WO2024021564A1 - 一种图像生成装置、显示设备、交通工具和图像生成方法 - Google Patents

一种图像生成装置、显示设备、交通工具和图像生成方法 Download PDF

Info

Publication number
WO2024021564A1
WO2024021564A1 PCT/CN2023/075094 CN2023075094W WO2024021564A1 WO 2024021564 A1 WO2024021564 A1 WO 2024021564A1 CN 2023075094 W CN2023075094 W CN 2023075094W WO 2024021564 A1 WO2024021564 A1 WO 2024021564A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarized light
light
imaging
sub
analyzer
Prior art date
Application number
PCT/CN2023/075094
Other languages
English (en)
French (fr)
Inventor
常泽山
秦振韬
陈宇宸
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024021564A1 publication Critical patent/WO2024021564A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/33Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving directional light or back-light sources

Definitions

  • the present application relates to the field of light display, and in particular, to an image generating device, a display device, a vehicle and an image generating method.
  • Stereoscopic display technology has developed rapidly.
  • Various stereoscopic display technologies have become commercial products.
  • Stereoscopic TV channels are also increasingly popular around the world.
  • Stereoscopic display technology has become an inevitable development direction in the future display field.
  • free stereoscopic display technology overcomes the dependence on auxiliary devices and allows viewers to view stereoscopic images with the naked eye without wearing any auxiliary devices.
  • a free stereoscopic display solution that uses a time-division solution, that is, different images are played at different times and transmitted to different eyes. For example, at time 1, the left eye image is played on the screen and the left eye image is transmitted to the left eye through light source 1. At time 2, the right eye image is played on the screen and the right eye image is transmitted to the right eye through light source 2, and so on alternately. conduct.
  • this solution requires the screen refresh rate to be highly coincident with the light source switching frequency, so it is easy to cause crosstalk between the two eyes.
  • Embodiments of the present application provide an image generation device, a display device, a vehicle, and an image generation method, which can be mainly applied to naked-eye 3D display scenarios.
  • inventions of the present application provide an image generating device.
  • the image generating device includes: a light source, an optical module, a first analyzer and an imaging engine.
  • the light source is configured to emit first polarized light with a first polarization direction and second polarized light with a second polarization direction, wherein the first polarization direction is perpendicular to the second polarization direction.
  • the optical module is used to adjust the transmission directions of the first polarized light and the second polarized light respectively, wherein the first polarized light and the second polarized light are transmitted to the first analyzer through the optical module.
  • the first region of the first analyzer is used to filter the second polarized light to transmit the first polarized light to the first pixel region of the imaging engine.
  • the second region of the first analyzer is used to filter the first polarized light to transmit the second polarized light to the second pixel region of the imaging engine.
  • the imaging engine is used to modulate the first polarized light on the first pixel area to obtain the first imaging light including the first image information, and modulate the second polarized light on the second pixel area to obtain the first imaging light including the second image information. Second imaging light.
  • the first imaging light is transmitted to a first position
  • the second imaging light is transmitted to a second position.
  • the left eye of the viewer is located at the first position
  • the right eye of the viewer is located at the second position, so that the viewer can experience the naked-eye 3D display effect.
  • the first polarized light includes a first sub-polarized light and a second sub-polarized light
  • the second polarized light includes a third sub-polarized light and a fourth sub-polarized light. That is to say, the polarization directions of the first sub-polarized light and the second sub-polarized light are the same, and the polarization directions of the third sub-polarized light and the fourth sub-polarized light are the same.
  • the first sub-polarized light is modulated by the imaging engine to obtain the first sub-imaging light including the first image information
  • the second sub-polarized light is modulated by the imaging engine to obtain the second sub-imaging light including the first image information.
  • the third sub-polarized light is modulated by the imaging engine to obtain the third sub-imaging light including the second image information
  • the fourth sub-polarized light is modulated by the imaging engine to obtain the fourth sub-imaging light including the second image information.
  • the first sub-imaging light and the third sub-imaging light are transmitted to the first position
  • the second sub-imaging light and the fourth sub-imaging light are transmitted to the second position.
  • the image generation device is also compatible with 2D display scenes, and is applicable to a wider range of scenes.
  • the left and right eyes must be able to see the same image, so both the left and right eyes must be able to see the imaging light from all pixel areas on the imaging engine. That is to say, both the first polarized light with the first polarization direction and the second polarized light with the second polarization direction can be seen by both eyes. Therefore, the first sub-imaging light and the third sub-imaging light are transmitted to the first position, and the second sub-imaging light and the fourth sub-imaging light are transmitted to the second position.
  • the first imaging light from the first pixel area can be transmitted to the left and right eyes, and the second imaging light from the second pixel area can also be transmitted to the left and right eyes, so that the left and right eyes can see The same image, thereby achieving a 2D display effect.
  • some existing 3D display solutions such as the cylindrical lens solution, half of the pixels will be lost if switched to 2D display. If the image generation device provided by this application is used, all pixels can be seen by both left and right eyes in a 2D display scene without pixel loss, and the display effect is better.
  • the imaging engine includes a first polarizer, a liquid crystal, and a second analyzer, and the liquid crystal is located between the first polarizer and the second analyzer.
  • the difference between the angular deviation of the polarization direction of the first region of the first analyzer and the polarization direction of the first polarizer and 45° is less than the threshold value.
  • the difference between the angular deviation of the polarization direction of the second region of the first analyzer and the polarization direction of the first polarizer and 45° is less than the threshold value.
  • the input to the first polarizer is polarized light instead of natural light. Therefore, in order to ensure the effect, this application has a special design for the polarization direction of the first polarizer.
  • the polarization directions of the first region and the second region of the first analyzer are respectively 45° to the polarization direction of the first polarizer. It should be understood that although this design will cause the first polarized light and the second polarized light to each have 50% light loss after passing through the first polarizer, it also ensures that both the first polarized light and the second polarized light have sufficient light energy. transmitted to the liquid crystal through the first polarizer.
  • the imaging engine in this implementation mode can use a traditional liquid crystal display, so that this solution has better compatibility.
  • the imaging engine includes a liquid crystal
  • the image generation device further includes a third analyzer
  • the imaging engine is located between the first analyzer and the third analyzer.
  • the imaging engine can only retain the liquid crystal without setting a polarizer.
  • liquid crystal has unique optical properties. By changing the voltage applied to the liquid crystal, the liquid crystal molecules will be distorted to varying degrees. The polarized light will propagate along the crystal direction of the liquid crystal, so the liquid crystal will rotate the polarization direction of the polarized light. Therefore, a third analyzer needs to be provided on the other side of the imaging engine, and the third analyzer filters the polarized light passing through the imaging engine.
  • the imaging engine in this implementation can effectively avoid 50% light loss and has a simpler structure.
  • the first regions and the second regions are staggered in the first direction and distributed in a transverse stripe shape.
  • the first regions and the second regions are staggered in the second direction and distributed in longitudinal stripes.
  • the first regions and the second regions are staggered in the first direction and the second direction respectively, and are distributed in a checkerboard shape.
  • the first direction is perpendicular to the second direction.
  • the light source includes a light-emitting module and a second polarizer
  • the second polarizer is used to convert the light-emitting module into
  • the light emitted by the group is converted into first polarized light and second polarized light, which enhances the realizability of this solution.
  • the light source with a polarizer can also be designed in other ways.
  • two independent polarizers can also be used, one of which is used to convert the light emitted by the light-emitting module into the first Polarized light, another polarizer is used to convert the light emitted by the light-emitting module into the second polarized light.
  • two independent light-emitting modules can also be used. The light emitted by one light-emitting module is converted into first polarized light through a polarizer, and the light emitted by the other light-emitting module is converted into the second polarized light through a polarizer.
  • Light is a light-emitting module and a second polar
  • the light source includes a first sub-light source and a second sub-light source, the first sub-light source is used to emit the first polarized light, and the second sub-light source is used to emit the second polarized light.
  • This implementation mode provides another implementation method of the light source, which improves the flexibility of this solution.
  • the first pixel area and the second pixel area do not overlap, ensuring that images viewed by the left and right eyes will not form crosstalk.
  • the optical module in a scenario where the light source outputs divergent light, can use a Fresnel lens.
  • the Fresnel lens is used to converge the first polarized light and the second polarized light respectively, and the practical effect is better. good.
  • the first analyzer is a polarizing film, ensuring the feasibility of this solution.
  • inventions of the present application provide a display device.
  • the display device includes a processor and an image generating device as described in any embodiment of the first aspect.
  • the processor is configured to send image data to an imaging engine of the image generating device.
  • the imaging engine modulates the incident light according to the image data to obtain imaging light including image information.
  • the application scenarios of the above display devices include but are not limited to Head-Up Display (HUD), projectors, augmented reality (Augmented Reality, AR) devices and virtual display (Virtual Reality, VR) devices, etc.
  • HUD Head-Up Display
  • AR Augmented Reality
  • VR Virtual Reality
  • inventions of the present application provide a vehicle.
  • the vehicle includes a display device, and the display device is installed on the vehicle.
  • the display device can be installed on the vehicle as a HUD, a vehicle display, or a vehicle light.
  • inventions of the present application provide an image generation method.
  • the image generation method is applied to an image generation device.
  • the image generation device includes a light source, an optical module, a first polarizer and an imaging engine.
  • the image generating method includes: emitting, through a light source, first polarized light having a first polarization direction and second polarized light having a second polarization direction, the first polarization direction being perpendicular to the second polarization direction.
  • the transmission directions of the first polarized light and the second polarized light are respectively adjusted through the optical module, wherein the first polarized light and the second polarized light are transmitted to the first analyzer through the optical module.
  • the second polarized light is filtered through the first region of the first analyzer to transmit the first polarized light to the first pixel region of the imaging engine.
  • the first polarized light is filtered through the second region of the first analyzer to transmit the second polarized light to the second pixel region of the imaging engine.
  • the imaging engine modulates the first polarized light on the first pixel area to obtain the first imaging light including the first image information, and modulates the second polarized light on the second pixel area to obtain the third imaging light including the second image information. 2. Imaging light.
  • the first imaging light is transmitted to a first position
  • the second imaging light is transmitted to a second position.
  • the first position is the position of the viewer's left eye
  • the second position is the position of the viewer's right eye.
  • the first polarized light includes a first sub-polarized light and a second sub-polarized light
  • the second polarized light includes a third sub-polarized light and a fourth sub-polarized light.
  • the first sub-polarized light is modulated by the imaging engine to obtain the first sub-imaging light including the first image information
  • the second sub-polarized light is modulated by the imaging engine to obtain the second sub-imaging light including the first image information.
  • the third sub-polarized light is modulated by the imaging engine to obtain the third sub-imaging light including the second image information
  • the fourth sub-polarized light is modulated by the imaging engine to obtain the fourth sub-imaging light including the second image information.
  • the first sub-imaging light and the third sub-imaging light are transmitted to the first position
  • the second sub-imaging light and the fourth sub-imaging light are transmitted to the second position
  • the first position is the left eye position of the viewer
  • the second position is the viewing position The position of the person’s right eye.
  • the imaging engine includes a first polarizer, a liquid crystal, and a second analyzer, and the liquid crystal is located between the first polarizer and the second analyzer.
  • the difference between the angular deviation of the polarization direction of the first region of the first analyzer and the polarization direction of the first polarizer and 45° is less than the threshold value.
  • the polarization direction of the second region of the first analyzer is consistent with the polarization direction of the first polarizer.
  • the difference between the angular deviation of the vibration direction and 45° is less than the threshold.
  • the imaging engine includes a liquid crystal
  • the image generation device further includes a third analyzer
