WO2024021296A1 - 一种超超临界太阳能塔式水工质吸热器 - Google Patents

一种超超临界太阳能塔式水工质吸热器 Download PDF

Info

Publication number
WO2024021296A1
WO2024021296A1 PCT/CN2022/122152 CN2022122152W WO2024021296A1 WO 2024021296 A1 WO2024021296 A1 WO 2024021296A1 CN 2022122152 W CN2022122152 W CN 2022122152W WO 2024021296 A1 WO2024021296 A1 WO 2024021296A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
tube
sealing plate
ultra
tubes
Prior art date
Application number
PCT/CN2022/122152
Other languages
English (en)
French (fr)
Inventor
凌祥
刘长田
曹冲
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Publication of WO2024021296A1 publication Critical patent/WO2024021296A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/74Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other
    • F24S10/742Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other the conduits being parallel to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/16Steam superheating characterised by heating method by using a separate heat source independent from heat supply of the steam boiler, e.g. by electricity, by auxiliary combustion of fuel oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/30Solar heat collectors using working fluids with means for exchanging heat between two or more working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • F24S70/12Details of absorbing elements characterised by the absorbing material made of metallic material

Definitions

  • the invention belongs to the technical field of high-temperature solar heat utilization, and specifically relates to an ultra-supercritical solar tower type hydraulic fluid heat absorber.
  • tower solar thermal power generation systems can reach higher operating temperatures due to their high concentration ratio, thereby improving the overall power generation efficiency and becoming more popular in future development trends.
  • most of the current exposed tower solar thermal power generation systems directly expose the tube rows to the external environment.
  • the reflected and concentrated sunlight directly shines on the tube rows, which are prone to uneven heating under high heat flux loads, resulting in tube burst leakage.
  • how to ensure the stable and efficient operation of pipe rows has become a key technical issue in tower solar thermal power generation systems.
  • the present invention provides an ultra-supercritical solar tower type hydraulic fluid heat absorber, which can heat water to an ultra-supercritical state and greatly improve operating parameters and power generation efficiency.
  • An ultra-supercritical solar tower type hydraulic fluid heat absorber which is characterized in that it includes: a heat-absorbing screen, a pipe row and a heat-absorbing medium; several mutually independent heat-absorbing screens are assembled into a circle, and the absorber
  • the heat screen absorbs the heat of the sun, causing the heat-absorbing medium filled inside the heat-absorbing screen to heat up and melt.
  • the heat-absorbing medium then transfers heat to the tube rows; the tube rows are immersed in the heat-absorbing medium, and the tube rows
  • the wetted surface between the outer wall and the heat-absorbing medium serves as the heat transfer surface.
  • the heat-absorbing screen is composed of a heat-absorbing plate, an upper sealing plate, a side sealing plate, a cover plate and a lower sealing plate; the upper sealing plate and the lower sealing plate are arranged oppositely, and the upper sealing plate and the lower sealing plate are both There are holes corresponding to each heat exchange tube in the tube row, so that the heat exchange tubes are fixed in the heat absorption screen.
  • the four surfaces between the upper sealing plate and the lower sealing plate are the heat absorption plate, the cover plate and the two Side sealing panels reflect sunlight to the heat absorbing panels.
  • the lower sealing plate is fixedly connected to the heat exchange tube, and the upper sealing plate is not fixedly connected to the heat exchange tube.
  • each heat-absorbing panel corresponds to a group of tube rows.
  • Each group of tube rows is composed of several heat exchange tubes.
  • the heat exchange tubes include preheating tubes and superheating tubes.
  • the preheating tubes and superheating tubes are alternately spaced apart. arrangement.
