字形卡槽604,首先将十字形卡槽604与伺服 转台13上的十字形卡爪对准,如图4所示,十字卡爪上有螺栓孔,通过调整卡爪的扩大或者收缩,将第三螺栓605通过强化夹具6的螺栓孔对准十字形卡爪的螺栓孔,从而将强化夹具6固定在伺服转台13,将叶片的榫根放入凹槽中,将压盖602通过四个第四螺栓601与强化夹具6进行紧固,确保叶片在图3所示的Z方向上不产生移动,通过紧固图3所示的XY平面上的第五螺栓603,确保叶片在X和Y方向上也不会发生移动。
8、上位机
上位机12是用于与六自由度机械臂和六维力传感器建立相互通讯,能够显示强化过程中的六自由度机械臂和六维力传感器相关信息变化,并通过上位机12发送相应的数据及指令控制机械臂的运动。具体连接方式:首先将强化夹具6根据上述的安装方法固定于十字卡爪上,叶片5利用两个方向上的第四螺栓601和第五螺栓603固定在强化夹具6上,固定完成之后可以通过控制伺服转台13调节叶片5的初始姿态。将第一六维力传感器2通过法兰和螺栓连接至第一六自由度机械臂1末端,然后将第一超声滚压工具头4中的套筒402利用螺栓固定与第一六维力传感器2上,将超声波换能器404和变幅杆407通过双头螺栓406紧固后放入套筒402中,随后通过换能器压盘403利用第二螺栓405固定,最后将携带滚轮409的保持架408拧入变幅杆407顶端的螺栓孔并紧固,完成超声滚压工具头的安装,将超声换能器404的连接线与超声发生器对应的线连接,第二六自由度机械臂9的配置与第一六自由度机械臂1相同,将第一六自由度机械臂1和第二六自由度机械臂9固定于伺服转台13两侧,与其保持一定距离便于机械臂运转,最后将机械臂控制柜和六维力传感器通过网线连接至上位机12,完成整个系统的硬件连接。通过第一六自由度机械臂1和第二六自由度机械臂9的协同运动实现对叶片的双面同时表面超声滚压强化处理。
实施例2
本发明实施例2提供一种双侧超声滚压协同强化系统的控制方法。本发明涉及机器人控制领域,具体地,上位机通过UDP通讯方式与六自 由度机械臂和六维力传感器通讯,从而实现超声滚压强化过程中六自由度机械臂实时控制与调整。其整体架构如图5所示。
通讯模块将上位机与六自由度机械臂和六维力传感器利用网线进行物理连接,通过UDP通讯协议建立通讯,实现双向数据传输,更具体的系统通讯方案如图6所示,通过设置与六自由度机械臂和六维力传感器通讯的配置文件,实现上位机与整个系统的通讯连接,从而得到六自由度机械臂当前的状态如当前坐标系中笛卡尔的位置、各轴关节的位置、通过A/D转换的六维力传感器的数据以及运动模式和通讯状态。
通过通讯模块得到的数据值通过显示模块实时在上位机上显示,其中运动模式是指在控制模块中根据选择不同的控制方式,会有对应的状态。在显示模块中,还能将六维力传感器的数据值绘制成曲线图,能够直观的知道当前工作中作用载荷的变化情况。
在控制模块中设定了基础运动如笛卡尔坐标系运动和轴关节运动,可以通过输入具体的坐标或关节数据控制机械臂运动到指定位置,轨迹运动可通过文件读取方式获得轨迹运动数据,通过轨迹运动控制可以沿着预期的轨迹进行运动。
所述方法应用于上述双侧超声滚压协同强化系统,所述方法包括如下步骤:
将待加工的叶片固定在伺服转台上。
根据所述叶片的三维模型,生成第一机械臂运动轨迹和第二机械臂运动轨迹。
表面轨迹规划方法,具体包括:
待加工的叶片表面强化轨迹规划方法采用UG软件CAM模块与MATLAB相结合方式生成可供控制模块读取的txt数据文件,整个生成方法包括以下几个步骤:
1、导入叶片的三维模型,获得具体数据。
2、设定工件坐标系、刀具等参数。
3、设置强化区域与间隔。
4、生成初始刀位点与刀触点。
5、MATLAB读取初始轨迹。
6、进行二次处理优化轨迹生成机械臂运动轨迹。
尽管在UG中能够设置每一层的轨迹点,但是由于叶片的曲面是不规则的,因此会导致疏密不均的情况,为保证运动过程中的速度要求和连续型需要进行二次处理,最终输出可供机械臂识别的位置数据XYZ和姿态数据ABC,保存在TXT文件中。
具体地,为了通过初始轨迹获得最终运动轨迹,首先根据图3中坐标系设定方向,X为薄壁厚度方向,Z为强化进给的方向。
