WO2024021473A1 - 电子设备的供电切换电路、系统以及方法 - Google Patents

电子设备的供电切换电路、系统以及方法 Download PDF

Info

Publication number
WO2024021473A1
WO2024021473A1 PCT/CN2022/141468 CN2022141468W WO2024021473A1 WO 2024021473 A1 WO2024021473 A1 WO 2024021473A1 CN 2022141468 W CN2022141468 W CN 2022141468W WO 2024021473 A1 WO2024021473 A1 WO 2024021473A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
preset
switching
supply line
switch
Prior art date
Application number
PCT/CN2022/141468
Other languages
English (en)
French (fr)
Inventor
汪健
Original Assignee
上海闻泰信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海闻泰信息技术有限公司 filed Critical 上海闻泰信息技术有限公司
Publication of WO2024021473A1 publication Critical patent/WO2024021473A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present disclosure relates to power supply switching circuits, systems and methods for electronic equipment.
  • the power supply lines that supply power to the CPU and DGPU have high power consumption, thereby generating a large amount of heat, which can easily cause excessively high power supply line temperatures.
  • a power supply switching circuit, system and method for electronic equipment are provided.
  • a power supply switching circuit for electronic equipment including:
  • Temperature detection component, controller and switch circuit the controller is electrically connected to the temperature detection component and the switch circuit respectively;
  • the temperature detection component is arranged adjacent to the preset power supply line and is used to detect the temperature of the preset power supply line to generate a temperature signal; wherein the preset power supply line is the power supply line of the preset component in the electronic device;
  • the controller is used to output a switching control signal according to the temperature signal, and the switching switch circuit is used to control its own switch switching state according to the switching control signal, so that the power adapter or battery passes through the preset power supply line.
  • the preset components are powered.
  • the switch circuit includes: a plurality of switch modules, the switch modules are electrically connected to the preset power supply line in a one-to-one correspondence; or, a switch module , the switch module is electrically connected to all the preset power supply lines.
  • the switch module includes: a first switch, a first end of the first switch is electrically connected to the power adapter, and a second end of the first switch Electrically connected to the corresponding preset power supply line, the control end of the first switch is connected to the first switching control signal; the second switch, the first end of the second switch is electrically connected to the battery, and the first end of the second switch is electrically connected to the battery.
  • the second end of the two switches is electrically connected to the corresponding preset power supply line, and the control end of the second switch is connected to the second switching control signal.
  • the controller includes a first switching terminal and a second switching terminal, the first switching terminal is directly connected to the switching circuit through a first wire, and the third switching terminal The two switching terminals are directly connected to the switching circuit through a second wire.
  • the power supply switching circuit of the electronic device further includes: a first control switch and a second control switch, and the controller includes a first switching end and a second switching end; The first switching terminal is connected to the switching circuit through the first control switch, and the second switching terminal is connected to the switching circuit through the second control switch.
  • the power supply switching circuit of the electronic device further includes: a power detection component, the power detection component is electrically connected to the battery and the controller respectively, and the power detection component The component is used to detect the remaining power of the battery and generate a power signal, and the controller is used to output a switching control signal according to the temperature signal and the power signal.
  • a power supply switching system for electronic equipment including the power supply switching circuit for electronic equipment as described in the above embodiment, and also includes a power adapter, a battery and a preset power supply line;
  • the power adapter, the battery and the preset power supply line are all electrically connected to the switch circuit, and the preset power supply line is electrically connected to the preset component.
  • a power supply switching method for electronic equipment implemented based on the power supply switching circuit of electronic equipment as described in the above embodiment, the method includes:
  • the switching state of the switch circuit is controlled according to the temperature signal, so that the power adapter or battery supplies power to the preset component through the preset power supply line.
  • controlling the switch switching state of the switch circuit according to the temperature signal includes: when the temperature of the preset power supply line is greater than the preset temperature, controlling the switch The switch of the switch circuit switches state so that the battery supplies power to the preset component through the preset power supply line, wherein the temperature signal includes temperature information of the preset power supply line.
  • the power supply switching circuit includes a power detection component
  • the power supply switching method of the electronic device further includes: obtaining the remaining power of the battery; when it is determined that the remaining power is less than a predetermined When the power is set, the switch switching state of the switch circuit is controlled so that the power adapter supplies power to the preset component through the preset power supply line.
  • Figure 1 is a schematic structural diagram of a power supply switching circuit of an electronic device provided by one or more embodiments of the present disclosure
  • FIG. 2 is a circuit schematic diagram of an HPB architecture provided by one or more embodiments of the related art
  • Figure 3 is a schematic structural diagram of a power supply switching circuit of another electronic device provided by one or more embodiments of the present disclosure
  • Figure 4 is a schematic structural diagram of another power supply switching circuit of an electronic device provided by one or more embodiments of the present disclosure
  • Figure 5 is a schematic structural diagram of a switch module provided by one or more embodiments of the present disclosure.
  • Figure 6 is a schematic structural diagram of another power supply switching circuit of an electronic device provided by one or more embodiments of the present disclosure.
  • Figure 7 is a schematic structural diagram of another power supply switching circuit of an electronic device provided by one or more embodiments of the present disclosure.
  • Figure 8 is a schematic structural diagram of another power supply switching circuit of an electronic device provided by one or more embodiments of the present disclosure.
  • Figure 9 is a schematic structural diagram of a power supply system for electronic equipment provided by one or more embodiments of the present disclosure.
  • Figure 10 is a schematic flowchart of a power supply switching method for an electronic device provided by one or more embodiments of the present disclosure
  • Figure 11 is a schematic structural diagram of a power supply switching device for electronic equipment provided by one or more embodiments of the present disclosure
  • Figure 12 is an internal structure diagram of a computer device provided by one or more embodiments of the present disclosure.
  • first, second, etc. in the description and claims of the present disclosure are used to distinguish different objects, rather than to describe a specific order of objects.
  • first switch and second switch are used to distinguish between different switches and are not intended to describe a specific sequence of switches.
  • words such as “exemplary” or “for example” mean examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the present disclosure is not intended to be construed as preferred or advantageous over other embodiments or designs. To be precise, the use of words such as “exemplary” or “such as” is intended to present relevant concepts in a specific manner. In addition, in the description of the embodiments of the present disclosure, unless otherwise stated, the meaning of "plurality" refers to both one or more than two.
  • the power supply system of electronic equipment such as notebook computers adopts the Narrow VDC Buck-Boost (NVDC) architecture. Since the first-order voltage conversion power of the NVDC architecture is too large, the power consumption of the power supply line is too high. , thus causing the problem of excessive temperature of the power supply line.
  • NVDC Narrow VDC Buck-Boost
  • FIG. 1 is a schematic structural diagram of a power supply switching circuit of an electronic device provided by one or more embodiments of the present disclosure.
  • the power supply switching circuit includes a temperature detection component 10, a controller 11 and a switch circuit 12.
  • the controller 11 is electrically connected to the temperature detection component 10 and the switch circuit 12 respectively; the temperature detection component 10 is adjacent to the preset power supply line.
  • the preset power supply line 13 is configured and used to detect the temperature of the preset power supply line 13 to generate a temperature signal; wherein, the preset power supply line 13 is the power supply line of a preset component in the electronic device; the controller 11 is used to output a switching control signal according to the temperature signal, and the switch The circuit 12 is used to control its own switch switching state according to the switching control signal, so that the power adapter or battery supplies power to the preset components through the preset power supply line 13 .
  • the controller 11 is electrically connected to the temperature detection component 10 and the switch circuit 12 respectively, so as to realize communication between the controller 11 and the temperature detection component 10 and communication between the controller 11 and the switch circuit 12 .
  • the temperature detection component 10 such as but not limited to a temperature sensor, is disposed adjacent to a preset power supply line 13, where the preset power supply line 13 is a power supply line in an electronic device.
  • the preset power supply line 13 is electrically connected to a preset component such as, but not limited to, a CPU, and then The preset components are powered through the preset power supply line 13 .
  • the preset power supply line 13 supplies power to the preset components, the temperature of the preset power supply line 13 can be detected by the temperature detection component 10 .
  • the temperature of the preset power supply line 13 can reflect the power consumption of the preset power supply line 13. The higher the temperature, the greater the power of the preset power supply line 13, that is, the power consumption is too large. Excessive power consumption affects electronic devices such as notebooks. Computer performance.
  • the temperature detection component 10 is used to detect the temperature of the preset power supply line 13 and generate a temperature signal. Further, the temperature signal is transmitted to the controller 11, and the controller 11 receives the temperature signal.
  • the temperature signal includes the temperature information of the preset power supply line 13 , and the controller 11 can obtain the temperature of the preset power supply line 13 according to the received temperature signal. Further, the controller 11 determines whether the power consumption of the preset power supply line 13 is too large based on the temperature of the preset power supply line 13 , and then generates a switching control signal, and transmits the switching control signal to the switching switch circuit 12 , and the switching switch circuit 12 According to the received switching control signal, the preset power supply line 13 is switched to connect to the power adapter or battery.
  • the temperature detection component 10 detects that the temperature of the preset power supply line 13 is low, and the switch circuit 12 can control the preset power supply line 13 to connect to the power adapter by default. On the one hand, it can power preset components through the power adapter, and on the other hand, it can also charge batteries equipped with electronic devices. After the electronic device is connected to the power adapter, when the preset component such as the CPU runs a reload program, the temperature detection component 10 detects the temperature of the preset power supply line 13. If it is detected that the temperature of the preset power supply line 13 is too high, for example, the temperature exceeds the set value.