  • the preheating tubes and superheating tubes are arranged in a heat-carrying compensation type, so that there is a preheating tube compensation next to each superheating tube, wherein the diameter of the superheating tube is larger than the diameter of the preheating tube.
  • the preheating tubes on each side are connected in series through the preheating tube collection tube to form a preheating tube group.
  • the superheating tubes on each side are connected in series through the superheating tube collection tube.
  • Superheating tube group; water under ultra-supercritical pressure passes through the preheating tube groups on both sides respectively, and after heating up, saturated steam in the supercritical state is generated. The saturated steam flows into the superheating tube group on the other side to output superheated steam.
  • the material of the pipe row is P91 steel or P92 steel.
  • the heat-absorbing medium is metal tin.
  • the indirect high-efficiency heat transfer method is used to avoid direct sunlight, solve the problems of thermal fatigue, thermal ratchet and other problems caused by thermal stress caused by direct heat transfer, and effectively extend the service life of the heat absorber;
  • Metal tin is used as the indirect heat transfer medium.
  • metal tin has a high thermal conductivity and can quickly transfer heat to the tube row; on the other hand, the flowing metal tin can evenly transfer heat to the tube row, so that The heat-absorbing screen has excellent temperature uniformity performance and can withstand high heat flux density thermal load;
  • the tube bank adopts uniform heat technology and is arranged in a heat transfer compensation type.
  • the heat exchange tubes and superheat tubes are arranged at intervals. Since water turns into steam, the heat transfer capacity is greatly reduced, the volume expands, and the temperature rises too fast, so heat transfer tubes are used.
  • the compensation type arrangement can effectively prevent the rapid temperature rise of the overheated pipe, which may cause local overheating and lead to pipe explosion and other dangers;
  • the tube row is welded to the lower sealing plate of the heat-absorbing screen, but not welded to the upper sealing plate of the heat-absorbing screen, so that the heat exchange tubes can expand and contract freely when heated, reducing thermal stress;
  • Heat-absorbing panels are easy to standardize and modularize. Each heat-absorbing panel acts as a separate heat-absorbing element and does not interfere with each other when working. It can be repaired and replaced independently. It has better safety performance and is easy to repair and disassemble.
  • Figure 1 is a schematic diagram of the appearance of the ultra-supercritical solar tower hydraulic fluid heat absorber of the present invention.
  • Figure 2 is a schematic diagram of the partial decomposition and metal tin filling of the heat absorption panel of the present invention.
  • Figure 3 is a schematic diagram of the welding of the heat exchange tube and the upper and lower sealing plates of the present invention.
  • Figure 4 is a schematic pipeline flow diagram of the ultra-supercritical solar tower hydraulic fluid heat absorber system of the present invention.
  • Figure 5 is a schematic diagram of the heat transfer compensation type arrangement of preheating tubes and superheating tubes in the tube bank of the present invention.
  • Figure 6 is a schematic diagram of the flow direction of the preheating tubes in the tube bank of the present invention.
  • the reference symbols are as follows: 1-heat-absorbing screen; 1.1-heat-absorbing plate; 1.2-upper sealing plate; 1.3-side sealing plate; 1.4-cover plate; 1.5-lower sealing plate; 2-tube row; 2.1-preheating tube ; 2.2-Preheating tube summary tube; 2.3-Superheating tube summary tube; 2.4-Superheating tube; 3-Heat-absorbing medium.
  • an ultra-supercritical solar tower type hydraulic fluid heat absorber is composed of a heat absorption screen 1, a pipe row 2 and a heat absorption medium 3.
  • the heat absorption screens 1 are independent of each other and have multiple The heat-absorbing screen 1 is assembled in a circle.
  • the sunlight is reflected by the heliostat field and concentrated on the heat-absorbing plate 1.1 of the heat-absorbing screen 1.
  • the heat-absorbing medium 3 inside the heat-absorbing screen 1 absorbs heat and heats up and then melts. The heat is evenly transferred to the immersed absorber through the heat-absorbing medium 3.
