WO2024019527A1 - Dipole lightening protection apparatus and lightening monitoring method using same - Google Patents

Dipole lightening protection apparatus and lightening monitoring method using same Download PDF

Info

Publication number
WO2024019527A1
WO2024019527A1 PCT/KR2023/010413 KR2023010413W WO2024019527A1 WO 2024019527 A1 WO2024019527 A1 WO 2024019527A1 KR 2023010413 W KR2023010413 W KR 2023010413W WO 2024019527 A1 WO2024019527 A1 WO 2024019527A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
protection device
charged
lightning
dipole
Prior art date
Application number
PCT/KR2023/010413
Other languages
French (fr)
Korean (ko)
Inventor
정용기
이강수
정유주
Original Assignee
(주)옴니엘피에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230037504A external-priority patent/KR102667840B1/en
Application filed by (주)옴니엘피에스 filed Critical (주)옴니엘피에스
Publication of WO2024019527A1 publication Critical patent/WO2024019527A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/16Measuring atmospheric potential differences, e.g. due to electrical charges in clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/08Overvoltage arresters using spark gaps structurally associated with protected apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G13/00Installations of lightning conductors; Fastening thereof to supporting structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details

Definitions

  • Embodiments of the present invention relate to lightning monitoring technology.
  • Lightning is a discharge phenomenon that occurs between clouds and the ground. Recently, the frequency of lightning strikes is increasing due to the effects of global warming, and the intensity of the lightning current accompanying lightning is also becoming stronger.
  • lightning rods were not developed, there were incidents where lightning struck a facility storing city gunpowder and many people lost their lives.
  • a lightning rod is a metal pole with a sharp end, and is installed on tall buildings or utility poles to reduce the risk of damage to buildings or casualties caused by lightning.
  • Embodiments of the present invention are intended to provide a lightning monitoring method using a dipole lightning protection device to monitor the lightning risk according to the approach of a thundercloud.
  • a rod member installed at the upper end of an object for protection from lightning and charged with a ground charge, a charging tube charged with a charge having a polarity opposite to the ground charge by a thundercloud, and the charging tube.
  • a dipole lightning protection device is provided that is coupled to and includes a sensor unit that measures vibration generated according to electrical energy charged to the electrified tube by a thundercloud.
  • the dipole lightning protection device includes at least two insulators installed along the longitudinal direction of the load member, a charging plate installed between the neighboring insulators to be electrically insulated from the load member, and charged in a configuration opposite to the ground charge. and a rod cap coupled to an upper end of the rod member to induce the lightning, wherein the charging tube is installed between the charging plate and the insulator and may be electrically connected to the charging plate.
  • the sensor unit is connected to the charged tube according to a corona discharge that occurs as the charging voltage between the charged tube charged with a space charge by the thundercloud and the rod member charged with a ground charge of a polarity opposite to the space charge increases.
  • a vibration signal can be generated by measuring the vibration occurring in the device, and the generated vibration signal can be converted into a voltage signal.
  • the dipole lightning protection device includes a detection circuit that acquires the voltage signal as analog data, converts the analog data into digital data, and outputs the digital data as voltage data; And it may further include a communication unit that transmits the voltage data to the outside.
  • the dipole lightning protection device may further include a control unit that analyzes the converted voltage data and determines the lightning risk.
  • the electrification tube may be formed in a tubular shape with a hollow hole so that the rod member can be positioned at the center.
  • the sensor unit is formed in a tubular shape surrounding the charged tube and may include a piezoelectric element sensor that outputs a voltage signal based on vibration of the charged tube.
  • the sensor unit includes a receiving portion that engages a plurality of fastening protrusions protruding from the outside of the charged tube and receives vibration of the charged tube from the charged tube and transmits it to the piezoelectric sensor; And it may further include a housing made of an insulating material, surrounding the piezoelectric element sensor and having a support part that elastically supports the piezoelectric element sensor according to deformation of the piezoelectric element sensor.
  • the plurality of fastening protrusions may protrude from the inside of the charging tube to the outside depending on the operating position of the switch of the charging tube.
  • the sensor unit detects the approach of a thundercloud by detecting the polarity of the charges charged to the electrification tube and the load member, and converts the voltage signal obtained from the piezoelectric element sensor into voltage data used to determine the risk of lightning. It can be transmitted to the detection circuit that outputs it.
  • a rod member installed at the upper end of an object for protection from lightning and charged with a ground charge, a charging tube and the rod charged with a charge having a polarity opposite to the ground charge by a thundercloud.
  • a dipole lightning protection device is provided including a sensor unit electrically connected between a member and the charged tube and generating a vibration signal by electrical energy charged to the charged tube by a thundercloud.
  • the dipole lightning protection device includes at least two insulators installed along the longitudinal direction of the load member, a charging plate installed between the neighboring insulators to be electrically insulated from the load member, and charged in a configuration opposite to the ground charge. and a rod cap coupled to the upper end of the rod member to induce the lightning, wherein the charging tube is installed between the charging plate and the insulator, and is electrically connected to the charging plate.
  • a dipole lightning protection device is provided. .
  • the sensor unit maintains electrical contact with the rod member and the charging tube and measures a first sensor that generates a vibration signal and a vibration signal generated by the first sensor, and converts the measured vibration signal into a voltage signal. It may include a second sensor that converts.
  • the dipole lightning protection device includes a detection circuit that acquires the voltage signal as analog data, converts the analog data into digital data, and outputs the digital data as voltage data; And it may further include a communication unit that transmits the voltage data to the outside.
  • the dipole lightning protection device may further include a control unit that analyzes the converted voltage data and determines the lightning risk.
  • the first sensor and the second sensor are disk-shaped piezoelectric sensors, and may be coupled to each other.
  • the first sensor includes a first terminal piece in contact with the rod member, a first wire electrically connecting the first terminal piece and the first sensor, a second terminal piece in contact with the charging tube, and the second terminal. It may further include a second wire electrically connecting the piece and the first sensor.
  • the first sensor detects the approach of a thundercloud by detecting the polarity of the electric charge charged to the rod member and the charging tube, based on the first terminal piece and the second terminal piece, and the vibration signal is transmitted to the first terminal piece.
  • the second sensor converts the vibration signal into a voltage signal
  • the dipole lightning protection device acquires the voltage signal as analog data
  • the digital data It may further include a detection circuit that outputs voltage data and a communication unit that transmits the voltage data to the outside.
  • the first sensor is a first terminal piece and a second sensor that maintain electrical contact with the charging tube charged with a space charge by the thundercloud and the rod member charged with a ground charge having a polarity opposite to the space charge.
  • the vibration signal can be generated by the terminal piece.
  • a lightning monitoring method using a dipole lightning protection device performed on a computing device having one or more processors and a memory storing one or more programs executed by the one or more processors.
  • receiving voltage data from a dipole lightning protection device In the management server, receiving voltage data from a dipole lightning protection device; in the management server, analyzing the received voltage data to determine the lightning risk; and in the management server, displaying the analyzed results to the user through a display unit.
  • a lightning monitoring method using a dipole lightning protection device including the step of providing a lightning strike is provided.
  • the step of determining the lightning risk includes determining a lightning caution stage when voltage data is received from the dipole lightning protection device. As the lightning caution stage continues, the occurrence period of the voltage data decreases below a preset boundary reference value or , when the voltage level rises above the preset warning standard value, the step of determining the lightning warning step and the lightning warning step continues, the occurrence period of the voltage data below the preset risk reference value becomes smaller, or the If the voltage level increases above the set risk standard value, a step of determining the lightning risk level may be further included.
  • the present invention by measuring the vibration caused by a thundercloud through a dipole lightning protection device using a piezoelectric element sensor installed in the electrified tube, it is possible to prevent sensor failure depending on the magnitude of the induced voltage, This has the effect of accurately obtaining data to analyze the size of a thundercloud.
  • a vibration signal is generated in the first piezoelectric element sensor using the induced voltage generated by a thundercloud, and the vibration signal generated in the first piezoelectric element sensor is transmitted to the second piezoelectric element sensor.
  • FIG. 1 is a configuration diagram illustrating a lightning monitoring system using a dipole lightning protection device according to an embodiment of the present invention.
  • Figure 2a is a cross-sectional view showing a dipole lightning protection device according to the first embodiment of the present invention.
  • Figure 2b is a cross-sectional view showing the sensor unit coupled to the charging tube of the dipole lightning protection device according to the first embodiment of the present invention.
  • Figure 2c is a diagram for explaining a detection circuit connected to the sensor unit
  • Figure 3 is a cross-sectional view showing a dipole lightning protection device according to a second embodiment of the present invention.
  • FIG. 4 is a block diagram showing a management server according to an embodiment of the present invention.
  • 5 and 6 are diagrams showing voltage data measured by a dipole lightning protection device according to an embodiment of the present invention.
  • Figure 7 is a flowchart illustrating a lightning monitoring method using a dipole lightning protection device according to an embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating and illustrating a computing environment including a computing device suitable for use in example embodiments.
  • embodiments of the present invention may include a program for performing the methods described in this specification on a computer, and a computer-readable recording medium containing the program.
  • the computer-readable recording medium may include program instructions, local data files, local data structures, etc., singly or in combination.
  • the media may be those specifically designed and constructed for the present invention, or may be those commonly available in the computer software field.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical recording media such as CD-ROMs, DVDs, and media specifically configured to store and perform program instructions such as ROM, RAM, flash memory, etc. Includes hardware devices.
  • Examples of the program may include not only machine language code such as that generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • FIG. 1 is a configuration diagram illustrating a lightning monitoring system using a dipole lightning protection device according to an embodiment of the present invention.
  • the lightning monitoring system 100 using a dipole lightning protection device may include a dipole lightning protection device 210 and a management server 300.
  • the dipole lightning protection device 210 and the management server 300 are connected to each other using a communication network, they may be capable of communicating.
  • the communications network may be Wi-Fi, the Internet, one or more local area networks, wire area networks, cellular networks, mobile networks, other types of networks, or such networks. It may include a combination of these.
  • the lightning monitoring system 100 using a dipole lightning protection device can be applied to an already installed smart pole 200, and the smart pole 200 is used to protect the smart pole 200 from lightning.
  • a dipole lightning protection device 210 may be installed at the top of .
  • the dipole lightning protection device 210 is shown as being installed on the top of the smart pole 200, but it is not limited to this and can be installed on the top of an object, pillar, building, etc. to protect against lightning. .
  • ICT information and communication technology
  • IoT Internet of Things
  • CPS Cyber Physical Systems
  • big data solutions a sub-concept of smart cities that collect and utilize public data to solve various urban problems such as environment, transportation, and energy, and provide citizens with a safe and enriched life
  • IoT Internet of Things
  • CPS Cyber Physical Systems
  • big data solutions a sub-concept of smart cities that collect and utilize public data to solve various urban problems such as environment, transportation, and energy, and provide citizens with a safe and enriched life.
  • One of the basic facilities of such a smart village is a smart pole, which combines the Internet of Things (IoT) and information and communication technology (ICT) with pillar-shaped road facilities such as street lights, and is used for crime prevention in addition to its original function.
  • IoT Internet of Things
  • ICT information and communication technology
  • Smart pole 200 can use these known technologies.
  • the detailed configuration of the smart pole 200 is widely known in the relevant technology field, and various functions can be configured depending on the purpose of the smart pole 200, so a detailed description thereof will be omitted.
  • the smart pole 200 may be a pole equipped with various cutting-edge functions that is erected at a certain height on the ground.
  • the smart pole 200 has a communication unit 220 connected to the management server 300 and a network. It can be included.
  • the communication unit 220 may transmit lightning information obtained from the dipole lightning protection device 210 to the management server 300. Meanwhile, the communication unit 220 may be included in a dipole lightning protection device.
  • Figure 2a is a cross-sectional view showing a dipole lightning protection device according to the first embodiment of the present invention.
  • the dipole lightning protection device 210 includes a rod member 211 charged with ground charges, and at least two insulators 212a and 212b installed along the longitudinal direction of the rod member 211. and a charging plate 213 installed between the neighboring insulators 212a and 212b, electrically insulated from the load member 211, and charged with a polarity opposite to the ground charge; It is installed between the insulators 212b, is electrically connected to the charging plate 213, and is connected to the charging tube 214, which is charged with a charge having a polarity opposite to the ground charge, and the upper end of the rod member 211, thereby causing lightning. It may include a rod cap 215 that induces and a sensor unit 216 that measures vibration generated according to the electrical energy charged to the electrified tube by a thundercloud.
  • the load member 211 is coupled to the top of the smart pole 200 and stands vertically, and can charge the ground.
  • the lower end of the rod member 211 may further include a fixing plate (not shown) that can stably fix the rod member 211.
  • the fixing plate is a flat member with a certain thickness, and a coupling member (not shown) that can be firmly fixed to the smart pole 200 may be formed on the surface.
  • At least two insulators 212a and 212b are installed in a spaced apart state along the longitudinal direction of the rod member 211, and are insulators made of ceramic or synthetic resin to insulate the rod member 211 and the charging tube 214.
  • the insulators 212a and 212b may include a first insulator 212a installed above and a second insulator 212b installed below the electrification pipe 214, and the second insulator 212b
  • An insulating protrusion 214-1 that is inserted into the charging tube 214 may be formed at the top of the .
  • the insulating protrusion 214-1 guides the inflowing rainwater so that it can be easily discharged to the outside of the rod member 211 and at the same time, guides the rainwater into the charging pipe 214. It may have a certain length to ensure sufficient insulation distance between (214) and the rod member (211).
  • the insulating protrusion 214-1 may have a structure in which a plurality of conical members that are narrow at the top and wide at the bottom are continuously connected on the same line.
  • the charging plate 213 is installed between the insulators 212a and 212b to maintain electrical insulation from the load member 211 and is electrically connected to the charging tube 214, and has a polarity opposite to the ground charge. It can be. Meanwhile, the charging plate 213 may repeatedly form a wrinkle shape at its circumferential edge. These wrinkles can induce evenly distributed discharge in the circumferential direction of the charging plate 213. This configuration of the charging plate 213 can facilitate discharge between the thundercloud and the ground by concentrating the electric field when lightning strikes.
  • the charging tube 214 is installed between the charging plate 213 and the insulator (second insulator) 212b, and is electrically connected to the charging plate 213, so that it can be charged with a polarity opposite to the ground charge.
  • the electrification tube 214 is made of a tube shape and can form a hollow center so that the rod member 211 can be coupled thereto.
  • the rod cap 215 is installed on the top of the rod member 211 and can induce lightning.
  • the rod cap 215 may be shaped to have a relatively large outer diameter compared to the insulator 212a to greatly improve the lightning inflow area and thereby increase discharge efficiency. That is, the load gap 215 may be formed to be larger than the outer diameter of the first insulator 212a. In this way, if the load cap 215 is formed to be larger than the first insulator 212a, the area for introducing the lightning current increases, thereby allowing the lightning to be discharged quickly.
  • the electrification tube 214 may be formed in a hollow tube shape so that the rod member 211 can be positioned at the center of the electrification tube 214.
  • the first sensor unit 216 may include a piezoelectric element sensor that is coupled to the electrified tube 214 and measures vibration generated according to electrical energy charged to the electrified tube 214 by a thundercloud.
  • the piezoelectric element sensor 275 is made of a tube surrounding the charged tube 214, and the charged tube 214 is coupled thereto. A hollow can be formed so that
  • the first sensor unit 216 is coupled to a plurality of fastening protrusions protruding outside the electrification tube 214, and receives the vibration of the electrification tube 214 from the electrification tube 214 to the piezoelectric element sensor 275. It may include a receiving part that transmits. In addition, the first sensor unit 216 may include a housing surrounding the receiving portion and the piezoelectric sensor 275 and having a support portion that elastically supports the piezoelectric sensor according to deformation of the piezoelectric sensor 275. there is. In this case, the housing may be made of an insulating material.
  • the first sensor unit 216 detects the approach of a thundercloud by detecting the polarity of the charges charged to the charging tube 214 and the rod member 211, and controls the piezoelectric element sensor 275 to output a voltage signal. It may include a detection circuit that does. Since the detection circuit controls a voltage signal to be output from the piezoelectric element sensor 275 when a thundercloud approaches the dipole lightning protection device 210, the voltage signal is not generated for vibration caused by factors other than the approach of a thundercloud. You can control it so that it is not output.
  • the dipole lightning protection device 210 when a thundercloud approaches, the space charge distributed in the atmosphere by the thundercloud is charged to the charging plate 213 and the charging tube 214, and the space charge and The load member 211 is charged with the opposite polarity and supplied from the ground, that is, the ground charge.
  • the charging voltage that is, the charging tube 214 and the load member ( 211)
  • the charging voltage between the liver increases and a discharge (corona discharge) occurs.
  • the first sensor unit 216 may measure vibration generated by corona discharge and generate a vibration signal.
  • the first sensor unit 216 may convert the generated vibration signal into a voltage signal.
  • the dipole lightning protection device 210 may include a communication unit 220 and a detection circuit 250.
  • the detection circuit 250 may obtain a voltage signal as analog data, convert the analog data into digital data, and output the digital data as voltage data.
  • the detection circuit 250 may transmit voltage data to the communication unit 220.
  • the communication unit 220 may transmit voltage data to the management server 300.
  • the dipole lightning protection device 200 may determine the risk of lightning and transmit the determination result to the management server 300.
  • the dipole lightning protection device 200 may further include a control unit (not shown).
  • the control unit (not shown), like the analysis module 320 to be described later, can determine the risk of lightning by analyzing voltage data. Additionally, the control unit (not shown) may transmit the analysis results to the communication unit 220, and the communication unit 220 may transmit the analysis results to the management server 300.
  • the size of a thundercloud was analyzed by sensing the amount of light emitted with an optical sensor using a light emitting sensor (LED) that emits light by the induced voltage generated by the lightning protection device as the thundercloud approaches.
  • LED light emitting sensor
  • This existing lightning monitoring system had a problem in that the light emitting sensor was burned out when the induced voltage was large, or the lifespan of the light emitting sensor was shortened depending on the number and size of induced voltage occurrences, causing frequent breakdowns. Additionally, due to replacement of the light emitting sensor, there was a need to change the settings for processing data.
  • the lightning monitoring system measures the vibration generated by a thundercloud through the dipole lightning protection device 210 using the piezoelectric element sensor 216 installed in the electrification tube 214, thereby inducing It is possible to prevent sensor failure depending on the size of the voltage, and has the effect of accurately obtaining data to analyze the size of a thundercloud.
  • Figure 2b is a cross-sectional view showing the sensor unit coupled to the charging tube of the dipole lightning protection device according to the first embodiment of the present invention.
  • Image 250 of FIG. 2B represents a cross-sectional view of the area 230 of FIG. 2A viewed from the position of the load cap 215 toward the ground.
  • a plurality of fastening protrusions 251, 252, 253, and 254 may be provided inside the electrification tube 214.
  • the charging tube 214 may be provided with a switch 240.
  • a plurality of fastening protrusions 251, 252, 253, and 254 may protrude from the inside of the charging tube 214 to the outside.
  • the image 260 of FIG. 2B shows a state in which a plurality of fastening protrusions 251, 252, 253, and 254 protrude out of the charging tube 214.
  • the plurality of fastening protrusions 251, 252, 253, and 254 may protrude from the inside of the charging tube 214 to the outside. there is.
  • Image 270 of FIG. 2B is a diagram showing a state in which the piezoelectric sensor 275 is coupled to the electrified tube 214.
  • Receiving parts 271, 272, 273, and 274 may be provided in the first outer direction of the piezoelectric sensor 275.
  • the first outward direction may be a direction toward the center of the charging tube 214.
  • the receiving portions (271, 272, 273, 274) are coupled with a plurality of fastening protrusions (251, 252, 253, 254) protruding to the outside of the electrification tube (214), and receive the electrification tube (214)
  • the vibration of 214) can be transmitted to the piezoelectric sensor 275.
  • support parts 281, 282, 283, and 284 may be provided in the second outer direction of the piezoelectric sensor 275.
  • the second external direction may be opposite to the first external direction. Since the size of the piezoelectric sensor 275 is changed by vibration, the supports 281, 282, 283, and 284 may have elasticity so that the piezoelectric sensor 275 can be fixed to the charging tube 214.
  • the sensor unit may include a housing 280 that surrounds the piezoelectric sensor 275 and is coupled to the support units 281, 282, 283, and 284. Housing 280 may be made of an insulating material.
  • Figure 2c is a diagram for explaining a detection circuit connected to the sensor unit.
  • the first sensor unit 216 may be connected to the detection circuit 250.
  • the first sensor unit 216 can convert the vibration signal into a voltage signal and transmit it to the detection circuit 250.
  • the detection circuit 250 may obtain a voltage signal as analog data, convert the analog data into digital data, and output the digital data as voltage data.
  • the detection circuit 250 may be connected to the heater 260 and the cooling fan 270.
  • the detection circuit 250 may include an analog to digital converter (ADC).
  • ADC analog to digital converter
  • the detection circuit 250 may transmit voltage data to the communication unit 220.
  • the communication unit 220 may transmit voltage data to the management server 300. Additionally, the communication unit 220 may transmit voltage data to the control unit of the dipole lightning protection device 210.
  • the control unit can determine the risk of lightning by analyzing voltage data.
  • Figure 3 is a cross-sectional view showing a dipole lightning protection device according to a second embodiment of the present invention.
  • the second sensor unit 416 is electrically connected between the rod member 211 and the charging tube 214 and generates a vibration signal by electrical energy charged to the charging tube 214 by thunderclouds. It may include a first piezoelectric element sensor 416a that generates and a second piezoelectric element sensor 416b that measures the vibration signal generated by the first piezoelectric element sensor 416a and converts the measured vibration signal into a voltage signal. You can. At this time, the first piezoelectric element sensor 416a and the second piezoelectric element sensor 416b may each be formed in a disk shape and combined.
  • the dipole lightning protection device 210 may include a communication unit 220 and a detection circuit 250.
  • the detection circuit 250 may acquire the voltage signal input from the second piezoelectric sensor 416b as analog data and convert the analog data into digital data.
  • the detection circuit 250 may output digital data as voltage data.
  • the communication unit 220 may obtain voltage data from the detection circuit 250 and transmit it to the outside. For example, the communication unit 250 may transmit voltage data to the management server 300.
  • the dipole lightning protection device 210 when a thundercloud approaches, the space charge distributed in the atmosphere by the thundercloud is charged to the charging plate 213 and the charging tube 214, and the space charge and The load member 211 is charged with the opposite polarity and supplied from the ground, that is, the ground charge. In this way, as the space charge and the ground charge gradually charge the charging tube 214 and the rod member 211, respectively, as the thundercloud approaches, a state of electrical contact is maintained with respect to the charging tube 214 and the rod member 211.
  • a vibration signal may be generated from the first piezoelectric element sensor 416a that is maintained.
  • the second sensor unit 416 may be installed at a certain height of the smart pole 200 together with the communication unit 220.
  • the first piezoelectric element sensor 416a may be formed with terminal pieces 417a, 417b and wires 418a, 418b for electrical conduction, respectively, and the first terminal piece 417a and the first wire 418a ) is in contact with the rod member 211, and the second terminal piece 418a and the second wire 418b are in contact with the charging tube 214 to maintain an electrical connection.
  • the first piezoelectric element sensor 416a detects the polarity of the electric charge charged to the rod member 211 and the charging tube 214 based on the first terminal piece 417a and the second terminal piece 417b. detects the approach, transmits the vibration signal to the second piezoelectric sensor 416b, and the second piezoelectric sensor 416b can convert the vibration signal into a voltage signal.
  • the detection circuit 250 may acquire the voltage signal input from the second piezoelectric sensor 416b as analog data and convert the analog data into digital data.
  • the detection circuit 250 may output digital data as voltage data and transmit it to the communication unit 220. That is, when a thundercloud approaches the dipole lightning protection device 210, the detection circuit 250 can output voltage data. Additionally, the detection circuit 250 may have the same configuration as shown in FIG. 2B.
  • the size of a thundercloud was analyzed by sensing the amount of light emitted with an optical sensor using a light emitting sensor (LED) that emits light by the induced voltage generated by the lightning protection device as the thundercloud approaches.
  • LED light emitting sensor
  • This existing lightning monitoring system had a problem in that the light emitting sensor was burned out when the induced voltage was large, or the lifespan of the light emitting sensor was shortened depending on the number and size of induced voltage occurrences, causing frequent breakdowns.
  • the lightning monitoring system generates a vibration signal in the first piezoelectric element sensor 416a using the induced voltage generated by a thundercloud through the dipole lightning protection device 210, and the first piezoelectric element sensor 416a 1
  • the vibration signal generated by the piezoelectric element sensor 416a By measuring the vibration signal generated by the piezoelectric element sensor 416a by the second piezoelectric element sensor 416b, data for analyzing the size of the thundercloud can be accurately obtained, and the second sensor unit 416 by the external environment ) has the effect of protecting.
  • FIG. 4 is a block diagram showing a management server according to an embodiment of the present invention.
  • the management server 300 may include a communication module 310, an analysis module 320, and an information provision module 330.
  • the communication module 310 may receive voltage data from the communication unit 220.
  • the analysis module 320 can determine the lightning risk by analyzing the received voltage data. Specifically, the analysis module 320 may determine the risk of lightning according to the generation cycle and voltage magnitude value of the received voltage data. For example, when the analysis module 320 receives voltage data from the communication unit 220 of the smart pole 200, the analysis module 320 may determine the lightning warning level. In addition, as the caution phase continues (voltage data is continuously received), the analysis module 320 determines whether the occurrence period of voltage data becomes less than a preset boundary reference value or the voltage magnitude increases above the preset boundary reference value. In this case, it can be judged to be at the lightning warning level.
  • the analysis module 320 may determine the lightning risk level when the alert stage continues and the occurrence cycle of voltage data decreases below the preset risk standard value or the voltage level increases above the preset risk standard value.
  • the preset boundary standard value may have a voltage magnitude of 5 mV and a cycle interval of 20 ⁇ s
  • the preset risk standard value may have a voltage magnitude of 30 mV and a cycle interval of 5 ⁇ s.
  • the analysis module 320 determines the lightning risk level based on the corresponding voltage data. can do.
  • the analysis module 320 may determine it to be in a normal state.
  • the information provision module 330 may provide the results analyzed by the analysis module 320 to the user through a display unit (not shown).
  • the information providing module 330 may receive voltage data from a plurality of dipole lightning arresters, respectively, and select the user's selection (first dipole lightning arrester, second dipole lightning arrester, ..., N dipole lightning arrester) ), it is possible to provide analysis results of analyzing each received voltage data.
  • the analysis results can display the lightning detection time and electric field value according to the voltage data, and the lightning risk level (normal, caution, warning, dangerous) at each dipole lightning arrester location. Accordingly, using voltage data received from multiple dipole lightning protection devices, lightning detection and lightning occurrence can be monitored, and the risk of lightning according to the size of the thundercloud can be determined to analyze the dangerous area and notify the relevant area.
  • FIG. 7 is a flowchart illustrating a lightning monitoring method using a dipole lightning protection device according to an embodiment of the present invention.
  • the method shown in FIG. 5 can be performed, for example, by a lightning monitoring system using the dipole lightning protection device described above.
  • the method is divided into a plurality of steps, but at least some of the steps are performed in a different order, combined with other steps, omitted, divided into detailed steps, or not shown.
  • One or more steps may be added and performed.
  • the management server 300 receives voltage data from the communication unit 220 of the dipole lightning protection device 210 (S702). Specifically, the management server 300 measures the vibration generated in the dipole lightning protection device 210 according to the electrical energy charged by a thundercloud and receives converted voltage data from the communication unit 220 of the dipole lightning protection device 210. You can.
  • the first sensor unit 216 of the dipole lightning protection device 210 may measure vibration generated by corona discharge and generate a vibration signal. The first sensor unit 216 may convert the generated vibration signal into voltage data.
  • the second sensor unit 416 of the dipole lightning protection device 210 generates a vibration signal in the first piezoelectric element sensor 416a using an induced voltage, and generates a vibration signal in the first piezoelectric element sensor 416a.
  • the vibration signal can be measured by the second piezoelectric sensor 416b.
  • the second piezoelectric sensor 416b can convert the measured vibration signal into voltage data.
  • the management server 300 analyzes the received voltage data and determines the lightning risk (S704). Specifically, the management server 300 may determine the risk of lightning according to the generation period and voltage magnitude value of the received voltage data. For example, when the management server 300 receives voltage data from the communication unit 220 of the dipole lightning protection device 210, it may determine that the lightning warning level is at a level. In addition, as the caution phase continues (voltage data is continuously received), the management server 300 determines whether the occurrence period of voltage data becomes less than a preset boundary reference value or the voltage magnitude increases above the preset boundary reference value. In this case, it can be judged to be at the lightning warning level.
  • the management server 300 may determine the lightning risk level when the alert level continues and the occurrence period of voltage data decreases below the preset risk standard value or the voltage level increases above the preset risk standard value.
  • the preset boundary standard value may have a voltage magnitude of 5 mV and a cycle interval of 20us
  • the preset risk standard value may have a voltage magnitude of 30mV and a cycle interval of 5us.
  • the management server 300 may determine that it is in a normal state when voltage data is not received.
  • the management server 300 provides the analyzed results to the user through the display unit (S706).
  • the management server 300 may receive voltage data from a plurality of dipole lightning protection devices, respectively, and respond to the user's selection (first dipole lightning protection device, second dipole lightning protection device, ..., N-th dipole lightning protection device). Accordingly, analysis results can be provided by analyzing each received voltage data.
  • the analysis results can display the lightning detection time and electric field value according to the voltage data, and can display the lightning risk level (normal, caution, warning, dangerous) at each dipole lightning arrester location.
  • each component may have different functions and capabilities in addition to those described below, and may include additional components in addition to those described below.
  • the illustrated computing environment 10 includes a computing device 12 .
  • computing device 12 may be management server 300.
  • Computing device 12 includes at least one processor 14, a computer-readable storage medium 16, and a communication bus 18.
  • Processor 14 may cause computing device 12 to operate in accordance with the example embodiments noted above.
  • processor 14 may execute one or more programs stored on computer-readable storage medium 16.
  • the one or more programs may include one or more computer-executable instructions, which, when executed by the processor 14, cause computing device 12 to perform operations according to example embodiments. It can be.
  • Computer-readable storage medium 16 is configured to store computer-executable instructions or program code, program data, and/or other suitable form of information.
  • the program 20 stored in the computer-readable storage medium 16 includes a set of instructions executable by the processor 14.
  • computer-readable storage medium 16 includes memory (volatile memory, such as random access memory, non-volatile memory, or an appropriate combination thereof), one or more magnetic disk storage devices, optical disk storage devices, flash It may be memory devices, another form of storage medium that can be accessed by computing device 12 and store desired information, or a suitable combination thereof.
  • Communication bus 18 interconnects various other components of computing device 12, including processor 14 and computer-readable storage medium 16.
  • Computing device 12 may also include one or more input/output interfaces 22 and one or more network communication interfaces 26 that provide an interface for one or more input/output devices 24.
  • the input/output interface 22 and the network communication interface 26 are connected to the communication bus 18.
  • Input/output device 24 may be coupled to other components of computing device 12 through input/output interface 22.
  • Exemplary input/output devices 24 include, but are not limited to, a pointing device (such as a mouse or trackpad), a keyboard, a touch input device (such as a touchpad or touch screen), a voice or sound input device, various types of sensor devices, and/or imaging devices. It may include input devices and/or output devices such as display devices, printers, speakers, and/or network cards.
  • the exemplary input/output device 24 may be included within the computing device 12 as a component constituting the computing device 12, or may be connected to the computing device 12 as a separate device distinct from the computing device 12. It may be possible.

