WO2024021444A1 - 一种道床谐振器设置方法 - Google Patents

一种道床谐振器设置方法 Download PDF

Info

Publication number
WO2024021444A1
WO2024021444A1 PCT/CN2022/139193 CN2022139193W WO2024021444A1 WO 2024021444 A1 WO2024021444 A1 WO 2024021444A1 CN 2022139193 W CN2022139193 W CN 2022139193W WO 2024021444 A1 WO2024021444 A1 WO 2024021444A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
resonator
track bed
track
natural frequency
Prior art date
Application number
PCT/CN2022/139193
Other languages
English (en)
French (fr)
Inventor
李绍辉
王博
林坚勋
孟凡东
宋婷婷
Original Assignee
浙江天铁实业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江天铁实业股份有限公司 filed Critical 浙江天铁实业股份有限公司
Priority to EP22952141.4A priority Critical patent/EP4365560A1/en
Publication of WO2024021444A1 publication Critical patent/WO2024021444A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H13/00Measuring resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/027Specimen mounting arrangements, e.g. table head adapters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the invention relates to the technical field of rail vibration reduction, and in particular to a method for setting up a track bed resonator.
  • the typical vibration frequency induced by trains is generally between 10Hz and 80Hz, and the peak value is concentrated in the 50Hz to 60Hz region. These typical frequency bands may cause resonance in nearby buildings, affect the normal operation of some facilities and equipment, and cause inconvenience to people's daily lives.
  • the mass-spring system in the form of a steel spring floating track bed is a common vibration and noise reduction measure for rail transit, which can usually provide a system natural frequency of 4Hz to 10Hz.
  • the natural frequencies of the vibration reduction systems suitable for different line sections are different. If a vibration reduction and noise reduction structure with uniform specifications is used, it is difficult to achieve the ideal vibration reduction effect.
  • the present invention is made to solve the above problems, and aims to provide a method for installing a track bed resonator.
  • the invention provides a method for setting up a track bed resonator, which is characterized in that it includes: step S1, inspecting the track line when the train passes and the indoor building at sensitive points near the track line that are greatly affected by the vibration of the train. At the same time, conduct a vibration test to obtain vibration data; Step S2, calculate and determine the setting range of the track bed resonator based on the vibration data measured in Step S1; Step S3, perform frequency domain analysis on the vibration data at the sensitive points, and determine the sensitive points
  • Step S4 design the track bed resonator according to the indoor vibration resonance natural frequency, so that the natural frequency of the track bed resonator is equal to the indoor vibration resonance natural frequency;
  • Step S5 change the track bed resonator It is installed on the track bed within the setting range along the extension direction of the track line.
  • step S1 includes: step S1-1, sequentially setting the first test point and the second test point on the track line along the traveling direction of the train. point, set a third test point indoors in the building at the sensitive point; step S1-2, use the vibration test sensor to measure the vibration response time of the first test point, the second test point and the third test point when the train passes by , thereby obtaining the corresponding vibration data.
  • the track bed resonator setting method provided by the present invention may also have the feature that the distance between the first test point and the second test point is greater than or equal to the length of the train.
  • step S2 includes: step S2-1.
  • the installation starting point of the track bed resonator is calculated as :
  • mp a is the mileage of the first test point relative to the adjacent station on the track line
  • mp b is the mileage of the second test point relative to the adjacent station on the track line
  • t ah1 is the distance of the head of the train at the first test point Vibration response time
  • t bh1 is the vibration response time of the train's head at the second test point
  • t ch1 is the vibration response time of the train's head at the third test point
  • Step S2-2 according to the measurement in step S1-2 Based on the obtained vibration data, the installation end point of the track bed resonator is calculated as:
  • t ct1 is the vibration response time of the train’s rear end at the third test point.
  • Step S2 also includes: Step S2-3: Repeat steps S1-2 to step S2-2 twice more, and the second calculation is The installation starting point and installation end point are TMD ips2 and TMD ipe2 respectively, and the installation starting point and installation end point calculated for the third time are TMD ips3 and TMD ipe3 respectively; Step S2-4: Calculation based on steps S2-1 to S2-3 As a result, it is determined that the installation starting point of the track bed resonator is min ⁇ TMD ips1 , TMD ips2 , TMD ips3 ⁇ , and the installation end point is max ⁇ TMD ipe1 , TMD ipe2 , TMD ipe3 ⁇ .
  • the method for setting up a track bed resonator provided by the present invention may also have the feature that the setting range of the track bed resonator is greater than or equal to the length of the train.
  • W is the width of a single resonant plate
  • n is the number of damping cushions
  • step S4-3 calculate the total stiffness of the track bed resonator and the width of the damping cushion when using dampers with different static moduli.
  • the length of a single vibration-absorbing cushion layer is:
  • S is the static modulus of a single damping pad
  • L is the length of a single resonant plate 11
  • step S4-4 determine whether the total length of the damping pad exceeds the length of the resonant plate, that is, 2USM L ⁇ L Is it true?
  • the method for setting up a track bed resonator provided by the present invention may also have the following feature: the static modulus S of the damping cushion layer ranges from 0.015N/mm 3 to 0.15N/mm 3 .
  • step S4 includes: step S4-1, select the length and width of the vibration-damping cushion within a preset range, and calculate the When the static modulus of the vibration-absorbing cushion is used, the total stiffness per linear meter of the track bed resonator is:
  • USM W is the width of a single damping pad
  • USM L is the length of a single damping pad
  • n is the number of damping pads
  • S is the static modulus of a single damping pad
  • L is a single block
  • step S4-2 calculate the natural frequency of the track bed resonator based on the total stiffness:
  • m is the total mass per linear meter of the resonant plate
  • step S4-3 determine whether the natural frequency f TMD of the track bed resonator is equal to the indoor vibration resonance natural frequency.
  • the method for setting up a track bed resonator provided by the present invention may also have the following features: wherein the width USM W of the damping cushion layer has a preset range of 200 mm to 275 mm, and the length of the damping cushion layer USM L has a preset range 160mm ⁇ 750mm.
  • a track bed resonator setting method of the present invention since the vibration data is first obtained by simultaneously conducting vibration tests on the track line when the train passes and the building interior at sensitive points near the track line, it is possible to accurately calculate and determine based on the vibration data.
  • the setting range of the track bed resonator completely covers the range affected by the vibration response of underground line trains generated indoors at sensitive points, allowing the track bed resonator to achieve better vibration reduction effects. Then, through frequency domain analysis of the vibration data at the sensitive points, the natural frequency of the indoor vibration resonance affected by the passing train of the building at the sensitive points can be obtained.
  • the track bed resonator is further designed based on the indoor vibration resonance natural frequency, so that the track bed resonator's natural frequency is equal to the indoor vibration resonance natural frequency.
  • the frequency tuning effect of the track bed resonator reduces the indoor train driving vibration response at sensitive points and reduces the occurrence of resonance.