  • the tube row 2 in the heat medium 3 takes away the heat by the heat exchange fluid (water).
  • the heat absorber of the present invention adopts an indirect heat transfer method, which can effectively solve the problems of thermal stress, thermal fatigue and other problems caused by huge temperature differences caused by direct heat transfer.
  • each heat-absorbing screen 1 works independently without affecting each other. When damaged and repaired, it can be disassembled and replaced separately. It has better safety performance and stable performance during work, and greatly reduces maintenance costs.
  • the heat-absorbing screen 1 is composed of a heat-absorbing plate 1.1, an upper sealing plate 1.2, a side sealing plate 1.3, a cover plate 1.4 and a lower sealing plate 1.5; the heat-absorbing screen 1 is filled with the heat-absorbing medium 3.
  • the heat-absorbing medium 3 can be metal tin, but is not limited to tin and mixtures of tin and other metals.
  • the metal tin melts, and the heat exchange tubes in tube row 2 are immersed in the metal tin.
  • the wetted surface of the outer wall of the tube and the liquid metal tin is used as the heat transfer surface, and the "tin bath" heat transfer method is used. Has the function of equalizing temperature.
  • metallic tin has a high thermal conductivity, which can stably enhance the heat exchange effect of the heat exchange tube; on the other hand, the flowing liquid metal tin can evenly transfer heat to the heat exchange tube, avoiding direct reflection of concentrated sunlight on the heat exchange tube.
  • Pipe row 2 may cause local overheating and other hazards.
  • the upper sealing plate 1.2 and the lower sealing plate 1.5 are both provided with holes corresponding to each heat exchange tube in the tube row 2, and low thermal stress technology is used.
  • the heat exchange tubes are welded to the lower sealing plate 1.5.
  • the sealing plate 1.2 is not welded to the heat exchange tube, so that the heat exchange tube can expand, contract and expand freely when heated, reducing thermal stress.
  • each group of tube rows 2 is composed of multiple heat exchange tubes.
  • the heat exchange tubes can be divided into preheating tubes 2.1 and superheating tubes 2.4 according to different functions, and the diameter of the superheating tube 2.4 It should be larger than the diameter of preheating tube 2.1.
  • the preheating pipe 2.1 and the superheating pipe 2.4 adopt a heat transfer compensation type arrangement, so that there is a preheating pipe 2.1 compensation next to each superheating pipe 2.4. Since water turns into steam, its heat transfer capacity is greatly reduced. When the generated saturated steam enters the superheated tube 2.4 for superheating, the volume expands and the temperature rises quickly.
  • Pipe row 2 uses existing high-temperature-resistant and pressure-bearing materials such as P91 and P92.
  • tube bank 2 is divided into east and west sides (W1 ⁇ Wn, E1 ⁇ En).
  • the preheating tube 2.1 and superheating tube 2.4 of each group of tube bank 2 can be increased according to actual needs. Less; the pressure of the water is raised to ultra-supercritical pressure by the high-pressure water pump. It enters from the first group of pipe rows 2 on the east and west sides respectively. It first passes through the preheating pipes 2.1 on each side for preheating and temperature rise.
  • the preheating pipes on each side The groups are connected in series through the preheating tube collective tube 2.2, and the superheated tube groups on each side are also connected in series through the superheated tube collective tube 2.3; water passes through the preheating tube 2.1 in the n group of tube rows 2 on one side to generate saturated steam, and continue
  • the superheated tubes 2.4 in the n group of tube rows 2 on the other side are connected to superheat to generate superheated steam output.
  • One part directly drives the steam turbine to generate electricity, and the other part cooperates with the energy storage system to store energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种超超临界太阳能塔式水工质吸热器,包含吸热屏、管排和吸热介质。聚集的太阳光反射至吸热屏上,吸热板吸热升温后将内部填充的吸热介质熔化,吸热介质将高热流密度的热量均匀化传给管排,并由换热流体(水)带走,管排采用载热补偿型布置,具有均热功能。每组管排插入至对应的吸热屏中,并且采用低热应力技术,与吸热屏的下封板焊接,上方不进行焊接,可使换热管自由伸缩膨胀。吸热屏的内部采用"锡浴"间接式传热,具有均温的功能。本发明采用具有高导热系数的吸热介质,可以快速将热量传递给管排,实现高效传热,并且将热流密度均匀化,减小热应力,避免爆管等危害。这种吸热器结构能够将水升温加热至超超临界状态,大幅度提升发电效率。

