WO2024020813A1 - 参考信号传输方法及通信装置 - Google Patents

参考信号传输方法及通信装置 Download PDF

Info

Publication number
WO2024020813A1
WO2024020813A1 PCT/CN2022/108050 CN2022108050W WO2024020813A1 WO 2024020813 A1 WO2024020813 A1 WO 2024020813A1 CN 2022108050 W CN2022108050 W CN 2022108050W WO 2024020813 A1 WO2024020813 A1 WO 2024020813A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic shift
delay
information
cyclic
mapping relationship
Prior art date
Application number
PCT/CN2022/108050
Other languages
English (en)
French (fr)
Inventor
胡远洲
王磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/108050 priority Critical patent/WO2024020813A1/zh
Publication of WO2024020813A1 publication Critical patent/WO2024020813A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present application relates to the field of communications, and in particular, to a reference signal transmission method and a communications device.
  • CS Zadoff-Chu
  • the number of cyclic shifts is related to the maximum multipath delay (which can be called the maximum multipath delay) among the multipath delays of all terminal devices served by the network equipment. Reference signals with different cyclic shifts are used.
  • the time domain length of the shift is greater than or equal to the maximum multipath delay, and the time domain length of the shifts generated by all cyclic shifts is less than or equal to the length of the symbol, that is, the symbol duration.
  • Embodiments of the present application provide a reference signal transmission method and a communication device, which can improve the capacity of the communication system.
  • the first aspect provides a reference signal transmission method.
  • the reference signal transmission method includes: the terminal device determines a first cyclic shift set according to a first mapping relationship and first information. Next, the terminal equipment acquires the first cyclic shift of the reference signal sequence according to the first cyclic shift set.
  • the reference signal sequence is transmitted according to the first cyclic shift.
  • the first mapping relationship includes correspondences between K delay intervals and K cyclic shift sets.
  • the K delay intervals do not overlap with each other, and there is a one-to-one correspondence between the K delay intervals and the K cyclic shift sets.
  • K is a positive integer greater than 1.
  • Any cyclic shift set in the K cyclic shift sets contains at least one cyclic shift. Any two cyclic shifts in the K cyclic shift sets are different.
  • the K delay intervals are based on The maximum delay is determined.
  • the terminal device can determine the first cyclic shift set according to the first mapping relationship and the first information, and obtain the first cyclic shift of the reference signal sequence according to the first cyclic shift set, Then, the reference signal sequence is sent according to the first cyclic shift.
  • a cyclic shift set can be determined for each delay interval according to the upper limit of each delay interval, thereby increasing the total number of cyclic shifts and improving the capacity of the communication system.
  • the first information may include delay information of the terminal device.
  • the terminal device determines the first cyclic shift set according to the first mapping relationship and the first information, which may include: the terminal device determines the first cyclic shift set according to the first mapping relationship and the delay information of the terminal device. In this way, the delay of the terminal device can be matched with the first cyclic shift set to take into account both delay and interference.
  • the terminal device can determine the delay information of the terminal device by itself. In this way, signaling overhead can be reduced, thereby improving communication efficiency.
  • the terminal device can also receive delay information from the network device and determine the delay information as the delay information of the terminal device.
  • the method provided in the first aspect may further include: the terminal device receives the first information from the network device. .
  • the first information includes a first index.
  • the terminal device determines the first cyclic shift set according to the first mapping relationship and the first information, which may include: the terminal device determines the first cyclic shift set according to the first index and the first mapping relationship.
  • the network device carries the first index indicating the delay interval in the first information, thereby reducing signaling overhead and improving communication efficiency.
  • the terminal device obtains the first cyclic shift of the reference signal sequence according to the first cyclic shift set, which may include: the terminal device receives the second index.
  • the terminal device determines the first cyclic shift from the first cyclic shift set according to the second index. In this way, the cyclic shift index can be allocated by the network device, thereby reducing conflicts between different terminal devices and improving communication efficiency.
  • the second index may be a cyclic shift index of the first cyclic shift.
  • the maximum delay may be the maximum multipath delay.
  • the delay interval may be a multipath delay interval.
  • the maximum multipath delay may be the maximum value of the maximum multipath delay of time domain channels of all terminal devices served by the network device.
  • each multipath delay interval can be determined based on the maximum multipath delay, and a cyclic shift set can be determined for each multipath delay interval based on the upper limit of each multipath delay interval, so that the cyclic shift can be increased
  • the total number increases the capacity of the communication system.
  • any terminal device can select a suitable cyclic shift in a cyclic shift set to avoid Conflicts with other terminal devices.
  • the minimum distance between any two cyclic shifts can be positively related to the maximum delay in the k-th delay interval, Among them, 0 ⁇ k ⁇ K, and k is an integer.
  • the minimum distance between any two cyclic shifts in the k-th cyclic shift set can be designed based on the maximum delay in the k-th delay interval, and the cyclic distance in the k-th cyclic shift set can be reduced as much as possible.
  • the minimum distance of the shift thereby increasing the number of cyclic shifts in the k-th delay interval, thereby increasing the total number of cyclic shifts.
  • the number of cyclic shifts can be positively related to the maximum delay and symbol duration in the k-th delay interval, Among them, 0 ⁇ k ⁇ K, and k is an integer.
  • the number of cyclic shifts in the k-th cyclic shift set can be designed based on the maximum delay in the k-th delay interval, and the number of cyclic shifts in the k-th cyclic shift set can be increased as much as possible, so that Increase the total number of circular shifts.
  • the method provided in the first aspect may further include: the terminal device receiving mapping relationship indication information from the network device.
  • the mapping relationship indication information is used to indicate the first mapping relationship.
  • the network device may indicate the first mapping relationship from the multiple mapping relationships, thereby improving flexibility.
  • the method provided in the first aspect may further include: the terminal device receiving second information from the network device.
  • the second information is used to indicate the maximum delay.
  • the maximum delay can be indicated through the network device, and the terminal device can determine the first mapping relationship based on the maximum delay, which can improve flexibility.
  • a reference signal transmission method includes: the network device obtains interval information.
  • the network device determines the first cyclic shift set according to the interval information and the first mapping relationship; the first mapping relationship includes the correspondence between K delay intervals and K cyclic shift sets; the K delay intervals and K There is a one-to-one correspondence between the cyclic shift sets, and the K delay intervals do not overlap with each other; K is a positive integer greater than 1, and any cyclic shift set among the K cyclic shift sets contains at least one cyclic shift, K Any two cyclic shifts in the cyclic shift sets are different, and the K delay intervals are determined based on the maximum delay.
  • the network device receives the reference signal sequence and demodulates the reference signal sequence according to the first cyclic shift set.
  • the interval information may include delay information of the terminal device.
  • the method provided in the second aspect may further include: the network device sends the first information.
  • the first information includes a first index.
  • the method provided in the second aspect may also include: the network device sends a second index.
  • the second index may be a cyclic shift index of the first cyclic shift.
  • the maximum delay may be the maximum multipath delay.
  • the delay interval may be a multipath delay interval.
  • the minimum distance between any two cyclic shifts is positively related to the maximum delay in the k-th delay interval.
  • 0 ⁇ k ⁇ K, and k is an integer.
  • the number of cyclic shifts is positively related to the maximum delay in the k-th delay interval and the symbol duration. Among them, 0 ⁇ k ⁇ K, and k is an integer.
  • the method provided in the second aspect further includes: the network device sends mapping relationship indication information.
  • the mapping relationship indication information is used to indicate the first mapping relationship.
  • the method provided in the second aspect may also include: the network device sends second information.
  • the second information is used to indicate the maximum delay.
  • a reference signal transmission method is provided.
  • the terminal equipment is configured with K cyclic shift sets. Any cyclic shift set among the K cyclic shift sets contains at least one cyclic shift.
  • the K cyclic shift sets correspond to K delay intervals one-to-one, and The K delay intervals do not overlap with each other.
  • K is a positive integer greater than 1. Any two cyclic shifts in the K cyclic shift sets are different.
  • the K delay intervals are determined based on the maximum delay.
  • the reference signal transmission method includes: the terminal device receives a third index from the network device, and the terminal device determines a first cyclic shift set according to the third index. The terminal device determines one cyclic shift in the first cyclic shift set as the first cyclic shift.
  • the terminal equipment sends the reference signal sequence according to the first cyclic shift.
  • the terminal device determines one cyclic shift in the first cyclic shift set as the first cyclic shift, which may include: the terminal device randomly shifts one cyclic shift in the first cyclic shift set. Determined as the first cyclic shift.
  • the method provided in the third aspect may also include: the terminal device receiving the second index from the network device.
  • the terminal device determines a cyclic shift in the first cyclic shift set as the first cyclic shift, which may include: the terminal device determines the cyclic shift corresponding to the second index in the first cyclic shift set as the first cyclic shift. Circular shift.
  • the minimum distance between any two cyclic shifts is positively related to the maximum delay in the k-th delay interval.
  • 0 ⁇ k ⁇ K, and k is an integer.
  • the number of cyclic shifts is positively related to the maximum delay in the k-th delay interval and the symbol duration. Among them, 0 ⁇ k ⁇ K, and k is an integer.
  • the method provided in the third aspect may further include: the terminal device receiving group indication information from the network device.
  • the group indication information is used to indicate K cyclic shift sets.
  • the fourth aspect provides a reference signal transmission method.
  • the reference signal transmission method includes: the network device obtains interval information.
  • the network device determines the first cyclic shift set according to the interval information and the first mapping relationship, the network device receives the reference signal sequence, and the network device demodulates the reference signal sequence according to the first cyclic shift set.
  • the first mapping relationship includes a correspondence between K delay intervals and K cyclic shift sets; there is a one-to-one correspondence between the K delay intervals and K cyclic shift sets, and the K delay intervals are mutually exclusive.
  • K is a positive integer greater than 1
  • any cyclic shift set in the K cyclic shift sets contains at least one cyclic shift
  • any two cyclic shifts in the K cyclic shift sets are different
  • K delays The interval is determined based on the maximum delay.
  • the method provided in the fourth aspect may also include: the network device sends a third index.
  • the minimum distance between any two cyclic shifts is positively related to the maximum delay in the k-th delay interval.
  • 0 ⁇ k ⁇ K, and k is an integer.
  • the number of cyclic shifts is positively related to the maximum delay in the k-th delay interval and the symbol duration.
  • 0 ⁇ k ⁇ K, and k is an integer.
  • the method provided in the fourth aspect may also include: the network device sends group indication information.
  • the group indication information is used to indicate K cyclic shift sets.
  • a communication device in a fifth aspect, includes: a processing module and a transceiver module.
  • a processing module configured to determine a first cyclic shift set according to the first mapping relationship and the first information.
  • the first mapping relationship includes correspondences between K delay intervals and K cyclic shift sets.
  • the K delay intervals do not overlap with each other, and there is a one-to-one correspondence between the K delay intervals and the K cyclic shift sets.
  • K is a positive integer greater than 1.
  • Any cyclic shift set in the K cyclic shift sets contains at least one cyclic shift. Any two cyclic shifts in the K cyclic shift sets are different.
  • the K delay intervals are based on The maximum delay is determined.
  • a processing module configured to obtain the first cyclic shift of the reference signal sequence according to the first cyclic shift set.
  • a transceiver module configured to send the reference signal sequence according to the first cyclic shift.
  • the first information may include delay information of the terminal device.
  • the processing module may be specifically configured to determine the first cyclic shift set according to the first mapping relationship and the delay information of the terminal device.
  • the transceiver module can also be used to receive the first information from the network device.
  • the first information includes a first index.
  • the processing module may be specifically configured to determine the first cyclic shift set according to the first index and the first mapping relationship.
  • the processing module may be configured to receive the second index through the transceiver module. and determining the first cyclic shift from the first cyclic shift set according to the second index.
  • the maximum delay may be the maximum multipath delay.
  • the delay interval may be a multipath delay interval.
  • the minimum distance between any two cyclic shifts can be positively related to the maximum delay in the k-th delay interval, Among them, 0 ⁇ k ⁇ K, and k is an integer.
  • the number of cyclic shifts can be positively related to the maximum delay in the k-th delay interval and the symbol duration. , where 0 ⁇ k ⁇ K, and k is an integer.
  • the transceiver module can also be used to receive mapping relationship indication information from the network device.
  • the mapping relationship indication information is used to indicate the first mapping relationship.
  • the transceiver module can also be used to receive second information from the network device.
  • the second information is used to indicate the maximum delay.
  • the transceiver module may include a receiving module and a sending module. Wherein, the transceiver module is used to implement the sending function and receiving function of the communication device of the fifth aspect.
  • the communication device of the fifth aspect may further include a storage module that stores programs or instructions.
  • the processing module executes the program or instruction, the communication device can perform the reference signal transmission method of the first aspect.
  • the communication device in the fifth aspect may be a terminal device, a chip (system) or other components or components that can be installed in the terminal device, or a device including the terminal device. This application does not cover this. Make limitations.
  • the technical effects of the communication device of the fifth aspect can be referred to the technical effects of the reference signal transmission method of the first aspect, which will not be described again here.
  • a sixth aspect provides a communication device.
  • the communication device includes: a processing module and a transceiver module.
  • Processing module used to obtain interval information.
  • the processing module is also configured to determine the first cyclic shift set according to the interval information and the first mapping relationship.
  • the first mapping relationship includes correspondences between K delay intervals and K cyclic shift sets. There is a one-to-one correspondence between K delay intervals and K cyclic shift sets, and the K delay intervals do not overlap with each other.
  • K is a positive integer greater than 1.
  • Any cyclic shift set in the K cyclic shift sets contains at least one cyclic shift. Any two cyclic shifts in the K cyclic shift sets are different.
  • the K delay intervals are based on The maximum delay is determined.
  • Transceiver module used to receive the reference signal sequence.
  • the processing module is also configured to demodulate the reference signal sequence according to the first cyclic shift set.
  • the interval information may include delay information of the terminal device.
  • the transceiver module can also be used to send the first information.
  • the first information includes a first index.
  • the transceiver module can also be used to send the second index.
  • the maximum delay may be the maximum multipath delay.
  • the delay interval may be a multipath delay interval.
  • the minimum distance between any two cyclic shifts can be positively correlated with the maximum delay in the k-th delay interval.
  • 0 ⁇ k ⁇ K, and k is an integer.
  • the number of cyclic shifts can be positively related to the maximum delay in the k-th delay interval and the symbol duration. .
  • 0 ⁇ k ⁇ K, and k is an integer.
  • the transceiver module may also be used to send mapping relationship indication information, where the mapping relationship indication information is used to indicate the first mapping relationship.
  • the transceiver module can also be used to send second information, where the second information is used to indicate the maximum delay.
  • the transceiver module may include a receiving module and a sending module. Wherein, the transceiver module is used to implement the sending function and receiving function of the communication device of the sixth aspect.
  • the communication device of the sixth aspect may further include a storage module that stores programs or instructions.
  • the processing module executes the program or instruction, the communication device can perform the reference signal transmission method of the second aspect.
  • the communication device in the sixth aspect may be a network device, a chip (system) or other components or components that can be disposed in the network device, or a device including a network device. This application does not cover this. Make limitations.
  • a communication device configured with K cyclic shift sets. Any cyclic shift set among the K cyclic shift sets contains at least one cyclic shift.
  • the K cyclic shift sets correspond to K delay intervals one-to-one. And the K delay intervals do not overlap each other, K is a positive integer greater than 1, any two cyclic shifts in the K cyclic shift sets are different, and the K delay intervals are determined based on the maximum delay.
  • the transceiver module is used to receive the third index from the network device.
  • a processing module configured to determine a first cyclic shift set according to the third index, and determine a cyclic shift in the first cyclic shift set as the first cyclic shift.
  • the processing module is specifically configured to randomly determine a cyclic shift in the first cyclic shift set as the first cyclic shift.
  • the transceiver module is also used to receive the second index from the network device.
  • the processing module is specifically configured for the terminal device to determine the cyclic shift corresponding to the second index in the first cyclic shift set as the first cyclic shift.
  • the minimum distance between any two cyclic shifts is positively related to the maximum delay in the k-th delay interval, where , 0 ⁇ k ⁇ K, and k is an integer.
  • the number of cyclic shifts is positively related to the maximum delay in the k-th delay interval and the symbol duration. Among them, 0 ⁇ k ⁇ K, and k is an integer.
  • the transceiver module is also used to receive group indication information from the network device, where the group indication information is used to indicate K cyclic shift sets.
  • the transceiver module may include a receiving module and a sending module. Wherein, the transceiver module is used to implement the sending function and receiving function of the communication device of the seventh aspect.
  • the communication device of the seventh aspect may further include a storage module that stores programs or instructions.
  • the processing module executes the program or instruction, the communication device can perform the reference signal transmission method of the third aspect.
  • the communication device in the seventh aspect may be a terminal device, a chip (system) or other components or components that can be installed in the terminal device, or a device including the terminal device. This application does not cover this. Make limitations.
  • the technical effects of the communication device of the seventh aspect can be referred to the technical effects of the reference signal transmission method of the first aspect, which will not be described again here.
  • a communication device in an eighth aspect, includes: a processing module and a transceiver module.
  • Transceiver module used to obtain interval information.
  • a processing module configured to determine the first cyclic shift set according to the interval information and the first mapping relationship.
  • the transceiver module is also used to receive the reference signal sequence.
  • the processing module is also configured to demodulate the reference signal sequence according to the first cyclic shift set.
  • the first mapping relationship includes a correspondence between K delay intervals and K cyclic shift sets; there is a one-to-one correspondence between the K delay intervals and K cyclic shift sets, and the K delay intervals are mutually exclusive.
  • K is a positive integer greater than 1
  • any cyclic shift set in the K cyclic shift sets contains at least one cyclic shift
  • any two cyclic shifts in the K cyclic shift sets are different
  • K delays The interval is determined based on the maximum delay.
  • the transceiver module is also used to send the third index.
  • the minimum distance between any two cyclic shifts is positively related to the maximum delay in the k-th delay interval, where , 0 ⁇ k ⁇ K, and k is an integer.
  • the number of cyclic shifts is positively related to the maximum delay in the k-th delay interval and the symbol duration. Among them, 0 ⁇ k ⁇ K, and k is an integer.
  • the transceiver module is also used to send group indication information.
  • the group indication information is used to indicate K cyclic shift sets.
  • the transceiver module may include a receiving module and a sending module. Wherein, the transceiver module is used to implement the sending function and receiving function of the communication device of the eighth aspect.
  • the communication device of the eighth aspect may further include a storage module that stores programs or instructions.
  • the processing module executes the program or instruction, the communication device can perform the reference signal transmission method of the fourth aspect.
  • the communication device in the eighth aspect may be a network device, a chip (system) or other components or components that can be disposed in the network device, or a device including a network device. This application does not cover this. Make limitations.
  • the technical effects of the communication device of the eighth aspect can be referred to the technical effects of the reference signal transmission method of the first aspect, which will not be described again here.
  • a communication device is provided.
  • the communication device is used to perform the reference signal transmission method described in any one of the first to fourth aspects.
  • the communication device described in the ninth aspect may be the terminal device described in any one of the first or third aspects or the network device described in any one of the second or fourth aspects. , or a chip (system) or other component or component that can be provided in the terminal equipment or network equipment, or a device including the terminal equipment or network equipment.
  • the communication device described in the ninth aspect includes a corresponding module, unit, or means (means) for implementing the reference signal transmission method described in any one of the first to fourth aspects.
  • the module, unit, or means The means can be implemented by hardware, software, or by hardware executing corresponding software implementation.
  • the hardware or software includes one or more modules or units for performing the functions involved in the above reference signal transmission method.
  • a communication device in a tenth aspect, includes: a processor configured to execute the reference signal transmission method described in any one of the possible implementations of the first to fourth aspects.
  • the communication device described in the tenth aspect may further include a transceiver.
  • the transceiver can be a transceiver circuit or an interface circuit.
  • the transceiver can be used for the communication device described in the tenth aspect to communicate with other communication devices.
  • the communication device described in the tenth aspect may further include a memory.
  • This memory can be integrated with the processor or provided separately.
  • the memory may be used to store computer programs and/or data involved in the reference signal transmission method described in any one of the first to fourth aspects.
  • the communication device described in the tenth aspect may be the terminal device in the first or third aspect or the network device in the second or fourth aspect, or may be provided in the terminal device or network.
  • a communication device in an eleventh aspect, includes: a processor, the processor is coupled to a memory, and the processor is used to execute a computer program stored in the memory, so that the communication device executes any one of the possible implementation methods of the first to fourth aspects. reference signal transmission method.
  • the communication device described in the eleventh aspect may further include a transceiver.
  • the transceiver can be a transceiver circuit or an interface circuit.
  • the transceiver can be used for the communication device described in the eleventh aspect to communicate with other communication devices.
  • the communication device described in the eleventh aspect may be the terminal equipment in the first or third aspect or the network equipment in the second or fourth aspect, or may be provided in the terminal equipment or Chips (systems) or other components or components in network equipment, or devices containing the terminal equipment or network equipment.
  • a communication device including: a processor and a memory; the memory is used to store a computer program, and when the processor executes the computer program, the communication device executes the first to fourth aspects.
  • the communication device described in the twelfth aspect may further include a transceiver.
  • the transceiver can be a transceiver circuit or an interface circuit.
  • the transceiver can be used for the communication device described in the twelfth aspect to communicate with other communication devices.
  • the communication device described in the twelfth aspect may be the terminal equipment in the first or third aspect or the network equipment in the second or fourth aspect, or may be provided in the terminal equipment or Chips (systems) or other components or components in network equipment, or devices containing the terminal equipment or network equipment.
  • a communication device including: a processor; the processor is configured to be coupled to a memory, and after reading the computer program in the memory, execute the steps in the first to fourth aspects according to the computer program.
  • the reference signal transmission method described in any implementation manner.
  • the communication device described in the thirteenth aspect may further include a transceiver.
  • the transceiver can be a transceiver circuit or an interface circuit.
  • the transceiver can be used for the communication device described in the thirteenth aspect to communicate with other communication devices.
  • the communication device described in the thirteenth aspect may be the terminal equipment in the first or third aspect or the network equipment in the second or fourth aspect, or may be provided in the terminal equipment or Chips (systems) or other components or components in network equipment, or devices containing the terminal equipment or network equipment.
  • a fourteenth aspect provides a processor.
  • the processor is configured to execute the reference signal transmission method described in any possible implementation manner of the first to fourth aspects.
  • a communication system in a fifteenth aspect, includes one or more terminal devices as described in the first aspect, and one or more network devices as described in the second aspect.
  • the communication system includes one or more terminal devices as described in the third aspect, and one or more network devices as described in the fourth aspect.
  • the terminal device may be configured to perform the reference signal transmission method described in any one of the first aspect or the third aspect
  • the network device may be configured to perform the reference signal transmission method described in any one of the second aspect or the fourth aspect. .
  • a computer-readable storage medium including: a computer program or instructions; when the computer program or instructions are run on a computer, the computer is caused to execute any one of the possible methods of the first to fourth aspects. Implement the reference signal transmission method described in the manner.
  • a computer program product including a computer program or instructions.