将由UG软件中所生成的所有数据点作为初始轨迹点,通过MATLAB读取数据下一步的二次处理,强化加工路径示意图可见图8,轨迹二次处理优化的流程如图7所示,首先对得到的数据点根据Z方向上的数值变化进行分层操作,将Z方向上值相同的数据作为同一层的轨迹点,为了符合工艺参数要求,对每个点位需要进行重新分配,首先遍历这一层的所有数据点,每一层的数据都是从Y的最大值到最小值再从最小值到最大值,由于每一层中Y的值只有2个最大值和2个最小值,记录四个值的下标,相邻的下标则是两个面的分割区分处,将一层轨迹分成两个面L面和R面,设同一层上两个面的坐标分别为xl,yl,xr,yr。利用距离公式得到相邻点之间的距离,根据需要的运动速度v,计算从起始点开始到每个数据点所需要是的时间序列ti,将时间点序列ti根据上位机与六自由度机械臂的通讯频率Δt进行等分成新的时间序列tj,利用已知的若干点ti对应的坐标值,作出适当的特定函数,然后根据新的tj值进行线性插值计算出新的坐标点序列xl',yl',xr',yr',若L面和R面的曲面一致,则判断插值后xl',yl',xr',yr'轨迹点的数量Num_L和Num_R是否相等,若有细微的差别,为确保两边运行同步,则以数量少的为标准。若两边的曲面不相等,根据两边轨迹长短比例设定等比例速度后进行插值,得到的轨迹如图8所示。
通过上述计算能够获得六自由度机械臂运动的轨迹点即XYZ的数值,但是不能机械臂的姿态还没有确定,为了使强化过程中超声滚压工具头与叶片表面相垂直,需要计算出机械臂运动姿态,首先设叶片根据 刀触点CP与刀位点LP,通过刀位点与刀触点两个点的连线形成的向量即工具沿着曲面的法向量,计算法向量与工件坐标系的方向夹角,最终转换成机械臂ZYX欧拉角。通过轨迹点与姿态的结合获得最终机械臂可执行数据文件可供控制模块读取。
示例性的,所述根据所述叶片的三维模型,生成第一机械臂运动轨迹和第二机械臂运动轨迹,具体包括:将Z轴的数值相同的数据点作为一层,对所述三维模型进行分层;对于每层的数据点根据Y轴的数值划分为第一平面数据点和第二平面数据点,所述第一平面数据点为位于叶片的一面的数据点,所述第二平面数据点为位于叶片的另一面的数据点;对于第一平面数据点和第二平面数据点,分别计算第一机械臂子系统的末端移动到每个第一平面数据点的第一时间点和第二机械臂子系统的末端移动到每个第二平面数据点的第一时间点;在相邻两个所述第一时间点之间插入多个第二时间点;所述第一平面数据点对应的第一时间点和第二时间点组成第一平面数据点所在层的第一机械臂运动轨迹;所述第二平面数据点对应的第一时间点和第二时间点组成第二平面数据点所在层的第二机械臂运动轨迹。
根据所述第一机械臂运动轨迹控制第一机械臂子系统动作。
根据所述第二机械臂运动轨迹控制第二机械臂子系统动作。
根据叶片的三维模型,确定叶片两面的加工深度,分别作为第一加工深度和第二加工深度。
根据所述第一加工深度控制第一超声滚压强化子系统动作。
根据所述第二加工深度控制第二超声滚压强化子系统动作。
为了保证强化载荷的恒定,建立恒力协调控制,利用六维力传感器数据进行闭环调节,通过重力补偿算法抵消超声滚压强化子系统的超声滚压工具头的重力在加工过程中的影响。
具体的,将世界坐标系下测得的超声滚压工具头的重力及六维力传感器初始值转换在传感器坐标系下的分力,即建立传感器坐标与基坐标的转换关系。
机器人基坐标系记为O1-X1Y1Z1,假设O1-X1Y1Z1可以通过世界坐标系 O0-X0Y0Z0先绕X轴旋转角度U,再绕Y1轴旋转角度V得到。则由O1-X1Y1Z11向O0-X0Y0Z0的姿态转换矩阵为:
通过坐标变换,可得到超声滚压工具头的重力G在传感器坐标系中的向量为:
在超声滚压工具头还没有接触零件的时候,六维力传感器得到的数据则是超声滚压工具头在传感器坐标系中的分量[Fx,Fy,Fz]'与六维力传感器的零点值[Fx0,Fy0,Fz0]':
在对上式进行求解计算的时候为了避免病态矩阵,至少需要有3个姿态下机器人末端的指向向量不共面,通过多组的机械臂姿态值和力传感器的值求解得到力传感器的初始力与工具重力随姿态变换的值,最终可以得到加工过程中实际接触力的大小,为恒力控制提供静压力数据。
通过恒力协调控制,将力传感器的数据值与期望值作对比,根据误差的大小对机械臂运动的数据点进行细微调整来改变误差的大小,从而降低强化加工过程中的载荷变化,具体的,首先建立力误差值与位移之间的关系如式(4),通过对式(4)的变式转化与求解,获得力的误差值Fe对应的机械臂位移变化值Δx,并实时添加到原有的离线轨迹中去,从而实现在线实时闭环调整。