  • the controller 11 When the temperature threshold is determined, it can be judged that the power consumption of the preset power supply line 13 is too large, the controller 11 generates a switching control signal, and the switching circuit 12 switches the preset power supply line 13 to connect to the battery according to the received switching control signal, that is, The power adapter is switched to the battery, so that the battery provides input voltage to the preset power supply line 13 , thereby enabling the battery to supply power to the preset components through the preset power supply line 13 .
  • the preset power supply line is a Buck Converter (Buck) voltage conversion line.
  • the BUCK voltage conversion line the greater the difference between its input voltage and output voltage, the components of the preset power supply line 13 The greater the loss, the greater the power consumption and temperature of the preset power supply line 13 will be.
  • the voltage conversion efficiency will be higher, which can reduce the power consumption and temperature of the preset power supply line 13. temperature, which is beneficial to improving the operating performance of electronic equipment.
  • the DC output voltage of the power adapter is the input voltage of the preset power supply line 13; when the battery is connected to the preset power supply line 13, the voltage of the battery is the preset power supply line 13. 13 input voltage.
  • the voltage of the battery is lower than the output voltage of the power adapter, so the input voltage when the preset power supply line 13 is connected to the battery is lower than the input voltage when the preset power supply line 13 is connected to the power adapter.
  • the output voltage when the preset power supply line 13 is connected to the battery is the same as the output voltage when the preset power supply line 13 is connected to the power adapter.
  • FIG. 2 is a circuit schematic diagram of an HPB architecture provided by one or more embodiments in the related art.
  • the switch Q1 and the switch Q2 are turned on, and the system is powered by the output voltage of the power adapter.
  • the battery is charged through the Buck step-down line.
  • the power adapter is connected, the battery is usually There is no discharge, so the battery voltage is lower than the output voltage of the power adapter; when the power adapter is disconnected, switch Q3 is turned on and the system is powered by the battery output voltage.
  • the input voltage is the DC output voltage of the power adapter; when the power adapter is disconnected, the battery supplies power, and the input voltage of the system is the battery voltage; the battery voltage is less than The output voltage of the adapter.
  • Hybrid Power BOOST HPB
  • HPB Hybrid Power BOOST
  • the power supply switching circuit of the electronic device provided by the embodiment of the present disclosure is provided with a temperature detection component.
  • the temperature detection component is arranged adjacent to the preset power supply line and is used to detect the temperature of the preset power supply line and generate a temperature signal. Further, the temperature signal is transmitted to The controller receives the temperature signal. Among them, the temperature signal contains the temperature information of the preset power supply line, and the controller can obtain the temperature of the preset power supply line based on the received temperature signal. Further, the controller determines whether the power consumption of the preset power supply line is too large based on the temperature of the preset power supply line, and then generates a switching control signal, and transmits the switching control signal to the switching switch circuit, which switches according to the received switching control signal.
  • Control signal to switch the preset power supply line to the power adapter or battery when the electronic device is connected to the power adapter to run the reloading program, when it is detected that the temperature of the preset power supply line corresponding to the preset component, such as the CPU, is too high, the access voltage end of the preset power supply line is switched from the power adapter to The battery can reduce the loss of components in the preset power supply line, thereby reducing the power consumption and temperature of the preset power supply line, which is conducive to improving the operating performance of electronic equipment, thus improving the user experience.
  • FIG. 3 is a schematic structural diagram of a power supply switching circuit of another electronic device provided by one or more embodiments of the present disclosure.
  • the switch circuit 12 includes a plurality of switch modules 14 , and the switch modules 14 are arranged in one-to-one correspondence with the preset power supply lines 13 .
  • FIG. 3 exemplarily shows two switch modules 14 , correspondingly showing two preset power supply lines 13 .
  • the switch circuit 12 includes a first switch module 141 and a second switch module 142, and the controller 11 is electrically connected to the first switch module 141 and the second switch module 142 respectively.
  • the preset power supply line 13 includes a first preset power supply line 131 and a second preset power supply line 132.
  • the first switch module 141 is electrically connected to the first preset power supply line 131
  • the second switch module 142 is electrically connected to the second preset power supply line 131.
  • the power supply line 132 is electrically connected, whereby the controller 11 switches the first preset power supply line 131 to the power adapter or battery by controlling the first switch module 141, and the controller 11 switches the second preset power supply line 131 by controlling the second switch module 142. It is assumed that the power supply line 132 is connected to a power adapter or battery.
  • two temperature detection components 10 are provided correspondingly to the two preset power supply lines 13, including a first temperature detection component 101 and a second temperature detection component 102.
  • the first temperature detection component 101 is used to detect the first preset power supply line 131.
  • the second temperature detection component 102 is used to detect the temperature of the second preset power supply line 132, that is, the preset power supply line 13, the temperature detection component 10 and the first switch module 14 are set in one-to-one correspondence.
  • the switch circuit 12 may also be provided to include three or more switch modules, and accordingly three or more preset power supply lines 13 and temperature detection components 10 may be provided.
  • FIG. 4 is a schematic structural diagram of another power supply switching circuit of an electronic device provided by one or more embodiments of the present disclosure.
  • the switch circuit 12 includes a switch module 14.
  • the switch module 14 is arranged corresponding to all the preset power supply lines 13.
  • Figure 4 exemplarily shows Two preset power supply lines 13.
  • the switch circuit 12 is provided to include a switch module 14.
  • the switch module 14 is electrically connected to the first preset power supply line 131 and the second preset power supply line 132 respectively.
  • the controller 11 is electrically connected to the switch module 14.
  • the controller 11 controls a switch module 14 to switch the power adapter or battery to the first preset power supply line 131 and to switch the power adapter or battery to the second preset power supply line 132 .
  • two temperature detection components 10 are provided correspondingly to the two preset power supply lines 13, including a first temperature detection component 101 and a second temperature detection component 102.
  • the first temperature detection component 101 is used to detect the first preset power supply line 131.
  • the second temperature detection component 102 is used to detect the temperature of the second preset power supply line 132 .
  • Figure 4 integrates multiple switch modules in Figure 3 into one switch module, which is conducive to simplifying the route and thereby reducing design costs. .
  • the temperature detection components 10 are provided in one-to-one correspondence with the preset power supply lines 13 , where each preset power supply line 13 serves as a line that supplies power to the corresponding preset component.
  • each preset power supply line 13 serves as a line that supplies power to the corresponding preset component.
  • different preset components such as CPU and DGPU need to be activated, and the loads of the preset power supply lines 13 of different preset components are different.
  • some programs need to call the CPU to perform a large number of calculations when running, and the load on the corresponding preset power supply line 13 of the CPU will be very high.
  • the load on the corresponding power supply line 13 of the DGPU will be very low.
  • Some programs need to call the DGPU for image processing when running, and the load on the power supply line corresponding to the DGPU will be very high. If there is no need to call the CPU to perform a large number of calculations, the load on the power supply line corresponding to the CPU will be very low.
  • users can detect the real-time temperature of each set of preset power supply lines when the electronic device is in different usage scenarios, and selectively adjust the input voltage of the preset power supply lines of different preset components, such as battery voltage, which is conducive to optimizing electronics.
  • the device's preset power supply line temperature is safe and reliable.
  • the power consumption saved by the power adapter can be used by other preset components, which is beneficial to improving the performance of the entire electronic equipment system.
  • the energy consumption originally supplied by the power adapter to the CPU can be saved and used by the DGPU, which can improve the computing power of the DGPU.
  • FIG. 5 is a schematic structural diagram of a switch module provided by one or more embodiments of the present disclosure.
  • the switch module 14 includes a first switch 15.
  • the first end of the first switch 15 is electrically connected to the power adapter, and the second end of the first switch 15 is electrically connected to the corresponding preset switch.
  • the power supply line 13 is electrically connected, the control end of the first switch 15 is connected to the first switching control signal T1; the second switch 16, the first end of the second switch 16 is electrically connected to the battery, and the second end of the second switch 16 is connected to the battery.
  • the control end of the second switch is connected to the second switching control signal T2.
  • the switch module 14 may be configured to include a first switch 15 and a second switch 16 .
  • the first end of the first switch 15 is connected to the power adapter, that is, connected to the input voltage VIN1, the second end of the first switch 15 is connected to the preset power supply line 13, and the control end of the first switch 15 is connected to the first switching control signal T1 ;
  • the first end of the second switch 16 is connected to the battery, that is, connected to the input voltage VIN2, the second end of the second switch 16 is connected to the preset power supply line 13, and the control end of the second switch 16 is connected to the second switching control signal T2.
  • the controller 11 when the controller 11 generates the first switching control signal T1, correspondingly, the control end of the first switch 15 is connected to the first switching control signal T1, and when the first switch 15 is controlled to be closed according to the temperature detection result, the power supply is turned on.
  • the electrical connection line between the adapter and the preset power supply line 13 realizes that the preset power supply line 13 is connected to the power adapter;
  • the controller 11 when the controller 11 generates the second switching control signal T2, correspondingly the control end of the second switch 16 is connected to the second switching
  • the control signal T2 controls the second switch 16 to be closed according to the temperature detection result, thereby connecting the electrical connection between the battery and the preset power supply line 13, and realizing the connection of the preset power supply line 13 to the battery.
  • the first switch 15 and the second switch 16 can be configured as N channel Metal Oxide Semiconductor (NMOS) tubes or P channel Metal Oxide Semiconductor (PMOS) tubes. .
  • NMOS Metal Oxide Semiconductor
  • PMOS P channel Metal Oxide Semiconductor