Landscapes

  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Ecology (AREA)
  • Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Environmental Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Emergency Management (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

Disclosed are a dipole lightening protection apparatus and a lightening monitoring method using same. According to the dipole lightening protection apparatus and the lightening monitoring method using same, according to an embodiment of the present invention, the lightening monitoring method using the dipole lightening protection apparatus, performed by a computing device including one or more processors and a memory for storing one or more programs executed by the one or more processors, comprises the steps of: receiving, by a management server, voltage data from the dipole lightening protection apparatus; analyzing, by the management server, the received voltage data and determining a lightening risk; and providing, by the management server, a result of the analysis to a user through a display unit.

Description

쌍극자 피뢰 장치 및 이를 이용한 낙뢰 모니터링 방법Dipole lightning arrester and lightning monitoring method using the same
본 발명의 실시 예는 낙뢰 모니터링 기술과 관련된다.Embodiments of the present invention relate to lightning monitoring technology.
낙뢰란 구름과 대지 사이에서 발생하는 방전현상을 말한다. 최근에는 지구온난화에 의한 영향으로 낙뢰의 발생빈도가 증가하는 추세이며 낙뢰에 수반되는 뇌격 전류의 강도 또한 강해지고 있다.Lightning is a discharge phenomenon that occurs between clouds and the ground. Recently, the frequency of lightning strikes is increasing due to the effects of global warming, and the intensity of the lightning current accompanying lightning is also becoming stronger.
낙뢰는 인적, 물적으로 심각한 피해를 초래할 수 있다. 과거 피뢰침이 개발되지 않았던 시절에는 도시의 화약을 저장해 놓은 시설에 낙뢰가 발생하여 수많은 사람이 목숨을 잃은 사건도 존재한다. 낙뢰가 발생했을 때 직접 낙뢰에 맞은 사람뿐 아니라 주변에 있는 사람에게도 전기가 흘러 목숨을 잃는 경우도 발생하곤 한다.Lightning can cause serious human and material damage. In the past, when lightning rods were not developed, there were incidents where lightning struck a facility storing city gunpowder and many people lost their lives. When a lightning strike occurs, electricity flows not only to the person directly struck by lightning but also to those around them, sometimes resulting in loss of life.
피뢰침은 끝이 뾰족한 금속 막대기로, 번개, 낙뢰로 인한 건물의 화제, 파손, 인명피해를 줄이고자 높은 건물이나 전신주 등에 설치된다.A lightning rod is a metal pole with a sharp end, and is installed on tall buildings or utility poles to reduce the risk of damage to buildings or casualties caused by lightning.
최근에는 높은 건물에 피뢰침을 설치하여 낙뢰 사고를 획기적으로 줄일 수 있게 되었다. 하지만, 피뢰침이 존재한다고 하더라도 낙뢰가 발생하는 순간 낙뢰 발생 장소에서는 고압의 전류가 흐르게 되므로 인명 피해가 발생하는 것을 완전히 차단하는 것은 어려움이 있다.Recently, it has been possible to dramatically reduce lightning accidents by installing lightning rods in tall buildings. However, even if a lightning rod exists, it is difficult to completely prevent casualties because the moment a lightning strike occurs, a high-voltage current flows in the area where the lightning strike occurs.
따라서, 낙뢰가 발생할 위험이 있는 지역을 알려주는 경보 시스템에 대한 연구가 진행되고 있으며, 특히 벼락이 떨어질 가능성이 높은 위치를 주변 사람들에게 알려주어 위험 지역에서 벗어날 수 있게 하는 방안이 연구되고 있다.Accordingly, research is being conducted on warning systems that inform people of areas at risk of lightning strikes, and in particular, ways to inform people around them of locations where lightning is likely to strike so that they can escape from the risk area are being studied.
본 발명의 실시예들은 뇌운의 접근에 따른 낙뢰 위험도를 모니터링하기 위한 쌍극자 피뢰 장치를 이용한 낙뢰 모니터링 방법을 제공하기 위한 것이다.Embodiments of the present invention are intended to provide a lightning monitoring method using a dipole lightning protection device to monitor the lightning risk according to the approach of a thundercloud.
본 발명의 예시적인 실시예에 따르면, 낙뢰로부터 보호하기 위한 객체의 상단부에 설치되어 대지 전하가 대전되는 로드부재, 뇌운에 의하여 대지 전하와 반대되는 극성을 가진 전하가 대전되는 대전관 및 상기 대전관에 결합되어 뇌운에 의하여 상기 대전관에 대전되는 전기적 에너지에 따라 발생하는 진동을 측정하는 센서부를 포함하는 쌍극자 피뢰 장치가 제공된다.According to an exemplary embodiment of the present invention, a rod member installed at the upper end of an object for protection from lightning and charged with a ground charge, a charging tube charged with a charge having a polarity opposite to the ground charge by a thundercloud, and the charging tube. A dipole lightning protection device is provided that is coupled to and includes a sensor unit that measures vibration generated according to electrical energy charged to the electrified tube by a thundercloud.
상기 쌍극자 피뢰 장치는 상기 로드부재의 길이방향을 따라 적어도 2개 이상 설치되는 애자, 이웃하는 상기 애자들 사이에 설치되어 상기 로드부재와 전기적으로 절연되고, 대지 전하와 반대되는 구성이 대전되는 대전판 및 상기 로드부재의 상단에 결합되어 상기 낙뢰를 유도하는 로드 캡을 더 포함하고, 상기 대전관은, 상기 대전판 및 애자 사이에 설치되고, 상기 대전판과 전기적으로 연결될 수 있다.The dipole lightning protection device includes at least two insulators installed along the longitudinal direction of the load member, a charging plate installed between the neighboring insulators to be electrically insulated from the load member, and charged in a configuration opposite to the ground charge. and a rod cap coupled to an upper end of the rod member to induce the lightning, wherein the charging tube is installed between the charging plate and the insulator and may be electrically connected to the charging plate.
상기 센서부는 상기 뇌운에 의하여 공간 전하가 대전되는 상기 대전관 및 상기 공간 전하와 상반된 극성인 대지 전하가 대전되는 상기 로드 부재 간의 대전 전압이 상승하면서 발생하는 코로나 방전(corona discharge)에 따라 상기 대전관에 발생하는 진동을 측정하여 진동 신호를 생성하고, 상기 생성된 진동 신호를 전압 신호로 변환할 수 있다.The sensor unit is connected to the charged tube according to a corona discharge that occurs as the charging voltage between the charged tube charged with a space charge by the thundercloud and the rod member charged with a ground charge of a polarity opposite to the space charge increases. A vibration signal can be generated by measuring the vibration occurring in the device, and the generated vibration signal can be converted into a voltage signal.
상기 쌍극자 피뢰 장치는 상기 전압 신호를 아날로그 데이터로 획득하고, 상기 아날로그 데이터를 디지털 데이터로 변환하고, 상기 디지털 데이터를 전압 데이터로 출력하는 검출 회로; 및 상기 전압 데이터를 외부로 전송하는 통신부를 더 포함할 수 있다.The dipole lightning protection device includes a detection circuit that acquires the voltage signal as analog data, converts the analog data into digital data, and outputs the digital data as voltage data; And it may further include a communication unit that transmits the voltage data to the outside.
상기 쌍극자 피뢰 장치는 상기 변환된 전압 데이터를 분석하여 상기 낙뢰 위험도를 판단하는 제어부를 더 포함할 수 있다.The dipole lightning protection device may further include a control unit that analyzes the converted voltage data and determines the lightning risk.
상기 대전관은, 중심으로 상기 로드 부재가 위치될 수 있도록 중공이 구비된 관형으로 이루어질 수 있다.The electrification tube may be formed in a tubular shape with a hollow hole so that the rod member can be positioned at the center.
상기 센서부는 상기 대전관을 둘러싸는 관형으로 이루어지고, 상기 대전관의 진동에 기초하여 전압 신호를 출력하는 압전 소자 센서를 포함할 수 있다.The sensor unit is formed in a tubular shape surrounding the charged tube and may include a piezoelectric element sensor that outputs a voltage signal based on vibration of the charged tube.
상기 센서부는, 상기 대전관의 외부에 돌출된 복수의 체결돌기와 결합하고, 상기 대전관으로부터 상기 대전관의 진동을 수신하여 상기 압전 소자 센서로 전달하는 수용부; 및 상기 압전 소자 센서를 둘러싸고, 상기 압전 소자 센서의 변형에 따라 탄력적으로 상기 압전 소자 센서를 지지하는 지지부를 구비하고, 절연물질로 이루어진 하우징을 더 포함할 수 있다.The sensor unit includes a receiving portion that engages a plurality of fastening protrusions protruding from the outside of the charged tube and receives vibration of the charged tube from the charged tube and transmits it to the piezoelectric sensor; And it may further include a housing made of an insulating material, surrounding the piezoelectric element sensor and having a support part that elastically supports the piezoelectric element sensor according to deformation of the piezoelectric element sensor.
상기 복수의 체결돌기는, 상기 대전관의 스위치의 조작 위치에 따라 상기 대전관의 내부에서 외부로 돌출될 수 있다.The plurality of fastening protrusions may protrude from the inside of the charging tube to the outside depending on the operating position of the switch of the charging tube.
상기 센서부는, 상기 대전관과 상기 로드부재에 대전되는 전하의 극성을 감지하여 뇌운의 접근을 감지하고, 상기 압전 소자 센서에서 획득된 상기 전압 신호를 낙뢰 위험도를 판단하는 데에 이용되는 전압 데이터를 출력하는 검출 회로로 전달할 수 있다.The sensor unit detects the approach of a thundercloud by detecting the polarity of the charges charged to the electrification tube and the load member, and converts the voltage signal obtained from the piezoelectric element sensor into voltage data used to determine the risk of lightning. It can be transmitted to the detection circuit that outputs it.
본 발명의 다른 예시적인 실시예에 따르면, 낙뢰로부터 보호하기 위한 객체의 상단부에 설치되어 대지 전하가 대전되는 로드부재, 뇌운에 의하여 대지 전하와 반대되는 극성을 가진 전하가 대전되는 대전관 및 상기 로드부재 및 상기 대전관 사이에서 전기적으로 연결되어 뇌운에 의하여 상기 대전관에 대전되는 전기적 에너지에 의하여 진동 신호를 생성하는 센서부를 포함하는 쌍극자 피뢰 장치가 제공된다.According to another exemplary embodiment of the present invention, a rod member installed at the upper end of an object for protection from lightning and charged with a ground charge, a charging tube and the rod charged with a charge having a polarity opposite to the ground charge by a thundercloud. A dipole lightning protection device is provided including a sensor unit electrically connected between a member and the charged tube and generating a vibration signal by electrical energy charged to the charged tube by a thundercloud.
상기 쌍극자 피뢰 장치는 상기 로드부재의 길이방향을 따라 적어도 2개 이상 설치되는 애자, 이웃하는 상기 애자들 사이에 설치되어 상기 로드부재와 전기적으로 절연되고, 대지 전하와 반대되는 구성이 대전되는 대전판 및 상기 로드부재의 상단에 결합되어 상기 낙뢰를 유도하는 로드 캡을 더 포함하고, 상기 대전관은, 상기 대전판 및 애자 사이에 설치되고, 상기 대전판과 전기적으로 연결되는 쌍극자 피뢰 장치가 제공된다.The dipole lightning protection device includes at least two insulators installed along the longitudinal direction of the load member, a charging plate installed between the neighboring insulators to be electrically insulated from the load member, and charged in a configuration opposite to the ground charge. and a rod cap coupled to the upper end of the rod member to induce the lightning, wherein the charging tube is installed between the charging plate and the insulator, and is electrically connected to the charging plate. A dipole lightning protection device is provided. .
상기 센서부는 상기 로드부재 및 상기 대전관에 대하여 전기적인 접촉 상태를 유지하며 진동 신호를 생성하는 제1 센서 및 상기 제1 센서에서 생성된 진동 신호를 측정하고, 상기 측정한 진동 신호를 전압 신호로 변환하는 제2 센서를 포함할 수 있다.The sensor unit maintains electrical contact with the rod member and the charging tube and measures a first sensor that generates a vibration signal and a vibration signal generated by the first sensor, and converts the measured vibration signal into a voltage signal. It may include a second sensor that converts.
상기 쌍극자 피뢰 장치는 상기 전압 신호를 아날로그 데이터로 획득하고, 상기 아날로그 데이터를 디지털 데이터로 변환하고, 상기 디지털 데이터를 전압 데이터로 출력하는 검출 회로; 및 상기 전압 데이터를 외부로 전송하는 통신부를 더 포함할 수 있다.The dipole lightning protection device includes a detection circuit that acquires the voltage signal as analog data, converts the analog data into digital data, and outputs the digital data as voltage data; And it may further include a communication unit that transmits the voltage data to the outside.
상기 쌍극자 피뢰 장치는 상기 변환된 전압 데이터를 분석하여 상기 낙뢰 위험도를 판단하는 제어부를 더 포함할 수 있다.The dipole lightning protection device may further include a control unit that analyzes the converted voltage data and determines the lightning risk.
상기 제1 센서 및 제2 센서는 디스크형으로 이루어진 압전 소자 센서로서, 상호 결합된 상태일 수 있다.The first sensor and the second sensor are disk-shaped piezoelectric sensors, and may be coupled to each other.
상기 제1 센서는 상기 로드부재와 접촉되는 제1 단자편, 상기 제1 단자편과 상기 제1 센서를 전기적으로 연결하는 제1 전선, 상기 대전관과 접촉되는 제2 단자편 및 상기 제2 단자편과 상기 제1 센서를 전기적으로 연결하는 제2 전선을 더 포함할 수 있다.The first sensor includes a first terminal piece in contact with the rod member, a first wire electrically connecting the first terminal piece and the first sensor, a second terminal piece in contact with the charging tube, and the second terminal. It may further include a second wire electrically connecting the piece and the first sensor.
상기 제1 센서는, 상기 제1 단자편 및 상기 제2 단자편에 기초하여, 상기 로드부재와 상기 대전관에 대전되는 전하의 극성을 감지하여 뇌운의 접근을 감지하고, 상기 진동 신호가 상기 제2 센서로 전달하고, 상기 제2 센서는 상기 진동 신호를 전압 신호로 변환하고, 상기 쌍극자 피뢰 장치는, 상기 전압 신호를 아날로그 데이터로 획득하고, 상기 아날로그 데이터를 디지털 데이터로 변환하고, 상기 디지털 데이터를 전압 데이터로 출력하는 검출 회로 및 상기 전압 데이터를 외부로 전송하는 통신부를 더 포함할 수 있다.The first sensor detects the approach of a thundercloud by detecting the polarity of the electric charge charged to the rod member and the charging tube, based on the first terminal piece and the second terminal piece, and the vibration signal is transmitted to the first terminal piece. 2 sensors, the second sensor converts the vibration signal into a voltage signal, the dipole lightning protection device acquires the voltage signal as analog data, converts the analog data into digital data, and the digital data It may further include a detection circuit that outputs voltage data and a communication unit that transmits the voltage data to the outside.
상기 제1 센서는 상기 뇌운에 의하여 공간 전하가 대전되는 상기 대전관 및 상기 공간 전하와 상반된 극성인 대지 전하가 대전되는 상기 로드 부재에 대하여 각각 전기적인 접촉 상태를 유지하는 제1 단자편 및 제2 단자편에 의하여 상기 진동 신호를 생성할 수 있다.The first sensor is a first terminal piece and a second sensor that maintain electrical contact with the charging tube charged with a space charge by the thundercloud and the rod member charged with a ground charge having a polarity opposite to the space charge. The vibration signal can be generated by the terminal piece.