文件读取实现获取离线轨迹点数据,通过控制模块转换成运动指令控制机械臂完成具体的行为。
示例性的,所述根据所述第一加工深度控制第一超声滚压强化子系 统动作,具体包括:
获取设置在第一机械臂子系统和所述第一超声滚压强化子系统之间的六维力传感器,采集的压力数据。
利用如下公式对所述压力数据进行重力补偿,获得补偿后的压力数据。
F'm(t)=Fm(t)-g2-F0
其中,Fm'(t)为补偿后的压力数据,Fm(t)为采集的压力数据,t表示采样时间点,g2为第一超声滚压强化子系统的重力在传感器坐标系中的分量,F0为六维力传感器的零点值。
基于恒力协调控制原理,根据补偿后的压力数据和所述第一加工深度,采用如下公式控制第一超声滚压强化子系统动作;
其中,M、B和K均为系数矩阵,x为X轴方向的位移,xd为由第一加工深度确定的期望位移,Fd(t)为恒力协调控制中的期望压力。
实施例3
本发明实施例3提供一种基于实施例1提供的双侧超声滚压协同强化系统及实施例2提供的控制方法的强化加工过程,如图9所示,所述加工过程包括如下步骤:
(1)将未强化的叶片装夹至强化夹具上。
(2)将机械臂模式转换为自动模式,上位机通过通讯模块与机械臂控制柜和六维力传感器建立通讯。
(3)通过控制模块控制机械臂进行重力补偿,首先预设多组机械臂的姿态在上位机程序中,通过上位机的控制模块下达运动指令给控制柜控制六自由度机械臂运动,六自由度机械臂每到达一个姿态,上位机便自动记录当前的六维力传感器数据值和机械臂姿态值,在所有姿态都到达之后,上位机会自动计算重力补偿结果,完成重力补偿,抵消了超声滚压工具头的重力带来的静压力干扰,此时经过重力补偿过后六维力传感器的数据则是超声滚压工具与叶片接触产生的静压力,用于后续在加工过程中恒力协调控制的输入。
(4)在完成重力补偿后,上位机发送运动指令给控制柜控制机械臂运动至强化开始位置。
(5)然后在上位机中读取上述轨迹规划生成的加工轨迹文件,并设定预期静压力载荷大小,将该载荷大小作为在加工过程中超声滚压载荷的参考值。
(6)打开超声发生器的电源,设定振幅参数从而改变超声滚压工具头在强化过程中的输出振幅。
(7)启动强化加工,利用控制模块中的恒力协调控制,将实际传感器的静压力大小与第(6)步中设定预期载荷的差值实时转化为机械臂位移值,并叠加到第(6)步所读取的加工轨迹中,然后通过通讯模块实时将运动轨迹数据发送给机械臂控制柜控制六自由度机械臂运动,在运动的时候上位机显示模块能够实时显示当前机械臂的位置和姿态以及传感器的数据,同时控制模块中文件存储模块实时记录当前机械臂的位姿、力传感器的数据等相应数据,直到最终完成整个强化流程。
本实施例利用两台六自由度机械臂搭载超声滚压工具结合自主开发的控制系统对叶片进行强化加工。使用者第一次强化加工时,将超声滚压工具头与六自由度机械臂末端通过螺栓固定。其次,根据图3叶片的装夹方式,利用螺栓将叶片进行固定确保加工过程中不会发生移动。在装夹部分完成后启动控制部分,将六自由度机械臂设置为自动模式,打开控制程序,与六自由度机械臂和六维力传感器建立通讯,在超声滚压工具头有经过拆装的情况下,需要通过控制模块控制六自由度机械臂完成新状态下的重力补偿,控制六自由度机械臂运动至叶片强化开始位置,点击读取离线规划加工轨迹,设定载荷200N后启动强化加工,设定超声档位为10%并开启加工润滑装置,可通过显示界面读取当前强化过程中的状态,待强化完成后,机械臂会原地停止运动,关闭程序可以得到加工过程中详细的加工数据信息,该加工数据信息可用于后续的数据分析。
强化完成后对超声滚压强化后的零件利用三维形貌仪、XRD等仪器测试表面完整性,得到的结果良好且都比原始未强化状态有所提升,并且经过疲劳寿命验证有显著的提升。说明所发明的一种适用于航空发动 机压气机叶片超声滚压强化的系统满足叶片强化加工要求。
实施例4
本发明实施例4提供一种基于双侧超声滚压协同强化的强化加工的整体布置,如图10所示,所述整体布置包括:机械臂控制子系统、超声滚压强化子系统、及辅助加工子系统。
其中机械臂控制子系统包括六自由度机械臂及控制器、附加外部伺服转台,这是系统运动的主体部分,通过控制器控制机械臂的运动。
