WO2024019448A1 - Resource recycling system - Google Patents

Resource recycling system Download PDF

Info

Publication number
WO2024019448A1
WO2024019448A1 PCT/KR2023/010174 KR2023010174W WO2024019448A1 WO 2024019448 A1 WO2024019448 A1 WO 2024019448A1 KR 2023010174 W KR2023010174 W KR 2023010174W WO 2024019448 A1 WO2024019448 A1 WO 2024019448A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
tank
exhaust gas
receives
dioxide absorbent
Prior art date
Application number
PCT/KR2023/010174
Other languages
French (fr)
Korean (ko)
Inventor
홍원방
박무신
홍정환
장인영
박성수
Original Assignee
홍원방
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍원방 filed Critical 홍원방
Publication of WO2024019448A1 publication Critical patent/WO2024019448A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a system for recycling resources such as carbon dioxide absorbents in the process of purifying exhaust gas emitted from power plants, etc.
  • the exhaust gas after combustion contains a large amount of carbon dioxide.
  • nitrogen oxides (NOx) generated due to the high-temperature combustion process are removed using a denitrification facility (SCR or SNCR).
  • SCR or SNCR denitrification facility
  • SOx sulfur oxides
  • the present invention was devised to solve the above problems, and aims to provide a system that allows efficient reuse of resources such as carbon dioxide absorbents in the process of treating pollutants containing carbon dioxide in exhaust gas.
  • the resource circulation system includes a preprocessing unit that receives exhaust gas discharged from an exhaust gas source and removes pollutants from the exhaust gas. ;
  • a desulfurization unit that receives exhaust gas from the pretreatment unit, removes sulfur oxides from the exhaust gas, and discharges the exhaust gas;
  • a carbon dioxide absorption tank that receives exhaust gas from the front or rear end of the desulfurization unit, removes carbon dioxide and sulfur oxides from the exhaust gas by reacting with a carbon dioxide absorbent, and discharges treated gas;
  • a primary sedimentation tank that receives the reaction solution from the carbon dioxide absorption tank and precipitates foreign substances through a coagulation reaction with a coagulant;
  • a secondary precipitation tank in which the reaction liquid is introduced from the primary precipitation tank and reacts with calcium oxide to produce calcium carbonate, and at the same time, the carbon dioxide collected from the reaction liquid is removed to regenerate the carbon dioxide absorbent;
  • a yield tank that receives calcium carbonate from the
  • the process gas discharged from the desulfurization unit or the process gas discharged through the carbon dioxide absorption tank is discharged to the outside through a heat exchanger.
  • a carbon dioxide absorbent is manufactured by mixing an aqueous solution of sodium hydroxide, illite extract, sodium tetraborate, and water glass, and a manufacturing unit that supplies the manufactured carbon dioxide absorbent to the carbon dioxide absorption tank is further included.
  • the carbon dioxide absorbent further contains hydrogen peroxide.
  • the front end of the emission source further includes a coal crushing unit that crushes fossil fuel supplied as a fuel source of the emission source, and in the production unit, the sediment generated during the carbon dioxide absorbent manufacturing process is used as a pre-combustion desulfurization catalyst in the coal crushing unit. It is characterized by supply.
  • the calcium carbonate stored in the obtaining tank is delivered to the desulfurization unit to remove sulfur oxides from the exhaust gas.
  • the present invention uses a carbon dioxide absorbent that can simultaneously treat carbon dioxide and sulfur oxides in the treatment of pollutants containing carbon dioxide in exhaust gas, and operates the system efficiently without desulfurization equipment or without load on the desulfurization equipment. It has the advantage of being environmentally friendly because it allows the carbon dioxide captured in the carbon dioxide absorbent to be recovered as high-purity precipitated calcium carbonate without impurities, and at the same time, the carbon dioxide absorbent can be regenerated and circulated.
  • system of the present invention can be used as a pre-combustion desulfurization catalyst for fossil fuels used at the emission source in the case of not only the manufacturing liquid but also the sediment generated during the manufacturing process of the carbon dioxide absorbent, thereby controlling the generation of waste and circulating resources.
  • the system of the present invention has the advantage of recycling resources because part of the obtained calcium carbonate can be used to remove sulfur oxides in the desulfurization unit.
  • FIG. 1 is a block diagram showing the system of the present invention
  • Figure 2 is a diagram showing the carbon dioxide absorption mechanism of the carbon dioxide absorbent applied to the present invention
  • Figure 3 is a graph showing the results of an experiment on the removal of sulfur oxides
  • Figure 4 is a graph showing experimental results regarding the removal of carbon dioxide.
  • the system 1 of the present invention includes a preprocessing unit 5 that receives exhaust gas discharged from an exhaust gas source 4 and removes pollutants from the exhaust gas; a desulfurization unit (6) that receives exhaust gas from the pretreatment unit (5), removes sulfur oxides from the exhaust gas, and discharges the sulfur oxides; a carbon dioxide absorption tank (8) that receives exhaust gas from the front or rear end of the desulfurization unit (6), removes carbon dioxide and sulfur oxides from the exhaust gas by reacting with a carbon dioxide absorbent, and discharges treated gas; a primary sedimentation tank (9) that receives the reaction solution from the carbon dioxide absorption tank (8) and precipitates foreign substances through a coagulation reaction with a coagulant; a secondary precipitation tank (10) that receives the reaction solution from the primary precipitation tank (9) and reacts it with calcium oxide to produce calcium carbonate, and at the same time, carbon dioxide collected from the reaction liquid is removed to regenerate the carbon dioxide absorbent; an acquisition tank (11) that receives calcium carbonate from
  • the pre-processing unit 4 receives the exhaust gas discharged from the emission source 4 and removes pollutants from the exhaust gas.
  • the pollutants may be nitrogen oxides, dust, etc., and the pre-processing unit 4 contains nitrogen.
  • An oxide removal device, a dust collection device, etc. may be configured.
  • the emission source 4 is a concept that refers to places and facilities that emit exhaust gas mixed with various pollutants such as power plants, nitrogen oxides, sulfur oxides, and carbon dioxide.
  • the desulfurization unit (6) is configured to remove sulfur oxides from the exhaust gas, and in the system (1) of the present invention, a carbon dioxide absorbent capable of simultaneously removing sulfur oxides and carbon dioxide in the carbon dioxide absorption tank (8) described below is used. As it is used, the desulfurization unit 6 can be selectively bypassed, thereby simplifying the system and controlling the load on the desulfurization unit 6.
  • the calcium carbonate generated within the system can be reused as a catalyst for desulfurization within the system.
  • the operating mechanism that causes desulfurization by calcium carbonate is a known operating mechanism, so detailed description thereof will be omitted.
  • the heat exchanger (7) allows heat exchange while passing the processed gas through the desulfurization unit (6) or the carbon dioxide absorption tank (8).
  • the carbon dioxide absorption tank 8 receives exhaust gas from the front end of the desulfurization unit 6 or from the rear end, although not shown in the drawing, and removes carbon dioxide and sulfur oxides from the exhaust gas by reacting with a carbon dioxide absorbent containing an aqueous sodium hydroxide solution. This corresponds to a configuration in which the process gas is removed and discharged to the heat exchanger (7).
  • the carbon dioxide absorption tank 8 is capable of allowing exhaust gas that does not pass through the desulfurization unit 6 to flow in as shown in the drawing by applying a carbon dioxide absorbent that simultaneously removes carbon dioxide and sulfur oxides. Although this has not been done, the reaction can be achieved by introducing exhaust gas that has passed through the desulfurization unit (6).