본 발명의 또 다른 예시적인 실시예에 따르면, 하나 이상의 프로세서들, 및 상기 하나 이상의 프로세서들에 의해 실행되는 하나 이상의 프로그램들을 저장하는 메모리를 구비한 컴퓨팅 장치에서 수행되는 쌍극자 피뢰 장치를 이용한 낙뢰 모니터링 방법으로서, 관리 서버에서, 쌍극자 피뢰 장치로부터 전압 데이터를 수신하는 단계, 관리 서버에서, 상기 수신한 전압 데이터를 분석하여 상기 낙뢰 위험도를 판단하는 단계 및 관리 서버에서, 상기 분석된 결과를 디스플레이부를 통하여 사용자에게 제공하는 단계를 포함하는 쌍극자 피뢰 장치를 이용한 낙뢰 모니터링 방법이 제공된다.According to another exemplary embodiment of the present invention, a lightning monitoring method using a dipole lightning protection device performed on a computing device having one or more processors and a memory storing one or more programs executed by the one or more processors. In the management server, receiving voltage data from a dipole lightning protection device; in the management server, analyzing the received voltage data to determine the lightning risk; and in the management server, displaying the analyzed results to the user through a display unit. A lightning monitoring method using a dipole lightning protection device including the step of providing a lightning strike is provided.
상기 낙뢰 위험도를 판단하는 단계는 상기 쌍극자 피뢰 장치로부터 전압 데이터를 수신하면, 낙뢰 주의 단계로 판단하는 단계, 상기 낙뢰 주의 단계가 지속되면서 상기 전압 데이터가 기 설정된 경계 기준 값 이하로 발생 주기가 작아지거나, 상기 기 설정된 경계 기준 값 이상으로 전압 크기가 상승하는 경우, 낙뢰 경계 단계로 판단하는 단계 및 상기 낙뢰 경계 단계가 지속되면서 상기 전압 데이터가 기 설정된 위험 기준 값 이하로 발생 주기가 작아지거나, 상기 기 설정된 위험 기준 값 이상으로 전압 크기가 상승하는 경우, 낙뢰 위험 단계로 판단하는 단계를 더 포함할 수 있다.The step of determining the lightning risk includes determining a lightning caution stage when voltage data is received from the dipole lightning protection device. As the lightning caution stage continues, the occurrence period of the voltage data decreases below a preset boundary reference value or , when the voltage level rises above the preset warning standard value, the step of determining the lightning warning step and the lightning warning step continues, the occurrence period of the voltage data below the preset risk reference value becomes smaller, or the If the voltage level increases above the set risk standard value, a step of determining the lightning risk level may be further included.
본 발명의 일 실시예들에 따르면, 쌍극자 피뢰 장치를 통하여 뇌운에 의하여 발생하는 진동을 대전관에 설치된 압전 소자 센서를 이용하여 측정함으로써, 유도 전압의 크기에 따른 센서의 고장을 방지할 수 있으며, 뇌운의 크기를 분석하기 위한 데이터를 정확하게 획득할 수 있는 효과가 있다.According to one embodiment of the present invention, by measuring the vibration caused by a thundercloud through a dipole lightning protection device using a piezoelectric element sensor installed in the electrified tube, it is possible to prevent sensor failure depending on the magnitude of the induced voltage, This has the effect of accurately obtaining data to analyze the size of a thundercloud.
또한, 본 발명의 일 실시예들에 따르면, 뇌운에 의하여 발생하는 유도 전압을 이용하여 제1 압전 소자 센서에서 진동 신호를 생성하고, 제1 압전 소자 센서에서 생성된 진동 신호를 제2 압전 소자 센서에서 측정함으로써, 뇌운의 크기를 분석하기 위한 데이터를 정확하게 획득할 수 있으며, 외부 환경에 의한 센서부를 보호할 수 있는 효과가 있다.In addition, according to one embodiment of the present invention, a vibration signal is generated in the first piezoelectric element sensor using the induced voltage generated by a thundercloud, and the vibration signal generated in the first piezoelectric element sensor is transmitted to the second piezoelectric element sensor. By measuring in , it is possible to accurately obtain data for analyzing the size of a thundercloud and has the effect of protecting the sensor unit from the external environment.
도 1은 본 발명의 일 실시예에 따른 쌍극자 피뢰 장치를 이용한 낙뢰 모니터링 시스템을 설명하기 위한 구성도1 is a configuration diagram illustrating a lightning monitoring system using a dipole lightning protection device according to an embodiment of the present invention.
도 2a는 본 발명의 제1 실시예에 따른 쌍극자 피뢰 장치를 나타낸 단면도Figure 2a is a cross-sectional view showing a dipole lightning protection device according to the first embodiment of the present invention.
도 2b는 본 발명의 제1 실시예에 따른 쌍극자 피뢰 장치의 대전관에 결합된 센서부를 나타낸 단면도Figure 2b is a cross-sectional view showing the sensor unit coupled to the charging tube of the dipole lightning protection device according to the first embodiment of the present invention.
도 2c는 센서부와 연결된 검출 회로를 설명하기 위한 도면Figure 2c is a diagram for explaining a detection circuit connected to the sensor unit
도 3은 본 발명의 제2 실시예에 따른 쌍극자 피뢰 장치를 나타낸 단면도Figure 3 is a cross-sectional view showing a dipole lightning protection device according to a second embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 관리 서버를 나타낸 블록도Figure 4 is a block diagram showing a management server according to an embodiment of the present invention.
도 5 및 도 6은 본 발명의 일 실시예에 따른 쌍극자 피뢰 장치에 의하여 측정된 전압 데이터를 나타낸 도면5 and 6 are diagrams showing voltage data measured by a dipole lightning protection device according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 쌍극자 피뢰 장치를 이용한 낙뢰 모니터링 방법을 설명하기 위한 흐름도Figure 7 is a flowchart illustrating a lightning monitoring method using a dipole lightning protection device according to an embodiment of the present invention.
도 8은 예시적인 실시예들에서 사용되기에 적합한 컴퓨팅 장치를 포함하는 컴퓨팅 환경을 예시하여 설명하기 위한 블록도8 is a block diagram illustrating and illustrating a computing environment including a computing device suitable for use in example embodiments.
이하, 도면을 참조하여 본 발명의 구체적인 실시형태를 설명하기로 한다. 이하의 상세한 설명은 본 명세서에서 기술된 방법, 장치 및/또는 시스템에 대한 포괄적인 이해를 돕기 위해 제공된다. 그러나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다.Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The detailed description below is provided to provide a comprehensive understanding of the methods, devices and/or systems described herein. However, this is only an example and the present invention is not limited thereto.
본 발명의 실시예들을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 상세한 설명에서 사용되는 용어는 단지 본 발명의 실시예들을 기술하기 위한 것이며, 결코 제한적이어서는 안 된다. 명확하게 달리 사용되지 않는 한, 단수 형태의 표현은 복수 형태의 의미를 포함한다. 본 설명에서, "포함" 또는 "구비"와 같은 표현은 어떤 특성들, 숫자들, 단계들, 동작들, 요소들, 이들의 일부 또는 조합을 가리키기 위한 것이며, 기술된 것 이외에 하나 또는 그 이상의 다른 특성, 숫자, 단계, 동작, 요소, 이들의 일부 또는 조합의 존재 또는 가능성을 배제하도록 해석되어서는 안 된다.In describing the embodiments of the present invention, if it is determined that a detailed description of the known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. In addition, the terms described below are terms defined in consideration of functions in the present invention, and may vary depending on the intention or custom of the user or operator. Therefore, the definition should be made based on the contents throughout this specification. The terminology used in the detailed description is merely for describing embodiments of the present invention and should in no way be limiting. Unless explicitly stated otherwise, singular forms include plural meanings. In this description, expressions such as “comprising” or “comprising” are intended to indicate certain features, numbers, steps, operations, elements, parts or combinations thereof, and one or more than those described. It should not be construed to exclude the existence or possibility of any other characteristic, number, step, operation, element, or part or combination thereof.
한편, 본 발명의 실시예는 본 명세서에서 기술한 방법들을 컴퓨터상에서 수행하기 위한 프로그램, 및 상기 프로그램을 포함하는 컴퓨터 판독 가능 기록매체를 포함할 수 있다. 상기 컴퓨터 판독 가능 기록매체는 프로그램 명령, 로컬 데이터 파일, 로컬 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체는 본 발명을 위하여 특별히 설계되고 구성된 것들이거나, 또는 컴퓨터 소프트웨어 분야에서 통상적으로 사용 가능한 것일 수 있다. 컴퓨터 판독 가능 기록매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM, DVD와 같은 광 기록 매체, 및 롬, 램, 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 상기 프로그램의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함할 수 있다.Meanwhile, embodiments of the present invention may include a program for performing the methods described in this specification on a computer, and a computer-readable recording medium containing the program. The computer-readable recording medium may include program instructions, local data files, local data structures, etc., singly or in combination. The media may be those specifically designed and constructed for the present invention, or may be those commonly available in the computer software field. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical recording media such as CD-ROMs, DVDs, and media specifically configured to store and perform program instructions such as ROM, RAM, flash memory, etc. Includes hardware devices. Examples of the program may include not only machine language code such as that generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
도 1은 본 발명의 일 실시예에 따른 쌍극자 피뢰 장치를 이용한 낙뢰 모니터링 시스템을 설명하기 위한 구성도이다.1 is a configuration diagram illustrating a lightning monitoring system using a dipole lightning protection device according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 쌍극자 피뢰 장치를 이용한 낙뢰 모니터링 시스템(100)은 쌍극자 피뢰 장치(210) 및 관리 서버(300)를 포함할 수 있다.As shown in FIG. 1, the lightning monitoring system 100 using a dipole lightning protection device according to an embodiment of the present invention may include a dipole lightning protection device 210 and a management server 300.
쌍극자 피뢰 장치(210) 및 관리 서버(300)는 서로 통신 네트워크를 사용하여 연결됨에 따라, 통신가능할 수 있다.As the dipole lightning protection device 210 and the management server 300 are connected to each other using a communication network, they may be capable of communicating.
몇몇 실시 예들에서, 통신 네트워크는 Wi-Fi, 인터넷, 하나 이상의 로컬 영역 네트워크(local area networks), 광역 네트워크(wire area networks), 셀룰러 네트워크, 모바일 네트워크, 그 밖에 다른 종류의 네트워크들, 또는 이러한 네트워크들의 조합을 포함할 수 있다.In some embodiments, the communications network may be Wi-Fi, the Internet, one or more local area networks, wire area networks, cellular networks, mobile networks, other types of networks, or such networks. It may include a combination of these.
한편, 본 발명의 일 실시예에 따른 쌍극자 피뢰 장치를 이용한 낙뢰 모니터링 시스템(100)은 기 설치된 스마트 폴(200)에 적용될 수 있으며, 스마트 폴(200)을 낙뢰로부터 보호하기 위하여 스마트 폴(200)의 상단에 쌍극자 피뢰 장치(210)가 설치될 수 있다. 한편, 본 발명에서는 쌍극자 피뢰 장치(210)가 스마트 폴(200)의 상단에 설치되는 것으로 도시하였으나, 이에 한정되는 것은 아니며, 낙뢰로부터 보호하기 위한 객체, 기둥, 건물 등의 상단에 설치될 수 있다.Meanwhile, the lightning monitoring system 100 using a dipole lightning protection device according to an embodiment of the present invention can be applied to an already installed smart pole 200, and the smart pole 200 is used to protect the smart pole 200 from lightning. A dipole lightning protection device 210 may be installed at the top of . Meanwhile, in the present invention, the dipole lightning protection device 210 is shown as being installed on the top of the smart pole 200, but it is not limited to this and can be installed on the top of an object, pillar, building, etc. to protect against lightning. .
최근에는 사물 인터넷(IoT : Internet of Things), 사이버 물리 시스템(CPS : Cyber Physical Systems), 빅데이터 솔루션 등 최신 정보통신기술(ICT)을 적용한 스마트 플랫폼을 구축하여 도시의 인프라를 효율적으로 운영 및 관리하고, 아울러 공공 데이터를 수집 및 활용하여 환경, 교통, 에너지 등 다양한 도시 문제를 해결하고 시민에게 안전하고 윤택한 삶을 제공하는 스마트 도시의 하위 개념인 이른바 스마트 빌리지가 확산되고 있다. 이러한 스마트 빌리지의 기반 설비 중 하나로 스마트 폴이 있으며, 스마트 폴(smart pole)은 가로등과 같은 기둥 모양의 도로시설물에 사물 인터넷(IoT) 및 정보통신기술(ICT)을 접목해 본연의 기능 외에도 방범용 보안등을 비롯하여 CCTV, 스피커, 대기질 관측, 신호등, 비상벨(emergency call) 등과 같은 다양한 기능을 구축하여 안전하고 쾌적한 도시 및 주거환경과 첨단 서비스를 제공할 수 있으며, 본 발명의 일 실시예에 따른 스마트 폴(200)은 이러한 기 공지된 기술을 이용할 수 있다. 스마트 폴(200)의 상세 구성은 해당 기술 분야에서 널리 알려져 있으며, 스마트 폴(200)의 목적에 따라 다양한 기능을 구축할 수 있는 바 이에 대한 자세한 설명은 생략하기로 한다.Recently, a smart platform applying the latest information and communication technology (ICT) such as the Internet of Things (IoT), Cyber Physical Systems (CPS), and big data solutions has been established to efficiently operate and manage the city's infrastructure. In addition, so-called smart villages, a sub-concept of smart cities that collect and utilize public data to solve various urban problems such as environment, transportation, and energy, and provide citizens with a safe and enriched life, are spreading. One of the basic facilities of such a smart village is a smart pole, which combines the Internet of Things (IoT) and information and communication technology (ICT) with pillar-shaped road facilities such as street lights, and is used for crime prevention in addition to its original function. It is possible to provide a safe and comfortable urban and residential environment and cutting-edge services by building various functions such as security lights, CCTV, speakers, air quality observation, traffic lights, emergency calls, etc., according to an embodiment of the present invention. Smart pole 200 can use these known technologies. The detailed configuration of the smart pole 200 is widely known in the relevant technology field, and various functions can be configured depending on the purpose of the smart pole 200, so a detailed description thereof will be omitted.
스마트 폴(200)(smart pole)은 지면에 일정한 높이로 세워지는 다양한 최첨단 기능을 탑재한 기둥일 수 있으며, 스마트 폴(200)은 관리 서버(300)와 네트워크를 통하여 연결되는 통신부(220)를 포함할 수 있다.The smart pole 200 may be a pole equipped with various cutting-edge functions that is erected at a certain height on the ground. The smart pole 200 has a communication unit 220 connected to the management server 300 and a network. It can be included.
통신부(220)는 쌍극자 피뢰 장치(210)로부터 획득한 낙뢰 정보를 관리 서버(300)로 전송할 수 있다. 한편, 통신부(220)는 쌍극자 피뢰 장치에 포함될 수도 있다.The communication unit 220 may transmit lightning information obtained from the dipole lightning protection device 210 to the management server 300. Meanwhile, the communication unit 220 may be included in a dipole lightning protection device.
도 2a는 본 발명의 제1 실시예에 따른 쌍극자 피뢰 장치를 나타낸 단면도이다.Figure 2a is a cross-sectional view showing a dipole lightning protection device according to the first embodiment of the present invention.
도 2에 도시된 바와 같이, 쌍극자 피뢰 장치(210)는 대지 전하가 대전되는 로드부재(211)와, 상기 로드부재(211)의 길이방향을 따라 적어도 2개 이상 설치되는 애자(212a, 212b)와, 이웃하는 상기 애자들(212a, 212b) 사이에 설치되며 상기 로드부재(211)와 전기적으로 절연되고 대지 전하와 반대되는 극성이 대전되는 대전판(213)과, 상기 대전판(213)과 애자(212b) 사이에 설치되고 상기 대전판(213)과 전기적으로 연결되며 대지 전하와 반대되는 극성을 가진 전하가 대전되는 대전관(214)과, 상기 로드부재(211)의 상단에 결합되어 낙뢰를 유도하는 로드 캡(215)과, 뇌운에 의하여 상기 대전관에 대전되는 전기적 에너지에 따라 발생하는 진동을 측정하는 센서부(216)를 포함할 수 있다.As shown in FIG. 2, the dipole lightning protection device 210 includes a rod member 211 charged with ground charges, and at least two insulators 212a and 212b installed along the longitudinal direction of the rod member 211. and a charging plate 213 installed between the neighboring insulators 212a and 212b, electrically insulated from the load member 211, and charged with a polarity opposite to the ground charge; It is installed between the insulators 212b, is electrically connected to the charging plate 213, and is connected to the charging tube 214, which is charged with a charge having a polarity opposite to the ground charge, and the upper end of the rod member 211, thereby causing lightning. It may include a rod cap 215 that induces and a sensor unit 216 that measures vibration generated according to the electrical energy charged to the electrified tube by a thundercloud.