Description

一种超超临界太阳能塔式水工质吸热器 技术领域
本发明属于太阳能高温热利用技术领域,具体涉及一种超超临界太阳能塔式水工质吸热器。
背景技术
随着经济的快速发展,我国对能源的需求不断增大。当前,传统的化石燃料仍是全球经济增长的主要推动力,但由于其燃烧后释放的二氧化碳等会严重污染环境,能源危机和全球变暖问题日趋严重。改善能源结构,大力发展可再生清洁能源至关重要,而取之不尽用之不竭的太阳能受到了广泛关注。相比于光伏发电,光热发电技术在原材料制造过程中较为清洁,并且能与储能系统搭配进行二十四小时发电。但因其发电效率较低,发电成本高,所以如何提高光热发电效率从而降低成本成为发展难题。在光热发电系统中,塔式太阳能热发电系统由于聚光比高能够达到更高的工作温度,从而提高整体发电效率在未来发展趋势中更受欢迎。然而目前大部分外露式塔式太阳能热发电系统均将管排直接暴露在外界环境,反射聚集的太阳光直接照射在管排上,在高热流密度载荷下容易受热不均,从而出现爆管泄漏等危险,如何保证管排稳定又高效的运行已经成为现在塔式太阳能热发电系统的关键技术问题。
发明内容
本发明针对现有技术中的不足,提供一种超超临界太阳能塔式水工质吸热器,能够使水加热至超超临界状态,大大提高了运行参数以及发电效率。
为实现上述目的,本发明采用以下技术方案:
一种超超临界太阳能塔式水工质吸热器,其特征在于,包括:吸热屏、管排和吸热介质;若干块彼此相互独立的吸热屏拼装围成一圈,所述吸热屏吸收太阳光的热量,使得充装在吸热屏内部的吸热介质升温熔化,所述吸热介质再将热量传递给管排;所述管排浸没在吸热介质中,管排的外壁与吸热介质的浸润面作为传热面。
为优化上述技术方案,采取的具体措施还包括:
进一步地,所述吸热屏由吸热板、上封板、侧封板、盖板和下封板拼接组成;所述上封板和下封板相对设置,上封板和下封板均开设有与管排中各换热管相对应的孔,使得换热管固定在吸热屏中,上封板和下封板之间的四个面分别为吸热板、盖板和两块侧封板,太阳光反射至吸热板上。
进一步地,所述下封板与换热管固定连接,所述上封板不与换热管固定连接。
进一步地,每块吸热屏对应于一组管排,每组管排由若干根换热管组成,所述换热管包括预热管和过热管,所述预热管和过热管交替间隔排布。
进一步地,每组管排中,预热管和过热管采用载热补偿型布置,使得每根过热管旁均有预热管补偿,其中,所述过热管的直径大于预热管的直径。
进一步地,若干组管排沿周向分为相对的两侧,每侧的预热管通过预热管汇总管相互串联形成预热管组,每侧的过热管通过过热管汇总管相互串联形成过热管组;超超临界压力下的水分别通过两侧的预热管组,升温后产生超临界状态下的饱和蒸汽,饱和蒸汽通入另一侧的过热管组中,输出过热蒸汽。
进一步地,所述管排的材质为P91钢或P92钢材料。
进一步地,所述吸热介质为金属锡。
本发明的有益效果是:
1)采用间接高效传热方式,避免了太阳光直接照射,解决由于直接传热造成的热应力所带来的热疲劳、热棘轮等问题,很好的延长了吸热器的使用寿命;
2)采用金属锡为间接传热介质,一方面,金属锡具有高导热系数,能够将热量快速地传递给管排;另一方面,流动的金属锡能够将热量均匀地传递给管排,使得吸热屏具有优异的均温性能,能够承受高热流密度热载荷;
3)管排采用均热技术,进行载热补偿型布置,换热管与过热管相互间隔排布,由于水变成蒸汽后,移热能力大大降低,体积膨胀,升温过快,采用载热补偿型布置可以有效防止过热管快速升温引起局部过热而发生爆管等危险;
4)采用低热应力技术,管排与吸热屏的下封板进行焊接,与吸热屏的上封板不焊接,使得换热管受热能够受热自由伸缩膨胀,减小热应力;
5)吸热屏容易实现标准化、模块化,每一块吸热屏都作为单独的吸热元件,工作时互不干涉,可以单独进行维修更换,安全性能更好,维修拆装方便。