  • FIG. 6 is a schematic structural diagram of another power supply switching circuit of an electronic device provided by one or more embodiments of the present disclosure.
  • the controller 11 includes a first switching terminal A and a second switching terminal B.
  • the first switching terminal A is directly connected to the switching circuit 12 through the first wire 17, and the second switching terminal B is connected through the second wire 18. Directly connected to the switch circuit 12.
  • the controller 11 includes a first switching terminal A.
  • the first switching terminal A is electrically connected to the control terminal of the first switch 15 in the switching circuit 12 through the first wire 17.
  • the first switching terminal A controls the output of the first switching control.
  • the signal T1, the first switching control signal T1 is transmitted to the control end of the first switch 15 through the first wire, and controls the first switch 15 to close or open to control whether the corresponding preset power supply line 13 is connected to the power adapter.
  • the controller 11 also includes a second switching terminal B.
  • the second switching terminal B is electrically connected to the control terminal of the second switch 16 in the switching circuit 12 through the second wire 18.
  • the second switching terminal B controls the output of the second switching control signal T2.
  • the second switching control signal T2 is transmitted to the control end of the second switch 16 through the second wire 18, and controls the second switch 16 to close or open to control whether the corresponding preset power supply line 13 is connected to the battery.
  • the first switching terminal A is directly connected to the switching circuit 12 through the first wire 17, and the second switching terminal B is directly connected to the switching circuit 12 through the second wire 18.
  • the controller can adjust the first switching terminal A according to the temperature detection result.
  • the level of the switching signal output by the second switching terminal B is controlled by a switch, such as a gate of a transistor, to close or open the switch, and the control structure is simple. It should be noted that when the first switch 15 is closed, the second switch 16 is controlled to be turned off, and when the second switch 16 is closed, the first switch 15 is controlled to be turned off.
  • FIG. 7 is a schematic structural diagram of another power supply switching circuit of an electronic device provided by one or more embodiments of the present disclosure.
  • the controller 11 also includes a first control switch 19 and a second control switch 20.
  • the controller 11 includes a first switching end A and a second switching end B; the first switching end A passes through the first control switch 19 Connected to the switch circuit 12 , the second switching terminal B is connected to the switch circuit 12 through the second control switch 20 .
  • a first control switch 19 is provided in the connection line between the first switching terminal A and the control terminal of the first switch 15. By controlling the first control switch 19 to close, the control of the first switching terminal A and the first switch 15 is conducted.
  • the connection line of the terminal transmits the first switching control signal T1 output by the first switching terminal A to the control terminal of the first switch 15 to control the closing or opening of the first switch 15, thereby realizing the preset whether the power supply line 13 is connected to the power adapter.
  • a second control switch 20 is provided in the connection line between the second switching terminal B and the control terminal of the second switch 16. By controlling the second control switch 20 to close, the connection between the second switching terminal B and the control terminal of the second switch 16 is turned on. line, transmits the second switching control signal T2 controlled and output by the second switching terminal B to the control terminal of the second switch 16, and controls the second switch 16 to close or open, thereby realizing the preset whether the power supply line 13 is connected to the battery.
  • the preset power supply line 13 is used to supply power to the CPU (preset component) for exemplary explanation.
  • the controller 11 sends the second switching control signal T2, first turns off the first control switch 19, the first switch 15 is closed, and the voltage of the power adapter is cut off.
  • the battery passes through the switching moment.
  • the parasitic diode of the second switch 16 conducts power supply in forward direction to ensure seamless voltage switching and ensure that the CPU will not be powered off due to the input voltage switching of the preset power supply line.
  • the second control switch 20 is controlled to close, and the second switch 16 On, the input voltage of the CPU power supply line is officially switched from the input voltage of the power adapter to the battery voltage.
  • the input voltage of the preset power supply line 13 can be switched back to the input voltage of the power adapter at any time.
  • the controller 11 sends the first switching control signal T1 and first turns off the second control switch 20.
  • the battery voltage passes forward through the parasitic diode of the second switch 16 to supply power, and then closes the first control switch 19.
  • the first The switch 15 is turned on, and the parasitic diode of the second switch 16 is turned off in the reverse direction to complete seamless switching.
  • the input voltage of the CPU power supply line is switched from the battery voltage to the input voltage of the power adapter.
  • FIG. 8 is a schematic structural diagram of yet another power supply switching circuit of an electronic device provided by one or more embodiments of the present disclosure.
  • the power supply switching circuit also includes a power detection component 21.
  • the power detection component 21 is electrically connected to the battery 22 and the controller 11 respectively.
  • the power detection component 21 is used to detect the remaining power of the battery 22 and generate a power signal.
  • the controller 11 is used to output switching control signals according to the temperature signal and power signal.
  • a power detection component 21 is provided.
  • the power detection component 21 detects the remaining power of the battery 22 and generates a power signal including the remaining power information. , transmit the power signal to the controller 11, so that the controller can obtain the remaining power of the battery 22.
  • the controller 11 When the remaining power of the battery 22 is too low, for example, the remaining power of the battery 22 is lower than the preset power threshold, at this time the controller 11 generates a switching control signal to control the input voltage connected to the preset power supply line 13 to switch from the battery 22 to the power adapter.
  • the controller 11 controls the first switching terminal A to output the first switching control signal T1 and transmits it to the control terminal of the first switch 15, and controls the first switch 15 to close, thereby realizing the preset power supply line 13 to be connected to the power supply. adapter.
  • an embodiment of the present disclosure also provides a schematic structural diagram of a power supply switching system for electronic equipment.
  • Figure 9 is a schematic structural diagram of a power supply system for an electronic device provided by one or more embodiments of the present disclosure.
  • the power supply system for the electronic device includes any one of the electronic devices provided in the above embodiments.
  • the power supply switching circuit 30 also includes a power adapter 23, a battery 22 and a preset power supply line 13; the power adapter 23, the battery 22 and the preset power supply line 13 are all electrically connected to the switch circuit 12, and the preset power supply line 13 is connected to the preset components. electrical connection, therefore have the same or similar beneficial effects, which will not be described again one by one.
  • the power adapter 23 and the battery 22 are electrically connected to the switch circuit 12 respectively.
  • the preset power supply line 13 is connected to the power adapter 23.
  • the power adapter 23 passes through the preset power supply line 13. Provide power to the preset components, or implement the preset power supply line 13 to connect to the battery 22, and the battery 22 supplies power to the preset components through the preset power supply line 13.
  • Embodiments of the present disclosure also provide a power supply switching method for electronic equipment, which is implemented based on the power supply switching circuit of any electronic equipment provided in the above embodiments, and has the same or similar beneficial effects, which will not be described in detail here. .
  • FIG. 10 is a schematic flowchart of a power supply switching method for an electronic device according to one or more embodiments of the present disclosure. As shown in Figure 10, the power supply switching method includes:
  • a temperature detection component 10 is provided adjacent to the preset power supply line 13.
  • the temperature detection component 10 is used to detect the temperature of the preset power supply line and generate a temperature signal. Further, the temperature signal is transmitted to the controller 11 to control Receiver 11 receives the temperature signal.
  • the temperature signal includes the temperature information of the preset power supply line 13 , and the controller 11 can obtain the temperature of the preset power supply line 13 . Further, the controller 11 generates a corresponding switching control signal based on the obtained temperature of the preset power supply line 13, and transmits the switching control signal to the switching circuit 12.
  • the switching circuit 12 switches based on the received switching control signal, Switch the preset power supply line 13 to the power adapter or battery, so that the power adapter or battery provides input voltage to the preset power supply line 13, thereby realizing the preset power supply line 13 to supply power to the preset components.
  • the power supply switching method for electronic equipment obtains a temperature signal generated according to the temperature of a preset power supply line. Further, the temperature signal is transmitted to a controller, and the controller receives the temperature signal. Among them, the temperature signal contains the temperature information of the preset power supply line, and the controller can obtain the temperature of the preset power supply line based on the received temperature signal. Further, the controller determines whether the power consumption of the preset power supply line is too large based on the temperature of the preset power supply line, and then generates a switching control signal, and transmits the switching control signal to the switching switch circuit, which switches according to the received switching control signal. Control signal to switch the preset power supply line to the power adapter or battery.
  • the electronic device when the electronic device is connected to the power adapter to run the reloading program, when it is detected that the temperature of the preset power supply line corresponding to the preset component, such as the CPU, is too high, the access voltage end of the preset power supply line is switched from the power adapter to The battery can reduce the loss of components in the preset power supply line, thereby reducing the power consumption and temperature of the preset power supply line, which is conducive to improving the operating performance of electronic equipment, thus improving the user experience.
  • controlling the switch switching state of the switch circuit according to the temperature signal includes:
  • the switching state of the switch circuit is controlled so that the battery supplies power to the preset component through the preset power supply line, where the temperature signal includes the temperature information of the preset power supply line.
  • the temperature of the preset power supply line 13 can be obtained.
  • the controller 11 can generate a switching control signal and transmit the switching control signal to the switching circuit 12.
  • the switching circuit 12 receives the The switching control signal switches the preset power supply line 13 to connect to the battery, so that the battery provides input voltage to the preset power supply line 13, so that while the preset power supply line 13 supplies power to the preset components, the performance of the preset power supply line 13 can be improved.
  • the voltage conversion efficiency thereby reduces the power consumption and temperature of the preset power supply line 13, which is beneficial to improving the operating performance of electronic equipment.
  • the switch circuit 12 can be switched by default to switch the preset power supply line 13 to the power adapter.