로드부재(211)는 스마트 폴(200)의 상단에 결합되어 수직하게 세워지는 것으로, 대지 전하를 대전시킬 수 있다.The load member 211 is coupled to the top of the smart pole 200 and stands vertically, and can charge the ground.
또한, 로드부재(211)의 하단부에는 로드부재(211)를 안정적으로 고정시킬 수 있는 고정플레이트(미도시)를 더 포함할 수 있다. 고정 플레이트는 일정 두께를 가지는 평판형 부재로써, 표면에는 스마트 폴(200)에 견고히 고정시킬 수 있는 결합부재(미도시)가 형성될 수 있다.In addition, the lower end of the rod member 211 may further include a fixing plate (not shown) that can stably fix the rod member 211. The fixing plate is a flat member with a certain thickness, and a coupling member (not shown) that can be firmly fixed to the smart pole 200 may be formed on the surface.
애자(212a, 212b)는 로드부재(211)의 길이방향을 따라 적어도 2개의 구성이 이격 상태로 설치되는 것으로, 세라믹 또는 합성수지 소재의 절연체로써 로드부재(211) 및 대전관(214)을 절연시킬 수 있다. 여기서, 애자(212a, 212b)는 대전관(214)을 기준으로 상부에 설치되는 제1 애자(212a)와 하부에 설치되는 제2 애자(212b)를 포함할 수 있으며, 제2 애자(212b)의 상단에는 대전관(214) 안쪽으로 삽입이 이루어지는 절연돌기(214-1)가 형성될 수 있다. 절연돌기(214-1)는 바람의 영향으로 빗물이 대전관(214)의 내부로 유입될 경우, 유입된 빗물을 로드부재(211)의 바깥쪽으로 용이하게 배출될 수 있도록 안내함과 동시에 대전관(214)과 로드부재(211) 간의 절연거리를 충분히 확보할 수 있도록 일정 길이를 가질 수 있다. 절연돌기(214-1)는 상부가 좁고 하부가 넓은 다수의 원추형 부재가 동일선상에 연속하여 연결되는 구조일 수 있다.At least two insulators 212a and 212b are installed in a spaced apart state along the longitudinal direction of the rod member 211, and are insulators made of ceramic or synthetic resin to insulate the rod member 211 and the charging tube 214. You can. Here, the insulators 212a and 212b may include a first insulator 212a installed above and a second insulator 212b installed below the electrification pipe 214, and the second insulator 212b An insulating protrusion 214-1 that is inserted into the charging tube 214 may be formed at the top of the . When rainwater flows into the inside of the charging pipe 214 due to the influence of wind, the insulating protrusion 214-1 guides the inflowing rainwater so that it can be easily discharged to the outside of the rod member 211 and at the same time, guides the rainwater into the charging pipe 214. It may have a certain length to ensure sufficient insulation distance between (214) and the rod member (211). The insulating protrusion 214-1 may have a structure in which a plurality of conical members that are narrow at the top and wide at the bottom are continuously connected on the same line.
대전판(213)은 애자(212a, 212b) 사이에 설치되어 로드부재(211)와 전기적인 절연상태를 유지하고 대전관(214)과는 전기적으로 연결되는 것으로, 대지 전하와 반대되는 극성이 대전될 수 있다. 한편, 대전판(213)은 원주방향 가장자리에 주름 모양을 반복적으로 형성할 수 있다. 이러한 주름에 의하여 대전판(213)의 원주방향에 대하여 균등한 분배방전을 유도할 수 있다. 이러한 대전판(213)의 구성은 낙뢰유입시에 전계가 집중됨으로써 뇌운과 대지간에 방전을 용이하게 할 수 있다.The charging plate 213 is installed between the insulators 212a and 212b to maintain electrical insulation from the load member 211 and is electrically connected to the charging tube 214, and has a polarity opposite to the ground charge. It can be. Meanwhile, the charging plate 213 may repeatedly form a wrinkle shape at its circumferential edge. These wrinkles can induce evenly distributed discharge in the circumferential direction of the charging plate 213. This configuration of the charging plate 213 can facilitate discharge between the thundercloud and the ground by concentrating the electric field when lightning strikes.
대전관(214)은 대전판(213)과 애자(제2 애자)(212b)사이에 설치되고, 대전판(213)과 전기적으로 연결되는 것으로, 대지 전하와 반대되는 극성이 대전될 수 있다. 대전관(214)은 관형(tube)으로 이루어져 그 중심으로 로드부재(211)가 결합될 수 있도록 중공을 형성할 수 있다. The charging tube 214 is installed between the charging plate 213 and the insulator (second insulator) 212b, and is electrically connected to the charging plate 213, so that it can be charged with a polarity opposite to the ground charge. The electrification tube 214 is made of a tube shape and can form a hollow center so that the rod member 211 can be coupled thereto.
한편, 로드 캡(215)은 로드부재(211)의 상단에 설치되는 것으로, 낙뢰를 유도할 수 있다. 로드 캡(215)은 낙뢰 유입 면적을 크게 향상시켜 방전효율을 높일 수 있도록 애자(212a)와 비교하여 상대적으로 큰 외경을 가지는 형상으로 이루어질 수 있다. 즉, 로드 갭(215)은 제1 애자(212a)의 외경보다 크게 형성될 수 있다. 이와 같이, 로드 캡(215)의 구성을 제1 애자(212a)보다 크게 형성하면 낙뢰의 뇌전류를 유입하기 위한 면적이 증가됨에 따라 낙뢰를 신속히 방출시킬 수 있다.Meanwhile, the rod cap 215 is installed on the top of the rod member 211 and can induce lightning. The rod cap 215 may be shaped to have a relatively large outer diameter compared to the insulator 212a to greatly improve the lightning inflow area and thereby increase discharge efficiency. That is, the load gap 215 may be formed to be larger than the outer diameter of the first insulator 212a. In this way, if the load cap 215 is formed to be larger than the first insulator 212a, the area for introducing the lightning current increases, thereby allowing the lightning to be discharged quickly.
대전관(214)은, 대전관(214)의 중심으로 로드부재(211)가 위치될 수 있도록 중공이 구비된 관형으로 이루어질 수 있다.The electrification tube 214 may be formed in a hollow tube shape so that the rod member 211 can be positioned at the center of the electrification tube 214.
제1 센서부(216)는 대전관(214)에 결합되어 뇌운에 의하여 대전관(214)에 대전되는 전기적 에너지에 따라 발생하는 진동을 측정하는 압전 소자 센서를 포함할 수 있다. 예를 들어, 도 2b의 이미지(270)에 도시된 바와 같이, 압전 소자 센서(275)는 대전관(214)을 둘러싸는 관형(tube)으로 이루어지고, 그 내부로 대전관(214)이 결합될 수 있도록 중공을 형성할 수 있다. The first sensor unit 216 may include a piezoelectric element sensor that is coupled to the electrified tube 214 and measures vibration generated according to electrical energy charged to the electrified tube 214 by a thundercloud. For example, as shown in the image 270 of FIG. 2B, the piezoelectric element sensor 275 is made of a tube surrounding the charged tube 214, and the charged tube 214 is coupled thereto. A hollow can be formed so that
또한, 제1 센서부(216)는 대전관(214)의 외부에 돌출된 복수의 체결돌기와 결합하고, 대전관(214)으로부터 대전관(214)의 진동을 수신하여 압전 소자 센서(275)로 전달하는 수용부를 포함할 수 있다. 또한, 제1 센서부(216)는, 수용부와 압전 소자 센서(275)를 둘러싸고, 압전 소자 센서(275)의 변형에 따라 탄력적으로 압전 소자 센서를 지지하는 지지부를 구비하는 하우징을 포함할 수 있다. 이 경우, 하우징은 절연물질로 이루어질 수 있다. In addition, the first sensor unit 216 is coupled to a plurality of fastening protrusions protruding outside the electrification tube 214, and receives the vibration of the electrification tube 214 from the electrification tube 214 to the piezoelectric element sensor 275. It may include a receiving part that transmits. In addition, the first sensor unit 216 may include a housing surrounding the receiving portion and the piezoelectric sensor 275 and having a support portion that elastically supports the piezoelectric sensor according to deformation of the piezoelectric sensor 275. there is. In this case, the housing may be made of an insulating material.
또한, 제1 센서부(216)는 대전관(214)과 로드부재(211)에 대전되는 전하의 극성을 감지하여 뇌운의 접근을 감지하고, 압전 소자 센서(275)에서 전압 신호가 출력되도록 제어하는 검출 회로를 포함할 수 있다. 검출 회로는, 쌍극자 피뢰 장치(210)에 뇌운이 접근하는 경우에 압전 소자 센서(275)에서 전압 신호가 출력되도록 제어하기 때문에, 뇌운의 접근이 아닌 다른 요소에 의해 발생된 진동에 대해서는 전압 신호가 출력되지 않도록 제어할 수 있다.In addition, the first sensor unit 216 detects the approach of a thundercloud by detecting the polarity of the charges charged to the charging tube 214 and the rod member 211, and controls the piezoelectric element sensor 275 to output a voltage signal. It may include a detection circuit that does. Since the detection circuit controls a voltage signal to be output from the piezoelectric element sensor 275 when a thundercloud approaches the dipole lightning protection device 210, the voltage signal is not generated for vibration caused by factors other than the approach of a thundercloud. You can control it so that it is not output.
본 발명의 일 실시예에 따른 쌍극자 피뢰 장치(210)는 뇌운이 접근하게 되면, 뇌운에 의해 대기 중에 분포되어 있는 공간 전하가 대전판(213) 및 대전관(214)에 대전되고, 공간전하와 상반된 극성이면서 대지로부터 공급되는 전하 즉, 대지 전하가 로드부재(211)에 대전되게 된다. 이와 같이, 뇌운의 접근에 따라 공간 전하와 대지 전하가 각각 대전관(214)과 로드부재(211)에 점차적으로 대전되면, 전하량의 증가에 의해 대전 전압 즉, 대전관(214)과 로드부재(211) 간의 대전 전압이 상승하여 방전(코로나 방전(corona discharge))이 이루어진다.In the dipole lightning protection device 210 according to an embodiment of the present invention, when a thundercloud approaches, the space charge distributed in the atmosphere by the thundercloud is charged to the charging plate 213 and the charging tube 214, and the space charge and The load member 211 is charged with the opposite polarity and supplied from the ground, that is, the ground charge. In this way, as the space charge and the ground charge gradually charge the charging tube 214 and the load member 211, respectively, as the thundercloud approaches, the charging voltage, that is, the charging tube 214 and the load member ( 211) The charging voltage between the liver increases and a discharge (corona discharge) occurs.
이 때, 제1 센서부(216)는 코로나 방전에 의하여 발생하는 진동을 측정하여 진동 신호를 생성할 수 있다. 제1 센서부(216)는 생성된 진동 신호를 전압 신호로 변환할 수 있다.At this time, the first sensor unit 216 may measure vibration generated by corona discharge and generate a vibration signal. The first sensor unit 216 may convert the generated vibration signal into a voltage signal.
또한, 쌍극자 피뢰 장치(210)는 통신부(220) 및 검출 회로(250)를 포함할 수 있다. 검출 회로(250)는 전압 신호를 아날로그 데이터로 획득하고, 아날로그 데이터를 디지털 데이터로 변환하고, 디지털 데이터를 전압 데이터로 출력할 수 있다. 검출 회로(250)는 전압 데이터를 통신부(220)로 전달할 수 있다. 통신부(220)는 전압 데이터를 관리 서버(300)로 전송할 수 있다.Additionally, the dipole lightning protection device 210 may include a communication unit 220 and a detection circuit 250. The detection circuit 250 may obtain a voltage signal as analog data, convert the analog data into digital data, and output the digital data as voltage data. The detection circuit 250 may transmit voltage data to the communication unit 220. The communication unit 220 may transmit voltage data to the management server 300.
한편, 여기서는 관리 서버(300)로 전압 데이터를 전송하는 것으로 설명하였으나, 쌍극자 피뢰 장치(200)가 낙뢰 위험도를 판단하여 판단 결과를 관리 서버(300)로 전송할 수도 있다. 예를 들어, 쌍극자 피뢰 장치(200)는 제어부(미도시)를 더 포함할 수 있다. 제어부(미도시)는 후술할 분석 모듈(320)과 같이, 전압 데이터를 분석하여 낙뢰 위험도를 판단할 수 있다. 또한, 제어부(미도시)는 분석 결과를 통신부(220)로 전달할 수 있으며, 통신부(220)는 분석 결과를 관리 서버(300)로 전송할 수 있다.Meanwhile, although it is explained here that voltage data is transmitted to the management server 300, the dipole lightning protection device 200 may determine the risk of lightning and transmit the determination result to the management server 300. For example, the dipole lightning protection device 200 may further include a control unit (not shown). The control unit (not shown), like the analysis module 320 to be described later, can determine the risk of lightning by analyzing voltage data. Additionally, the control unit (not shown) may transmit the analysis results to the communication unit 220, and the communication unit 220 may transmit the analysis results to the management server 300.
기존에는 뇌운의 접근에 따라 피뢰 장치에서 발생되는 유도전압에 의하여 발광되는 발광센서(LED)를 이용하여 발광되는 광량을 광센서로 센싱함으로써, 뇌운의 크기를 분석하였다. 이러한 기존의 낙뢰 모니터링 시스템은 유도전압이 큰 경우 발광센서가 소손되거나, 유도전압 발생 횟수와 크기에 따른 발광센서의 수명 저하가 발생하여 잦은 고장이 발생하는 문제가 있었다. 또한, 발광센서의 교체로 인하여 데이터를 처리하기 위한 설정 값을 변경해야 하는 점이 있었다.Previously, the size of a thundercloud was analyzed by sensing the amount of light emitted with an optical sensor using a light emitting sensor (LED) that emits light by the induced voltage generated by the lightning protection device as the thundercloud approaches. This existing lightning monitoring system had a problem in that the light emitting sensor was burned out when the induced voltage was large, or the lifespan of the light emitting sensor was shortened depending on the number and size of induced voltage occurrences, causing frequent breakdowns. Additionally, due to replacement of the light emitting sensor, there was a need to change the settings for processing data.
그러나, 본 발명의 일 실시예에 따른 낙뢰 모니터링 시스템은, 쌍극자 피뢰 장치(210)를 통하여 뇌운에 의하여 발생하는 진동을 대전관(214)에 설치된 압전 소자 센서(216)를 이용하여 측정함으로써, 유도 전압의 크기에 따른 센서의 고장을 방지할 수 있으며, 뇌운의 크기를 분석하기 위한 데이터를 정확하게 획득할 수 있는 효과가 있다.However, the lightning monitoring system according to an embodiment of the present invention measures the vibration generated by a thundercloud through the dipole lightning protection device 210 using the piezoelectric element sensor 216 installed in the electrification tube 214, thereby inducing It is possible to prevent sensor failure depending on the size of the voltage, and has the effect of accurately obtaining data to analyze the size of a thundercloud.
도 2b는 본 발명의 제1 실시예에 따른 쌍극자 피뢰 장치의 대전관에 결합된 센서부를 나타낸 단면도이다.Figure 2b is a cross-sectional view showing the sensor unit coupled to the charging tube of the dipole lightning protection device according to the first embodiment of the present invention.
도 2b의 이미지(250)는, 로드캡(215)의 위치에서 지면 방향으로 바라본 도 2a의 영역(230)의 단면도를 나타낸다. 대전관(214)의 내부에는 복수의 체결돌기(251, 252, 253, 254)가 구비될 수 있다. 도 2a에 도시된 바와 같이, 대전관(214)에는 스위치(240)가 구비될 수 있다. 스위치(240)의 조작 위치에 따라, 복수의 체결돌기(251, 252, 253, 254)는, 대전관(214)의 내부에서 외부로 돌출될 수 있다. Image 250 of FIG. 2B represents a cross-sectional view of the area 230 of FIG. 2A viewed from the position of the load cap 215 toward the ground. A plurality of fastening protrusions 251, 252, 253, and 254 may be provided inside the electrification tube 214. As shown in FIG. 2A, the charging tube 214 may be provided with a switch 240. Depending on the operating position of the switch 240, a plurality of fastening protrusions 251, 252, 253, and 254 may protrude from the inside of the charging tube 214 to the outside.
