WO2024021671A1 - 一种抗撞击装置及水面光伏电站 - Google Patents

一种抗撞击装置及水面光伏电站 Download PDF

Info

Publication number
WO2024021671A1
WO2024021671A1 PCT/CN2023/086466 CN2023086466W WO2024021671A1 WO 2024021671 A1 WO2024021671 A1 WO 2024021671A1 CN 2023086466 W CN2023086466 W CN 2023086466W WO 2024021671 A1 WO2024021671 A1 WO 2024021671A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
breaking mechanism
collision device
guide
floe
Prior art date
Application number
PCT/CN2023/086466
Other languages
English (en)
French (fr)
Inventor
任青
刘洋
许明
赵富强
张艳杰
王荣祥
Original Assignee
阳光新能源开发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光新能源开发股份有限公司 filed Critical 阳光新能源开发股份有限公司
Publication of WO2024021671A1 publication Critical patent/WO2024021671A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/18Improving safety of vessels, e.g. damage control, not otherwise provided for preventing collision or grounding; reducing collision damage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Definitions

  • the present invention relates to the field of photovoltaic technology, and specifically to an anti-impact device and a water surface photovoltaic power station.
  • water surface photovoltaics such as water surface fishery and photovoltaic complementary applications
  • water surface photovoltaic has brought some problems.
  • water surface photovoltaic power stations use a large number of prefabricated prestressed concrete pipe piles as supports.
  • the ice floes move slowly under the action of wind and water flow.
  • the floating ice will collide with the pipe piles during the movement.
  • the pipe piles are prone to cracking and breaking under the horizontal force of the floating ice, causing great trouble and potential safety hazards to the safe production of surface photovoltaic power stations.
  • the condition of floating ice is often checked manually and the ice is broken manually or an icebreaker is used to break the ice, or the diameter of the pipe pile is increased to increase the anti-crack bending moment to avoid the pipe pile being damaged.
  • the range is wide, the impact force is large, and the protective effect is limited.
  • the present invention aims to solve to a certain extent the problem in the related art of how to reduce the risk of pipe piles being broken due to impact by ice floes.
  • the utility model provides an anti-collision device, which includes an ice breaking mechanism and a force applying mechanism;
  • a guide structure is provided on the peripheral side of the ice-breaking mechanism in at least one direction, and the guide structure is used to contact the floating ice and guide the floating ice in the up and down direction;
  • the force-applying mechanism is used to apply force to the ice-breaking mechanism so that the ice-breaking mechanism can be floated and/or rotated at a calibrated height of the water area.
  • the distance from the point where the guide structure is used to contact the floating ice to the center line gradually decreases
  • the distance from the point where the guide structure is used to contact the floating ice to the center line gradually increases and then gradually decreases.
  • the number of the guide structures is one or more.
  • the adjacent guide structures are connected as one body or are arranged at intervals.
  • the guide structure includes a guide surface structure
  • the cross-sectional shape of the guide surface structure includes at least part of a polygon or a circle.
  • the force applying mechanism includes a gravity offset mechanism; the gravity offset mechanism is used to offset the gravity of the ice breaking mechanism so that the ice breaking mechanism is suspended in the water area.
  • the gravity offset mechanism includes a suspension mechanism and/or a rope pulling mechanism.
  • the suspension mechanism includes a float.
  • the ice-breaking mechanism is integrally connected with the buoy;
  • the ice-breaking mechanism is detachably and fixedly connected to the buoy;
  • the buoy is at least partially located below the ice-breaking mechanism, and the ice-breaking mechanism is movably connected to the buoy in the up and down direction.
  • the anti-collision device further includes a counterweight connected to the ice breaking mechanism and/or the buoy.
  • the counterweight includes a first counterweight and/or a second counterweight
  • the pontoon includes a barrel body and a waterproof seal.
  • the barrel body is provided with a communication hole.
  • the waterproof seal is provided at the communication hole.
  • the communication hole is used for inserting or placing the first counterweight. out;
  • the second counterweight is used to be detachably connected to the ice breaking mechanism, or the second counterweight is used to be detachably connected to the buoy externally.
  • the ice-breaking mechanism is provided with a communication structure, and the communication structure is used to be sleeved on a columnar member fixedly arranged in the water area.
  • the ice-breaking mechanism includes a plurality of split structures, and the plurality of split structures are used to connect and enclose to form the communication structure;
  • the ice-breaking mechanism is configured as an integrated structure.
  • the ice-breaking mechanism 5 includes a main frame, which is connected by multiple structural members or made of concrete, and the guide structure is provided on the peripheral side of the main frame.
  • the present invention provides a water surface photovoltaic power station.
  • the water surface photovoltaic power station includes the anti-impact device of the first aspect.
  • the water surface photovoltaic power station also includes a photovoltaic support lattice; the anti-collision device is arranged along the circumference of the photovoltaic support lattice and forms at least one layer of protection, wherein at least the calibration of the photovoltaic support lattice
  • the anti-collision device is provided on one side, and the calibration side is the side facing the ice floe and facing the wind.
  • the water surface photovoltaic power station further includes a photovoltaic support lattice; the anti-collision device is arranged near the calibration pipe piles of the photovoltaic support lattice, or the connection structure of the anti-collision device is sleeved on the photovoltaic support lattice. On the calibration pipe pile of the photovoltaic support lattice;
  • the heights of the anti-collision devices corresponding to the calibration pipe piles are the same; or, the anti-collision devices corresponding to the calibration pipe piles form multiple anti-collision device groups, and the heights of different anti-collision device groups are different. .
  • the anti-collision device and water surface photovoltaic power station of the present invention are provided with an ice-breaking mechanism and a force-applying mechanism.
  • the ice-breaking mechanism is disposed at the calibrated height of the water area in a floating and/or rotatable manner through the force-applying mechanism.
  • the ice-breaking mechanism is at the calibrated height, When the height is high, the ice floe can be guided by the guide structure to change the movement direction of the ice floe.
  • the ice floe has a tendency to move upward or downward, so that the stress on the relatively large ice floe at the point of contact with the guide structure changes.
  • the ice-breaking mechanism consumes the kinetic energy caused by the impact of ice floes by floating or rotating in a small range to maintain the positional stability of the ice-breaking mechanism. It can also improve the reliability of the ice-breaking mechanism to a certain extent.
  • the ice-breaking mechanism can Float or rotate to adapt to or change the movement direction of the ice floes in the horizontal plane, such as changing the movement direction of the ice floes so that the ice floes can pass quickly from both sides of the pipe pile to avoid the accumulation of ice floes at the ice breaking mechanism and affecting the use of the ice breaking mechanism.
  • the anti-impact device can be used in water surface photovoltaic power stations to protect the pipe piles of the water surface photovoltaic power station and reduce the risk of pipe piles being broken by ice floes.
  • Figure 1 is a schematic three-dimensional structural diagram of an anti-collision device used in pipe piles in an embodiment of the present invention.
  • Figure 2 is a schematic three-dimensional structural diagram of an anti-collision device used in pipe piles in an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of the ice-breaking mechanism of the anti-collision device and the buoy being movably connected in the up and down direction in the embodiment of the present invention
  • Figure 4 is a partial enlarged view of position A in Figure 3;
  • Figure 5 is a schematic diagram of the ice breaking mechanism of the anti-collision device rotating to change the movement direction of the floating ice in the embodiment of the present invention
  • Figure 6 is a schematic structural diagram of a long cylindrical structure of the pontoon in the embodiment of the present invention.
  • Figure 7 is a schematic structural diagram of the pontoon having a tapered cylindrical structure in the embodiment of the present invention.