  • the computer program or instructions When the computer program or instructions are run on a computer, the computer is caused to execute any one of the possible implementation methods of the first to fourth aspects.
  • Figure 1 is a schematic diagram of the relationship between the cyclic shift area and symbol duration provided by an embodiment of the present application
  • Figure 2 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart 1 of a reference signal transmission method provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of the relationship between cyclic shift and symbol duration in different scenarios provided by the embodiment of the present application;
  • FIG. 5 is a schematic flowchart 2 of the reference signal transmission method provided by the embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 7 is a schematic second structural diagram of a communication device provided by an embodiment of the present application.
  • Maximum multipath delay refers to the maximum multipath delay among the multipath delays (delays corresponding to multiple channels/delays corresponding to multiple transmission paths) of all terminal devices within the service range of the network device. For example, there are three terminal devices within the service range of the network service.
  • the maximum multipath delay of terminal device 0 is A0.
  • the maximum multipath delay of terminal device 1 is A1.
  • the multipath delay of terminal device 0 is A1.
  • the maximum value is A2, then the maximum multipath delay can be the maximum value among A0, A1 and A2. It should be noted that the value of the maximum multipath delay can be different in different application environments.
  • the network device can indicate different maximum multipath delays through signaling based on different application scenarios, that is, indicate different maximum multipath delays.
  • the root mean square delay of the terminal equipment can refer to the delay determined based on the second moment of the power delay spectrum of the channel of the terminal equipment.
  • the root mean square delay of different terminal devices may be different, and the maximum root mean square delay may be the maximum value of the root mean square delay of all terminal devices.
  • the average delay of the terminal equipment can refer to the delay determined based on the first moment of the power delay spectrum of the channel of the terminal equipment.
  • the average delays of different terminal devices may be different, and the maximum average delay may be the maximum value of the average delays of all terminal devices.
  • Time window It can refer to the duration of the power delay spectrum in which the power accounts for q percent of the total power of the power delay spectrum of the terminal equipment.
  • the time windows of different terminal devices may be different, and the maximum time window may be the maximum value of the time windows of all terminal devices.
  • the power delay spectrum of the terminal device is expressed as P
  • the power value of the t-th time window is expressed as P(t).
  • the starting time of t is time t0
  • the ending time is time t3.
  • Time t1 and time t2 can be determined. Time t1 does not exceed time t2. Both time t1 and time t2 are not less than time t0 and do not exceed time t3.
  • the sum of the powers of the power delay spectrum between time t1 and time t2 accounts for q percent of the total power (that is, the sum of the powers of the power delay spectrum between time t0 and time t3), and time t0 and time t1
  • the sum of power of the power delay spectrum between time t2 and time t3 is the same, then the value of t2-t1 can be considered as the length of the time window.
  • the value of q can be predefined, such as 50.
  • the duration of the cyclic prefix of the symbol can be the symbol of the data or the symbol of the reference signal. It can be understood that since different paths of a multipath channel may have different channel delays, using cyclic prefix can resist inter-symbol interference caused by multipath channels. The duration of the cyclic prefix is generally close to or exceeds the maximum multipath delay.
  • the symbol may be an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol or a single-carrier frequency division multiple access (Single-carrier Frequency-Division Multiple Access, SC-FDMA) symbol, which is not limited in this application. Symbols may also be called time domain symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • the maximum delay can be a predefined delay. Alternatively, the maximum delay may be the delay notified by the network device to the terminal device through signaling. The maximum delay may be determined based on one or more of the following: maximum multipath delay, maximum root mean square delay, maximum average delay , the maximum time window, or the duration of the symbol's cyclic prefix. For example, the maximum delay may be one of the following: a maximum multipath delay, a maximum root mean square delay, a maximum average delay, a maximum time window, or a duration of a cyclic prefix of a symbol.
  • Circular shift It can also be called a circular shift value, which can refer to the number of bits for circular shift.
  • the cyclic shift area can be a period of time in the time domain channel. Based on the received reference signal of one symbol or multiple symbols, the network device can perform channel estimation to obtain the estimated frequency domain channel and the time domain channel corresponding to the frequency domain channel.
  • the time domain channel can be divided into one or more cyclic shift areas, and different cyclic shift areas do not overlap.
  • a cyclic shift in the k-th cyclic shift set of K cyclic shift sets corresponds to a cyclic shift region, and any two cyclic shifts of the k-th cyclic shift set correspond to two different cyclic shifts. Regional correspondence.
  • the size of the cyclic shift region corresponding to the k-th cyclic shift set may be positively related to the maximum delay in the delay interval.
  • k is an integer greater than or equal to 0
  • K is an integer greater than 1
  • k ⁇ K is an integer greater than 1
  • the network device receives the reference signal sequence sent by the terminal device and performs channel estimation to obtain the time domain channel of the terminal device, then the Most or all of the energy of the time domain channel of the terminal device is contained in a cyclic shift region corresponding to a cyclic shift selected by the terminal device.
  • CSs can be used to achieve orthogonal multiplexing, so that the network device Different terminal devices can be distinguished. It can be seen that the number of CS determines the capacity of the communication system.
  • the number of CSs is related to the maximum multipath delay (also called the maximum multipath delay) among the multipath delays of all terminal devices served by the network device, and reference signals of different CSs are used.
  • the time domain length of the shift is greater than or equal to the maximum multipath delay, and the time domain length of the shift produced by all cyclic shifts, that is, the cyclic shift (CS) area is less than or equal to the length used to transmit the reference signal.
  • the length of the symbol i.e. symbol duration. That is to say, the number of cyclic shifts and the time domain channels of all terminal devices served by the network device can satisfy the following relationship: N cs,base T max ⁇ T symb .
  • N cs,base is the number of cyclic shifts within the service range of the network device (it can also be called the number of basic cyclic shifts)
  • T max is the maximum delay of the terminal device within the service range of the network device
  • T symb is Symbol duration.
  • the network device determines the maximum number of terminal devices that the reference signal can be used to distinguish based on the delay of the terminal devices within its service range, such as multipath delay, is 4, then 4*T max ⁇ T symb .
  • 4*T max T symb as an example, the relationship between the cyclic shift area and symbol duration is shown in Figure 1. Then the total duration of CS area 0 to CS area 3 is equal to T symb .
  • an embodiment of the present application provides a reference signal transmission method.
  • the method includes: the terminal device determines a first cyclic shift set according to the first mapping relationship and the first information.
  • the terminal equipment acquires the first cyclic shift of the reference signal sequence according to the first cyclic shift set.
  • the reference signal sequence is transmitted according to the first cyclic shift.
  • the first mapping relationship includes the corresponding relationship between K delay intervals and K cyclic shift sets; the K delay intervals do not overlap with each other, and the K delay intervals and K cyclic shift sets One-to-one correspondence; K is a positive integer greater than 1, any cyclic shift set in the K cyclic shift sets contains at least one cyclic shift, any two cyclic shifts in the K cyclic shift sets are different, K The delay interval is determined based on the maximum delay.
  • the terminal device may be configured with multiple cyclic shift sets, the network device may specify a first cyclic shift set from the multiple cyclic shift sets, and the terminal device may further determine the first cyclic shift set from the first cyclic shift set. cyclic shift, and then transmit the reference signal according to the first cyclic shift.
  • a cyclic shift set can be determined for each delay interval, thereby increasing the total number of cyclic shifts and improving the capacity of the communication system.
  • NB-IoT narrowband-internet of things
  • GSM global system for mobile communications
  • EDGE enhanced data Rate GSM evolution system
  • WCDMA wideband code division multiple access
  • CDMA2000 code division multiple access 2000 system
  • time division synchronous code division Multiple access system time division-synchronization code division multiple access, TD-SCDMA
  • WiFi wireless fidelity
  • V2X vehicle to everything
  • D2D Internet of Vehicles communication system
  • 4G 4th generation
  • 4G 4th generation
  • 4G mobile communication system, such as long term evolution (LTE) system
  • WiMAX fifth generation
  • 5th generation, 5G mobile communication systems
  • NR new radio
  • 6G sixth generation
  • FIG. 2 is an architectural schematic diagram of a communication system to which the reference signal transmission method provided by the embodiment of the present application is applicable.
  • the communication system includes a network device 201 and terminal devices (202a, 202b).
  • a communication connection can be established between the network device 201 and the terminal devices (202a, 202b).
  • the above-mentioned network device is a device located on the network side of the above-mentioned communication system and having a wireless transceiver function, or a chip or chip system that can be installed on the device.
  • the network equipment includes but is not limited to: access points (APs) in wireless fidelity (WiFi) systems, such as home gateways, routers, servers, switches, bridges, etc., macro base stations, micro base stations ( Also known as small station), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (BSC) , base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., can also be 5G, such as gNB in the new radio (NR) system, or satellite
  • the above network device may refer to a cell, that is, one network device corresponds to one cell.
  • the base station may include a BBU and a remote radio unit (remote radio unit, RRU).
  • the BBU and RRU can be placed in different places.
  • the RRU is remote and placed in a high traffic area, and the BBU is placed in the central computer room.
  • BBU and RRU can also be placed in the same computer room.
  • the BBU and RRU can also be different components under the same rack.
  • the above-mentioned terminal equipment is a terminal that is connected to the above-mentioned communication system and has a wireless transceiver function, or a chip or chip system that can be installed on the terminal.
  • the terminal equipment may also be called an access terminal, a subscriber unit (subscriber unit), a subscriber station, a mobile station, a mobile station (MS), a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication Device, user agent, or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), tablet computer (Pad), cellular phone (cellular phone), smart phone (smart phone), wireless data card, personal digital assistant (personal digital assistant, PDA) ) computers, wireless modems, handheld devices, laptop computers, machine type communication (MTC) terminals, computers with wireless transceiver functions, virtual reality (VR) ) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, intelligent Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, vehicle-mounted terminals, terminals with terminal functions RSU, UAV, etc.
  • MTC machine type communication
  • VR virtual reality
  • AR augmented reality
  • the terminal device of this application can also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit built into the vehicle as one or more components or units.
  • the vehicle uses the built-in vehicle-mounted module, vehicle-mounted module, Vehicle-mounted components, vehicle-mounted chips or vehicle-mounted units can implement the reference signal transmission method provided by this application.
  • the reference signal transmission method provided by the embodiment of the present application can be applied between any two nodes shown in Figure 2, such as between terminal devices, between network devices, and between terminal devices and network devices. , for specific implementation, please refer to the following method embodiments, which will not be described again here.
  • FIG. 2 is only a simplified schematic diagram for ease of understanding.
  • the communication system may also include other network devices and/or other terminal devices, which are not shown in FIG. 2 .
  • the first cyclic shift set can be determined from the first mapping relationship according to the information related to the delay interval, and further the first cyclic shift can be determined from the first cyclic shift set, and then the first cyclic shift can be determined according to the first cyclic shift set.
  • Cyclically shifted transmission reference signal sequence For example, the process of transmitting the reference signal sequence described in this embodiment may refer to the reference signal transmission method shown in FIG. 3 .
  • FIG. 3 is a schematic flowchart 1 of a reference signal transmission method provided by an embodiment of the present application. This reference signal transmission method can be applied to communication between any two nodes shown in Figure 2.
  • the reference signal transmission method includes the following steps:
  • the terminal device determines a first cyclic shift set according to the first mapping relationship and the first information.
  • the terminal device may be any terminal device in Figure 2.
  • the first mapping relationship includes correspondences between K delay intervals and K cyclic shift sets.
  • the K delay intervals do not overlap with each other, and the K delay intervals are determined based on the maximum delay.
  • K is a positive integer greater than 1, any cyclic shift set among the K cyclic shift sets includes at least one cyclic shift, and any two cyclic shifts among the K cyclic shift sets are different.
  • the maximum delay may refer to the above. For example, it may be the maximum delay among the delays of all terminal devices within the service range of the network device. Alternatively, the maximum delay can be a predefined delay. Alternatively, the maximum delay may be a delay notified by the network device to the terminal device through signaling. The maximum delay may be determined based on one or more of the following: maximum multipath delay, maximum root mean square delay, maximum average delay, maximum time window, or the duration of the cyclic prefix of the symbol.
  • the delay interval may be a delay range divided according to the delay size of the terminal device.
  • the delay interval may be related to one or more of the following delays: multipath delay, root mean square delay, average delay, time window, or the duration of the cyclic prefix of the symbol.
  • the delay interval is one or more of the following: the range of the multipath delay, the range of the root mean square delay, the range of the average delay, the range of the time window, or the range of the duration of the cyclic prefix of the symbol.
  • the delay interval can be determined based on the maximum delay.
  • the delay interval can be determined based on the maximum multipath delay. That is to say, at this time, the delay interval may be the range of multipath delay, that is, the multipath delay interval.
  • the maximum multipath delay may be the maximum value of the maximum multipath delay of time domain channels of all terminal devices served by the network device.
  • each multipath delay interval can be determined based on the maximum multipath delay, and a cyclic shift set can be determined for each multipath delay interval based on the upper limit of each multipath delay interval, so that the cyclic shift can be increased
  • the total number increases the capacity of the communication system.
  • any terminal device can select a suitable cyclic shift in a cyclic shift set to avoid Conflicts with other terminal devices.
  • a cyclic shift set refers to a set of cyclic shifts, and each cyclic shift set includes at least one cyclic shift.
  • each cyclic shift set includes at least one cyclic shift.
  • the implementation principle of the number of cyclic shifts in the cyclic shift set please refer to the following, for example, The relevant introduction will not be repeated here.
  • the minimum distance between any two cyclic shifts is exactly the same as the upper limit of the k-th delay interval. Relevant, where 0 ⁇ k ⁇ K, and k is an integer.
  • the minimum distance between any two cyclic shifts in the k-th cyclic shift set can be designed based on the maximum delay (ie, the upper limit) in the k-th delay interval, and the k-th cycle can be reduced as much as possible
  • the minimum distance of cyclic shifts in the shift set thereby increasing the number of cyclic shifts in the k-th delay interval, thereby increasing the total number of cyclic shifts.
  • the number of cyclic shifts and the upper limit of the k-th delay interval (which can be called the maximum delay of the k-th delay interval), and the symbol
  • the duration is positively related, where 0 ⁇ k ⁇ K, and k is an integer.
  • the number of cyclic shifts in the k-th cyclic shift set can be designed based on the maximum delay in the k-th delay interval, and the number of cyclic shifts in the k-th cyclic shift set can be increased as much as possible. Thereby increasing the total number of cyclic shifts.
  • each cyclic shift in the k-th cyclic shift set corresponds to a cyclic shift index.
  • the K delay intervals do not overlap with each other, and the K delay intervals are determined based on the maximum delay. That is to say, the delays covered by different delay intervals in the K delay intervals are different (that is, the delay of the terminal equipment belongs to the k-th delay interval, then the delay of the terminal equipment does not belong to other delay intervals) , and each delay interval among the K delay intervals is related to the maximum delay. For example, if the maximum delay is T max and K is 3, then the K delay intervals can be respectively: [0, T max /3), or, or, At this time, the number of cyclic shift sets is also three.
  • the delay of the terminal device belongs to a delay interval, which means that the interval includes the delay of the terminal device. For example, if the interval is The delay of the terminal equipment is t delay , when when , it means that t delay belongs to the interval Or interval Contains t delay , which can be expressed as
  • each delay interval corresponds to a cyclic shift set
  • the cyclic shift sets corresponding to different delay intervals are different.
  • K delay intervals including [0,T max /3), [T max /3,2T max /3), and [2T max /3,T max ] as an example
  • the delay interval [0,T max /3) corresponds to the cyclic shift set P 0
  • the delay interval [T max /3, 2T max /3) corresponds to the cyclic shift set P 1
  • the delay interval [2T max /3, T max ] corresponds to the cyclic shift set P2 .
  • Table 1 the corresponding relationship between the delay interval and the cyclic shift set in the first mapping relationship is as shown in Table 1 below:
  • the first information may include: delay information of the terminal device, or a first index.
  • the delay information of the terminal device may include one or more of the following delays: multipath delay of the terminal device, root mean square delay of the terminal device, average delay of the terminal device, time window of the terminal device, or The duration of the cyclic prefix for the terminal device's symbol.
  • the delay in the delay information is related to the maximum delay of the terminal device.
  • the delay in the delay information may be the multipath delay of the terminal device.
  • the delay in the delay information may be the maximum multipath delay of the terminal device.
  • the delay information of the terminal device can be determined by the terminal device itself or come from the network device.
  • the terminal device's delay information can be obtained by the terminal device itself through sensing.
  • the terminal device can send a signal such as a carrier signal or a single tone signal as a sensing signal, and then receive the signal reflected back by the network device and/or the surrounding environment objects, and estimate the delay of the terminal device based on the received signal, thereby obtaining Delay information.
  • the delay information of the terminal device can come from the network device.
  • the network device may perform channel estimation based on the reference signal that has been received from the terminal device to obtain the delay information, and carry the delay information in signaling to notify the terminal device.
  • the signaling carrying delay information may be high-level signaling, such as radio resource control (RRC) signaling.
  • RRC radio resource control
  • the first index may be an index of the delay interval.
  • the first index may come from the network device.
  • the terminal device determines the first cyclic shift set according to the first mapping relationship and the first information, may include: the terminal device converts the delay information of the terminal device The cyclic shift set corresponding to the delay interval in which the delay in is located is determined as the first cyclic shift set.
  • the delay of the terminal device can be matched with the first cyclic shift set to take into account both delay and interference.
  • the first cyclic shift set is the cyclic shift set P 1 .
  • the method shown in FIG. 3 may further include: the terminal device receiving the first information from the network device.
  • the first information includes a first index.
  • the terminal device determines the first cyclic shift set according to the first mapping relationship and the first information, which may include: the terminal device determines the first cyclic shift set according to the first index and the first mapping relationship.
  • the terminal device determines the cyclic shift set corresponding to the delay interval indicated by the first index as the first cyclic shift set.
  • the network device carries the first index indicating the delay interval in the first information, thereby reducing signaling overhead and improving communication efficiency.
  • the delay interval [0,T max / 3) corresponds to the cyclic shift set P 0
  • the delay interval [T max /3, 2T max /3) corresponds to the cyclic shift set P 1
  • the delay interval [2T max /3, T max ] corresponds to the cyclic shift set P 2.
  • the index of the delay interval [0, T max /3) is interval index #0
  • the index of the delay interval [T max /3, 2T max /3) is interval index #1
  • the index of the delay interval [2T max / 3 is interval index #2.
  • the correspondence between the interval index, delay interval and cyclic shift set is as shown in Table 2 below. If the first index is interval index #1, then the first cyclic shift set is cyclic shift set P 1 .
  • the cyclic shift may also be called a cyclic shift value.
  • the terminal device acquires the first cyclic shift of the reference signal sequence according to the first cyclic shift set.
  • the reference signal sequence can be any of the following: ZC sequence, pseudo-random noise (pseudo noise, PN) sequence, quadrature phase shift keying (QPSK) sequence generated based on pseudo-random gold sequence.
  • ZC sequence pseudo-random noise (pseudo noise, PN) sequence
  • QPSK quadrature phase shift keying
  • the terminal device can determine the first cyclic shift by itself from the first cyclic shift set.
  • the terminal device may randomly determine the first cyclic shift from the cyclic shifts of the first cyclic shift set.
  • the terminal device may send the first cyclic shift to the network device.
  • the first cyclic shift may be carried in the data sent by the terminal device.
  • the first cyclic shift set (P 1 ) is the first cyclic shift set, and the first cyclic shift set includes 3 cyclic shifts.
  • the 0th cyclic shift of the first cyclic shift set is The first cyclic shift of the first cyclic shift set is The second cyclic shift of the first cyclic shift set is Right now Then the terminal device can is determined as the first circular shift, or the Determine it as a circular shift, or change Confirmed as circular shift.
  • the terminal device may receive a second index from the network device, and determine the first cyclic shift from the first cyclic shift set according to the second index.
  • the second index is the cyclic shift index of the first cyclic shift.
  • the second index may be carried in signaling, such as downlink control signaling (DCI).
  • DCI downlink control signaling
  • the cyclic shift index is cyclic shift index #0
  • the cyclic shift index of is cyclic shift index #1
  • the cyclic shift index is cyclic shift index #2. If the second index is cyclic shift index #1, then the first cyclic shift is
  • the terminal device sends the reference signal sequence to the network device according to the first cyclic shift.
  • the network device receives the reference signal sequence from the terminal device.
  • the terminal device may generate a reference signal sequence according to the first cyclic shift and send the reference signal sequence to the network device.
  • the terminal device may determine the first cyclic shift set according to the first mapping relationship and the first information, obtain the first cyclic shift of the reference signal sequence according to the first cyclic shift set, and then send the reference signal sequence according to the first cyclic shift. .
  • a cyclic shift set can be determined for each delay interval according to the upper limit of each delay interval, thereby increasing the total number of cyclic shifts and improving the capacity of the communication system.
  • S304 The network device obtains interval information.
  • the interval information is used to indicate the delay interval in which the delay of the terminal device lies.
  • the interval information may include the delay of the terminal device.
  • the delay of the terminal device can be one of the following: multipath delay of the terminal device, root mean square delay of the terminal device, average delay of the terminal device, time window of the terminal device, or symbol The duration of the cyclic prefix.
  • the delay of the terminal device may be the multipath delay of the terminal device.
  • the multipath delay of the terminal device may be the maximum multipath delay.
  • the network device determines the first cyclic shift set according to the interval information and the first mapping relationship.
  • the network device demodulates the reference signal sequence according to the first cyclic shift set.
  • the first mapping relationship may be configured by a network device or specified by a protocol.
  • the first mapping relationship on the terminal device is configured by the network device.
  • the above reference signal transmission method shown in Figure 3 may also include: the network device sends mapping relationship indication information.
  • the terminal device receives the mapping relationship indication information from the network device.
  • the mapping relationship indication information is used to indicate the first mapping relationship.
  • the mapping relationship indication information may carry the first mapping relationship.
  • the network device may indicate the first mapping relationship from the multiple mapping relationships, thereby improving flexibility.
  • the mapping relationship indication information is used to indicate the first mapping among the multiple mapping relationships configured on the terminal device. relation.
  • the mapping relationship indication information may include identification information of the first mapping relationship.
  • the multiple mapping relationships configured on the terminal device include mapping relationship 0 to mapping relationship 5. If the mapping relationship indication information carries identification information of mapping relationship 3, mapping relationship 3 is the first mapping relationship. In this way, when multiple mapping relationships are configured in the terminal device, the network device can indicate the first mapping relationship from the multiple mapping relationships, thereby improving flexibility.
  • the above-mentioned reference signal transmission method shown in Figure 3 may also include: the network device sends second information to the terminal device.
  • the terminal device receives the second information from the network device.
  • the second information is used to indicate the maximum delay.
  • the second information can be carried in RRC signaling.
  • the delay interval in mapping relationship 0 includes: [0, T max / 3), [T max /3,2T max /3), [2T max /3,T max ];
  • the delay interval in mapping relationship 1 includes: [0,T max /4), [T max /4, 2T max /3), [2T max /3,T max );
  • the delay interval in mapping relationship 2 includes: [0,T max /3), [T max /3,T max /2), [T max /2,T max ].
  • the number of cyclic shift sets is also three. In this case, if the terminal device receives the second indication information from the network device, it can determine the mapping relationship 0 to the mapping relationship 2.
  • the maximum delay can be indicated through the network device, and the terminal device can determine the first mapping relationship based on the maximum delay, which can improve flexibility.
  • the k-th cyclic shift set among the K cyclic shift sets of the first mapping relationship can be expressed as P k
  • the k-th cyclic shift set contains elements, each element is a cyclic shift, that is to say, the number of cyclic shifts in the k-th cyclic shift set is
  • the i-th element in the k-th cyclic shift set (i.e., the i-th cyclic shift) is expressed as
  • i ranges from 0 to Then the kth cyclic shift set P k can be expressed as:
  • the number of cyclic shifts in the k-th cyclic shift set and the maximum value of the kth delay interval can satisfy the relationship shown in the following formula (1):
