WO2024021372A1 - 基于铁路信号模拟试验的信号模拟试验器及其方法 - Google Patents

基于铁路信号模拟试验的信号模拟试验器及其方法 Download PDF

Info

Publication number
WO2024021372A1
WO2024021372A1 PCT/CN2022/132411 CN2022132411W WO2024021372A1 WO 2024021372 A1 WO2024021372 A1 WO 2024021372A1 CN 2022132411 W CN2022132411 W CN 2022132411W WO 2024021372 A1 WO2024021372 A1 WO 2024021372A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
simulator
module
control
signal
Prior art date
Application number
PCT/CN2022/132411
Other languages
English (en)
French (fr)
Inventor
李铁欣
郭宝山
张庆忠
蔺翔
张传孟
王东
郑景海
杨涛
赵兵硕
陈智慧
张继忠
兰路路
Original Assignee
通号工程局集团有限公司
通号工程局集团有限公司天津分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通号工程局集团有限公司, 通号工程局集团有限公司天津分公司 filed Critical 通号工程局集团有限公司
Publication of WO2024021372A1 publication Critical patent/WO2024021372A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers

Definitions

  • the invention belongs to the technical field of railway signaling systems, especially a signal simulation tester based on railway signal simulation tests and a method thereof.
  • the purpose of the present invention is to overcome the shortcomings of the existing technology and propose a signal simulation tester and method based on railway signal simulation tests, which can not only conduct railway signal simulation experiments locally, but also view and operate remotely, which greatly facilitates the opening of Simulation experiments and tests in front of the station.
  • a signal simulation tester and method based on railway signal simulation tests including a signal simulator, a track circuit simulator, a turnout simulator, a communication module and a host computer, among which, a signal simulator, a track circuit simulator and a turnout simulator
  • the input end is connected to the device under test
  • the output end of the signal simulator, track circuit simulator and turnout simulator is connected to the input end of the communication module through the CAN bus
  • the output end of the communication module is sent to the host computer through WIFI or RJ45 communication interface.
  • the host computer is used to display the data detected by the signal machine simulator, track circuit simulator and switch simulator and control the connected tested equipment. It also stores the data detected by the signal machine simulator, track circuit simulator and switch simulator.
  • the signal machine simulator includes an interface circuit, a load circuit, a current collection circuit, an LED display circuit, a CPU circuit and a communication interface circuit; wherein the input end of the interface circuit is connected to the signal machine under test through a signal line, and the output of the interface circuit terminal is connected to the load circuit, the current collection circuit is connected in series with the CPU circuit and the LED display circuit and is connected in parallel at both ends of the load circuit. It is used to collect the current passing through the load circuit and determine the display status of the lamp position, the LED lamp position corresponding to the power, and the communication interface connection The CPU circuit is used to send the collected data to the host computer.
  • the track circuit simulator includes: an interface circuit, a load circuit, a voltage acquisition circuit, a switch control circuit, a CPU circuit and a communication interface circuit, wherein the input end of the interface circuit is connected to the track circuit through a signal line, and the output end of the interface circuit Connect the load circuit.
  • the voltage acquisition circuit shapes the input voltage and sends it to the CPU for AD conversion. It is used to collect the voltage passing through the load circuit and calculate the carrier frequency and low-frequency code of the track circuit.
  • the LED display circuit displays the idle and idle status of the track.
  • the communication interface circuit is used to send the collected data to the host computer.
  • the host computer can also issue control commands through the communication interface current, and the control switch control circuit is used to simulate the occupancy and idle status of the track circuit.
  • the turnout simulator includes an interface circuit, a diode rectifier circuit, a voltage acquisition circuit, a switch control circuit, a CPU circuit and a communication interface circuit.
  • the input end of the interface circuit is connected to the turnout through a signal line, and the output end of the interface circuit is connected to the diode.
  • the rectifier circuit and the voltage acquisition circuit are connected in series with the CPU circuit and the diode rectifier circuit to collect the voltage passing through the diode rectifier circuit.
  • the load circuit is connected to the CPU circuit to send the collected data to the host computer.
  • the switch control circuit is connected to the CPU circuit. Loss of performance in simulated turnouts.
  • the communication module includes a power input interface, a power supply and CAN communication interface, a WIFI module, an RJ45 module, a CPU circuit and a debugging module.
  • the power input interface is connected to the CPU circuit for power supply, and the output ends of the power supply and CAN communication interface are connected to the CPU circuit.
  • the CPU circuit sends data through the WIFI module and RJ45 module, and the debugging module is connected to the CPU circuit for parameter debugging.
  • the host computer includes a station map production module and a display control module.
  • the station map production module is used to draw and configure the station map used by the display control module.