  • the imaging engine is located between the first analyzer and the third analyzer.
  • the first regions and the second regions are staggered in the first direction and distributed in a transverse stripe shape.
  • the first regions and the second regions are staggered in the second direction and distributed in longitudinal stripes.
  • the first regions and the second regions are staggered in the first direction and the second direction respectively, and are distributed in a checkerboard shape.
  • the first direction is perpendicular to the second direction.
  • the first pixel area and the second pixel area do not overlap.
  • the light source emits first polarized light and second polarized light whose polarization directions are perpendicular to each other.
  • the first polarized light and the second polarized light are transmitted in different directions after passing through the optical module.
  • Using a pixelated analyzer allows first polarized light to be transmitted to a first pixel area of the imaging engine and second polarized light to be transmitted to a second pixel area of the imaging engine.
  • the first polarized light will pass through the first pixel area to generate first imaging light including first image information
  • the second polarized light will pass through the second pixel area to generate second imaging light including second image information.
  • the first imaging light and the second imaging light can be transmitted to the left eye and right eye of the viewer respectively, and then the left and right eyes will see different images, thereby achieving a 3D display effect.
  • this application can make different pixel areas on the imaging engine receive different polarized light, so that the left and right eyes can see different images respectively.
  • this application ensures that the images seen by the left and right eyes will not form crosstalk, and the 3D display effect will be better.
  • Figure 1 is a schematic diagram of a 3D display scene
  • Figure 2 is a schematic structural diagram of an image generation device in an embodiment of the present application.
  • Figure 3(a) is a schematic structural diagram of the first light source in the embodiment of the present application.
  • Figure 3(b) is a schematic diagram of the second structure of the light source in the embodiment of the present application.
  • Figure 4 is a schematic diagram of light transmission between the analyzer and the imaging engine in the embodiment of the present application.
  • Figure 5 is a schematic diagram of the area division on the polarizer in the embodiment of the present application.
  • Figure 6(a) is a schematic structural diagram of the first liquid crystal display in the embodiment of the present application.
  • Figure 6(b) is a schematic diagram of the second structure of the liquid crystal display in the embodiment of the present application.
  • Figure 7 is a schematic diagram of the image generation device applied to a 2D display scene in an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a display device in an embodiment of the present application.
  • Figure 9 is a schematic diagram of a display device installed on a vehicle in an embodiment of the present application.
  • Figure 10 is a schematic diagram of an embodiment of an image generation method provided by this application.
  • Embodiments of the present application provide an image generation device, a display device, a vehicle, and an image generation method, which can be mainly applied to naked-eye 3D display scenarios.
  • This application introduces polarized light and an analyzer so that different pixel areas on the imaging engine receive different polarized light, thereby allowing the left and right eyes to see different images respectively, ensuring that the images seen by the left and right eyes will not form crosstalk.
  • Figure 1 is a schematic diagram of a 3D display scene.
  • Figure 1 since there is usually a distance of 6-7 cm between human eyes, the image seen by the left eye and the image seen by the right eye will be slightly different. This difference is called “double-eye”. Visual difference”.
  • the brain interprets the parallax between the eyes and determines the distance of objects to produce stereoscopic vision.
  • this application provides a naked-eye 3D image generation device. Different from conventional 3D display with glasses, naked-eye 3D does not require wearing any equipment, but directly sends different images to different eyes.
  • the image generation device provided by this application is introduced in detail below.
  • FIG. 2 is a schematic structural diagram of an image generating device in an embodiment of the present application.
  • the image generation device includes: a light source 10 , an optical module 20 , an analyzer 30 and an imaging engine 40 .
  • the light emitted by the light source 10 will pass through the optical module 20, the analyzer 30 and the imaging engine 40 in sequence and finally be transmitted to the human eye.
  • the light source 10 is configured to emit first polarized light with a first polarization direction and second polarized light with a second polarization direction.
  • the first polarized light is represented by a solid arrow in FIG. 2 and the second polarized light is represented by a dotted arrow.
  • the polarization directions of the first polarized light and the second polarized light are perpendicular. It should be understood that in practical applications, the polarization directions of the first polarized light and the second polarized light may not be completely perpendicular. As long as they are within an allowable error range, the polarization directions can be regarded as perpendicular. For example, if the polarization direction difference between the first polarized light and the second polarized light is between 80° and 100°, the polarization direction can be regarded as vertical.
  • Embodiment 1 Light source with polarizer.
  • Figure 3(a) is a first structural schematic diagram of the light source in the embodiment of the present application.
  • the light source 10 includes a light emitting module 101 and a polarizer 102.
  • the polarizer 102 can convert the light emitted by the light emitting module 101 into polarized light.
  • the light-colored area on the polarizer 102 is used to convert the input light into the first polarized light
  • the dark-colored area on the polarizer 102 is used to convert the input light into the second polarized light.
  • polarized light that is, different areas on the polarizer 102 are used to convert input light into polarized light with different polarization directions.
  • the light source with a polarizer can also be designed in other ways, which are not limited here.
  • two independent polarizers can also be used, one polarizer is used to convert the light emitted by the light-emitting module into the first polarized light, and the other polarizer is used to convert the light emitted by the light-emitting module into the second polarized light.
  • polarized light can also be used.
  • the light emitted by one light-emitting module is converted into first polarized light through a polarizer, and the light emitted by the other light-emitting module is converted into the second polarized light through a polarizer.
  • the polarizer 102 can be implemented by a polarizing film or a polarizing plate, and its function is to convert natural light into polarized light.
  • the light-emitting module 101 can use a light source array or a surface light source that is independently controlled in each area, so that the direction of the light can be selected according to actual needs.
  • Embodiment 2 Light source with polarization direction.
  • Figure 3(b) is a schematic diagram of the second structure of the light source in the embodiment of the present application.
  • the light source 10 includes a first sub-light source 103 and a second sub-light source 104.
  • both the first sub-light source 103 and the second sub-light source 104 can directly emit polarized light with a polarization direction.
  • the first sub-light source 103 is used to emit the first polarized light
  • the second sub-light source 104 is used to emit the second polarized light.
  • a semiconductor light source or the like may be used to emit polarized light with a polarization direction.
  • the optical module 20 is used to adjust the transmission directions of the first polarized light and the second polarized light respectively.
  • the first polarized light may be transmitted toward the left eye
  • the second polarized light may be transmitted toward the right eye.
  • this application does not limit the specific manner of adjusting the light transmission direction of the optical module 20 .
  • the optical module 20 converges the first polarized light toward the left eye and the second polarized light toward the right eye. Convergence.
  • the optical module 20 is a lens module, such as a Fresnel lens.
  • the optical module 20 is an optical film module, and a Fresnel lens-like effect is achieved by arranging multiple optical films. It should be noted that the optical paths in all drawings, including FIG. 2 , are only for illustrative purposes. In fact, the first polarized light and the second polarized light passing through the optical module 20 cover all areas of the analyzer 30 . area.
  • the crystal droplets in the liquid crystal layer of the imaging engine 40 are contained in a small unit cell structure.
  • One or more unit cells can constitute a pixel area.
  • this application provides a pixelated polarizer 30, that is, the analyzer 30 also needs to be divided into regions, and different regions have different polarization directions.
  • the area divided on the analyzer 30 corresponds to the pixel area divided on the imaging engine 40. That is to say, the light passing through a certain area on the analyzer 30 will be transmitted to the corresponding pixel area on the imaging engine 40.
  • the analyzer 30 can be implemented by a polarizing film or a polarizing plate, and its function is to filter or absorb polarized light in a specified polarization direction, thereby screening the polarized light that can pass through.
  • Figure 4 is a schematic diagram of light transmission between the analyzer and the imaging engine in the embodiment of the present application.
  • the light-colored area on the analyzer 30 is marked as the first area
  • the dark-colored area on the analyzer 30 is marked as the second area
  • the light-colored area on the imaging engine 40 is marked as the first pixel area.
  • the imaging engine The dark area above 40 is recorded as the second pixel area.
  • the analyzer 30 and the imaging engine 40 may be bonded together.
  • the first polarized light is represented by a solid arrow and the second polarized light is represented by a dotted arrow in FIG. 4 .
  • the first area of the analyzer 30 is used to filter the second polarized light to transmit the first polarized light to the first pixel area of the imaging engine 40 .
  • the second area of the analyzer 30 is used to filter the first polarized light to transmit the second polarized light to the second pixel area of the imaging engine 40 . Therefore, different polarized lights are transmitted to different pixel areas on the imaging engine 40.
  • the imaging engine 40 modulates the first polarized light according to the loaded image data to obtain the first imaging light including the first image information, and modulates the second polarized light according to the loaded image data to obtain the third imaging light including the second image information. 2. Imaging light.
  • first polarized light is transmitted toward the left eye and the second polarized light is transmitted toward the right eye
  • first imaging light is the first imaging light from the first pixel area
  • right eye sees is the first imaging light from the second pixel area.
  • Second imaging light The images seen by the two eyes are different, which can achieve a 3D display effect.
  • naked-eye 3D display has stricter requirements on the position of the viewer, that is, the left eye and the right eye must see different imaging lights respectively.
  • this application also supports viewers to wear glasses for viewing. The requirements for the location of the viewer are not so strict. It can support multiple viewings. As long as the viewer can receive the first imaging light and the second imaging light, by wearing The eyes are filtered to ensure that the images seen by the two eyes are different and achieve a 3D display effect.
  • Figure 5 is a schematic diagram of area division on the polarizer in the embodiment of the present application.
  • the analyzer can have the following typical area division methods.
  • the first region and the second region are staggered in the first direction and distributed in a transverse stripe shape.
  • the first regions and the second regions are staggered in the second direction and distributed in a longitudinal stripe shape.
  • the first area and the second area are staggered in the first direction and the second direction respectively, and are distributed in a checkerboard shape.
  • the first direction is perpendicular to the second direction.
  • the area division on the analyzer 30 and the pixel area division on the imaging engine 40 may not perfectly correspond in position.
  • the main function of the imaging engine 40 is to modulate the input light to generate imaging light containing image information.
  • the image may be displayed on the imaging engine 40, or the image may be projected to other locations for display, which is not limited here.
  • the imaging engine 40 as a liquid crystal display (LCD) as an example.
  • Embodiment 1 A liquid crystal display having its own polarizer and analyzer.
  • FIG. 6(a) is a schematic structural diagram of a first liquid crystal display in an embodiment of the present application.
  • the first polarized light is represented by a solid arrow in FIG. 6(a) and the second polarized light is represented by a dotted arrow.
  • the liquid crystal display 40 adopts a traditional design.
  • the liquid crystal display 40 includes a polarizer 401, a liquid crystal 402, and an analyzer 403.
  • the liquid crystal 402 is located between the polarizer 401 and the analyzer 403. It should be understood that the liquid crystal 402 has unique optical properties. By changing the voltage loaded on the liquid crystal 402, the liquid crystal molecules will be distorted to varying degrees.
  • the polarized light will propagate along the crystal direction of the liquid crystal, so the liquid crystal will rotate the polarization direction of the polarized light.
  • the polarizer 401 and the analyzer 403 use non-pixelated polarizing films or polarizing plates, such as shown in Figure 6(a).
  • the polarization directions of all areas on the polarizer 401 are unified.
  • the polarization directions of all areas on the analyzer 403 are also uniform.
  • different areas on the polarizer 401 can also be set with different polarization directions.
  • different areas on the analyzer 403 can also be set with different polarization directions.
  • the polarizer 401 converts the input natural light into polarized light, and the polarization direction of the polarized light may be rotated after passing through the liquid crystal 402.
  • the polarization direction of the polarized light after passing through each pixel area on the liquid crystal 402 is independently adjustable.
  • the analyzer 403 filters the polarized light passing through the liquid crystal 402 . Since the polarization directions of polarized light from different pixel areas on the liquid crystal 402 may be different, the amount of light transmitted by the polarized light from different pixel areas on the liquid crystal 402 after passing through the analyzer 403 will also be different, ultimately forming a light and dark contrast. image.