  • This carbon dioxide absorbent is manufactured in the manufacturing unit 2 as shown in FIG. 1, and the carbon dioxide absorbent contains an aqueous sodium hydroxide solution, illite extract, sodium tetraborate, and water glass.
  • sediment is produced as a carbon dioxide absorbent and a desulfurization catalyst by the method described below.
  • the manufacturing method includes the step of adding illite powder to a reaction tank storing water heated to 40 to 100° C. and stirring it (S10); Adding sodium hydroxide to the reaction tank and stirring it (S20); Separating and filtering the supernatant from the reaction tank (S30); Characterized in that it includes a step (S40) of separating the precipitate from the reaction tank.
  • step S10 includes adding illite powder to a reaction tank storing water heated to 40 to 100° C. and stirring it.
  • An illite extract is obtained through this step (S10), and the illite is expressed as ⁇ K 0.75 [Al 1.75 (Mg ⁇ Fe 2+ ) 0.25 ](Si 3.50 Al 0.50 )O 10 (OH) 2 ⁇
  • This mineral was found to be buried in large quantities in the Yeongdong region of Korea.
  • the layer charge is lower than that of muscovite, and the charge is due to the reduction of isomorphic substitution of Al 3+ and Si 4+ of the tetrahedral plate. Some isomorphic substitutions occur in the octahedral plate.
  • Illite is non-expandable due to the strong bonding force caused by K+ that exists between layers, and the layer spacing is 10 ⁇ . Therefore, it is a mineral that is extracted from the liquid phase, has a full cationic charge, and is easily converted into a chelation compound. In the present invention, it is appropriate to use micronized illite to facilitate extraction of these metal foreign substances.
  • the extract extracted from illite is an extract containing several types of metal oxides such as potassium oxide, and provides minerals that are easily converted into chelation compounds in the liquid phase, and is used in the carbon dioxide and sulfur oxide absorption reaction of the aqueous sodium hydroxide solution described below. It acts as a reaction enhancer.
  • the illite extract is mixed with an aqueous sodium hydroxide solution, which is characterized in that a mixed gas containing high temperature and high concentration of carbon dioxide and COS (hydrocarbon, O 2 , SOx) can be removed at the same time.
  • a mixed gas containing high temperature and high concentration of carbon dioxide and COS hydrocarbon, O 2 , SOx
  • COS hydrocarbon, O 2 , SOx
  • reaction equation for sodium hydroxide of illite extract as a reaction enhancer is as shown below. Only the main components of illite are described, and oxides of other minor components such as Ca, Fe, Mg, Mn, Ti, and P 2 O 5 also contribute greatly to forming a stable metal chelation compound in the liquid phase.
  • the present invention provides an example in which a step (S10-1) of adding sodium tetraborate to the reaction tank and stirring is provided before step S20.
  • a step (S20-1) of adding water glass to the reaction tank and stirring it is further included.
  • sodium tetraborate Na 2 B 4 O 7 ⁇ 10H 2 O
  • water glass Na 2 SiO 3
  • the aqueous sodium hydroxide solution contains sodium tetraborate and water glass in addition to the illite extract. As more sodium tetraborate and water glass are added, the carbon dioxide and the absorbent component react directly, so the reaction rate is much faster and the mass transfer coefficient increases.
  • the present invention provides an example in which, after step S20-1, a step (S20-2) of adding hydrogen peroxide to the reaction tank and stirring is further included. That is, an example is presented in which hydrogen peroxide (H 2 O 2 ) is further added as a reaction-promoting additive.
  • reaction equation of sodium tetraborate and hydrogen peroxide in aqueous sodium hydroxide solution is as follows.
  • the next step is to separate and filter the supernatant from the reaction tank (S30).
  • the supernatant is separated from the reaction tank, and foreign substances contained in the supernatant are removed to produce a carbon dioxide absorbent.
  • step (S40) of separating the precipitate from the reaction tank By separating these sediments, a desulfurization catalyst, a fuel additive, is manufactured.
  • the precipitate in the reaction tank contains components extracted from illite, etc. and various types of metal salts such as Ca, Fe, Mg, Mn, and Ti.
  • these active ingredients enable a pre-combustion desulfurization catalyst, which is another use of the prepared liquid, and the remaining active ingredients of the separated sediment as described above can be used as a desulfurization catalyst.
  • a step (S40-1) of mixing an additive including a surfactant and an oxy acid with the separated precipitate may be further included.
  • the precipitate separated as described above that is, the metal salt aqueous solution, contains additives including a surfactant and an oxy acid.
  • the surfactant acts as a dispersant so that the desulfurization catalyst has a large surface area, and it is preferable to use a nonionic surfactant.
  • the nonionic surfactant is a surfactant that does not have a group that dissociates into ions in an aqueous solution and has an -OH group. Although it is relatively hydrophilic, it has ester, acid amide, and ether bonds within the molecule.
  • the nonionic surfactant includes ether type, ester ether type, ester type, and nitrogen-containing type.
  • the ether-type surfactants include alkyl and alkylaryl polyoxyethylene ethers, alkylaryl formaldehyde condensed polyoxyethylene ethers, block polymers with polyoxypropylene as the lipophilic group, and polyoxyethylene-polyoxypropylene copolymers. .
  • the oxyacid is used to increase the dissolution stability of the metal compound in an aqueous metal salt solution.
  • the oxy acid is a hydroxy carboxylic acid, and specific examples thereof include citric acid, malic acid, tartaric acid, tartronic acid, glyceric acid, hydroxy butyric acid, hydroxy acrylic acid, lactic acid, and glycolic acid.
  • step S40-1 an example is presented in which precipitated carbonate is further included in the additive.
  • the metal salt and the precipitated carbonate are stored as a mixture and added to the mixture to form an aqueous solution, thereby preventing agglomeration between particles during the storage process.
  • the precipitated carbonate includes crystalline and/or amorphous carbonate compounds precipitated as metastable carbonate compounds precipitated from water, such as alkaline earth metal-containing water such as brine.
  • This desulfurization catalyst is stabilized by mixing the compositions and allowing them to precipitate for a certain period of time without separating and drying the precipitate.
  • the desulfurization catalyst is a solid type added during combustion at the emission source 4. It can be used as a desulfurization catalyst, and the liquid composition remaining after separating the sediment is input into the coal crushing unit 3, which crushes fossil fuel used as fuel from the discharge source 4, as shown in FIG. 1, and carries out the crushing process. It is intended to be used as a liquid desulfurization catalyst applied to the surface of coal.
  • the primary sedimentation tank (9) receives the reaction solution from the carbon dioxide absorption tank (8) and precipitates foreign substances through a coagulation reaction with a coagulant, thereby removing foreign substances such as heavy metals, ash, and SS from the reaction solution by coagulation. This is to increase the purity of calcium carbonate obtained in the secondary precipitation tank 10 at the rear stage, and to ensure that a regenerated carbon dioxide absorbent without impurities is regenerated when regenerating the reaction solution.
  • the type of coagulant is not limited, and for example, calcium hydroxide (Ca(OH) 2 ) may be applied.