  • N cs,base is the number of basic cyclic shifts
  • N cs,base can be determined based on the maximum delay T max and symbols.
  • the number of basic cyclic shifts can satisfy the relationship shown in the following formula (2):
  • N cs,base may be the maximum value of a positive integer that satisfies formula (2).
  • Solving formula (5) can obtain a variety of possible values for the number of cyclic shifts, such as or
  • the number of cyclic shifts of the cyclic shift set in the first mapping relationship satisfies the relationship shown in the following formula (6):
  • T symb is the duration of the symbol.
  • the length (or duration) of the CS region corresponding to one cyclic shift in the k-th cyclic shift set is the maximum value of the k-th delay interval.
  • the length of the CS area is related to same.
  • the number of cyclic shifts in the k-th cyclic shift set is but circular shifts corresponding to
  • the total length of CS regions is The total length of the CS region corresponding to the cyclic shifts in all cyclic shift sets should not exceed the symbol duration T symb or N cs,base T max .
  • the left side of the equation is the total length of the CS region corresponding to the cyclic shifts in all cyclic shift sets, and the total length does not exceed the symbol duration T symb .
  • the maximum value of the kth delay interval The larger the value, the greater the distance between any two cyclic shifts in the k-th cyclic shift set, that is, the distance between any two cyclic shifts in the k-th cyclic shift set and the maximum value of the k-th delay interval Positive correlation.
  • the distance between any two cyclic shifts in the k-th cyclic shift set may be the absolute value of the difference between the two cyclic shifts.
  • the distance between two adjacent cyclic shifts in the k-th cyclic shift set P k is the same. In this way, when the distance between two adjacent cyclic shifts is minimum, the number of cyclic shifts can be increased to further increase the capacity.
  • the minimum value of the distance between any two cyclic shifts is also the distance between two adjacent cyclic shifts.
  • the cyclic shifts in the k-th cyclic shift set P k may be arranged in order of size, such as from small to large or from large to small.
  • the elements in the k-th cyclic shift set P k are arranged in order of size, and Be explained.
  • the i-th cyclic shift in the k-th cyclic shift set Index that can be shifted according to the i-th cycle and Sure.
  • the i-th cyclic shift in the k-th cyclic shift set The relationship shown in the following formula (7) or formula (8) can be satisfied:
  • mod represents the modulo operation.
  • RRC radio resource control
  • the parameters It can be expressed as N cs,step , that is is the index of the k-th circular shift.
  • the network device may notify the terminal device through RRC signaling.
  • the elements (cyclic shifts) in the k-th cyclic shift set P k can be arranged in order of size, for example, in order from small to large, or in order from large to small.
  • the distance between two adjacent cyclic shifts in the k-th cyclic shift set Pk can be the same. That is to say, two adjacent cyclic shifts in the same cyclic shift set satisfy the following formula (9): relation:
  • the distance between two adjacent cyclic shifts can be designed to make the distance between two adjacent cyclic shifts as small as possible, thereby increasing the number of cyclic shifts.
  • the cyclic shift can also be expressed by a cyclic shift index.
  • the indexes of all cyclic shifts can also be called cyclic shift index sets n k
  • the index of the i-th element that is, the i-th circular shift
  • the kth cyclic shift index set n k can be expressed as: in, is the i-th cyclic shift index in the k-th cyclic shift set.
  • the K delay intervals have a one-to-one correspondence with the cyclic shift index sets of the K cyclic shift sets.
  • the elements of the cyclic shift index value set n k of the k-th cyclic shift set can be arranged in order of size, for example, they can be arranged in order from small to large or from large to small.
  • the distance between two adjacent cyclic shift indexes in the cyclic shift index set n k can be the same, that is, the relationship between two adjacent cyclic shift indexes in the cyclic shift index set n k satisfies the relationship shown in formula (17):
  • v k is the step size
  • ⁇ k is the offset
  • v k and ⁇ k are both integers.
  • v k and ⁇ k can be predefined or notified to the terminal device by the network device through signaling, such as v k , ⁇ k k may be notified by the network device to the terminal device through RRC signaling.
  • the value of v k can also be equal to the maximum value of the k-th delay interval. and/or related to the maximum delay T max . According to formula (17) and formula (18), it can be known that the step length v k satisfies the relationship shown in the following formula (19):
  • the absolute value of v k is the distance between two adjacent cyclic shift indexes in the cyclic shift index set n k .
  • v k and the maximum value of the k-th delay interval The relationship between and/or the maximum delay T max can be determined by any one of the following formulas (20) to formula (25).
  • the elements of the cyclic shift index value set n k of the k-th cyclic shift set can be arranged in size order, it is assumed that the indexes of two adjacent cyclic shifts in the cyclic shift index set n k The distances are the same, then the distance between two adjacent cyclic shift indices in the cyclic shift index set n k of the k-th cyclic shift set can satisfy one of the following formulas (20) to formula (25) or Multiple relationships:
  • the first mapping relationship is explained below with different examples.
  • Serial number k Delay interval The kth cyclic shift set P k 0 [0,T max /3) ⁇ 0,1/18,2/18,3/18,4/18,5/18 ⁇ *2 ⁇ 1 [T max /3,2T max /3) ⁇ 6/18,8/18,10/18 ⁇ *2 ⁇ 2 [2T max /3,T max ] ⁇ 12/18,15/18 ⁇ *2 ⁇
  • the number of cyclic shifts in the 0th, 1st and 2nd cyclic shift sets are 6, 3, 2 in order; two adjacent cyclic shift indices in each cyclic shift set
  • the distance of the values is the same. Taking this distance as For example, due to Then it can be calculated that the distance between the indexes of two adjacent cyclic shifts in the 0th cyclic shift set is 1, the distance between the indexes of two adjacent cyclic shifts in the 1st cyclic shift set is 2, and the distance between the indexes of two adjacent cyclic shifts in the 1st cyclic shift set is 2.
  • the 0th delay interval and the The maximum value of a delay interval is less than the maximum delay T max , so the distance between the indexes of two adjacent cyclic shifts in the 0th and 1st can be smaller, and more cyclic shifts can be used , thereby increasing the total number of cyclic shifts and the number of reference signals.
  • the K delay intervals in Table 4-Table 6 are obtained by evenly dividing the interval [0, T max ]. It can be understood that the K delay intervals can also be obtained by non-uniformly dividing the interval [0, T max ].
  • the parameters It can be 18, in which case the corresponding cyclic shift index set is ⁇ 6,7.5,9,10.5 ⁇ .
  • the parameters It can be 6, in which case the corresponding cyclic shift index set is ⁇ 3, 4, 5 ⁇ .
  • the parameters It can be 6, in which case the corresponding cyclic shift index set is ⁇ 2,3,4,5 ⁇ .
  • the time domain channel is divided into 6 CS areas, and the 6 CS areas correspond to the 6 cyclic shifts in a one-to-one manner.
  • the length of each CS area is greater than or equal to the maximum delay. As shown in (a) in Figure 4, the length of each CS area can be the maximum delay.
  • the maximum value of the three delay intervals in Table 5 and Table 6 is Therefore, as shown in (b) of Figure 4, the length of the CS region corresponding to the 0th cyclic shift set is T max /3, the length of the CS region corresponding to the 1st cyclic shift set is T max /3, and the length of the CS region corresponding to the 1st cyclic shift set is T max /3.
  • the length of the CS region corresponding to the two cyclic shift sets is T max .
  • the cyclic shift value set of the 0th cyclic shift set in Table 5 or Table 6 is ⁇ 0,1,2,3,4,5 ⁇ , corresponding to the CS area 0 to 5.
  • the cyclic shift index set of the first cyclic shift set is ⁇ 6,8,10 ⁇ , corresponding to CS areas 6 to 8.
  • the cyclic shift index set of the second cyclic shift set is ⁇ 12,15 ⁇ , corresponding to CS areas 9 to 15.
  • one cyclic shift in the first cyclic shift set will correspond to 2 CS regions with length T max /3 CS area. Since one cyclic shift in the second cyclic shift set corresponds to a CS region with a length of T max , one cyclic shift in the second cyclic shift set will correspond to 3 CS regions with a length of T max /3 .
  • the solution provided by the embodiment of the present application can increase the number of cyclic shifts compared to the solution that only determines the cyclic shift set based on N cs, base and symbol duration. To achieve the effect of improving the capacity of the communication system.
  • the solution of the embodiment of the present application can further reduce the probability of collision between terminal devices, thereby improving communication efficiency.
  • multiple cyclic shift sets may be configured on the terminal device.
  • the network device may specify a first cyclic shift set from the multiple cyclic shift sets.
  • the terminal device may further select a first cyclic shift set from the first cyclic shift set.
  • the first cyclic shift is determined, and then the reference signal is sent according to the first cyclic shift.
  • FIG. 5 is a schematic flowchart 2 of a reference signal transmission method provided by an embodiment of the present application. This reference signal transmission method can be applied to communication between any two nodes shown in Figure 2.
  • the terminal equipment is configured with K cyclic shift sets, any cyclic shift set among the K cyclic shift sets contains at least one cyclic shift, and the K cyclic shift sets correspond to K delay intervals one-to-one , and the K delay intervals do not overlap each other, K is a positive integer greater than 1, any two cyclic shifts in the K cyclic shift sets are different, and the K delay intervals are determined according to the maximum delay.
  • the minimum distance between any two cyclic shifts is positively related to the maximum delay in the k-th delay interval, where , 0 ⁇ k ⁇ K, and k is an integer.
  • the number of cyclic shifts is positively related to the maximum delay in the k-th delay interval and the symbol duration. Among them, 0 ⁇ k ⁇ K, and k is an integer.
  • the reference signal transmission method includes the following steps:
  • the terminal device receives the third index from the network device.
  • the third index is the index of the cyclic shift set, that is, the cyclic shift set index.
  • the terminal device determines the first cyclic shift set according to the third index.
  • the cyclic shift set includes cyclic shift set P 0 to cyclic shift set P 2 . If the corresponding cyclic shift set indexes of cyclic shift set P 0 to cyclic shift set P 2 are in sequence: The cyclic shift set index #0 to the cyclic shift set index #2, and the third index is the cyclic shift set index #1, then the cyclic shift set P 1 is the first cyclic shift set.
  • the terminal device determines one cyclic shift in the first cyclic shift set as the first cyclic shift.
  • the terminal device can determine the cyclic shift by itself.
  • the terminal device determines one cyclic shift in the first cyclic shift set as the first cyclic shift, which may include: the terminal device randomly determines one cyclic shift in the first cyclic shift set as the first cyclic shift.
  • One cycle shift may include: the terminal device randomly determines one cyclic shift in the first cyclic shift set as the first cyclic shift.
  • the cyclic shift can be specified by the network device.
  • the method shown in Figure 5 may further include: the terminal device receiving a fourth index from the network device.
  • the terminal device determines a cyclic shift in the first cyclic shift set as the first cyclic shift, which may include: the terminal device determines the cyclic shift corresponding to the fourth index in the first cyclic shift set as the first cyclic shift. Circular shift.
  • the terminal device sends the reference signal sequence to the network device according to the first cyclic shift.
  • S505 The network device obtains interval information.
  • the network device determines the first cyclic shift set according to the interval information and the first mapping relationship.
  • the network device demodulates the reference signal sequence according to the first cyclic shift set.
  • the method provided in the fourth aspect may also include: the network device sends a third index to the terminal device.
  • the method provided in the fourth aspect may also include: the network device sends group indication information.
  • the group indication information is used to indicate K cyclic shift sets.
  • the reference signal transmission method provided by the embodiment of the present application is described in detail above with reference to Figures 3-5.
  • the communication device used to perform the reference signal transmission method provided by the embodiment of the present application will be described in detail below with reference to FIGS. 6-7 .
  • FIG. 6 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 includes: a processing module 601 and a transceiver module 602 .
  • FIG. 6 shows only the main components of the communication device 600.
  • the communication device 600 may be adapted to the communication system shown in FIG. 2 to perform the functions of the terminal device in the reference signal transmission method shown in FIG. 3 .
  • the processing module 601 is configured to determine a first cyclic shift set according to the first mapping relationship and the first information.
  • the first mapping relationship includes correspondences between K delay intervals and K cyclic shift sets.
  • the K delay intervals do not overlap with each other, and there is a one-to-one correspondence between the K delay intervals and the K cyclic shift sets.
  • K is a positive integer greater than 1.
  • Any cyclic shift set in the K cyclic shift sets contains at least one cyclic shift. Any two cyclic shifts in the K cyclic shift sets are different.
  • the K delay intervals are based on The maximum delay is determined.
  • the processing module 601 is also configured to obtain the first cyclic shift of the reference signal sequence according to the first cyclic shift set.
  • the transceiving module 602 is configured to send the reference signal sequence according to the first cyclic shift.
  • the first information may include delay information of the terminal device.
  • the processing module 601 may be specifically configured to determine the first cyclic shift set according to the first mapping relationship and the delay information of the terminal device.
  • the transceiver module 602 can also be used to receive the first information from the network device.
  • the first information includes a first index.
  • the processing module 601 may be specifically configured to determine the first cyclic shift set according to the first index and the first mapping relationship.
  • the processing module 601 may be configured to receive the second index through the transceiver module 602. and determining the first cyclic shift from the first cyclic shift set according to the second index.
  • the maximum delay may be the maximum multipath delay.
  • the delay interval may be a multipath delay interval.
  • the minimum distance between any two cyclic shifts can be positively related to the maximum delay in the k-th delay interval, Among them, 0 ⁇ k ⁇ K, and k is an integer.
  • the number of cyclic shifts can be positively related to the maximum delay in the k-th delay interval and the symbol duration. , where 0 ⁇ k ⁇ K, and k is an integer.
  • the transceiver module 602 may also be used to receive mapping relationship indication information from the network device.
  • the mapping relationship indication information is used to indicate the first mapping relationship.
  • the transceiver module 602 can also be used to receive second information from the network device.
  • the second information is used to indicate the maximum delay.
  • the transceiver module 602 may include a receiving module and a sending module. Among them, the transceiver module 602 is used to implement the sending function and receiving function of the communication device 600.
  • the communication device 600 may also include a storage module (not shown in FIG. 6), which stores programs or instructions.
  • the processing module 601 executes the program or instruction, the communication device 600 can perform the functions of the terminal device in the reference signal transmission method shown in FIG. 2 .
  • the processing module 601 involved in the communication device 600 can be implemented by a processor or a processor-related circuit component, and can be a processor or a processing unit;
  • the transceiver module 602 can be implemented by a transceiver or a transceiver-related circuit component, and can be a transceiver. transmitter or transceiver unit.
  • the communication device 600 may be the terminal equipment shown in Figure 2, or may be a chip (system) or other components or components provided in the above-mentioned terminal equipment, or a device including the terminal equipment. This application The embodiment does not limit this.
  • the communication device 600 may be adapted to the communication system shown in FIG. 2 to perform the functions of the network device in the reference signal transmission method shown in FIG. 3 .
  • the processing module 601 is used to obtain interval information.
  • the processing module 601 is also configured to determine the first cyclic shift set according to the interval information and the first mapping relationship.
  • the first mapping relationship includes correspondences between K delay intervals and K cyclic shift sets. There is a one-to-one correspondence between K delay intervals and K cyclic shift sets, and the K delay intervals do not overlap with each other.
  • K is a positive integer greater than 1. Any cyclic shift set in the K cyclic shift sets contains at least one cyclic shift. Any two cyclic shifts in the K cyclic shift sets are different. The K delay intervals are based on The maximum delay is determined.
  • the transceiver module 602 is used to receive the reference signal sequence.
  • the processing module 601 is also used to demodulate the reference signal sequence according to the first cyclic shift set.
  • the interval information may include delay information of the terminal device.
  • the transceiver module 602 can also be used to send the first information.
  • the first information includes a first index.
  • the transceiver module 602 can also be used to send the second index.
  • the maximum delay may be the maximum multipath delay.
  • the delay interval may be a multipath delay interval.
  • the minimum distance between any two cyclic shifts can be positively related to the maximum delay in the k-th delay interval, Among them, 0 ⁇ k ⁇ K, and k is an integer.
  • the number of cyclic shifts can be positively related to the maximum delay in the k-th delay interval and the symbol duration. , where 0 ⁇ k ⁇ K, and k is an integer.
  • the transceiver module 602 may also be used to send mapping relationship indication information, where the mapping relationship indication information is used to indicate the first mapping relationship.
  • the transceiver module 602 can also be used to send second information, where the second information is used to indicate the maximum delay.
  • the transceiver module 602 may include a receiving module and a sending module. Among them, the transceiver module 602 is used to implement the sending function and receiving function of the communication device 600.
  • the communication device 600 may also include a storage module (not shown in FIG. 6), which stores programs or instructions.
  • the processing module 601 executes the program or instruction, the communication device 600 can perform the functions of the network device in the reference signal transmission method shown in FIG. 3 .
  • the processing module 601 involved in the communication device 600 can be implemented by a processor or a processor-related circuit component, and can be a processor or a processing unit;
  • the transceiver module 602 can be implemented by a transceiver or a transceiver-related circuit component, and can be a transceiver. transmitter or transceiver unit.
  • the communication device 600 may be the network device shown in Figure 2, or may be a chip (system) or other component or component provided in the above-mentioned network device, or a device including the network device. This application The embodiment does not limit this.
  • the communication device 600 may be adapted to the communication system shown in FIG. 2 to perform the functions of the terminal device in the reference signal transmission method shown in FIG. 5 .
  • the communication device 600 is configured with K cyclic shift sets, each of the K cyclic shift sets includes at least one cyclic shift, and the K cyclic shift sets and K delay intervals are one by one.
  • K is a positive integer greater than 1
  • any two cyclic shifts in the K cyclic shift sets are different
  • the K delay intervals are determined according to the maximum delay.
  • the transceiver module 602 is used to receive the third index from the network device.
  • the processing module 601 is configured to determine a first cyclic shift set according to the third index, and determine a cyclic shift in the first cyclic shift set as the first cyclic shift.
  • the processing module 601 is specifically configured to randomly determine a cyclic shift in the first cyclic shift set as the first cyclic shift.
  • the transceiver module 602 is also used to receive the second index from the network device.
  • the processing module 601 is specifically configured for the terminal device to determine the cyclic shift corresponding to the second index in the first cyclic shift set as the first cyclic shift.
  • the minimum distance between any two cyclic shifts is positively related to the maximum delay in the k-th delay interval, where , 0 ⁇ k ⁇ K, and k is an integer.
  • the number of cyclic shifts is positively related to the maximum delay in the k-th delay interval and the symbol duration. Among them, 0 ⁇ k ⁇ K, and k is an integer.
  • the transceiver module 602 is also used to receive group indication information from the network device, where the group indication information is used to indicate K cyclic shift sets.
  • the transceiver module 602 may include a receiving module and a sending module. Among them, the transceiver module 602 is used to implement the sending function and receiving function of the communication device 600.
  • the communication device 600 may also include a storage module (not shown in FIG. 6), which stores programs or instructions.
  • the processing module 601 executes the program or instruction, the communication device 600 can perform the functions of the terminal device in the reference signal transmission method shown in FIG. 5 .
  • the processing module 601 involved in the communication device 600 can be implemented by a processor or a processor-related circuit component, and can be a processor or a processing unit;
  • the transceiver module 602 can be implemented by a transceiver or a transceiver-related circuit component, and can be a transceiver. transmitter or transceiver unit.
  • the communication device 600 may be the terminal equipment shown in Figure 2, or may be a chip (system) or other components or components provided in the above-mentioned terminal equipment, or a device including the terminal equipment. This application The embodiment does not limit this.
  • the communication device 600 may be adapted to the communication system shown in FIG. 2 to perform the functions of the network device in the reference signal transmission method shown in FIG. 5 .
  • the transceiver module 602 is used to obtain interval information.
  • the processing module 601 is configured to determine the first cyclic shift set according to the interval information and the first mapping relationship.
  • the transceiver module 602 is also used to receive the reference signal sequence.
  • the processing module 601 is also used to demodulate the reference signal sequence according to the first cyclic shift set.
  • the first mapping relationship includes a correspondence between K delay intervals and K cyclic shift sets; there is a one-to-one correspondence between the K delay intervals and K cyclic shift sets, and the K delay intervals are mutually exclusive.
  • K is a positive integer greater than 1
  • any cyclic shift set in the K cyclic shift sets contains at least one cyclic shift, any two cyclic shifts in the K cyclic shift sets are different, K delays
  • the interval is determined based on the maximum delay.
  • the transceiving module 602 is also used to send the third index.
  • the minimum distance between any two cyclic shifts is positively related to the maximum delay in the k-th delay interval, where , 0 ⁇ k ⁇ K, and k is an integer.
  • the number of cyclic shifts is positively related to the maximum delay in the k-th delay interval and the symbol duration. Among them, 0 ⁇ k ⁇ K, and k is an integer.
  • the transceiver module 602 is also used to send group indication information.
  • the group indication information is used to indicate K cyclic shift sets.
  • the transceiver module 602 may include a receiving module and a sending module. Among them, the transceiver module 602 is used to implement the sending function and receiving function of the communication device 600.
  • the communication device 600 may also include a storage module (not shown in FIG. 6), which stores programs or instructions.
  • the processing module 601 executes the program or instruction, the communication device 600 can perform the functions of the network device in the reference signal transmission method shown in FIG. 5 .
  • the processing module 601 involved in the communication device 600 can be implemented by a processor or a processor-related circuit component, and can be a processor or a processing unit;
  • the transceiver module 602 can be implemented by a transceiver or a transceiver-related circuit component, and can be a transceiver. transmitter or transceiver unit.
  • the communication device 600 may be the network device shown in Figure 2, or may be a chip (system) or other component or component provided in the above-mentioned network device, or a device including the network device. This application The embodiment does not limit this.
  • FIG. 7 is a second structural schematic diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device, or may be a chip (system) or other component or component that can be disposed on the terminal device or the network device.
  • the communication device 700 may include a processor 701 .
  • the communication device 700 may also include a memory 702 and/or a transceiver 703.
  • the processor 701 is coupled to the memory 702 and the transceiver 703, for example, through a communication bus.
  • the processor 701 is the control center of the communication device 700, and may be a processor or a collective name for multiple processing elements.
  • the processor 701 is one or more central processing units (CPUs), may also be an application specific integrated circuit (ASIC), or may be one or more processors configured to implement the embodiments of the present application.
  • An integrated circuit such as one or more digital signal processors (DSP), or one or more field programmable gate arrays (FPGA).
  • DSP digital signal processors
  • FPGA field programmable gate arrays
  • the processor 701 can perform various functions of the communication device 700 by running or executing software programs stored in the memory 702 and calling data stored in the memory 702.
  • the processor 701 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 7 .
  • the communication device 700 may also include multiple processors, such as the processor 701 and the processor 704 shown in FIG. 7 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 702 is used to store the software program for executing the solution of the present application, and is controlled by the processor 701 for execution.
  • the memory 702 is used to store the software program for executing the solution of the present application, and is controlled by the processor 701 for execution.
  • the memory 702 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or a device that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • Other types of dynamic storage devices for instructions can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical discs Storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and any other media capable of being accessed by a computer, without limitation.
  • the memory 702 may be integrated with the processor 701 or may exist independently and be coupled to the processor 701 through the interface circuit (not shown in FIG. 7 ) of the communication device 700. This is not specifically limited in the embodiment of the present application.
  • Transceiver 703, used for communication with other communication devices is a terminal device, and the transceiver 703 can be used to communicate with a network device or with another terminal device.
  • the communication device 700 is a network device, and the transceiver 703 can be used to communicate with a terminal device or another network device.
  • the transceiver 703 may include a receiver and a transmitter (not shown separately in Figure 7). Among them, the receiver is used to implement the receiving function, and the transmitter is used to implement the sending function.
  • the transceiver 703 can be integrated with the processor 701, or can exist independently and be coupled to the processor 701 through the interface circuit (not shown in Figure 7) of the communication device 700. This is not the case in this embodiment of the present application. Specific limitations.
  • the structure of the communication device 700 shown in Figure 7 does not constitute a limitation on the communication device.
  • the actual communication device may include more or less components than shown in the figure, or some components may be combined, or Different component arrangements.
  • the technical effects of the communication device 700 can be referred to the technical effects of the reference signal transmission method described in the above method embodiment, which will not be described again here.
  • the processor in the embodiment of the present application can be a central processing unit (CPU).
  • the processor can also be other general-purpose processors, digital signal processors (DSP), special-purpose integrated processors, etc.
  • Circuit application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • RAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory access memory
  • direct rambus RAM direct rambus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware (such as circuits), firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmit to another website, computer, server or data center through wired (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one refers to one or more, and “plurality” refers to two or more.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Abstract