  • Figure 8 is a schematic structural diagram of the ice-breaking mechanism including two separate structures in the embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another embodiment of the present invention in which the gravity offset mechanism of the anti-collision device is a rope pull mechanism;
  • Figure 10 is a schematic plan layout diagram of a water surface photovoltaic power station in another embodiment of the present invention.
  • Figure 11 is a schematic layout diagram of a water surface photovoltaic power station in another embodiment of the present invention.
  • Figure 12 is a schematic structural diagram of another embodiment of the present invention in which each anti-collision device corresponding to the calibration pipe pile forms multiple anti-collision device groups and the heights of different anti-collision device groups are different.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection.
  • connection can be understood on a case-by-case basis.
  • the method of artificial ice breaking is often difficult and costly due to the vast water area and wide coverage of floating ice 500.
  • the impact force on the pipe pile 400 can be approximately understood as: (gravity of the ice floe 500 ⁇ movement speed)/impact time.
  • the ice floe 500 moves slowly, it covers a wide area.
  • the ice floe 500 is large and its impact force is huge.
  • Even if the pipe pile 400 is thickened and reinforced, its anti-impact effect is very limited. , and the cost is also very high.
  • the water surface photovoltaic power station may be soaked in water, causing water leakage and damage to components, and even the risk of electric leakage, causing economic losses.
  • an embodiment of the present invention provides an anti-collision device 010, which includes an ice breaking mechanism 100 and a force applying mechanism;
  • a guide structure is provided on the peripheral side of the ice breaking mechanism 100 in at least one direction.
  • the guide structure is used to contact the ice floe 500 and guide the ice floe 500 in the up and down direction;
  • the force-exerting mechanism is used to apply force to the ice-breaking mechanism 100 so that the ice-breaking mechanism 100 (the guide structure) can be floated and/or rotated at a calibrated height of the water area.
  • the force-applying mechanism is used to apply force on the ice-breaking mechanism 100.
  • the ice-breaking mechanism 100 is installed on the columnar members through the force-applying mechanism, or is installed between the columnar members, and the ice-breaking mechanism 100 is in contact with the floating ice 500. It can rotate or float in a small range under the action of ice floe 500, which will be discussed later. Illustrative illustration.
  • the ice-breaking mechanism 100 is provided with a connecting structure 120, and the ice-breaking mechanism 100 is installed on columnar members such as pipe piles 400 of a water surface photovoltaic power station through the connecting structure 120 to illustrate the content of the present invention.
  • the arrow in the figure points to the movement direction of the ice floe 500 .
  • the ice floe 500 moves in the front-to-back direction before contacting the guide surface structure 130, and the direction of movement points forward (i.e., the positive direction of the Y-axis in the figure), and the direction perpendicular to the front-to-back direction in the horizontal plane is defined as the left-right direction.
  • the direction perpendicular to the horizontal plane is the vertical direction (that is, the Z-axis direction in the figure, where the positive direction of the Z-axis points upward).
  • the calibration height is determined based on the height position of the ice floe 500 in the water area. Generally speaking, the calibration height should be set so that when the ice floe 500 moves to the anti-collision device 010, the guide surface structure 130 can be in contact with the ice floe 500. Contact and guide the ice floe 500. It should be understood that the calibrated height generally corresponds to a height range and is not a limitation.
  • a guide structure such as the guide surface structure 130 described below, can guide the movement of the ice floe 500.
  • the guide surface structure 130 includes a plurality of guide planes.
  • the guide surface Under the guidance of the structure 130, the movement direction of the ice floe 500 is changed.
  • multiple guide planes form a polygonal prism. From top to bottom, the distance from the guide plane to the center line of the connecting structure 120 gradually increases, but it is not limited to this.
  • the guide structure may also be composed of, for example, a plurality of inclined guide bars.
  • the collision method between the anti-collision device 010 and the relatively large ice floe 500 is illustrated in conjunction with FIG. 2: the relatively large ice floe 500 moves with the wind or water flow to the guide surface structure 130 of the ice breaking mechanism 100.
  • the force is relatively uniform and is generally driven by gravity and horizontal movement.
  • the stress conditions of the parts of the ice floe 500 that are in contact with the guide surface structure 130 will change and are no longer simple. Driven by horizontal motion, for example, it will move upward or downward.
  • the upward movement needs to overcome the gravity of the ice floe 500, and the downward movement needs to overcome the buoyancy of the ice floe 500 and the gravity of the ice breaking mechanism 100, so the ice floe 500 is easily broken.
  • the crack extends along the X-axis direction, but it is not limited thereto.
  • the size of the broken ice floe 500 in the front-to-back direction will be smaller, and it is easy to break due to impact at the contact point of the guide surface structure 130, or to drive ice breaking.
  • the mechanism 100 rotates relative to the pipe pile 400, thereby changing the flow direction of the ice floe 500. direction, passing through the left and right sides of the pipe pile 400 (as shown in Figure 5).
  • the anti-collision device 010 of the present invention is provided with an ice breaking mechanism 100 and a force applying mechanism.
  • the ice-breaking mechanism 100 is disposed at the calibrated height of the water area so as to be floating and/or rotatable through the force-applying mechanism.
  • the ice floe 500 can be guided by guiding structures such as the guide surface structure 130 to change the ice floe. 500's movement direction, the ice floe 500 has a tendency to move upward or downward, which makes the stress on the relatively large ice floe 500 at the contact point with the guide surface structure 130 and other guide structures become complicated, so that the relatively large volume of the ice floe 500 becomes complex.
  • the large ice floe 500 will easily break into relatively small ice floe 500 at guide structures such as the guide surface structure 130; and when the ice floe 500 collides with the ice breaking mechanism 100, the ice breaking mechanism 100 can float or rotate.
  • the ice-breaking mechanism 100 consumes the kinetic energy caused by the impact of the ice floe 500 by floating or rotating in a small range, maintaining the positional stability of the ice-breaking mechanism 100, and can also improve the reliability of the ice-breaking mechanism 100 to a certain extent.
  • the ice breaking mechanism 100 can float or rotate to adapt or change the movement direction of the ice floe 500 in the horizontal plane, for example, changing the movement direction of the ice floe 500 so that the ice floe 500 can pass quickly from both sides of the pipe pile 400 to avoid floating. Ice 500 accumulates at the ice breaking mechanism 100, affecting the use of the ice breaking mechanism 100.
  • the anti-collision device 010 of the present invention can be used in a water surface photovoltaic power station to protect the pipe piles 400 of the water surface photovoltaic power station and reduce the risk of the pipe piles 400 being broken by being hit by the floating ice 500 .
  • the distance from the point where the guide structure is used to contact the ice floe 500 to the center line gradually increases and then gradually decreases.
  • the guide structure includes a guide surface structure 130
  • the cross-sectional shape of the guide surface structure 130 includes a circle
  • the guide surface structure 130 is a rotating surface structure surrounding the center line of the ice-breaking mechanism 100 to illustrate the present invention.
  • the cross-sectional shape of the guide surface structure 130 can also be a polygon (the cross-section can be understood as a cross-section parallel to the XY plane), which can include polygonal or circular parts, that is, the guide surface structure 130 can also be a polygonal cross-section.
  • the central angle corresponding to the surface structure 130 in the circumferential direction of the ice-breaking mechanism 100 is not limited to 360°.
  • the guide surface structure 130 is arranged in a circle in the circumferential direction of the ice-breaking structure, its projection in the up and down direction may include a circle or multiple shapes. polygon.
  • the guide surface structure 130 is a rotating surface structure, and the guide surface structure 130 and the communication structure 120 are coaxially arranged.
  • the guide surface structure 130 includes a first tapered surface structure 131 , and the upper end diameter of the first tapered surface structure 131 is smaller than the lower end diameter.