  • the track bed resonator is installed on the track bed within the installation range along the extension direction of the track line. The impact of the reconstruction construction on the existing track line is small, and it does not hinder the normal operation of the existing line. It can effectively reduce the cost of reconstruction and reduce the cost of the resonator. Economic losses.
  • Figure 1 is a schematic structural diagram of a track bed resonator and track system in Embodiment 1 of the present invention
  • Figure 2 is a schematic structural diagram of the limiting seat in Embodiment 1 of the present invention.
  • Figure 3 is a schematic diagram of trains and track lines in Embodiment 1 of the present invention.
  • Figure 4 is a flow chart of a method for setting up a track bed resonator in Embodiment 1 of the present invention
  • Figure 5 is a flow chart of vibration testing in Embodiment 1 of the present invention.
  • Figure 6 is a flow chart of vibration data calculation in Embodiment 1 of the present invention.
  • Figure 7 is a flow chart for designing a track bed resonator in Embodiment 1 of the present invention.
  • Figure 8 is a flow chart for installing a track bed resonator in Embodiment 1 of the present invention.
  • Figure 9 is a top view of the track bed resonator and the rail in Embodiment 1 of the present invention.
  • Figure 10 is a flow chart for designing a track bed resonator in Embodiment 2 of the present invention.
  • Figure 1 is a schematic structural diagram of a track bed resonator and track system in Embodiment 1 of the present invention.
  • the track bed resonator 10 includes a resonance plate 11 , a vibration damping cushion layer 12 and a limiting seat 13 .
  • the track system 100 includes a track bed 20 and two mutually parallel rails 30 disposed on the track bed 20 .
  • the resonance plate 11 is arranged on the track bed 20 along the extension direction of the rail 30 .
  • the resonant plate 11 includes a metal plate and a rubber layer covering the surface of the metal plate.
  • the number of resonant plates 11 is at least one. In practical applications, the number of resonant plates 11 can be increased as needed.
  • multiple resonant plates 11 can be vertically stacked and fixedly connected, or can be laid left and right in parallel.
  • the thickness of the resonant plate 11 is 50mm ⁇ 80mm.
  • the total thickness of the resonant plate 11 after stacking should be less than the height of the rail.
  • the total width of the resonant plate 11 after being laid flat should be less than the distance between the two rails to avoid affecting the normal operation of the track system. .
  • the width of the single resonant plate 11 is 550mm, the length is 2200mm, the thickness is 80mm, and the mass is 500kg, that is, the mass per linear meter is 227kg.
  • the vibration damping cushion layer 12 is provided between the resonance plate 11 and the track bed 20 , and the width of the vibration damping cushion layer 12 does not exceed the width of the resonance plate 11 .
  • the lower surface of the damping cushion layer 12 has a plurality of evenly arranged damping protrusions.
  • the vibration damping protrusions can reduce the contact area between the lower surface of the damping cushion layer 12 and the upper surface of the track bed 20, further reducing vibration transmission.
  • the number of vibration-damping pads 12 is an even number, and they are evenly divided into two groups.
  • the two groups of vibration-damping pads 12 are symmetrically arranged on the lower surfaces near both ends of the resonant plate 11 stacked below.
  • the cushion layers 12 are arranged side by side along the width direction of the resonance plate 11 . In this embodiment, the number of the vibration-damping cushion layers 12 is four, and two vibration-damping cushion layers 12 form a group.
  • vibration-absorbing pads 12 have different static modulus, and specific length and width dimensions of the vibration-damping pads 12 can be obtained by cutting according to usage requirements.
  • damping pads 12 with different static modulus or different length and width dimensions are used, the natural frequencies of the track bed resonator 10 are also different accordingly.
  • selecting a suitable vibration-damping cushion 12 can effectively adjust the natural frequency of the track bed resonator and achieve better resonance effects.
  • Two limiting seats 13 are respectively provided at both ends of the resonant plate 11 along the length direction of the resonant plate 11 for limiting the position of the resonant plate 11.
  • Figure 2 is a schematic structural diagram of the limiting seat in Embodiment 1 of the present invention.
  • the limiting seat 13 includes a side plate 131 , a limiting protrusion 132 and a top plate 133 .
  • a pair of side plates 131 are provided on both sides of the resonance plate 11 .
  • the side plate 131 is an L-shaped plate, including a vertical portion 1311 and a horizontal portion 1312 extending from the bottom of the vertical portion 1311 in a direction away from the resonant plate 11 .
  • the side of the side plate 131 has a reinforcing rib 1313 connecting the vertical part 1311 and the horizontal part 1312, and the horizontal part 1312 has a mounting hole 13121.
  • the side plate 131 is fixed on the track bed 20 through bolts that match the mounting holes 13121, thereby horizontally limiting the resonant plate 11 perpendicular to the extension direction of the rail.
  • the limiting protrusion 132 is provided on the side plate 131 and extends from the side plate 131 toward the direction of the resonance plate 11 .
  • the distance between the limiting protrusions 132 is smaller than the width of the resonance plate 11 , and the difference between the distance and the width of the resonance plate 11 is 20 mm to 40 mm, thereby horizontally limiting the resonance plate 11 in the direction parallel to the extension of the rail. .
  • Both ends of the top plate 133 are respectively connected to the tops of the pair of side plates 131 .
  • the distance between the top plate 133 and the upper surface of the track bed 20 is greater than the thickness of the resonant plate 11, and the difference between the distance and the thickness of the resonant plate 11 is 10 mm to 20 mm, so that the resonant plate 11 can move vertically in a certain space. free vibration.
  • Figure 3 is a schematic diagram of trains and track lines in Embodiment 1 of the present invention.
  • the train 1 running on the rail 30 includes a head 2 and a tail 3.
  • FIG. 4 is a flow chart of a method for setting up a track bed resonator according to Embodiment 1 of the present invention.
  • the method for setting up a track bed resonator involved in this embodiment specifically includes the following steps:
  • Step S1 Conduct vibration tests simultaneously on the track line when the train 1 passes and in the building 4 at sensitive points near the track line to obtain vibration data.
  • Figure 5 is a flow chart of vibration testing in Embodiment 1 of the present invention.
  • step S1 the vibration test process specifically includes the following steps:
  • Step S1-1 set the first test point A and the second test point B sequentially along the track line along the traveling direction of the train 1, set the third test point C indoors in the building 4 at the sensitive point, and the first test The distance between point A and the second test point B is greater than or equal to the length of train 1.
  • Step S1-2 Use the vibration test sensor to measure the vibration response time of the first test point A, the second test point B and the third test point C when the train 1 passes by, thereby obtaining corresponding vibration data.
  • Step S2 Calculate and determine the setting range of the track bed resonator 10 based on the vibration data measured in step S1.
  • Figure 6 is a flow chart of vibration data calculation in Embodiment 1 of the present invention.
  • step S2 the vibration data calculation process specifically includes the following steps:
  • Step S2-1 based on the vibration data measured in step S1-2, the installation starting point of the track bed resonator 10 is calculated as:
  • the difference in vibration response time (approximately the time difference between the train head 2 at the second test point B and the first test point A), t ch1 -t ah1 is the time difference between