本申请提供一种参考信号传输方法及通信装置,能够提高容量,可应用于通信系统中。该方法包括:终端设备根据第一映射关系和第一信息确定第一循环移位集合;接着,终端设备根据第一循环移位集合获取参考信号序列的第一循环移位。根据第一循环移位发送参考信号序列。其中,第一映射关系中包括K个时延区间与K个循环移位集合之间的对应关系;K个时延区间互不重叠,且K个时延区间与K个循环移位集合之间一一对应;K为大于1的正整数,K个循环移位集合中任一循环移位集合均包含至少一个循环移位,K个循环移位集合中任意两个循环移位不同,K个时延区间根据最大时延确定。

Description

参考信号传输方法及通信装置 技术领域
本申请涉及通信领域,尤其涉及一种参考信号传输方法及通信装置。
背景技术
在通信系统中,多个终端设备采用相同的时频资源、相同长度、相同根的Zadoff-Chu(ZC)序列向网络设备发送不同的参考信号时,可以采用不同的循环移位(cyclic shift,CS)以实现正交复用,从而使得网络设备可以区分不同的终端设备。可见,循环移位的数目确定了通信系统的容量。
在一些方案中,循环移位的数目与网络设备服务的所有终端设备的多径时延中最大的多径时延(可以称为最大多径时延)相关,采用不同循环移位的参考信号移位的时域长度大于或等于最大多径时延,且所有循环移位产生的移位的时域长度小于或等于符号(symbol)的长度,即符号持续时间。
由上可知,循环移位的数目受限于符号持续时间和最大多径时延,这导致根据循环移位的数目确定的通信系统的容量受限。
发明内容
本申请实施例提供一种参考信号传输方法及通信装置,能够提高通信系统的容量。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种参考信号传输方法。该参考信号传输方法包括:终端设备根据第一映射关系和第一信息确定第一循环移位集合。接着,终端设备根据第一循环移位集合获取参考信号序列的第一循环移位。根据第一循环移位发送参考信号序列。其中,第一映射关系中包括K个时延区间与K个循环移位集合之间的对应关系。K个时延区间互不重叠,且K个时延区间与K个循环移位集合之间一一对应。K为大于1的正整数,K个循环移位集合中任一循环移位集合均包含至少一个循环移位,K个循环移位集合中任意两个循环移位不同,K个时延区间根据最大时延确定。
基于第一方面提供的参考信号传输方法,终端设备可以根据第一映射关系和第一信息确定第一循环移位集合,并根据第一循环移位集合获取参考信号序列的第一循环移位,进而根据第一循环移位发送参考信号序列。如此,可以根据每个时延区间的上限对每个时延区间分别确定一个循环移位集合,从而可以增加循环移位的总数量,提高通信系统的容量。
一种可能的设计方案中,第一信息可以包括终端设备的时延信息。终端设备根据第一映射关系和第一信息确定第一循环移位集合,可以包括:终端设备根据第一映射关系和终端设备的时延信息确定第一循环移位集合。如此,可以使终端设备的时延与第一循环移位集合匹配,以兼顾时延和干扰。
示例性地,终端设备可以自行确定终端设备的时延信息,如此,可以减少信令开销,从而提高通信效率。
需要说明,终端设备还可以接收来自于网络设备的时延信息,并将该时延信息确定为终端设备的时延信息。
一种可能的设计方案中,在终端设备根据第一映射关系和第一信息确定第一循环移位集合之前,第一方面所提供的方法还可以包括:终端设备接收来自网络设备的第一信息。其中,第一信息包括第一索引。在此情况下,终端设备根据第一映射关系和第一信息确定第一循环移位集合,可以包括:终端设备根据第一索引和第一映射关系确定第一循环移位集合。如此,网络设备在第一信息中携带第一索引指示时延区间,从而可以降低信令开销,提高通信效率。
一种可能的设计方案中,终端设备根据第一循环移位集合获取参考信号序列的第一循环移位,可以包括:终端设备接收第二索引。终端设备根据第二索引从第一循环移位集合中确定第一循环移位。如此,可以由网络设备分配循环移位索引,从而降低不同终端设备之间的冲突,提高通信效率。
示例性地,第二索引可以为第一循环移位的循环移位索引。
一种可能的设计方案中,最大时延可以为最大多径时延。
可选地,时延区间可以为多径时延区间。
其中,最大多径时延可以是网络设备服务的所有终端设备的时域信道的最大多径时延的最大值。如此,可以根据最大多径时延确定每个多径时延区间,基于每个多径时延区间的上限对每个多径时延区间分别确定一个循环移位集合,从而可以增加循环移位的总数量,提高通信系统的容量。此外,由于任一终端设备的时域信道的多径时延的最大值不超过最大多径时延,因此任一终端设备均可以选择合适的一个循环移位集合中的一个循环移位,避免与其他终端设备产生冲突。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,任意两个循环移位之间的最小距离可以与第k个时延区间中最大的时延正相关,其中,0≤k<K,且k为整数。
如此,可以基于第k个时延区间中最大的时延设计第k个循环移位集合中任意两个循环移位之间的最小距离,尽可能的减小第k个循环移位集合中循环移位的最小距离,从而增加第k个时延区间的循环移位的数目,进而增加循环移位的总数量。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,循环移位的数目可以与第k个时延区间中的最大的时延以及符号持续时间正相关,其中,0≤k<K,且k为整数。
如此,可以基于第k个时延区间中的最大的时延设计第k个循环移位集合中循环移位的数目,尽可能的增加第k个循环移位集合中循环移位的数目,从而增加循环移位的总数量。
一种可能的设计方案中,第一方面所提供的方法还可以包括:终端设备接收来自网络设备的映射关系指示信息。其中,映射关系指示信息用于指示第一映射关系。例如,在终端设备中配置有多个映射关系的情况下,网络设备可以从多个映射关系中指示第一映射关系,从而可以提高灵活性。
一种可能的设计方案中,第一方面所提供的方法还可以包括:终端设备接收来自网络设备的第二信息。其中,第二信息用于指示最大时延。如此,可以通过网络设备 指示最大时延,终端设备可以根据最大时延确定第一映射关系,可以提高灵活度。
第二方面,提供一种参考信号传输方法。该参考信号传输方法包括:网络设备获取区间信息。网络设备根据区间信息和第一映射关系确定第一循环移位集合;第一映射关系中包括K个时延区间与K个循环移位集合之间的对应关系;K个时延区间与K个循环移位集合之间一一对应,且K个时延区间互不重叠;K为大于1的正整数,K个循环移位集合中任一循环移位集合均包含至少一个循环移位,K个循环移位集合中任意两个循环移位不同,K个时延区间根据最大时延确定。网络设备接收参考信号序列,并根据第一循环移位集合解调参考信号序列。
一种可能的设计方案中,区间信息可以包括终端设备的时延信息。
一种可能的设计方案中,在网络设备接收参考信号序列之前,第二方面所提供的方法还可以包括:网络设备发送第一信息。第一信息包括第一索引。
一种可能的设计方案中,第二方面所提供的方法还可以包括:网络设备发送第二索引。
示例性地,第二索引可以是第一循环移位的循环移位索引。
一种可能的设计方案中,最大时延可以为最大多径时延。
可选地,时延区间可以为多径时延区间。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,任意两个循环移位之间的最小距离与第k个时延区间中最大的时延正相关。其中,0≤k<K,且k为整数。
一种可能的设计方案中。K个循环移位集合的第k个循环移位集合中,循环移位的数目与第k个时延区间中的最大的时延,以及符号持续时间正相关。其中,0≤k<K,且k为整数。
一种可能的设计方案中,第二方面所提供的方法还包括:网络设备发送映射关系指示信息。其中,映射关系指示信息用于指示第一映射关系。
一种可能的设计方案中,第二方面所提供的方法还可以包括:网络设备发送第二信息。其中,第二信息用于指示最大时延。
此外,第二方面的参考信号传输方法的技术效果可以参考第一方面的参考信号传输方法的技术效果,此处不再赘述。
第三方面,提供一种参考信号传输方法。终端设备中配置有K个循环移位集合,K个循环移位集合中任一循环移位集合均包含至少一个循环移位,K个循环移位集合与K个时延区间一一对应,且K个时延区间互不重叠,K为大于1的正整数,K个循环移位集合中任意两个循环移位不同,K个时延区间根据最大时延确定。该参考信号传输方法包括:终端设备接收来自网络设备的第三索引,终端设备根据该第三索引确定第一循环移位集合。终端设备将第一循环移位集合中的一个循环移位确定为第一循环移位。终端设备根据第一循环移位发送参考信号序列。
一种可能的设计方案中,终端设备将第一循环移位集合中的一个循环移位确定为第一循环移位,可以包括:终端设备随机将第一循环移位集合中的一个循环移位确定为第一循环移位。
一种可能的设计方案中,第三方面所提供的方法还可以包括:终端设备接收来自 网络设备的第二索引。终端设备将第一循环移位集合中的一个循环移位确定为第一循环移位,可以包括:终端设备将第一循环移位集合中,与第二索引对应的循环移位确定为第一循环移位。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,任意两个循环移位之间的最小距离与第k个时延区间中最大的时延正相关。其中,0≤k<K,且k为整数。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,循环移位的数目与第k个时延区间中的最大的时延,以及符号持续时间正相关,其中,0≤k<K,且k为整数。
一种可能的设计方案中,第三方面所提供的方法还可以包括:终端设备接收来自网络设备的组指示信息。其中,组指示信息用于指示K个循环移位集合。
此外,第三方面的参考信号传输方法的技术效果可以参考第一方面的参考信号传输方法的技术效果,此处不再赘述。
第四方面,提供一种参考信号传输方法。该参考信号传输方法包括:网络设备获取区间信息。网络设备根据区间信息和第一映射关系确定第一循环移位集合,网络设备接收参考信号序列,网络设备根据第一循环移位集合解调参考信号序列。第一映射关系中包括K个时延区间与K个循环移位集合之间的对应关系;K个时延区间与K个循环移位集合之间一一对应,且K个时延区间互不重叠;K为大于1的正整数,K个循环移位集合中任一循环移位集合均包含至少一个循环移位,K个循环移位集合中任意两个循环移位不同,K个时延区间根据最大时延确定。
一种可能的设计方案中,第四方面提供的方法还可以包括:网络设备发送第三索引。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,任意两个循环移位之间的最小距离与第k个时延区间中最大的时延正相关。其中,0≤k<K,且k为整数。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,循环移位的数目与第k个时延区间中的最大的时延,以及符号持续时间正相关。其中,0≤k<K,且k为整数。
一种可能的设计方案中,第四方面所提供的方法还可以包括:网络设备发送组指示信息。其中,组指示信息用于指示K个循环移位集合。
此外,第四方面的参考信号传输方法的技术效果可以参考第一方面的参考信号传输方法的技术效果,此处不再赘述。
第五方面,提供一种通信装置。该通信装置包括:处理模块和收发模块。处理模块,用于根据第一映射关系和第一信息确定第一循环移位集合。第一映射关系中包括K个时延区间与K个循环移位集合之间的对应关系。K个时延区间互不重叠,且K个时延区间与K个循环移位集合之间一一对应。K为大于1的正整数,K个循环移位集合中任一循环移位集合均包含至少一个循环移位,K个循环移位集合中任意两个循环移位不同,K个时延区间根据最大时延确定。处理模块,用于根据第一循环移位集合获取参考信号序列的第一循环移位。收发模块,用于根据第一循环移位发送参考信号序列。
一种可能的设计方案中,第一信息可以包括终端设备的时延信息。处理模块,具体可以用于根据第一映射关系和终端设备的时延信息确定第一循环移位集合。
一种可能的设计方案中,收发模块,还可以用于接收来自网络设备的第一信息。其中,第一信息包括第一索引。处理模块,具体可以用于根据第一索引和第一映射关系确定第一循环移位集合。
一种可能的设计方案中,处理模块,具体可以用于通过收发模块接收第二索引。以及,根据第二索引从第一循环移位集合中确定第一循环移位。
一种可能的设计方案中,最大时延可以为最大多径时延。
可选地,时延区间可以为多径时延区间。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,任意两个循环移位之间的最小距离可以与第k个时延区间中最大的时延正相关,其中,0≤k<K,且k为整数。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,循环移位的数目可以与第k个时延区间中的最大的时延,以及符号持续时间正相关,其中,0≤k<K,且k为整数。
一种可能的设计方案中,收发模块,还可以用于接收来自网络设备的映射关系指示信息。其中,映射关系指示信息用于指示第一映射关系。
一种可能的设计方案中,收发模块,还可以用于接收来自网络设备的第二信息。其中,第二信息用于指示最大时延。
可选地,收发模块可以包括接收模块和发送模块。其中,收发模块用于实现第五方面的通信装置的发送功能和接收功能。
可选地,第五方面的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得该通信装置可以执行第一方面的参考信号传输方法。
需要说明的是,第五方面的通信装置可以是终端设备,也可以是可设置于终端设备中的芯片(系统)或其他部件或组件,还可以是包含终端设备的装置,本申请对此不做限定。
此外,第五方面的通信装置的技术效果可以参考第一方面的参考信号传输方法的技术效果,此处不再赘述。
第六方面,提供一种通信装置。该通信装置包括:处理模块和收发模块。处理模块,用于获取区间信息。处理模块,还用于根据区间信息和第一映射关系确定第一循环移位集合。第一映射关系中包括K个时延区间与K个循环移位集合之间的对应关系。K个时延区间与K个循环移位集合之间一一对应,且K个时延区间互不重叠。K为大于1的正整数,K个循环移位集合中任一循环移位集合均包含至少一个循环移位,K个循环移位集合中任意两个循环移位不同,K个时延区间根据最大时延确定。收发模块,用于接收参考信号序列。处理模块,还用于根据第一循环移位集合解调参考信号序列。
一种可能的设计方案中,区间信息可以包括终端设备的时延信息。
一种可能的设计方案中,收发模块,还可以用于发送第一信息。第一信息包括第一索引。
一种可能的设计方案中,收发模块,还可以用于发送第二索引。
一种可能的设计方案中,最大时延可以为最大多径时延。
一种可能的设计方案中,时延区间可以为多径时延区间。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,任意两个循环移位之间的最小距离可以与第k个时延区间中最大的时延正相关。其中,0≤k<K,且k为整数。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,循环移位的数目可以与第k个时延区间中的最大的时延,以及符号持续时间正相关。其中,0≤k<K,且k为整数。
一种可能的设计方案中,收发模块,还可以用于发送映射关系指示信息,其中,映射关系指示信息用于指示第一映射关系。
一种可能的设计方案中,收发模块,还可以用于发送第二信息,其中,第二信息用于指示最大时延。
可选地,收发模块可以包括接收模块和发送模块。其中,收发模块用于实现第六方面的通信装置的发送功能和接收功能。
可选地,第六方面的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得该通信装置可以执行第二方面的参考信号传输方法。
需要说明的是,第六方面的通信装置可以是网络设备,也可以是可设置于网络设备中的芯片(系统)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,第六方面的通信装置的技术效果可以参考第一方面的参考信号传输方法的技术效果,此处不再赘述。
第七方面,提供一种通信装置。该通信装置中配置有K个循环移位集合,K个循环移位集合中任一循环移位集合均包含至少一个循环移位,K个循环移位集合与K个时延区间一一对应,且K个时延区间互不重叠,K为大于1的正整数,K个循环移位集合中任意两个循环移位不同,K个时延区间根据最大时延确定。其中,收发模块,用于接收来自网络设备的第三索引。处理模块,用于根据该第三索引确定第一循环移位集合,以及将第一循环移位集合中的一个循环移位确定为第一循环移位。
一种可能的设计方案中,处理模块,具体用于随机将第一循环移位集合中的一个循环移位确定为第一循环移位。
一种可能的设计方案中,收发模块,还用于接收来自网络设备的第二索引。处理模块,具体用于终端设备将第一循环移位集合中,与第二索引对应的循环移位确定为第一循环移位。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,任意两个循环移位之间的最小距离与第k个时延区间中最大的时延正相关,其中,0≤k<K,且k为整数。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,循环移位的数目与第k个时延区间中的最大的时延,以及符号持续时间正相关,其中,0≤k<K, 且k为整数。
一种可能的设计方案中,收发模块,还用于接收来自网络设备的组指示信息,组指示信息用于指示K个循环移位集合。
可选地,收发模块可以包括接收模块和发送模块。其中,收发模块用于实现第七方面的通信装置的发送功能和接收功能。
可选地,第七方面的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得该通信装置可以执行第三方面的参考信号传输方法。
需要说明的是,第七方面的通信装置可以是终端设备,也可以是可设置于终端设备中的芯片(系统)或其他部件或组件,还可以是包含终端设备的装置,本申请对此不做限定。
此外,第七方面的通信装置的技术效果可以参考第一方面的参考信号传输方法的技术效果,此处不再赘述。
第八方面,提供一种通信装置。该通信装置包括:处理模块和收发模块。
收发模块,用于获取区间信息。处理模块,用于根据区间信息和第一映射关系确定第一循环移位集合。收发模块,还用于接收参考信号序列。处理模块,还用于根据第一循环移位集合解调参考信号序列。第一映射关系中包括K个时延区间与K个循环移位集合之间的对应关系;K个时延区间与K个循环移位集合之间一一对应,且K个时延区间互不重叠;K为大于1的正整数,K个循环移位集合中任一循环移位集合均包含至少一个循环移位,K个循环移位集合中任意两个循环移位不同,K个时延区间根据最大时延确定。
一种可能的设计方案中,收发模块,还用于发送第三索引。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,任意两个循环移位之间的最小距离与第k个时延区间中最大的时延正相关,其中,0≤k<K,且k为整数。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,循环移位的数目与第k个时延区间中的最大的时延,以及符号持续时间正相关,其中,0≤k<K,且k为整数。
一种可能的设计方案中,收发模块,还用于发送组指示信息。组指示信息用于指示K个循环移位集合。
可选地,收发模块可以包括接收模块和发送模块。其中,收发模块用于实现第八方面的通信装置的发送功能和接收功能。
可选地,第八方面的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得该通信装置可以执行第四方面的参考信号传输方法。
需要说明的是,第八方面的通信装置可以是网络设备,也可以是可设置于网络设备中的芯片(系统)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,第八方面的通信装置的技术效果可以参考第一方面的参考信号传输方法的 技术效果,此处不再赘述。
第九方面,提供一种通信装置。该通信装置用于执行第一方面至第四方面中任意一种实现方式所述的参考信号传输方法。
在本申请中,第九方面所述的通信装置可以为第一方面、或第三方面中任一方面所述的终端设备或第二方面、或第四方面中任一方面所述的网络设备,或者可设置于该终端设备或网络设备中的芯片(系统)或其他部件或组件,或者包含该终端设备或网络设备的装置。
应理解,第九方面所述的通信装置包括实现上述第一方面至第四方面中任一方面所述的参考信号传输方法相应的模块、单元、或手段(means),该模块、单元、或手段可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个用于执行上述参考信号传输方法所涉及的功能的模块或单元。
第十方面,提供一种通信装置。该通信装置包括:处理器,该处理器用于执行第一方面至第四方面中任意一种可能的实现方式所述的参考信号传输方法。
在一种可能的设计方案中,第十方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第十方面所述的通信装置与其他通信装置通信。
在一种可能的设计方案中,第十方面所述的通信装置还可以包括存储器。该存储器可以与处理器集成在一起,也可以分开设置。该存储器可以用于存储第一方面至第四方面中任一方面所述的参考信号传输方法所涉及的计算机程序和/或数据。
在本申请中,第十方面所述的通信装置可以为第一方面、或第三方面中的终端设备或第二方面、或第四方面中的网络设备,或者可设置于该终端设备或网络设备中的芯片(系统)或其他部件或组件,或者包含该终端设备或网络设备的装置。
第十一方面,提供一种通信装置。该通信装置包括:处理器,该处理器与存储器耦合,该处理器用于执行存储器中存储的计算机程序,以使得该通信装置执行第一方面至第四方面中任意一种可能的实现方式所述的参考信号传输方法。
在一种可能的设计方案中,第十一方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第十一方面所述的通信装置与其他通信装置通信。
在本申请中,第十一方面所述的通信装置可以为第一方面、或第三方面中的终端设备或第二方面、或第四方面中的网络设备,或者可设置于该终端设备或网络设备中的芯片(系统)或其他部件或组件,或者包含该终端设备或网络设备的装置。
第十二方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机程序,当该处理器执行该计算机程序时,以使该通信装置执行第一方面至第四方面中的任意一种实现方式所述的参考信号传输方法。
在一种可能的设计方案中,第十二方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第十二方面所述的通信装置与其他通信装置通信。
在本申请中,第十二方面所述的通信装置可以为第一方面、或第三方面中的终端设备或第二方面、或第四方面中的网络设备,或者可设置于该终端设备或网络设备中 的芯片(系统)或其他部件或组件,或者包含该终端设备或网络设备的装置。
第十三方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的计算机程序之后,根据该计算机程序执行如第一方面至第四方面中的任意一种实现方式所述的参考信号传输方法。
在一种可能的设计方案中,第十三方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第十三方面所述的通信装置与其他通信装置通信。
在本申请中,第十三方面所述的通信装置可以为第一方面、或第三方面中的终端设备或第二方面、或第四方面中的网络设备,或者可设置于该终端设备或网络设备中的芯片(系统)或其他部件或组件,或者包含该终端设备或网络设备的装置。
此外,上述第九方面至第十三方面所述的通信装置的技术效果,可以参考上述第一方面至第四方面所述的参考信号传输方法的技术效果,此处不再赘述。
第十四方面,提供一种处理器。其中,处理器用于执行第一方面至第四方面中任意一种可能的实现方式所述的参考信号传输方法。
第十五方面,提供一种通信系统。该通信系统包括一个或多个如第一方面所述的终端设备,以及如第二方面所述的一个或多个网络设备。或者,该通信系统包括一个或多个如第三方面所述的终端设备,以及如第四方面所述的一个或多个网络设备。其中,终端设备可以用于执行第一方面或第三方面中任一项所述的参考信号传输方法,网络设备用于执行第二方面或第四方面中任一项所述的参考信号传输方法。
第十六方面,提供一种计算机可读存储介质,包括:计算机程序或指令;当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面至第四方面中任意一种可能的实现方式所述的参考信号传输方法。
第十七方面,提供一种计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面至第四方面中任意一种可能的实现方式所述的参考信号传输方法。
附图说明
图1为本申请实施例提供的循环移位区域与符号持续时间之间的关系示意图;
图2为本申请实施例提供的通信系统的架构示意图;
图3为本申请实施例提供的参考信号传输方法的流程示意图一;
图4为本申请实施例提供的不同场景下循环移位与符号持续时间之间的关系示意图;