  • the power adapter is a preset component of the electronic equipment. While providing power, it can also charge batteries equipped in electronic devices.
  • the battery can be switched to power the corresponding preset component, which is beneficial to improving
  • the voltage conversion efficiency of the preset power supply line 13 can thereby reduce the power consumption of the preset power supply line 13, thereby reducing the temperature of the preset power supply line 13 and improving the operating performance of the electronic equipment.
  • the power supply switching circuit includes a power detection component, and the power supply switching method further includes:
  • the switching state of the switch circuit is controlled so that the power adapter supplies power to the preset component through the preset power supply line.
  • the controller 11 detects and obtains the remaining power of the battery. The controller 11 determines whether to switch the power adapter to access based on the remaining power of the battery.
  • the preset power supply line supplies power to the preset components.
  • the controller 11 when it is detected that the remaining power of the battery is too low, for example, the remaining power of the battery is less than the preset power, in order to ensure that the preset component in the electronic device, such as the CPU, continues to run the program, at this time the controller 11 generates a switching control signal and transmits it To the switch circuit 12, further, the switch circuit 12 switches the power adapter to connect to the preset power supply line to supply power to the preset components.
  • the power supply switching method for electronic equipment can improve the voltage conversion efficiency of the preset power supply lines corresponding to some preset components when the electronic equipment, such as a laptop computer, is connected to the power adapter to run a reload program, thereby improving the voltage conversion efficiency of the preset power supply lines corresponding to some preset components.
  • the battery is used instead of the power adapter as the input voltage to supply power to the corresponding preset components, which is equivalent to the battery powering the system of the electronic device in the auxiliary power adapter, thus optimizing the operating performance of the electronic device and improving the temperature of some power supply lines. Too high a temperature will cause the operating performance of electronic equipment to decrease and make users feel uncomfortable.
  • an embodiment of the present disclosure also provides a power supply switching device for electronic equipment.
  • This device embodiment corresponds to the foregoing method embodiment.
  • this device embodiment will no longer refer to The details in the foregoing method embodiments will be described one by one, but it should be clear that the device in this embodiment can correspondingly implement all the contents in the foregoing method embodiments.
  • Figure 11 is a schematic structural diagram of a power supply switching device for electronic equipment provided by one or more embodiments of the present disclosure.
  • the device includes: an acquisition module 201 configured to acquire a temperature generated according to the temperature of a preset power supply line. Signal; the control module 202 is configured to control the switch switching state of the switch circuit according to the temperature signal, so that the power adapter or battery supplies power to the preset component through the preset power supply line.
  • control module 202 is specifically configured to control the switching state of the switch circuit when the temperature of the preset power supply line is greater than the preset temperature, so that the battery passes through the preset power supply line. Power is supplied to the preset component, where the temperature signal contains temperature information of the preset power supply line.
  • the above device also includes: a power acquisition module (not shown in the figure), configured to obtain the remaining power of the battery; a control module 202, specifically configured to control the power according to the remaining power.
  • the switching state of the switch circuit is switched to enable the power adapter or battery to supply power to the preset component through the preset power supply line.
  • control module 202 is specifically configured to control the switching state of the switch circuit when it is determined that the remaining power is less than the preset power, so that the power adapter passes The preset power supply line supplies power to the preset component.
  • Each module in the power supply switching device of the above-mentioned electronic equipment can be implemented in whole or in part by software, hardware and combinations thereof.
  • Each of the above modules can be embedded in or independent of the processor of the computer device in the form of hardware, or can be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • the power supply switching device for electronic equipment provided by the embodiments of the present disclosure can execute the power supply switching method for electronic equipment provided by the above method embodiment. Its implementation principles and technical effects are similar and will not be described again here.
  • Each module in the power supply switching device of the above-mentioned electronic equipment can be implemented in whole or in part by software, hardware and combinations thereof.
  • Each of the above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or can be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • a computer device is provided.
  • the computer device may be a terminal device, and its internal structure diagram may be as shown in Figure 12.
  • the computer equipment includes a processor, memory, communication interface, database, display screen and input device connected through a system bus.
  • the processor of the computer device is configured as a module providing computing and control capabilities.
  • the memory of the computer device includes non-volatile storage media and internal memory.
  • the non-volatile storage medium stores an operating system and computer-readable instructions.
  • This internal memory provides an environment for the execution of an operating system and computer-readable instructions in a non-volatile storage medium.
  • the communication interface of the computer device is configured as a wired or wireless communication module with an external terminal.
  • the wireless mode can be implemented through WIFI, operator network, near field communication (NFC) or other technologies.
  • the computer readable instructions are executed by the processor, the power supply switching method of the electronic device provided by the above embodiments is implemented.
  • the display screen of the computer device may be a liquid crystal display or an electronic ink display.
  • the input device of the computer device may be a touch layer covered on the display screen, or may be a button, trackball or touch pad provided on the computer device shell. , it can also be an external keyboard, trackpad or mouse, etc.
  • Figure 12 is only a block diagram of a partial structure related to the disclosed solution, and does not constitute a limitation on the computer equipment to which the disclosed solution is applied.
  • Specific computer equipment can May include more or fewer parts than shown, or combine certain parts, or have a different arrangement of parts.
  • the power supply switching device of the electronic device provided by the present disclosure can be implemented in the form of a computer readable instruction, and the computer readable instruction can be run on the computer device as shown in Figure 12.
  • Various program modules that make up the electronic device can be stored in the memory of the computer device, such as the acquisition module 201 and the control module 202 shown in Figure 11 .
  • the computer-readable instructions constituted by each program module cause the processor to execute the steps in the power supply switching method of an electronic device according to any embodiment of the present disclosure described in this specification.
  • a computer device including a memory and one or more processors.
  • the memory stores computer readable instructions.
  • the computer readable instructions When executed by the processor, the computer readable instructions cause the one or more processors to execute The following steps: obtain a temperature signal generated according to the temperature of the preset power supply line; control the switching state of the switch circuit according to the temperature signal, so that the power adapter or battery supplies power to the preset component through the preset power supply line.
  • the processor when the processor executes the computer readable instructions, the following steps are also implemented: when the temperature of the preset power supply line is greater than the preset temperature, control the switch switching state of the switch circuit so that the battery supplies electricity to the battery through the preset power supply line.
  • the preset component supplies power
  • the temperature signal contains temperature information of the preset power supply line.
  • the processor when the processor executes the computer readable instructions, it also implements the following steps: obtaining the remaining power of the battery; controlling the switching state of the switch circuit according to the remaining power, so that the power adapter or battery supplies power to the preset power supply through the preset power supply line. Provide power to components.
  • the processor when it executes the computer readable instructions, it also implements the following steps: when it is determined that the remaining power is less than the preset power, controlling the switching state of the switch circuit so that the power adapter supplies power to the preset power supply through the preset power supply line. Component power supply.
  • the computer device provided in this embodiment can implement the power supply switching method of the electronic device provided in the above method embodiment.
  • the implementation principle and technical effect are similar, and will not be described again here.
  • One or more non-volatile storage media storing computer-readable instructions. When executed by one or more processors, the computer-readable instructions cause one or more processors to perform the following steps: obtain the power supply according to the preset power supply line. The temperature signal generated by the temperature; controls the switching state of the switch circuit according to the temperature signal, so that the power adapter or battery supplies power to the preset component through the preset power supply line.
  • the following steps are also implemented: when the temperature of the preset power supply line is greater than the preset temperature, control the switching state of the switch circuit so that the battery passes through the preset power supply line. Power is supplied to the preset component, where the temperature signal contains temperature information of the preset power supply line.
  • the computer readable instructions when executed by the processor, also implement the following steps: obtaining the remaining power of the battery;
  • the switching state of the switch circuit is controlled so that the power adapter supplies power to the preset component through the preset power supply line.
  • the computer-readable instructions stored on the computer-readable storage medium provided by this embodiment can implement the power supply switching method of the electronic device provided by the above method embodiment.
  • the implementation principles and technical effects are similar and will not be described again here.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory or optical memory, etc.
  • Volatile memory may include random access memory (Random Access Memory, RAM) or external cache memory.
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • the power supply switching circuit of the electronic device provided by the present disclosure, when the electronic device is connected to the power adapter to run a reload program, and when it is detected that the temperature of the preset power supply line corresponding to the preset component such as the CPU is too high, the connection of the preset power supply line Switching the input voltage terminal from the power adapter to the battery can reduce the loss of components in the preset power supply line, thereby reducing the power consumption and temperature of the preset power supply line, which is beneficial to improving the operating performance of electronic equipment and has strong industrial practicability .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