도 2b의 이미지(260)는 복수의 체결돌기(251, 252, 253, 254)가 대전관(214)의 외부로 돌출된 상태를 나타낸다. 예를 들어, 스위치(240)의 위치가 제1 위치에서 제2 위치로 변경되면, 복수의 체결돌기(251, 252, 253, 254)는, 대전관(214)의 내부에서 외부로 돌출될 수 있다. The image 260 of FIG. 2B shows a state in which a plurality of fastening protrusions 251, 252, 253, and 254 protrude out of the charging tube 214. For example, when the position of the switch 240 is changed from the first position to the second position, the plurality of fastening protrusions 251, 252, 253, and 254 may protrude from the inside of the charging tube 214 to the outside. there is.
도 2b의 이미지(270)는, 대전관(214)에 압전 소자 센서(275)가 결합된 상태를 도시한 도면이다. 압전 소자 센서(275)의 제1 외부 방향으로 수용부(271, 272, 273, 274)가 구비될 수 있다. 제1 외부 방향은, 대전관(214)의 중심으로 향하는 방향일 수 있다. 수용부(271, 272, 273, 274)는 대전관(214)의 외부로 돌출된 복수의 체결돌기(251, 252, 253, 254)와 결합되고, 대전관(214)으로부터 수신된 대전관(214)의 진동을 압전 소자 센서(275)로 전달할 수 있다. Image 270 of FIG. 2B is a diagram showing a state in which the piezoelectric sensor 275 is coupled to the electrified tube 214. Receiving parts 271, 272, 273, and 274 may be provided in the first outer direction of the piezoelectric sensor 275. The first outward direction may be a direction toward the center of the charging tube 214. The receiving portions (271, 272, 273, 274) are coupled with a plurality of fastening protrusions (251, 252, 253, 254) protruding to the outside of the electrification tube (214), and receive the electrification tube (214) The vibration of 214) can be transmitted to the piezoelectric sensor 275.
또한, 압전 소자 센서(275)의 제2 외부 방향으로 지지부(281, 282, 283, 284)가 구비될 수 있다. 제2 외부 방향은, 제1 외부 방향과 반대방향일 수 있다. 진동에 의해 압전 소자 센서(275)의 크기가 변형되기 때문에, 지지부(281, 282, 283, 284)는 압전 소자 센서(275)가 대전관(214)의 고정될 수 있도록, 탄력성을 지닐 수 있다. 또한, 센서부는 압전 소자 센서(275)를 둘러싸고, 지지부(281, 282, 283, 284)와 결합되는 하우징(280)을 구비할 수 있다. 하우징(280)는 절연물질로 이루어질 수 있다.Additionally, support parts 281, 282, 283, and 284 may be provided in the second outer direction of the piezoelectric sensor 275. The second external direction may be opposite to the first external direction. Since the size of the piezoelectric sensor 275 is changed by vibration, the supports 281, 282, 283, and 284 may have elasticity so that the piezoelectric sensor 275 can be fixed to the charging tube 214. . Additionally, the sensor unit may include a housing 280 that surrounds the piezoelectric sensor 275 and is coupled to the support units 281, 282, 283, and 284. Housing 280 may be made of an insulating material.
도 2c는 센서부와 연결된 검출 회로를 설명하기 위한 도면이다.Figure 2c is a diagram for explaining a detection circuit connected to the sensor unit.
도 2c를 참고하면, 제1 센서부(216)는 검출 회로(250)와 연결될 수 있다. 제1 센서부(216)는 진동 신호를 전압 신호로 변환하고, 검출 회로(250)로 전달할 수 있다. 검출 회로(250)는 전압 신호를 아날로그 데이터로 획득하고, 아날로그 데이터를 디지털 데이터로 변환하고, 디지털 데이터를 전압 데이터로 출력할 수 있다. 검출 회로(250)는 히터(260) 및 쿨링팬(270)과 연결될 수 있다. 검출 회로(250)는 ADC(Analog to Digital Converter)를 포함할 수 있다. 검출 회로(250)는 전압 데이터를 통신부(220)로 전달할 수 있다. 통신부(220)는 전압 데이터를 관리 서버(300)로 전송할 수 있다. 또한, 통신부(220)는 전압 데이터를 쌍극자 피뢰 장치(210)의 제어부로 전달할 수 있다. 제어부는 전압 데이터를 분석하여 낙뢰 위험도를 판단할 수 있다.Referring to FIG. 2C, the first sensor unit 216 may be connected to the detection circuit 250. The first sensor unit 216 can convert the vibration signal into a voltage signal and transmit it to the detection circuit 250. The detection circuit 250 may obtain a voltage signal as analog data, convert the analog data into digital data, and output the digital data as voltage data. The detection circuit 250 may be connected to the heater 260 and the cooling fan 270. The detection circuit 250 may include an analog to digital converter (ADC). The detection circuit 250 may transmit voltage data to the communication unit 220. The communication unit 220 may transmit voltage data to the management server 300. Additionally, the communication unit 220 may transmit voltage data to the control unit of the dipole lightning protection device 210. The control unit can determine the risk of lightning by analyzing voltage data.
도 3은 본 발명의 제2 실시예에 따른 쌍극자 피뢰 장치를 나타낸 단면도이다.Figure 3 is a cross-sectional view showing a dipole lightning protection device according to a second embodiment of the present invention.
도 2를 참조하여 설명하였던 본 발명의 제1 실시예에서의 구성요소와 대응되는 구성요소는, 제1 실시예에서 설명한 바와 동일 또는 유사한 기능을 수행하므로, 이에 대한 보다 구체적인 설명은 생략하도록 한다.Since the components corresponding to the components in the first embodiment of the present invention described with reference to FIG. 2 perform the same or similar functions as those described in the first embodiment, a more detailed description thereof will be omitted.
도 3에 도시된 바와 같이, 제2 센서부(416)는 로드부재(211)와 대전관(214) 사이에서 전기적으로 연결되어 뇌운에 의하여 대전관(214)에 대전되는 전기적 에너지에 의하여 진동 신호를 생성하는 제1 압전 소자 센서(416a) 및 제1 압전 소자 센서(416a)에서 생성된 진동 신호를 측정하고, 측정한 진동 신호를 전압 신호로 변환하는 제2 압전 소자 센서(416b)를 포함할 수 있다. 이 때, 제1 압전 소자 센서(416a) 및 제2 압전 소자 센서(416b)는 디스트형(disk)으로 각각 이루어져 결합될 수 있다. 쌍극자 피뢰 장치(210)는 통신부(220) 및 검출 회로(250)를 포함할 수 있다. 검출 회로(250)는, 제2 압전 소자 센서(416b)로부터 입력된 전압 신호를 아날로그 데이터로 획득하고, 아날로그 데이터를 디지털 데이터로 변환할 수 있다. 검출 회로(250)는 디지털 데이터를 전압 데이터로 출력할 수 있다. 통신부(220)는 검출 회로(250)로부터 전압 데이터를 획득하고, 외부로 전송할 수 있다. 예를 들면, 통신부(250)는 전압 데이터를 관리 서버(300)로 전송할 수 있다.As shown in FIG. 3, the second sensor unit 416 is electrically connected between the rod member 211 and the charging tube 214 and generates a vibration signal by electrical energy charged to the charging tube 214 by thunderclouds. It may include a first piezoelectric element sensor 416a that generates and a second piezoelectric element sensor 416b that measures the vibration signal generated by the first piezoelectric element sensor 416a and converts the measured vibration signal into a voltage signal. You can. At this time, the first piezoelectric element sensor 416a and the second piezoelectric element sensor 416b may each be formed in a disk shape and combined. The dipole lightning protection device 210 may include a communication unit 220 and a detection circuit 250. The detection circuit 250 may acquire the voltage signal input from the second piezoelectric sensor 416b as analog data and convert the analog data into digital data. The detection circuit 250 may output digital data as voltage data. The communication unit 220 may obtain voltage data from the detection circuit 250 and transmit it to the outside. For example, the communication unit 250 may transmit voltage data to the management server 300.
본 발명의 일 실시예에 따른 쌍극자 피뢰 장치(210)는 뇌운이 접근하게 되면, 뇌운에 의해 대기 중에 분포되어 있는 공간 전하가 대전판(213) 및 대전관(214)에 대전되고, 공간전하와 상반된 극성이면서 대지로부터 공급되는 전하 즉, 대지 전하가 로드부재(211)에 대전되게 된다. 이와 같이, 뇌운의 접근에 따라 공간 전하와 대지 전하가 각각 대전관(214)과 로드부재(211)에 점차적으로 대전되면, 대전관(214)과 로드부재(211)에 대하여 전기적인 접촉 상태를 유지하는 제1 압전 소자 센서(416a)에서 진동 신호가 생성될 수 있다. In the dipole lightning protection device 210 according to an embodiment of the present invention, when a thundercloud approaches, the space charge distributed in the atmosphere by the thundercloud is charged to the charging plate 213 and the charging tube 214, and the space charge and The load member 211 is charged with the opposite polarity and supplied from the ground, that is, the ground charge. In this way, as the space charge and the ground charge gradually charge the charging tube 214 and the rod member 211, respectively, as the thundercloud approaches, a state of electrical contact is maintained with respect to the charging tube 214 and the rod member 211. A vibration signal may be generated from the first piezoelectric element sensor 416a that is maintained.
이 때, 제2 센서부(416)는 통신부(220)와 함께 스마트 폴(200)의 일정 높이에 설치될 수 있다. 이 경우, 제1 압전 소자 센서(416a)는 전기 통전을 위한 단자편(417a, 417b) 및 전선(418a, 418b)이 각각 형성될 수 있으며, 제1 단자편(417a) 및 제1 전선(418a)은 로드부재(211)와 접촉되며, 제2 단자편(418a) 및 제2 전선(418b)은 대전관(214)과 접촉되어 전기적인 접속 상태를 유지할 수 있다.At this time, the second sensor unit 416 may be installed at a certain height of the smart pole 200 together with the communication unit 220. In this case, the first piezoelectric element sensor 416a may be formed with terminal pieces 417a, 417b and wires 418a, 418b for electrical conduction, respectively, and the first terminal piece 417a and the first wire 418a ) is in contact with the rod member 211, and the second terminal piece 418a and the second wire 418b are in contact with the charging tube 214 to maintain an electrical connection.
제1 압전 소자 센서(416a)는, 제1 단자편(417a) 및 제2 단자편(417b)에 기초하여, 로드부재(211)와 대전관(214)에 대전되는 전하의 극성을 감지하여 뇌운의 접근을 감지하고, 진동 신호를 제2 압전 소자 센서(416b)로 전달하고, 제2 압전 소자 센서(416b)는 진동 신호를 전압 신호로 변환할 수 있다. 검출 회로(250)는 제2 압전 소자 센서(416b)로부터 입력된 전압 신호를 아날로그 데이터로 획득하고, 아날로그 데이터를 디지털 데이터로 변환할 수 있다. 검출 회로(250)는 디지털 데이터를 전압 데이터로 출력하여 통신부(220)로 전달할 수 있다. 즉, 쌍극자 피뢰 장치(210)에 뇌운이 접근하는 경우에, 검출 회로(250)는 전압 데이터를 출력할 수 있다. 또한, 검출 회로(250)는 도 2b에 도시된 구성과 동일할 수 있다.The first piezoelectric element sensor 416a detects the polarity of the electric charge charged to the rod member 211 and the charging tube 214 based on the first terminal piece 417a and the second terminal piece 417b. detects the approach, transmits the vibration signal to the second piezoelectric sensor 416b, and the second piezoelectric sensor 416b can convert the vibration signal into a voltage signal. The detection circuit 250 may acquire the voltage signal input from the second piezoelectric sensor 416b as analog data and convert the analog data into digital data. The detection circuit 250 may output digital data as voltage data and transmit it to the communication unit 220. That is, when a thundercloud approaches the dipole lightning protection device 210, the detection circuit 250 can output voltage data. Additionally, the detection circuit 250 may have the same configuration as shown in FIG. 2B.
반면에, 로드부재(211) 및 대전관(214)에 전하가 대전되지 않는다면, 제1 단자편(417a) 및 제2 단자편(417b)를 통해 전하의 극성이 감지되지 않으므로 뇌운의 접근이 없는 것으로 판단될 수 있다.On the other hand, if the load member 211 and the charging tube 214 are not charged, the polarity of the charge is not detected through the first terminal piece 417a and the second terminal piece 417b, so there is no approaching thundercloud. It can be judged that
기존에는 뇌운의 접근에 따라 피뢰 장치에서 발생되는 유도전압에 의하여 발광되는 발광센서(LED)를 이용하여 발광되는 광량을 광센서로 센싱함으로써, 뇌운의 크기를 분석하였다. 이러한 기존의 낙뢰 모니터링 시스템은 유도전압이 큰 경우 발광센서가 소손되거나, 유도전압 발생 횟수와 크기에 따른 발광센서의 수명 저하가 발생하여 잦은 고장이 발생하는 문제가 있었다.Previously, the size of a thundercloud was analyzed by sensing the amount of light emitted with an optical sensor using a light emitting sensor (LED) that emits light by the induced voltage generated by the lightning protection device as the thundercloud approaches. This existing lightning monitoring system had a problem in that the light emitting sensor was burned out when the induced voltage was large, or the lifespan of the light emitting sensor was shortened depending on the number and size of induced voltage occurrences, causing frequent breakdowns.
그러나, 본 발명의 일 실시예에 따른 낙뢰 모니터링 시스템은, 쌍극자 피뢰 장치(210)를 통하여, 뇌운에 의하여 발생하는 유도 전압을 이용하여 제1 압전 소자 센서(416a)에서 진동 신호를 생성하고, 제1 압전 소자 센서(416a)에서 생성된 진동 신호를 제2 압전 소자 센서(416b)에서 측정함으로써, 뇌운의 크기를 분석하기 위한 데이터를 정확하게 획득할 수 있으며, 외부 환경에 의한 제2 센서부(416)를 보호할 수 있는 효과가 있다.However, the lightning monitoring system according to an embodiment of the present invention generates a vibration signal in the first piezoelectric element sensor 416a using the induced voltage generated by a thundercloud through the dipole lightning protection device 210, and the first piezoelectric element sensor 416a 1 By measuring the vibration signal generated by the piezoelectric element sensor 416a by the second piezoelectric element sensor 416b, data for analyzing the size of the thundercloud can be accurately obtained, and the second sensor unit 416 by the external environment ) has the effect of protecting.
도 4는 본 발명의 일 실시예에 따른 관리 서버를 나타낸 블록도이다.Figure 4 is a block diagram showing a management server according to an embodiment of the present invention.
도 4에 도시된 바와 같이, 관리 서버(300)는 통신 모듈(310), 분석 모듈(320) 및 정보 제공 모듈(330)을 포함할 수 있다.As shown in FIG. 4, the management server 300 may include a communication module 310, an analysis module 320, and an information provision module 330.
통신 모듈(310)은 통신부(220)로부터 전압 데이터를 수신할 수 있다. The communication module 310 may receive voltage data from the communication unit 220.
분석 모듈(320)은 수신한 전압 데이터를 분석하여 낙뢰 위험도를 판단할 수 있다. 구체적으로, 분석 모듈(320)은 수신한 전압 데이터의 발생 주기 및 전압 크기 값에 따라 낙뢰 위험도를 판단할 수 있다. 예를 들어, 분석 모듈(320)은 스마트 폴(200)의 통신부(220)로부터 전압 데이터를 수신하면, 낙뢰 주의 단계로 판단할 수 있다. 또한, 분석 모듈(320)은 주의 단계가 지속되면서(전압 데이터가 지속적으로 수신됨) 전압 데이터가 기 설정된 경계 기준 값 이하로 발생 주기가 작아지거나, 기 설정된 경계 기준 값 이상으로 전압 크기가 상승하는 경우, 낙뢰 경계 단계로 판단할 수 있다. 또한, 분석 모듈(320)은 경계 단계가 지속되면서 전압 데이터가 기 설정된 위험 기준 값 이하로 발생 주기가 작아지거나, 기 설정된 위험 기준 값 이상으로 전압 크기가 상승하는 경우, 낙뢰 위험 단계로 판단할 수 있다. 여기서, 기 설정된 경계 기준 값은 전압 크기가 5㎷이고, 주기 간격이 20㎲이며, 기 설정된 위험 기준 값은 전압 크기가 30㎷이고, 주기 간격이 5㎲일 수 있다. 예를 들어, 도 5와 같이, 전압 크기의 최대 피크(peak)(P1)가 9.6㎷이면서, 주기 간격(term)(T1)이 17㎲인 전압 데이터가 발생한 경우, 분석 모듈(320)은 해당 전압 데이터에 의하여 낙뢰 경계 단계로 판단할 수 있다. 또한, 도 6과 같이, 전압 크기의 피크(P2)가 38.6㎷이면서, 주기 간격(T2)이 2㎲인 전압 데이터가 발생한 경우, 분석 모듈(320)은 해당 전압 데이터에 의하여 낙뢰 위험 단계로 판단할 수 있다.The analysis module 320 can determine the lightning risk by analyzing the received voltage data. Specifically, the analysis module 320 may determine the risk of lightning according to the generation cycle and voltage magnitude value of the received voltage data. For example, when the analysis module 320 receives voltage data from the communication unit 220 of the smart pole 200, the analysis module 320 may determine the lightning warning level. In addition, as the caution phase continues (voltage data is continuously received), the analysis module 320 determines whether the occurrence period of voltage data becomes less than a preset boundary reference value or the voltage magnitude increases above the preset boundary reference value. In this case, it can be judged to be at the lightning warning level. In addition, the analysis module 320 may determine the lightning risk level when the alert stage continues and the occurrence cycle of voltage data decreases below the preset risk standard value or the voltage level increases above the preset risk standard value. there is. Here, the preset boundary standard value may have a voltage magnitude of 5 mV and a cycle interval of 20 μs, and the preset risk standard value may have a voltage magnitude of 30 mV and a cycle interval of 5 μs. For example, as shown in Figure 5, when voltage data with a maximum peak (P1) of the voltage magnitude of 9.6 mV and a period interval (T1) of 17 ㎲ is generated, the analysis module 320 The lightning warning level can be determined based on the voltage data. In addition, as shown in FIG. 6, when voltage data with a peak voltage magnitude (P2) of 38.6 mV and a periodic interval (T2) of 2 ㎲ is generated, the analysis module 320 determines the lightning risk level based on the corresponding voltage data. can do.