  • the input to the polarizer 401 in this application is polarized light instead of natural light. Therefore, in order to ensure the effect, this application has a special design for the polarization direction of the polarizer 401. Specifically, the difference between the angular deviation of the polarization direction of the first area of the analyzer 30 and the polarization direction of the polarizer 401 and 45° is less than the threshold value, and the polarization direction of the second area of the analyzer 30 is less than the polarization direction of the polarizer 401 . The difference between the angular deviation of the polarization direction of the detector 401 and 45° is less than the threshold.
  • the value range of the threshold is 5°-30°, and the threshold may specifically be 5°, 10°, 15°, etc.
  • the polarization directions of the first region and the second region of the analyzer 30 are respectively 45° with the polarization direction of the polarizer 401 . It should be understood that although this design will cause the first polarized light and the second polarized light to each have 50% light loss after passing through the polarizer 401, it also ensures that both the first polarized light and the second polarized light have sufficient light energy. It is transmitted to the liquid crystal 402 through the polarizer 401. It should also be understood that this application does not limit the polarization direction of the analyzer 403.
  • the polarization directions of the polarizer 401 and the analyzer 403 are usually designed to be perpendicular to each other or parallel to each other.
  • the polarizer The polarization directions of 401 and analyzer 403 are perpendicular to each other as an example.
  • Embodiment 2 A liquid crystal display without a polarizer and an analyzer.
  • FIG. 6(b) is a schematic diagram of the second structure of the liquid crystal display in the embodiment of the present application.
  • the first polarized light is represented by a solid arrow in FIG. 6(b) and the second polarized light is represented by a dotted arrow.
  • the liquid crystal display 40 Different from the liquid crystal display shown in FIG. 6(a), as shown in FIG. 6(b), the liquid crystal display 40 only needs to be equipped with liquid crystal without the need for a polarizer 401 and an analyzer 403. It should be understood that since the light input to the liquid crystal display 40 in this application is already polarized, there is no need to provide the polarizer 401 anymore.
  • this embodiment also requires an analyzer 50 on the other side of the liquid crystal display 40 , that is, the liquid crystal display 40 is located between the analyzer 30 and the analyzer 50 .
  • the analyzer 50 has a similar function to the analyzer 403 in the embodiment shown in FIG. 6(a).
  • the analyzer 50 filters the polarized light passing through the liquid crystal display 40. It should be understood that since the liquid crystal will rotate the polarization direction of the polarized light and the polarization direction of the polarized light after passing through each pixel area on the liquid crystal is independently adjustable, the polarization direction of the polarized light from different pixel areas on the liquid crystal may be different.
  • the analyzer 30, the analyzer 50 and the liquid crystal display 40 may be bonded together. It should be noted that this application does not limit the polarization direction of the analyzer 50. In addition, the polarization directions of all areas on the analyzer 50 can be unified, or the analyzer 50 can also be similar to the analyzer 30. Pixelated area division. This embodiment is introduced by taking the pixelated polarizer 50 as an example. , and this application does not limit the polarization direction of each area on the analyzer 50 .
  • the polarization directions of two areas on the analyzer 30 and the analyzer 50 corresponding to the same pixel area are perpendicular to each other or parallel to each other.
  • the dark area on the analyzer 50 is marked as the third area
  • the light area on the analyzer 50 is marked as the fourth area.
  • the third area on the analyzer 50 corresponds to the position of the first area on the analyzer 30
  • the fourth area on the analyzer 50 corresponds to the position of the second area on the analyzer 30 . That is to say, the first polarized light from the first region is transmitted to the third region after passing through the first pixel region, and the second polarized light from the second region is transmitted to the fourth region after passing through the second pixel region.
  • the polarization direction of the third region is perpendicular to the polarization direction of the first region, and the polarization direction of the fourth region is perpendicular to the polarization direction of the second region.
  • the polarization direction of the third region is parallel to the polarization direction of the first region, and the polarization direction of the fourth region is parallel to the polarization direction of the second region.
  • this solution can use the traditional liquid crystal display in the first embodiment, so that this solution has better compatibility, but there will be 50% light loss.
  • this solution can use the customized LCD in Embodiment 2, which can effectively avoid 50% light loss, and the customized LCD has a simpler structure.
  • the light source emits first polarized light and second polarized light whose polarization directions are perpendicular to each other.
  • the first polarized light and the second polarized light are transmitted in different directions after passing through the optical module.
  • Using a pixelated analyzer allows first polarized light to be transmitted to a first pixel area of the imaging engine and second polarized light to be transmitted to a second pixel area of the imaging engine.
  • the first polarized light will pass through the first pixel area to generate first imaging light including first image information
  • the second polarized light will pass through the second pixel area to generate second imaging light including second image information.
  • the first imaging light and the second imaging light can be transmitted to the left eye and right eye of the viewer respectively, and then the left and right eyes will see different images, thereby achieving a 3D display effect.
  • this application can make different pixel areas on the imaging engine receive different polarized light, so that the left and right eyes can see different images respectively.
  • this application ensures that the images seen by the left and right eyes will not form crosstalk, and the 3D display effect will be better.
  • the above embodiments mainly introduce the scenario of using the image generation device to achieve the 3D display effect.
  • the above image generation device can also be compatible with 2D display scenes. It should be understood that in order to achieve 2D display, the left and right eyes must be able to see the same image, so both the left and right eyes must be able to see the imaging light from all pixel areas on the imaging engine. The following is introduced with a specific embodiment.
  • FIG. 7 is a schematic diagram of the image generation device applied to a 2D display scene in an embodiment of the present application. Different from the scene shown in Figure 2 above, as shown in Figure 7, both the first polarized light and the second polarized light can be seen by both eyes.
  • the first polarized light is represented by a solid arrow in FIG. 7 and the second polarized light is represented by a dotted arrow.
  • a part of the first polarized light is transmitted toward the left eye through the optical module 20
  • the other part of the first polarized light is transmitted toward the right eye through the optical module 20 .
  • part of the second polarized light is transmitted toward the right eye through the optical module 20
  • the other part of the second polarized light is transmitted toward the left eye through the optical module 20 .
  • the first imaging light from the first pixel area can be transmitted to the left and right eyes
  • the second imaging light from the second pixel area can also be transmitted to the left and right eyes, so that the left and right eyes can see The same image, thus achieving a 2D display effect without pixel loss.
  • the light source is in the form of a light source array.
  • enable light source 1 and light source 2 in the light source array The first polarized light emitted by the light source 1 is transmitted toward the left eye through the optical module 20
  • the second polarized light emitted by the light source 2 is transmitted toward the right eye through the optical module 20 .
  • light source 3 and light source 4 will also be enabled.
  • the first polarized light emitted by the light source 3 is transmitted toward the right eye through the optical module 20
  • the second polarized light emitted by the light source 4 is transmitted toward the left eye through the optical module 20 .
  • the image generation device provided by this application is compatible with 3D display scenes and 2D display scenes, and is applicable to a wider range of scenes.
  • 3D display solutions such as the cylindrical lens solution
  • half of the pixels will be lost if switched to 2D display. If the image generation device provided by this application is used, all pixels can be seen by both left and right eyes in a 2D display scene without pixel loss, and the display effect is better.
  • FIG. 8 is a schematic structural diagram of a display device in an embodiment of the present application.
  • the display device includes: a processor 801 and an image generating device 802 .
  • the image generating device 802 may be the image generating device introduced in any of the above embodiments.
  • the processor 801 is configured to send image data to the imaging engine of the image generating device 802 .
  • the imaging engine of the image generating device 802 modulates the incident light according to the image data to obtain imaging light including image information.
  • the application scenarios of the above display devices include but are not limited to Head-Up Display (HUD), projectors, augmented reality (Augmented Reality, AR) devices and virtual display (Virtual Reality, VR) devices, etc.
  • the display device in this application is integrated into a HUD.
  • the HUD can project navigation information, instrument information, etc. in the driver's front field of view, preventing the driver from lowering his head to view this information, thereby affecting driving safety.
  • the image projected by the HUD is reflected by the windshield and forms a virtual image on the outside of the vehicle.
  • the display device in the present application is integrated with a projector, and the projector can project images onto a wall or projection screen.
  • the display device in this application is integrated with an AR device or a VR device.
  • the AR device may include but is not limited to AR glasses or an AR helmet.
  • the VR device may include but is not limited to VR glasses or a VR helmet.
  • the user may wear the AR device. or VR equipment for gaming, watching videos, participating in virtual meetings, or video shopping, etc.
  • the display device in this application is integrated into a vehicle-mounted display screen.
  • the vehicle-mounted display screen can be installed on the back of the seat of the vehicle or in the passenger position. This application does not limit the installation location of the vehicle-mounted display screen.
  • the display device in this application is integrated into a car light.
  • the car light can also implement an adaptive driving beam system (Adaptive Driving Beam, ADB), which can project text, traffic signs, etc.
  • Complex graphics can also be projected, such as videos, to add auxiliary driving or entertainment functions.
  • An embodiment of the present application also provides a vehicle equipped with the above-mentioned display device.
  • the display device can be installed on the vehicle as a HUD, a vehicle display, or a vehicle light.
  • HUD uses HUD as an example to introduce a specific implementation method of installing a display device on a vehicle.
  • FIG. 9 is a schematic diagram of a display device installed on a vehicle in an embodiment of the present application.
  • the windshield of a vehicle can reflect the light output from the display device to human eyes.
  • the display device is used to output two channels of imaging light, and the two channels of imaging light carry different image information.
  • the driver or passenger is located on one side of the windshield.
  • the windshield is used to reflect two paths of imaging light to form a virtual image on the other side of the windshield.
  • the reflected two-channel imaging light is transmitted to the eyes of the driver or passenger respectively.
  • the first imaging light is transmitted to the left eye.
  • the second imaging light is transmitted to the right eye.
  • vehicles may be cars, trucks, motorcycles, buses, boats, airplanes, helicopters, lawn mowers, recreational vehicles, playground vehicles, construction equipment, trolleys, golf carts, trains, and handcarts etc., the embodiments of the present application are not particularly limited.
  • An embodiment of the present application also provides an image generation method.
  • This image generation method is applied to the image generation device introduced in the above embodiment.
  • Figure 10 is a schematic diagram of an embodiment of an image generation method provided by this application.
  • the image generation method includes the following steps.
  • the polarization directions of the first polarized light and the second polarized light are perpendicular to each other.
  • the optical module can transmit the first polarized light and the second polarized light in different directions. For example, the first polarized light is transmitted toward the left eye and the second polarized light is transmitted toward the right eye.
  • the optical module reference may be made to the relevant description of the embodiment shown in FIG. 2 , which will not be described again here.
  • This application provides a pixelated analyzer, that is, the analyzer is also divided into regions according to the division method of pixel regions on the imaging engine. Specifically, the first region of the analyzer is used to filter the second polarized light to transmit the first polarized light to the first pixel region of the imaging engine. The second region of the analyzer is used to filter the first polarized light to transmit the second polarized light to the second pixel region of the imaging engine. Regarding the specific implementation of the polarization analyzer, reference may be made to the relevant description of the embodiment shown in FIG. 2 and will not be described again here.
  • the imaging engine modulates the first polarized light according to the loaded image data to obtain the first imaging light including the first image information, and modulates the second polarized light according to the loaded image data to obtain the second imaging light including the second image information.
  • the imaging engine modulates the first polarized light according to the loaded image data to obtain the first imaging light including the first image information, and modulates the second polarized light according to the loaded image data to obtain the second imaging light including the second image information.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种图像生成装置、显示设备、交通工具和图像生成方法,可应用于裸眼3D显示的场景。图像生成装置包括:光源(10)、光学模组(20)、第一检偏器(30)和成像引擎(40),光源(10)发射偏振方向相互垂直的第一偏振光和第二偏振光。第一偏振光和第二偏振光经过光学模组(20)后可以向不同方向传输,采用像素化的第一检偏器(30)使得第一偏振光传输到成像引擎(40)的第一像素区域,并使得第二偏振光传输到成像引擎(40)的第二像素区域,第一偏振光会经过第一像素区域生成包括第一图像信息的第一成像光,第二偏振光会经过第二像素区域生成包括第二图像信息的第二成像光,第一成像光和第二成像光可以分别传输到观看者的左眼和右眼,那么左右眼将看到不同的图像,从而实现3D显示效果。