本公开实施例提供了一种电子设备的供电切换电路、系统以及方法。其中,电子设备的供电切换电路包括:温度检测部件、控制器和切换开关电路,控制器分别与温度检测部件和切换开关电路电连接;温度检测部件临近预设供电线路设置并用于检测预设供电线路的温度以生成温度信号;其中,预设供电线路为电子设备中预设部件的供电线路;控制器用于根据温度信号输出切换控制信号,切换开关电路用于根据切换控制信号控制其自身的开关切换状态,以使电源适配器或电池通过预设供电线路向预设部件供电。本公开的技术方案,可降低预设供电线路的功耗以及温度,有利于提高电子设备的运行性能,从而提升用户的使用体验感。

Description

电子设备的供电切换电路、系统以及方法
本公开要求于2022年07月25日提交中国专利局、公开号为202210879374X、发明名称为“电子设备的供电切换电路、系统以及方法”的中国专利公开的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电子设备的供电切换电路、系统以及方法。
背景技术
随着电子设备中各种软件程序的发展,电子设备例如但不限于笔记本电脑中的中央处理器(Central Processing Unit,CPU)和独立图形处理器(Graphics Processing Unit,DGPU)等的运算响应速度也大幅提升。研究者们为了提升CPU和DGPU等芯片的性能,在CPU芯片和DGPU芯片的单位面积上集成的晶体管数量越来越多,导致CPU和DGPU的功耗越来越大。当电子设备例如笔记本电脑接入电源适配器运行重载程序时,为CPU和DGPU进行供电的供电线路功耗较高,进而产生较大的热量,容易造成过高的供电线路温度。
发明内容
(一)要解决的技术问题
当电子设备例如笔记本电脑接入电源适配器运行重载程序时,为CPU和DGPU进行供电的供电线路功耗较高,进而产生较大的热量,容易造成过高的供电线路温度。
(二)技术方案
根据本公开的各种实施例,提供一种电子设备的供电切换电路、系统以及方法。
一种电子设备的供电切换电路,包括:
温度检测部件、控制器和切换开关电路,所述控制器分别与所述温度检测部件和所述切换开关电路电连接;
所述温度检测部件临近预设供电线路设置并用于检测所述预设供电线路的温度以生成温度信号;其中,所述预设供电线路为所述电子 设备中预设部件的供电线路;
所述控制器用于根据所述温度信号输出切换控制信号,所述切换开关电路用于根据所述切换控制信号控制其自身的开关切换状态,以使电源适配器或电池通过所述预设供电线路向所述预设部件供电。
作为本公开实施例一种可选的实施方式,所述切换开关电路包括:多个切换开关模块,所述切换开关模块与所述预设供电线路一一对应电连接;或者,一个切换开关模块,所述切换开关模块与所有的所述预设供电线路对应电连接。
作为本公开实施例一种可选的实施方式,所述切换开关模块包括:第一开关,所述第一开关的第一端与所述电源适配器电连接,所述第一开关的第二端与对应所述预设供电线路电连接,所述第一开关的控制端接入第一切换控制信号;第二开关,所述第二开关的第一端与所述电池电连接,所述第二开关的第二端与对应所述预设供电线路电连接,所述第二开关的控制端接入第二切换控制信号。
作为本公开实施例一种可选的实施方式,所述控制器包括第一切换端和第二切换端,所述第一切换端通过第一导线与所述切换开关电路直连,所述第二切换端通过第二导线与所述切换开关电路直连。
作为本公开实施例一种可选的实施方式,所述电子设备的供电切换电路还包括:第一控制开关和第二控制开关,所述控制器包括第一切换端和第二切换端;所述第一切换端通过所述第一控制开关与所述切换开关电路连接,所述第二切换端通过所述第二控制开关与所述切换开关电路连接。
作为本公开实施例一种可选的实施方式,所述电子设备的供电切换电路还包括:电量检测部件,所述电量检测部件分别与所述电池和所述控制器电连接,所述电量检测部件用于检测所述电池的剩余电量并生成电量信号,所述控制器用于根据所述温度信号和所述电量信号输出切换控制信号。
一种电子设备的供电切换系统,包括如上述实施例所述的电子设备的供电切换电路,还包括电源适配器、电池和预设供电线路;
所述电源适配器、所述电池和所述预设供电线路均与所述切换开关电路电连接,所述预设供电线路与预设部件电连接。
一种电子设备的供电切换方法,基于如上述实施例所述的电子设备的供电切换电路实现,所述方法包括:
获取根据预设供电线路的温度生成的温度信号;
根据所述温度信号控制切换开关电路的开关切换状态,以使电源 适配器或电池通过所述预设供电线路向预设部件供电。
作为本公开实施例一种可选的实施方式,所述根据所述温度信号控制切换开关电路的开关切换状态,包括:当所述预设供电线路的温度大于预设温度时,控制所述切换开关电路的开关切换状态,以使所述电池通过所述预设供电线路向所述预设部件供电,其中所述温度信号包含所述预设供电线路的温度信息。
作为本公开实施例一种可选的实施方式,所述供电切换电路包括电量检测部件,所述电子设备的供电切换方法还包括:获取所述电池的剩余电量;当判断所述剩余电量小于预设电量时,控制所述切换开关电路的开关切换状态,以使所述电源适配器通过所述预设供电线路向所述预设部件供电。
本公开的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得,本公开的一个或多个实施例的细节在下面的附图和描述中提出。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举可选实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一个或多个实施例提供的一种电子设备的供电切换电路的结构示意图;
图2为相关技术中一个或多个实施例提供的一种HPB架构的电路示意图;
图3为本公开一个或多个实施例提供的另一种电子设备的供电切换电路的结构示意图;
图4为本公开一个或多个实施例提供的又一种电子设备的供电切换电路的结构示意图;
图5为本公开一个或多个实施例提供的一种切换开关模块的结构示意图;
图6为本公开一个或多个实施例提供的又一种电子设备的供电切 换电路的结构示意图;
图7为本公开一个或多个实施例提供的又一种电子设备的供电切换电路的结构示意图;
图8为本公开一个或多个实施例提供的又一种电子设备的供电切换电路的结构示意图;
图9为本公开一个或多个实施例提供的一种电子设备的供电系统的结构示意图;
图10为本公开一个或多个实施例提供的一种电子设备的供电切换方法的流程示意图;
图11为本公开一个或多个实施例提供的一种电子设备的供电切换装置的结构示意图;
图12为本公开一个或多个实施例提供的一种计算机设备的内部结构图。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
本公开的说明书和权利要求书中的术语“第一”和“第二”等是用来区别不同的对象,而不是用来描述对象的特定顺序。例如,第一开关和第二开关是为了区别不同的开关,而不是为了描述开关的特定顺序。
在本公开实施例中,“示例性的”或者“例如”等词来表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,此外,在本公开实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。
相关技术中电子设备例如笔记本电脑的电源系统采用降压型窄输出电压直流(Narrow VDC Buck-Boost,NVDC)架构,由于NVDC架构一阶电压转换功率过大,从而导致供电线路的功耗过高,进而造成供电线路温度过高的问题。
针对相关技术中存在的技术问题,本公开实施例提供了一种电子设备的供电切换电路。图1为本公开一个或多个实施例提供的一种电子设备的供电切换电路的结构示意图。如图1所示,供电切换电路包括温度检测部件10、控制器11和切换开关电路12,控制器11分别与温度检测部件10和切换开关电路12电连接;温度检测部件10临近预设供电线路13设置并用于检测预设供电线路13的温度以生成温度信号;其中,预设供电线路13为电子设备中预设部件的供电线路;控制器11用于根据温度信号输出切换控制信号,切换开关电路12用于根据切换控制信号控制其自身的开关切换状态,以使电源适配器或电池通过预设供电线路13向预设部件供电。
具体地,控制器11分别与温度检测部件10和切换开关电路12电连接,以实现控制器11与温度检测部件10进行通信,以及控制器11与切换开关电路12进行通信。温度检测部件10例如但不限于温度传感器临近预设供电线路13设置,其中预设供电线路13为电子设备中的供电线路,预设供电线路13与预设部件例如但不限于CPU电连接,进而通过预设供电线路13为预设部件进行供电。在预设供电线路13为预设部件进行供电时,可通过温度检测部件10检测预设供电线路13的温度。其中,预设供电线路13的温度可反应预设供电线路13的功耗,若温度越高可反应预设供电线路13的功率较大即功耗过大,功耗过大影响电子设备例如笔记本电脑的运行性能。
由此,通过设置温度检测部件10,利用温度检测部件10来检测预设供电线路13的温度并生成温度信号,进一步地,温度信号传输至控制器11,控制器11接收该温度信号。其中,温度信号包含了预设供电线路13的温度信息,控制器11根据接收到的温度信号可获取到预设供电线路13的温度。进一步地,控制器11基于预设供电线路13的温度判断预设供电线路13的功耗是否过大,进而生成切换控制信号,并将该切换控制信号传输至切换开关电路12,切换开关电路12根据接收到的切换控制信号,切换预设供电线路13接入电源适配器或电池。
示例性地,当电子设备例如笔记本电脑刚处于运行状态时,温度检测部件10检测到预设供电线路13的温度较低,可默认切换开关电路12控制预设供电线路13接入电源适配器,一方面可通过电源适配器为预设部件进行供电,另一方面还可为电子设备配备的电池进行充电。在电子设备接入电源适配器后,预设部件例如CPU运行重载程序时,通过温度检测部件10检测预设供电线路13的温度,若检测到预设供电线路13的温度过高例如温度超过设定温度阈值,此时可判断预 设供电线路13的功耗过大,控制器11生成切换控制信号,切换开关电路12根据接收到的切换控制信号,切换预设供电线路13接入电池,即由电源适配器切换为电池,以使电池向预设供电线路13提供输入电压,进而实现电池通过预设供电线路13向预设部件进行供电。
其中,预设供电线路为降压变换器(Buck Converter,Buck)电压转换线路,对于BUCK电压转换线路来说,其输入电压和输出电压的差值越大时,预设供电线路13的元器件耗损越大,进而导致预设供电线路13功耗较大以及温度较大;然而当输入电压和输出电压的差值越小时,电压转换效率越高,可降低预设供电线路13的功耗以及温度,有利于提高电子设备的运行性能。
具体地,当电源适配器接入预设供电线路13时,电源适配器的直流输出电压为预设供电线路13的输入电压;当电池接入预设供电线路13时,电池的电压为预设供电线路13的输入电压。然而电池的电压低于电源适配器的输出电压,因此预设供电线路13接入电池时的输入电压小于预设供电线路13接入电源适配器时的输入电压。针对同一预设部件供电,预设供电线路13接入电池时的输出电压和预设供电线路13接入电源适配器时的输出电压是相同的,由此可得到当预设供电线路13接入电源适配器时,其输入电压和输出电压的差值较大,进而导致电压转换线路的元器件损耗较大;当预设供电线路13接入电池时,其输入电压和输出电压的差值较小,可提高电压转换效率,进而降低电压转换线路的元器件损耗;即相同的输出电压值,输入电压越低,电压转换线路的元器件损耗越小,进而有利于降低预设供电线路13的功耗以及温度。
需要说明的是,本公开实施例提供的供电切换电路采用混合电源升压(Hybrid Power BOOST,HPB)架构。示例性地,图2为相关技术中一个或多个实施例提供的一种HPB架构的电路示意图。如图2所示,在电源适配器接入电路后,开关Q1和开关Q2打开,通过电源适配器输出电压为系统供电,同时通过Buck降压线路给电池充电,在电源适配器接入的情况下通常电池不放电,因此电池电压低于电源适配器的输出电压;当断开电源适配器连接时,开关Q3打开,通过电池输出电压为系统供电。即当电源适配器接入时,对于电子设备系统内部所有的供电线路来说,输入电压是电源适配器的直流输出电压;当电源适配器断开时电池供电,系统的输入电压是电池电压;电池电压小于适配器的输出电压。