  • Step S2-2 Calculate the installation end point of the track bed resonator 10 based on the vibration data measured in step S1-2:
  • t ct1 is the vibration response time of the rear part 3 of the train at the third test point C; t ct1 -t ch1 is the time range of the overall vibration response of the train 1 at the third test point C.
  • Step S2-3 Repeat steps S1-2 to S2-2 twice more.
  • the installation starting point and installation end point calculated for the second time are TMD ips2 and TMD ipe2 respectively.
  • the installation starting point and installation end point calculated for the third time are respectively for TMD ips3 and TMD ipe3 .
  • Step S2-4 Based on the calculation results from step S2-1 to step S2-3, determine the installation starting point of the track bed resonator 10 as min ⁇ TMD ips1 , TMD ips2 , TMD ips3 ⁇ and the installation end point as max ⁇ TMD ipe1 , TMD ipe2 ,TMD ipe3 ⁇ .
  • the setting range of the track bed resonator 10 should be greater than or equal to the length of the train 1. If the final calculation result does not meet this condition, the installation starting point and the installation end point will be extended outwards.
  • Step S3 Conduct frequency domain analysis on the vibration data at the sensitive point to determine the indoor vibration resonance natural frequency of the building 4 at the sensitive point affected by the passage of the train 1.
  • Step S4 Design the track bed resonator 10 based on the indoor vibration resonance natural frequency, so that the natural frequency of the track bed resonator 10 is equal to the indoor vibration resonance natural frequency.
  • FIG. 7 is a flow chart for designing a track bed resonator in Embodiment 1 of the present invention.
  • step S4 of the first embodiment the process of designing the track bed resonator 10 specifically includes the following steps:
  • Step S4-1 calculate the total stiffness per linear meter of the track bed resonator 10 based on the indoor vibration resonance natural frequency as:
  • Step S4-2 set the width of a single damping cushion layer 12 according to the width of the resonance plate 11 as:
  • Step S4-3 according to the total stiffness of the track bed resonator 10 and the width of the vibration damping cushion 12, when using different types of vibration damping cushions 12 (ie, different static modulus), the length of the vibration damping cushion 12 is calculated as:
  • S is the static modulus of a single damping cushion layer 12;
  • L is the length of a single resonant plate 11.
  • the static modulus S of the vibration-damping cushion layer 12 can be experimentally measured in advance by conventional means.
  • the static modulus S corresponding to different types of vibration-damping cushion layer 12 ranges from 0.015N/mm 3 to 0.15N/mm 3 .
  • Step S4-4 determine whether the total length of the vibration-damping cushion 12 provided between the resonant plate 11 and the track bed 20 exceeds the length of the resonant plate, that is, whether 2USM L ⁇ L is established. If the judgment result is yes, select this time The corresponding static modulus and length and width dimensions of the vibration-damping cushion 12; if the judgment result is no, continue to replace other different types of vibration-damping cushion 12 and calculate the corresponding vibration-damping cushion length USM L until the vibration-damping cushion is The total length of 12 does not exceed the length of the resonant plate 11.
  • step S5 multiple track bed resonators 10 are installed on the track bed 20 within the installation range along the extension direction of the track line.
  • Figure 8 is a flow chart for installing a track bed resonator in Embodiment 1 of the present invention.
  • step S5 the installation process of each track bed resonator 10 specifically includes the following steps:
  • Step S5-1 Detect the internal steel bars of the track bed 20, and determine the predetermined position of the bolt for installing the limit seat based on the detection results;
  • Step S5-2 bury the bolts at predetermined positions on the track bed 20 and anchor them;
  • Step S5-3 lay the resonant plate 11 and the damping cushion 12 at a predetermined position on the track bed 20 along the extension direction of the rail 30;
  • step S5-4 a pair of limit seats 13 are respectively installed on both ends of the resonant plate 11 through bolts on the track bed 20, thereby fixing the resonant plate 11 on the track bed 20.
  • Figure 9 is a top view of a track bed resonator and a rail in Embodiment 1 of the present invention.
  • multiple track bed resonators 10 are sequentially installed on the track bed 20 along the extension direction of the rail 30 .
  • the track bed 20 has a plurality of track bed inspection and observation holes 21 evenly arranged along the length direction.
  • the distance between two adjacent track bed resonators 10 should be greater than or equal to 20 mm, and at least one of the two adjacent track bed observation holes 21 should not be blocked by the track bed resonator 10 .
  • the second embodiment provides a method for setting up a track bed resonator, which is different from the first embodiment only in the design process of the track bed resonator.
  • the same structures or physical quantities as those in the first embodiment are given the same symbols, and the same descriptions are omitted.
  • Figure 10 is a flow chart for designing a track bed resonator in Embodiment 2 of the present invention.
  • the process of designing the track bed resonator 10 in step S4 specifically includes the following steps:
  • Step S4-1' select the length USM L and width USM W of the damping cushion 12 within the preset range, and calculate the performance of the track bed resonator 10 when using different types of damping cushions 12 (i.e., different static moduli).
  • the total stiffness per linear meter is:
  • the preset range of the width USM W of the vibration damping cushion layer 12 is 200mm ⁇ 275mm, and the preset range of the length USM L is 160mm ⁇ 750mm.
  • step S4-2’ the natural frequency of the track bed resonator 10 is calculated based on the total stiffness:
  • Step S4-3' determine whether the natural frequency f TMD of the track bed resonator 10 is equal to the indoor vibration resonance natural frequency f in . If the determination result is yes, select the size of the vibration damping cushion 12 corresponding to the natural frequency f TMD . and static modulus; if the judgment result is no, continue to replace other vibration-damping cushions 12 with different sizes or static moduli and calculate the natural frequency of the corresponding track bed resonator 10 until the natural frequency f TMD of the track bed resonator 10 is equal to until the natural frequencies of indoor vibration resonance are equal.
  • the natural frequency f TMD of the track bed resonator 10 is equal to the indoor vibration resonance natural frequency f in . This means that the value of the natural frequency f TMD of the track bed resonator 10 and the indoor vibration resonance natural frequency f in differ within a predetermined range, such as ⁇ 5%.
  • a track bed resonator setting method of the present invention since the vibration data is first obtained by simultaneously conducting vibration tests on the track line when the train passes and the building interior at sensitive points near the track line, it is possible to accurately calculate and determine based on the vibration data.
  • the setting range of the track bed resonator, the starting point and the end point of the setting range completely cover the range affected by the vibration response of underground line trains generated indoors at sensitive points, allowing the track bed resonator to achieve better vibration reduction effects.
  • the natural frequency of indoor vibration resonance affected by the passing train of the building at the sensitive point can be obtained.
  • the track bed resonator is further designed based on the natural frequency of indoor vibration resonance. By reasonably setting the size and static modulus of the vibration damping cushion and the laying form of the resonant plate, the natural frequency of the track bed resonator is equal to the natural frequency of indoor vibration resonance.
  • the frequency tuning effect of the resonator reduces the vibration response of the indoor train at sensitive points and reduces the occurrence of resonance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