超声滚压强化子系统包括超声滚压工具及超声滚压发生装置,这是表面强化的主要工具,与工件表面直接接触。
辅助加工子系统包括六维力传感器,用于加工过程中对加工载荷数据实时获取并反馈给控制系统,润滑系统,用于保证在强化过程中的表面质量。
本发明通过超声滚压双侧协同强化技术将薄壁叶片的表面质量及表面完整性提高,疲劳寿命提高,是本发明的重要思路。本发明的技术效果包括:(1)相对于现有的设备,提高了整体加工的自由度与效率;(2)超声滚压为薄壁叶片表面引入残余压应力及细化晶粒,提高整体表面完整性与服役寿命,省去人工抛光等提高表面粗糙度的程序;(3)本超声滚压强化装备提升了薄壁叶片强化的效率,对薄壁叶片的两侧施加相同大小的力进行同时强化,相互起到支撑作用不需要支撑装置,节省了拆装支撑装置以及调整旋转台的过程,减少了容易造成误差的步骤,减少变形的可能性;(4)超声滚压工具头在加工一定时间后会产生磨损属于损耗品,与变幅杆采用螺纹连接,既便于更换又能够减少安装误差;(5)相对于传统机械臂采用示教不能容易较为复杂路径运动,通过整套系统可以节省人力调节;(6)在整个控制过程中引入力反馈形成闭环控制,保证滚压强化装置能够与薄壁叶片柔顺接触,将接触力控制在预期的范围中,保证强化的质量。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术行人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种双侧超声滚压协同强化系统,其特征在于,所述系统包括:第一机械臂子系统、第二机械臂子系统、第一超声滚压强化子系统、第二超声滚压强化子系统和伺服转台;
    所述伺服转台用于固定待加工的叶片;
    所述第一超声滚压强化子系统设置在所述第一机械臂子系统的末端;
    所述第二超声滚压强化子系统设置在所述第二机械臂子系统的末端;
    所述第一机械臂子系统用于带动所述第一超声滚压强化子系统对所述叶片的一面进行强化加工,所述第二机械臂子系统用于带动所述第二超声滚压强化子系统对所述叶片的另一面进行强化加工。
  2. 根据权利要求1所述的双侧超声滚压协同强化系统,其特征在于,所述第一机械臂子系统和所述第二机械臂子系统均包括六自由度机械臂。
  3. 根据权利要求1所述的双侧超声滚压协同强化系统,其特征在于,所述第一机械臂子系统和所述第一超声滚压强化子系统之间及所述第二机械臂子系统和所述第二超声滚压强化子系统之间均设置有六维力传感器。
  4. 根据权利要求3所述的双侧超声滚压协同强化系统,其特征在于,所述第一超声滚压强化子系统和所述第二超声滚压强化子系统均包括超声滚压工具头和超声发生器;
    所述超声发生器与所述超声滚压工具头中的超声波换能器连接,所述超声发生器用于产生预设频率的信号。
  5. 根据权利要求4所述的双侧超声滚压协同强化系统,其特征在于,所述超声滚压工具头包括套筒、换能器压盘、超声波换能器、变幅杆、保持架和滚轮;
    所述套筒通过螺栓与六维力传感器连接,所述超声波换能器的驱动端与所述超声发生器连接,所述超声波换能器的机械能输出端与所述变幅杆的一端通过双头螺栓连接;
    所述超声波换能器的驱动端位于所述套筒内,所述换能器压盘与所述套筒通过螺栓连接,用于限制所述超声波换能器与所述套筒之间的相对移动;
    所述变幅杆的另一端通过所述保持架与所述滚轮连接。
  6. 根据权利要求1所述的双侧超声滚压协同强化系统,其特征在于,所述系统还包括强化夹具;
    所述伺服转台通过所述强化夹具固定所述叶片。
  7. 根据权利要求6所述的双侧超声滚压协同强化系统,其特征在于,所述强化夹具的底部设置有十字形卡槽,所述十字形卡槽与所述伺服转台上设置的十字形卡爪对准,并通过螺栓固定;
    所述强化夹具的顶部设置有凹槽,所述凹槽的顶面的四周设置在第一螺纹孔,所述凹槽的侧面设置有第二螺纹孔;所述强化夹具的顶部还设置有压盖,所述压盖的中心设置有通孔;
    工作时,所述叶片的榫根设置在所述凹槽内,所述压盖通过螺栓与所述第一螺纹孔紧固,所述叶片穿过所述通孔,所述压盖用于限制所述叶片在Z轴方向的移动;所述第二螺纹孔内拧入螺栓,用于限制所述叶片在X轴方向和Y轴方向的移动;所述Z轴方向为强化进给方向,所述X轴方向为叶片的厚度方向,所述Y轴方向为与所述Z轴方向和所述X轴方向垂直的方向。