  • the guide surface structure 130 can also be configured as other rotating surface structures.
  • the busbar of the rotating surface structure can be configured as a curve, and the curve can be configured as a concave form, with the opening formed by the concave facing upward. This is not a limitation. It only needs to be able to realize the movement guidance of the ice floe 500.
  • the guide surface structure 130 is set as a rotating surface structure.
  • the rotational characteristics of the rotating surface structure enable the ice-breaking mechanism 100 to adaptively rotate according to the ice floe 500 hitting in different directions, and can better change the movement direction of the ice floe 500. It is convenient for the relatively small ice floe 500 to pass; and when the ice floe 500 collides with the guide surface structure 130, its contact surface is generally a smaller area where the busbar of the guide surface structure 130 is located, and the contact surface between the two is small. This facilitates the fracture of the ice floe 500 to a certain extent, for example, the left and right fractures shown in Figure 5 .
  • the diameter of the guide surface structure 130 gradually increases from top to bottom.
  • the guide surface structure 130 includes a first tapered surface structure 131, and the upper end diameter of the first tapered surface structure 131 is smaller than the lower end diameter.
  • the diameter of the guide surface structure 130 gradually decreases from top to bottom.
  • the guide surface structure 130 includes a second conical surface structure 132, and the upper end diameter of the second conical surface structure 132 is larger than the lower end diameter.
  • the part of the ice floe 500 close to the guide surface structure 130 will be subject to the buoyancy force and the reaction force of the ice-breaking mechanism 100 (such as the down force formed by gravity, and the pressure transmitted by the pipe pile 400). force) and easily break.
  • the reaction force of the ice-breaking mechanism 100 such as the down force formed by gravity, and the pressure transmitted by the pipe pile 400). force
  • the diameter of the guide surface structure 130 gradually increases and then decreases from top to bottom.
  • the guide surface structure 130 includes the above-mentioned first tapered surface structure 131 and second tapered surface structure 132 .
  • the lower end of the first conical structure 131 is connected to the upper end of the second conical structure 132, and the diameters of the two are consistent.
  • a reinforcing structure can be provided at the connection between the two.
  • the connection between the two can be slightly lower than the horizontal, for example, at a distance from the horizontal plane. It is 0-30 mm and 10-20 mm, which will not be explained here.
  • the above two effects can be achieved.
  • the ice floe 500 can be guided through the upper and lower parts respectively.
  • the ice floe 500 can be guided at the height of the guide surface structure 130 (ie, in the up and down direction When the dimensions) are consistent and the busbar inclination angles are consistent, the diameter difference between the upper and lower ends of the guide surface structure 130 is reduced to prevent the ice-breaking mechanism 100 from being oversized.
  • the inclination angle of the generatrix relative to the water surface is determined according to the actual ice breaking needs, for example, it can be 1°-70°, 15-60°, 20°-45°, or 30°.
  • the above-mentioned first conical structure 131 and second conical structure 132 can decompose the horizontal impact force of the ice floe 500 into upward vertical component force and horizontal component force, and further utilize the rotational motion of the ice breaking mechanism 100 to consume its capacity, which greatly The impact on the pipe pile 400 due to the collision of the ice floe 500 is reduced, and the low bending strength of the ice layer is used to break the ice layer.
  • the number of guide structures is one or more.
  • adjacent guide structures are connected as one or are arranged at intervals.
  • the distance from the point where the multiple guide structures are used to contact the ice floe 500 to the center line can follow the rules described above to prevent the ice floe 500 from getting stuck between adjacent guide structures during the breaking process and affecting the user experience.
  • the force-applying mechanism includes a gravity offset mechanism; the gravity offset mechanism is used to offset the gravity of the ice-breaking mechanism 100 so that the ice-breaking mechanism 100 is suspended in the water.
  • the gravity offset mechanism can offset the gravity of the ice-breaking mechanism 100 to a certain extent, so that the guide surface structure 130 of the ice-breaking mechanism 100 can maintain a relatively stable position at the calibrated height without being hit by the floating ice 500.
  • the gravity offset mechanism acts When a force acts on the ice-breaking mechanism 100, the ice-breaking mechanism 100 can also rotate or float relative to the pipe pile 400. This rotation can be a small-angle rotation or can be a 360° rotation, which may occur depending on the setting method of the gravity offset mechanism. The differences will be explained with examples later.
  • the gravity offset mechanism allows the ice-breaking mechanism 100 to be floated or rotatably arranged at a calibrated height in the water area in a suspended manner, avoiding the need to apply force to the ice-breaking mechanism 100 through fixed connections, for example, and can improve the ice-breaking mechanism 100 to a certain extent.
  • the floating or rotating flexibility of the ice-breaking mechanism 100 can improve the reliability of the anti-collision device 010 to a certain extent.
  • the gravity counteracting mechanism includes a suspension mechanism.
  • the suspension mechanism may include a buoy 200 , and the buoy 200 may utilize the buoyancy of the water area to carry the ice-breaking mechanism 100 .
  • the buoy 200 may be disposed at the bottom of the ice-breaking mechanism 100, or may be disposed inside the ice-breaking mechanism 100, for example, the ice-breaking mechanism 100 may be disposed around the buoy 200.
  • the structure is simple and the materials are convenient. The content of the present invention will be explained later by taking the levitation mechanism including the pontoon 200 as an example.
  • the levitation mechanism can also be a magnetic levitation drive mechanism, which will not be described in detail here.
  • the ice-breaking mechanism 100 is integrally connected with the float 200 (hereinafter referred to as the first case).
  • the ice-breaking mechanism 100 and the pontoon 200 are detachably and fixedly connected (hereinafter referred to as the second case);
  • the pontoon 200 is at least partially located below the ice-breaking mechanism 100, and the ice-breaking mechanism 100 and the pontoon 200 are movably connected in the up and down direction.
  • the ice-breaking mechanism 100 is formed with a guide post 170
  • the pontoon 200 is formed with a guide groove 230
  • the guide post 170 is inserted into the guide groove 230, which will be referred to as the third situation later).
  • the buoy 200 and the ice-breaking mechanism 100 are both made of steel, and the two are welded into a whole.
  • the buoy 200 and the ice-breaking mechanism 100 are connected together through fasteners.
  • the pontoon 200 can be made of high-density polyethylene blow molding or steel welding.
  • a guide column 170 is formed at the lower end of the upper ice-breaking mechanism 100 (the guide column 170 is located below the guide surface structure 130).
  • the guide groove 230 is arranged at the center of the upper end of the buoy 200.
  • the guide column 170 is inserted into the guide groove 230.
  • the guide column 170 It is actually a cylindrical structure located between the buoy 200 and the pipe pile 400.
  • the height of the guide column 170 is less than or equal to the depth of the guide groove 230.
  • both the guide groove 230 and the guide column 170 are preferably made of steel.
  • the relative position of the ice-breaking mechanism 100 and the pontoon 200 is highly stable and has high motion synchronization through integrated connection or detachable fixed connection.
  • the detachable fixed connection also facilitates the realization of the ice-breaking mechanism 100 and the buoy 200. Separate transportation of pontoons 200.
  • the ice breaking mechanism 100 can move relative to the buoy 200.
  • the upper ice-breaking mechanism 100 can use its own weight to press down the ice floe 500, thereby promoting the bending and breaking of the ice floe 500, thus achieving high reliability.
  • the shape of the buoy 200 can be cylindrical, elongated, tapered, etc.
  • the guide surface structure 130 includes the above-mentioned second conical structure 132
  • the upper end diameter of the buoy 200 can be smaller than the lower end diameter, thereby facilitating the breakage of ice floes. 500 passed.
  • the anti-collision device 010 further includes a counterweight connected to the ice breaking mechanism 100 and/or the buoy 200 .