本发明提供了一种道床谐振器设置方法,其特征在于,包括:步骤S1,对列车行驶经过时的轨道线路和轨道线路附近受列车行驶时的振动影响较大的敏感点处的建筑物室内同时进行振动测试,从而得到振动数据;步骤S2,根据步骤S1中测得的振动数据计算确定道床谐振器的设置范围;步骤S3,对敏感点处的振动数据进行频域分析,确定敏感点处的建筑物受列车经过影响的室内振动共振固有频率;步骤S4,根据室内振动共振固有频率设计道床谐振器,使道床谐振器的固有频率与室内振动共振固有频率相等;步骤S5,将道床谐振器沿轨道线路的延伸方向安装在设置范围内的道床上。

Description

一种道床谐振器设置方法 技术领域
本发明涉及钢轨减振技术领域,具体涉及一种道床谐振器设置方法。
背景技术
近十几年来,我国的城市轨道交通飞速发展,随着轨道线路的不断增加,振动噪声扰民问题也越来越受到重视。列车诱发的典型的振动频率一般在10Hz~80Hz,并且峰值集中在50Hz~60Hz区域。这些典型的频段可能会引起临近建筑物发生共振,影响一些设施设备的正常运作,对人们的日常生活造成不便。
钢弹簧浮置板道床形式的质量-弹簧系统是一种常见的轨道交通减振降噪措施,通常能够提供4Hz~10Hz的系统固有频率。然而,受线路条件、建筑物结构等因素的限制,不同线路段所适合的减振系统固有频率均有所不同,若采用规格统一的减振降噪结构,则难以达到理想的减振效果。
此外,对于已开通运营的线路,相关单位若进行轨道减振能力增强,则需要花费较高的改造成本,而且还会影响既有线路的正常运行,加重经济损失。
因此,如何针对临近建筑受列车通行的振动影响较大的路段进一步采取减振措施是当下亟待解决的问题。
发明内容
本发明是为了解决上述问题而进行的,目的在于提供一种道床谐振器设置方法。
本发明提供了一种道床谐振器设置方法,其特征在于,包括:步骤S1,对列车行驶经过时的轨道线路和轨道线路附近受列车行驶时的振动影响较大的敏感点处的建筑物室内同时进行振动测试,从而得到振动数据;步骤S2,根据步骤S1中测得的振动数据计算确定道床谐振器的设置范围;步骤S3,对敏感点处的振动数据进行频域分析,确定敏感点处的建筑物受列车经过影响的室内振动共振固有频率;步骤S4,根据室内振动共振固有频率设计道床谐振器,使道床谐振器的固有频率与室内振动共振固有频率相等;步骤S5,将道床谐振器沿轨道线路的延伸方向安装在设置范围内的道床上。
在本发明提供的道床谐振器设置方法中,还可以具有这样的特征:其中,步骤S1包括:步骤S1-1,在轨道线路的上沿列车的行驶方向依次设置第一测试点和第二测试点,在敏感点处的建筑物室内设置第三测试点;步骤S1-2,通过振动测试传感器对列车行驶经过时第一测试点、第二测试点以及第三测试点的振动响应时间进行测量,从而得到相应的振动数据。
在本发明提供的道床谐振器设置方法中,还可以具有这样的特征:其中,第一测试点与第二测试点之间的距离大于或等于列车的长度。
在本发明提供的道床谐振器设置方法中,还可以具有这样的特征:其中,步骤S2包括:步骤S2-1,根据步骤S1-2中测得的振动数据计 算得到道床谐振器的安装起点为:
Figure PCTCN2022139193-appb-000001
式中,mp a为第一测试点相对于轨道线路上临近站点的里程;mp b为第二测试点相对于轨道线路上临近站点的里程;t ah1为列车的头部在第一测试点的振动响应时间;t bh1为列车的头部在第二测试点的振动响应时间;t ch1为列车的头部在第三测试点的振动响应时间;步骤S2-2,根据步骤S1-2中测得的振动数据计算得到道床谐振器的安装终点为:
Figure PCTCN2022139193-appb-000002
式中,t ct1为列车的尾部在第三测试点的振动响应时间。
在本发明提供的道床谐振器设置方法中,还可以具有这样的特征:其中,步骤S2还包括:步骤S2-3:再重复步骤S1-2至步骤S2-2两次,第二次计算得到的安装起点和安装终点分别为TMD ips2和TMD ipe2,第三次计算得到的安装起点和安装终点分别为TMD ips3和TMD ipe3;步骤S2-4:根据步骤S2-1至步骤S2-3的计算结果,确定道床谐振器的安装起点为min{TMD ips1,TMD ips2,TMD ips3},安装终点为max{TMD ipe1,TMD ipe2,TMD ipe3}。
在本发明提供的道床谐振器设置方法中,还可以具有这样的特征:其中,道床谐振器的设置范围大于或等于列车的长度。
在本发明提供的道床谐振器设置方法中,还可以具有这样的特征:步骤S4-1,根据室内振动共振固有频率计算得到道床谐振器每延米的总刚度为:k=(2π×f TMD) 2×m=(2π×f in) 2×m,式中,m为谐振板每延米的总质量;f TMD为道床谐振器的固有频率;f in为室内振动共振固有频率;步骤S4-2,根据谐振板的宽度设定单个减振垫层的宽度为:
Figure PCTCN2022139193-appb-000003
式中,W为单块谐振板的宽度;n为减振垫层的数量;步骤S4-3,根据道床谐振器的总刚度和减振垫层的宽度计算在使用具有不同静态模量的减振垫层时,单个减振垫层的长度为:
Figure PCTCN2022139193-appb-000004
Figure PCTCN2022139193-appb-000005
式中,S为单个减振垫层的静态模量;L为单块谐振板11的长度;步骤S4-4,判断减振垫层的总长度是否超过谐振板的长度,即2USM L≤L是否成立,若判断结果为是,则选用此时减振垫层对应的静态模量和长宽尺寸;若判断结果为否,则继续更换其他不同静态模量的减振垫层并计算对应的长度USM L,直至减振垫层的总长度不超过谐振板的长度为止。
在本发明提供的道床谐振器设置方法中,还可以具有这样的特征:其中,减振垫层的静态模量S的范围为0.015N/mm 3~0.15N/mm 3
在本发明提供的道床谐振器设置方法中,还可以具有这样的特征:其中,步骤S4包括:步骤S4-1,在预设范围内选取减振垫层的长度和宽度,计算在使用不同尺寸和静态模量的减振垫层时,道床谐振器每延米的总刚度为:
Figure PCTCN2022139193-appb-000006
式中,USM W为单个减振垫层的宽度;USM L为单个减振垫层的长度;n为减振垫层的数量;S为单个减振垫层的静态模量;L为单块谐振板的长度;步骤S4-2,根据总刚度计算得到道床谐振器的固有频率为:
Figure PCTCN2022139193-appb-000007
式中,m为谐振板每延米的总质量;步骤S4-3,判断道床谐振器的固有频率f TMD与室内振动共振固有频率是否相等,若判断结果为是,则选用与该固有频率f TMD对应的减振垫层的尺寸和静态模量;若判断结果为否,则继续更换其他不同尺寸或静态模量的减振垫层并计算对应的道床谐振器 的固有频率,直至道床谐振器的固有频率f TMD与室内振动共振固有频率相等为止。