  8. 一种双侧超声滚压协同强化系统的控制方法,其特征在于,所述方法应用于权利要求1-7任一项所述的双侧超声滚压协同强化系统,所述方法包括如下步骤:
    将待加工的叶片固定在伺服转台上;
    根据所述叶片的三维模型,生成第一机械臂运动轨迹和第二机械臂运动轨迹;
    根据所述第一机械臂运动轨迹控制第一机械臂子系统动作;
    根据所述第二机械臂运动轨迹控制第二机械臂子系统动作;
    根据叶片的三维模型,确定叶片两面的加工深度,分别作为第一加工深度和第二加工深度;
    根据所述第一加工深度控制第一超声滚压强化子系统动作;
    根据所述第二加工深度控制第二超声滚压强化子系统动作。
  9. 根据权利要求8所述的双侧超声滚压协同强化系统的控制方法,其特征在于,所述根据所述叶片的三维模型,生成第一机械臂运动轨迹和第二机械臂运动轨迹,具体包括:
    将Z轴的数值相同的数据点作为一层,对所述三维模型进行分层;
    对于每层的数据点根据Y轴的数值划分为第一平面数据点和第二平面数据点,所述第一平面数据点为位于叶片的一面的数据点,所述第二平面数据点为位于叶片的另一面的数据点;
    对于第一平面数据点和第二平面数据点,分别计算第一机械臂子系统的末端移动到每个第一平面数据点的第一时间点和第二机械臂子系统的末端移动到每个第二平面数据点的第一时间点;
    在相邻两个所述第一时间点之间插入多个第二时间点;
    所述第一平面数据点对应的第一时间点和第二时间点组成第一平面数据点所在层的第一机械臂运动轨迹;
    所述第二平面数据点对应的第一时间点和第二时间点组成第二平面数据点所在层的第二机械臂运动轨迹。
  10. 根据权利要求8所述的双侧超声滚压协同强化系统的控制方法,其特征在于,根据所述第一加工深度控制第一超声滚压强化子系统动作,具体包括:
    获取设置在第一机械臂子系统和所述第一超声滚压强化子系统之间的六维力传感器,采集的压力数据;
    利用如下公式对所述压力数据进行重力补偿,获得补偿后的压力数据;
    Fm'(t)=Fm(t)-g2-F0
    其中,Fm'(t)为补偿后的压力数据,Fm(t)为采集的压力数据,t表示采样时间点,g2为第一超声滚压强化子系统的重力在传感器坐标系中的分量,F0为六维力传感器的零点值;
    基于恒力协调控制原理,根据补偿后的压力数据和所述第一加工深度,采用如下公式控制第一超声滚压强化子系统动作;
    其中,M、B和K均为系数矩阵,x为X轴方向的位移,xd为由第一加工深度确定的期望位移,Fd(t)为恒力协调控制中的期望压力,Fe为压力偏差。
PCT/CN2023/087266 2022-07-28 2023-04-10 一种双侧超声滚压协同强化系统及其控制方法 WO2024021677A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210894490.9 2022-07-28
CN202210894490.9A CN115369223B (zh) 2022-07-28 2022-07-28 一种双侧超声滚压协同强化系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2024021677A1 true WO2024021677A1 (zh) 2024-02-01

Family

ID=84063604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087266 WO2024021677A1 (zh) 2022-07-28 2023-04-10 一种双侧超声滚压协同强化系统及其控制方法

Country Status (2)

Country Link
CN (1) CN115369223B (zh)
WO (1) WO2024021677A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115369223B (zh) * 2022-07-28 2023-11-21 华东理工大学 一种双侧超声滚压协同强化系统及其控制方法