  • the secondary settling tank 10 receives the reaction liquid from the primary settling tank 9 and reacts it with calcium oxide to produce calcium carbonate, and at the same time, the carbon dioxide captured from the reaction liquid is removed to regenerate the carbon dioxide absorbent. corresponds to
  • the reaction solution is a carbon dioxide absorbent in which carbon dioxide is captured, and in the secondary precipitation tank 10, the carbon dioxide captured in the reaction solution is converted to calcium carbonate by dropping calcium oxide, thereby simultaneously regenerating the carbon dioxide absorbent.
  • reaction solution from which foreign substances as well as captured carbon dioxide are removed while passing through the first sedimentation tank 9 and the second sedimentation tank 10 can be reused as a regenerated carbon dioxide absorbent.
  • the cost of the provided carbon dioxide absorbent is that it has a mechanism for recovering the absorption power by precipitating it again as calcium carbonate after the chemical absorption reaction of carbon dioxide, and there is no loss other than a slight loss in the pipe and absorption tower through the circulation system, After calcium carbonate precipitation, the temperature of the filtrate is maintained above 60°C due to the dilution heat generated when CaO is added in the secondary precipitation tank 10, and an exothermic reaction occurs with little heat energy loss.
  • calcium carbonate has almost no solubility in alkaline water even at high temperatures above 60°C, but it only affects the size and crystal form of the precipitate depending on the temperature.
  • Calcium carbonate obtained in the secondary precipitation tank 10 is stored in the harvest tank 11, and some of the calcium carbonate stored in the harvest tank 11 is used as a catalyst in the desulfurization unit 6 as mentioned above. It is to be reused.
  • the calcium carbonate obtained in this way has a very high purity without impurities, it can be used without restrictions across industries such as papermaking, construction, and steelmaking.
  • High-purity carbon dioxide and slaked lime are manufactured through the sintering process, making it a natural resource. It can be recycled.
  • pure calcium carbonate like this is a pollution-free resource that is not affected by the natural world and can at least be used for reclaiming abandoned mines.
  • system (1) of the present invention does not directly collect carbon dioxide and then store or recycle it. It does not require large-scale facilities, generates little or no wastewater, and quickly produces calcium carbonate of very low solubility through a 1:1 reaction with carbonic acid. As the entire amount is deposited at a rapid rate, heat energy is obtained through the exothermic reaction of calcium carbonate, rather than reducing conversion energy costs in a small-scale sedimentation tank. Although not shown in the drawing, operating costs such as additional chemical costs are expected to be minimized through the circulation of carbon dioxide absorbents with restored performance. It is done.
  • high purity precipitated calcium carbonate can be expected to have high added value in terms of market size and price.
  • 1,350 g of yellow illite ground to 1,000 mesh was added to 15 L of RO water heated to 60°C and stirred for 30 minutes. Next, add 150g of sodium tetraborate and stir for 10 minutes to dissolve it well (temperature drop of about 10°C), then slowly add 300g of sodium hydroxide and stir. When the temperature of the reaction solution reaches 70°C due to the heat of dilution, add 300g of water glass and stir for 1 hour. It was stirred. The temperature of the reaction solution naturally decreased and was stirred until it reached room temperature. Stirring was stopped at room temperature, left to stand overnight, and the supernatant was filtered to prepare an adsorbent.
  • NOVA 9K (MRU Emission Monitoring System, Germany) was used, and the sensor, measurement range, and resolution for each measurement target are as shown below.
  • Electrochemical sensor Electrochemical sensor
  • NDIR Non-dispersive infrared sensor
  • Ignition coal was put into the Meseta Harry wood stove and ignited, and after 5 minutes, 1kg of lignite was added to start combustion. After about 15 minutes, 100 g of the liquid desulfurization catalyst prepared in Example 1 was evenly sprayed with 3 kg of lignite, and combustion began in earnest.
  • the experimental results are shown in FIG. 3.
  • the first downward curve on the graph indicates that CO 2 is being reduced due to the injection of Example 2, and the rising curve while CO 2 is being reduced is when the lid of the reactor is opened to allow outside air. It can be seen that CO 2 is reduced again as a result of introducing a regenerated absorbent obtained by regenerating the previously used absorbent of Example 2 after allowing CO 2 to rise.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)

Abstract

The present invention relates to a resource recycling system comprising: a pretreatment section that receives exhaust gas from an exhaust gas source and removes pollutants from the exhaust gas; a desulfurization section that receives the exhaust gas from the pretreatment section and removes sulfur oxides from the exhaust gas before discharging same; a carbon dioxide absorption tank that receives the exhaust gas from either before or after the desulfurization section, removes carbon dioxide and sulfur oxides from the exhaust gas through a reaction with a carbon dioxide absorbent, and discharges the treated gas; a primary settling tank that receives the reaction liquid from the carbon dioxide absorption tank and precipitates impurities through a coagulation reaction with a coagulant; a secondary settling tank that receives the reaction liquid from the primary settling tank and produce calcium carbonate through a react with calcium oxide with the concomitant regeneration of the carbon dioxide absorbent by removing the carbon dioxide collected from the reaction liquid; an acquisition tank that receives and stores calcium carbonate from the secondary settling tank; and a regenerated carbon dioxide absorbent storage tank that receives the regenerated carbon dioxide absorbent from the secondary settling tank and circulates same back to the carbon dioxide absorption tank.

Description

자원순환 시스템resource circulation system
본 발명은 발전소 등에서 배출되는 배기가스를 정화처리 하는 과정에서 이산화탄소 흡수제 등 자원을 재활용하는 시스템에 관한 것이다.The present invention relates to a system for recycling resources such as carbon dioxide absorbents in the process of purifying exhaust gas emitted from power plants, etc.
화석연료를 사용하는 발전소 등에서는 연소후 배가스에 대량의 이산화탄소가 포함되어 있다. 이때 고온의 연소과정으로 인한 질소산화물(NOx) 발생은 탈질설비(SCR or SNCR)로써 제거하고 있으며, 또한 상대적으로 값비싼 LNG 발전의 경우는 제외하더라도, 우선 연료로 사용하는 화석연료의 종류에 따라 연료중의 황 성분으로 인해 연소후 황산화물(SOx)이 발생하고, Ash 및 중금속을 포함하는 Dust는 전기집진장치(EP)에서 제거하고 있다. In power plants using fossil fuels, the exhaust gas after combustion contains a large amount of carbon dioxide. At this time, nitrogen oxides (NOx) generated due to the high-temperature combustion process are removed using a denitrification facility (SCR or SNCR). Also, excluding the case of relatively expensive LNG power generation, first of all, depending on the type of fossil fuel used as fuel, Sulfur oxides (SOx) are generated after combustion due to the sulfur content in the fuel, and dust containing ash and heavy metals is removed with an electrostatic precipitator (EP).
SOx의 대기중 배출 억제를 위해 대규모 탈황 설비(FGD)를 운용하고 있으며, 거대한 흡수탑으로부터 석회석을 흡수제로 이용하여 황성분을 CaSO4의 형태로 제거하고 있다. 이러한 배가스 중에는 발생되어 제거되는 SOx의 100배가 넘는 CO2(366ton/hr, 500MWH 발전소 1기 기준)를 포함하고 있는데 그대로 대기중으로 배출하고 있는 실정이다(260만ton/년, 366Ton/hr*24시간*300일 기준).To suppress the emission of SOx into the atmosphere, a large-scale desulfurization facility (FGD) is operated, and sulfur components are removed in the form of CaSO 4 using limestone as an absorbent from a huge absorption tower. Among these exhaust gases, CO2 (366 tons/hr, based on one 500 MWH power plant) is more than 100 times more than the SOx generated and removed, and is currently being emitted into the atmosphere (2.6 million tons/year, 366 tons/hr*24 hours). *Based on 300 days).