  • the station map includes text, switches, signals, and no-turn areas. Segments, insulation sections, lights and buttons, where the text is implemented by the text box control, the switches are implemented by the line control, the signal is implemented by the circle and line controls, the non-fork section is implemented by the line control, the lights and buttons are implemented by the circle control, All controls are placed in the Canvas canvas.
  • a simulation method of a signal simulation tester based on a railway signal simulation test including the following steps:
  • Step 1 The display control module of the host computer determines whether the station map is drawn for the first time. If it is the station map drawn for the first time, proceed to step 2; otherwise, proceed to step 3;
  • Step 2 The station diagram production module draws according to the drawings of the station used, selects a type of control, gets the mark of the control type, and then forms an equipment control through a combination of basic graphics.
  • the type mark determines which type of equipment control is formed. Move the device control to the designated position, obtain the screen coordinate point information of the position, determine the location of the device control, form a site diagram through the generation and placement of the device control, and proceed to step 4;
  • Step 3 Read the existing site map file, make secondary modifications, move the device control to the specified location, obtain the screen coordinate point information of the location, determine the location of the device control, and form the site map through the generation and placement of the controls. ;
  • Step 4 Configure the device control with the same address of the corresponding module, specify the device control as the control corresponding to the collection module with the same address, and establish a unique data flow channel between the corresponding module and the device control to achieve bidirectional control;
  • Step 5 Save the configuration information to a file.
  • the configuration file is saved in ini file format.
  • the file content includes configuration information such as coordinate point information of the device control, control name, and collection simulation address for use by the display control module;
  • Step 6 The display control module reads the station map file information and generates the station map
  • Step 7 The display control module establishes a connection with the communication module through the TCP/IP protocol to realize data interaction, receives the data sent by the communication module, and displays the data.
  • the invention includes a signal simulator, a track circuit simulator, a turnout simulator, a communication module and a host computer.
  • the input terminals of the signal simulator, the track circuit simulator and the turnout simulator are connected to the equipment under test for detecting the equipment under test.
  • Data and data signals are transmitted to the host computer through the communication module for storage and display.
  • the present invention solves the problem of the large footprint of the signal simulation test panel used in previous projects by combining the station map production module and the display control module in the host computer. It communicates with each simulator through the CAN center and solves the problem of scattered connection between the previous simulation test panels. Problems such as too many components, unreliable connections, and messy wiring are solved.
  • By setting up signals, switches, and track circuit simulators the problems of heavy preparatory work in the early stages of simulation tests and the inability to reuse modules are solved, and the problem can be maximized to cooperate with testers in conducting signal simulation tests. .
  • Figure 1 is a schematic diagram of the signal machine simulator of the present invention
  • Figure 2 is a schematic diagram of the turnout simulator of the present invention.
  • Figure 3 is a schematic diagram of the track circuit simulator of the present invention.
  • FIG. 4 is a structural diagram of the communication module of the present invention.
  • FIG. 5 is the station map software interface of the present invention.
  • FIG. 6 is a flow chart of the station map production module and display control module of the present invention.
  • Figure 7 is a data flow diagram of the display control module of the present invention.
  • a signal simulation tester and method based on railway signal simulation tests including a signal simulator, a track circuit simulator, a turnout simulator, a communication module and a host computer, among which, a signal simulator, a track circuit simulator and a turnout simulator
  • the input end is connected to the device under test
  • the output end of the signal simulator, track circuit simulator and turnout simulator is connected to the input end of the communication module through the CAN bus
  • the output end of the communication module is sent to the host computer through WIFI or RJ45 communication interface.
  • the host computer is connected to the image display and storage system respectively.
  • the image display is used to display the data detected by the signal simulator, track circuit simulator and turnout simulator.
  • the storage system is used to store the signal simulator, track circuit simulator and turnout simulator. Detected data.
  • the signal machine simulator model mkcj_mnq_xhj, includes an interface circuit, 4-way load circuit, 4-way current collection circuit, LED display circuit, CPU circuit and communication interface circuit; among them, the input end of the interface circuit passes through the signal line Connect the signal machine, and the output end of the interface circuit is connected to the 4-way load circuit.