由此,将混合电源升压(Hybrid Power BOOST,HPB)架构应用 于本公开实施例提供的供电切换电路中,当预设供电线路的接入电压端由电源适配器切换为电池时,有利于降低预设供电线路的输入电压和输出电压之间的差值,从而可降低电压转换线路元器件的耗损,有利于降低预设供电线路的功耗以及温度。
本公开实施例提供的电子设备的供电切换电路通过设置温度检测部件,温度检测部件临近预设供电线路设置并用于检测预设供电线路的温度,并生成温度信号,进一步地,该温度信号传输至控制器,控制器接收该温度信号。其中,温度信号包含了预设供电线路的温度信息,控制器根据接收到的温度信号可获取到预设供电线路的温度。进一步地,控制器基于预设供电线路的温度判断预设供电线路的功耗是否过大,进而生成切换控制信号,并将该切换控制信号传输至切换开关电路,切换开关电路根据接收到的切换控制信号,切换预设供电线路接入电源适配器或电池。由此,在电子设备接入电源适配器运行重载程序时,当检测到预设部件例如CPU对应的预设供电线路的温度过高时,预设供电线路的接入电压端由电源适配器切换为电池,可降低预设供电线路中元器件的耗损,进而降低预设供电线路的功耗以及温度,有利于提高电子设备的运行性能,从而提升了用户的使用体验感。
作为本公开实施例一种可选的实施方式,图3为本公开一个或多个实施例提供的另一种电子设备的供电切换电路的结构示意图。在图1所示结构的基础上,如图3所示,切换开关电路12包括多个切换开关模块14,切换开关模块14与预设供电线路13一一对应设置。图3中示例性地示出了两个切换开关模块14,对应地示出了两个预设供电线路13。
具体地,切换开关电路12包括第一切换开关模块141和第二切换开关模块142,控制器11分别与第一切换开关模块141和第二切换开关模块142电连接。预设供电线路13包括第一预设供电线路131和第二预设供电线路132,第一切换开关模块141与第一预设供电线路131电连接,第二切换开关模块142与第二预设供电线路132电连接,由此控制器11通过控制第一切换开关模块141切换第一预设供电线路131接入电源适配器或电池,以及控制器11通过控制第二切换开关模块142切换第二预设供电线路132接入电源适配器或电池。
其中,针对两个预设供电线路13对应设置两个温度检测部件10,包括第一温度检测部件101和第二温度检测部件102,第一温度检测部件101用于检测第一预设供电线路131的温度,第二温度检测部件102用于检测第二预设供电线路132的温度,即预设供电线路13、温度检 测部件10和第一切换开关模块14是一一对应设置的。
需要说明的是,还可设置切换开关电路12包括三个或更多个切换开关模块,相应地设置三个或更多个预设供电线路13和温度检测部件10。
作为本公开实施例一种可选的实施方式,图4为本公开一个或多个实施例提供的又一种电子设备的供电切换电路的结构示意图。在图1所示结构的基础上,如图4所示,切换开关电路12包括一个切换开关模块14,切换开关模块14与所有的预设供电线路13对应设置,图4示例性地示出了两个预设供电线路13。
具体地,设置切换开关电路12包括一个切换开关模块14,切换开关模块14分别与第一预设供电线路131和第二预设供电线路132电连接,控制器11与切换开关模块14电连接,由此通过控制器11控制一个切换开关模块14切换电源适配器或电池接入第一预设供电线路131,以及切换电源适配器或电池接入第二预设供电线路132。其中,针对两个预设供电线路13对应设置两个温度检测部件10,包括第一温度检测部件101和第二温度检测部件102,第一温度检测部件101用于检测第一预设供电线路131的温度,第二温度检测部件102用于检测第二预设供电线路132的温度。
需要说明的是,图4与图3的区别在于:图3针对每一个预设供电线路13均设置对应的切换开关模块14,即预设供电线路13与切换开关模块14一一对应设置;而图4针对所有的预设供电线路13设置一个切换开关模块14,可以理解为图4将图3中的多个切换开关模块集成设置为一个切换开关模块,从而有利于简化路线,进而降低设计成本。
由此,结合图3和图4,针对预设供电线路13一一对应设置温度检测部件10,其中,每个预设供电线路13均作为向对应的预设部件供电的线路。当电子设备例如笔记本电脑运行不同程序时,需要启动不同的预设部件例如CPU和DGPU等,且不同预设部件的预设供电线路13的负载是不一样的。示例性地,有的程序运行时需要调用CPU进行大量计算,对应CPU的预设供电线路13负载就会很高,而不需要调用DGPU进行图像处理,则对应DGPU的供电线路负载就会很低;有的程序运行时需要调用DGPU进行图像处理,对应DGPU的供电线路负载就会很高,而不需要调调用CPU进行大量计算,则对应CPU的供电线路负载就会很低。由此,用户可以在电子设备处于不同使用情景下,检测每组预设供电线路的实时温度,有选择性的调整不同预设 部件的预设供电线路的输入电压例如电池电压,有利于优化电子设备的预设供电线路的温度,安全可靠。
另外,由于预设供电线路的输入电压切换为电池电压后,电池的辅助放电,让电源适配器节省下的功耗能够供给其它预设部件使用,有利于提升电子设备整机系统的性能。例如将对应CPU供电线路的输入电压切换为电池电压后,原来电源适配器供给CPU的能耗可节省供给DGPU使用,可提升DGPU的运算能力。
作为本公开实施例一种可选的实施方式,图5为本公开一个或多个实施例提供的一种切换开关模块的结构示意图。结合图3和图5,或者结合图4和图5,切换开关模块14包括第一开关15,第一开关15的第一端与电源适配器电连接,第一开关15的第二端与对应预设供电线路13电连接,第一开关15的控制端接入第一切换控制信号T1;第二开关16,第二开关16的第一端与电池电连接,第二开关16的第二端与对应预设供电线路13电连接,第二开关的控制端接入第二切换控制信号T2。
具体地,可设置切换开关模块14包括第一开关15和第二开关16。其中,第一开关15的第一端连接电源适配器,即连接输入电压VIN1,第一开关15的第二端连接预设供电线路13,第一开关15的控制端接入第一切换控制信号T1;第二开关16的第一端连接电池Battery,即连接输入电压VIN2,第二开关16的第二端连接预设供电线路13,第二开关16的控制端接入第二切换控制信号T2。
具体地,当控制器11生成第一切换控制信号T1,对应地第一开关15的控制端接入第一切换控制信号T1,当根据温度检测结果控制第一开关15闭合时,从而导通电源适配器与预设供电线路13的电连接线路,实现预设供电线路13接入电源适配器;当控制器11生成第二切换控制信号T2时,对应地第二开关16的控制端接入第二切换控制信号T2,当根据温度检测结果控制第二开关16闭合时,从而导通电池与预设供电线路13的电连接线路,实现预设供电线路13接入电池。
其中,第一开关15和第二开关16可设置为N沟道金属氧化物半导体(N channel Metal Oxide Semiconductor,NMOS)管,或者P沟道金属氧化物半导体(P channel Metal Oxide Semiconductor,PMOS)管。
作为本公开实施例一种可选的实施方式,图6为本公开一个或多个实施例提供的又一种电子设备的供电切换电路的结构示意图。如图6所示,控制器11包括第一切换端A和第二切换端B,第一切换端A通过第一导线17与切换开关电路12直连,第二切换端B通过第二导线 18与切换开关电路12直连。
具体地,控制器11包括第一切换端A,第一切换端A通过第一导线17与切换开关电路12中第一开关15的控制端电连接,第一切换端A控制输出第一切换控制信号T1,第一切换控制信号T1通过第一导线传输至第一开关15的控制端,控制第一开关15闭合或断开,以控制对应的预设供电线路13是否接入电源适配器。控制器11还包括第二切换端B,第二切换端B通过第二导线18与切换开关电路12中第二开关16的控制端电连接,第二切换端B控制输出第二切换控制信号T2,第二切换控制信号T2通过第二导线18传输至第二开关16的控制端,控制第二开关16闭合或断开,以控制对应的预设供电线路13是否接入电池。
第一切换端A通过第一导线17与切换开关电路12直连,第二切换端B通过第二导线18与切换开关电路12直连,控制器可以根据温度检测结果,调节第一切换端A和第二切换端B输出的切换信号的电平高低,以通过开关,例如晶体管的栅极控制开关闭合或断开,控制结构简单。需要说明的是,第一开关15闭合时控制第二开关16断开,第二开关16闭合时控制第一开关15断开。
作为本公开实施例一种可选的实施方式,图7为本公开一个或多个实施例提供的又一种电子设备的供电切换电路的结构示意图。如图7所示,控制器11还包括第一控制开关19和第二控制开关20,控制器11包括第一切换端A和第二切换端B;第一切换端A通过第一控制开关19与切换开关电路12连接,第二切换端B通过第二控制开关20与切换开关电路12连接。
具体地,在第一切换端A和第一开关15的控制端的连接线路中设置第一控制开关19,通过控制第一控制开关19闭合,导通第一切换端A和第一开关15的控制端的连接线路,将第一切换端A输出的第一切换控制信号T1传输至第一开关15的控制端,控制第一开关15闭合或断开,进而实现预设供电线路13是否接入电源适配器;在第二切换端B和第二开关16的控制端的连接线路中设置第二控制开关20,通过控制第二控制开关20闭合,导通第二切换端B和第二开关16的控制端的连接线路,将第二切换端B控制输出的第二切换控制信号T2传输至第二开关16的控制端,控制第二开关16闭合或断开,进而实现预设供电线路13是否接入电池。
以图7所示结构为例,以预设供电线路13为CPU(预设部件)供电进行示例性说明。当预设供电线路温度较高时,控制器11发出第二 切换控制信号T2,先将第一控制开关19断开,第一开关15关闭,电源适配器的电压被切断,此时切换瞬间电池通过第二开关16的寄生二极管顺向导通供电,保证电压的无缝切换,确保不会因为预设供电线路的输入电压切换而导致CPU断电,而后控制第二控制开关20闭合,第二开关16导通,CPU供电线路的输入电压正式由电源适配器的输入电压切换为电池电压。当电子设备结束运行重载程序或者电池电量剩余不足时,可随时将预设供电线路13的输入电压切换回电源适配器的输入电压。控制器11发出第一切换控制信号T1,先将第二控制开关20断开,此时电池电压通过第二开关16的寄生二极管顺向导通供电,而后经将第一控制开关19闭合,第一开关15导通,第二开关16的寄生二极管反向截至,完成无缝切换,CPU供电线路的输入电压由电池电压切换为电源适配器的输入电压。
作为本公开实施例一种可选的实施方式,图8为本公开一个或多个实施例提供的又一种电子设备的供电切换电路的结构示意图。如图8所示,供电切换电路还包括电量检测部件21,电量检测部件21分别与电池22和控制器11电连接,电量检测部件21用于检测电池22的剩余电量并生成电量信号,控制器11用于根据温度信号和电量信号输出切换控制信号。
具体地,设置电量检测部件21,根据温度信号在电池22通过切换开关电路12接入预设供电线路13时,通过电量检测部件21检测电池22的剩余电量,并生成包括剩余电量信息的电量信号,将电量信号传输至控制器11,由此控制器可获取到电池22的剩余电量,当电池22的剩余电量过低时,例如电池22的剩余电量低于预设电量阈值,此时控制器11生成切换控制信号,控制预设供电线路13接入的输入电压由电池22切换为电源适配器。具体地,结合上文,控制器11控制第一切换端A输出第一切换控制信号T1传输至第一开关15的控制端,控制第一开关15闭合,进而实现预设供电线路13接入电源适配器。
在上述各实施方式的基础上,本公开实施例还提供了一种电子设备的供电切换系统的结构示意图。图9为本公开一个或多个实施例提供的一种电子设备的供电系统的结构示意图,如图9所示,电子设备的供电系统包括如上述各实施方式中提供的任一种电子设备的供电切换电路30,还包括电源适配器23、电池22和预设供电线路13;电源适配器23、电池22和预设供电线路13均与切换开关电路12电连接,预设供电线路13与预设部件电连接,因此具有相同或相似的有益效果,在此不再一一赘述。