在本发明提供的道床谐振器设置方法中,还可以具有这样的特征:其中,减振垫层的宽度USM W的预设范围为200mm~275mm,减振垫层的长度USM L的预设范围为160mm~750mm。
发明的作用与效果
根据本发明的一种道床谐振器设置方法,由于先对列车行驶经过时的轨道线路和轨道线路附近的敏感点处的建筑物室内同时进行振动测试得到振动数据,能够根据振动数据准确地计算确定道床谐振器的设置范围,完全覆盖敏感点室内产生地下线路列车行驶振动响应影响的范围,使得道床谐振器能够实现较好的减振效果。然后通过对敏感点处的振动数据的频域分析,能够得到敏感点处的建筑物受列车经过影响的室内振动共振固有频率。进一步根据室内振动共振固有频率设计道床谐振器,使道床谐振器的固有频率与室内振动共振固有频率相等,通过道床谐振器的频率调谐作用减小敏感点室内列车行驶振动响应,减少共振的发生。最后,将道床谐振器沿轨道线路的延伸方向安装在设置范围内的道床上,在既有轨道线路上改造施工的影响较小,不妨碍既有线路的正常运营,能够有效降低改造成本、减少经济损失。
附图说明
图1是本发明的实施例一中道床谐振器及轨道系统的结构示意图;
图2是本发明的实施例一中限位座的结构示意图;
图3是本发明的实施例一中列车及轨道线路示意图;
图4是本发明的实施例一中道床谐振器设置方法的流程图;
图5是本发明的实施例一中振动测试的流程图;
图6是本发明的实施例一中振动数据计算的流程图;
图7是本发明的实施例一中设计道床谐振器的流程图;
图8是本发明的实施例一中安装道床谐振器的流程图;
图9是本发明的实施例一中道床谐振器及钢轨的俯视图;以及
图10是本发明的实施例二中设计道床谐振器的流程图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,以下实施例结合附图对本发明道床谐振器设置方法作具体阐述。
<实施例一>
图1是本发明的实施例一中道床谐振器及轨道系统的结构示意图。
如图1所示,在本实施例中,道床谐振器10包括谐振板11、减振垫层12以及限位座13。轨道系统100包括道床20和设置在道床20上的两条相互平行的钢轨30。
谐振板11沿钢轨30的延伸方向设置在道床20上。谐振板11包括金属板以及包覆在金属板表面的橡胶层。谐振板11的数量至少为 1个,在实际应用中可根据需要增加谐振板11的数量。在安装时,多块谐振板11可沿垂向叠加并固定连接,也可左右平行铺设。谐振板11的厚度为50mm~80mm,谐振板11叠加后的总厚度应小于钢轨的高度,谐振板11平铺后的总宽度应小于两条钢轨之间的距离,避免影响轨道系统的正常运作。在本实施例中,单块谐振板11的宽度为550mm,长度为2200mm,厚度为80mm,质量为500kg,即每延米的质量为227kg。
减振垫层12设置在谐振板11和道床20之间,减振垫层12的宽度不超过谐振板11的宽度。减振垫层12的下表面上具有多个均匀排列的减振凸起,减振凸起能够减少减振垫层12的下表面与道床20上表面的接触面积,进一步降低振动传递。减振垫层12的数量为偶数个,平均分为两组,两组减振垫层12分别对称设置在叠放在下方的谐振板11靠近两端处的下表面上,同组的减振垫层12沿谐振板11的宽度方向并排设置。本实施例中,减振垫层12的数量为四个,两个减振垫层12为一组。
不同型号的减振垫层12具有不同的静态模量,而减振垫层12的特定长宽尺寸可根据使用需要通过裁切得到。在使用不同静态模量或不同长宽尺寸的减振垫层12时,道床谐振器10的固有频率也相应有所区别。通过对不同静态模量或长宽尺寸的减振垫层12的计算分析,选用合适的减振垫层12,能够有效调节道床谐振器的固有频率,达到更好的谐振效果。
两个限位座13沿谐振板11的长度方向分别设置在谐振板11的 两端,用于对谐振板11进行限位。
图2是本发明的实施例一中限位座的结构示意图。
如图2所示,限位座13包括侧板131、限位突起132以及顶板133。
一对侧板131设置在谐振板11的两侧。侧板131为L形板,包括竖直部1311以及从竖直部1311的底部向远离谐振板11的方向延伸的水平部1312。侧板131的侧面具有连接竖直部1311和水平部1312的加强筋1313,水平部1312具有安装孔13121。侧板131通过与安装孔13121相适配的螺栓固定在道床20上,从而对谐振板11进行垂直于钢轨延伸方向上的水平限位。
限位突起132设置在侧板131上并且从侧板131向谐振板11的方向延伸。限位突起132之间的间距小于谐振板11的宽度,且该间距与谐振板11的宽度之间的差值为20mm~40mm,从而在平行于钢轨延伸方向上对谐振板11进行水平限位。
顶板133的两端分别连接在一对侧板131的顶部。顶板133与道床20的上表面之间的间距大于谐振板11的厚度,且该间距与谐振板11的厚度之间的差值为10mm~20mm,使得谐振板11能够在一定的空间内垂向自由振动。
图3是本发明的实施例一中列车及轨道线路示意图。
如图3所示,行驶在钢轨30上的列车1包括头部2和尾部3,轨道线路附近受列车行驶时的振动影响较大的位置,即敏感点处,有建筑物4。
图4是本发明的实施例一中道床谐振器设置方法的流程图。
如图4所示,本实施例涉及的道床谐振器设置方法具体包括如下步骤:
步骤S1,对列车1行驶经过时的轨道线路和轨道线路附近的敏感点处的建筑物4室内同时进行振动测试从而得到振动数据。
图5是本发明的实施例一中振动测试的流程图。
如图5所示,步骤S1中,振动测试的流程具体包括如下步骤:
步骤S1-1,在轨道线路的上沿列车1的行驶方向依次设置第一测试点A和第二测试点B,在敏感点处的建筑物4室内设置第三测试点C,且第一测试点A与第二测试点B之间的距离大于或等于列车1的长度。
步骤S1-2,通过振动测试传感器对列车1行驶经过时第一测试点A、第二测试点B以及第三测试点C的振动响应时间进行测量,从而得到相应的振动数据。
步骤S2,根据步骤S1中测得的振动数据计算确定道床谐振器10的设置范围。
图6是本发明的实施例一中振动数据计算的流程图。
如图6所示,步骤S2中,振动数据计算的流程具体包括如下步骤:
步骤S2-1,根据步骤S1-2中测得的振动数据计算得到道床谐振器10的安装起点为:
Figure PCTCN2022139193-appb-000008
式中,mp a为第一测试点A相对于轨道线路上临近站点的里程;mp b为第二测试点B相对于轨道线路上临近站点的里程;t ah1为列车的头部2在第一测试点A的振动响应时间(近似为列车头部2在第一测试点A经过时间);t bh1为列车的头部2在第二测试点B的振动响应时间(近似为列车头部2在第二测试点B经过时间);t ch1为列车的头部2在第三测试点C的振动响应时间;t bh1-t ah1为列车头部2在第二测试点B和第一测试点A的振动响应时间差(近似为列车头部2在第二测试点B和第一测试点A经过的时间差),t ch1-t ah1为列车头部在第三测试点C和第一测试点A的振动响应时间差。