  • the 4-way current collection circuit is connected in series with the LED display circuit and the CPU circuit and is connected to both ends of the 4-way load circuit. It is used to collect the current passing through the load circuit and collect the current according to the current. Determine the display status of the LED, light up the corresponding LED light, and connect the load circuit to the CPU circuit to send the collected data to the host computer.
  • (U, UH), (L, LH), (2U, 2UH), (H, HH) are the outbound signals of the outbound and return lines of the signal lights. Each group of lines corresponds to a light position. . Each shunting signal has two lights. Each signal simulator can be configured with two shunting signals or only one. When configuring a shunting signal, connect U, UH and L, LH. Signal machine current collection accuracy and range: Accuracy: ⁇ 2%; Range: 0-2A.
  • the track circuit simulator model mkcj_mnq_gddl, includes: interface circuit, load circuit, voltage acquisition circuit, switch control circuit, CPU circuit and communication interface circuit.
  • the input end of the interface circuit is connected to the track circuit through a signal line
  • the output end of the interface circuit is connected to the load circuit
  • the voltage acquisition circuit is connected in series with the LED display circuit and the CPU circuit and is connected to both ends of the load circuit for collecting the voltage passing through the load circuit
  • the load circuit is connected to the CPU circuit for sending the collected data To the upper computer.
  • track voltage accuracy and range accuracy: ⁇ 1%; range: 0-200VAC; track carrier frequency accuracy and range: accuracy: ⁇ 1%; range: 0-3000HZ; track low-frequency frequency accuracy and range: accuracy: ⁇ 1%; range: 0-100HZ.
  • the switch simulator As shown in Figure 2, the switch simulator, model mkcj_mnq_5ac, includes an interface circuit, a diode rectifier circuit, a voltage acquisition circuit, a switch control circuit, a CPU circuit and a communication interface circuit.
  • the input end of the interface circuit is connected to the switch signal line, and the interface circuit The output end is connected to the diode rectifier circuit, and the voltage acquisition circuit CPU circuit is connected to both ends of the diode rectifier circuit for collecting the voltage passing through the diode rectifier circuit.
  • the load circuit is connected to the CPU circuit for sending the collected data to the host computer, and the switch
  • the control circuit is connected to the CPU circuit for simulating the turnout meter.
  • X1, X2, X3, X4, and X5 correspond to X1, X2, X3, X4, and
  • the communication module includes power supply and communication interface, CAN communication module, WIFI module, RJ45 module and CPU circuit.
  • the power supply and communication module are connected to the CAN communication module, WIFI module, RJ45 module and CPU respectively.
  • the circuit is used for power supply, and the CPU circuit is connected to the CAN communication module, WIFI module and RJ45 module for signal reception and transmission.
  • a simulation method of a signal simulation tester based on a railway signal simulation test, as shown in Figure 6, includes the following steps:
  • Step 1 The display control module of the host computer determines whether the station map is drawn for the first time. If it is the station map drawn for the first time, proceed to step 2; otherwise, proceed to step 3;
  • Step 2 The station diagram production module draws according to the drawings of the station used, selects a type of control, gets the mark of the control type, and then forms an equipment control through a combination of basic graphics.
  • the type mark determines which type of equipment control is formed. Move the device control to the designated position, obtain the screen coordinate point information of the position, determine the location of the device control, form a site diagram through the generation and placement of the device control, and proceed to step 4;
  • Step 3 Read the existing site map file, make secondary modifications, move the device control to the specified location, obtain the screen coordinate point information at the location, determine the location of the device control, and form the site map through the generation and placement of the controls.
  • the station diagram is shown in Figure 6;
  • Step 4 Configure the device control with the same address of the corresponding module, specify the device control as the control corresponding to the collection module with the same address, and establish a unique data flow channel between the corresponding module and the device control to achieve bidirectional control;
  • Step 5 Save the configuration information to a file.
  • the configuration file is saved in ini file format.
  • the file content includes configuration information such as coordinate point information of the device control, control name, and collection simulation address for use by the display control module;
  • Step 6 The display control module reads the station map file information and generates the station map
  • Step 7 The display control module establishes a connection with the communication module through the TCP/IP protocol to realize data interaction, receives the data sent by the communication module, and displays the data.
  • step 7 includes the following steps:
  • Step 7.1 The display control module saves the metadata sent by the communication module in the data file format and parses the data at the same time.
  • Step 7.2 Change the device control style according to the parsed data and display it on the image display.
  • Step 7.3 When clicking the switch and track circuit control button, the relay switch is controlled by sending control commands to the switch simulator and track circuit simulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