具体地,电源适配器23和电池22分别与切换开关电路12电连接,根据切换开关电路12输出的切换控制信号,实现预设供电线路13接入电源适配器23,电源适配器23通过预设供电线路13为预设部件进行供电,或者实现预设供电线路13接入电池22,电池22通过预设供电线路13为预设部件进行供电,具体实现方案可结合上文理解,在此不再一一赘述。
本公开实施例还提供了一种电子设备的供电切换方法,基于上述各实施方式中提供的任一种电子设备的供电切换电路实现,具有相同或相似的有益效果,在此不再一一赘述。
图10为本公开一个或多个实施例提供的一种电子设备的供电切换方法的流程示意图。如图10所示,该供电切换方法包括:
S101、获取根据预设供电线路的温度生成的温度信号;
S102、根据温度信号控制切换开关电路的开关切换状态,以使电源适配器或电池通过预设供电线路向预设部件供电。
具体地,参照图1,临近预设供电线路13设置温度检测部件10,利用温度检测部件10来检测预设供电线路的温度并生成温度信号,进一步地,该温度信号传输至控制器11,控制器11接收该温度信号。其中,温度信号包含了预设供电线路13的温度信息,控制器11可获取到预设供电线路13的温度。进一步地,控制器11基于获取到的预设供电线路13的温度进而生成对应的切换控制信号,并将该切换控制信号传输至切换开关电路12,切换开关电路12根据接收到的切换控制信号,切换预设供电线路13接入电源适配器提供或电池,以使电源适配器或电池向预设供电线路13提供输入电压,进而实现预设供电线路13向预设部件供电。
本公开实施例提供的电子设备的供电切换方法,通过获取根据预设供电线路的温度生成的温度信号,进一步地,该温度信号传输至控制器,控制器接收该温度信号。其中,温度信号包含了预设供电线路的温度信息,控制器根据接收到的温度信号可获取到预设供电线路的温度。进一步地,控制器基于预设供电线路的温度判断预设供电线路的功耗是否过大,进而生成切换控制信号,并将该切换控制信号传输至切换开关电路,切换开关电路根据接收到的切换控制信号,切换预设供电线路接入电源适配器或电池。由此,在电子设备接入电源适配器运行重载程序时,当检测到预设部件例如CPU对应的预设供电线路的温度过高时,预设供电线路的接入电压端由电源适配器切换为电池,可降低预设供电线路中元器件的耗损,进而降低预设供电线路的功耗 以及温度,有利于提高电子设备的运行性能,从而提升了用户的使用体验感。
作为本公开实施例一种可选的实施方式,根据温度信号控制切换开关电路的开关切换状态,包括:
当预设供电线路的温度大于预设温度时,控制切换开关电路的开关切换状态,以使电池通过预设供电线路向预设部件供电,其中温度信号包含预设供电线路的温度信息。
具体地,继续参照图1,基于控制器11获取到的温度信号,可获取到预设供电线路13的温度,当判断预设供电线路13的温度大于预设温度时,可判断预设供电线路13的功耗过大,功耗过大可影响电子设备的运行性能,此时控制器11可生成切换控制信号,并将该切换控制信号传输至切换开关电路12,切换开关电路12根据接收到的切换控制信号,切换预设供电线路13接入电池,以使电池向预设供电线路13提供输入电压,实现预设供电线路13向预设部件供电的同时,可提高预设供电线路13的电压转换效率,进而降低预设供电线路13的功耗以及温度,有利于提高电子设备的运行性能。
需要说明的是,在电子设备处于运行状态初期,预设供电线路13的温度较低,可默认切换开关电路12切换预设供电线路13接入电源适配器,在电源适配器为电子设备的预设部件供电的同时,还可为电子设备中配备的电池充电。在电子接入电源适配器运行重载程序时,当检测到对应于预设部件例如CPU的预设供电线路13的温度过高时,此时可切换电池为对应的预设部件供电,有利于提高预设供电线路13的电压转换效率,进而可降低预设供电线路13的功耗,以实现降低预设供电线路13的温度,提高电子设备的运行性能。
作为本公开实施例一种可选的实施方式,供电切换电路包括电量检测部件,供电切换方法还包括:
获取电池的剩余电量;
当判断剩余电量小于预设电量时,控制切换开关电路的开关切换状态,以使电源适配器通过预设供电线路向预设部件供电。
具体地,继续参照图1,当电池接入预设供电线路13向预设部件供电时,控制器11检测并获取电池的剩余电量,控制器11根据电池的剩余电量判断是否切换电源适配器接入预设供电线路向预设部件供电。具体地,当检测到电池的剩余电量过低时,例如电池的剩余电量小于预设电量,为了保证电子设备中的预设部件例如CPU继续运行程序,此时控制器11生成切换控制信号并传输至切换开关电路12,进一 步地,切换开关电路12切换电源适配器接入预设供电线路向预设部件供电。
由此,本公开实施例提供的电子设备的供电切换方法,在电子设备例如笔记本电脑接入电源适配器运行重载程序时,能提高部分预设部件对应的预设供电线路的电压转换效率,从而降低其供电线路的温度。由此,用电池取代了电源适配器作为输入电压对对应的预设部件供电,相当于电池在辅助电源适配器给电子设备的系统供电,从而优化了电子设备的运行性能,改善了因部分供电线路温度过高导致电子设备的运行性能降低,让使用者感觉不适的问题。
基于同一发明构思,作为对上述方法的实现,本公开实施例还提供了一种电子设备的供电切换装置,该装置实施例与前述方法实施例对应,为便于阅读,本装置实施例不再对前述方法实施例中的细节内容进行逐一赘述,但应当明确,本实施例中的装置能够对应实现前述方法实施例中的全部内容。
图11为本公开一个或多个实施例提供的电子设备的供电切换装置的结构示意图,如图11所示,该装置包括:获取模块201,配置成获取根据预设供电线路的温度生成的温度信号;控制模块202,配置成根据温度信号控制切换开关电路的开关切换状态,以使电源适配器或电池通过预设供电线路向预设部件供电。
作为本公开实施例一种可选的实施方式,控制模块202,具体配置成当预设供电线路的温度大于预设温度时,控制切换开关电路的开关切换状态,以使电池通过预设供电线路向预设部件供电,其中温度信号包含预设供电线路的温度信息。
作为本公开实施例一种可选的实施方式,上述装置还包括:电量获取模块(图中未示出),配置成获取所述电池的剩余电量;控制模块202,具体配置成根据剩余电量控制切换开关电路的开关切换状态,以使电源适配器或电池通过预设供电线路向预设部件供电。
作为本公开实施例一种可选的实施方式,控制模块202,具体配置成当判断所述剩余电量小于预设电量时,控制所述切换开关电路的开关切换状态,以使所述电源适配器通过所述预设供电线路向所述预设部件供电。
关于电子设备的供电切换装置的具体限定可以参见上文中对于电子设备的供电切换方法的限定,在此不再赘述。上述电子设备的供电切换装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中, 也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
本公开实施例提供的电子设备的供电切换装置可以执行上述方法实施例提供的电子设备的供电切换方法,其实现原理与技术效果类似,此处不再赘述。上述电子设备的供电切换装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行上述各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端设备,其内部结构图可以如图12所示。该计算机设备包括通过系统总线连接的处理器、存储器、通信接口、数据库、显示屏和输入装置。其中,该计算机设备的处理器配置成提供计算和控制能力的模块。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机可读指令。该内存储器为非易失性存储介质中的操作系统和计算机可读指令的运行提供环境。该计算机设备的通信接口配置成与外部的终端进行有线或无线方式的通信模块,无线方式可通过WIFI、运营商网络、近场通信(NFC)或其他技术实现。该计算机可读指令被处理器执行时以实现上述实施例提供的电子设备的供电切换方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图12中示出的结构,仅仅是与本公开方案相关的部分结构的框图,并不构成对本公开方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,本公开提供的电子设备的供电切换装置可以实现为一种计算机可读指令的形式,计算机可读指令可在如图12所示的计算机设备上运行。计算机设备的存储器中可存储组成该电子设备的各个程序模块,比如,图11所示的获取模块201和控制模块202。各个程序模块构成的计算机可读指令使得处理器执行本说明书中描述的本公开任意一个实施例的电子设备的供电切换方法中的步骤。
在一个实施例中,提供了一种计算机设备,包括存储器和一个或多个处理器,该存储器存储有计算机可读指令,计算机可读指令被处 理器执行时,使得一个或多个处理器执行以下步骤:获取根据预设供电线路的温度生成的温度信号;根据温度信号控制切换开关电路的开关切换状态,以使电源适配器或电池通过预设供电线路向预设部件供电。
在一个实施例中,处理器执行计算机可读指令时还实现以下步骤:当预设供电线路的温度大于预设温度时,控制切换开关电路的开关切换状态,以使电池通过预设供电线路向预设部件供电,其中温度信号包含预设供电线路的温度信息。
在一个实施例中,处理器执行计算机可读指令时还实现以下步骤:获取电池的剩余电量;根据剩余电量控制切换开关电路的开关切换状态,以使电源适配器或电池通过预设供电线路向预设部件供电。
在一个实施例中,处理器执行计算机可读指令时还实现以下步骤:当判断剩余电量小于预设电量时,控制切换开关电路的开关切换状态,以使电源适配器通过预设供电线路向预设部件供电。
本实施例提供的计算机设备,可以实现上述方法实施例提供的电子设备的供电切换方法,其实现原理与技术效果类似,此处不再赘述。
一个或多个存储有计算机可读指令的非易失性存储介质,计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行以下步骤:获取根据预设供电线路的温度生成的温度信号;根据温度信号控制切换开关电路的开关切换状态,以使电源适配器或电池通过预设供电线路向预设部件供电。
在一个实施例中,计算机可读指令被处理器执行时还实现以下步骤:当预设供电线路的温度大于预设温度时,控制切换开关电路的开关切换状态,以使电池通过预设供电线路向预设部件供电,其中温度信号包含预设供电线路的温度信息。
在一个实施例中,计算机可读指令被处理器执行时还实现以下步骤:获取电池的剩余电量;
当判断剩余电量小于预设电量时,控制切换开关电路的开关切换状态,以使电源适配器通过预设供电线路向预设部件供电。
本实施例提供的计算机可读存储介质上存储的计算机可读指令,可以实现上述方法实施例提供的电子设备的供电切换方法,其实现原理与技术效果类似,此处不再赘述。
本领域普通技术人员可以理解实现上述方法实施例中的全部或部分流程,是可以通过计算机可读指令来指令相关的硬件来完成的,计算机可读指令可存储于一非易失性计算机可读取存储介质中,该计算 机可读指令在执行时,可包括如上述各方法的实施例的流程。其中,本公开所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,比如静态随机存取存储器(Static Random Access Memory,SRAM)和动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。
工业实用性
本公开提供的电子设备的供电切换电路,在电子设备接入电源适配器运行重载程序时,当检测到预设部件例如CPU对应的预设供电线路的温度过高时,预设供电线路的接入电压端由电源适配器切换为电池,可降低预设供电线路中元器件的耗损,进而降低预设供电线路的功耗以及温度,有利于提高电子设备的运行性能,具有很强的工业实用性。