CN116000787B (zh) * 2023-03-27 2023-08-18 陕西联信材料科技有限公司 一种航空飞机叶片自动化抛光机器人

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006053845A1 (de) * 2006-11-14 2008-05-15 GM Global Technology Operations, Inc., Detroit Verfahren und Vorrichtung zum Festwalzen von Flächen eines Werkstücks
CN108330264A (zh) * 2017-12-22 2018-07-27 华东理工大学 一种轨迹可控的表面强化装置
CN111876570A (zh) * 2020-07-15 2020-11-03 华东理工大学 航空发动机叶片超声滚压强化机器人加工系统及控制方法
CN115369223A (zh) * 2022-07-28 2022-11-22 华东理工大学 一种双侧超声滚压协同强化系统及其控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489580B (zh) * 2018-12-10 2021-09-24 华东理工大学 一种航空发动机叶片表面加工的在机点云检测及补偿方法
CN110202318B (zh) * 2019-06-18 2021-11-05 华东理工大学 一种基于双侧超声滚压加工的航空叶片定位与姿态调节方法
CN110358901B (zh) * 2019-07-30 2023-08-25 河南理工大学 便携式多方位超声辅助振动滚压装置及其使用方法
CN110704972B (zh) * 2019-09-27 2023-02-24 华东理工大学 一种叶片表面双侧超声滚压加工轨迹协调方法
CN110743976B (zh) * 2019-10-21 2022-01-18 江苏科技大学 一种基于双机械臂的船体外板曲面成形装备及其实现方法
CN113981188A (zh) * 2021-09-23 2022-01-28 华东理工大学 一种轨迹可控双边超声滚压表面强化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006053845A1 (de) * 2006-11-14 2008-05-15 GM Global Technology Operations, Inc., Detroit Verfahren und Vorrichtung zum Festwalzen von Flächen eines Werkstücks
CN108330264A (zh) * 2017-12-22 2018-07-27 华东理工大学 一种轨迹可控的表面强化装置
CN111876570A (zh) * 2020-07-15 2020-11-03 华东理工大学 航空发动机叶片超声滚压强化机器人加工系统及控制方法
CN115369223A (zh) * 2022-07-28 2022-11-22 华东理工大学 一种双侧超声滚压协同强化系统及其控制方法

Also Published As

Publication number Publication date
CN115369223A (zh) 2022-11-22
CN115369223B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2024021677A1 (zh) 一种双侧超声滚压协同强化系统及其控制方法
CN110193829B (zh) 一种耦合运动学与刚度参数辨识的机器人精度控制方法
Chen et al. Robot machining: recent development and future research issues
Chen et al. Robotic grinding of a blisk with two degrees of freedom contact force control