基于铁路信号模拟试验的信号模拟试验器及其模拟方法,该信号模拟试验器包括信号机模拟器、轨道电路模拟器、道岔模拟器、通讯模块和上位机,其中,信号机模拟器、轨道电路模拟器和道岔模拟器的输入端连接被测设备,用于检测其数据并将数据信号通过通讯模块传输至上位机进行存储和显示。通过上位机中站场图制作模块和显示控制模块结合,解决了以往工程使用的信号模拟试验盘占地面积大的问题,通过CAN中心与各个模拟器通信,解决了以往模拟试验盘连接散件多、连接不牢靠、配线凌乱的问题,通过设置信号机模拟器、轨道电路模拟器、道岔模拟器解决了模拟试验前期准备工作量大和模块不能重复使用的问题。

Description

基于铁路信号模拟试验的信号模拟试验器及其方法 技术领域
本发明属于铁路信号系统技术领域,尤其是基于铁路信号模拟试验的信号模拟试验器及其方法。
背景技术
铁路信号在模拟试验时,室外不具备调试条件时,接入模拟器进行测试,与室外情况一致。以往工程使用的信号模拟试验盘占地面积大,连接散件多、连接不牢靠、配线凌乱、工作量大、不能重复使用,在实际使用中费工费时,效率低、成本高。随着铁路建设步伐的不断加快,对铁路施工速度、精度及工艺等都有了更高的要求,智能化水平也在不断提高,因此现在急需一种铁路信号模拟试验器能够真实准确的反映设备状态,配合试验人员进行信号模拟试验。
发明内容
本发明的目的在于克服现有技术的不足,提出基于铁路信号模拟试验的信号模拟试验器及其方法,不但能够在本地进行铁路信号模拟实验,而且还可以在远程进行查看和操作,大大方便开通站前的模拟实验和测试。
本发明解决其技术问题是采取以下技术方案实现的:
基于铁路信号模拟试验的信号模拟试验器及其方法,包括信号机模拟器、轨道电路模拟器、道岔模拟器、通讯模块和上位机,其中,信号机模拟器、轨道电路模拟器和道岔模拟器的输入端连接被测设备,信号机模拟器、轨道电路模拟器和道岔模拟器的输出端通过CAN总线连接通讯模块的输入端,通讯模块的输出端通过WIFI或RJ45通讯接口发送到上位机,上位机用于显示信号机模拟器、轨道电路模拟器和道岔模拟器检测的数据并控制连接的被试设备,同时存储信号机模拟器、轨道电路模拟器和道岔模拟器检测的数据。
而且,所述信号机模拟器包括接口电路、负载电路、电流采集电路、LED显示电路、CPU电路和通讯接口电路;其中,接口电路的输入端通过信号线连接被测信号机,接口电路的输出端连接负载电路,电流采集电路串联CPU电路以及LED显示电路并且并联在负载电路的两端,用于采集负载电路通过的电流并判断灯位的显示状态,电量对应的LED灯位,通讯接口连接CPU电路用于将采集的数据发送至上位机。
而且,所述轨道电路模拟器包括:接口电路、负载电路、电压采集电路、开关控制电路、CPU电路和通讯接口电路,其中,接口电路的输入端通过信号线连接轨道电路,接口电路的输出端连接负载电路,电压采集电路把输入电压整形后,送给CPU做AD转换,用于采集负载电路通过的电压,计算出轨道电路的载频、低频码,同时通过LED显示电路显示轨道的空闲与占用,通讯接口电路用于将采集的数据发送至上位机,上位机也可以通过通讯接口电流,下发控制命令,控制开关控制电路用于模拟轨道电路的占用与空闲状态。
而且,所述道岔模拟器包括接口电路、二极管整流电路、电压采集电路、开关控制电路、CPU电路和通讯接口电路,其中,接口电路的输入端通过信号线连接道岔,接口电路的输出端连接二极管整流电路,电压采集电路串联CPU电路并且串联在二极管整流电路上,用于采集二极管整流电路通过的电压,负载电路连接CPU电路用于将采集的数据发送至上位机,开 关控制电路连接CPU电路用于模拟道岔失表。
而且,所述通讯模块包括电源输入接口、电源及CAN通讯接口、WIFI模块、RJ45模块、CPU电路和调试模块,电源输入接口连接CPU电路用于供电,电源及CAN通讯接口的输出端连接CPU电路,CPU电路通过WIFI模块和RJ45模块进行数据发送,调试模块连接CPU电路,用于进行参数调试。