Description

一种图像生成装置、显示设备、交通工具和图像生成方法
本申请要求于2022年7月26日提交中国国家知识产权局、申请号为202210886985.7、申请名称为“一种图像生成装置、显示设备、交通工具和图像生成方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光显示领域,尤其涉及一种图像生成装置、显示设备、交通工具和图像生成方法。
背景技术
立体显示技术已成显示产业中的重要一环。立体显示技术得到了快速发展,多种立体显示技术已成商品,世界范围内也在不断普及立体电视频道,立体显示技术已成未来显示领域的必然发展方向。其中,自由立体显示技术克服了对辅助器件的依赖,能让观看者在无需佩戴任何辅助装置的情况下裸眼观看到立体图像。
目前有一种自由立体显示方案是采用时分方案,即不同时间播放不同画面,并将不同画面传输到不同的眼中。例如,时刻1在屏幕上播放左眼画面,并通过光源1将左眼画面传输到左眼,时刻2在屏幕上播放右眼画面,并通过光源2将右眼画面传输到右眼,如此交替进行。但是,该方案要求屏幕上画面刷新率与光源切换频率高度重合,因此容易引起两个眼睛之间的串扰。
发明内容
本申请实施例提供了一种图像生成装置、显示设备、交通工具和图像生成方法,可主要应用于裸眼3D显示的场景。
第一方面,本申请实施例提供了一种图像生成装置。该图像生成装置包括:光源、光学模组、第一检偏器和成像引擎。光源用于发射具有第一偏振方向的第一偏振光和具有第二偏振方向的第二偏振光,其中,第一偏振方向与第二偏振方向垂直。光学模组用于分别调节第一偏振光和第二偏振光的传输方向,其中,第一偏振光和第二偏振光经过光学模组传输至第一检偏器。第一检偏器的第一区域用于过滤第二偏振光,以将第一偏振光传输至成像引擎的第一像素区域。第一检偏器的第二区域用于过滤第一偏振光,以将第二偏振光传输至成像引擎的第二像素区域。成像引擎用于对第一像素区域上的第一偏振光进行调制得到包括第一图像信息的第一成像光,并对第二像素区域上的第二偏振光进行调制得到包括第二图像信息的第二成像光。
在该实施方式中,通过引入偏振光和检偏器使得成像引擎上不同的像素区域接收到不同的偏振光,从而便于左右眼分别看到不同的图像,保证了左右眼看到的图像不会形成串扰。相较于现有技术中通过时分方式实现3D显示效果的方案,本方案的3D显示效果更佳。
在一些可能的实施方式中,第一成像光向第一位置传输,第二成像光向第二位置传输。例如,观看者的左眼位于第一位置,观看者的右眼位于第二位置,使得观看者可以体验到裸眼3D的显示效果。
在一些可能的实施方式中,第一偏振光包括第一子偏振光和第二子偏振光,第二偏振光包括第三子偏振光和第四子偏振光。也就是说,第一子偏振光和第二子偏振光的偏振方向相同,第三子偏振光和第四子偏振光的偏振方向相同。第一子偏振光经过成像引擎的调制得到包括第一图像信息的第一子成像光,第二子偏振光经过成像引擎的调制得到包括第一图像信息的第二子成像光。第三子偏振光经过成像引擎的调制得到包括第二图像信息的第三子成像光,第四子偏振光经过成像引擎的调制得到包括第二图像信息的第四子成像光。其中,第一子成像光和第三子成像光向第一位置传输,第二子成像光和第四子成像光向第二位置传输。
在该实施方式中,图像生成装置还可以兼容2D显示的场景,适用场景更广。为了实现2D显示,左右眼要能看到相同的图像,因此要使得左右眼都能看到来自成像引擎上所有像素区域的成像光。也就是说,具有第一偏振方向的第一偏振光和具有第二偏振方向的第二偏振光都能被两只眼看到。因此,第一子成像光和第三子成像光向第一位置传输,第二子成像光和第四子成像光向第二位置传输。这样一来,相当于来自第一像素区域的第一成像光能传输到左眼和右眼,来自第二像素区域的第二成像光也能传输到左眼和右眼,左右眼可以看到相同的图像,从而实现2D显示效果。现有的一些3D显示方案中,例如柱透镜方案,如果切换到2D显示会有一半的像素损失。而如果采用本申请提供的图像生成装置,在2D显示场景下可以让左右眼都看到所有像素,并不会有像素损失,显示效果更好。
在一些可能的实施方式中,成像引擎包括第一起偏器、液晶和第二检偏器,液晶位于第一起偏器与第二检偏器之间。第一检偏器的第一区域的偏振方向与第一起偏器的偏振方向的角度偏差与45°之间的差值小于阈值。第一检偏器的第二区域的偏振方向与第一起偏器的偏振方向的角度偏差与45°之间的差值小于阈值。
在该实施方式中,输入第一起偏器的已经是偏振光而非自然光,因此为了保证实现效果,本申请对第一起偏器的偏振方向有特殊设计。理想情况下,第一检偏器的第一区域和第二区域的偏振方向分别与第一起偏器的偏振方向成45°。应理解,这样设计虽然会导致第一偏振光和第二偏振光通过第一起偏器后各有50%的光损失,但是也保证了第一偏振光和第二偏振光都有足够的光能通过第一起偏器传输至液晶。该实施方式中的成像引擎可以采用传统的液晶显示器,使得本方案具有较好的兼容性。
在一些可能的实施方式中,成像引擎包括液晶,图像生成装置还包括第三检偏器,成像引擎位于第一检偏器与第三检偏器之间。在该实施方式中,由于本申请中输入成像引擎的已经是偏振光了,所以成像引擎可以只保留液晶而无需设置起偏器。应理解,液晶具有独特的光学性质,通过改变液晶上加载的电压会使液晶分子发生不同程度的扭曲,偏振光会沿着液晶的晶体方向传播,所以液晶会旋转偏振光的偏振方向。因此,还需要在成像引擎的另一侧设置第三检偏器,第三检偏器对通过成像引擎的偏振光进行过滤。由于来自液晶上不同像素区域的偏振光的偏振方向可能是不同的,那么来自液晶上不同像素区域的偏振光经过第三检偏器之后的透光量也会不同,最终形成有明暗对比的图像。该实施方式中的成像引擎可以有效避免50%的光损失,并且结构更简单。
在一些可能的实施方式中,第一区域和第二区域在第一方向上交错排列,呈横向条纹状分布。或者,第一区域和第二区域在第二方向上交错排列,呈纵向条纹状分布。或者,第一区域和第二区域分别在第一方向和第二方向上交错排列,呈棋盘状分布。其中,第一方向与第二方向垂直。在该实施方式中,提供了多种检偏器的区域划分方式,增强了本方案的扩展性。
在一些可能的实施方式中,光源包括发光模组和第二起偏器,第二起偏器用于将发光模 组发射的光转换为第一偏振光和第二偏振光,增强了本方案的可实现性。采用类似的原理,带有起偏器的光源还可以有其他的设计方式,例如,也可以采用两个独立的起偏器,其中一个起偏器用于将发光模组发射的光转换为第一偏振光,另一个起偏器用于将发光模组发射的光转换为第二偏振光。又例如,也可以采用两个独立的发光模组,其中一个发光模组发射的光经过起偏器转换为第一偏振光,另一个发光模组发射的光经过起偏器转换为第二偏振光。
在一些可能的实施方式中,光源包括第一子光源和第二子光源,第一子光源用于发射第一偏振光,第二子光源用于发射第二偏振光。本实施方式提供了光源的另一种实现方式,提高了本方案的灵活性。
在一些可能的实施方式中,第一像素区域和第二像素区域不重叠,保证了左右眼看到的图像不会形成串扰。
在一些可能的实施方式中,在光源输出发散光的场景下,光学模组可以采用菲涅尔透镜,菲涅尔透镜用于分别对第一偏振光和第二偏振光进行汇聚,实用效果更好。
在一些可能的实施方式中,第一检偏器为偏光膜,保证了本方案的可实现性。
第二方面,本申请实施例提供了一种显示设备。该显示设备包括处理器和如第一方面任一实施方式介绍的图像生成装置。处理器用于向图像生成装置的成像引擎发送图像数据。成像引擎根据图像数据对入射光进行调制得到包括图像信息的成像光。上述显示设备的应用场景包括但不限于抬头显示(Head-Up Display,HUD)、投影仪、增强显示(Augmented Reality,AR)设备和虚拟显示(Virtual Reality,VR)设备等。
第三方面,本申请实施例提供了一种交通工具。该交通工具包括显示设备,显示设备安装在交通工具上。例如,显示设备可以作为HUD、车载显示屏或车灯安装在交通工具上。
第四方面,本申请实施例提供了一种图像生成方法。该图像生成方法应用于图像生成装置,图像生成装置包括光源、光学模组、第一检偏器和成像引擎。该图像生成方法包括:通过光源发射具有第一偏振方向的第一偏振光和具有第二偏振方向的第二偏振光,第一偏振方向与第二偏振方向垂直。通过光学模组分别调节第一偏振光和第二偏振光进行的传输方向,其中,第一偏振光和第二偏振光经过光学模组传输至第一检偏器。通过第一检偏器的第一区域过滤第二偏振光,以将第一偏振光传输至成像引擎的第一像素区域。通过第一检偏器的第二区域过滤第一偏振光,以将第二偏振光传输至成像引擎的第二像素区域。通过成像引擎对第一像素区域上的第一偏振光进行调制得到包括第一图像信息的第一成像光,并对第二像素区域上的第二偏振光进行调制得到包括第二图像信息的第二成像光。
在一些可能的实施方式中,第一成像光向第一位置传输,第二成像光向第二位置传输,第一位置为观看者的左眼位置,第二位置为观看者的右眼位置。
在一些可能的实施方式中,第一偏振光包括第一子偏振光和第二子偏振光,第二偏振光包括第三子偏振光和第四子偏振光。第一子偏振光经过成像引擎的调制得到包括第一图像信息的第一子成像光,第二子偏振光经过成像引擎的调制得到包括第一图像信息的第二子成像光。第三子偏振光经过成像引擎的调制得到包括第二图像信息的第三子成像光,第四子偏振光经过成像引擎的调制得到包括第二图像信息的第四子成像光。第一子成像光和第三子成像光向第一位置传输,第二子成像光和第四子成像光向第二位置传输,第一位置为观看者的左眼位置,第二位置为观看者的右眼位置。
在一些可能的实施方式中,成像引擎包括第一起偏器、液晶和第二检偏器,液晶位于第一起偏器与第二检偏器之间。第一检偏器的第一区域的偏振方向与第一起偏器的偏振方向的角度偏差与45°之间的差值小于阈值。第一检偏器的第二区域的偏振方向与第一起偏器的偏 振方向的角度偏差与45°之间的差值小于阈值。
在一些可能的实施方式中,成像引擎包括液晶,图像生成装置还包括第三检偏器,成像引擎位于第一检偏器与第三检偏器之间。
在一些可能的实施方式中,第一区域和第二区域在第一方向上交错排列,呈横向条纹状分布。或者,第一区域和第二区域在第二方向上交错排列,呈纵向条纹状分布。或者,第一区域和第二区域分别在第一方向和第二方向上交错排列,呈棋盘状分布。其中,第一方向与第二方向垂直。
在一些可能的实施方式中,第一像素区域和第二像素区域不重叠。