步骤S2-2,根据步骤S1-2中测得的振动数据计算得到道床谐振器10的安装终点为:
Figure PCTCN2022139193-appb-000009
式中,t ct1为列车的尾部3在第三测试点C的振动响应时间;t ct1-t ch1为列车1整体振动响应在第三测试点C的时间范围。
步骤S2-3:再重复步骤S1-2至步骤S2-2两次,第二次计算得到的安装起点和安装终点分别为TMD ips2和TMD ipe2,第三次计算得到的安装起点和安装终点分别为TMD ips3和TMD ipe3
步骤S2-4:根据步骤S2-1至步骤S2-3的计算结果,确定道床谐振器10的安装起点为min{TMD ips1,TMD ips2,TMD ips3},安装终点为max{TMD ipe1,TMD ipe2,TMD ipe3}。
为达到理想的谐振效果,道床谐振器10的设置范围应大于或等于列车1的长度,若最终计算结果不满足此条件,则在安装起点、安 装终点两端各自向外补充延长。
步骤S3,对敏感点处的振动数据进行频域分析,确定敏感点处的建筑物4受列车1经过影响的室内振动共振固有频率。
步骤S4,根据室内振动共振固有频率设计道床谐振器10,使道床谐振器10的固有频率与室内振动共振固有频率相等。
图7是本发明的实施例一中设计道床谐振器的流程图。
如图7所示,本实施例一的步骤S4中,设计道床谐振器10的流程具体包括如下步骤:
步骤S4-1,根据室内振动共振固有频率计算得到道床谐振器10每延米的总刚度为:
k=(2π×f TMD) 2×m=(2π×f in) 2×m,
式中,m为谐振板11每延米的总质量;f TMD为道床谐振器10的固有频率;f in为室内振动共振固有频率。
步骤S4-2,根据谐振板11的宽度设定单个减振垫层12的宽度为:
Figure PCTCN2022139193-appb-000010
式中,W为单块谐振板11的宽度;n为减振垫层12的数量。
步骤S4-3,根据道床谐振器10的总刚度和减振垫层12的宽度计算在使用不同型号(即不同静态模量)的减振垫层12时,减振垫层12的长度为:
Figure PCTCN2022139193-appb-000011
式中,S为单个减振垫层12的静态模量;L为单块谐振板11的长度。
其中,减振垫层12的静态模量S可通过常规手段预先实验测量得到,不同型号的减振垫层12对应的静态模量S的范围为0.015N/mm 3~0.15N/mm 3
步骤S4-4,判断设置在谐振板11和道床20之间的减振垫层12的总长度是否超过谐振板的长度,即2USM L≤L是否成立,若判断结果为是,则选用此时减振垫层12对应的静态模量和长宽尺寸;若判断结果为否,则继续更换其他不同型号的减振垫层12并计算对应的减振垫层长度USM L,直至减振垫层12的总长度不超过谐振板11的长度为止。
步骤S5,将多个道床谐振器10沿轨道线路的延伸方向安装在设置范围内的道床20上。
图8是本发明的实施例一中安装道床谐振器的流程图。
如图8所示,步骤S5中,每个道床谐振器10的安装流程具体包括如下步骤:
步骤S5-1,对道床20进行内部钢筋探测,根据探测结果确定限位座安装用的螺栓的预定位置;
步骤S5-2,将螺栓埋设在道床20上的预定位置并锚固;
步骤S5-3,将谐振板11和减振垫层12沿钢轨30的延伸方向铺放在道床20上的预定位置;
步骤S5-4,将一对限位座13通过道床20上的螺栓分别安装在谐振板11的两端,从而将谐振板11固定在道床20上。
图9是本发明的实施例一中道床谐振器及钢轨的俯视图。
如图9所示,根据步骤S2中的计算得到的设置范围,多个道床谐振器10沿钢轨30的延伸方向依次安装在道床20上。道床20上具有沿长度方向均匀排列的多个道床检查观察孔21。相邻的两个道床谐振器10之间的间隔距离应大于或等于20mm,且两个相邻的道床观察孔21至少一个不被道床谐振器10遮挡。
<实施例二>
本实施例二提供了一种道床谐振器设置方法,与实施例一仅存在道床谐振器设计流程不同。为了便于表达,本实施例二中对于和实施例一相同的结构或物理量,给予相同的符号,并省略相同的说明。
图10是本发明的实施例二中设计道床谐振器的流程图。
如图10所示,在本实施例二中,步骤S4的设计道床谐振器10的流程具体包括如下步骤:
步骤S4-1’,在预设范围内选取减振垫层12的长度USM L和宽度USM W,计算在使用不同型号(即不同静态模量)的减振垫层12时,道床谐振器10每延米的总刚度为:
Figure PCTCN2022139193-appb-000012
其中,减振垫层12的宽度USM W的预设范围为200mm~275mm,长度USM L的预设范围为160mm~750mm。
步骤S4-2’,根据总刚度计算得到道床谐振器10的固有频率为:
Figure PCTCN2022139193-appb-000013
步骤S4-3’,判断道床谐振器10的固有频率f TMD与室内振动共 振固有频率f in是否相等,若判断结果为是,则选用与该固有频率f TMD对应的减振垫层12的尺寸和静态模量;若判断结果为否,则继续更换其他不同尺寸或静态模量的减振垫层12并计算对应的道床谐振器10的固有频率,直至道床谐振器10的固有频率f TMD与室内振动共振固有频率相等为止。
此处道床谐振器10的固有频率f TMD与室内振动共振固有频率f in相等指道床谐振器10的固有频率f TMD的数值与室内振动共振固有频率f in的数值相差在预定范围内,例如±5%。
本实施例二中,在预设范围内选取若干组减振垫层12的宽度USM W和长度USM L的值,根据不同室内振动共振固有频率f in计算得到道床谐振器的设计参数如下表1所示:
Figure PCTCN2022139193-appb-000014
表1不同室内振动共振固有频率条件下道床谐振器设计参数
本实施例二中,其他流程与实施例一中相同,因此不再重复说明。
实施例的作用与效果
根据本发明的一种道床谐振器设置方法,由于先对列车行驶经过时的轨道线路和轨道线路附近的敏感点处的建筑物室内同时进行振动测试得到振动数据,能够根据振动数据准确地计算确定道床谐振器的设置范围,设置范围起点和终点,完全覆盖了敏感点室内产生地下线路列车行驶振动响应影响的范围,使得道床谐振器能够实现较好的减振效果。
通过对敏感点处的振动数据的频域分析,能够得到敏感点处的建筑物受列车经过影响的室内振动共振固有频率。进一步根据室内振动共振固有频率设计道床谐振器,通过合理设置减振垫层的尺寸和静态模量以及谐振板的铺放形式,使道床谐振器的固有频率与室内振动共振固有频率相等,通过道床谐振器的频率调谐作用减小敏感点室内列车行驶振动响应,减少共振的发生。
将道床谐振器沿轨道线路的延伸方向安装在设置范围内的道床上,在既有轨道线路上改造施工的影响较小,不妨碍既有线路的正常运营,能够有效降低改造成本、减少经济损失。
上述实施方式为本发明的优选案例,并不用来限制本发明的保护范围。