附图说明
图1为本发明的超超临界太阳能塔式水工质吸热器的外形示意图。
图2为本发明的吸热屏局部分解以及金属锡填充示意图。
图3为本发明的换热管与上下封板焊接示意图。
图4为本发明的超超临界太阳能塔式水工质吸热器系统管道流程示意图。
图5为本发明的管排中预热管与过热管的载热补偿型布置示意图。
图6为本发明的管排中预热管流向示意图。
附图标记如下:1-吸热屏;1.1-吸热板;1.2-上封板;1.3-侧封板;1.4-盖板;1.5-下封板;2-管排;2.1-预热管;2.2-预热管汇总管;2.3-过热管汇总管;2.4-过热管;3-吸热介质。
具体实施方式
现在结合附图对本发明作进一步详细的说明。
如图1和图2所示的一种超超临界太阳能塔式水工质吸热器,由吸热屏1、管排2以及吸热介质3组成,吸热屏1均相互独立,多块吸热屏1拼装围绕一圈。太阳光通过定日镜场反射聚集于吸热屏1的吸热板1.1上,吸热屏1内部的吸热介质3吸热升温后熔化,热量通过吸热介质3均匀地传递给浸没在吸热介质3中的管排2,并由换热流体(水)带走热量。本发明的吸热器采用了间接传热的方式,能够有效地解决直接传热带来巨大温差从而引起的热应力、热疲劳等问题。
如图1所示,每一块吸热屏1单独工作互不影响,损坏维修时可以进行单独拆卸更换,在工作中具有更好的安全性能和稳定性能,很大程度上降低了维修成本。
如图2和图3所示,吸热屏1由吸热板1.1、上封板1.2、侧封板1.3、盖板1.4和下封板1.5组成;吸热屏1内部填充吸热介质3,吸热介质3可采用金属锡,但不限于锡及锡与其它金属的混合物。当吸热器工作时,金属锡熔化,管排2中的换热管浸没在金属锡中,以管外壁与液态金属锡的浸润面作为传热面,采用了“锡浴”传热方式,具有均温的功能。一方面,金属锡具有高导热系数,能够稳定地增强换热管的换热效果;另一方面,流动的液态金属锡能够将热量均匀地传递给换热管,避免聚集的太阳光直接反射在管排2上而引起局部过热等危害。
如图3所示,上封板1.2和下封板1.5均开设有与管排2中各换热管相对应的孔,并且采用低热应力技术,换热管与下封板1.5相焊接,上封板1.2不与换热管焊接,使得换热管能够受热自由伸缩膨胀,减小热应力。
如图2、图3和图5所示,每组管排2由多根换热管组成,根据作用不同可将换热管分为预热管2.1和过热管2.4,并且过热管2.4的直径要大于预热管2.1的直径。预热管2.1和过热管2.4采用载热补偿型布置,使得每根过热管2.4旁均有预热管2.1补偿。由于水变成蒸汽后,移热能力大大降低,产生的饱和蒸汽进入过热管2.4进行过热时,体积膨胀,温度升高很快,采用载热补偿型布置能够有效防止过热管2.4快速升温引起局部过热而发生爆管等危险。系统整体的管路密封性以及管路的材料都有很严格的标准,管排2采用P91、P92等现有的耐高温承压材料。
如图4、图5和图6所示,管排2分为东西两侧(W1~Wn,E1~En),每组管排2的预热管2.1和过热管2.4可根据实际需求进行增减;由高压水泵将水的压力提升至超超临界压力,分别从东西两侧的第一组管排2进入,先经过每侧的预热管2.1进行预热升温,每侧的预热管组通过预热管汇总管2.2相互串联,并且每侧的过热管组也通过过热管汇总管2.3相互串联;水经过单侧的n组管排2中的预热管2.1,产生饱和蒸汽,继续通入另一侧的n组管排2中的过热管2.4,进行过热产生过热蒸汽输出,一部分直接推动汽轮机发电,另一部分配合储能系统将能量储存。
需要注意的是,发明中所引用的如“上”、“下”、“左”、“右”、“前”、“后”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (8)