图5为本申请实施例提供的参考信号传输方法的流程示意图二;
图6为本申请实施例提供的通信装置的结构示意图一;
图7为本申请实施例提供的通信装置的结构示意图二。
具体实施方式
下面介绍本申请实施例所涉及的技术术语。
1、最大多径时延:是指网络设备的服务范围内所有终端设备的多径时延(多个信道对应的时延/多个传输路径对应的时延)中最大的多径时延。例如,网络服务的服务范围内共有三个终端设备,终端设备0的多径时延的最大值为A0,终端设备1的多径 时延的最大值为A1,终端设备0的多径时延的最大值为A2,则最大多径时延可以是A0,A1和A2中的最大值。需要说明,不同应用环境下最大多径时延的值可以不同,网络设备可以基于不同的应用场景通过信令指示不同的最大多径时延,即指示不同的最大多径时延。
2、终端设备的均方根时延,可以指基于终端设备的信道的功率时延谱的二阶矩确定的时延。不同终端设备的均方根时延可以不同,最大均方根时延可以是所有终端设备的均方根时延的最大值。
3、终端设备的平均时延,可以指基于终端设备的信道的功率时延谱的一阶矩确定的时延。不同终端设备的平均时延可以不同,最大平均时延可以是所有终端设备的平均时延的最大值。
4、时间窗:可以指终端设备的功率时延谱中,功率占终端设备的功率时延谱的总功率的百分之q的功率时延谱的持续时间。不同终端设备的时间窗可以不同,最大时间窗可以是所有终端设备的时间窗的最大值。例如,终端设备的功率时延谱表示为P,第t个时间窗的功率值表示为P(t)。t的起始时刻为时刻t0,截止时刻为时刻t3。可以确定时刻t1和时刻t2,时刻t1不超过时刻t2,时刻t1和时刻t2均不小于时刻t0,且不超过时刻t3。时刻t1和时刻t2之间的功率时延谱的功率之和占总功率(即时刻t0和时刻t3之间的功率时延谱的功率之和)的百分之q,且时刻t0和时刻t1之间的功率时延谱的功率之和以及时刻t2和时刻t3之间的功率时延谱的功率之和相同,则t2-t1的值就可以认为是时间窗的长度。q的值可以是预定义的,如50。
5、符号的循环前缀的持续时间:符号可以是数据的符号或者参考信号的符号。可以理解,由于多径信道的不同径可以具有不同的信道时延,使用循环前缀可以抵抗由于多径信道造成的符号间干扰,循环前缀的持续时间一般接近或超过最大多径时延。
符号可以是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,也可以是单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)符号,本申请不做限定。符号也可以称为时域符号。
6、最大时延:最大时延可以是预定义的时延。或者,最大时延可以是由网络设备通过信令通知给终端设备的时延最大时延可以根据如下一项或多项确定:最大多径时延、最大均方根时延、最大平均时延、最大时间窗、或符号的循环前缀的持续时间。示例性地,最大时延可以是如下多项之一:最大多径时延、最大均方根时延、最大平均时延、最大时间窗、或符号的循环前缀的持续时间。
7、循环移位:也可以称为循环移位值,可以指进行循环移位的位数。
8、循环移位区域:循环移位区域可以是时域信道的一段时间区域。网络设备基于接收到的一个符号或多个符号的参考信号,可以进行信道估计得到估计的频域信道及该频域信道对应的时域信道。该时域信道可以划分为一个或多个循环移位区域,不同循环移位区域不重叠。K个循环移位集合的第k个循环移位集合中的一个循环移位与一个循环移位区域对应,第k个循环移位集合的任意两个循环移位与两个不同的循环移位区域对应。第k个循环移位集合对应的循环移位区域的大小(即循环移位区域的持续时间)可以和时延区间中最大的时延正相关。其中,k为大于或等于0的整数,K为大于1的整数,且k<K。
示例性的,终端设备选择一个循环移位集合的一个循环移位发送参考信号序列时,网络设备接收到该终端设备发送的参考信号序列,进行信道估计得到该终端设备的时域信道,则该终端设备的时域信道的绝大多数或全部能量包含在终端设备选择的一个循环移位对应的循环移位区域内。
以下介绍本申请实施例相关的方案。
在通信系统中,多个终端设备采用相同的时频资源、相同长度、相同根的ZC序列向网络设备发送不同的参考信号时,可以采用不同的CS以实现正交复用,从而使得网络设备可以区分不同的终端设备。可见,CS的数目确定了通信系统的容量。
在一些可能的实施例中,CS的数目与网络设备服务的所有终端设备的多径时延中最大的多径时延(也可以称为最大多径时延)相关,采用不同CS的参考信号产生移位的时域长度大于或等于最大多径时延,且所有循环移位产生的移位的时域长度,即循环移位(cyclic shift,CS)区域小于或等于用于传输参考信号的符号的长度,即符号持续时间。也就是说,循环移位的数目与网络设备服务的所有终端设备的时域信道可以满足如下关系:N cs,baseT max≤T symb。其中,N cs,base为网络设备的服务范围内的循环移位的数目(也可以称为基础循环移位数目),T max为网络设备服务范围内的终端设备的最大时延,T symb为符号持续时间。
若网络设备根据其服务范围内终端设备的时延,如多径时延,确定的参考信号能够用于区分的终端设备的数量的最大值为4,则4*T max≤T symb。以4*T max=T symb为例循环移位区域与符号持续时间之间的关系,如图1所示,则CS区域0至CS区域3的总共持续时间等于T symb
由上可知,CS的数目受限于符号持续时间和最大多径时延,这导致根据循环移位的数目确定的通信系统的容量受限。
为解决上述技术问题,本申请实施例中提供了一种参考信号传输方法,该方法包括:终端设备根据第一映射关系和第一信息确定第一循环移位集合。接着,终端设备根据第一循环移位集合获取参考信号序列的第一循环移位。根据第一循环移位发送参考信号序列。其中,第一映射关系中包括K个时延区间与K个循环移位集合之间的对应关系;K个时延区间互不重叠,且K个时延区间与K个循环移位集合之间一一对应;K为大于1的正整数,K个循环移位集合中任一循环移位集合均包含至少一个循环移位,K个循环移位集合中任意两个循环移位不同,K个时延区间根据最大时延确定。
或者,终端设备上可以配置多个循环移位集合,网络设备可以从多个循环移位集合中指定第一循环移位集合,终端设备则可以进一步地从第一循环移位集合中确定第一循环移位,进而根据第一循环移位发送参考信号。如此,可以针对每个时延区间分别确定一个循环移位集合,从而可以增加循环移位的总数量,提高通信系统的容量。下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for GSM evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),无线保真(wireless fidelity,WiFi)系统,车到任意物体(vehicle to everything,V2X)通 信系统、设备间(device-todevie,D2D)通信系统、车联网通信系统、第4代(4th generation,4G)移动通信系统,如长期演进(long term evolution,LTE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统,如新空口(new radio,NR)系统,以及未来的通信系统,如第六代(6th generation,6G)移动通信系统等。本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singaling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中,有时候下标如W 1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图2中示出的通信系统为例详细说明适用于本申请实施例的通信系统。示例性地,图2为本申请实施例提供的参考信号传输方法所适用的一种通信系统的架构示意图。
如图2所示,该通信系统包括网络设备201和终端设备(202a、202b)。
网络设备201与终端设备(202a、202b)之间可以建立通信连接。
其中,上述网络设备为位于上述通信系统的网络侧,且具有无线收发功能的设备或可设置于该设备的芯片或芯片系统。该网络设备包括但不限于:无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP),如家庭网关、路由器、服务器、交换机、网桥等,宏基站、微基站(也称为小站)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,新空口(new radio,NR)系统中的gNB,或卫星,或无人机,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)、具有基站功能 的路边单元(road side unit,RSU)等。
需要说明,上述网络设备可以是指小区(cell),也就是说,一个网络设备对应一个小区。网络设备是基站时,该基站可以包括BBU和远端射频单元(remote radio unit,RRU)。BBU和RRU可以放置在不同的地方,例如:RRU拉远,放置于高话务量的区域,BBU放置于中心机房。BBU和RRU也可以放置在同一机房。BBU和RRU也可以为一个机架下的不同部件。
上述终端设备为接入上述通信系统,且具有无线收发功能的终端(teminal)或可设置于该终端的芯片或芯片系统。该终端设备也可以称为接入终端、用户单元(subscriber unit))、用户站、移动站、移动台(mobile station,MS)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、蜂窝电话(cellular phone)、智能手机(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的RSU、无人机等。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请提供的参考信号传输方法。
需要说明的是,本申请实施例提供的参考信号传输方法,可以适用于图2所示的任意两个节点之间,如终端设备之间、网络设备之间,以及终端设备与网络设备之间,具体实现可以参考下述方法实施例,此处不再赘述。
应当指出的是,本申请实施例中的方案还可以应用于其他通信系统中,相应的名称也可以用其他通信系统中的对应功能的名称进行替代。
应理解,图2仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备,和/或,其他终端设备,图2中未予以画出。
下面将结合图3-图5对本申请实施例提供的参考信号传输方法进行具体阐述。
一些实施例中,可以根据时延区间相关的信息从第一映射关系中确定第一循环移位集合,并进一步地从第一循环移位集合中,确定第一循环移位,进而根据第一循环移位传输参考信号序列。示例性地,该实施例所述的传输参考信号序列的过程可以参照图3所示参考信号传输方法。
示例性地,图3为本申请实施例提供的参考信号传输方法的流程示意图一。该参考信号传输方法可以适用于图2所示的任意两个节点之间的通信。
如图3所示,该参考信号传输方法包括如下步骤:
S301,终端设备根据第一映射关系和第一信息确定第一循环移位集合。
其中,终端设备可以为图2中任一终端设备。
其中,第一映射关系中包括K个时延区间与K个循环移位集合之间的对应关系。K个时延区间互不重叠,且K个时延区间根据最大时延确定,K个时延区间与K个循环移位集合之间一一对应。K为大于1的正整数,K个循环移位集合中任一循环移位集合均包括至少一个循环移位,K个循环移位集合中任意两个循环移位不同。
其中,最大时延的相关描述可以参照上述,例如,可以是网络设备服务范围内的所有终端设备的时延中最大的时延。或者,最大时延可以是预定义的时延。或者,最大时延可以是由网络设备通过信令通知给终端设备的时延。最大时延可以根据如下一项或多项确定:最大多径时延、最大均方根时延、最大平均时延、最大时间窗、或符号的循环前缀的持续时间。
时延区间可以是根据终端设备的时延的大小划分的时延范围。时延区间可以与如下一项或多项时延相关:多径时延、均方根时延、平均时延、时间窗、或符号的循环前缀的持续时间。换言之,时延区间为如下一项或多项多径时延的范围、均方根时延的范围、平均时延的范围、时间窗的范围、或符号的循环前缀的持续时间的范围。
需要说明,时延区间可以根据最大时延确定。例如,以最大时延为最大多径时延确定为例,则时延区间可以根据最大多径时延确定。也就是说,此时,时延区间可以为多径时延的范围,即多径时延区间。K个时延区间中第k个时延区间可以表示为:
Figure PCTCN2022108050-appb-000001
Figure PCTCN2022108050-appb-000002
Figure PCTCN2022108050-appb-000003
Figure PCTCN2022108050-appb-000004
其中,k=0,1,2,…,K-1,k为时延区间的序号。
Figure PCTCN2022108050-appb-000005
为第k个时延区间的最小值或者第k个时延区间的下限,
Figure PCTCN2022108050-appb-000006
可以称为第k个时延区间的最大值或者第k个时延区间的上限。
其中,最大多径时延可以是网络设备服务的所有终端设备的时域信道的最大多径时延的最大值。如此,可以根据最大多径时延确定每个多径时延区间,基于每个多径时延区间的上限对每个多径时延区间分别确定一个循环移位集合,从而可以增加循环移位的总数量,提高通信系统的容量。此外,由于任一终端设备的时域信道的多径时延的最大值不超过最大多径时延,因此任一终端设备均可以选择合适的一个循环移位集合中的一个循环移位,避免与其他终端设备产生冲突。
循环移位集合是指循环移位的集合,每个循环移位集合中,至少包括一个循环移位。关于循环移位集合中循环移位的数目的实现原理可以参考下述,例如,
Figure PCTCN2022108050-appb-000007
的相关介绍,此处不再赘述。
此外,需要说明的是,本申请实施例中,K个循环移位集合的第k个循环移位集合中,任意两个循环移位之间的最小距离与第k个时延区间的上限正相关,其中,0≤k<K,且k为整数。
如此,可以基于第k个时延区间中最大的时延(即上限)设计第k个循环移位集合中任意两个循环移位之间的最小距离,可以尽可能的减小第k个循环移位集合中循环移位的最小距离,从而增加第k个时延区间的循环移位的数目,进而增加循环移位的总数量。
K个循环移位集合的第k个所述循环移位集合中,循环移位的数目与第k个时延区间的上限(可以称为第k个时延区间的最大时延),以及符号持续时间正相关,其中,0≤k<K,且k为整数。
如此,可以基于第k个时延区间中的最大的时延设计第k个循环移位集合中循环移位的数目,可以尽可能的增加第k个循环移位集合中循环移位的数目,从而增加循环移位的总数量。
可选地,第k个循环移位集合中每个循环移位对应一个循环移位索引。
K个时延区间互不重叠,且K个时延区间根据最大时延确定。也就是说,K个时延区间中不同时延区间所覆盖的时延均不相同(即终端设备的时延属于第k个时延区间,则终端设备的时延不属于其他时延区间),且K个时延区间中每个时延区间均与最大时延相关。示例性地,若最大时延为T max,K为3,则K个时延区间可以分别为:[0,T max/3),
Figure PCTCN2022108050-appb-000008
或者,
Figure PCTCN2022108050-appb-000009
或者,
Figure PCTCN2022108050-appb-000010
此时,循环移位集合的数量也为3个。终端设备的时延属于一个时延区间,也就是说该区间包含终端设备的时延。示例性的,若区间为
Figure PCTCN2022108050-appb-000011
终端设备的时延为t delay,当
Figure PCTCN2022108050-appb-000012
时,则表示t delay属于区间
Figure PCTCN2022108050-appb-000013
或者说区间
Figure PCTCN2022108050-appb-000014
包含t delay,可以表示为
Figure PCTCN2022108050-appb-000015
Figure PCTCN2022108050-appb-000016
K个时延区间与K个循环移位集合之间一一对应,也就是说,每个时延区间对应一个循环移位集合,且不同时延区间对应的循环移位集合各不相同。以K个时延区间包括[0,T max/3),[T max/3,2T max/3),和[2T max/3,T max]为例,则时延区间[0,T max/3)对应循环移位集合P 0,时延区间[T max/3,2T max/3)对应循环移位集合P 1,时延区间[2T max/3,T max]对应循环移位集合P 2。在此情况下,第一映射关系中时延区间与循环移位集合之间的对应关系如下表1所示:
表1
时延区间 [0,T max/3) [T max/3,2T max/3) [2T max/3,T max]
循环移位集合 循环移位集合P 0 循环移位集合P 1 循环移位集合P 2
第一信息可以包括:终端设备的时延信息,或者第一索引。
其中,终端设备的时延信息可以包括如下一项或多项时延:终端设备的多径时延、终端设备的均方根时延、终端设备的平均时延、终端设备的时间窗、或终端设备的符号的循环前缀的持续时间。需要说明,时延信息中的时延与终端设备的最大时延相关,例如,时延信息中的时延可以是终端设备的多径时延。进一步地,时延信息中的时延可以是终端设备的最大多径时延。其中,终端设备的时延信息可以由终端设备自行确定或者来自于网络设备。
例如,终端设备的时延信息可以由终端设备通过感知(sensing)的方式自行获取。示例性地,终端设备可以发送载波信号或者单音信号等信号作为感知信号,然后接收由网络设备和/或周围环境物体反射回来的信号,基于接收的信号估计获取终端设备的时延,从而得到时延信息。
又如,终端设备的时延信息可以来自于网络设备。示例性地,网络设备可以基于已经接收到的来自终端设备的参考信号进行信道估计得到时延信息,并将该时延信息携带在信令中以通知终端设备。其中,携带时延信息的信令可以是高层信令,如无线资源控制(radio resource control,RRC)信令。
其中,第一索引可以是时延区间的索引。第一索引可以来自于网络设备。
在第一信息包括终端设备的时延信息的情况下,上述S301,终端设备根据第一映 射关系和第一信息确定第一循环移位集合,可以包括:终端设备将该终端设备的时延信息中的时延所在时延区间对应的循环移位集合确定为第一循环移位集合。
如此,可以使终端设备的时延与第一循环移位集合匹配,以兼顾时延和干扰。
以上述表1所示的映射关系为例,若终端设备的时延t delay位于时延区间[T max/3,2T max/3)内,则第一循环移位集合为循环移位集合P 1
在第一信息包括第一索引的情况下,图3所示的方法还可以包括:终端设备接收来自网络设备的第一信息。其中,第一信息包括第一索引。上述S301,终端设备根据第一映射关系和第一信息确定第一循环移位集合,可以包括:终端设备根据第一索引和第一映射关系确定第一循环移位集合。终端设备将第一索引所指示的时延区间对应的循环移位集合确定为第一循环移位集合。
如此,网络设备在第一信息中携带第一索引指示时延区间,从而可以降低信令开销,提高通信效率。
以K个时延区间包括[0,T max/3),[T max/3,2T max/3),和[2T max/3,T max]为例,时延区间[0,T max/3)对应循环移位集合P 0,时延区间[T max/3,2T max/3)对应循环移位集合P 1,时延区间[2T max/3,T max]对应循环移位集合P 2,时延区间[0,T max/3)的索引为区间索引#0,时延区间[T max/3,2T max/3)的索引为区间索引#1,时延区间[2T max/3,T max]的索引为区间索引#2。在此情况下,区间索引、时延区间和循环移位集合之间的对应关系如下表2所示。若第一索引为区间索引#1,则第一循环移位集合为循环移位集合P 1
表2
区间索引 区间索引#0 区间索引#1 区间索引#2
时延区间 [0,T max/3) [T max/3,2T max/3) [2T max/3,T max]
循环移位集合 循环移位集合P 0 循环移位集合P 1 循环移位集合P 2
需要说明,在一些可能的实施例中,循环移位也可以称为循环移位值。
S302,终端设备根据第一循环移位集合获取参考信号序列的第一循环移位。
其中,参考信号序列可以是如下任一项:ZC序列、伪随机噪声(pseudo noise,PN)序列、基于伪随机gold序列生成的正交相移键控(quadrature phase shift keying,QPSK)序列。
一种可能的设计方案中,终端设备可以自行从第一循环移位集合中,确定第一循环移位。
示例性地,终端设备可以随机地从第一循环移位集合的循环移位中,确定第一循环移位。此时,终端设备可以向网络设备发送第一循环移位,例如第一循环移位可以携带在终端设备发送的数据中。
例如,第一循环移位集合(P 1)为第1个循环移位集合,且第1个循环移位集合中,包括3个循环移位。其中,第一循环移位集合的第0个循环移位为
Figure PCTCN2022108050-appb-000017
第一循环移位集合的第1个循环移位为
Figure PCTCN2022108050-appb-000018
第一循环移位集合的第2个循环移位为
Figure PCTCN2022108050-appb-000019
Figure PCTCN2022108050-appb-000020
Figure PCTCN2022108050-appb-000021
则终端设备可以将
Figure PCTCN2022108050-appb-000022
确定为第一循环移位,或者将
Figure PCTCN2022108050-appb-000023
确定为循环移位,或者将
Figure PCTCN2022108050-appb-000024
确定为循环移位。
一种可能的设计方案中,终端设备可以接收来自网络设备的第二索引,并根据第二索引从第一循环移位集合中确定第一循环移位。其中,第二索引为第一循环移位的 循环移位索引。
其中,第二索引可以携带在信令,如下行控制信令(downlink control indicator,DCI)中。如此,可以由网络设备指示循环移位,网络设备可以基于系统需求灵活配置循环移位,避免或降低不同终端设备传输的参考信号产生碰撞的概率。
例如,第1个循环移位集合中循环移位与第1个循环移位集合中循环移位的索引之间的对应关系如下表3所示。其中,
Figure PCTCN2022108050-appb-000025
的循环移位索引为循环移位索引#0,
Figure PCTCN2022108050-appb-000026
的循环移位索引为循环移位索引#1,
Figure PCTCN2022108050-appb-000027
的循环移位索引为循环移位索引#2。若第二索引为循环移位索引#1,则第一循环移位为
Figure PCTCN2022108050-appb-000028
表3
Figure PCTCN2022108050-appb-000029
S303,终端设备根据第一循环移位向网络设备发送参考信号序列。相应的,网络设备接收来自终端设备的参考信号序列。
示例性地,终端设备可以根据第一循环移位生成参考信号序列,并向网络设备发送该参考信号序列。
终端设备可以根据第一映射关系和第一信息确定第一循环移位集合,并根据第一循环移位集合获取参考信号序列的第一循环移位,进而根据第一循环移位发送参考信号序列。
如此,可以根据每个时延区间的上限对每个时延区间分别确定一个循环移位集合,从而可以增加循环移位的总数量,提高通信系统的容量。
S304,网络设备获取区间信息。
其中,区间信息用于指示终端设备的时延所在的时延区间。示例性地,区间信息可以包括终端设备的时延。
示例性地,终端设备的时延,可以是如下多项之一:终端设备的多径时延、终端设备的均方根时延、终端设备的平均时延、终端设备的时间窗、或符号的循环前缀的持续时间。
示例性地,终端设备的时延,可以是终端设备的多径时延。进一步地,终端设备的多径时延可以是最大多径时延。
S305,网络设备根据区间信息和第一映射关系确定第一循环移位集合。
关于S305的实现原理可以参考S301的原理,此处不再赘述。
S306,网络设备根据第一循环移位集合解调参考信号序列。
本申请实施例中,第一映射关系可以为由网络设备配置或者协议规定。
在一些场景中,终端设备上的第一映射关系由网络设备配置。在此情况下,在S301之前,上述图3所示的参考信号传输方法还可以包括:网络设备发送映射关系指示信息。相应地,终端设备接收来自网络设备的映射关系指示信息。其中,映射关系指示信息用于指示第一映射关系。可选地,若终端设备上不存在映射关系的情况下,映射关系指示信息中,可以携带第一映射关系。例如,在终端设备中配置有多个映射关系的情况下,网络设备可以从多个映射关系中指示第一映射关系,从而可以提高灵活性。