  • the height of the ice-breaking mechanism 100 in the water area can be adjusted to a certain extent by adjusting the counterweight, so that the guide structure can contact the ice floe 500 , and the impact of the ice-breaking mechanism 100 on the ice floe 500 can also be improved to a certain extent by increasing the counterweight. positional stability.
  • the counterweight includes a first counterweight and/or a second counterweight
  • the pontoon 200 includes a barrel body 210 and a waterproof seal 220 (such as a waterproof seal cover).
  • the barrel body 210 is provided with a communication hole 211.
  • the communication hole 211 is provided with a waterproof seal 220.
  • the communication hole 211 is used for placing the first counterweight. or put out;
  • the second counterweight is used to be detachably connected to the ice breaking mechanism 100, or the second counterweight is used to be detachably connected to the buoy 200 externally.
  • the first weight includes water or sand or weights.
  • the top and bottom of the cylinder body 210 are provided with communication holes 211, wherein the communication hole 211 at the top is used for the inflow of the first counterweight (water or sand), and the communication hole 211 at the bottom is used for the first counterweight (water or sand). ) outflow.
  • the pontoon 200 may be equipped with a pump, through which the first weight (water or sand) is sucked into or discharged from the water area to the water area.
  • the second counterweight is generally a counterweight block.
  • the gravity offset mechanism includes a suspension mechanism
  • the gravity offset mechanism includes a pull cord mechanism 300 .
  • the rope pulling mechanism 300 may include a plurality of steel wire ropes, the lower end of the steel wire rope is connected to, for example, the upper end of the ice breaking mechanism 100, the upper end of the steel wire rope is connected to, for example, the top of the pipe pile 400, and the plurality of steel wire ropes are distributed around the circumference of the ice breaking structure, For example, the lower ends of the three steel wire ropes are respectively connected to the ice-breaking structure, and the connection positions are evenly distributed.
  • the ice-breaking mechanism 100 can float and rotate under the impact force.
  • the pulling rope mechanism 300 can suspend the ice-breaking mechanism 100 so that the guide surface structure 130 is at a calibrated height, and at this time, the ice-breaking mechanism 100 can also be positioned relative to the pipe within a certain range.
  • the pile 400 rotates and/or floats.
  • a manual or electric rewinding mechanism can be set up to retract and unwind the steel wire rope, and the height of the ice-breaking mechanism 100 can be adjusted when necessary.
  • a bolt hole is provided at the top of the pipe pile 400, and a fixing ring with bolts is fixed at the bolt hole.
  • the height of the ice-breaking mechanism 100 is manually adjusted according to changes in water level.
  • the ice breaking mechanism 100 also rotates within a smaller range.
  • a steel wire rope can also be provided below the ice-breaking mechanism 100.
  • the lower end of the steel wire rope can be anchored to the water bottom or the pipe pile 400, thereby limiting the floating or rotation range of the ice-breaking mechanism 100, which can improve the positional stability and stability of the ice-breaking mechanism 100 to a certain extent. Ice-breaking capabilities, such as impact resistance.
  • the distance from the inner wall of the connecting structure 120 to the pipe pile 400 is determined according to actual needs.
  • the difference between the inner diameter of the connecting structure 120 and the diameter of the pipe pile 400 can be 5-40 mm, 6-30 mm, or 8-25 mm. , preferably 20 mm.
  • the allowable deviation range of the diameter of the pipe pile 400 can be, for example, -2 mm to +5 mm, which can meet the corresponding national standards, facilitate the up and down movement and rotation of the ice-breaking mechanism 100, and can also avoid floating to a certain extent.
  • the side tilt of the ice breaking mechanism 100 is too large, which affects ice breaking.
  • the ice-breaking mechanism 100 includes multiple split structures 110.
  • the multiple split structures 110 are used to distribute along the circumference of the pipe pile 400 and connect and enclose to form a communication structure 120. .
  • the number of the split structures 110 is two.
  • the sides of the two split structures 110 facing the pipe pile 400 are both configured as concave semi-cylindrical surfaces.
  • the two split structures 110 are connected and enclosed by fasteners.
  • the above-mentioned connecting structure 120 is formed, or one end of the two split structures 110 is rotationally connected and the other end is connected through a fastener.
  • the split structures 110 may be the same or different. In this way, it is convenient to install the ice-breaking mechanism 100 on columnar parts such as the pipe pile 400, which will not be described in detail here.
  • the ice-breaking mechanism 100 is configured as an integrated structure. That is to say, after the ice-breaking mechanism 100 is installed on the pipe pile 400 through the communication structure 120, it can only be taken out from one end of the pipe pile 400.
  • the materials of each part of the ice-breaking mechanism 100 can be different, which will be illustrated later.
  • the ice-breaking mechanism 100 includes a main frame 150.
  • the main frame 150 is connected by multiple structural members. or made of concrete, and the guide structure is arranged on the peripheral side of the main frame 150.
  • the ice-breaking mechanism 100 includes an inner sleeve 140 and an outer cover 160.
  • the inner sleeve 140, the main frame 150 and the outer cover 160 are connected in sequence from the inside to the outside.
  • the inner sleeve 140 is used to form the communication structure 120.
  • the outer cover 160 is used to form guide structures such as the guide surface structure 130.
  • the inner sleeve 140 and the outer cover 160 can be made of wear-resistant materials such as stainless steel, and the structural parts can also be steel parts.
  • the inner sleeve 140, the main frame 150 and the outer cover 160 can be rust-proofed after being connected.
  • this This arrangement method is applicable to the above-mentioned split structure 110 or integrated structure, and is not a limitation.
  • the force stability of the ice-breaking mechanism 100 can be ensured to a certain extent, and the material of the ice-breaking mechanism 100 can be saved to a certain extent, reducing the weight and saving costs.
  • Another embodiment of the present invention provides a water surface photovoltaic power station.
  • the water surface photovoltaic power station includes the anti-collision device 010 of the above embodiment.
  • the installation of the anti-collision device 010 in the water surface photovoltaic power station is determined according to the specific anti-floe ice 500 requirements.
  • the water surface photovoltaic power station also includes a photovoltaic support lattice 000; the anti-collision device 010 is arranged along the circumference of the photovoltaic support lattice 000 and forms at least one layer of protection, wherein at least the photovoltaic support lattice An anti-collision device 010 is provided on the calibration side of 000, and the calibration side is the side facing the ice floe 500 and facing the wind.
  • the anti-collision device 010 can be arranged in one or several circles around the photovoltaic support lattice 000.
  • the anti-collision device 010 is arranged near the calibration pipe piles of the photovoltaic support lattice 000, or the connection structure 120 of the anti-collision device 010 is set on the calibration pipe piles of the photovoltaic support lattice 000.
  • the heights of the anti-collision devices 010 corresponding to the calibration pipe piles are the same; or, the anti-collision devices 010 corresponding to the calibration pipe piles form multiple anti-collision device groups, and the heights of different anti-collision device groups are different.
  • the calibration pipe pile may be the pipe pile 400 selected from the above-mentioned calibration side.
  • the content of the present invention is illustrated by taking the anti-collision device 010 being arranged with the help of the pipe piles 400 of the photovoltaic bracket, for example, being placed on the pipe piles 400 through the connecting structure 120 .
  • the pipe piles on the calibration side of the photovoltaic bracket lattice 000 In 400, the calibration pipe piles can be selected in an interval or non-interval (continuous) manner.
  • the first row of pipe piles 400 seen in the movement direction of the ice floe 500 are all calibration pipe piles.
  • multiple pipe piles 400 distributed in sequence are respectively provided with anti-collision devices 010 of different anti-collision device groups. There may be one or more pipe piles 400 between the anti-collision devices 010 of the same anti-collision device group.
  • multiple anti-collision devices 010 can be used to jointly block and break the large-volume ice floe 500 , which is beneficial to reducing the force on one anti-collision device 010 .
  • Different anti-collision device groups have different heights and can be correspondingly Break ice on 500 ice floes in different years or at different heights.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