한편, 분석 모듈(320)은 전압 데이터가 수신되지 않는 경우, 정상 단계로 판단할 수 있다. Meanwhile, when voltage data is not received, the analysis module 320 may determine it to be in a normal state.
정보 제공 모듈(330)은 분석 모듈(320)에서 분석된 결과를 디스플레이부(미도시)를 통하여 사용자에게 제공할 수 있다. 예를 들어, 정보 제공 모듈(330)은 다수의 쌍극자 피뢰 장치로부터 전압 데이터를 각각 수신할 수 있으며, 사용자의 선택(제1 쌍극자 피뢰 장치, 제2 쌍극자 피뢰 장치, .., 제N 쌍극자 피뢰 장치)에 따라 각각 수신한 전압 데이터를 분석한 분석 결과를 제공할 수 있다. 이 때, 분석 결과는 전압 데이터에 따른 낙뢰 감지 시간, 전계 값을 표시할 수 있으며, 각 쌍극자 피뢰 장치 위치의 낙뢰 위험도(정상, 주의, 경계, 위험)를 표시할 수 있다. 이에, 다수의 쌍극자 피뢰 장치로부터 수신한 전압 데이터를 이용하여 낙뢰 감지 및 낙뢰 발생을 모니터링할 수 있으며, 뇌운의 크기에 따른 낙뢰 위험도를 판단하여 위험 지역을 분석하고 해당 지역에 알릴 수 있다.The information provision module 330 may provide the results analyzed by the analysis module 320 to the user through a display unit (not shown). For example, the information providing module 330 may receive voltage data from a plurality of dipole lightning arresters, respectively, and select the user's selection (first dipole lightning arrester, second dipole lightning arrester, ..., N dipole lightning arrester) ), it is possible to provide analysis results of analyzing each received voltage data. At this time, the analysis results can display the lightning detection time and electric field value according to the voltage data, and the lightning risk level (normal, caution, warning, dangerous) at each dipole lightning arrester location. Accordingly, using voltage data received from multiple dipole lightning protection devices, lightning detection and lightning occurrence can be monitored, and the risk of lightning according to the size of the thundercloud can be determined to analyze the dangerous area and notify the relevant area.
도 7은 본 발명의 일 실시예에 따른 쌍극자 피뢰 장치를 이용한 낙뢰 모니터링 방법을 설명하기 위한 흐름도이다. 도 5에 도시된 방법은 예를 들어, 전술한 쌍극자 피뢰 장치를 이용한 낙뢰 모니터링 시스템에 의해 수행될 수 있다. 도시된 흐름도에서는 상기 방법을 복수 개의 단계로 나누어 기재하였으나, 적어도 일부의 단계들은 순서를 바꾸어 수행되거나, 다른 단계와 결합되어 함께 수행되거나, 생략되거나, 세부 단계들로 나뉘어 수행되거나, 또는 도시되지 않은 하나 이상의 단계가 부가되어 수행될 수 있다.Figure 7 is a flowchart illustrating a lightning monitoring method using a dipole lightning protection device according to an embodiment of the present invention. The method shown in FIG. 5 can be performed, for example, by a lightning monitoring system using the dipole lightning protection device described above. In the illustrated flow chart, the method is divided into a plurality of steps, but at least some of the steps are performed in a different order, combined with other steps, omitted, divided into detailed steps, or not shown. One or more steps may be added and performed.
우선, 관리 서버(300)는 쌍극자 피뢰 장치(210)의 통신부(220)로부터 전압 데이터를 수신한다(S702). 구체적으로, 관리 서버(300)는 뇌운에 의하여 대전되는 전기적 에너지에 따라 쌍극자 피뢰 장치(210)에서 발생된 진동을 측정하여 변환한 전압 데이터를 쌍극자 피뢰 장치(210)의 통신부(220)로부터 수신할 수 있다. 일 실시예에서, 쌍극자 피뢰 장치(210)의 제1 센서부(216)는 코로나 방전에 의하여 발생하는 진동을 측정하여 진동 신호를 생성할 수 있다. 제1 센서부(216)는 생성된 진동 신호를 전압 데이터로 변환할 수 있다. 다른 실시예에서, 쌍극자 피뢰 장치(210)의 제2 센서부(416)는 유도 전압을 이용하여 제1 압전 소자 센서(416a)에서 진동 신호를 생성하고, 제1 압전 소자 센서(416a)에서 생성된 진동 신호를 제2 압전 소자 센서(416b)에서 측정할 수 있다. 제2 압전 소자 센서(416b)는 측정한 진동 신호를 전압 데이터로 변환할 수 있다.First, the management server 300 receives voltage data from the communication unit 220 of the dipole lightning protection device 210 (S702). Specifically, the management server 300 measures the vibration generated in the dipole lightning protection device 210 according to the electrical energy charged by a thundercloud and receives converted voltage data from the communication unit 220 of the dipole lightning protection device 210. You can. In one embodiment, the first sensor unit 216 of the dipole lightning protection device 210 may measure vibration generated by corona discharge and generate a vibration signal. The first sensor unit 216 may convert the generated vibration signal into voltage data. In another embodiment, the second sensor unit 416 of the dipole lightning protection device 210 generates a vibration signal in the first piezoelectric element sensor 416a using an induced voltage, and generates a vibration signal in the first piezoelectric element sensor 416a. The vibration signal can be measured by the second piezoelectric sensor 416b. The second piezoelectric sensor 416b can convert the measured vibration signal into voltage data.
그 다음, 관리 서버(300)는 수신한 전압 데이터를 분석하여 낙뢰 위험도를 판단한다(S704). 구체적으로, 관리 서버(300)는 수신한 전압 데이터의 발생 주기 및 전압 크기 값에 따라 낙뢰 위험도를 판단할 수 있다. 예를 들어, 관리 서버(300)는 쌍극자 피뢰 장치(210)의 통신부(220)로부터 전압 데이터를 수신하면, 낙뢰 주의 단계로 판단할 수 있다. 또한, 관리 서버(300)는 주의 단계가 지속되면서(전압 데이터가 지속적으로 수신됨) 전압 데이터가 기 설정된 경계 기준 값 이하로 발생 주기가 작아지거나, 기 설정된 경계 기준 값 이상으로 전압 크기가 상승하는 경우, 낙뢰 경계 단계로 판단할 수 있다. 또한, 관리 서버(300)는 경계 단계가 지속되면서 전압 데이터가 기 설정된 위험 기준 값 이하로 발생 주기가 작아지거나, 기 설정된 위험 기준 값 이상으로 전압 크기가 상승하는 경우, 낙뢰 위험 단계로 판단할 수 있다. 여기서, 기 설정된 경계 기준 값은 전압 크기가 5 mV이고, 주기 간격이 20us이며, 기 설정된 위험 기준 값은 전압 크기가 30mV이고, 주기 간격이 5us일 수 있다. 한편, 관리 서버(300)는 전압 데이터가 수신되지 않는 경우, 정상 단계로 판단할 수 있다. Next, the management server 300 analyzes the received voltage data and determines the lightning risk (S704). Specifically, the management server 300 may determine the risk of lightning according to the generation period and voltage magnitude value of the received voltage data. For example, when the management server 300 receives voltage data from the communication unit 220 of the dipole lightning protection device 210, it may determine that the lightning warning level is at a level. In addition, as the caution phase continues (voltage data is continuously received), the management server 300 determines whether the occurrence period of voltage data becomes less than a preset boundary reference value or the voltage magnitude increases above the preset boundary reference value. In this case, it can be judged to be at the lightning warning level. In addition, the management server 300 may determine the lightning risk level when the alert level continues and the occurrence period of voltage data decreases below the preset risk standard value or the voltage level increases above the preset risk standard value. there is. Here, the preset boundary standard value may have a voltage magnitude of 5 mV and a cycle interval of 20us, and the preset risk standard value may have a voltage magnitude of 30mV and a cycle interval of 5us. Meanwhile, the management server 300 may determine that it is in a normal state when voltage data is not received.
그 다음, 관리 서버(300)는 분석된 결과를 디스플레이부를 통하여 사용자에게 제공한다(S706). 구체적으로, 관리 서버(300)는 다수의 쌍극자 피뢰 장치로부터 전압 데이터를 각각 수신할 수 있으며, 사용자의 선택(제1 쌍극자 피뢰 장치, 제2 쌍극자 피뢰 장치, .., 제N 쌍극자 피뢰 장치)에 따라 각각 수신한 전압 데이터를 분석한 분석 결과를 제공할 수 있다. 이 때, 분석 결과는 전압 데이터에 따른 낙뢰 감지 시간, 전계값을 표시할 수 있으며, 각 쌍극자 피뢰 장치 위치의 낙뢰 위험도(정상, 주의, 경계, 위험)를 표시할 수 있다. Next, the management server 300 provides the analyzed results to the user through the display unit (S706). Specifically, the management server 300 may receive voltage data from a plurality of dipole lightning protection devices, respectively, and respond to the user's selection (first dipole lightning protection device, second dipole lightning protection device, ..., N-th dipole lightning protection device). Accordingly, analysis results can be provided by analyzing each received voltage data. At this time, the analysis results can display the lightning detection time and electric field value according to the voltage data, and can display the lightning risk level (normal, caution, warning, dangerous) at each dipole lightning arrester location.
도 8은 예시적인 실시예들에서 사용되기에 적합한 컴퓨팅 장치를 포함하는 컴퓨팅 환경을 예시하여 설명하기 위한 블록도이다. 도시된 실시예에서, 각 컴포넌트들은 이하에 기술된 것 이외에 상이한 기능 및 능력을 가질 수 있고, 이하에 기술된 것 이외에도 추가적인 컴포넌트를 포함할 수 있다.8 is a block diagram illustrating and illustrating a computing environment including a computing device suitable for use in example embodiments. In the illustrated embodiment, each component may have different functions and capabilities in addition to those described below, and may include additional components in addition to those described below.
도시된 컴퓨팅 환경(10)은 컴퓨팅 장치(12)를 포함한다. 일 실시예에서, 컴퓨팅 장치(12)는 관리 서버(300)일 수 있다.The illustrated computing environment 10 includes a computing device 12 . In one embodiment, computing device 12 may be management server 300.
컴퓨팅 장치(12)는 적어도 하나의 프로세서(14), 컴퓨터 판독 가능 저장 매체(16) 및 통신 버스(18)를 포함한다. 프로세서(14)는 컴퓨팅 장치(12)로 하여금 앞서 언급된 예시적인 실시예에 따라 동작하도록 할 수 있다. 예컨대, 프로세서(14)는 컴퓨터 판독 가능 저장 매체(16)에 저장된 하나 이상의 프로그램들을 실행할 수 있다. 상기 하나 이상의 프로그램들은 하나 이상의 컴퓨터 실행 가능 명령어를 포함할 수 있으며, 상기 컴퓨터 실행 가능 명령어는 프로세서(14)에 의해 실행되는 경우 컴퓨팅 장치(12)로 하여금 예시적인 실시예에 따른 동작들을 수행하도록 구성될 수 있다. Computing device 12 includes at least one processor 14, a computer-readable storage medium 16, and a communication bus 18. Processor 14 may cause computing device 12 to operate in accordance with the example embodiments noted above. For example, processor 14 may execute one or more programs stored on computer-readable storage medium 16. The one or more programs may include one or more computer-executable instructions, which, when executed by the processor 14, cause computing device 12 to perform operations according to example embodiments. It can be.
컴퓨터 판독 가능 저장 매체(16)는 컴퓨터 실행 가능 명령어 내지 프로그램 코드, 프로그램 데이터 및/또는 다른 적합한 형태의 정보를 저장하도록 구성된다. 컴퓨터 판독 가능 저장 매체(16)에 저장된 프로그램(20)은 프로세서(14)에 의해 실행 가능한 명령어의 집합을 포함한다. 일 실시예에서, 컴퓨터 판독 가능 저장 매체(16)는 메모리(랜덤 액세스 메모리와 같은 휘발성 메모리, 비휘발성 메모리, 또는 이들의 적절한 조합), 하나 이상의 자기 디스크 저장 디바이스들, 광학 디스크 저장 디바이스들, 플래시 메모리 디바이스들, 그 밖에 컴퓨팅 장치(12)에 의해 액세스되고 원하는 정보를 저장할 수 있는 다른 형태의 저장 매체, 또는 이들의 적합한 조합일 수 있다.Computer-readable storage medium 16 is configured to store computer-executable instructions or program code, program data, and/or other suitable form of information. The program 20 stored in the computer-readable storage medium 16 includes a set of instructions executable by the processor 14. In one embodiment, computer-readable storage medium 16 includes memory (volatile memory, such as random access memory, non-volatile memory, or an appropriate combination thereof), one or more magnetic disk storage devices, optical disk storage devices, flash It may be memory devices, another form of storage medium that can be accessed by computing device 12 and store desired information, or a suitable combination thereof.
통신 버스(18)는 프로세서(14), 컴퓨터 판독 가능 저장 매체(16)를 포함하여 컴퓨팅 장치(12)의 다른 다양한 컴포넌트들을 상호 연결한다. Communication bus 18 interconnects various other components of computing device 12, including processor 14 and computer-readable storage medium 16.
컴퓨팅 장치(12)는 또한 하나 이상의 입출력 장치(24)를 위한 인터페이스를 제공하는 하나 이상의 입출력 인터페이스(22) 및 하나 이상의 네트워크 통신 인터페이스(26)를 포함할 수 있다. 입출력 인터페이스(22) 및 네트워크 통신 인터페이스(26)는 통신 버스(18)에 연결된다. 입출력 장치(24)는 입출력 인터페이스(22)를 통해 컴퓨팅 장치(12)의 다른 컴포넌트들에 연결될 수 있다. 예시적인 입출력 장치(24)는 포인팅 장치(마우스 또는 트랙패드 등), 키보드, 터치 입력 장치(터치패드 또는 터치스크린 등), 음성 또는 소리 입력 장치, 다양한 종류의 센서 장치 및/또는 촬영 장치와 같은 입력 장치, 및/또는 디스플레이 장치, 프린터, 스피커 및/또는 네트워크 카드와 같은 출력 장치를 포함할 수 있다. 예시적인 입출력 장치(24)는 컴퓨팅 장치(12)를 구성하는 일 컴포넌트로서 컴퓨팅 장치(12)의 내부에 포함될 수도 있고, 컴퓨팅 장치(12)와는 구별되는 별개의 장치로 컴퓨팅 장치(12)와 연결될 수도 있다. Computing device 12 may also include one or more input/output interfaces 22 and one or more network communication interfaces 26 that provide an interface for one or more input/output devices 24. The input/output interface 22 and the network communication interface 26 are connected to the communication bus 18. Input/output device 24 may be coupled to other components of computing device 12 through input/output interface 22. Exemplary input/output devices 24 include, but are not limited to, a pointing device (such as a mouse or trackpad), a keyboard, a touch input device (such as a touchpad or touch screen), a voice or sound input device, various types of sensor devices, and/or imaging devices. It may include input devices and/or output devices such as display devices, printers, speakers, and/or network cards. The exemplary input/output device 24 may be included within the computing device 12 as a component constituting the computing device 12, or may be connected to the computing device 12 as a separate device distinct from the computing device 12. It may be possible.
이상에서 본 발명의 대표적인 실시예들을 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Although representative embodiments of the present invention have been described in detail above, those skilled in the art will understand that various modifications can be made to the above-described embodiments without departing from the scope of the present invention. . Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims described later but also by equivalents to the claims.