  1. 一种超超临界太阳能塔式水工质吸热器,其特征在于,包括:吸热屏(1)、管排(2)和吸热介质(3);若干块彼此相互独立的吸热屏(1)拼装围成一圈,所述吸热屏(1)吸收太阳光的热量,使得充装在吸热屏(1)内部的吸热介质(3)升温熔化,所述吸热介质(3)再将热量传递给管排(2);所述管排(2)浸没在吸热介质(3)中,管排(2)的外壁与吸热介质(3)的浸润面作为传热面。
  2. 如权利要求1所述的一种超超临界太阳能塔式水工质吸热器,其特征在于:所述吸热屏(1)由吸热板(1.1)、上封板(1.2)、侧封板(1.3)、盖板(1.4)和下封板(1.5)拼接组成;所述上封板(1.2)和下封板(1.5)相对设置,上封板(1.2)和下封板(1.5)均开设有与管排(2)中各换热管相对应的孔,使得换热管固定在吸热屏(1)中,上封板(1.2)和下封板(1.5)之间的四个面分别为吸热板(1.1)、盖板(1.4)和两块侧封板(1.3),太阳光反射至吸热板(1.1)上。
  3. 如权利要求2所述的一种超超临界太阳能塔式水工质吸热器,其特征在于:所述下封板(1.5)与换热管固定连接,所述上封板(1.2)不与换热管固定连接。
  4. 如权利要求1所述的一种超超临界太阳能塔式水工质吸热器,其特征在于:每块吸热屏(1)对应于一组管排(2),每组管排(2)由若干根换热管组成,所述换热管包括预热管(2.1)和过热管(2.4),所述预热管(2.1)和过热管(2.4)交替间隔排布。
  5. 如权利要求4所述的一种超超临界太阳能塔式水工质吸热器,其特征在于:每组管排(2)中,预热管(2.1)和过热管(2.4)采用载热补偿型布置,使得每根过热管(2.4)旁均有预热管(2.1)补偿,其中,所述过热管(2.4)的直径大于预热管(2.1)的直径。
  6. 如权利要求4所述的一种超超临界太阳能塔式水工质吸热器,其特征在于:若干组管排(2)沿周向分为相对的两侧,每侧的预热管(2.1)通过预热管汇总管(2.2)相互串联形成预热管组,每侧的过热管(2.4)通过过热管汇总管(2.3)相互串联形成过热管组;超超临界压力下的水分别通过两侧的预热管组,升温后产生超临界状态下的饱和蒸汽,饱和蒸汽通入另一侧的过热管组中,输出过热蒸汽。
  7. 如权利要求1所述的一种超超临界太阳能塔式水工质吸热器,其特征在于:所述管排(2)的材质为P91钢或P92钢材料。
  8. 如权利要求1所述的一种超超临界太阳能塔式水工质吸热器,其特征在于:所述吸热介质(3)为金属锡。
PCT/CN2022/122152 2022-07-26 2022-09-28 一种超超临界太阳能塔式水工质吸热器 WO2024021296A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210881479.9A CN115183476A (zh) 2022-07-26 2022-07-26 一种超超临界太阳能塔式水工质吸热器
CN202210881479.9 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024021296A1 true WO2024021296A1 (zh) 2024-02-01

Family

ID=83520342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122152 WO2024021296A1 (zh) 2022-07-26 2022-09-28 一种超超临界太阳能塔式水工质吸热器