而且,所述上位机包括站场图制作模块和显示控制模块,站场图制作模块用于绘制和配置显示控制模块使用的站场图,场站图包括文本、道岔、信号机、无岔区段、绝缘节、灯和按钮,其中,文本由文本框控件实现,道岔由线条控件实现,信号机由圆和线条控件实现,无岔区段由线条控件实现,灯和按钮由圆控件实现,所有控件均放置Canvas画布中。
一种基于铁路信号模拟试验的信号模拟试验器的模拟方法,包括以下步骤:
步骤1、上位机的显示控制模块判断是否是第一次绘制的站场图,若是第一次绘制的站场图,则进行步骤2,否则进行步骤3;
步骤2、站场图制作模块根据所使用站的图纸进行绘制,选中一个类型的控件,得到该控件类型的标记,然后通过基本图形组合形成一个设备控件,类型标记决定形成哪一类设备控件,移动设备控件到指定位置,得到该位置的屏幕坐标点信息,确定设备控件位置,通过设备控件的生成、摆放、形成站场图,并进行步骤4;
步骤3、读取已有场站图文件,进行二次修改,移动设备控件到指定位置,得到该位置的屏幕坐标点信息,确定设备控件位置,通过控件的生成、摆放、形成站场图;
步骤4、给设备控件配置对应模块的相同地址,指定该设备控件为相同地址的采集模块所对应的控件,建立对应模块与设备控件的唯一数据流通道,实现双向控制;
步骤5、保存配置信息到文件,配置文件以ini文件格式保存,文件内容包括设备控件的坐标点信息、控件名称和采集模拟地址等配置信息,供显示控制模块使用;
步骤6、显示控制模块读取站场图文件信息,生成站场图进行;
步骤7、显示控制模块通过TCP/IP协议与通讯模块创建连接,实现数据交互,接收通信模块发送过来的数据,展示数据。
本发明的优点和积极效果是:
本发明包括信号机模拟器、轨道电路模拟器、道岔模拟器、通讯模块和上位机,其中,信号机模拟器、轨道电路模拟器和道岔模拟器的输入端连接被测设备,用于检测其数据并将数据信号通过通讯模块传输至上位机进行存储和显示。本发明通过上位机中站场图制作模块和显示控制模块结合,解决了以往工程使用的信号模拟试验盘占地面积大问题,通过CAN中心与各个模拟器通信,解决了以往模拟试验盘连接散件多、连接不牢靠、配线凌乱问题,通过设置信号机、道岔、轨道电路模拟器解决了模拟试验前期准备工作量大和模块不能重复使用的问题,能够最大限度地配合试验人员进行信号模拟试验。
附图说明
图1为本发明信号机模拟器原理图;
图2为本发明道岔模拟器原理图;
图3为本发明轨道电路模拟器原理图;
图4为本发明通讯模块结构图;
图5为本发明站场图软件界面;
图6为本发明站场图制作模块和显示控制模块流程图;
图7为本发明显示控制模块数据流图。
具体实施方式
以下结合附图对本发明做进一步详述。
基于铁路信号模拟试验的信号模拟试验器及其方法,包括信号机模拟器、轨道电路模拟器、道岔模拟器、通讯模块和上位机,其中,信号机模拟器、轨道电路模拟器和道岔模拟器的输入端连接被测设备,信号机模拟器、轨道电路模拟器和道岔模拟器的输出端通过CAN总线连接通讯模块的输入端,通讯模块的输出端通过WIFI或RJ45通讯接口发送到上位机,上位机分别连接图像显示器和存储系统,图像显示器用于显示信号机模拟器、轨道电路模拟器和道岔模拟器检测的数据,存储系统用于存储信号机模拟器、轨道电路模拟器和道岔模拟器检测的数据。
如图1所示,信号机模拟器,型号mkcj_mnq_xhj,包括接口电路、4路负载电路、4路电流采集电路、LED显示电路、CPU电路和通讯接口电路;其中,接口电路的输入端通过信号线连接信号机,接口电路的输出端连接4路负载电路,4路电流采集电路串联LED显示电路和CPU电路并且连接在4路负载电路的两端,用于采集负载电路通过的电流,并根据电流判断LED的显示状态,点亮对应的LED灯,负载电路连接CPU电路用于将采集的数据发送至上位机。