Claims (10)

  1. 一种道床谐振器设置方法,用于将道床谐振器设置在轨道线路上,所述道床谐振器包括谐振板和减振垫层,其特征在于,包括:
    步骤S1,对列车行驶经过时的所述轨道线路和所述轨道线路附近受列车行驶时的振动影响较大的敏感点处的建筑物室内同时进行振动测试,从而得到振动数据;
    步骤S2,根据步骤S1中测得的所述振动数据计算确定所述道床谐振器的设置范围;
    步骤S3,对所述敏感点处的所述振动数据进行频域分析,确定所述敏感点处的建筑物受列车经过影响的室内振动共振固有频率;
    步骤S4,根据所述室内振动共振固有频率设计所述道床谐振器,使所述道床谐振器的固有频率与所述室内振动共振固有频率相等;
    步骤S5,将所述道床谐振器沿所述轨道线路的延伸方向安装在所述设置范围内的道床上。
  2. 根据权利要求1所述的道床谐振器设置方法,其特征在于:
    其中,所述步骤S1包括:
    步骤S1-1,在所述轨道线路的上沿所述列车的行驶方向依次设置第一测试点和第二测试点,在所述敏感点处的建筑物室内设置第三测试点;
    步骤S1-2,通过振动测试传感器对列车行驶经过时所述第一测试点、所述第二测试点以及所述第三测试点的振动响应时间进行测量,从而得到相应的振动数据。
  3. 根据权利要求2所述的道床谐振器设置方法,其特征在于:
    其中,所述第一测试点与所述第二测试点之间的距离大于或等于所述列车的长度。
  4. 根据权利要求2所述的道床谐振器设置方法,其特征在于:
    其中,所述步骤S2包括:
    步骤S2-1,根据步骤S1-2中测得的所述振动数据计算得到所述道床谐振器的安装起点为:
    Figure PCTCN2022139193-appb-100001
    式中,mp a为第一测试点相对于所述轨道线路上临近站点的里程;mp b为第二测试点相对于所述轨道线路上临近站点的里程;t ah1为所述列车的头部在第一测试点的振动响应时间;t bh1为所述列车的头部在第二测试点的振动响应时间;t ch1为所述列车的头部在第三测试点的振动响应时间;
    步骤S2-2,根据步骤S1-2中测得的所述振动数据计算得到所述道床谐振器的安装终点为:
    Figure PCTCN2022139193-appb-100002
    式中,t ct1为所述列车的尾部在第三测试点的振动响应时间。
  5. 根据权利要求4所述的道床谐振器设置方法,其特征在于:
    其中,所述步骤S2还包括:
    步骤S2-3:再重复步骤S1-2至步骤S2-2两次,第二次计算得到的所述安装起点和所述安装终点分别为TMD ips2和TMD ipe2,第三次计算得到的所述安装起点和所述安装终点分别为TMD ips3和TMD ipe3
    步骤S2-4:根据步骤S2-1至步骤S2-3的计算结果,确定所述道床谐振器的安装起点为min{TMD ips1,TMD ips2,TMD ips3},安装终点为max{TMD ipe1,TMD ipe2,TMD ipe3}。
  6. 根据权利要求1所述的道床谐振器设置方法,其特征在于:
    其中,所述道床谐振器的设置范围大于或等于所述列车的长度。
  7. 根据权利要求1所述的道床谐振器设置方法,其特征在于:
    其中,所述步骤S4包括:
    步骤S4-1,根据所述室内振动共振固有频率计算得到所述道床谐振器每延米的总刚度为:
    k=(2π×f TMD) 2×m=(2π×f in) 2×m,
    式中,m为所述谐振板每延米的总质量;f TMD为所述道床谐振器的固有频率;f in为所述室内振动共振固有频率;
    步骤S4-2,根据所述谐振板的宽度设定单个所述减振垫层的宽度为:
    Figure PCTCN2022139193-appb-100003
    式中,W为单块所述谐振板的宽度;n为所述减振垫层的数量;
    步骤S4-3,根据所述道床谐振器的总刚度和所述减振垫层的宽度计算在使用具有不同静态模量的所述减振垫层时,单个所述减振垫层的长度为:
    Figure PCTCN2022139193-appb-100004
    式中,S为单个所述减振垫层的静态模量;L为单块谐振板11的长度;
    步骤S4-4,判断所述减振垫层的总长度是否超过所述谐振板的长度,即2USM L≤L是否成立,若判断结果为是,则选用此时所述减振垫层对应的静态模量和长宽尺寸;若判断结果为否,则继续更换其他不同静态模量的所述减振垫层并计算对应的所述长度USM L,直至所述减振垫层的总长度不超过所述谐振板的长度为止。
  8. 根据权利要求7所述的道床谐振器设置方法,其特征在于:
    其中,所述减振垫层的静态模量S的范围为0.015N/mm 3~0.15N/mm 3
  9. 根据权利要求1所述的道床谐振器设置方法,其特征在于:
    其中,所述步骤S4包括:
    步骤S4-1,在预设范围内选取所述减振垫层的长度和宽度,计算在使用不同尺寸和静态模量的减振垫层时,道床谐振器每延米的总刚度为:
    Figure PCTCN2022139193-appb-100005
    式中,USM W为单个所述减振垫层的宽度;USM L为单个所述减振垫层的长度;n为所述减振垫层的数量;S为单个所述减振垫层的静态模量;L为单块所述谐振板的长度;
    步骤S4-2,根据所述总刚度计算得到所述道床谐振器的固有频率为:
    Figure PCTCN2022139193-appb-100006
    式中,m为谐振板每延米的总质量;
    步骤S4-3,判断所述道床谐振器的固有频率f TMD与所述室内振动共振固有频率是否相等,若判断结果为是,则选用与该固有频率f TMD对应的减振垫层的尺寸和静态模量;若判断结果为否,则继续更换其他不同尺寸或静态模量的所述减振垫层并计算对应的所述道床谐振器的固有频率,直至所述道床谐振器的固有频率f TMD与室内振动共振固有频率相等为止。
  10. 根据权利要求9所述的道床谐振器设置方法,其特征在于:
    其中,所述减振垫层的宽度USM W的预设范围为200mm~275mm,所述减振垫层的长度USM L的预设范围为160mm~750mm。
PCT/CN2022/139193 2022-07-23 2022-12-15 一种道床谐振器设置方法 WO2024021444A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22952141.4A EP4365560A1 (en) 2022-07-23 2022-12-15 Ballast bed resonator configuration method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210871589.7 2022-07-23
CN202210871589.7A CN116519118A (zh) 2022-07-23 2022-07-23 一种道床谐振器设置方法