CN106238969A (zh) 基于结构光视觉的非标件自动化焊接加工系统
CN205650975U (zh) 基于结构光视觉的非标件自动化焊接加工系统
CN111037542B (zh) 一种逆动力学控制机器人直线加工的轨迹误差补偿方法
CN111702762A (zh) 一种工业机器人作业姿态优化方法
CN114880888B (zh) 多旋转关节机器人末端效应器位姿相关动力学的预测方法
CN111452033A (zh) 一种工业机器人双nurbs曲线铣削轨迹规划方法
Nagao et al. Machining performance of robot-type machine tool consisted of parallel and serial links based on calibration of kinematics parameters
CN113664431A (zh) 一种可实时调整姿态的钢结构件焊接臂及调整方法
Mineo et al. Robotic path planning for non-destructive testing of complex shaped surfaces
Azamfirei et al. Towards fixtureless robotic in-line measurement assisted assembly, a case study
JP2012020388A (ja) ロボットシステムおよびロボット制御方法
Hayashi et al. Forward kinematics model for evaluation of machining performance of robot type machine tool
Ma et al. Kinematic analysis of the robot having closed chain mechanisms based on an improved modeling method and Lie group theory
CN112975960A (zh) 一种机器人末端精细控制模型的建立与参数校准方法
Lin et al. Improvements of robot positioning accuracy and drilling perpendicularity for autonomous drilling robot system
Chen et al. Intelligent surface normal measurement method of end effector for the aeronautical drilling robot
Zong et al. Optimization of Installation Position for Complex Space Curve Weldments in Robotic Friction Stir Welding Based on Dynamic Dual Particle Swarm Optimization
Huo et al. Research on intelligent manufacturing equipment visual inspection control based on machine vision
Changchun et al. Coordinated motion analysis and simulation of arc welding robot and positioner
Dai et al. Design Method of Robot Welding Workstation Based on Adaptive Planing
CN110919639A (zh) 一种关节式示教臂及基于该示教臂的示教方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23844894

Country of ref document: EP

Kind code of ref document: A1