Claims (20)

  1. 一种电子设备的供电切换电路,包括:
    温度检测部件、控制器和切换开关电路,所述控制器分别与所述温度检测部件和所述切换开关电路电连接;
    所述温度检测部件临近预设供电线路设置并用于检测所述预设供电线路的温度以生成温度信号;其中,所述预设供电线路为所述电子设备中预设部件的供电线路;
    所述控制器用于根据所述温度信号输出切换控制信号,所述切换开关电路用于根据所述切换控制信号控制其自身的开关切换状态,以使电源适配器或电池通过所述预设供电线路向所述预设部件供电。
  2. 根据权利要求1所述的电子设备的供电切换电路,其中,所述切换开关电路包括:
    多个切换开关模块,所述切换开关模块与所述预设供电线路一一对应电连接。
  3. 据权利要求1所述的电子设备的供电切换电路,其中,所述切换开关电路包括:
    一个切换开关模块,所述切换开关模块与所有的所述预设供电线路对应电连接。
  4. 根据权利要求2或3所述的电子设备的供电切换电路,其中,所述切换开关模块包括:
    第一开关,所述第一开关的第一端与所述电源适配器电连接,所述第一开关的第二端与对应所述预设供电线路电连接,所述第一开关的控制端接入第一切换控制信号;
    第二开关,所述第二开关的第一端与所述电池电连接,所述第二开关的第二端与对应所述预设供电线路电连接,所述第二开关的控制端接入第二切换控制信号。
  5. 根据权利要求4所述的电子设备的供电切换电路,其中,所述第一开关和所述第二开关均为MOS管。
  6. 根据权利要求1所述的电子设备的供电切换电路,其中,所述控制器包括第一切换端和第二切换端,所述第一切换端通过第一导线与所述切换开关电路直连,所述第二切换端通过第二导线与所述切换开关电路直连。
  7. 根据权利要求1所述的电子设备的供电切换电路,其中,还包 括:
    第一控制开关和第二控制开关,所述控制器包括第一切换端和第二切换端;
    所述第一切换端通过所述第一控制开关与所述切换开关电路连接,所述第二切换端通过所述第二控制开关与所述切换开关电路连接。
  8. 根据权利要求1所述的电子设备的供电切换电路,其中,还包括:
    电量检测部件,所述电量检测部件分别与所述电池和所述控制器电连接,所述电量检测部件用于检测所述电池的剩余电量并生成电量信号,所述控制器用于根据所述温度信号和所述电量信号输出切换控制信号。
  9. 一种电子设备的供电切换系统,包括如权利要求1-8任一项所述的电子设备的供电切换电路。
  10. 根据权利要求9所述的供电切换系统,其中,还包括电源适配器、电池和预设供电线路;
    所述电源适配器、所述电池和所述预设供电线路均与所述切换开关电路电连接,所述预设供电线路与预设部件电连接。
  11. 一种电子设备的供电切换方法,基于如权利要求1-8任一项所述的电子设备的供电切换电路实现,所述电子设备的供电切换方法包括:
    获取根据预设供电线路的温度生成的温度信号;
    根据所述温度信号控制切换开关电路的开关切换状态,以使电源适配器或电池通过所述预设供电线路向预设部件供电。
  12. 根据权利要求11所述的电子设备的供电切换方法,其中,所述根据所述温度信号控制切换开关电路的开关切换状态,包括:
    当所述预设供电线路的温度大于预设温度时,控制所述切换开关电路的开关切换状态,以使所述电池通过所述预设供电线路向所述预设部件供电,其中所述温度信号包含所述预设供电线路的温度信息。
  13. 根据权利要求11所述的电子设备的供电切换方法,其中,所述供电切换电路包括电量检测部件,所述电子设备的供电切换方法还包括:
    在电池通过所述预设供电线路向预设部件供电时,获取所述电池的剩余电量;
    根据所述剩余电量控制切换开关电路的开关切换状态,以使电源适配器或电池通过所述预设供电线路向预设部件供电。
  14. 根据权利要求13所述的电子设备的供电切换方法,其中,所述根据所述剩余电量控制切换开关电路的开关切换状态,包括:
    当判断所述剩余电量小于预设电量时,控制所述切换开关电路的开关切换状态,以使所述电源适配器通过所述预设供电线路向所述预设部件供电。
  15. 一种电子设备的供电切换装置,包括:
    获取模块,配置成获取根据预设供电线路的温度生成的温度信号;
    控制模块,配置成根据所述温度信号控制切换开关电路的开关切换状态,以使电源适配器或电池通过所述预设供电线路向预设部件供电。
  16. 根据权利要求15所述的电子设备的供电切换装置,其中,控制模块,具体配置成当预设供电线路的温度大于预设温度时,控制切换开关电路的开关切换状态,以使电池通过预设供电线路向预设部件供电,其中所述温度信号包含预设供电线路的温度信息。
  17. 根据权利要求15所述的电子设备的供电切换装置,其中,所述供电切换电路包括电量检测部件,所述装置还包括:
    电量获取模块,配置成在电池通过所述预设供电线路向预设部件供电时,获取所述电池的剩余电量;
    所述控制模块,配置成根据所述剩余电量控制切换开关电路的开关切换状态,以使电源适配器或电池通过所述预设供电线路向预设部件供电。
  18. 根据权利要求17所述的电子设备的供电切换装置,其中,所述控制模块,具体配置成当判断所述剩余电量小于预设电量时,控制所述切换开关电路的开关切换状态,以使所述电源适配器通过所述预设供电线路向所述预设部件供电。
  19. 一种计算机设备,包括:存储器和一个或多个处理器,所述存储器中存储有计算机可读指令;所述计算机可读指令被所述一个或多个处理器执行时,使得所述一个或多个处理器执行权利要求11-14任一项所述的电子设备的供电切换方法的步骤。
  20. 一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行权利要求11-14任一项所述的电子设备的供电切换方法的步骤。
PCT/CN2022/141468 2022-07-25 2022-12-23 电子设备的供电切换电路、系统以及方法 WO2024021473A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210879374.XA CN115173548A (zh) 2022-07-25 2022-07-25 电子设备的供电切换电路、系统以及方法
CN202210879374.X 2022-07-25

Publications (1)

Publication Number Publication Date
WO2024021473A1 true WO2024021473A1 (zh) 2024-02-01

Family

ID=83496306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141468 WO2024021473A1 (zh) 2022-07-25 2022-12-23 电子设备的供电切换电路、系统以及方法

Country Status (2)

Country Link
CN (1) CN115173548A (zh)
WO (1) WO2024021473A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115173548A (zh) * 2022-07-25 2022-10-11 上海闻泰信息技术有限公司 电子设备的供电切换电路、系统以及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100264883A1 (en) * 2009-04-17 2010-10-21 Freescale Semiconductor, Inc Charge control circuit and battery charger including a charge control circuit
CN103545896A (zh) * 2013-11-07 2014-01-29 成都芯源系统有限公司 一种双向开关电路、移动电源电路及其控制方法
CN104348222A (zh) * 2013-07-31 2015-02-11 奇诺沃公司 使用多个充电电路对电池自适应充电的系统和方法
CN105610215A (zh) * 2015-12-01 2016-05-25 深圳市大疆创新科技有限公司 供电装置、供电控制方法及应用该供电装置的可移动装置
CN106356988A (zh) * 2016-10-09 2017-01-25 珠海市杰理科技有限公司 电源切换控制电路
CN207251302U (zh) * 2017-09-27 2018-04-17 上海科众恒盛云计算科技有限公司 一种idc机房用电源快速切换系统
CN108039770A (zh) * 2018-01-15 2018-05-15 郑州云海信息技术有限公司 一种服务器电源适配器和电池供电无缝切换方法及电路
CN112366764A (zh) * 2020-10-27 2021-02-12 歌尔智能科技有限公司 充电降温结构和电子产品
CN115173548A (zh) * 2022-07-25 2022-10-11 上海闻泰信息技术有限公司 电子设备的供电切换电路、系统以及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100264883A1 (en) * 2009-04-17 2010-10-21 Freescale Semiconductor, Inc Charge control circuit and battery charger including a charge control circuit
CN104348222A (zh) * 2013-07-31 2015-02-11 奇诺沃公司 使用多个充电电路对电池自适应充电的系统和方法
CN103545896A (zh) * 2013-11-07 2014-01-29 成都芯源系统有限公司 一种双向开关电路、移动电源电路及其控制方法
CN105610215A (zh) * 2015-12-01 2016-05-25 深圳市大疆创新科技有限公司 供电装置、供电控制方法及应用该供电装置的可移动装置
CN106356988A (zh) * 2016-10-09 2017-01-25 珠海市杰理科技有限公司 电源切换控制电路
CN207251302U (zh) * 2017-09-27 2018-04-17 上海科众恒盛云计算科技有限公司 一种idc机房用电源快速切换系统
CN108039770A (zh) * 2018-01-15 2018-05-15 郑州云海信息技术有限公司 一种服务器电源适配器和电池供电无缝切换方法及电路
CN112366764A (zh) * 2020-10-27 2021-02-12 歌尔智能科技有限公司 充电降温结构和电子产品
CN115173548A (zh) * 2022-07-25 2022-10-11 上海闻泰信息技术有限公司 电子设备的供电切换电路、系统以及方法

Also Published As

Publication number Publication date
CN115173548A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US8782454B2 (en) System and method for managing clock speed based on task urgency
TWI279669B (en) Method and apparatus for enabling a low power mode for a processor
US20050046400A1 (en) Controlling operation of a voltage supply according to the activity of a multi-core integrated circuit component or of multiple IC components
US8812761B2 (en) System and method for adjusting power usage to reduce interrupt latency
EP2414910A1 (en) Multiple power mode system and method for memory
US12007823B2 (en) Power management of a processor and a platform in active state and low power state
WO2024021473A1 (zh) 电子设备的供电切换电路、系统以及方法
US20220197519A1 (en) Multi-level memory system power management apparatus and method
JP7237238B2 (ja) バッテリー管理装置
KR20120030763A (ko) 계층적 전력 제어 회로, 이를 이용한 전력 제어 방법, 및 이를 포함하는 SoC 장치
US20220302943A1 (en) Low power high sensitivity sense amplifier latch with complimentary outputs in reset mode
US10732697B2 (en) Voltage rail coupling sequencing based on upstream voltage rail coupling status
US20140032952A1 (en) Electronic apparatus and drive control method thereof
US20150253840A1 (en) Stand-by power control device, liquid crystal display device including the same, and method of controlling stand-by power
US8717371B1 (en) Transitioning between operational modes in a hybrid graphics system
US20230409105A1 (en) Avoiding damage to universal serial bus sink switch device
US20220197367A1 (en) Hardware and software coordinated cost-aware low power state selection
US11152046B1 (en) Sram bit cell retention
US20130076421A1 (en) Electronic circuit and method for state retention power gating
TW201541803A (zh) 可攜式電子裝置及其充電控制方法
TW202026810A (zh) 多電源管理系統以及多電源管理方法
EP4092864A1 (en) Power delivery architecture for high power portable devices
EP4020126A1 (en) Secure device power-up apparatus and method
US20220197842A1 (en) Dynamic usb-c mode selection ospm policy method and apparatus
US9477300B2 (en) Bridging device and power saving method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952904

Country of ref document: EP

Kind code of ref document: A1