公开了一种抗撞击装置(010)及水面光伏电站。抗撞击装置包括破冰机构(100)和施力机构;破冰机构的周侧在至少一个方向上设置有导向结构,导向结构用于与浮冰(500)接触并对浮冰在上下方向上进行导向;施力机构用于施力于破冰机构以使破冰机构可浮动和/或转动地设置于水域的标定高度。在导向结构的作用下,体量相对较大的浮冰将会容易在导向结构处断裂成体量相对较小的浮冰;并且,当浮冰与破冰机构撞击时,破冰机构可以浮动或转动,破冰机构通过在小范围内浮动或转动消耗因浮冰撞击带来的动能,还可以通过浮动或转动适应或改变浮冰在水平面内的运动方向,避免浮冰在破冰机构处堆积而影响破冰机构的使用。

Description

一种抗撞击装置及水面光伏电站
本申请要求2022年07月25日提交中国专利局、申请号为202221947549.8、发明名称为“一种抗撞击装置及水面光伏电站”的实用新型专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光伏技术领域,具体而言,涉及一种抗撞击装置及水面光伏电站。
背景技术
在国家大力发展清洁能源的背景下,光伏发电发展迅速,其中,水面光伏例如水面渔光互补的应用方式具有较高的经济价值,具有较大的建设规模。但是,水面光伏带来了一些问题,例如,水面光伏电站大量采用预制预应力混凝土管桩作为支撑,在例如北方冬季水面大范围结冰时,浮冰在风力和水流的作用下发生缓慢移动,浮冰在移动过程中会与管桩进行碰撞,管桩在承受浮冰的水平力作用下易开裂和断桩,对水面光伏电站的安全生产造成极大的困扰和安全隐患。
相关技术中,往往人工检查浮冰情况并人工破冰或采用破冰船进行破冰,或者,增加管桩的直径以增加抗裂弯矩从避免管桩被破坏,但是,往往因水域面积大、浮冰覆盖范围广、撞击力大而防护效果有限。
发明内容
本发明旨在一定程度上解决相关技术中如何降低管桩被浮冰撞击而断裂的风险的问题。
为至少在一定程度上解决上述问题的至少一个方面,第一方面,本实用新型提供一种抗撞击装置,包括破冰机构和施力机构;
所述破冰机构的周侧在至少一个方向上设置有导向结构,所述导向结构用于与浮冰接触并对所述浮冰在上下方向上进行导向;
所述施力机构用于施力于所述破冰机构以使所述破冰机构可浮动和/或转动地设置于水域的标定高度。
可选地,在任一经过所述破冰机构的中心线的截面内;从上至下,所述导向结构用于与所述浮冰接触的点到所述中心线的距离逐渐增大;
或者,从上至下,所述导向结构用于与所述浮冰接触的点到所述中心线的距离逐渐减小;
或者,从上至下,所述导向结构用于与所述浮冰接触的点到所述中心线的距离逐渐增大然后逐渐减小。
可选地,在上下方向上,所述导向结构的数量为一个或多个,当所述导向结构的数量为多个时,相邻所述导向结构连接为一体或间隔设置。
可选地,所述导向结构包括导向面结构,所述导向面结构的横截面形状包括多边形或圆形的至少部分。
可选地,所述施力机构包括重力抵消机构;所述重力抵消机构用于抵消所述破冰机构的重力以使所述破冰机构悬置于所述水域。
可选地,所述重力抵消机构包括悬浮机构和/或拉绳机构。
可选地,所述悬浮机构包括浮筒。
可选地,所述破冰机构与所述浮筒一体连接;
或者,所述破冰机构与所述浮筒可拆卸式固定连接;
或者,所述浮筒至少部分位于所述破冰机构的下方,所述破冰机构与所述浮筒在上下方向上活动连接。
可选地,所述抗撞击装置还包括配重,所述配重与所述破冰机构和/或所述浮筒连接。
可选地,所述配重包括第一配重和/或第二配重;
所述浮筒包括筒本体和防水密封件,所述筒本体设置有连通孔,所述连通孔处设置有所述防水密封件,所述连通孔用于所述第一配重的置入或置出;
所述第二配重用于可拆卸地与所述破冰机构连接,或者,所述第二配重用于在外部与所述浮筒可拆卸连接。
可选地,所述破冰机构设置有连通结构,所述连通结构用于套设于固定设置于所述水域的柱状件上。
可选地,所述破冰机构包括多个分体结构,多个所述分体结构用于连接并合围形成所述连通结构;
或者,所述破冰机构设置为一体式结构。
可选地,所述破冰机构5包括主架,所述主架采用多个结构件连接而成或者采用混凝土制成,所述导向结构设置于所述主架的周侧。
第二方面,本发明提供一种水面光伏电站,水面光伏电站包括如上第一方面的抗撞击装置。
可选地,所述水面光伏电站还包括光伏支架点阵;所述抗撞击装置沿所述光伏支架点阵的周向设置并形成至少一层防护,其中,至少所述光伏支架点阵的标定侧设置有所述抗撞击装置,所述标定侧为朝向浮冰且迎风的一侧。
可选地,所述水面光伏电站还包括光伏支架点阵;所述抗撞击装置设置于所述光伏支架点阵的标定管桩附近,或者,所述抗撞击装置的连通结构套设于所述光伏支架点阵的标定管桩上;
所述标定管桩对应的各所述抗撞击装置的高度一致;或者,所述标定管桩对应的各所述抗撞击装置形成多个抗撞击装置组,不同所述抗撞击装置组的高度不同。
相对于相关技术,本发明的抗撞击装置及水面光伏电站,设置破冰机构和施力机构,通过施力机构将破冰机构可浮动和/或转动地设置于水域的标定高度,当破冰机构处于标定高度时,可以通过导向结构对浮冰的导向,改变浮冰的运动方向,浮冰具有向上或向下运动的趋势,使得体量相对较大的浮冰在与导向结构接触处的受力变得复杂,从而体量相对较大的浮冰将会容易在导向结构处断裂成体量相对较小的浮冰;并且,当浮冰与破冰机构撞击时,破冰机构可以浮动或转动,一方面,破冰机构通过在小范围内浮动或转动消耗因浮冰撞击带来的动能,维持破冰机构的位置稳定性,还可以在一定程度上提高破冰机构的可靠性,另一方面,可以通过破冰机构的浮动或转动适应或改变浮冰在水平面内的运动方向,例如改变浮冰的运动方向,使得浮冰可以从管桩的两侧快速通过,避免浮冰在破冰机构处堆积而影响破冰机构的使用。抗撞击装置可以用于水面光伏电站,对水面光伏电站的管桩进行保护,降低管桩被浮冰撞击而断裂的风险。
附图说明
图1为本发明的实施例中抗撞击装置用于管桩的立体结构示意图;图2
为本发明的实施例中导向结构对浮冰进行导向使得浮冰断的结构示意图;
图3为本发明的实施例中抗撞击装置的破冰机构与浮筒在上下方向上活动连接的结构示意图;
图4为图3中A处的局部放大图;
图5为本发明的实施例中抗撞击装置的破冰机构旋转转换浮冰运动方向的示意图;
图6为本发明的实施例中浮筒为长筒状结构的结构示意图;
图7为本发明的实施例中浮筒为锥形筒状结构的结构示意图;
图8为本发明的实施例中破冰机构包括两个分体结构的结构示意图;
图9为本发明的另一实施例中抗撞击装置的重力抵消机构为拉绳机构的结构示意图;
图10为本发明的另一实施例中水面光伏电站的平面布局示意图;
图11为本发明的又一实施例中水面光伏电站的平面布局示意图;
图12为本发明的又一实施例中标定管桩对应的各抗撞击装置形成多个抗撞击装置组且不同抗撞击装置组的高度不同的结构示意图。
附图标记说明:
000-光伏支架点阵;010-抗撞击装置;100-破冰机构;110-分体结构;
120-连通结构;130-导向面结构;131-第一锥面结构;132-第二锥面结构;140-内套;150-主架;160-外罩;170-导向柱;200-浮筒;210-筒本体;211-连通孔;220-防水密封件;230-导向槽;300-拉绳机构;400-管桩;500-浮冰。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结 合附图对本发明的具体实施例做详细的说明。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“实施例”、“一个实施例”、“一些实施方式”、“示例性地”和“一个实施方式”等的描述意指结合该实施例或实施方式描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或实施方式中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实施方式。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或实施方式以合适的方式结合。
需要说明的是,相关技术中,采用人工破冰的方式,往往因水域广大,浮冰500覆盖范围广,而破冰难度大,成本高。采用增大管桩400直径的方式时,由于浮冰500覆盖范围广,当浮冰500与管桩400撞击时,管桩400受到的撞击力可以近似理解为:(浮冰500的重力×移动速度)/撞击时间,虽然浮冰500的移动速度慢,但其覆盖面广,浮冰500的体量大,其撞击力巨大,即使对管桩400进行加粗加固,其抗撞击效果也很有限,并且,成本也很高。当管桩400断裂时,水面光伏电站有可能会泡水,造成部件漏水损坏,甚至具有漏电风险,造成经济损失。
如图1至图9所示,本发明实施例提供一种抗撞击装置010,包括破冰机构100和施力机构;