이와 같은 거대한 량의 CO2를 제거 또는 저감하기 위해서는 석회석과 같은 흡수제 방식으로는 시설 및 운전이 규모에서부터 불가능 할 것이고 폐수발생 역시 막대할 것으로 예측된다. In order to remove or reduce such a huge amount of CO 2 , it is expected that the facility and operation will be impossible using absorbent methods such as limestone, and wastewater generation will also be enormous.
따라서 경제성과 규모에서 실현 가능한 시설로부터 이산화탄소에 대해 우수한 흡착능과 저비용의 CO2 탈기 또는 수월한 형태의 자원 전환이 가능한 흡착제 개발이 요구되어지며, 또한 흡착제의 순환 시스템이 가능 하도록 하여 추가 약제비를 최소화 하고 폐수 발생을 억제하는 것이 바람직하다.Therefore, there is a need to develop an adsorbent that has excellent adsorption capacity for carbon dioxide and is capable of low-cost CO2 degassing or easy resource conversion from a facility that is economically feasible and feasible on a scale, and also enables a circulation system for the adsorbent to minimize additional chemical costs and reduce wastewater It is desirable to suppress its occurrence.
본 발명의 배경이 되는 기술은 특허문헌 대한민국 특허등록 제10-1938424호에 개시되어 있다.The technology behind the present invention is disclosed in patent document Republic of Korea Patent Registration No. 10-1938424.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 배가스 중 이산화탄소를 포함하는 오염물질의 처리과정에서 이산화탄소 흡수제 등 자원의 재이용이 효율적으로 이루어지도록 하는 시스템을 제공하고자 함이다. The present invention was devised to solve the above problems, and aims to provide a system that allows efficient reuse of resources such as carbon dioxide absorbents in the process of treating pollutants containing carbon dioxide in exhaust gas.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 자원순환 시스템(이하, “본 발명의 시스템”이라함)은, 배기가스 배출원에서 배출되는 배기가스를 유입받아 배기가스로부터 오염물질을 제거하는 전처리부; 상기 전처리부에서 배기가스를 유입받아 배기가스로부터 황산화물을 제거하여 배출하는 탈황부; 상기 탈황부 전단 또는 후단에서 배기가스를 유입받아 이산화탄소 흡수제와 반응에 의해 배기가스로부터 이산화탄소 및 황산화물을 제거하고 처리가스를 배출하는 이산화탄소 흡수조; 상기 이산화탄소 흡수조로부터 반응액을 유입받아 응집제와 응집반응에 의해 이물질을 침전시키는 1차 침전조; 상기 1차 침전조로부터 반응액을 유입받아 산화칼슘과 반응시켜 탄산칼슘을 생성함과 동시에 반응액으로부터 포집된 이산화탄소가 제거됨에 의해 이산화탄소 흡수제가 재생되는 2차 침전조; 상기 2차 침전조로부터 탄산칼슘을 전달받아 저장하는 수득조; 상기 2차 침전조로부터 재생된 이산화탄소 흡수제를 전달받아 상기 이산화탄소 흡수조로 순환시키는 재생 이산화탄소 흡수제 저장조;를 포함하는 것을 특징으로 한다. The resource circulation system according to the present invention (hereinafter referred to as “the system of the present invention”) to achieve the above object includes a preprocessing unit that receives exhaust gas discharged from an exhaust gas source and removes pollutants from the exhaust gas. ; A desulfurization unit that receives exhaust gas from the pretreatment unit, removes sulfur oxides from the exhaust gas, and discharges the exhaust gas; a carbon dioxide absorption tank that receives exhaust gas from the front or rear end of the desulfurization unit, removes carbon dioxide and sulfur oxides from the exhaust gas by reacting with a carbon dioxide absorbent, and discharges treated gas; a primary sedimentation tank that receives the reaction solution from the carbon dioxide absorption tank and precipitates foreign substances through a coagulation reaction with a coagulant; a secondary precipitation tank in which the reaction liquid is introduced from the primary precipitation tank and reacts with calcium oxide to produce calcium carbonate, and at the same time, the carbon dioxide collected from the reaction liquid is removed to regenerate the carbon dioxide absorbent; a yield tank that receives calcium carbonate from the secondary precipitation tank and stores it; and a regenerated carbon dioxide absorbent storage tank that receives the regenerated carbon dioxide absorbent from the secondary precipitation tank and circulates it to the carbon dioxide absorbent tank.
하나의 예로 상기 탈황부에서 배출되는 처리가스 또는 상기 이산화탄소 흡수조를 통해 배출되는 처리가스는 열교환기를 거쳐 외부로 배출됨을 특징으로 한다. As an example, the process gas discharged from the desulfurization unit or the process gas discharged through the carbon dioxide absorption tank is discharged to the outside through a heat exchanger.
하나의 예로 수산화나트륨 수용액, 일라이트 추출물, 사붕산나트륨, 물유리를 포함하도록 배합되어 이산화탄소 흡수제가 제조되며, 상기 이산화탄소 흡수조에 제조된 이산화탄소 흡수제를 공급하는 제조부가 더 포함되는 것을 특징으로 한다. As an example, a carbon dioxide absorbent is manufactured by mixing an aqueous solution of sodium hydroxide, illite extract, sodium tetraborate, and water glass, and a manufacturing unit that supplies the manufactured carbon dioxide absorbent to the carbon dioxide absorption tank is further included.
하나의 예로 상기 이산화탄소 흡수제에는 과산화수소가 더 포함되는 것을 특징으로 한다. As an example, the carbon dioxide absorbent further contains hydrogen peroxide.
하나의 예로 상기 배출원 전단에는 배출원의 연료원으로서 공급되는 화석연료를 분쇄하는 석탄분쇄부가 더 구성되며, 상기 제조부에서는 상기 이산화탄소 흡수제 제조과정에서 생성되는 침전물을 상기 석탄분쇄부에 연소전 탈황촉매로 공급하는 것을 특징으로 한다. As an example, the front end of the emission source further includes a coal crushing unit that crushes fossil fuel supplied as a fuel source of the emission source, and in the production unit, the sediment generated during the carbon dioxide absorbent manufacturing process is used as a pre-combustion desulfurization catalyst in the coal crushing unit. It is characterized by supply.
하나의 예로 상기 수득조에서 저장되는 탄산칼슘은 상기 탈황부로 전달되어 배기가스로부터 황산화물이 제거되도록 하는 것을 특징으로 한다. As an example, the calcium carbonate stored in the obtaining tank is delivered to the desulfurization unit to remove sulfur oxides from the exhaust gas.
앞서 설명한 바와 같이, 본 발명은 배기가스에서 이산화탄소를 포함하는 오염물질의 처리에 있어 이산화탄소 및 황산화물을 동시에 처리할 수 있는 이산화탄소 흡수제를 사용하여 탈황설비 없이 또는 탈황설비에 부하없이 효율적으로 시스템을 운용할 수 있으며, 이산화탄소 흡수제에 포집된 이산화탄소를 불순물이 없는 고순도의 침강형 탄산칼슘으로 회수할 수 있도록 함과 동시에 이산화탄소 흡수제를 재생하여 순환시킬 수 있어 친환경적인 장점이 있다. As described above, the present invention uses a carbon dioxide absorbent that can simultaneously treat carbon dioxide and sulfur oxides in the treatment of pollutants containing carbon dioxide in exhaust gas, and operates the system efficiently without desulfurization equipment or without load on the desulfurization equipment. It has the advantage of being environmentally friendly because it allows the carbon dioxide captured in the carbon dioxide absorbent to be recovered as high-purity precipitated calcium carbonate without impurities, and at the same time, the carbon dioxide absorbent can be regenerated and circulated.