Country Status (2)

Country Link
CN (1) CN115183476A (zh)
WO (1) WO2024021296A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115521085A (zh) * 2022-10-31 2022-12-27 南京工业大学 一种塔式太阳能高温空气水泥生料分解系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102840680A (zh) * 2012-09-11 2012-12-26 杭州锅炉集团股份有限公司 带顶边吸热板结构的太阳能吸热器
CN106568213A (zh) * 2016-11-04 2017-04-19 李渊 一种太阳能储能集热器及太阳能集热系统
CN111102142A (zh) * 2019-12-03 2020-05-05 西安理工大学 一种基于超临界流体的塔式太阳能热发电系统
CN112856832A (zh) * 2021-01-13 2021-05-28 南京工业大学 用于太阳能塔式发电的新型平板式吸热器及使用其的系统
CN114353345A (zh) * 2022-01-13 2022-04-15 南京工业大学 一种超超临界塔式太阳能吸热器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102840680A (zh) * 2012-09-11 2012-12-26 杭州锅炉集团股份有限公司 带顶边吸热板结构的太阳能吸热器
CN106568213A (zh) * 2016-11-04 2017-04-19 李渊 一种太阳能储能集热器及太阳能集热系统
CN111102142A (zh) * 2019-12-03 2020-05-05 西安理工大学 一种基于超临界流体的塔式太阳能热发电系统
CN112856832A (zh) * 2021-01-13 2021-05-28 南京工业大学 用于太阳能塔式发电的新型平板式吸热器及使用其的系统
CN114353345A (zh) * 2022-01-13 2022-04-15 南京工业大学 一种超超临界塔式太阳能吸热器

Also Published As

Publication number Publication date
CN115183476A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
CN208578679U (zh) 一种基于塔式定日镜的改良布雷顿光热发电系统
WO2015154585A1 (zh) 一种太阳能与生物质能联合发电的优化集成系统
CN105201579A (zh) 基于二次反射聚光吸热技术的超临界二氧化碳发电系统
CN205047262U (zh) 基于二次反射聚光吸热技术的超临界二氧化碳发电系统
CN102635462B (zh) 一种太阳能碟式斯特林发动机用蓄热控温装置
CN204460147U (zh) 一种热管型蓄热式均温蒸汽发生器
CN101275785A (zh) 塔式太阳能热发电用高温热管中心接收器
US11879667B1 (en) Ultra-supercritical tower-type solar heat absorber
WO2024021296A1 (zh) 一种超超临界太阳能塔式水工质吸热器
CN107084102A (zh) 一种以二氧化碳为储热及做功工质的槽式太阳能光热发电系统
CN107989757A (zh) 具有储热功能的太阳能空气透平发电系统及其控制方法
CN102141301B (zh) 管腔一体化碟式太阳能热接收器
CN104567024B (zh) 显热蓄热式腔体聚光吸热太阳能集热装置及方法
CN106225541A (zh) 单塔式多集热器塔式光热发电系统
CN110260535B (zh) 一种太阳能连续烘焙系统及方法
CN101382277B (zh) 太阳能熔盐套管式蒸汽发生方法及其装置
CN217876499U (zh) 一种塔式太阳能超临界空气吸热器
CN209371201U (zh) 一种以液态金属作为传热介质的太阳能锅炉
CN201827868U (zh) 一种太阳能蒸汽发生装置
CN201973900U (zh) 一种管腔一体化碟式太阳能热接收器
CN204478535U (zh) 一种显热蓄热式腔体聚光吸热太阳能集热装置
CN217876502U (zh) 一种超超临界太阳能塔式水工质吸热器
CN102109164B (zh) 一种腔式太阳能直流蒸汽锅炉
CN206320945U (zh) 一种管子背面聚光塔式太阳能吸热器受热面模块
WO2024031804A1 (zh) 一种塔式太阳能超临界空气吸热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952737

Country of ref document: EP

Kind code of ref document: A1