其中,(U、UH)、(L、LH)、(2U、2UH)、(H、HH)为信号机灯的去线和回线4灯的出站信号机,每组线对应一个灯位。调车信号机每个两灯,每个信号机模拟器可以配置两个调车信号机,也可以只配置一个。配置一个调车信号机时,接U、UH和L、LH。信号机电流采集精度及量程:精度:±2%;量程:0-2A。
如图3所示,轨道电路模拟器,型号mkcj_mnq_gddl,包括:接口电路、负载电路、电压采集电路、开关控制电路、CPU电路和通讯接口电路,其中,接口电路的输入端通过信号线连接轨道电路,接口电路的输出端连接负载电路,电压采集电路串联LED显示电路和CPU电路并且连接在负载电路的两端,用于采集负载电路通过的电压,负载电路连接CPU电路用于将采集的数据发送至上位机。JS(接收)、FS(发送)、JSH(接送回)、FSH(发送回)分别对应3路移频轨道电路(每个轨道电路模拟器模块可以采集控制3路)。
其中,轨道电压精度及量程:精度:±1%;量程:0-200VAC;轨道载频频率精度及量程:精度:±1%;量程:0-3000HZ;轨道低频频率精度及量程:精度:±1%;量程:0-100HZ。
如图2所示,道岔模拟器,型号mkcj_mnq_5ac,包括接口电路、二极管整流电路、电压采集电路、开关控制电路、CPU电路和通讯接口电路,其中,接口电路的输入端连接道岔信号线,接口电路的输出端连接二极管整流电路,电压采集电路CPU电路并且连接在二极管整流电路的两端,用于采集二极管整流电路通过的电压,负载电路连接CPU电路用于将采集的数据发送至上位机,开关控制电路连接CPU电路用于模拟道岔失表。
其中,X1、X2、X3、X4、X5对应道岔的X1、X2、X3、X4、X5;道岔表示电压采集精度及量程:精度:±1%;量程:0-100VAC,0-100VDC。
如图4所示,通讯模块,型号为mkcj_mnq_tx,包括电源及通讯接口、CAN通讯模块、 WIFI模块、RJ45模块和CPU电路,其中电源及通讯模块分别连接CAN通讯模块、WIFI模块、RJ45模块和CPU电路用于供电,CPU电路分别连接CAN通讯模块、WIFI模块和RJ45模块用于信号的接收与发送。
一种基于铁路信号模拟试验的信号模拟试验器的模拟方法,如图6所示,包括以下步骤:
步骤1、上位机的显示控制模块判断是否是第一次绘制的站场图,若是第一次绘制的站场图,则进行步骤2,否则进行步骤3;
步骤2、站场图制作模块根据所使用站的图纸进行绘制,选中一个类型的控件,得到该控件类型的标记,然后通过基本图形组合形成一个设备控件,类型标记决定形成哪一类设备控件,移动设备控件到指定位置,得到该位置的屏幕坐标点信息,确定设备控件位置,通过设备控件的生成、摆放、形成站场图,并进行步骤4;
步骤3、读取已有场站图文件,进行二次修改,移动设备控件到指定位置,得到该位置的屏幕坐标点信息,确定设备控件位置,通过控件的生成、摆放、形成站场图,场站图如图6所示;
步骤4、给设备控件配置对应模块的相同地址,指定该设备控件为相同地址的采集模块所对应的控件,建立对应模块与设备控件的唯一数据流通道,实现双向控制;
步骤5、保存配置信息到文件,配置文件以ini文件格式保存,文件内容包括设备控件的坐标点信息、控件名称和采集模拟地址等配置信息,供显示控制模块使用;
步骤6、显示控制模块读取站场图文件信息,生成站场图进行;
步骤7、显示控制模块通过TCP/IP协议与通讯模块创建连接,实现数据交互,接收通信模块发送过来的数据,展示数据。
如图7所示,步骤7包括以下步骤:
步骤7.1、显示控制模块将通信模块发送过来的元数据以数据文件格式保存,同时将数据解析。
步骤7.2、根据解析数据改变设备控件样式,展示到图像显示器。
步骤7.3、点击道岔和轨道电路控件按钮时通过向道岔模拟器和轨道电路模拟器发送控制命令控制实现控制继电器开关。
需要强调的是,本发明所述的实施例是说明性的,而不是限定性的,因此本发明包括并不限于具体实施方式中所述的实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。