또한 본 발명의 시스템은 이산화탄소 흡수제의 제조과정에서 제조액 뿐만 아니라 발생되는 침전물의 경우도 배출원에서 사용되는 화석연료의 연소전 첨가 탈황촉매로 사용될 수 있어 폐기물의 발생을 제어하면서 자원을 순환시킬 수 있는 장점이 있다. In addition, the system of the present invention can be used as a pre-combustion desulfurization catalyst for fossil fuels used at the emission source in the case of not only the manufacturing liquid but also the sediment generated during the manufacturing process of the carbon dioxide absorbent, thereby controlling the generation of waste and circulating resources. There is an advantage.
또한 본 발명의 시스템은 수득된 탄산칼슘의 일부를 탈황부에서 황산화물의 제거에 이용할 수 있어 자원을 순환시킬 수 있는 장점이 있다. In addition, the system of the present invention has the advantage of recycling resources because part of the obtained calcium carbonate can be used to remove sulfur oxides in the desulfurization unit.
도 1은 본 발명의 시스템을 나타내는 블록도이고, 1 is a block diagram showing the system of the present invention,
도 2는 본 발명에 적용되는 이산화탄소 흡수제의 이산화탄소 흡수 메커니즘을 나타내는 그림이고, Figure 2 is a diagram showing the carbon dioxide absorption mechanism of the carbon dioxide absorbent applied to the present invention,
도 3은 황산화물의 제거에 관한 실험결과를 나타내는 그래프이고,Figure 3 is a graph showing the results of an experiment on the removal of sulfur oxides,
도 4는 이산화탄소의 제거에 관한 실험결과를 나타내는 그래프이다.Figure 4 is a graph showing experimental results regarding the removal of carbon dioxide.
아래에서는 본 발명에 따른 양호한 실시 예를 상세히 설명한다.Below, preferred embodiments according to the present invention will be described in detail.
본 발명의 시스템(1)은 도 1에서 보는 바와 같이 배기가스 배출원(4)에서 배출되는 배기가스를 유입받아 배기가스로부터 오염물질을 제거하는 전처리부(5); 상기 전처리부(5)에서 배기가스를 유입받아 배기가스로부터 황산화물을 제거하여 배출하는 탈황부(6); 상기 탈황부(6) 전단 또는 후단에서 배기가스를 유입받아 이산화탄소 흡수제와 반응에 의해 배기가스로부터 이산화탄소 및 황산화물을 제거하고 처리가스를 배출하는 이산화탄소 흡수조(8); 상기 이산화탄소 흡수조(8)로부터 반응액을 유입받아 응집제와 응집반응에 의해 이물질을 침전시키는 1차 침전조(9); 상기 1차 침전조(9)로부터 반응액을 유입받아 산화칼슘과 반응시켜 탄산칼슘을 생성함과 동시에 반응액으로부터 포집된 이산화탄소가 제거됨에 의해 이산화탄소 흡수제가 재생되는 2차 침전조(10); 상기 2차 침전조(10)로부터 탄산칼슘을 전달받아 저장하는 수득조(11); 상기 2차 침전조(10)로부터 재생된 이산화탄소 흡수제를 전달받아 상기 이산화탄소 흡수조(8)로 순환시키는 재생 이산화탄소 흡수제 저장조(12);를 포함하는 것을 특징으로 한다. As shown in FIG. 1, the system 1 of the present invention includes a preprocessing unit 5 that receives exhaust gas discharged from an exhaust gas source 4 and removes pollutants from the exhaust gas; a desulfurization unit (6) that receives exhaust gas from the pretreatment unit (5), removes sulfur oxides from the exhaust gas, and discharges the sulfur oxides; a carbon dioxide absorption tank (8) that receives exhaust gas from the front or rear end of the desulfurization unit (6), removes carbon dioxide and sulfur oxides from the exhaust gas by reacting with a carbon dioxide absorbent, and discharges treated gas; a primary sedimentation tank (9) that receives the reaction solution from the carbon dioxide absorption tank (8) and precipitates foreign substances through a coagulation reaction with a coagulant; a secondary precipitation tank (10) that receives the reaction solution from the primary precipitation tank (9) and reacts it with calcium oxide to produce calcium carbonate, and at the same time, carbon dioxide collected from the reaction liquid is removed to regenerate the carbon dioxide absorbent; an acquisition tank (11) that receives calcium carbonate from the secondary precipitation tank (10) and stores it; and a regenerated carbon dioxide absorbent storage tank (12) that receives the regenerated carbon dioxide absorbent from the secondary settling tank (10) and circulates it to the carbon dioxide absorbent tank (8).
상기 전처리부(4)는 배출원(4)에서 배출되는 배기가스를 유입받아 배기가스로부터 오염물질을 제거하는 구성으로 오염물질은 질소산화물, 더스트 등이 될 수 있으며, 상기 전처리부(4)에는 질소산화물 제거장치, 집진장치 등이 구성될 수 있다. The pre-processing unit 4 receives the exhaust gas discharged from the emission source 4 and removes pollutants from the exhaust gas. The pollutants may be nitrogen oxides, dust, etc., and the pre-processing unit 4 contains nitrogen. An oxide removal device, a dust collection device, etc. may be configured.
상기 배출원(4)은 발전소 등으로 각종 오염물질로서 질소산화물, 황산화물, 이산화탄소가 혼합된 배기가스를 배출하는 장소, 설비 등을 통칭하는 개념이다.The emission source 4 is a concept that refers to places and facilities that emit exhaust gas mixed with various pollutants such as power plants, nitrogen oxides, sulfur oxides, and carbon dioxide.
상기 탈황부(6)는 배기가스로부터 황산화물을 제거토록 하는 구성으로 본 발명의 시스템(1)에 있어서는 이하에서 설명하는 이산화탄소 흡수조(8)에서 황산화물과 이산화탄소의 동시 제거가 가능한 이산화탄소 흡수제를 사용함에 따라 상기 탈황부(6)를 선택적으로 바이패스 시킬 수 있어 시스템의 간소화 및 탈황부(6)의 부하를 제어할 수 있게 되는 것이다. The desulfurization unit (6) is configured to remove sulfur oxides from the exhaust gas, and in the system (1) of the present invention, a carbon dioxide absorbent capable of simultaneously removing sulfur oxides and carbon dioxide in the carbon dioxide absorption tank (8) described below is used. As it is used, the desulfurization unit 6 can be selectively bypassed, thereby simplifying the system and controlling the load on the desulfurization unit 6.
이러한 탈황부(5)에서 황산화물의 제거는 다양한 공지기술이 적용가능하며, 예로 탄산칼슘 슬러리를 배기가스와 접촉시켜 황산화물의 제거가 이루어지도록 하는 메커니즘이 적용될 수 있으며, 이에 의해 이하에서 설명하는 수득조(11)에서 수득된 탄산칼슘의 일부를 상기 탈황부(5)로 공급하여 배기가스로부터 탈황이 이루어지도록 할 수 있는 것이다. Various known technologies can be applied to the removal of sulfur oxides in this desulfurization unit 5. For example, a mechanism that allows sulfur oxides to be removed by contacting calcium carbonate slurry with exhaust gas can be applied, which is described below. A part of the calcium carbonate obtained in the yield tank 11 can be supplied to the desulfurization unit 5 to enable desulfurization from the exhaust gas.