破冰机构100的周侧在至少一个方向上设置有导向结构,导向结构用于与浮冰500接触并对浮冰500在上下方向上进行导向;
施力机构用于施力于破冰机构100以使破冰机构100(的导向结构)可浮动和/或转动地设置于水域的标定高度。
需要说明的是,施力机构用于施力于破冰机构100,例如破冰机构100通过施力机构安装于柱状件上,或安装于柱状件之间,并且,破冰机构100在与浮冰500接触时可以在浮冰500作用下转动或者小范围浮动,后续会 示例性说明。
本说明书中,将以破冰机构100设置有连通结构120,破冰机构100用于通过连通结构120套设于水面光伏电站的管桩400等柱状件上为例说明本发明的内容。
需要说明的是,图中的箭头指向为浮冰500的运动方向。为便于说明,定义浮冰500在与导向面结构130接触之前沿前后方向运动,且运动方向指向前方(即图中的Y轴正方向),定义水平面内与前后方向相垂直的方向为左右方向,垂直于水平面的方向为竖直方向(即图中的Z轴方向,其中Z轴正方向指向上方)。
需要说明的是,标定高度根据浮冰500在水域的高度位置确定,一般来说,标定高度的设置,应当使得浮冰500运动至抗撞击装置010处时,导向面结构130可与浮冰500接触,对浮冰500进行导向,应当理解,标定高度一般对应一个高度范围,其不作为限制。
需要说明的是,导向结构例如后文描述的导向面结构130能够对浮冰500进行运动导向,例如,导向面结构130包括多个导向平面,浮冰500与导向面结构130接触时,导向面结构130的导向作用下,改变浮冰500的运动方向,例如多个导向平面围成多边棱台,从上至下,导向平面到连通结构120中心线的距离逐渐增大,但其不局限于此。导向结构还可以是例如多个倾斜设置的导向条构成。
结合图2示例性说明抗撞击装置010与体量相对较大的浮冰500的撞击方式:体量相对较大的浮冰500随风或水流运动至破冰机构100的导向面结构130处,浮冰500运动至导向面结构130之前,其受力较为均匀,一般受重力和水平运动的驱动力。当浮冰500向前运动至于导向面结构130接触时,在导向面结构130的导向作用下,浮冰500与导向面结构130相接触的部分的受力状况将会改变,不再是简单的受水平运动的驱动力,例如将会向上或向下运动,向上运动需要克服浮冰500的重力,向下运动时需要克服浮冰500的浮力以及破冰机构100的重力,从而浮冰500容易断裂,例如其裂纹沿例如X轴方向延伸,但其不局限于此,断裂后的浮冰500在前后方向的尺寸将会较小,容易因撞击在于导向面结构130接触处断裂,或者,带动破冰机构100相对管桩400转动,从而改变浮冰500的流动方 向,从管桩400的左右两侧通过(如图5所示)。
如此,本发明的抗撞击装置010,设置破冰机构100和施力机构,
通过施力机构将破冰机构100可浮动和/或转动地设置于水域的标定高度,当破冰机构100处于标定高度时,可以通过导向面结构130等导向结构对浮冰500的导向,改变浮冰500的运动方向,浮冰500具有向上或向下运动的趋势,使得体量相对较大的浮冰500在与导向面结构130等导向结构接触处的受力变得复杂,从而体量相对较大的浮冰500将会容易在导向面结构130等导向结构处断裂成体量相对较小的浮冰500;并且,当浮冰500与破冰机构100撞击时,破冰机构100可以浮动或转动,一方面,破冰机构100通过在小范围内浮动或转动消耗因浮冰500撞击带来的动能,维持破冰机构100的位置稳定性,还可以在一定程度上提高破冰机构100的可靠性,另一方面,可以通过破冰机构100的浮动或转动适应或改变浮冰500在水平面内的运动方向改变,例如改变浮冰500的运动方向,使得浮冰500可以从管桩400的两侧快速通过,避免浮冰500在破冰机构100处堆积,影响破冰机构100的使用。本发明的抗撞击装置010可以用于水面光伏电站,对水面光伏电站的管桩400进行保护,降低管桩400被浮冰500撞击而断裂的风险。
在可选的实施例中,在任一经过破冰机构100的中心线的截面内;从上至下,导向结构用于与浮冰500接触的点到中心线的距离逐渐增大;
或者,从上至下,导向结构用于与浮冰500接触的点到中心线的距离逐渐减小;
或者,从上至下,导向结构用于与浮冰500接触的点到中心线的距离逐渐增大然后逐渐减小。
本说明书中将以导向结构包括导向面结构130,导向面结构130的横截面形状包括圆形,也就是说导向面结构130为环绕破冰机构100的中心线的旋转面结构为例说明本发明的内容,但是,应当的理解的是,导向面结构130的横截面形状也可以是多边形(横截面可以理解为与XY平面平行的截面),其可以包括多边形或圆形的部分,也即,导向面结构130在破冰机构100的周向所对应的圆心角不局限于360°,当导向面结构130在破冰结构的周向设置为一圈时,其在上下方向的投影可以包括圆形或多 边形。
此时,导向面结构130为旋转面结构,导向面结构130与连通结构120同轴设置。
如图2所示,示例性地,导向面结构130包括第一锥面结构131,第一锥面结构131的上端直径小于下端直径。
当然,导向面结构130也可以设置为其他旋转面结构,例如,旋转面结构的母线可以设置为曲线,曲线可以设置为内凹形式,其内凹形成的开口朝向侧上方,其不作为限制,能够实现对浮冰500的运动导向即可。
如此,将导向面结构130设置为旋转面结构,旋转面结构的旋转特性使得破冰机构100能够根据不同方向撞击的浮冰500而适应性转动,且能够更好地改变浮冰500的运动方向,便于体量相对较小的浮冰500的通过;并且,当浮冰500与导向面结构130撞击时,其接触面一般为导向面结构130的母线所在的较小区域,二者接触面小,从而在一定程度上有利于实现浮冰500的断裂,例如便于图5所示的左右断裂。
在本发明的可选实施例中,从上至下,导向面结构130的直径逐渐增大。
示例性地,导向面结构130包括第一锥面结构131,第一锥面结构131的上端直径小于下端直径。
当浮冰500与导向面结构130接触时,浮冰500在靠近导向面结构130处的部分将会受到自身重力、破冰机构100的反作用力作用而容易断裂,并且第一锥面结构131的形状便于断裂的浮冰500滑落至水中。
在本发明的可选实施例中,从上至下,导向面结构130的直径逐渐减小。
示例性地,导向面结构130包括第二锥面结构132,第二锥面结构132的上端直径大于下端直径。
当浮冰500与导向面结构130接触时,浮冰500在靠近导向面结构130处的部分将会受到浮力以及破冰机构100的反作用力(如重力形成的下压力,以及又管桩400传递的力)而容易断裂。
在本发明的可选实施例中,从上至下,导向面结构130的直径逐渐增大然后逐渐减小。
示例性地,导向面结构130包括上述第一锥面结构131和第二锥面结构132。第一锥面结构131的下端与第二锥面结构132的上端连接,且二者直径一致,二者连接处可以设置加强结构,例如二者连接处可以略低于水平,例如于水平面的距离为0-30毫米,10-20毫米,此处不再说明。
这种情况下可以取得上述两种情况效果,当浮冰500存在多层时,可以通过上下两部分分别进行浮冰500的导向,与此同时,可以在导向面结构130的高度(即上下方向的尺寸)一致且母线倾斜角度一致的情况下,降低导向面结构130的上下两端的直径差值,避免破冰机构100的尺寸过大。
示例性地,母线相对于水面的倾斜角度根据实际的破冰需要确定,例如可以是1°-70°,15-60°,20°-45°,30°。
上述第一锥面结构131和第二锥面结构132可以将浮冰500的水平撞击力分解为向上的竖向分力和水平分力,并进一步利用破冰机构100旋转运动消耗其能力,极大减小了因浮冰500碰撞对管桩400的影响,利用冰层抗弯折强度低的特性破碎冰层。
进一步,在上下方向上,导向结构的数量为一个或多个,当导向结构的数量为多个时,相邻导向结构连接为一体或间隔设置。
此时,多个导向结构用于与浮冰500接触的点到中心线的距离可以遵循上文描述的规律,避免浮冰500在断裂过程中卡在相邻导向结构之间而影响使用体验。
如此,能够适应不同高度位置的浮冰500的破冰,例如能够用于不同年度的浮冰500的破冰。
施力机构包括重力抵消机构;重力抵消机构用于抵消破冰机构100的重力以使破冰机构100悬置于水域。
重力抵消机构能够在一定程度上抵消破冰机构100的重力,使得破冰机构100的导向面结构130在不受浮冰500撞击的情况下能够在标定高度处保持位置相对稳定,当重力抵消机构的作用力作用于破冰机构100时,破冰机构100还能够相对管桩400转动或浮动,这种转动可以是小角度的转动,也可以是能够进行360°旋转,其根据重力抵消机构的设置方式可能有所区别,后续会示例性说明。