Publications (1)

Publication Number Publication Date
WO2024021444A1 true WO2024021444A1 (zh) 2024-02-01

Family

ID=87406957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139193 WO2024021444A1 (zh) 2022-07-23 2022-12-15 一种道床谐振器设置方法

Country Status (3)

Country Link
EP (1) EP4365560A1 (zh)
CN (1) CN116519118A (zh)
WO (1) WO2024021444A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215167A (ja) * 2000-02-03 2001-08-10 Sekisui House Ltd 建物の振動レベル予測方法及び建物の交通振動発生予測方法
CN106894299A (zh) * 2017-03-03 2017-06-27 上海工程技术大学 一种可拆卸的多阶谐振轨道道床动力减振组合体
CN106965833A (zh) * 2017-04-26 2017-07-21 和振兴 一种自动监测减振轨道性能的方法
CN109594669A (zh) * 2018-11-07 2019-04-09 北京市劳动保护科学研究所 减轻既有建筑物受轨道交通振动影响的方法及减振建筑物
CN111664209A (zh) * 2020-07-13 2020-09-15 西南交通大学 吸振器、浮置板轨道和减振方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215167A (ja) * 2000-02-03 2001-08-10 Sekisui House Ltd 建物の振動レベル予測方法及び建物の交通振動発生予測方法
CN106894299A (zh) * 2017-03-03 2017-06-27 上海工程技术大学 一种可拆卸的多阶谐振轨道道床动力减振组合体
CN106965833A (zh) * 2017-04-26 2017-07-21 和振兴 一种自动监测减振轨道性能的方法
CN109594669A (zh) * 2018-11-07 2019-04-09 北京市劳动保护科学研究所 减轻既有建筑物受轨道交通振动影响的方法及减振建筑物
CN111664209A (zh) * 2020-07-13 2020-09-15 西南交通大学 吸振器、浮置板轨道和减振方法

Also Published As

Publication number Publication date
CN116519118A (zh) 2023-08-01
EP4365560A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
Dijckmans et al. Efficacy of a sheet pile wall as a wave barrier for railway induced ground vibration
CN109960859B (zh) 地铁沿线建筑物隔振结构及有限元仿真方法
CN101842588A (zh) 具有摆动阻尼装置的风轮机支撑塔
CN104765062B (zh) 基于弹性波的无砟轨道板脱空无损检测方法
Namura et al. Evaluation of countermeasures against differential settlement at track transitions
WO2024021444A1 (zh) 一种道床谐振器设置方法
CN110055834A (zh) 动刚度设计方法
Dumitriu et al. On the Rolling Noise Reduction by Using the Rail Damper.
CN108318126B (zh) 一种基于钢轨竖向振动特性检测轨下垫板刚度的方法
CN110807226B (zh) 高速铁路桥伸缩抬枕装置与轨道结构的匹配优化方法
CN109086525A (zh) 基于高架箱梁结构噪声预测的最优轨道结构型式确定方法
Verachtert et al. Changes of perceived unevenness caused by in-track vibration countermeasures in slab track
CN110904744A (zh) 一种改良钢轨的吸振系统及改良吸振性能的方法
Takemiya Analyses of wave field from high-speed train on viaduct at shallow/deep soft grounds
CN106320117B (zh) 整车振动噪声舒适性试验道
WO2010113807A1 (ja) レールの防音装置
WO2024021349A1 (zh) 减振道床固有频率的模拟测试装置及模拟测试方法
CN102877383A (zh) 无砟轨道板下自密实混凝土灌注方法
Wang et al. Experimental investigation of the vibration-attenuating effect of rail suspension fasteners on environment vibration induced by subway
CN113684940B (zh) 可减少地铁振动的既有建筑减振结构及其设计方法
Cao et al. Mitigation of ground vibration generated by high-speed trains on saturated poroelastic ground with under-sleeper pads
CN111705558B (zh) 一种利用扣件间距失谐实现低频减振的系统和方法
CN210216513U (zh) 抗沉降隔振系统及建筑
CN210826938U (zh) 一种适用于城轨交通建设配套8字型轨道板的轨道结构
CN209162565U (zh) 一种重载交通路面基层

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022952141

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022952141

Country of ref document: EP

Effective date: 20240130

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952141

Country of ref document: EP

Kind code of ref document: A1