Claims (7)

  1. 基于铁路信号模拟试验的信号模拟试验器及其方法,其特征在于:包括信号机模拟器、轨道电路模拟器、道岔模拟器、通讯模块和上位机,其中,信号机模拟器、轨道电路模拟器和道岔模拟器的输入端连接被测设备,信号机模拟器、轨道电路模拟器和道岔模拟器的输出端通过CAN总线连接通讯模块的输入端,通讯模块的输出端通过WIFI或RJ45通讯接口发送到上位机,上位机用于显示信号机模拟器、轨道电路模拟器和道岔模拟器检测的数据并控制连接的被试设备,同时存储信号机模拟器、轨道电路模拟器和道岔模拟器检测的数据。
  2. 根据权利要求1所述的基于铁路信号模拟试验的信号模拟试验器及其方法,其特征在于:所述信号机模拟器包括接口电路、负载电路、电流采集电路、LED显示电路、CPU电路和通讯接口电路;其中,接口电路的输入端通过信号线连接被测信号机,接口电路的输出端连接负载电路,电流采集电路串联CPU电路以及LED显示电路并且并联在负载电路的两端,用于采集负载电路通过的电流并判断灯位的显示状态,电量对应的LED灯位,通讯接口连接CPU电路用于将采集的数据发送至上位机。
  3. 根据权利要求1所述的基于铁路信号模拟试验的信号模拟试验器及其方法,其特征在于:所述轨道电路模拟器包括:接口电路、负载电路、电压采集电路、开关控制电路、CPU电路和通讯接口电路,其中,接口电路的输入端通过信号线连接轨道电路,接口电路的输出端连接负载电路,电压采集电路把输入电压整形后,送给CPU做AD转换,用于采集负载电路通过的电压,计算出轨道电路的载频、低频码,同时通过LED显示电路显示轨道的空闲与占用,通讯接口电路用于将采集的数据发送至上位机,上位机也可以通过通讯接口电流,下发控制命令,控制开关控制电路用于模拟轨道电路的占用与空闲状态。
  4. 根据权利要求1所述的基于铁路信号模拟试验的信号模拟试验器及其方法,其特征在于:所述道岔模拟器包括接口电路、二极管整流电路、电压采集电路、开关控制电路、CPU电路和通讯接口电路,其中,接口电路的输入端通过信号线连接道岔,接口电路的输出端连接二极管整流电路,电压采集电路串联CPU电路并且串联在二极管整流电路上,用于采集二极管整流电路通过的电压,负载电路连接CPU电路用于将采集的数据发送至上位机,开关控制电路连接CPU电路用于模拟道岔失表。
  5. 根据权利要求1所述的基于铁路信号模拟试验的信号模拟试验器及其方法,其特征在于:所述通讯模块包括电源输入接口、电源及CAN通讯接口、WIFI模块、RJ45模块、CPU电路和调试模块,电源输入接口连接CPU电路用于供电,电源及CAN通讯接口的输出端连接CPU电路,CPU电路通过WIFI模块和RJ45模块进行数据发送,调试模块连接CPU电路,用于进行参数调试。
  6. 根据权利要求1所述的基于铁路信号模拟试验的信号模拟试验器及其方法,其特征在于:所述上位机包括站场图制作模块和显示控制模块,站场图制作模块用于绘制和配置显示控制模块使用的站场图,场站图包括文本、道岔、信号机、无岔区段、绝缘节、灯和按钮,其中,文本由文本框控件实现,道岔由线条控件实现,信号机由圆和线条控件实现,无岔区段由线条控件实现,灯和按钮由圆控件实现,所有控件均放置Canvas画布中。
  7. 一种如权利要求1至6任意项所述的基于铁路信号模拟试验的信号模拟试验器的模拟方法,其特征在于:包括以下步骤:
    步骤1、上位机的显示控制模块判断是否是第一次绘制的站场图,若是第一次绘制的站 场图,则进行步骤2,否则进行步骤3;
    步骤2、站场图制作模块根据所使用站的图纸进行绘制,选中一个类型的控件,得到该控件类型的标记,然后通过基本图形组合形成一个设备控件,类型标记决定形成哪一类设备控件,移动设备控件到指定位置,得到该位置的屏幕坐标点信息,确定设备控件位置,通过设备控件的生成、摆放、形成站场图,并进行步骤4;
    步骤3、读取已有场站图文件,进行二次修改,移动设备控件到指定位置,得到该位置的屏幕坐标点信息,确定设备控件位置,通过控件的生成、摆放、形成站场图;
    步骤4、给设备控件配置对应模块的相同地址,指定该设备控件为相同地址的采集模块所对应的控件,建立对应模块与设备控件的唯一数据流通道,实现双向控制;
    步骤5、保存配置信息到文件,配置文件以ini文件格式保存,文件内容包括设备控件的坐标点信息、控件名称和采集模拟地址等配置信息,供显示控制模块使用;
    步骤6、显示控制模块读取站场图文件信息,生成站场图进行;
    步骤7、显示控制模块通过TCP/IP协议与通讯模块创建连接,实现数据交互,接收通信模块发送过来的数据,展示数据。
PCT/CN2022/132411 2022-07-26 2022-11-17 基于铁路信号模拟试验的信号模拟试验器及其方法 WO2024021372A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210883103.1 2022-07-26
CN202210883103.1A CN115236444A (zh) 2022-07-26 2022-07-26 基于铁路信号模拟试验的信号模拟试验器及其方法

Publications (1)

Publication Number Publication Date
WO2024021372A1 true WO2024021372A1 (zh) 2024-02-01

Family

ID=83675771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132411 WO2024021372A1 (zh) 2022-07-26 2022-11-17 基于铁路信号模拟试验的信号模拟试验器及其方法

Country Status (2)