如此,重力抵消机构使得破冰机构100能够以悬置的方式可浮动或可旋转的设置于水域的标定高度,避免了采用例如通过固定连接的方式施力于破冰机构100,能够在一定程度上提升破冰机构100的浮动或转动的灵活性,能够在一定程度上提高抗撞击装置010的可靠性。
在本发明的可选实施例中,重力抵消机构包括悬浮机构。
如图1至图7所示,示例性地,悬浮机构可以包括浮筒200,浮筒200可以利用水域的浮力实现对破冰机构100的承载。
浮筒200可以设置于破冰机构100的底部,也可以于例如破冰机构100的内部,例如破冰机构100环绕浮筒200一周设置。其结构简单,用材方便,后续将以悬浮机构包括浮筒200为例说明本发明的内容,但是,悬浮机构也可以是磁浮驱动机构,此处不再详细说明。
可选地,破冰机构100与浮筒200一体连接(后续称第一种情况)。或者,破冰机构100与浮筒200可拆卸式固定连接(后续称第二种情况);
或者,浮筒200至少部分位于破冰机构100的下方,破冰机构100与浮筒200在上下方向上活动连接。(例如,破冰机构100形成有导向柱170,浮筒200形成有导向槽230,导向柱170插设于导向槽230内,后续称第三种情况)。
例如第一种情况中,浮筒200和破冰机构100均采用钢材制作,二者焊接成整体。例如第二种情况中,通过紧固件将浮筒200和破冰机构100连接在一起。例如第三种情况中,浮筒200可采用高密度聚乙烯材料吹塑成型或钢制焊接成型。将上部破冰机构100下端形成导向柱170(导向柱170位于导向面结构130的下方),导向槽230设置于浮筒200的上端中心位置,导向柱170插入导向槽230内,此时,导向柱170实际为圆筒状结构,其位于浮筒200和管桩400之间,导向柱170的高度小于或等于导向槽230的深度,此时导向槽230和导向柱170均优选为钢制结构。
如此,一体连接或可拆卸式固定连接的方式,破冰机构100和浮筒200的相对位置的稳固性高,具有较高的运动同步性,其中可拆卸式固定连接的方式还便于实现破冰机构100和浮筒200的分别运输。活动连接的方式中,当浮冰500向下压浮筒200时,因为破冰机构100可以相对于浮筒200 滑动,浮冰500下压浮筒200时,上部破冰机构100可利用自重下压浮冰500,促进浮冰500弯折折断,可靠性高。
浮筒200的形状可以圆筒、长筒状、锥形筒状结构等,当导向面结构130包括上述第二锥面结构132时,浮筒200的上端直径可以小于下端直径,从而便于断裂的浮冰500的通过。
在本发明的可选实施例中,抗撞击装置010还包括配重,配重与破冰机构100和/或浮筒200连接。
如此,能够在一定程度通过调整配重从而调整破冰机构100在水域的高度,从而使得导向结构能够与浮冰500接触,还可以在一定程度上通过增加配重提高破冰机构100在浮冰500撞击时的位置稳定性。
进一步地,配重包括第一配重和/或第二配重;
浮筒200包括筒本体210和防水密封件220(例如防水密封盖),筒本体210设置有连通孔211,连通孔211处设置有防水密封件220,连通孔211用于第一配重的置入或置出;
第二配重用于可拆卸地与破冰机构100连接,或者,第二配重用于在外部与浮筒200可拆卸连接。
示例性地,第一配重包括水或砂或配重块。筒本体210的顶部和底部均设置有连通孔211,其中,顶部的连通孔211用于第一配重(水或砂)的流入,底部的连通孔211用于第一配重(水或砂)的流出。进一步地,浮筒200可以配备泵,通过泵将第一配重(水或砂)从水域吸入或将第一配重(水或砂)排出至水域。第二配重一般为配重块。
区别于上述实施例中重力抵消机构包括悬浮机构的实施方式,在本实用新型的又一实施例中,重力抵消机构包括拉绳机构300。
示例性地,拉绳机构300可以包括多个钢丝绳,钢丝绳的下端与例如破冰机构100的上端连接,钢丝绳的上端与例如管桩400的顶端连接,通过多个钢丝绳环绕破冰结构的周向分布,例如,三根钢丝绳的下端分别与破冰结构连接,且连接位置均匀分布,破冰机构100能够在撞击力作用下浮动而转动。
如此,拉绳机构300可以实现将破冰机构100悬置使得导向面结构130处于标定高度,并且,此时破冰机构100同样可以在一定范围内相对于管 桩400转动和/或浮动。
此时,可以设置手动或电动收卷机构对钢丝绳进行收放,可以在需要时调整破冰机构100的高度。例如在管桩400的顶端设置螺栓孔,将带螺栓的固定环固定在螺栓孔处。根据水位的变化来人工调节破冰机构100的高度。破冰机构100也在较小范围内转动。
当然,破冰机构100的下方同样可以设置钢丝绳,例如钢丝绳的下端锚固至水底或管桩400,从而,限制破冰机构100的浮动或转动幅度,能够在一定程度上提高破冰机构100的位置稳定性和破冰能力,例如抗撞击性能。
示例性地,连通结构120的内壁到管桩400的距离根据实际需求确定,例如连通结构120内径与管桩400的直径的差值可以为5-40毫米,6-30毫米,8-25毫米,优选为20毫米。当差值为20毫米时,管桩400的直径允许偏差范围例如可以为-2mm到﹢5mm,能够满足相应的国家标准,便于破冰机构100上下移动和旋转,同时也能够在一定程度上避免浮冰500撞击破冰机构100时破冰机构100的侧倾浮动过大,影响破冰。
如图8所示,在本发明的可选实施例中,破冰机构100包括多个分体结构110,多个分体结构110用于沿管桩400的周向分布并连接合围形成连通结构120。
示例性地,分体结构110的数量为两个,两个分体结构110朝向管桩400的一侧均设置为内凹的半圆柱面,两个分体结构110通过紧固件连接并合围形成上述连通结构120,或者,两个分体结构110的一端转动连接,另一端通过紧固件连接,当然,各分体结构110之间可以相同也可以不同。如此,便于将破冰机构100安装至管桩400等柱状件上,此处不再详细说明。
区别于上述破冰机构100包括多个分体结构110的实施方式,在本实用新型的可选实施例中,所破冰机构100设置为一体式结构。也就是说,当破冰机构100通过连通结构120安装至管桩400后,至仅通过从管桩400的一端才可取出。当然这种情况下,破冰机构100各部分的材质可以不同,后续会示例性说明。
可选地,破冰机构100包括主架150,主架150采用多个结构件连接而 成或者采用混凝土制成,导向结构设置于主架150的周侧。
示例性地,破冰机构100包括还内套140和外罩160,在连通结构120的径向上,内套140、主架150和外罩160从内至外依次连接,内套140用于形成连通结构120,外罩160用于形成导向面结构130等导向结构。
需要说明的是,内套140和外罩160可以采用耐磨材料例如不锈钢制作,结构件也可以是钢制件,内套140、主架150和外罩160连接后可以进行防锈处理,另外,这种设置方式适用于上述分体结构110或一体式结构,其不作为限制。
如此,能够在一定程度上确保破冰机构100的受力稳定性,且能够在一定程度上节约破冰机构100的材料,降低重量,节约成本。
本发明的又一实施例中提供一种水面光伏电站,水面光伏电站包括如上实施例的抗撞击装置010。抗撞击装置010在水面光伏电站的设置根据具体的抗浮冰500需求确定。
如图10和图11,可选地,水面光伏电站还包括光伏支架点阵000;抗撞击装置010沿光伏支架点阵000的周向设置并形成至少一层防护,其中,至少光伏支架点阵000的标定侧设置有抗撞击装置010,标定侧为朝向浮冰500且迎风的一侧。
例如,其光伏支架点阵000四面环水且均朝向浮冰500,其四个方向均会来风,则抗撞击装置010可以环绕光伏支架点阵000设置为一圈或数圈。
可选地,抗撞击装置010设置于光伏支架点阵000的标定管桩附近,或者,抗撞击装置010的连通结构120套设于光伏支架点阵000的标定管桩上。
标定管桩对应的各抗撞击装置010的高度一致;或者,标定管桩对应的各抗撞击装置010形成多个抗撞击装置组,不同抗撞击装置组的高度不同。
示例性地,标定管桩可以是选自上述标定侧的管桩400。
如图12所示,以抗撞击装置010借助于光伏支架的管桩400布置例如通过连通结构120套在管桩400上为例说明本发明的内容,光伏支架点阵000的标定侧的管桩400中可以以间隔或非间隔(连续)的方式选定标定管桩,如图12,为浮冰500运动方向所看到的第一排管桩400均为标 定管桩,依次分布的多个管桩400上分别设置有不同抗撞击装置组的抗撞击装置010,同一抗撞击装置组的抗撞击装置010之间可以具有一个或多个管桩400。
如此,可以利用多个抗撞击装置010共同形成对大体量的整块浮冰500的阻挡和破冰,有利于降低当个抗撞击装置010的受力,不同抗撞击装置组的高度不同,可以对应于不同年份或不同高度位置的浮冰500进行破冰。
虽然本公开披露如上,但本公开的保护范围并非仅限于此。本领域技术人员,在不脱离本公开的精神和范围的前提下,可进行各种变动与修改,这些变动与修改均将落入本发明的保护范围。