즉 시스템 내에서 생성된 탄산칼슘을 시스템 내에 탈황을 위한 촉매로 재이용이 가능하도록 하는 것이다. 여기서 탄산칼슘에 의해 탈황이 이루어지도록 하는 작동기작은 공지의 작동기작이므로 그 상세 설명은 생략한다. In other words, the calcium carbonate generated within the system can be reused as a catalyst for desulfurization within the system. Here, the operating mechanism that causes desulfurization by calcium carbonate is a known operating mechanism, so detailed description thereof will be omitted.
상기 열교환기(7)는 탈황부(6)를 거치거나 이산화탄소 흡수조(8)를 거친 처리가스를 통과시키면서 열교환이 이루어지도록 하는 것으로 상기 열교환기(7)의 경우도 다양한 공지 기술이 존재하는 바, 그 상세 설명은 생략한다. The heat exchanger (7) allows heat exchange while passing the processed gas through the desulfurization unit (6) or the carbon dioxide absorption tank (8). In the case of the heat exchanger (7), various known technologies exist. , the detailed description is omitted.
상기 이산화탄소 흡수조(8)는 상기 탈황부(6) 전단 또는 도면에 도시된 바는 없으나 후단에서 배기가스를 유입받아 수산화나트륨 수용액을 포함하는 이산화탄소 흡수제와 반응에 의해 배기가스로부터 이산화탄소 및 황산화물을 제거하고 상기 열교환기(7)로 처리가스를 배출하는 구성에 해당한다. The carbon dioxide absorption tank 8 receives exhaust gas from the front end of the desulfurization unit 6 or from the rear end, although not shown in the drawing, and removes carbon dioxide and sulfur oxides from the exhaust gas by reacting with a carbon dioxide absorbent containing an aqueous sodium hydroxide solution. This corresponds to a configuration in which the process gas is removed and discharged to the heat exchanger (7).
상기 이산화탄소 흡수조(8)는 상기에서 언급한 바와 같이 이산화탄소와 황산화물을 동시에 제거하는 이산화탄소 흡수제를 적용함에 따라 상기 탈황부(6)를 거치지 않은 배기가스가 유입되도록 할 수 있는 것은 물론 도면에 도시된 바는 없으나 탈황부(6)를 거친 배기가스를 유입하여 반응이 이루어지도록 할 수 있다.As mentioned above, the carbon dioxide absorption tank 8 is capable of allowing exhaust gas that does not pass through the desulfurization unit 6 to flow in as shown in the drawing by applying a carbon dioxide absorbent that simultaneously removes carbon dioxide and sulfur oxides. Although this has not been done, the reaction can be achieved by introducing exhaust gas that has passed through the desulfurization unit (6).
이러한 이산화탄소 흡수제는 도 1에서 보는 바와 같이 제조부(2)에서 제조가 되는데, 상기 이산화탄소 흡수제는 수산화나트륨 수용액, 일라이트 추출물, 사붕산나트륨, 물유리를 포함하는 것을 특징으로 한다.This carbon dioxide absorbent is manufactured in the manufacturing unit 2 as shown in FIG. 1, and the carbon dioxide absorbent contains an aqueous sodium hydroxide solution, illite extract, sodium tetraborate, and water glass.
상기 제조부(2)에서는 하기에서 설명하는 방법에 의해 이산화탄소 흡수제 및 탈황촉매로서 침전물이 제조되는 것이다. In the production unit 2, sediment is produced as a carbon dioxide absorbent and a desulfurization catalyst by the method described below.
상기 제조방법에는 일라이트 분말을 40 내지 100℃로 가열된 물이 저장된 반응조에 투입하여 교반하는 단계(S10); 상기 반응조에 수산화나트륨을 투입하여 교반하는 단계(S20); 상기 반응조에서 상등액을 분리 및 여과하는 단계(S30); 상기 반응조에서 침전물을 분리하는 단계(S40);를 포함하는 것을 특징으로 한다. The manufacturing method includes the step of adding illite powder to a reaction tank storing water heated to 40 to 100° C. and stirring it (S10); Adding sodium hydroxide to the reaction tank and stirring it (S20); Separating and filtering the supernatant from the reaction tank (S30); Characterized in that it includes a step (S40) of separating the precipitate from the reaction tank.
우선 상기 S10단계에는 일라이트 분말을 40 내지 100℃로 가열된 물이 저장된 반응조에 투입하여 교반하는 단계를 갖는다. First, step S10 includes adding illite powder to a reaction tank storing water heated to 40 to 100° C. and stirring it.
본 단계(S10)를 통해 일라이트 추출물이 수득되는 바, 상기 일라이트는 {K0.75[Al1.75(Mg·Fe2+)0.25](Si3.50Al0.50)O10(OH)2}로 표현되는 대한민국 영동지방에서 대량으로 매장되어 있는 것이 밝혀진 광물이다. 백운모에 비하여 층전하가 낮고, 그 전하는 4면체판의 Al3+과 Si4+의 동형치환감소에 기인한다. 8면체판에서 약간의 동형치환이 일어난다. An illite extract is obtained through this step (S10), and the illite is expressed as {K 0.75 [Al 1.75 (Mg·Fe 2+ ) 0.25 ](Si 3.50 Al 0.50 )O 10 (OH) 2 } This mineral was found to be buried in large quantities in the Yeongdong region of Korea. The layer charge is lower than that of muscovite, and the charge is due to the reduction of isomorphic substitution of Al 3+ and Si 4+ of the tetrahedral plate. Some isomorphic substitutions occur in the octahedral plate.
일라이트는 층간에 존재하는 K+에 의한 강한 결합력으로 비팽창성이며 층간격은 10Å이다. 따라서 액상에서 추출되어 전체 양이온 전하를 띠게 되고 킬레이션 결합 화합물로 변환되기 쉬운 광물이며 본 발명에서는 이런 금속 이물을 추출하기 용이하도록 미분화 일라이트를 사용하는 것이 타당하다. Illite is non-expandable due to the strong bonding force caused by K+ that exists between layers, and the layer spacing is 10Å. Therefore, it is a mineral that is extracted from the liquid phase, has a full cationic charge, and is easily converted into a chelation compound. In the present invention, it is appropriate to use micronized illite to facilitate extraction of these metal foreign substances.
이러한 일라이트로부터 추출한 추출물은 산화칼륨 등 여러 종의 금속 산화물이 포함된 추출액으로서 액상에서 킬레이션 결합화합물로 변환되기 쉬운 광물을 제공하여 이하에서 설명하는 수산화나트륨 수용액의 이산화탄소 및 황산화물 흡수반응에 있어 반응 증진제로 작용하게 되는 것이다. The extract extracted from illite is an extract containing several types of metal oxides such as potassium oxide, and provides minerals that are easily converted into chelation compounds in the liquid phase, and is used in the carbon dioxide and sulfur oxide absorption reaction of the aqueous sodium hydroxide solution described below. It acts as a reaction enhancer.