本申请实施例中,光源发射偏振方向相互垂直的第一偏振光和第二偏振光。第一偏振光和第二偏振光经过光学模组后向不同方向传输。采用像素化的检偏器可以使得第一偏振光传输到成像引擎的第一像素区域,并使得第二偏振光传输到成像引擎的第二像素区域。第一偏振光会经过第一像素区域生成包括第一图像信息的第一成像光,第二偏振光会经过第二像素区域生成包括第二图像信息的第二成像光。在一种可能的场景中,第一成像光和第二成像光可以分别传输到观看者的左眼和右眼,那么左右眼将看到不同的图像,从而实现3D显示效果。综上,本申请可以使得成像引擎上不同的像素区域接收到不同的偏振光,从而使左右眼分别看到不同的图像,相较于现有技术中通过时分方式实现3D显示效果的方案,本申请保证了左右眼看到的图像不会形成串扰,3D显示效果更佳。
附图说明
图1为3D显示场景的一种示意图;
图2为本申请实施例中图像生成装置的一种结构示意图;
图3(a)为本申请实施例中光源的第一种结构示意图;
图3(b)为本申请实施例中光源的第二种结构示意图;
图4为本申请实施例中检偏器与成像引擎之间的光传输示意图;
图5为本申请实施例中检偏器上区域划分的示意图;
图6(a)为本申请实施例中液晶显示器的第一种结构示意图;
图6(b)为本申请实施例中液晶显示器的第二种结构示意图;
图7为本申请实施例中图像生成装置应用于2D显示场景的示意图;
图8为本申请实施例中显示设备的一种结构示意图;
图9为本申请实施例中显示设备安装在交通工具的一种示意图;
图10为本申请提供的一种图像生成方法的实施例示意图。
具体实施方式
本申请实施例提供了一种图像生成装置、显示设备、交通工具和图像生成方法,可主要应用于裸眼3D显示的场景。本申请通过引入偏振光和检偏器使得成像引擎上不同的像素区域接收到不同的偏振光,从而能让左右眼分别看到不同的图像,保证了左右眼看到的图像不会形成串扰。
需要说明的是,本申请说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”和“第四”等用于区别类似的对象,而非限定特定的顺序或先后次序。应理解,上述术语在适当情况下可以互换,以便在本申请描述的实施例能够以除了在本申请描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的 包含。例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
图1为3D显示场景的一种示意图。如图1所示,由于人的双眼之间通常有6-7厘米的间隔,因此左眼所看到的影像与右眼所看到的影像会有些微的差异,这个差异被称为“双目视差”。进而,大脑会解读双眼的视差并判断物体远近以产生立体视觉。其中,本申请提供了一种裸眼3D的图像生成装置,不同于常规戴眼镜的3D显示,裸眼3D无需佩戴任何设备,而是直接将不同的图像送到不同的眼睛中。下面对本申请提供的图像生成装置进行详细介绍。
图2为本申请实施例中图像生成装置的一种结构示意图。如图2所示,图像生成装置包括:光源10、光学模组20、检偏器30和成像引擎40。光源10发射的光会依次经过光学模组20、检偏器30和成像引擎40最终传输到人眼。
光源10用于发射具有第一偏振方向的第一偏振光和具有第二偏振方向的第二偏振光。为了便于示意,图2中用实线箭头表示第一偏振光,用虚线箭头表示第二偏振光。其中,第一偏振光与第二偏振光的偏振方向垂直。应理解,在实际应用中,第一偏振光与第二偏振光的偏振方向也有可能不是完全垂直的,只要是在允许的误差范围内都可以视为偏振方向垂直。例如,第一偏振光与第二偏振光的偏振方向相差在80°-100°之间都可以视为偏振方向垂直。下面提供光源10的几种具体实施方式。
实施方式1:带有起偏器的光源。
图3(a)为本申请实施例中光源的第一种结构示意图。如图3(a)所示,光源10包括发光模组101和起偏器102。其中,起偏器102可以将发光模组101发射的光转换为偏振光。以图3(a)为例,起偏器102上浅色的区域用于将输入的光转换为第一偏振光,起偏器102上深色的区域用于将输入的光转换为第二偏振光。也就是说,起偏器102上不同的区域用于将输入的光转换为具有不同偏振方向的偏振光。采用类似的原理,带有起偏器的光源还可以有其他的设计方式,具体此处不做限定。例如,也可以采用两个独立的起偏器,其中一个起偏器用于将发光模组发射的光转换为第一偏振光,另一个起偏器用于将发光模组发射的光转换为第二偏振光。又例如,也可以采用两个独立的发光模组,其中一个发光模组发射的光经过起偏器转换为第一偏振光,另一个发光模组发射的光经过起偏器转换为第二偏振光。需要说明的是,起偏器102具体可以通过偏光膜或偏振片等实现,其作用是将自然光转换为偏振光。发光模组101可以采用光源阵列或者各区域独立控制的面光源,从而可以根据实际需要选择出光的方向。
实施方式2:带偏振方向的光源。
图3(b)为本申请实施例中光源的第二种结构示意图。如图3(b)所示,光源10包括第一子光源103和第二子光源104。其中,第一子光源103和第二子光源104都可以直接发射具有偏振方向的偏振光。以图3(b)为例,第一子光源103用于发射第一偏振光,第二子光源104用于发射第二偏振光。需要说明的是,具体可以采用半导体光源等来发射具有偏振方向的偏振光。
光学模组20用于分别调节第一偏振光和第二偏振光的传输方向。例如,可以将第一偏振光朝着左眼的方向传输,将第二偏振光朝着右眼的方向传输。应理解,本申请不限定光学模组20的调节光传输方向的具体方式。以光源10发射的第一偏振光和第二偏振光均为发散光为例,光学模组20将第一偏振光朝着左眼的方向汇聚,并将第二偏振光朝着右眼的方向汇聚。在一种可能的实施方式中,光学模组20为透镜模组,例如菲涅尔透镜。在另一种可能的实施 方式中,光学模组20为光学薄膜模组,通过排布多个光学薄膜来实现类似菲涅尔透镜的效果。需要说明的是,包括图2的所有附图中的光路只是为了起到示意的效果,实际上经过光学模组20的第一偏振光和第二偏振光都要覆盖到检偏器30的所有区域。
成像引擎40上分布有多个像素区域,成像引擎40的液晶层中的水晶液滴都被包含在细小的单元格结构中,一个或多个单元格可以构成一个像素区域。为了能实现3D显示效果,应当使左眼和右眼分别看到来自不同像素区域的光。因此,本申请提供的是一种像素化的检偏器30,即检偏器30也要进行区域划分,不同区域具有不同的偏振方向。检偏器30上划分的区域与成像引擎40上划分的像素区域是位置对应的,也就是说,通过检偏器30上某个区域的光会传输到成像引擎40上与之对应的像素区域。需要说明的是,检偏器30具体可以通过偏光膜或偏振片等实现,其作用是对指定偏振方向的偏振光进行过滤或吸收,从而筛选可以通过的偏振光。
图4为本申请实施例中检偏器与成像引擎之间的光传输示意图。如图4所示,检偏器30上浅色区域记为第一区域,检偏器30上深色区域记为第二区域,成像引擎40上浅色区域记为第一像素区域,成像引擎40上深色区域记为第二像素区域。应理解,实际应用中,检偏器30与成像引擎40可以是贴合在一起的。为了便于示意,图4中用实线箭头表示第一偏振光,用虚线箭头表示第二偏振光。
具体地,检偏器30的第一区域用于过滤第二偏振光,以将第一偏振光传输至成像引擎40的第一像素区域。检偏器30的第二区域用于过滤第一偏振光,以将第二偏振光传输至成像引擎40的第二像素区域。因此,实现了将不同偏振的光传输到成像引擎40上不同的像素区域。进而,成像引擎40根据加载的图像数据对第一偏振光进行调制得到包括第一图像信息的第一成像光,并根据加载的图像数据对第二偏振光进行调制得到包括第二图像信息的第二成像光。由于第一偏振光朝左眼方向传输且第二偏振光朝右眼方向传输,那么,左眼看到的是来自第一像素区域的第一成像光,右眼看到的是来自第二像素区域的第二成像光。两只眼看到的图像不同,可以实现3D显示效果。应理解,在实际应用中,裸眼3D的显示对观看者所处的位置要求更为严格,即左眼和右眼要分别看到不同的成像光。当然,本申请也支持观看者佩戴眼睛进行观看,对观看者所处的位置要求没那么严格,可以支持多人观看,观看者能接收到第一成像光和第二成像光即可,通过佩戴的眼睛进行滤光,以保证两只眼看到的图像不同,实现3D显示效果。
图5为本申请实施例中检偏器上区域划分的示意图。如图5所示,根据成像引擎40上像素区域的划分方式,检偏器可以有如下几种典型的区域划分方式。例如,A示例中第一区域和第二区域在第一方向上交错排列,呈横向条纹状分布。又例如,B示例中第一区域和第二区域在第二方向上交错排列,呈纵向条纹状分布。再例如,C示例中第一区域和第二区域分别在第一方向和第二方向上交错排列,呈棋盘状分布。其中,第一方向与第二方向垂直。应理解,在实际应用中,检偏器30上的区域划分与成像引擎40上的像素区域划分也可能不是位置上完美对应的。例如,第一区域与第一像素区域可以有一定的位置偏移,第二区域与第二像素区域也可以有一定的位置偏移,只要在误差接收范围之内即可。如果偏差太大容易引起两只眼的串扰,影响显示效果。
需要说明的是,成像引擎40的主要作用是对输入的光进行调制以生成包含图像信息的成像光。其中,图像可以是在成像引擎40上显示的,或者,图像也可以是投影到其他位置上显示的,具体此处不做限定。下面以成像引擎40是液晶显示器(Liquid Crystal Display,LCD)为例介绍几种具体的实施方式。
实施方式1:自身具有起偏器和检偏器的液晶显示器。
图6(a)为本申请实施例中液晶显示器的第一种结构示意图。为了便于示意,图6(a)中用实线箭头表示第一偏振光,用虚线箭头表示第二偏振光。如图6(a)所示,该液晶显示器40采用传统设计。具体地,液晶显示器40包括起偏器401、液晶402和检偏器403,液晶402位于起偏器401和检偏器403之间。应理解,液晶402具有独特的光学性质,通过改变液晶402上加载的电压会使液晶分子发生不同程度的扭曲,偏振光会沿着液晶的晶体方向传播,所以液晶会旋转偏振光的偏振方向。作为一个示例,起偏器401和检偏器403采用的是非像素化的偏光膜或偏振片,例如图6(a)所示,起偏器401上所有区域的偏振方向是统一的,同理,检偏器403上所有区域的偏振方向也是统一的。作为另一个示例,起偏器401上不同区域也可以设置不同的偏振方向,同理,检偏器403上不同区域也可以设置不同的偏振方向。