Claims (16)

  1. 一种抗撞击装置,其特征在于,包括破冰机构(100)和施力机构;
    所述破冰机构(100)的周侧在至少一个方向上设置有导向结构,所述导向结构用于与浮冰(500)接触并对所述浮冰(500)在上下方向上进行导向;
    所述施力机构用于施力于所述破冰机构(100)以使所述破冰机构(100)可浮动和/或转动地设置于水域的标定高度。
  2. 如权利要求1所述的抗撞击装置,其特征在于,在任一经过所述破冰机构(100)的中心线的截面内;从上至下,所述导向结构用于与所述浮冰(500)接触的点到所述中心线的距离逐渐增大;
    或者,从上至下,所述导向结构用于与所述浮冰(500)接触的点到所述中心线的距离逐渐减小;
    或者,从上至下,所述导向结构用于与所述浮冰(500)接触的点到所述中心线的距离逐渐增大然后逐渐减小。
  3. 如权利要求2所述的抗撞击装置,其特征在于,在上下方向上,所述导向结构的数量为一个或多个,当所述导向结构的数量为多个时,相邻所述导向结构连接为一体或间隔设置。
  4. 如权利要求1所述的抗撞击装置,其特征在于,所述导向结构包括导向面结构(130),所述导向面结构(130)的横截面形状包括多边形或圆形的至少部分。
  5. 如权利要求1至4任意一项所述的抗撞击装置,其特征在于,所述施力机构包括重力抵消机构;所述重力抵消机构用于抵消所述破冰机构(100)的重力以使所述破冰机构(100)悬置于所述水域。
  6. 如权利要求5所述的抗撞击装置,其特征在于,所述重力抵消机构包括悬浮机构和/或拉绳机构(300)。
  7. 如权利要求6所述的抗撞击装置,其特征在于,所述悬浮机构包括浮筒(200)。
  8. 如权利要求7所述的抗撞击装置,其特征在于,所述破冰机构(100)与所述浮筒(200)一体连接;
    或者,所述破冰机构(100)与所述浮筒(200)可拆卸式固定连接;
    或者,所述浮筒(200)至少部分位于所述破冰机构(100)的下方,所述破冰机构(100)与所述浮筒(200)在上下方向上活动连接。
  9. 如权利要求7所述的抗撞击装置,其特征在于,还包括配重,所述配重与所述破冰机构(100)和/或所述浮筒(200)连接。
  10. 如权利要求9所述的抗撞击装置,其特征在于,所述配重包括第一配重和/或第二配重;
    所述浮筒(200)包括筒本体(210)和防水密封件(220),所述筒本体(210)设置有连通孔(211),所述连通孔(211)处设置有所述防水密封件(220),所述连通孔(211)用于所述第一配重的置入或置出;
    所述第二配重用于可拆卸地与所述破冰机构(100)连接,或者,所述第二配重用于在外部与所述浮筒(200)可拆卸连接。
  11. 如权利要求1至4任意一项所述的抗撞击装置,其特征在于,所述破冰机构(100)设置有连通结构(120),所述连通结构(120)用于套设于固定设置于所述水域的柱状件上。
  12. 如权利要求11所述的抗撞击装置,其特征在于,所述破冰机构(100)包括多个分体结构(110),多个所述分体结构(110)用于连接并合围形成所述连通结构(120);
    或者,所述破冰机构(100)设置为一体式结构。
  13. 如权利要求1至4任意一项所述的抗撞击装置,其特征在于,所述破冰机构(100)包括主架(150),所述主架(150)采用多个结构件连接而成或者采用混凝土制成,所述导向结构设置于所述主架(150)的周侧。
  14. 一种水面光伏电站,其特征在于,包括如权利要求1至13任意一项所述的抗撞击装置。
  15. 如权利要求14所述的水面光伏电站,其特征在于,还包括光伏支架点阵(000);所述抗撞击装置沿所述光伏支架点阵(000)的周向设置并形成至少一层防护,其中,至少所述光伏支架点阵(000)的标定侧设置有所述抗撞击装置,所述标定侧为朝向浮冰(500)且迎风的一侧。
  16. 如权利要求14所述的水面光伏电站,其特征在于,还包括光伏支架点阵(000);
    所述抗撞击装置设置于所述光伏支架点阵(000)的标定管桩附近,或 者,所述抗撞击装置的连通结构(120)套设于所述光伏支架点阵(000)的标定管桩上;
    所述标定管桩对应的各所述抗撞击装置的高度一致;或者,所述标定管桩对应的各所述抗撞击装置形成多个抗撞击装置组,不同所述抗撞击装置组的高度不同。
PCT/CN2023/086466 2022-07-25 2023-04-06 一种抗撞击装置及水面光伏电站 WO2024021671A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221947549.8U CN218258633U (zh) 2022-07-25 2022-07-25 一种抗撞击装置及水面光伏电站
CN202221947549.8 2022-07-25

Publications (1)

Publication Number Publication Date
WO2024021671A1 true WO2024021671A1 (zh) 2024-02-01

Family

ID=84764032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086466 WO2024021671A1 (zh) 2022-07-25 2023-04-06 一种抗撞击装置及水面光伏电站

Country Status (2)

Country Link
CN (1) CN218258633U (zh)
WO (1) WO2024021671A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218258633U (zh) * 2022-07-25 2023-01-10 阳光新能源开发股份有限公司 一种抗撞击装置及水面光伏电站

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102144A (en) * 1977-05-31 1978-07-25 Global Marine, Inc. Method and apparatus for protecting offshore structures against forces from moving ice sheets
JPS5940992A (ja) * 1982-09-01 1984-03-06 Mitsubishi Heavy Ind Ltd 海洋構造物の砕氷装置
US4578000A (en) * 1982-06-15 1986-03-25 Oy Wartsila Ab Method of protection
CN108130916A (zh) * 2018-02-11 2018-06-08 合肥学院 一种单立柱基础的抗冰结构
CN110920816A (zh) * 2018-09-19 2020-03-27 哈尔滨工业大学 一种新型浮式抗冰平台
CN112160296A (zh) * 2020-09-03 2021-01-01 河海大学 一种用于海上结构的抗冰锥及其运行工艺
CN112550578A (zh) * 2021-02-19 2021-03-26 金光铭 一种水上漂浮式防水生物缠绕且结冰的光伏发电装置
CN114644089A (zh) * 2022-04-06 2022-06-21 中集海洋工程研究院有限公司 海上风光互补发电系统以及海上浮动承载平台
CN218258633U (zh) * 2022-07-25 2023-01-10 阳光新能源开发股份有限公司 一种抗撞击装置及水面光伏电站

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102144A (en) * 1977-05-31 1978-07-25 Global Marine, Inc. Method and apparatus for protecting offshore structures against forces from moving ice sheets
US4578000A (en) * 1982-06-15 1986-03-25 Oy Wartsila Ab Method of protection
JPS5940992A (ja) * 1982-09-01 1984-03-06 Mitsubishi Heavy Ind Ltd 海洋構造物の砕氷装置
CN108130916A (zh) * 2018-02-11 2018-06-08 合肥学院 一种单立柱基础的抗冰结构
CN110920816A (zh) * 2018-09-19 2020-03-27 哈尔滨工业大学 一种新型浮式抗冰平台
CN112160296A (zh) * 2020-09-03 2021-01-01 河海大学 一种用于海上结构的抗冰锥及其运行工艺
CN112550578A (zh) * 2021-02-19 2021-03-26 金光铭 一种水上漂浮式防水生物缠绕且结冰的光伏发电装置
CN114644089A (zh) * 2022-04-06 2022-06-21 中集海洋工程研究院有限公司 海上风光互补发电系统以及海上浮动承载平台
CN218258633U (zh) * 2022-07-25 2023-01-10 阳光新能源开发股份有限公司 一种抗撞击装置及水面光伏电站

Also Published As

Publication number Publication date
CN218258633U (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
CN109838351B (zh) 多风力发电机浮式自动对风水上风力发电设备
EP3653486B1 (en) Floating structure and method of installing same
JP6125098B2 (ja) 浮体式基礎を備える浮体式風力原動機及びこのような風力原動機を設置する方法
US9592889B2 (en) Submersible active support structure for turbine towers and substations or similar elements, in offshore facilities
RU2366827C2 (ru) Шарнирное ложное морское дно
WO2024021671A1 (zh) 一种抗撞击装置及水面光伏电站
KR20170118709A (ko) 부유식 풍력 터빈 플랫폼을 건설, 조립 및 진수하는 방법
EP2428443B1 (en) Installation method and recovery method for offshore wind turbine
KR20150131080A (ko) 부체식 해상 풍력발전 설비
JP2009121241A (ja) 水流発電装置
GB2510666A (en) Tidal turbine mooring arrangement
CN111891308A (zh) 浮式风力发电平台
JP2012201219A (ja) 洋上風力発電設備の施工方法
CN103786837A (zh) 用于支撑近海风力涡轮机的不对称系泊系统和带有水收集板的支柱稳定式近海平台
WO2023284671A1 (zh) 一种半潜式漂浮式风机装置及系统
CN113120160B (zh) 一种用于浮箱式漂浮光伏发电平台的锚固结构及施工方法
CN114013591B (zh) 一种用于Spar单柱式浮式基础结构的浮稳装置
CN215706955U (zh) 一种用于浮箱式漂浮光伏发电平台的锚固结构
CN211171949U (zh) 水下螺旋锚固基础
CN114135446A (zh) 海上浮式风力发电系统
CN113216122A (zh) 一种适用于极地的钻井平台
US20190309725A1 (en) Ocean power turbine
JP2021151799A (ja) 浮体式水上構造物の組立装置及び組立て方法
JP7495802B2 (ja) 浮体式水上構造物の施工方法及びそれに使用する仮係留用浮体
JP7313212B2 (ja) 洋上施設用浮体構造物及びその設置構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23844888

Country of ref document: EP

Kind code of ref document: A1