즉 상기 수산화나트륨 수용액의 SOx를 포함하는 이산화탄소 흡수에 있어 일라이트 추출물이 더 첨가되어 흡수효율을 높게 하는 것이다. That is, in the absorption of carbon dioxide including SOx in the sodium hydroxide aqueous solution, more illite extract is added to increase the absorption efficiency.
그 다음으로 상기 반응조에 수산화나트륨을 투입하여 교반하는 단계(S20)를 갖는다. Next, there is a step (S20) of adding sodium hydroxide to the reaction tank and stirring it.
이렇게 하여 일라이트 추출물이 수산화나트륨 수용액에 혼합되도록 하는데, 상기 수산화나트륨 수용액은 고온, 고농도의 이산화탄소 및 COS(탄화수소, O2, SOx)가 포함된 혼합 가스도 동시에 제거될 수 있도록 하는 점에 특징이 있다. 즉 발전소 배기가스 등에서 황산화물(SOx)은 물론 이산화탄소도 동시에 흡수되도록 하는 것이다. In this way, the illite extract is mixed with an aqueous sodium hydroxide solution, which is characterized in that a mixed gas containing high temperature and high concentration of carbon dioxide and COS (hydrocarbon, O 2 , SOx) can be removed at the same time. there is. In other words, it absorbs not only sulfur oxides (SOx) but also carbon dioxide from power plant exhaust gases.
상기 수산화나트륨 수용액이 황산화물과 이산화탄소를 제거하는 원리는 하기 반응식과 같다. 즉, 삼산화황(아황산)과 이산화황은 하기에서 보는 바와 같이 각각 수산화나트륨과 반응하여 무수 황산나트륨과 아황산나트륨으로 추출됨으로써 제거된다. The principle by which the sodium hydroxide aqueous solution removes sulfur oxide and carbon dioxide is shown in the following reaction equation. That is, sulfur trioxide (sulfurous acid) and sulfur dioxide are removed by reacting with sodium hydroxide and extracting them into anhydrous sodium sulfate and sodium sulfite, respectively, as shown below.
그리고 이산화탄소는 하기 반응식과 같이 수산화나트륨과 반응하여 탄산나트륨을 생성함으로써 제거된다. 또한 생성된 탄산나트륨은 여분의 황산화물과 반응하여 황산화물 제거 효과를 더 증대시킬 수 있고, 아울러 생산되는 이산화탄소는 수산화나트륨에 의하여 제거되게 된다.And carbon dioxide is removed by reacting with sodium hydroxide to produce sodium carbonate as shown in the reaction equation below. Additionally, the produced sodium carbonate reacts with excess sulfur oxide to further increase the sulfur oxide removal effect, and the produced carbon dioxide is removed by sodium hydroxide.
1) 2NaOH + SO3 = Na2SO4 + H2O1) 2NaOH + SO 3 = Na 2 SO 4 + H 2 O
2) 2NaOH + SO2 = Na2SO3 + H2O2) 2NaOH + SO 2 = Na 2 SO 3 + H 2 O
3) 2NaOH + CO2 = Na2CO3 + H2O3) 2NaOH + CO 2 = Na 2 CO 3 + H 2 O
4) NaOH + CO2 = NaHCO3 4) NaOH + CO 2 = NaHCO 3
이에 더하여 상기에서 언급한 바와 같이 반응 증진제로써 일라이트 추출액의 수산화나트륨과 반응식은 하기에서 보는 바와 같다. 일라이트의 주요성분에 대해서만 기재하였고 그외 Ca, Fe, Mg, Mn, Ti 및 P2O5와 같은 미량 성분들의 산화물들도 액상에서 안정한 금속 킬레이션 화합물을 형성하는데 높은 기여를 한다.In addition, as mentioned above, the reaction equation for sodium hydroxide of illite extract as a reaction enhancer is as shown below. Only the main components of illite are described, and oxides of other minor components such as Ca, Fe, Mg, Mn, Ti, and P 2 O 5 also contribute greatly to forming a stable metal chelation compound in the liquid phase.
1) 2NaOH + SiO2 = Na2O.SiO2 + H2O1) 2NaOH + SiO 2 = Na 2 O.SiO 2 + H 2 O
2) 2NaOH + K2O = Na2O + 2KOH2) 2NaOH + K 2 O = Na 2 O + 2KOH
3) Na2O + Al2O3 + H2O = 2NaAlO2 + H2O3) Na 2 O + Al 2 O 3 + H 2 O = 2NaAlO 2 + H 2 O
이에 더하여 본 발명에서는 상기 S20단계 전단에는, 상기 반응조에 사붕산나트륨을 투입하여 교반하는 단계(S10-1)가 더 포함되는 예를 제시한다. 이에 더하여 상기 S20단계 후단에는, 상기 반응조에 물유리를 투입하여 교반하는 단계(S20-1)가 더 포함되는 예를 제시한다. In addition, the present invention provides an example in which a step (S10-1) of adding sodium tetraborate to the reaction tank and stirring is provided before step S20. In addition, after step S20, an example is presented in which a step (S20-1) of adding water glass to the reaction tank and stirring it is further included.
즉 일라이트 추출물 및 수산화나트륨 수용액에 사붕산나트륨(Na2B4O7·10H2O) 및 물유리(Na2SiO3)가 더 포함되는 예를 제시한다. That is, an example is presented in which sodium tetraborate (Na 2 B 4 O 7 ·10H 2 O) and water glass (Na 2 SiO 3 ) are further included in the illite extract and aqueous sodium hydroxide solution.
수산화나트륨 수용액에 일라이트 추출물에 더하여 사붕산나트륨 및 물유리가 더 포함되도록 하는 것이다. 이렇게 사붕산나트륨 및 물유리가 더 첨가되어 이산화탄소와 흡수제 성분이 직접적으로 반응하기 때문에 반응속도가 훨씬 빠르고 물질 이동 계수도 커지게 된다. The aqueous sodium hydroxide solution contains sodium tetraborate and water glass in addition to the illite extract. As more sodium tetraborate and water glass are added, the carbon dioxide and the absorbent component react directly, so the reaction rate is much faster and the mass transfer coefficient increases.
더욱이 사붕산나트륨 및 물유리는 점도가 높기 때문에 흡수된 기체상태의 이산화탄소가 빠져나가지 못하고 액체상태로 빠르게 녹아들어가면서 탄산으로 반응하게 되어 이산화탄소 흡수율을 배가시키도록 하는 것이다. Moreover, because sodium tetraborate and water glass have high viscosity, the absorbed gaseous carbon dioxide cannot escape, but quickly dissolves in the liquid state and reacts with carbonic acid, thereby doubling the carbon dioxide absorption rate.
이에 더하여 본 발명에서는 상기 S20-1단계 후단에는, 상기 반응조에 과산화수소를 투입하여 교반하는 단계(S20-2)가 더 포함되는 예를 제시한다. 즉 반응촉진형 첨가제로 과산화수소(H2O2)가 더 첨가된 예를 제시하고 있다. In addition, the present invention provides an example in which, after step S20-1, a step (S20-2) of adding hydrogen peroxide to the reaction tank and stirring is further included. That is, an example is presented in which hydrogen peroxide (H 2 O 2 ) is further added as a reaction-promoting additive.
수산화나트륨 수용액에서 사붕산나트륨 및 과산화수소의 반응식은 하기와 같다. The reaction equation of sodium tetraborate and hydrogen peroxide in aqueous sodium hydroxide solution is as follows.