Country Link
CN (1) CN115236444A (zh)
WO (1) WO2024021372A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115236444A (zh) * 2022-07-26 2022-10-25 通号工程局集团有限公司 基于铁路信号模拟试验的信号模拟试验器及其方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203759473U (zh) * 2014-02-20 2014-08-06 中铁一局集团有限公司 轨道交通信号联锁试验模拟用数据采集传输系统
JP2017177982A (ja) * 2016-03-29 2017-10-05 大同信号株式会社 統合連動装置
CN206710855U (zh) * 2017-05-19 2017-12-05 四川都睿感控科技有限公司 铁路室外信号模拟盘及调试系统
CN110501594A (zh) * 2019-08-30 2019-11-26 中国铁路通信信号上海工程局集团有限公司 铁路信号调试智能模拟盘及其控制方法
CN212410719U (zh) * 2020-03-27 2021-01-26 中铁十一局集团电务工程有限公司 室外信号设备模拟测试装置
CN214585769U (zh) * 2021-03-18 2021-11-02 中铁建电气化局集团第一工程有限公司 一种铁路信号室外设备微机模拟试验装置
CN114019871A (zh) * 2021-11-04 2022-02-08 四川思倍远科技有限公司 一种铁路室外信号模拟系统及方法
CN115236444A (zh) * 2022-07-26 2022-10-25 通号工程局集团有限公司 基于铁路信号模拟试验的信号模拟试验器及其方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203759473U (zh) * 2014-02-20 2014-08-06 中铁一局集团有限公司 轨道交通信号联锁试验模拟用数据采集传输系统
JP2017177982A (ja) * 2016-03-29 2017-10-05 大同信号株式会社 統合連動装置
CN206710855U (zh) * 2017-05-19 2017-12-05 四川都睿感控科技有限公司 铁路室外信号模拟盘及调试系统
CN110501594A (zh) * 2019-08-30 2019-11-26 中国铁路通信信号上海工程局集团有限公司 铁路信号调试智能模拟盘及其控制方法
CN212410719U (zh) * 2020-03-27 2021-01-26 中铁十一局集团电务工程有限公司 室外信号设备模拟测试装置
CN214585769U (zh) * 2021-03-18 2021-11-02 中铁建电气化局集团第一工程有限公司 一种铁路信号室外设备微机模拟试验装置
CN114019871A (zh) * 2021-11-04 2022-02-08 四川思倍远科技有限公司 一种铁路室外信号模拟系统及方法
CN115236444A (zh) * 2022-07-26 2022-10-25 通号工程局集团有限公司 基于铁路信号模拟试验的信号模拟试验器及其方法

Also Published As

Publication number Publication date
CN115236444A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2024021372A1 (zh) 基于铁路信号模拟试验的信号模拟试验器及其方法
CN107819647B (zh) 智能变电站站控层网络测试仪
CN109613906B (zh) 第三代智能变电站测控子机测试系统及其应用方法
GB2536593A (en) Interactive processing method and system of rail transportation vehicle debugging task information
CN103837785A (zh) 馈线自动化检测模拟系统
CN103268697A (zh) Pmi电力系统智能抄表集控系统及其教学实验平台
CN201741298U (zh) 电气化铁路牵引供电模拟沙盘用列车调度指挥系统
CN110987487B (zh) Crh5型动车组重联模拟调试装置
CN106802644A (zh) 车载控制器测试系统
CN102592489A (zh) 高速动车组牵引电机调试操作技能实训系统及控制方法
CN113296453B (zh) 一种铁路信号室外设备模拟控制箱及其调试方法
CN112289117A (zh) 一种基于LoRa通信技术的电缆故障模拟系统
CN114966271B (zh) 分布式信号系统室内综合试验装置
CN204203764U (zh) 车载控制器自动化测试装置
CN102495551B (zh) 用于can总线导航设备信息模拟的系统和方法
CN201984659U (zh) 电气化铁路牵引供电模拟沙盘用列车进出站模拟指示系统
CN211718715U (zh) 基于卫星定位的列控车载自动测试系统
CN219590436U (zh) 一种信号联锁试验装置
CN114019871A (zh) 一种铁路室外信号模拟系统及方法
CN202512750U (zh) 高速动车组牵引电机调速调试操作技能实训系统
CN201331856Y (zh) 电能计量二次回路仿真系统
CN112149200B (zh) 一种信号联锁系统数字化模拟装置
CN215643314U (zh) 一种倒闸操作模拟预演系统
CN213458521U (zh) 基于单片机的地铁轨旁atp实验装置
CN206804766U (zh) 一种监控屏幕显示器测试仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952807

Country of ref document: EP

Kind code of ref document: A1