或者,可选地,在终端设备上配置有多个映射关系,或者由协议约定多个映射关 系的情况下,映射关系指示信息用于指示终端设备上配置的多个映射关系中的第一映射关系。示例性地,映射关系指示信息可以包括第一映射关系的标识信息。例如,终端设备上配置的多个映射关系包括映射关系0至映射关系5,若映射关系指示信息中携带有映射关系3的标识信息,则映射关系3为第一映射关系。如此,在终端设备中配置有多个映射关系的情况下,网络设备可以从多个映射关系中指示第一映射关系,从而可以提高灵活性。
上述图3所示的参考信号传输方法还可以包括:网络设备向终端设备发送第二信息。相应地,终端设备接收来自网络设备的第二信息。其中,第二信息用于指示最大时延。
可理解,第二信息可以携带在RRC信令中。
例如,若终端设备上配置有多个映射关系(映射关系0至映射关系2),且多个映射关系的区间通过T max表示,映射关系0中的时延区间包括:[0,T max/3),[T max/3,2T max/3),[2T max/3,T max];映射关系1中的时延区间包括:[0,T max/4),[T max/4,2T max/3),[2T max/3,T max);映射关系2中的时延区间包括:[0,T max/3),[T max/3,T max/2),[T max/2,T max]。此时,循环移位集合的数量也为3个。在此情况下,若终端设备接收到来自网络设备的第二指示信息,则可以确定映射关系0至映射关系2。
如此,可以通过网络设备指示最大时延,终端设备可以根据最大时延确定第一映射关系,可以提高灵活度。
为便于理解,以下结合举例进一步说明本申请实施例中的第一映射关系。
第一映射关系的K个循环移位集合中第k个循环移位集合可以表示为P k,第k个循环移位集合包含
Figure PCTCN2022108050-appb-000030
个元素,每一个元素为一个循环移位,也就是说第k个循环移位集合中循环移位的数目为
Figure PCTCN2022108050-appb-000031
第k个循环移位集合中的第i个元素(即第i个循环移位)表示为
Figure PCTCN2022108050-appb-000032
对于第k个循环移位集合,i的取值为0至
Figure PCTCN2022108050-appb-000033
则第k个循环移位集合P k可以表示为:
Figure PCTCN2022108050-appb-000034
可选地,第k个循环移位集合中循环移位的数目
Figure PCTCN2022108050-appb-000035
与第k个时延区间的最大值
Figure PCTCN2022108050-appb-000036
相关。示例性地,第一映射关系中循环移位集合的循环移位的数目可以满足如下公式(1)所示的关系:
Figure PCTCN2022108050-appb-000037
其中,
Figure PCTCN2022108050-appb-000038
为第k个时延区间的最大值(上限),N cs,base为基础循环移位数目,N cs,base可以根据最大时延T max和符号确定。示例性地,基础循环移位数目可以满足如下公式(2)所示的关系:
N cs,baseT max≤T symb;       (2)
例如,N cs,base可以是满足公式(2)的正整数的最大值。
示例性的,假设第k个时延区间的最大值满足如下公式(3)所示的关系:
Figure PCTCN2022108050-appb-000039
则公式(3)可以变形为如下公式(4):
Figure PCTCN2022108050-appb-000040
假设K=3,N cs,base=6,则K个循环移位集合中的循环移位的数目满足如下公式(5)所示的关系:
Figure PCTCN2022108050-appb-000041
对公式(5)求解可以得到多种可能的循环移位的数目的取值,例如
Figure PCTCN2022108050-appb-000042
Figure PCTCN2022108050-appb-000043
或者
Figure PCTCN2022108050-appb-000044
或者,可选地,第一映射关系中循环移位集合的循环移位的数目满足如下公式(6)所示的关系:
Figure PCTCN2022108050-appb-000045
其中,T symb为符号的持续时间。
可以理解,第k个循环移位集合中一个循环移位对应的CS区域的长度(或者称为持续时间)是与第k个时延区间的最大值
Figure PCTCN2022108050-appb-000046
相关的,例如该CS区域的长度与
Figure PCTCN2022108050-appb-000047
相同。第k个循环移位集合中循环移位的数目为
Figure PCTCN2022108050-appb-000048
Figure PCTCN2022108050-appb-000049
个循环移位对应的
Figure PCTCN2022108050-appb-000050
个CS区域的总长度为
Figure PCTCN2022108050-appb-000051
所有循环移位集合中的循环移位对应的CS区域的总长度应该不超过符号的持续时间T symb或者N cs,baseT max。例如,公式(6)中,等式左边为所有循环移位集合中的循环移位对应的CS区域的总长度,该总长度不超过符号的持续时间T symb
一种可能的设计方案中,第k个循环移位集合中任意两个循环移位的距离的最小值与第k个时延区间的最大值
Figure PCTCN2022108050-appb-000052
相关。
示例性地,第k个时延区间的最大值
Figure PCTCN2022108050-appb-000053
越大,第k个循环移位集合中任意两个循环移位的距离也越大,即第k个循环移位集合中任意两个循环移位的距离与第k个时延区间的最大值
Figure PCTCN2022108050-appb-000054
正相关。第k个循环移位集合中任意两个循环移位的距离可以是该两个循环移位之间的差值的绝对值。
可选地,第k个循环移位集合P k中相邻两个循环移位的距离相同。如此,在相邻两个循环移位之间的距离最小的情况下,可以增加循环移位的数目,进一步提高容量。
当第k个循环移位集合P k中相邻两个循环移位的距离相同,任意两个循环移位的距离的最小值也就是相邻两个循环移位的距离。
一种可能的设计方案中,第k个循环移位集合P k中的循环移位可以是按照大小顺序,如从小到大的顺序排列或者从大到小的顺序依次排列。为了便于理解,后续描述中以第k个循环移位集合P k中的元素按照大小顺序依次排列,且
Figure PCTCN2022108050-appb-000055
进行说明。
可选地,第k个循环移位集合中第i个循环移位
Figure PCTCN2022108050-appb-000056
可以根据第i个循环移位的索引
Figure PCTCN2022108050-appb-000057
Figure PCTCN2022108050-appb-000058
确定。示例性地,第k个循环移位集合中的第i个循环移位
Figure PCTCN2022108050-appb-000059
可以满足如下公式(7)或公式(8)所示的关系:
Figure PCTCN2022108050-appb-000060
Figure PCTCN2022108050-appb-000061
其中,mod表示取模运算。
Figure PCTCN2022108050-appb-000062
为在第k个时延区间内的循环移位的总数量,且
Figure PCTCN2022108050-appb-000063
为正整数,
Figure PCTCN2022108050-appb-000064
可以预定义或者由网络设备通过信令,如无线资源控制(radio resource control,RRC)信令通知给终端设备。不同循环移位集合对应的参数
Figure PCTCN2022108050-appb-000065
的值可以相同,此时,参数
Figure PCTCN2022108050-appb-000066
可以表示为N cs,step,即
Figure PCTCN2022108050-appb-000067
为第k个循环移位的索引。关于
Figure PCTCN2022108050-appb-000068
的实现原理可以参考下述关于循环移位的索引的相关介绍,此处不再赘述。
Figure PCTCN2022108050-appb-000069
可以由网络设备通过RRC信令通知终端设备。
可以将第k个循环移位集合P k中的元素(循环移位)按照大小顺序依次排列,例如按照由小至大的顺序排列,或者按照由大至小的顺序排列。第k个循环移位集合P k中相 邻两个循环移位之间的距离可以相同,也就是说,同一循环移位集合中相邻两个循环移位满足如下公式(9)所示的关系:
Figure PCTCN2022108050-appb-000070
由公式(9)可以知道,同一循环移位集合中相邻两个循环移位同样满足如下公式(10)所示的关系:
Figure PCTCN2022108050-appb-000071
此时,可以设计相邻两个循环移位之间的距离,使相邻两个循环移位之间的距离尽可能小,从而可以增加循环移位的数目。
第k个循环移位集合中任意两个循环移位的距离的最小值与第k个时延区间的最大值
Figure PCTCN2022108050-appb-000072
相关,即
Figure PCTCN2022108050-appb-000073
的值与
Figure PCTCN2022108050-appb-000074
相关。
进一步地,在第k个循环移位集合P k中的循环移位按照大小顺序依次排列的情况下,假设第k个循环移位集合P k中相邻两个循环移位的距离相同,则第k个循环移位集合P k中相邻两个循环移位的距离可以满足如下公式(11)至公式(16)中的一项或多项关系:
Figure PCTCN2022108050-appb-000075
Figure PCTCN2022108050-appb-000076
Figure PCTCN2022108050-appb-000077
Figure PCTCN2022108050-appb-000078
Figure PCTCN2022108050-appb-000079
Figure PCTCN2022108050-appb-000080
其中,||表示取绝对值,
Figure PCTCN2022108050-appb-000081
表示向上取整操作,round()表示对进行四舍五入操作。
需要说明,第一映射关系中,循环移位也可以通过循环移位索引表示。其中,第一映射关系的K个循环移位集合的第k个循环移位集合中,所有循环移位的索引也可以称为循环移位索引集合n k,第k个循环移位集合中的第i个元素(即第i个循环移位)的索引表示为
Figure PCTCN2022108050-appb-000082
第k个循环移位索引集合n k可以表示为:
Figure PCTCN2022108050-appb-000083
其中,
Figure PCTCN2022108050-appb-000084
为第k个循环移位集合中第i个循环移位索引。
可以理解,由K个时延区间与K个循环移位集合一一对应,可知K个时延区间与K个循环移位集合的循环移位索引集合一一对应。
一种可能的设计方案中,第k个循环移位集合的循环移位索引集合n k中任意两个循环移位索引的距离的最小值与第k个时延区间的最大值
Figure PCTCN2022108050-appb-000085
相关。
一种可能的设计方案中,第k个循环移位集合的循环移位索引值集合n k的元素可以按照大小顺序排列,例如可以按照从小到大或从大到小的顺序排列。
循环移位索引集合n k中相邻两个循环移位索引的距离可以相同,即循环移位索引集合n k中相邻两个循环移位索引之间满足公式(17)所示的关系:
Figure PCTCN2022108050-appb-000086
当循环移位索引集合n k中相邻两个循环移位索引的距离相同时,循环移位索引满足如下关系公式(18)所示的关系:
Figure PCTCN2022108050-appb-000087
其中,v k为步长,Δ k为偏移量,且v k、Δ k均为整数,v k、Δ k可以预定义或者由网 络设备通过信令通知给终端设备,例如v k、Δ k可以由网络设备通过RRC信令通知给终端设备。v k的取值也可以和第k个时延区间的最大值
Figure PCTCN2022108050-appb-000088
和/或最大时延T max相关,根据公式(17)和公式(18)可以知道步长v k满足如下公式(19)所示的关系:
Figure PCTCN2022108050-appb-000089
也就是说,v k的绝对值就是循环移位索引集合n k中相邻两个循环移位索引的距离。示例性的,v k和第k个时延区间的最大值
Figure PCTCN2022108050-appb-000090
和/或最大时延T max的关系可以由下面的公式(20)至公式(25)中的任一项确定。
进一步地,在第k个循环移位集合的循环移位索引值集合n k的元素可以按照大小顺序排列的情况下,假设循环移位索引集合n k中相邻两个循环移位的索引的距离相同,则第k个循环移位集合的循环移位索引集合n k中相邻两个循环移位的索引之间的距离可以满足如下公式(20)至公式(25)中的一项或多项关系:
Figure PCTCN2022108050-appb-000091
Figure PCTCN2022108050-appb-000092
Figure PCTCN2022108050-appb-000093
Figure PCTCN2022108050-appb-000094
Figure PCTCN2022108050-appb-000095
Figure PCTCN2022108050-appb-000096
示例性地,
Figure PCTCN2022108050-appb-000097
时,在此情况下,上述公式(20)至公式(25)中的
Figure PCTCN2022108050-appb-000098
可以替换为N cs,step。可以理解,v k的取值可以基于公式(20)至公式(25)中的任一公式确定。
此外,在步长v k满足公式(18)的情况下,循环移位
Figure PCTCN2022108050-appb-000099
可以满足如下公式(26)或者公式(27)所示的关系:
Figure PCTCN2022108050-appb-000100
Figure PCTCN2022108050-appb-000101
以下结合不同的示例说明第一映射关系。
示例一,假设循环移位集合数目K=3,基础循环移位数目N cs,base=6。K个时延区间与K个循环移位集合的对应关系如表4所示:
表4
序号k 时延区间 第k个循环移位集合P k
0 [0,T max/3) {0,1/18,2/18,3/18,4/18,5/18}*2π
1 [T max/3,2T max/3) {6/18,8/18,10/18}*2π
2 [2T max/3,T max] {12/18,15/18}*2π
示例二,假设循环移位集合数K=3,基础循环移位数目N cs,base=6。以循环移位采用循环移位的索引表示为例,则K个时延区间与K个循环移位集合的循环移位索引集合、
Figure PCTCN2022108050-appb-000102
之间的对应关系如表5所示:
表5
Figure PCTCN2022108050-appb-000103
如表5所示,第0个、第1个和第2个循环移位集合中循环移位的数目依次为6,3,2;每个循环移位集合内相邻两个循环移位索引值的距离是相同的。以该距离为
Figure PCTCN2022108050-appb-000104
为例,由于
Figure PCTCN2022108050-appb-000105
Figure PCTCN2022108050-appb-000106
则可以计算得到第0个循环移位集合中相邻两个循环移位的索引的距离是1,第1个循环移位集合中相邻两个循环移位的索引的距离是2,第2个循环移位集合中相邻两个循环移位的索引的距离是3。当
Figure PCTCN2022108050-appb-000107
Figure PCTCN2022108050-appb-000108
表示时,由表5可以知道v 0=1,v 1=2,v 2=3;Δ 0=0,Δ 1=6,Δ 2=12。
如表5所示的循环移位中,由于第0个时延区间的最大值为T max/3,第1个时延区间的最大值为2T max/3,第0个时延区间和第1个时延区间的最大值均小于最大时延T max,因此第0个和第1个中相邻两个循环移位的索引之间的距离可以更小,可以使用更多的循环移位,从而可以增加循环移位的总数目和参考信号的数目。
示例三,假设循环移位集合数K=3,基础循环移位数目N cs,base=6。以循环移位采用循环移位的索引表示为例,则K个时延区间、K个循环移位集合的循环移位索引集合、
Figure PCTCN2022108050-appb-000109
的对应关系如表6所示:
表6
Figure PCTCN2022108050-appb-000110
表4-表6中K个时延区间为区间[0,T max]进行均匀划分得到,可理解,K个时延区间也可以是由区间[0,T max]进行非均匀划分得到。
示例四,假设循环移位集合数K=3,基础循环移位数目N cs,base=6。以循环移位采用循环移位的索引表示为例,则K个时延区间与K个循环移位集合的循环移位索引集合的对应关系如表7所示:
表7
Figure PCTCN2022108050-appb-000111
Figure PCTCN2022108050-appb-000112
可选的,表7中序号k=1时,参数
Figure PCTCN2022108050-appb-000113
可以为18,此时对应的循环移位索引集合为{6,7.5,9,10.5}。
示例五,假设循环移位集合数K=3,基础循环移位数目N cs,base=6。以循环移位采用循环移位索引的表示为例,则K个时延区间与K个循环移位集合的循环移位索引集合的对应关系如表8所示:
表8
Figure PCTCN2022108050-appb-000114
可选的,表8中序号k=1时,
Figure PCTCN2022108050-appb-000115
可以为18,此时对应的循环移位索引集合为{3,4.5,6,7.5}。
示例六,假设循环移位集合数目K=2,基础循环移位数目N cs,base=6。以循环移位采用循环移位的索引表示为例,则K个时延区间与K个循环移位集合的循环移位索引集合的对应关系如表9所示:
表9
Figure PCTCN2022108050-appb-000116
可选的,表9中序号k=1时,参数
Figure PCTCN2022108050-appb-000117
可以为6,此时对应的循环移位索引集合为{3,4,5}。
示例七,假设循环移位集合数目K=2,基础循环移位数目N cs,base=6。以循环移位采用循环移位的索引表示为例,则K个时延区间与K个循环移位集合的循环移位索引集合的对应关系如表10所示:
表10
Figure PCTCN2022108050-appb-000118
可选的,表10中序号k=1时,参数
Figure PCTCN2022108050-appb-000119
可以为6,此时对应的循环移位索引集合为{2,3,4,5}。
示例八,假设循环移位集合数K=4,基础循环移位数目N cs,base=6。以循环移位采用循环移位的索引表示为例,则K个时延区间与K个循环移位集合的循环移位索引集合的对应关系如表11所示:
表11
Figure PCTCN2022108050-appb-000120
根据多径时延和符号持续时间、表5-表8中K个时延区间与K个循环移位集合的循环移位索引集合的对应关系示意图如图4所示。
在一些实施例中,图4中的(a)中基于最大时延确定的循环移位的数目为6(即可以认为基础循环移位数目N cs,base=6),可以将网络设备估计的时域信道划分为6个CS区域,且该6个CS区域与6个循环移位一一对应。每个CS区域的长度大于或等于最大时延,如图4中的(a)所示,每个CS区域的长度可以为最大时延。
图4(b)为表5、表6所示的K=3个时延区间与K个循环移位集合的循环移位索引集合的对应关系示意图。表5、表6中3个时延区间的最大值为
Figure PCTCN2022108050-appb-000121
Figure PCTCN2022108050-appb-000122
因此如图4中的(b)所示第0个循环移位集合对应的CS区域的长度为T max/3,第1个循环移位集合对应的CS区域的长度为T max/3,第2个循环移位集合对应的CS区域的长度为T max。以CS区域长度为T max/3对时域信道进行划分,可以得到18个CS区域,依次对应循环移位索引0至17。如图4中的(b)所示,表5或表6中第0个循环移位集合的循环移位值集合为{0,1,2,3,4,5},对应CS区域0至5。第1个循环移位集合的循环移位索引集合为{6,8,10},对应CS区域6至8。第2个循环移位集合的循环移位索引集合为{12,15},对应CS区域9至15。由于第1个循环移位集合中的一个循环移位对应的CS区域长度为2T max/3,因此第1个循环移位集合中的一个循环移位会对应2个长度为T max/3的CS区域。由于第2个循环移位中集合的一个循环移位对应的CS区域长度为T max,因此第2个循环移位集合中的一个循环移位会对应3个长度为T max/3的CS区域。
类似的,图4中的(c)为表6所示的K=3个时延区间与K个循环移位集合的循环移位索引集合的对应关系示意图。图4中的(d)为表7所示的K=3个时延区间与K个循环移位集合的循环移位索引集合的对应关系示意图。图4中的(e)为表8所示的K=3时延区间与K个循环移位集合的循环移位索引集合的对应关系示意图。
结合上述图4以及表4至表8可知,本申请实施例提供的方案,相较于仅根据N cs,base和符号持续时间确定循环移位集合的方案,能够增加循环移位的数目,从而达到提升通信系统的容量的效果。
此外,需要说明的是,在终端设备采用非授权传输的场景中,本申请实施例的方案还可以进一步降低终端设备之间的碰撞概率,从而提高通信效率。
另一些实施例中,终端设备上可以配置多个循环移位集合,网络设备可以从多个循环移位集合中指定第一循环移位集合,终端设备则可以进一步地从第一循环移位集合中确定第一循环移位,进而根据第一循环移位发送参考信号。
示例性地,图5为本申请实施例提供的参考信号传输方法的流程示意图二。该参考信号传输方法可以适用于图2所示的任意两个节点之间的通信。
其中,终端设备中配置有K个循环移位集合,K个循环移位集合中任一循环移位集合均包含至少一个循环移位,K个循环移位集合与K个时延区间一一对应,且K个时延区间互不重叠,K为大于1的正整数,K个循环移位集合中任意两个循环移位不同,K个时延区间根据最大时延确定。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,任意两个循环移位之间的最小距离与第k个时延区间中最大的时延正相关,其中,0≤k<K,且k为整数。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,循环移位的数目与第k个时延区间中的最大的时延,以及符号持续时间正相关,其中,0≤k<K,且k为整数。
关于K个循环移位集合的实现原理,可以参考上述图3所示方法实施例中的相关介绍,此处不再赘述。
如图5所示,该参考信号传输方法包括如下步骤:
S501,终端设备接收来自网络设备的第三索引。
其中,第三索引为循环移位集合的索引,即循环移位集合索引。
S502,终端设备根据该第三索引确定第一循环移位集合。
例如,如下表格12所示,循环移位集合包括循环移位集合P 0至循环移位集合P 2,若循环移位集合P 0至循环移位集合P 2对应的循环移位集合索引依次为循环移位集合索引#0至循环移位集合索引#2,第三索引为循环移位集合索引#1,则循环移位集合P 1为第一循环移位集合。
表12
Figure PCTCN2022108050-appb-000123
S503,终端设备将第一循环移位集合中的一个循环移位确定为第一循环移位。
一种可能的设计方案中,可以由终端设备自行确定循环移位。在此情况下,终端设备将第一循环移位集合中的一个循环移位确定为第一循环移位,可以包括:终端设备随机将第一循环移位集合中的一个循环移位确定为第一循环移位。
一种可能的设计方案中,可以由网络设备指定循环移位。在此情况下,图5所示的方法还可以包括:终端设备接收来自网络设备的第四索引。终端设备将第一循环移位集合中的一个循环移位确定为第一循环移位,可以包括:终端设备将第一循环移位集合中,与第四索引对应的循环移位确定为第一循环移位。
关于S503的实现原理可以参考S302的实现原理,此处不再赘述。
S504,终端设备根据第一循环移位向网络设备发送参考信号序列。
关于S504的实现原理可以参考S303的实现原理,此处不再赘述。
S505,网络设备获取区间信息。
关于S505的实现原理可以参考S304的实现原理,此处不再赘述。
S506,网络设备根据区间信息和第一映射关系确定第一循环移位集合。
其中,关于第一映射关系的实现原理可以参考图3所示方法中与第一映射关系相关的介绍,关于S506的实现原理可以参考S305的实现原理,此处不再赘述。