需要说明的是,在液晶显示器的传统应用场景中,起偏器401将输入的自然光转换为偏振光,该偏振光经过液晶402后其偏振方向可能会发生旋转。其中,该偏振光经过液晶402上每个像素区域后的偏振方向都是独立可调的。进而,检偏器403对通过液晶402的偏振光进行过滤。由于来自液晶402上不同像素区域的偏振光的偏振方向可能是不同的,那么来自液晶402上不同像素区域的偏振光经过检偏器403之后的透光量也会不同,最终形成有明暗对比的图像。区别于上述的传统应用场景,本申请中输入起偏器401的已经是偏振光而非自然光,因此为了保证实现效果,本申请对起偏器401的偏振方向有特殊设计。具体地,检偏器30的第一区域的偏振方向与起偏器401的偏振方向的角度偏差与45°之间的差值小于阈值,检偏器30的第二区域的偏振方向与起偏器401的偏振方向的角度偏差与45°之间的差值小于阈值。作为一个示例,该阈值的取值范围是5°-30°,该阈值具体可以是5°、10°、15°等。理想情况下,检偏器30的第一区域和第二区域的偏振方向分别与起偏器401的偏振方向成45°。应理解,这样设计虽然会导致第一偏振光和第二偏振光通过起偏器401后各有50%的光损失,但是也保证了第一偏振光和第二偏振光都有足够的光能通过起偏器401传输至液晶402。还应理解,本申请不限定检偏器403的偏振方向,在实际应用中,通常将起偏器401和检偏器403的偏振方向设计为相互垂直或相互平行,本实施例以起偏器401和检偏器403的偏振方向相互垂直为例进行介绍。
实施方式2:自身不具有起偏器和检偏器的液晶显示器。
图6(b)为本申请实施例中液晶显示器的第二种结构示意图。为了便于示意,图6(b)中用实线箭头表示第一偏振光,用虚线箭头表示第二偏振光。区别于图6(a)所示的液晶显示器,如图6(b)所示,该液晶显示器40只需要配备液晶而无需起偏器401和检偏器403。应理解,由于本申请中输入液晶显示器40的已经是偏振光了,自然无需再设置起偏器401。但是,本实施例还需要在液晶显示器40的另一侧设置检偏器50,即液晶显示器40位于检偏器30与检偏器50之间。检偏器50与上述图6(a)所示实施例中检偏器403的作用类似,检偏器50对通过液晶显示器40的偏振光进行过滤。应理解,由于液晶会旋转偏振光的偏振方向且偏振光经过液晶上每个像素区域后的偏振方向都是独立可调的,因此来自液晶上不同像素区域的偏振光的偏振方向可能是不同的,那么来自液晶上不同像素区域的偏振光经过检偏器50之后的透光量也会不同,最终形成有明暗对比的图像。在实际应用中,检偏器30、检偏器50和液晶显示器40可以是贴合在一起的。需要说明的是,本申请不限定检偏器50的偏振方向,另外,检偏器50上所有区域的偏振方向可以是统一的,或者,检偏器50也可以与检偏器30类似都采用像素化的区域划分。本实施例是以像素化的检偏器50为例进行介绍 的,并且,本申请也不限定检偏器50上每个区域的偏振方向。
作为一个示例,检偏器30和检偏器50上与同一像素区域对应的两个区域的偏振方向相互垂直或相互平行。如图6(b)所示,检偏器50上深色区域记为第三区域,检偏器50上浅色区域记为第四区域。检偏器50上第三区域与检偏器30上第一区域位置对应,检偏器50上第四区域与检偏器30上第二区域位置对应。也就是说,来自第一区域的第一偏振光经过第一像素区域后传输至第三区域,来自第二区域的第二偏振光经过第二像素区域后传输至第四区域。在一种可能的实施方式中,第三区域的偏振方向与第一区域的偏振方向垂直,第四区域的偏振方向与第二区域的偏振方向垂直。在另一种可能的实施方式中,第三区域的偏振方向与第一区域的偏振方向平行,第四区域的偏振方向与第二区域的偏振方向平行。
通过对比上述液晶显示器的两种实施方式可知,本方案可以采用实施方式1中传统的液晶显示器,使得本方案具有较好的兼容性,但是会有50%的光损失。此外,本方案可以采用实施方式2中自定义的液晶显示器,可以有效避免50%的光损失,并且该自定义的液晶显示器结构更简单。
结合以上对本申请中图像生成装置的介绍可知,光源发射偏振方向相互垂直的第一偏振光和第二偏振光。第一偏振光和第二偏振光经过光学模组后向不同方向传输。采用像素化的检偏器可以使得第一偏振光传输到成像引擎的第一像素区域,并使得第二偏振光传输到成像引擎的第二像素区域。第一偏振光会经过第一像素区域生成包括第一图像信息的第一成像光,第二偏振光会经过第二像素区域生成包括第二图像信息的第二成像光。在一种可能的场景中,第一成像光和第二成像光可以分别传输到观看者的左眼和右眼,那么左右眼将看到不同的图像,从而实现3D显示效果。综上,本申请可以使得成像引擎上不同的像素区域接收到不同的偏振光,从而使左右眼分别看到不同的图像,相较于现有技术中通过时分方式实现3D显示效果的方案,本申请保证了左右眼看到的图像不会形成串扰,3D显示效果更佳。
需要说明的是,上述实施例主要介绍了采用图像生成装置实现3D显示效果的场景。在实际应用中,上述图像生成装置也可以兼容2D显示场景。应理解,为了实现2D显示,左右眼要能看到相同的图像,因此要使得左右眼都能看到来自成像引擎上所有像素区域的成像光。下面结合一个具体实施例进行介绍。
图7为本申请实施例中图像生成装置应用于2D显示场景的示意图。区别于上述图2所示的场景,如图7所示,第一偏振光和第二偏振光都能被两只眼看到。为了便于示意,图7中用实线箭头表示第一偏振光,用虚线箭头表示第二偏振光。具体地,其中一部分第一偏振光通过光学模组20朝左眼传输,另一部分第一偏振光通过光学模组20朝右眼传输。同理,其中一部分第二偏振光通过光学模组20朝右眼传输,另一部分第二偏振光通过光学模组20朝左眼传输。这样一来,相当于来自第一像素区域的第一成像光能传输到左眼和右眼,来自第二像素区域的第二成像光也能传输到左眼和右眼,左右眼可以看到相同的图像,从而实现2D显示效果,并且没有像素损失。
在一种可能的实施方式中,以光源采用光源阵列的形式为例。在3D显示场景中,启用光源阵列中的光源1和光源2。光源1发射的第一偏振光经过光学模组20朝左眼传输,光源2用于发射的第二偏振光经过光学模组20朝右眼传输。在2D显示场景中,在启用光源1和光源2的基础上,还将启用光源3和光源4。光源3发射的第一偏振光经过光学模组20朝右眼传输,光源4用于发射的第二偏振光经过光学模组20朝左眼传输。
综上,本申请提供的图像生成装置可以兼容3D显示场景和2D显示场景,适用的场景更广。现有的一些3D显示方案中,例如柱透镜方案,如果切换到2D显示会有一半的像素损失。 而如果采用本申请提供的图像生成装置,在2D显示场景下可以让左右眼都看到所有像素,并不会有像素损失,显示效果更好。
本申请实施例还提供了一种显示设备。图8为本申请实施例中显示设备的一种结构示意图。如图8所示,该显示设备包括:处理器801和图像生成装置802。其中,图像生成装置802可以是上述任一实施例所介绍的图像生成装置。处理器801用于向图像生成装置802的成像引擎发送图像数据。图像生成装置802的成像引擎根据图像数据对入射光进行调制得到包括图像信息的成像光。
需要说明的是,上述显示设备的应用场景包括但不限于抬头显示(Head-Up Display,HUD)、投影仪、增强显示(Augmented Reality,AR)设备和虚拟显示(Virtual Reality,VR)设备等。作为一个示例,本申请中的显示设备集成于HUD中,HUD可将导航信息、仪表信息等投射在驾驶员的前方视野范围,避免驾驶员低头查看这些信息,从而影响驾驶安全。HUD投射的图像经过风挡反射后,在交通工具外部形成虚像。作为另一个示例,本申请中的显示设备集成于投影仪,投影仪可以将图像投影到墙面或投影屏幕上。作为又一个示例,本申请中的显示设备集成于AR设备或VR设备,AR设备可以包括但不限于AR眼镜或AR头盔,VR设备可以包括但不限于VR眼镜或VR头盔,用户可佩戴AR设备或VR设备进行游戏、观看视频、参加虚拟会议、或视频购物等。作为又一个示例,本申请中的显示设备集成于车载显示屏中,车载显示屏可以安装在交通工具的座椅后背或副驾驶位置等,本申请对车载显示屏安装的位置不作限定。作为又一个示例,本申请中的显示设备集成于车灯中,除了实现照明功能,车灯还可以实现自适应远光系统(Adaptive Driving Beam,ADB),可以投射出文字,或交通标志等较为复杂的图形,还可以投影视频等画面,增加辅助驾驶或娱乐的功能。
本申请实施例还提供了一种交通工具,该交通工具安装有上述的显示设备。例如,显示设备可以作为HUD、车载显示屏或车灯安装在交通工具上。下面以HUD为例介绍一种显示设备安装在交通工具的具体实施方式。
图9为本申请实施例中显示设备安装在交通工具的一种示意图。如图9所示,交通工具的挡风玻璃可以将显示设备输出的光反射到人眼。具体地,显示设备用于输出两路成像光,两路成像光携带不同的图像信息。其中,驾驶员或乘客位于挡风玻璃的一侧。挡风玻璃用于反射两路成像光以在挡风玻璃的另一侧形成虚像。反射后的两路成像光分别传输至驾驶员或乘客的双眼。例如,第一路成像光传输至左眼。第二路成像光传输至右眼。
示例性的,交通工具可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、和手推车等,本申请实施例不作特别的限定。
本申请实施例还提供了一种图像生成方法。该图像生成方法应用于上述实施例介绍的图像生成装置。图10为本申请提供的一种图像生成方法的实施例示意图。在该实施例中,图像生成方法包括如下步骤。
1001、通过光源发射第一偏振光和第二偏振光。
应理解,第一偏振光和第二偏振光的偏振方向相互垂直。关于光源的具体实现方式可以参考上述图2所示实施例的相关描述,此处不再赘述。
1002、通过光学模组分别调节第一偏振光和第二偏振光的传输方向。
光学模组可以将第一偏振光和第二偏振光向不同的方向传输,例如,第一偏振光朝左眼传输,第二偏振光朝右眼传输。关于光学模组的具体实现方式可以参考上述图2所示实施例的相关描述,此处不再赘述。
1003、通过检偏器分别对第一偏振光和第二偏振光进行过滤。
本申请提供了一种像素化的检偏器,即检偏器按照成像引擎上像素区域的划分方式也进行了区域划分。具体地,检偏器的第一区域用于过滤第二偏振光,以将第一偏振光传输至成像引擎的第一像素区域。检偏器的第二区域用于过滤第一偏振光,以将第二偏振光传输至成像引擎的第二像素区域。关于检偏器的具体实现方式可以参考上述图2所示实施例的相关描述,此处不再赘述。
1004、通过成像引擎分别对第一偏振光和第二偏振光进行调制。
成像引擎根据加载的图像数据对第一偏振光进行调制得到包括第一图像信息的第一成像光,并根据加载的图像数据对第二偏振光进行调制得到包括第二图像信息的第二成像光。关于成像引擎的具体实现方式可以参考上述图2所示实施例的相关描述,此处不再赘述。
需要说明的是,本申请提供的图像生成方法既可以应用于图2所示的3D显示场景,也可以应用于图7所示的2D显示场景。具体实现方式可以参考上述图2和图7所示实施例的相关描述,此处不再赘述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (20)