Claims (20)

  1. 낙뢰로부터 보호하기 위한 객체의 상단부에 설치되어 대지 전하가 대전되는 로드부재;A load member installed on the upper part of an object to protect against lightning and charged with an earth charge;
    뇌운에 의하여 대지 전하와 반대되는 극성을 가진 전하가 대전되는 대전관; 및A charging tube in which a charge with a polarity opposite to that of the ground charge is charged by a thundercloud; and
    상기 대전관에 결합되어 뇌운에 의하여 상기 대전관에 대전되는 전기적 에너지에 따라 발생하는 진동을 측정하는 센서부를 포함하는, 쌍극자 피뢰 장치.A dipole lightning protection device comprising a sensor unit coupled to the charged tube and measuring vibration generated according to electrical energy charged to the charged tube by a thundercloud.
  2. 청구항 1에 있어서,In claim 1,
    상기 쌍극자 피뢰 장치는,The dipole lightning protection device,
    상기 로드부재의 길이방향을 따라 적어도 2개 이상 설치되는 애자;At least two insulators installed along the longitudinal direction of the rod member;
    이웃하는 상기 애자들 사이에 설치되어 상기 로드부재와 전기적으로 절연되고, 대지 전하와 반대되는 구성이 대전되는 대전판; 및A charging plate installed between the neighboring insulators, electrically insulated from the load member, and charged in a configuration opposite to the ground charge; and
    상기 로드부재의 상단에 결합되어 상기 낙뢰를 유도하는 로드 캡을 더 포함하고,Further comprising a rod cap coupled to the upper end of the rod member to induce the lightning strike,
    상기 대전관은, 상기 대전판 및 애자 사이에 설치되고, 상기 대전판과 전기적으로 연결되는, 쌍극자 피뢰 장치.The charging tube is installed between the charging plate and the insulator, and is electrically connected to the charging plate.
  3. 청구항 1에 있어서,In claim 1,
    상기 센서부는,The sensor unit,
    상기 뇌운에 의하여 공간 전하가 대전되는 상기 대전관 및 상기 공간 전하와 상반된 극성인 대지 전하가 대전되는 상기 로드 부재 간의 대전 전압이 상승하면서 발생하는 코로나 방전(corona discharge)에 따라 상기 대전관에 발생하는 진동을 측정하여 진동 신호를 생성하고, 상기 생성된 진동 신호를 전압 신호로 변환하는, 쌍극자 피뢰 장치.A corona discharge occurs in the charged tube due to an increase in the charging voltage between the charged tube charged with a space charge by the thundercloud and the rod member charged with a ground charge of a polarity opposite to the space charge. A dipole lightning protection device that measures vibration, generates a vibration signal, and converts the generated vibration signal into a voltage signal.
  4. 청구항 3에 있어서,In claim 3,
    상기 쌍극자 피뢰 장치는,The dipole lightning protection device,
    상기 전압 신호를 아날로그 데이터로 획득하고, 상기 아날로그 데이터를 디지털 데이터로 변환하고, 상기 디지털 데이터를 전압 데이터로 출력하는 검출 회로; 및a detection circuit that acquires the voltage signal as analog data, converts the analog data into digital data, and outputs the digital data as voltage data; and
    상기 전압 데이터를 외부로 전송하는 통신부를 더 포함하는, 쌍극자 피뢰 장치.A dipole lightning protection device further comprising a communication unit that transmits the voltage data to the outside.
  5. 청구항 4에 있어서,In claim 4,
    상기 쌍극자 피뢰 장치는,The dipole lightning protection device,
    상기 전압 데이터를 분석하여 낙뢰 위험도를 판단하는 제어부를 더 포함하는, 쌍극자 피뢰 장치.A dipole lightning protection device further comprising a control unit that analyzes the voltage data to determine the risk of lightning.
  6. 청구항 1에 있어서,In claim 1,
    상기 대전관은, 중심으로 상기 로드부재가 위치될 수 있도록 중공이 구비된 관형으로 이루어지고,The electrification tube is made of a tubular shape with a hollow hole so that the rod member can be positioned at the center,
    상기 센서부는, 상기 대전관을 둘러싸는 관형으로 이루어지고, 상기 대전관의 진동에 기초하여 전압 신호를 출력하는 압전 소자 센서를 포함하는, 쌍극자 피뢰 장치.The sensor unit is formed in a tubular shape surrounding the charged tube and includes a piezoelectric element sensor that outputs a voltage signal based on vibration of the charged tube.
  7. 청구항 6에 있어서,In claim 6,
    상기 센서부는,The sensor unit,
    상기 대전관의 외부에 돌출된 복수의 체결돌기와 결합하고, 상기 대전관으로부터 상기 대전관의 진동을 수신하여 상기 압전 소자 센서로 전달하는 수용부; 및A receiving portion coupled to a plurality of fastening protrusions protruding from the outside of the charged tube, and receiving the vibration of the charged tube from the charged tube and transmitting it to the piezoelectric element sensor; and
    상기 압전 소자 센서를 둘러싸고, 상기 압전 소자 센서의 변형에 따라 탄력적으로 상기 압전 소자 센서를 지지하는 지지부를 구비하고, 절연물질로 이루어진 하우징을 더 포함하는, 쌍극자 피뢰 장치.A dipole lightning protection device surrounding the piezoelectric element sensor, having a support portion that elastically supports the piezoelectric element sensor according to deformation of the piezoelectric element sensor, and further comprising a housing made of an insulating material.
  8. 청구항 7에 있어서,In claim 7,
    상기 복수의 체결돌기는, 상기 대전관의 스위치의 조작 위치에 따라 상기 대전관의 내부에서 외부로 돌출되는 것을 특징으로 하는, 쌍극자 피뢰 장치.The plurality of fastening protrusions are characterized in that they protrude from the inside of the charging tube to the outside depending on the operating position of the switch of the charging tube.
  9. 청구항 6에 있어서,In claim 6,
    상기 센서부는,The sensor unit,
    상기 대전관과 상기 로드부재에 대전되는 전하의 극성을 감지하여 뇌운의 접근을 감지하고, 상기 압전 소자 센서에서 획득된 상기 전압 신호를 낙뢰 위험도를 판단하는 데에 이용되는 전압 데이터를 출력하는 검출 회로로 전달하는, 쌍극자 피뢰 장치.A detection circuit that detects the approach of a thundercloud by detecting the polarity of the charges charged to the electrified tube and the load member, and outputs voltage data used to determine the risk of lightning using the voltage signal obtained from the piezoelectric element sensor. Transmitted to, dipole lightning arrester.
  10. 낙뢰로부터 보호하기 위한 객체의 상단부에 설치되어 대지 전하가 대전되는 로드부재;A load member installed on the upper part of an object to protect against lightning and charged with an earth charge;
    뇌운에 의하여 대지 전하와 반대되는 극성을 가진 전하가 대전되는 대전관; 및A charging tube in which a charge with a polarity opposite to that of the ground charge is charged by a thundercloud; and
    상기 로드부재 및 상기 대전관 사이에서 전기적으로 연결되어 뇌운에 의하여 상기 대전관에 대전되는 전기적 에너지에 의하여 진동 신호를 생성하는 센서부를 포함하는, 쌍극자 피뢰 장치.A dipole lightning protection device comprising a sensor unit electrically connected between the rod member and the charged tube and generating a vibration signal by electrical energy charged to the charged tube by a thundercloud.
  11. 청구항 10에 있어서,In claim 10,
    상기 쌍극자 피뢰 장치는,The dipole lightning protection device,
    상기 로드부재의 길이방향을 따라 적어도 2개 이상 설치되는 애자;At least two insulators installed along the longitudinal direction of the rod member;
    이웃하는 상기 애자들 사이에 설치되어 상기 로드부재와 전기적으로 절연되고, 대지 전하와 반대되는 구성이 대전되는 대전판; 및A charging plate installed between the neighboring insulators, electrically insulated from the load member, and charged in a configuration opposite to the ground charge; and
    상기 로드부재의 상단에 결합되어 상기 낙뢰를 유도하는 로드 캡을 더 포함하고,Further comprising a rod cap coupled to the upper end of the rod member to induce the lightning strike,
    상기 대전관은, 상기 대전판 및 애자 사이에 설치되고, 상기 대전판과 전기적으로 연결되는, 쌍극자 피뢰 장치.The charging tube is installed between the charging plate and the insulator, and is electrically connected to the charging plate.
  12. 청구항 10에 있어서,In claim 10,
    상기 센서부는,The sensor unit,
    상기 로드부재 및 상기 대전관에 대하여 전기적인 접촉 상태를 유지하며 진동 신호를 생성하는 제1 센서; 및a first sensor that maintains electrical contact with the rod member and the charged tube and generates a vibration signal; and
    상기 제1 센서에서 생성된 진동 신호를 측정하고, 상기 측정한 진동 신호를 전압 신호로 변환하는 제2 센서를 포함하는, 쌍극자 피뢰 장치.A dipole lightning protection device comprising a second sensor that measures a vibration signal generated by the first sensor and converts the measured vibration signal into a voltage signal.
  13. 청구항 12에 있어서,In claim 12,
    상기 쌍극자 피뢰 장치는,The dipole lightning protection device,
    상기 전압 신호를 아날로그 데이터로 획득하고, 상기 아날로그 데이터를 디지털 데이터로 변환하고, 상기 디지털 데이터를 전압 데이터로 출력하는 검출 회로; 및a detection circuit that acquires the voltage signal as analog data, converts the analog data into digital data, and outputs the digital data as voltage data; and
    상기 전압 데이터를 외부로 전송하는 통신부를 더 포함하는, 쌍극자 피뢰 장치.A dipole lightning protection device further comprising a communication unit that transmits the voltage data to the outside.
  14. 청구항 13에 있어서,In claim 13,
    상기 쌍극자 피뢰 장치는,The dipole lightning protection device,
    상기 전압 데이터를 분석하여 낙뢰 위험도를 판단하는 제어부를 더 포함하는, 쌍극자 피뢰 장치.A dipole lightning protection device further comprising a control unit that analyzes the voltage data to determine the risk of lightning.
  15. 청구항 12에 있어서,In claim 12,
    상기 제1 센서 및 제2 센서는,The first sensor and the second sensor are,
    디스크형으로 이루어진 압전 소자 센서로서, 상호 결합된 상태인, 쌍극자 피뢰 장치.A dipole lightning protection device that is a disc-shaped piezoelectric sensor that is coupled to each other.
  16. 청구항 12에 있어서,In claim 12,
    상기 제1 센서는,The first sensor is,
    상기 로드부재와 접촉되는 제1 단자편, 상기 제1 단자편과 상기 제1 센서를 전기적으로 연결하는 제1 전선, 상기 대전관과 접촉되는 제2 단자편 및 상기 제2 단자편과 상기 제1 센서를 전기적으로 연결하는 제2 전선을 더 포함하는, 쌍극자 피뢰 장치.A first terminal piece in contact with the rod member, a first wire electrically connecting the first terminal piece and the first sensor, a second terminal piece in contact with the charging tube, and the second terminal piece and the first sensor. A dipole lightning protection device further comprising a second wire electrically connecting the sensor.
  17. 청구항 16에 있어서,In claim 16,
    상기 제1 센서는, 상기 제1 단자편 및 상기 제2 단자편에 기초하여, 상기 로드부재와 상기 대전관에 대전되는 전하의 극성을 감지하여 뇌운의 접근을 감지하고, 상기 진동 신호를 상기 제2 센서로 전달하고,The first sensor detects the approach of a thundercloud by detecting the polarity of charges charged to the rod member and the charging tube, based on the first terminal piece and the second terminal piece, and sends the vibration signal to the first terminal piece. 2 Sent to the sensor,
    상기 제2 센서는, 상기 진동 신호를 전압 신호로 변환하고,The second sensor converts the vibration signal into a voltage signal,
    상기 쌍극자 피뢰 장치는,The dipole lightning protection device,
    상기 전압 신호를 아날로그 데이터로 획득하고, 상기 아날로그 데이터를 디지털 데이터로 변환하고, 상기 디지털 데이터를 전압 데이터로 출력하는 검출 회로; 및a detection circuit that acquires the voltage signal as analog data, converts the analog data into digital data, and outputs the digital data as voltage data; and
    상기 전압 데이터를 외부로 전송하는 통신부를 더 포함하는, 쌍극자 피뢰 장치.A dipole lightning protection device further comprising a communication unit that transmits the voltage data to the outside.
  18. 청구항 16에 있어서,In claim 16,
    상기 제1 센서는,The first sensor is,
    상기 뇌운에 의하여 공간 전하가 대전되는 상기 대전관 및 상기 공간 전하와 상반된 극성인 대지 전하가 대전되는 상기 로드 부재에 대하여 각각 전기적인 접촉 상태를 유지하는 제1 단자편 및 제2 단자편에 의하여 상기 진동 신호를 생성하는, 쌍극자 피뢰 장치.By means of a first terminal piece and a second terminal piece each maintaining electrical contact with the charging tube charged with a space charge by the thundercloud and the rod member charged with an earth charge having a polarity opposite to the space charge. A dipole lightning arrester that generates a vibration signal.
  19. 하나 이상의 프로세서들, 및 one or more processors, and
    상기 하나 이상의 프로세서들에 의해 실행되는 하나 이상의 프로그램들을 저장하는 메모리를 구비한 컴퓨팅 장치에서 수행되는 쌍극자 피뢰 장치를 이용한 낙뢰 모니터링 방법으로서,A lightning monitoring method using a dipole lightning protection device performed on a computing device having a memory for storing one or more programs executed by the one or more processors,
    관리 서버에서, 쌍극자 피뢰 장치로부터 전압 데이터를 수신하는 단계;At the management server, receiving voltage data from the dipole lightning protection device;
    관리 서버에서, 상기 수신한 전압 데이터를 분석하여 상기 낙뢰 위험도를 판단하는 단계; 및In a management server, analyzing the received voltage data to determine the lightning risk; and
    관리 서버에서, 상기 분석된 결과를 디스플레이부를 통하여 사용자에게 제공하는 단계를 포함하는, 쌍극자 피뢰 장치를 이용한 낙뢰 모니터링 방법.A lightning monitoring method using a dipole lightning protection device, comprising the step of providing the analyzed results to a user through a display unit in a management server.
  20. 청구항 19에 있어서,In claim 19,
    상기 낙뢰 위험도를 판단하는 단계는,The step of determining the lightning risk is,
    상기 쌍극자 피뢰 장치로부터 전압 데이터를 수신하면, 낙뢰 주의 단계로 판단하는 단계;Upon receiving voltage data from the dipole lightning protection device, determining a lightning warning level;
    상기 낙뢰 주의 단계가 지속되면서 상기 전압 데이터가 기 설정된 경계 기준 값 이하로 발생 주기가 작아지거나, 상기 기 설정된 경계 기준 값 이상으로 전압 크기가 상승하는 경우, 낙뢰 경계 단계로 판단하는 단계; 및If the lightning warning stage continues and the occurrence period of the voltage data decreases below a preset boundary standard value or the voltage level increases above the preset boundary standard value, determining the lightning warning stage; and
    상기 낙뢰 경계 단계가 지속되면서 상기 전압 데이터가 기 설정된 위험 기준 값 이하로 발생 주기가 작아지거나, 상기 기 설정된 위험 기준 값 이상으로 전압 크기가 상승하는 경우, 낙뢰 위험 단계로 판단하는 단계를 더 포함하는, 쌍극자 피뢰 장치를 이용한 낙뢰 모니터링 방법. As the lightning warning stage continues, if the occurrence period of the voltage data decreases below the preset risk standard value or the voltage level increases above the preset risk standard value, determining it to be a lightning risk stage further comprises. , Lightning monitoring method using dipole lightning arrester.
PCT/KR2023/010413 2022-07-20 2023-07-19 Dipole lightening protection apparatus and lightening monitoring method using same WO2024019527A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0089840 2022-07-20
KR20220089840 2022-07-20
KR1020230037504A KR102667840B1 (en) 2022-07-20 2023-03-22 Bipolar conventional air terminal and lightning monitoring method using the same
KR10-2023-0037504 2023-03-22