S507,网络设备根据第一循环移位集合解调参考信号序列。
关于S507的实现原理可以参考S306的实现原理,此处不再赘述。
一种可能的设计方案中,第四方面提供的方法还可以包括:网络设备向终端设备发送第三索引。
一种可能的设计方案中,第四方面所提供的方法还可以包括:网络设备发送组指示信息。组指示信息用于指示K个循环移位集合。
此外,图5所提供的参考信号传输方法的技术效果可以参考图3所示的参考信号传输方法的技术效果,此处不再赘述。
以上结合图3-图5详细说明了本申请实施例提供的参考信号传输方法。以下结合图6-图7详细说明用于执行本申请实施例提供的参考信号传输方法的通信装置。
示例性地,图6是本申请实施例提供的通信装置600的结构示意图一。如图6所示,通信装置600包括:处理模块601和收发模块602。为了便于说明,图6仅示出了该通信装置600的主要部件。
一些实施例中,通信装置600可适用于图2中所示出的通信系统中,执行图3中所示出的参考信号传输方法中终端设备的功能。
其中,处理模块601,用于根据第一映射关系和第一信息确定第一循环移位集合。
第一映射关系中包括K个时延区间与K个循环移位集合之间的对应关系。K个时延区间互不重叠,且K个时延区间与K个循环移位集合之间一一对应。K为大于1的正整数,K个循环移位集合中任一循环移位集合均包含至少一个循环移位,K个循环移位集合中任意两个循环移位不同,K个时延区间根据最大时延确定。
处理模块601,还用于根据第一循环移位集合获取参考信号序列的第一循环移位。
收发模块602,用于根据第一循环移位发送参考信号序列。
一种可能的设计方案中,第一信息可以包括终端设备的时延信息。处理模块601,具体可以用于根据第一映射关系和终端设备的时延信息确定第一循环移位集合。
一种可能的设计方案中,收发模块602,还可以用于接收来自网络设备的第一信息。其中,第一信息包括第一索引。处理模块601,具体可以用于根据第一索引和第一映射关系确定第一循环移位集合。
一种可能的设计方案中,处理模块601,具体可以用于通过收发模块602接收第二索引。以及,根据第二索引从第一循环移位集合中确定第一循环移位。
一种可能的设计方案中,最大时延可以为最大多径时延。
可选地,时延区间可以为多径时延区间。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,任意两个循环移位之间的最小距离可以与第k个时延区间中最大的时延正相关,其中,0≤k<K,且k为整数。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,循环移位的数目可以与第k个时延区间中的最大的时延,以及符号持续时间正相关,其中,0≤k< K,且k为整数。
一种可能的设计方案中,收发模块602,还可以用于接收来自网络设备的映射关系指示信息。其中,映射关系指示信息用于指示第一映射关系。
一种可能的设计方案中,收发模块602,还可以用于接收来自网络设备的第二信息。其中,第二信息用于指示最大时延。
可选地,收发模块602可以包括接收模块和发送模块。其中,收发模块602用于实现通信装置600的发送功能和接收功能。
可选地,通信装置600还可以包括存储模块(图6中未示出),该存储模块存储有程序或指令。当处理模块601执行该程序或指令时,使得通信装置600可以执行图2所示的参考信号传输方法中终端设备的功能。
应理解,通信装置600中涉及的处理模块601可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块602可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
需要说明的是,通信装置600可以是图2中所示出的终端设备,也可以是设置于上述终端设备中的芯片(系统)或其他部件或组件,或者包含该终端设备的装置,本申请实施例对此不做限定。
此外,通信装置600的技术效果,可以分别参考图3所示出的参考信号传输方法的技术效果,此处不再赘述。
另一些实施例中,通信装置600可适用于图2中所示出的通信系统中,执行图3中所示出的参考信号传输方法中网络设备的功能。
其中,处理模块601,用于获取区间信息。
处理模块601,还用于根据区间信息和第一映射关系确定第一循环移位集合。
第一映射关系中包括K个时延区间与K个循环移位集合之间的对应关系。K个时延区间与K个循环移位集合之间一一对应,且K个时延区间互不重叠。K为大于1的正整数,K个循环移位集合中任一循环移位集合均包含至少一个循环移位,K个循环移位集合中任意两个循环移位不同,K个时延区间根据最大时延确定。
收发模块602,用于接收参考信号序列。处理模块601,还用于根据第一循环移位集合解调参考信号序列。
一种可能的设计方案中,区间信息可以包括终端设备的时延信息。
一种可能的设计方案中,收发模块602,还可以用于发送第一信息。第一信息包括第一索引。
一种可能的设计方案中,收发模块602,还可以用于发送第二索引。
一种可能的设计方案中,最大时延可以为最大多径时延。
一种可能的设计方案中,时延区间可以为多径时延区间。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,任意两个循环移位之间的最小距离可以与第k个时延区间中最大的时延正相关,其中,0≤k<K,且k为整数。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,循环移位的数目可以与第k个时延区间中的最大的时延,以及符号持续时间正相关,其中,0≤k< K,且k为整数。
一种可能的设计方案中,收发模块602,还可以用于发送映射关系指示信息,其中,映射关系指示信息用于指示第一映射关系。
一种可能的设计方案中,收发模块602,还可以用于发送第二信息,其中,第二信息用于指示最大时延。
可选地,收发模块602可以包括接收模块和发送模块。其中,收发模块602用于实现通信装置600的发送功能和接收功能。
可选地,通信装置600还可以包括存储模块(图6中未示出),该存储模块存储有程序或指令。当处理模块601执行该程序或指令时,使得通信装置600可以执行图3所示的参考信号传输方法中网络设备的功能。
应理解,通信装置600中涉及的处理模块601可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块602可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
需要说明的是,通信装置600可以是图2中所示出的网络设备,也可以是设置于上述网络设备中的芯片(系统)或其他部件或组件,或者包含该网络设备的装置,本申请实施例对此不做限定。
此外,通信装置600的技术效果,可以分别参考图3所示出的参考信号传输方法的技术效果,此处不再赘述。
再一些实施例中,通信装置600可适用于图2中所示出的通信系统中,执行图5中所示出的参考信号传输方法中终端设备的功能。
其中,通信装置600中配置有K个循环移位集合,K个循环移位集合中任一循环移位集合均包含至少一个循环移位,K个循环移位集合与K个时延区间一一对应,且K个时延区间互不重叠,K为大于1的正整数,K个循环移位集合中任意两个循环移位不同,K个时延区间根据最大时延确定。
其中,收发模块602,用于接收来自网络设备的第三索引。
处理模块601,用于根据该第三索引确定第一循环移位集合,以及将第一循环移位集合中的一个循环移位确定为第一循环移位。
一种可能的设计方案中,处理模块601,具体用于随机将第一循环移位集合中的一个循环移位确定为第一循环移位。
一种可能的设计方案中,收发模块602,还用于接收来自网络设备的第二索引。处理模块601,具体用于终端设备将第一循环移位集合中,与第二索引对应的循环移位确定为第一循环移位。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,任意两个循环移位之间的最小距离与第k个时延区间中最大的时延正相关,其中,0≤k<K,且k为整数。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,循环移位的数目与第k个时延区间中的最大的时延,以及符号持续时间正相关,其中,0≤k<K,且k为整数。
一种可能的设计方案中,收发模块602,还用于接收来自网络设备的组指示信息, 组指示信息用于指示K个循环移位集合。
可选地,收发模块602可以包括接收模块和发送模块。其中,收发模块602用于实现通信装置600的发送功能和接收功能。
可选地,通信装置600还可以包括存储模块(图6中未示出),该存储模块存储有程序或指令。当处理模块601执行该程序或指令时,使得通信装置600可以执行图5所示的参考信号传输方法中终端设备的功能。
应理解,通信装置600中涉及的处理模块601可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块602可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
需要说明的是,通信装置600可以是图2中所示出的终端设备,也可以是设置于上述终端设备中的芯片(系统)或其他部件或组件,或者包含该终端设备的装置,本申请实施例对此不做限定。
此外,通信装置600的技术效果,可以分别参考图5所示出的参考信号传输方法的技术效果,此处不再赘述。
又一些实施例中,通信装置600可适用于图2中所示出的通信系统中,执行图5中所示出的参考信号传输方法中网络设备的功能。
其中,收发模块602,用于获取区间信息。
处理模块601,用于根据区间信息和第一映射关系确定第一循环移位集合。
收发模块602,还用于接收参考信号序列。处理模块601,还用于根据第一循环移位集合解调参考信号序列。
第一映射关系中包括K个时延区间与K个循环移位集合之间的对应关系;K个时延区间与K个循环移位集合之间一一对应,且K个时延区间互不重叠;K为大于1的正整数,K个循环移位集合中任一循环移位集合均包含至少一个循环移位,K个循环移位集合中任意两个循环移位不同,K个时延区间根据最大时延确定。
一种可能的设计方案中,收发模块602,还用于发送第三索引。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,任意两个循环移位之间的最小距离与第k个时延区间中最大的时延正相关,其中,0≤k<K,且k为整数。
一种可能的设计方案中,K个循环移位集合的第k个循环移位集合中,循环移位的数目与第k个时延区间中的最大的时延,以及符号持续时间正相关,其中,0≤k<K,且k为整数。
一种可能的设计方案中,收发模块602,还用于发送组指示信息。组指示信息用于指示K个循环移位集合。
可选地,收发模块602可以包括接收模块和发送模块。其中,收发模块602用于实现通信装置600的发送功能和接收功能。
可选地,通信装置600还可以包括存储模块(图6中未示出),该存储模块存储有程序或指令。当处理模块601执行该程序或指令时,使得通信装置600可以执行图5所示的参考信号传输方法中网络设备的功能。
应理解,通信装置600中涉及的处理模块601可以由处理器或处理器相关电路组 件实现,可以为处理器或处理单元;收发模块602可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
需要说明的是,通信装置600可以是图2中所示出的网络设备,也可以是设置于上述网络设备中的芯片(系统)或其他部件或组件,或者包含该网络设备的装置,本申请实施例对此不做限定。
此外,通信装置600的技术效果,可以分别参考图5所示出的参考信号传输方法的技术效果,此处不再赘述。
示例性地,图7为本申请实施例提供的通信装置的结构示意图二。该通信装置可以是终端设备或网络设备,也可以是可设置于终端设备或网络设备的芯片(系统)或其他部件或组件。如图7所示,通信装置700可以包括处理器701。
可选地,通信装置700还可以包括存储器702和/或收发器703。其中,处理器701与存储器702和收发器703耦合,如可以通过通信总线连接。
下面结合图7对通信装置700的各个构成部件进行具体的介绍:
其中,处理器701是通信装置700的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器701是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器701可以通过运行或执行存储在存储器702内的软件程序,以及调用存储在存储器702内的数据,执行通信装置700的各种功能。
在具体的实现中,作为一种实施例,处理器701可以包括一个或多个CPU,例如图7中所示出的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置700也可以包括多个处理器,例如图7中所示的处理器701和处理器704。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其中,所述存储器702用于存储执行本申请方案的软件程序,并由处理器701来控制执行,具体实现方式可以参考上述方法实施例,此处不再赘述。
可选地,存储器702可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器702可以和处理器701集成在一起,也可以独立存在,并通过通信装置700的接口电路(图7中未示出)与处理器701耦合,本申请实施例对此不作具体限定。
收发器703,用于与其他通信装置之间的通信。例如,通信装置700为终端设备,收发器703可以用于与网络设备通信,或者与另一个终端设备通信。又例如,通信装置700为网络设备,收发器703可以用于与终端设备通信,或者与另一个网络设备通信。
可选地,收发器703可以包括接收器和发送器(图7中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器703可以和处理器701集成在一起,也可以独立存在,并通过通信装置700的接口电路(图7中未示出)与处理器701耦合,本申请实施例对此不作具体限定。
需要说明的是,图7中示出的通信装置700的结构并不构成对该通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
此外,通信装置700的技术效果可以参考上述方法实施例所述的参考信号传输方法的技术效果,此处不再赘述。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一 个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出 来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种参考信号传输方法,其特征在于,所述方法包括:
    根据第一映射关系和第一信息确定第一循环移位集合;所述第一映射关系中包括K个时延区间与K个循环移位集合之间的对应关系;所述K个时延区间互不重叠,且所述K个时延区间与所述K个循环移位集合之间一一对应;K为大于1的正整数,所述K个循环移位集合中任一循环移位集合均包含至少一个循环移位,所述K个循环移位集合中任意两个循环移位不同,所述K个时延区间根据最大时延确定;
    根据第一循环移位集合获取参考信号序列的第一循环移位;
    根据所述第一循环移位发送所述参考信号序列。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括终端设备的时延信息;根据所述第一映射关系和第一信息确定第一循环移位集合,包括:
    根据所述第一映射关系和所述终端设备的时延信息确定第一循环移位集合。
  3. 根据权利要求1所述的方法,其特征在于,在所述根据第一映射关系和第一信息确定第一循环移位集合之前,所述方法还包括:
    接收来自网络设备的所述第一信息;其中,所述第一信息包括第一索引;
    所述根据第一映射关系和第一信息确定第一循环移位集合,包括:
    根据所述第一索引和所述第一映射关系确定所述第一循环移位集合。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述根据所述第一循环移位集合获取参考信号序列的第一循环移位,包括:
    接收第二索引;
    根据所述第二索引从第一循环移位集合中确定所述第一循环移位。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述最大时延为最大多径时延。
  6. 根据权利要求5所述的方法,其特征在于,所述时延区间为多径时延区间。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述K个循环移位集合的第k个所述循环移位集合中,任意两个循环移位之间的最小距离与第k个时延区间中最大的时延正相关,其中,0≤k<K,且k为整数。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述K个循环移位集合的第k个所述循环移位集合中,循环移位的数目与第k个时延区间中的最大的时延,以及符号持续时间正相关,其中,0≤k<K,且k为整数。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的映射关系指示信息;其中,所述映射关系指示信息用于指示所述第一映射关系。
  10. 根据权利要求1-8中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的第二信息;其中,所述第二信息用于指示所述最大时延。
  11. 一种参考信号传输方法,其特征在于,所述方法包括:
    获取区间信息;
    根据区间信息和第一映射关系确定第一循环移位集合;所述第一映射关系中包括K个时延区间与K个循环移位集合之间的对应关系;所述K个时延区间与所述K个循环 移位集合之间一一对应,且所述K个时延区间互不重叠;K为大于1的正整数,所述K个循环移位集合中任一循环移位集合均包含至少一个循环移位,所述K个循环移位集合中任意两个循环移位不同,所述K个时延区间根据最大时延确定;
    接收参考信号序列;
    根据第一循环移位集合解调所述参考信号序列。
  12. 根据权利要求11所述的方法,其特征在于,所述区间信息包括终端设备的时延信息。
  13. 根据权利要求11或12所述的方法,其特征在于,在所述接收参考信号序列之前,所述方法还包括:
    发送第一信息;所述第一信息包括第一索引。
  14. 根据权利要求11-13中任一项所述的方法,其特征在于,所述方法还包括:
    发送第二索引。
  15. 根据权利要求11-14中任一项所述的方法,其特征在于,所述最大时延为最大多径时延。
  16. 根据权利要求11-15中任一项所述的方法,其特征在于,所述时延区间为多径时延区间。
  17. 根据权利要求11-16中任一项所述的方法,其特征在于,所述K个循环移位集合的第k个所述循环移位集合中,任意两个循环移位之间的最小距离与第k个时延区间中最大的时延正相关,其中,0≤k<K,且k为整数。
  18. 根据权利要求11-17中任一项所述的方法,其特征在于,所述K个循环移位集合的第k个所述循环移位集合中,循环移位的数目与第k个时延区间中的最大的时延,以及符号持续时间正相关,其中,0≤k<K,且k为整数。
  19. 根据权利要求11-18中任一项所述的方法,其特征在于,所述方法还包括:
    发送映射关系指示信息;其中,所述映射关系指示信息用于指示所述第一映射关系。
  20. 根据权利要求11-19中任一项所述的方法,其特征在于,所述方法还包括:
    发送第二信息;其中,所述第二信息用于指示最大时延。
  21. 一种通信装置,其特征在于,所述装置包括:处理模块和收发模块;
    所述处理模块,用于根据第一映射关系和第一信息确定第一循环移位集合;所述第一映射关系中包括K个时延区间与K个循环移位集合之间的对应关系;所述K个时延区间互不重叠,且所述K个时延区间与所述K个循环移位集合之间一一对应;K为大于1的正整数,所述K个循环移位集合中任一循环移位集合均包含至少一个循环移位,所述K个循环移位集合中任意两个循环移位不同,所述K个时延区间根据最大时延确定;
    所述处理模块,用于根据第一循环移位集合获取参考信号序列的第一循环移位;
    所述收发模块,用于根据所述第一循环移位发送所述参考信号序列。
  22. 根据权利要求21所述的装置,其特征在于,所述第一信息包括终端设备的时延信息;
    所述处理模块,具体用于根据所述第一映射关系和所述终端设备的时延信息确定第一循环移位集合。
  23. 根据权利要求21所述的装置,其特征在于,
    所述收发模块,还用于接收来自网络设备的所述第一信息;其中,所述第一信息包括第一索引;
    所述处理模块,具体用于根据所述第一索引和所述第一映射关系确定所述第一循环移位集合。
  24. 根据权利要求21-23中任一项所述的装置,其特征在于,
    所述处理模块,具体用于通过收发模块接收第二索引;以及,
    根据所述第二索引从第一循环移位集合中确定所述第一循环移位。
  25. 根据权利要求21-24中任一项所述的装置,其特征在于,所述最大时延为最大多径时延。
  26. 根据权利要求25所述的装置,其特征在于,所述时延区间为多径时延区间。
  27. 根据权利要求21-26中任一项所述的装置,其特征在于,所述K个循环移位集合的第k个所述循环移位集合中,任意两个循环移位之间的最小距离与第k个时延区间中最大的时延正相关,其中,0≤k<K,且k为整数。
  28. 根据权利要求21-27中任一项所述的装置,其特征在于,所述K个循环移位集合的第k个所述循环移位集合中,循环移位的数目与第k个时延区间中的最大的时延,以及符号持续时间正相关,其中,0≤k<K,且k为整数。
  29. 根据权利要求21-28中任一项所述的装置,其特征在于,
    所述收发模块,还用于接收来自网络设备的映射关系指示信息;其中,所述映射关系指示信息用于指示所述第一映射关系。
  30. 根据权利要求21-29中任一项所述的装置,其特征在于,所述装置还包括:
    所述收发模块,还用于接收来自网络设备的第二信息;其中,所述第二信息用于指示所述最大时延。
  31. 一种通信装置,其特征在于,所述装置包括:处理模块和收发模块;
    所述处理模块,用于获取区间信息;
    所述处理模块,还用于根据区间信息和第一映射关系确定第一循环移位集合;所述第一映射关系中包括K个时延区间与K个循环移位集合之间的对应关系;所述K个时延区间与所述K个循环移位集合之间一一对应,且所述K个时延区间互不重叠;K为大于1的正整数,所述K个循环移位集合中任一循环移位集合均包含至少一个循环移位,所述K个循环移位集合中任意两个循环移位不同,所述K个时延区间根据最大时延确定;
    所述收发模块,用于接收参考信号序列;
    所述处理模块,还用于根据第一循环移位集合解调所述参考信号序列。
  32. 根据权利要求31所述的装置,其特征在于,所述区间信息包括终端设备的时延信息。
  33. 根据权利要求31或32所述的装置,其特征在于,
    所述收发模块,还用于发送第一信息;所述第一信息包括第一索引。
  34. 根据权利要求31-33中任一项所述的装置,其特征在于,
    所述收发模块,还用于发送第二索引。
  35. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行如权利要求1-20中任一项所述的参考信号传输方法。
  36. 根据权利要求35所述的装置,其特征在于,所述通信装置还包括收发器,所述收发器用于所述通信装置和其他通信装置之间进行信息交互。
  37. 一种通信装置,其特征在于,包括:处理器和接口电路;其中,
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求1-20中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-20中任一项所述的参考信号传输方法。
  39. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-20中任一项所述的参考信号传输方法。
  40. 一种通信系统,其特征在于,所述通信系统包括一个或多个终端设备,以及一个或多个网络设备;所述终端设备用于执行如权利要求1-10中任一项所述的参考信号传输方法,所述网络设备用于执行如权利要求11-20中任一项所述的参考信号传输方法。
PCT/CN2022/108050 2022-07-26 2022-07-26 参考信号传输方法及通信装置 WO2024020813A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108050 WO2024020813A1 (zh) 2022-07-26 2022-07-26 参考信号传输方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108050 WO2024020813A1 (zh) 2022-07-26 2022-07-26 参考信号传输方法及通信装置