  1. 一种图像生成装置,其特征在于,包括:光源、光学模组、第一检偏器和成像引擎;
    所述光源用于发射具有第一偏振方向的第一偏振光和具有第二偏振方向的第二偏振光,所述第一偏振方向与所述第二偏振方向垂直;
    所述光学模组用于分别调节所述第一偏振光和所述第二偏振光的传输方向,其中,所述第一偏振光和所述第二偏振光经过所述光学模组传输至所述第一检偏器;
    所述第一检偏器的第一区域用于过滤所述第二偏振光,以将所述第一偏振光传输至所述成像引擎的第一像素区域;
    所述第一检偏器的第二区域用于过滤所述第一偏振光,以将所述第二偏振光传输至所述成像引擎的第二像素区域;
    所述成像引擎用于对所述第一像素区域上的第一偏振光进行调制得到包括第一图像信息的第一成像光,并对所述第二像素区域上的第二偏振光进行调制得到包括第二图像信息的第二成像光。
  2. 根据权利要求1所述的图像生成装置,其特征在于,所述第一成像光向第一位置传输,所述第二成像光向第二位置传输,所述第一位置为观看者的左眼位置,所述第二位置为观看者的右眼位置。
  3. 根据权利要求1所述的图像生成装置,其特征在于,所述第一偏振光包括第一子偏振光和第二子偏振光,所述第二偏振光包括第三子偏振光和第四子偏振光;
    所述第一子偏振光经过所述成像引擎的调制得到包括所述第一图像信息的第一子成像光,所述第二子偏振光经过所述成像引擎的调制得到包括所述第一图像信息的第二子成像光;所述第三子偏振光经过所述成像引擎的调制得到包括所述第二图像信息的第三子成像光,所述第四子偏振光经过所述成像引擎的调制得到包括所述第二图像信息的第四子成像光;
    所述第一子成像光和所述第三子成像光向第一位置传输,所述第二子成像光和所述第四子成像光向第二位置传输,所述第一位置为观看者的左眼位置,所述第二位置为观看者的右眼位置。
  4. 根据权利要求1至3中任一项所述的图像生成装置,其特征在于,所述成像引擎包括第一起偏器、液晶和第二检偏器,所述液晶位于所述第一起偏器与所述第二检偏器之间,所述第一检偏器的第一区域的偏振方向与所述第一起偏器的偏振方向的角度偏差与45°之间的差值小于阈值,所述第一检偏器的第二区域的偏振方向与所述第一起偏器的偏振方向的角度偏差与45°之间的差值小于所述阈值。
  5. 根据权利要求1至3中任一项所述的图像生成装置,其特征在于,所述成像引擎包括液晶,所述图像生成装置还包括第三检偏器,所述成像引擎位于所述第一检偏器与所述第三检偏器之间。
  6. 根据权利要求1至5中任一项所述的图像生成装置,其特征在于,所述第一区域和所述第二区域在第一方向上交错排列;
    或者,
    所述第一区域和所述第二区域分别在所述第一方向和第二方向上交错排列,其中,所述第一方向与所述第二方向垂直。
  7. 根据权利要求1至6中任一项所述的图像生成装置,其特征在于,所述光源包括发光 模组和第二起偏器,所述第二起偏器用于将所述发光模组发射的光转换为第一偏振光和第二偏振光。
  8. 根据权利要求1至6中任一项所述的图像生成装置,其特征在于,所述光源包括第一子光源和第二子光源,所述第一子光源用于发射所述第一偏振光,所述第二子光源用于发射所述第二偏振光。
  9. 根据权利要求1至8中任一项所述的图像生成装置,其特征在于,所述第一像素区域和所述第二像素区域不重叠。
  10. 根据权利要求1至9中任一项所述的图像生成装置,其特征在于,所述光学模组为菲涅尔透镜。
  11. 根据权利要求1至10中任一项所述的图像生成装置,其特征在于,第一检偏器为偏光膜。
  12. 一种显示设备,其特征在于,包括:处理器和如权利要求1至11中任一项所述的图像生成装置,所述处理器用于向所述图像生成装置的成像引擎发送图像数据,所述成像引擎用于根据所述图像数据对入射光进行调制得到成像光。
  13. 一种交通工具,其特征在于,包括:如权利要求12所述的显示设备,所述显示设备安装在所述交通工具上。
  14. 一种图像生成方法,其特征在于,所述图像生成方法应用于图像生成装置,所述图像生成装置包括光源、光学模组、第一检偏器和成像引擎;所述方法包括:
    通过所述光源发射具有第一偏振方向的第一偏振光和具有第二偏振方向的第二偏振光,所述第一偏振方向与所述第二偏振方向垂直;
    通过所述光学模组分别调节所述第一偏振光和所述第二偏振光的传输方向,其中,所述第一偏振光和所述第二偏振光经过所述光学模组传输至所述第一检偏器;
    通过所述第一检偏器的第一区域过滤所述第二偏振光,以将所述第一偏振光传输至所述成像引擎的第一像素区域;
    通过所述第一检偏器的第二区域过滤所述第一偏振光,以将所述第二偏振光传输至所述成像引擎的第二像素区域;
    通过所述成像引擎对所述第一像素区域上的第一偏振光进行调制得到包括第一图像信息的第一成像光,并对所述第二像素区域上的第二偏振光进行调制得到包括第二图像信息的第二成像光。
  15. 根据权利要求14所述的方法,其特征在于,所述第一成像光向第一位置传输,所述第二成像光向第二位置传输,所述第一位置为观看者的左眼位置,所述第二位置为观看者的右眼位置。
  16. 根据权利要求14所述的方法,其特征在于,所述第一偏振光包括第一子偏振光和第二子偏振光,所述第二偏振光包括第三子偏振光和第四子偏振光;
    所述第一子偏振光经过所述成像引擎的调制得到包括所述第一图像信息的第一子成像光,所述第二子偏振光经过所述成像引擎的调制得到包括所述第一图像信息的第二子成像光;所述第三子偏振光经过所述成像引擎的调制得到包括所述第二图像信息的第三子成像光,所述第四子偏振光经过所述成像引擎的调制得到包括所述第二图像信息的第四子成像光;
    所述第一子成像光和所述第三子成像光向第一位置传输,所述第二子成像光和所述第四子成像光向第二位置传输,所述第一位置为观看者的左眼位置,所述第二位置为观看者的右 眼位置。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述成像引擎包括第一起偏器、液晶和第二检偏器,所述液晶位于所述第一起偏器与所述第二检偏器之间,所述第一检偏器的第一区域的偏振方向与所述第一起偏器的偏振方向的角度偏差与45°之间的差值小于阈值,所述第一检偏器的第二区域的偏振方向与所述第一起偏器的偏振方向的角度偏差与45°之间的差值小于所述阈值。
  18. 根据权利要求14至16中任一项所述的方法,其特征在于,所述成像引擎包括液晶,所述图像生成装置还包括第三检偏器,所述成像引擎位于所述第一检偏器与所述第三检偏器之间。
  19. 根据权利要求14至18中任一项所述的方法,其特征在于,所述第一区域和所述第二区域在第一方向上交错排列;
    或者,
    所述第一区域和所述第二区域分别在所述第一方向和第二方向上交错排列,其中,所述第一方向与所述第二方向垂直。
  20. 根据权利要求14至19中任一项所述的方法,其特征在于,所述第一像素区域和所述第二像素区域不重叠。
PCT/CN2023/075094 2022-07-26 2023-02-09 一种图像生成装置、显示设备、交通工具和图像生成方法 WO2024021564A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210886985.7 2022-07-26
CN202210886985.7A CN117492224A (zh) 2022-07-26 2022-07-26 一种图像生成装置、显示设备、交通工具和图像生成方法