Publications (1)

Publication Number Publication Date
WO2024019527A1 true WO2024019527A1 (en) 2024-01-25

Family

ID=89618281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010413 WO2024019527A1 (en) 2022-07-20 2023-07-19 Dipole lightening protection apparatus and lightening monitoring method using same

Country Status (1)

Country Link
WO (1) WO2024019527A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101295617B1 (en) * 2012-04-06 2013-08-12 주식회사 티지오 System for warning thunderbolt
KR20150037135A (en) * 2013-09-30 2015-04-08 한국전력공사 Apparatus for measuring dc electric field
JP2017181410A (en) * 2016-03-31 2017-10-05 国立研究開発法人 海上・港湾・航空技術研究所 Abnormal lightning strike determination system and method for fixing the abnormal lightning strike determination system to wind turbine generator facility
KR101785024B1 (en) * 2016-07-18 2017-10-13 (주)옴니엘피에스 A lightning strike alarm system using BCAT
KR20210062115A (en) * 2019-11-20 2021-05-31 선광엘티아이(주) Risk management system using lighting prediction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101295617B1 (en) * 2012-04-06 2013-08-12 주식회사 티지오 System for warning thunderbolt
KR20150037135A (en) * 2013-09-30 2015-04-08 한국전력공사 Apparatus for measuring dc electric field
JP2017181410A (en) * 2016-03-31 2017-10-05 国立研究開発法人 海上・港湾・航空技術研究所 Abnormal lightning strike determination system and method for fixing the abnormal lightning strike determination system to wind turbine generator facility
KR101785024B1 (en) * 2016-07-18 2017-10-13 (주)옴니엘피에스 A lightning strike alarm system using BCAT
KR20210062115A (en) * 2019-11-20 2021-05-31 선광엘티아이(주) Risk management system using lighting prediction

Similar Documents

Publication Publication Date Title
US9983254B2 (en) Wireless power line sensor
US3991367A (en) Detection of potential on high-voltage transmission lines
KR101766633B1 (en) Leakage current detection system for overhead transmission and distribution line
KR20110128291A (en) Device for protecting against a physical phenomenon such as lightning
US11002882B2 (en) Lightning strike alarm system using bipolar conventional air terminal
WO2018186528A1 (en) Converter-separated electric vehicle charging system, and electric vehicle charging apparatus installed on utility pole
JP2008111835A (en) Apparatus and method for identifying presence of high conductivity or dielectric constant state in electrically insulating material
WO2018186527A1 (en) Electric car charging apparatus installed on utility pole and based on load of transformer connected to distribution line, electric car charging system, and method for controlling electric car charging apparatus installed on utility pole
WO2024019527A1 (en) Dipole lightening protection apparatus and lightening monitoring method using same
WO2018190464A1 (en) Electric vehicle charging device installed on electric pole and controlling charging cable extension length, and method for controlling electric vehicle charging device provided on electric pole
KR20170123295A (en) Forest Fire Monitoring System
WO2014193056A1 (en) Apparatus and method for controlling guide broadcasting sound volume in pedestrian crossing
KR101915043B1 (en) Distribution line insulator
CN207800817U (en) Cell safety monitoring device and battery modules
KR102667840B1 (en) Bipolar conventional air terminal and lightning monitoring method using the same
JP2002214254A (en) Arrester type power transmission/distribution line current/voltage measuring apparatus and power transmission/distribution line current/voltage measuring system using the same
WO2017026787A1 (en) Dipole lightning arrester having light emitting unit
KR100587881B1 (en) Apparatus and method for alarming thunder-bolt using mobile communication network
KR20240012273A (en) Bipolar conventional air terminal and lightning monitoring method using the same
WO2024019526A1 (en) Lightning protection-type smart pole and ground monitoring method therefor
WO2019009657A1 (en) Temperature measurement system using non-powered wireless sensor and temperature measurement method thereby
WO2012030015A1 (en) System for superconducting cable failure point detection and method for same
Murugan et al. Underground cable fault detection using internet of things (IoT)
CN115754434A (en) Multi-voltage-grade and multi-configuration power grid external-damage-prevention remote precise electricity testing device
ES2119873T3 (en) DEFECTS DETECTOR DEVICE ON AN AERIAL NETWORK OF ELECTRIC ENERGY DISTRIBUTION.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843373

Country of ref document: EP

Kind code of ref document: A1