Publications (1)

Publication Number Publication Date
WO2024020813A1 true WO2024020813A1 (zh) 2024-02-01

Family

ID=89704770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108050 WO2024020813A1 (zh) 2022-07-26 2022-07-26 参考信号传输方法及通信装置

Country Status (1)

Country Link
WO (1) WO2024020813A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120113921A1 (en) * 2006-08-22 2012-05-10 Texas Instruments Incorporated Adaptive Selection of Transmission Parameters for Reference Signals
US20170170933A1 (en) * 2014-08-30 2017-06-15 Huawei Technologies Co., Ltd. Data sending method, channel estimation method, and apparatuses thereof
WO2022083845A1 (en) * 2020-10-19 2022-04-28 Huawei Technologies Co., Ltd. Sequences enabling low-complexity detection of random access preambles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120113921A1 (en) * 2006-08-22 2012-05-10 Texas Instruments Incorporated Adaptive Selection of Transmission Parameters for Reference Signals
US20170170933A1 (en) * 2014-08-30 2017-06-15 Huawei Technologies Co., Ltd. Data sending method, channel estimation method, and apparatuses thereof
WO2022083845A1 (en) * 2020-10-19 2022-04-28 Huawei Technologies Co., Ltd. Sequences enabling low-complexity detection of random access preambles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOTOROLA: "Cyclic Shift Multiplexing of CSI-RS", 3GPP DRAFT; R1-094850 CSI_RS -FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Jeju; 20091109, 9 November 2009 (2009-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050389238 *

Similar Documents

Publication Publication Date Title
WO2019154333A1 (zh) 资源选择的方法和终端设备
TWI771323B (zh) 用於共用頻譜中的系統辨識的特徵序列
US11109392B2 (en) Communication method, network device, and relay device
TW202013996A (zh) 配置訊息的傳輸方法和終端設備
US20230037478A1 (en) Positioning signal processing method and apparatus
JP7206273B2 (ja) 検出ウィンドウ指示方法及び装置
WO2019028793A1 (zh) 随机接入前导码传输方法及装置
WO2018126854A1 (zh) 一种上行传输方法、终端、网络侧设备
TW202008828A (zh) 資源配置的方法和終端設備
TW202008829A (zh) 資源配置的方法和終端設備
TW201931879A (zh) 車聯網中用於傳輸數據的方法、終端設備和網路設備
EP3661298B1 (en) Wireless communication method and apparatus
WO2019061115A1 (zh) 一种非授权频谱上的载波切换方法、基站及终端设备
WO2020143689A1 (zh) 一种参考信号传输方法及装置
WO2021238504A1 (zh) 一种上行传输资源指示方法及装置
WO2021109108A1 (zh) 通信方法和装置
WO2024020813A1 (zh) 参考信号传输方法及通信装置
WO2018126968A1 (zh) 一种信号发送、接收方法及装置
WO2022037462A1 (zh) 信号传输方法、通信装置及存储介质
WO2020220996A1 (zh) 通信方法及装置
CN112583536B (zh) 反馈信息处理方法及通信装置
WO2019141013A1 (zh) 随机接入方法、装置、设备、芯片、存储介质及程序产品
WO2020087982A1 (zh) 通信方法、装置及存储介质
WO2022183390A1 (zh) 一种无线通信方法、通信装置及通信系统
WO2022067703A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952278

Country of ref document: EP

Kind code of ref document: A1