Publications (1)

Publication Number Publication Date
WO2024021564A1 true WO2024021564A1 (zh) 2024-02-01

Family

ID=86473372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075094 WO2024021564A1 (zh) 2022-07-26 2023-02-09 一种图像生成装置、显示设备、交通工具和图像生成方法

Country Status (2)

Country Link
CN (2) CN115903261A (zh)
WO (1) WO2024021564A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254767A (ja) * 1995-03-16 1996-10-01 Nippon Hoso Kyokai <Nhk> 立体映像表示装置
US20030107805A1 (en) * 2000-07-12 2003-06-12 Graham Stewart Brandon Street Structured light source
KR20080110173A (ko) * 2007-06-14 2008-12-18 삼성전자주식회사 입체 영상 디스플레이 장치
CN101950100A (zh) * 2010-09-14 2011-01-19 福建华映显示科技有限公司 三维影像显示装置及三维影像讯号控制方法
JP2014041212A (ja) * 2012-08-21 2014-03-06 Dainippon Printing Co Ltd 光学シートおよび表示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406962C (zh) * 2004-04-01 2008-07-30 叶为全 利用低密度光栅偏振片或塑料透镜实现二维/伪三维切换的方法
KR101113235B1 (ko) * 2004-11-29 2012-02-29 삼성전자주식회사 입체 디스플레이 장치
CN101196615A (zh) * 2006-12-06 2008-06-11 万双 偏振光栅立体显示器
CN101726911B (zh) * 2008-10-10 2012-03-21 纬创资通股份有限公司 立体显示装置、系统,及立体显示方法
US8786687B1 (en) * 2010-11-22 2014-07-22 Lockheed Martin Corporation Auto-stereoscopic display with lenticules and elongated light filters
JP2012203111A (ja) * 2011-03-24 2012-10-22 Arisawa Mfg Co Ltd 立体画像表示装置
CN103852896A (zh) * 2014-02-13 2014-06-11 京东方科技集团股份有限公司 双视场显示装置
CN105676475B (zh) * 2014-11-18 2018-04-10 华为技术有限公司 成像系统
CN108627992A (zh) * 2018-05-17 2018-10-09 深圳市中科创激光技术有限公司 柔性led显示装置及3d显示系统
CN109725462B (zh) * 2019-03-04 2022-11-04 京东方科技集团股份有限公司 显示器件、显示设备以及显示器件的驱动方法
CN114460758A (zh) * 2022-02-17 2022-05-10 中山大学 一种偏光式指向背光裸眼3d显示系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254767A (ja) * 1995-03-16 1996-10-01 Nippon Hoso Kyokai <Nhk> 立体映像表示装置
US20030107805A1 (en) * 2000-07-12 2003-06-12 Graham Stewart Brandon Street Structured light source
KR20080110173A (ko) * 2007-06-14 2008-12-18 삼성전자주식회사 입체 영상 디스플레이 장치
CN101950100A (zh) * 2010-09-14 2011-01-19 福建华映显示科技有限公司 三维影像显示装置及三维影像讯号控制方法
JP2014041212A (ja) * 2012-08-21 2014-03-06 Dainippon Printing Co Ltd 光学シートおよび表示装置

Also Published As

Publication number Publication date
CN117492224A (zh) 2024-02-02
CN115903261A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
EP3245550B1 (en) Dual head-up display apparatus
JP4367775B2 (ja) デュアルビューディスプレイ
TWI275834B (en) A multiple-view directional display
US20100214635A1 (en) Display device, display method and head-up display
US20090009594A1 (en) Three-Dimensional Representation Apparatus
WO2020088107A1 (zh) 光学显示系统、ar显示装置及vr显示装置
JP6056246B2 (ja) 画像表示装置
US20160231565A1 (en) Image display device
US9116422B2 (en) Display apparatus for displaying multiple images of viewing angles
WO2019073935A1 (ja) 情報表示装置
US8057042B2 (en) Stereo projection optical system using LCD to separate left and right eye images
JP4945691B2 (ja) 表示装置、表示方法及びヘッドアップディスプレイ
WO2022143294A1 (zh) 一种hud系统及车辆
US9507166B2 (en) Illumination system for stereoscopic projection device
US9151958B2 (en) Display system using a pair of polarized sources with a 3-D display mode and two 2-D display modes
WO2024021564A1 (zh) 一种图像生成装置、显示设备、交通工具和图像生成方法
TWI448731B (zh) 提供複數視角影像之投影裝置
CN216901153U (zh) 一种可分区域显示的多深度hud系统
KR102098287B1 (ko) 편광 변조 다초점 두부 장착형 디스플레이 장치
CN106249518A (zh) 一种车载影音播放装置及车辆
CN115542644B (zh) 投影装置、显示设备及交通工具
US8820942B2 (en) Light dividing structure and optical machine system comprising the same
JP2006330327A (ja) 投影型三次元画像表示装置
WO2022252724A1 (zh) 一种光学系统、照明系统及显示系统
CN218567814U (zh) 投影光机、显示设备和交通工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23844783

Country of ref document: EP

Kind code of ref document: A1