1) Na2B4O7 + H2O = Na2O + 2B2O3 1) Na 2 B 4 O 7 + H 2 O = Na 2 O + 2B 2 O 3
2) 2NaOH + H2O2 = Na2O + H2O + 0.5O2 2) 2NaOH + H 2 O 2 = Na 2 O + H 2 O + 0.5O 2
따라서 이산화탄소 흡수 메커니즘은 도 2 및 하기 반응식과 같다. Therefore, the carbon dioxide absorption mechanism is as shown in Figure 2 and the reaction equation below.
1) CO2(g) + CO2(aq) + Na2O + 2OH- = CO2(g) + CO3-- + 2NaOH = CO2(aq) + CO3--1) CO 2 (g) + CO 2 (aq) + Na 2 O + 2OH- = CO 2 (g) + CO 3 -- + 2NaOH = CO 2 (aq) + CO 3 --
2) CO3-- + H2O + CO2(aq) = 2HCO3-2) CO 3 -- + H 2 O + CO 2 (aq) = 2HCO 3 -
3) CO2(aq) + OH- = HCO3-3) CO 2 (aq) + OH- = HCO 3 -
4) HCO3- + OH- = CO3-- + H2O4) HCO 3 - + OH- = CO 3 -- + H 2 O
이렇게 반응이 완료되면 그 다음으로 상기 반응조에서 상등액을 분리 및 여과하는 단계(S30)를 갖는다. 상기 반응조에서 상등액을 분리하고, 상등액에 포함된 이물질을 제거하여 이산화탄소 흡수제가 제조되도록 하는 것이다. When the reaction is completed in this way, the next step is to separate and filter the supernatant from the reaction tank (S30). The supernatant is separated from the reaction tank, and foreign substances contained in the supernatant are removed to produce a carbon dioxide absorbent.
그 다음으로 상기 반응조에서 침전물을 분리하는 단계(S40)를 갖는다. 이러한 침전물을 분리함으로써 연료 첨가제인 탈황촉매가 제조되는 것이다. Next, there is a step (S40) of separating the precipitate from the reaction tank. By separating these sediments, a desulfurization catalyst, a fuel additive, is manufactured.
상기 반응조에서 침전물은 일라이트 등으로부터 추출된 성분이 포함된 것으로 Ca, Fe, Mg, Mn, Ti 등 다양한 종류의 금속염이 포함되는 것이다. The precipitate in the reaction tank contains components extracted from illite, etc. and various types of metal salts such as Ca, Fe, Mg, Mn, and Ti.
따라서 이러한 활성성분에 의해 제조액의 또다른 용도인 연소전 탈황촉매가 가능하고, 상기와 같이 분리된 침전물 역시 잔류 활성성분이 탈황촉매로 사용될 수 있는 것이다.Therefore, these active ingredients enable a pre-combustion desulfurization catalyst, which is another use of the prepared liquid, and the remaining active ingredients of the separated sediment as described above can be used as a desulfurization catalyst.
또한 상기 S40후단에는, 분리된 침전물에 계면활성제, 옥시산을 포함하는 첨가제를 혼합하는 단계(S40-1)가 더 포함되도록 할 수 있다.In addition, at the end of S40, a step (S40-1) of mixing an additive including a surfactant and an oxy acid with the separated precipitate may be further included.
상기와 같이 분리된 침전물 즉 금속염 수용액에는 계면활성제, 옥시산을 포함하는 첨가제가 포함되도록 하는 것이다. The precipitate separated as described above, that is, the metal salt aqueous solution, contains additives including a surfactant and an oxy acid.
상기 계면활성제는 탈황촉매가 넓은 표면적을 갖도록 분산제로서 작용하며, 비이온계 계면활성제를 이용하는 것이 바람직하다. 상기 비이온계 계면활성제는 수용액에서 이온으로 해리하는 기를 가지고 있지 않는 계면활성제로서 -OH기를 갖고 있다. 비교적 친수성은 작지만 분자내에 에스테르, 산아미드, 에테르결합을 갖고 있다. 상기 비이온성 계면활성제로는 에테르형, 에스테르에테르형, 에스테르형 및 함질소형이 있다. The surfactant acts as a dispersant so that the desulfurization catalyst has a large surface area, and it is preferable to use a nonionic surfactant. The nonionic surfactant is a surfactant that does not have a group that dissociates into ions in an aqueous solution and has an -OH group. Although it is relatively hydrophilic, it has ester, acid amide, and ether bonds within the molecule. The nonionic surfactant includes ether type, ester ether type, ester type, and nitrogen-containing type.
상기 에테르형 계면활성제로는 알킬 및 알킬아릴폴리옥시에틸렌에테르, 알킬아릴포름알데히드축합 폴리옥시에틸렌에테르, 폴리옥시프로필렌을 친유기로 하는 블록폴리머 및 폴리옥시에틸렌-폴리옥시프로필렌 공중합체 등을 들 수 있다. The ether-type surfactants include alkyl and alkylaryl polyoxyethylene ethers, alkylaryl formaldehyde condensed polyoxyethylene ethers, block polymers with polyoxypropylene as the lipophilic group, and polyoxyethylene-polyoxypropylene copolymers. .
상기 옥시산은 금속염 수용액에 있어 상기 금속 화합물의 용해 안정성을 높이기 위한 것이다. The oxyacid is used to increase the dissolution stability of the metal compound in an aqueous metal salt solution.
상기 옥시산은, 히드록시 카르복실산이며, 그의 구체예로서는 예컨대, 시트르산, 말산, 타르타르산, 타르트론산, 글리세르산, 히드록시 부티르산, 히드록시 아크릴산, 젖산, 글리콜산 등을 예시할 수가 있다. The oxy acid is a hydroxy carboxylic acid, and specific examples thereof include citric acid, malic acid, tartaric acid, tartronic acid, glyceric acid, hydroxy butyric acid, hydroxy acrylic acid, lactic acid, and glycolic acid.
한편 탈황활성을 향상시키고자 하는 경우 금속성분 간 응집을 제어하고, 분산도를 높여야 하는 바, 이를 위해 상기 첨가제에 옥시산이 첨가되도록 하여 금속염 수용액의 안정성을 어느 정도 향상시킬 수가 있지만 금속성분간 응집성을 충분히 제어할 수 없어 촉매능을 저하시키는 문제가 여전히 상존하는 것이다. On the other hand, in order to improve the desulfurization activity, it is necessary to control the cohesion between the metal components and increase the degree of dispersion. To this end, the stability of the aqueous metal salt solution can be improved to some extent by adding oxy acid to the above additive, but the cohesion between the metal components must not be sufficient. The problem of deteriorating catalytic activity due to uncontrollability still exists.
이에 상기 S40-1단계에서는, 상기 첨가제에 침강탄산염이 더 포함되도록 하는 예를 제시하고 있다. Accordingly, in step S40-1, an example is presented in which precipitated carbonate is further included in the additive.
상기 침강탄산염의 첨가에 의해 금속염에 미세한 코팅막이 형성되도록 하여 금속염 간 반발력이 증가하여 응집현상을 제어하게 되는 것이다. 바람직하게는 금속염과 침강탄산염이 혼합물로서 보관되어 혼합물로 첨가되어 수용액이 형성되도록 함으로써 보관과정에서도 입자 간에 뭉침현상을 방지해 주는 역할을 하도록 하는 것이 타당하다. By adding the precipitated carbonate, a fine coating film is formed on the metal salt, thereby increasing the repulsive force between the metal salts and controlling the agglomeration phenomenon. Preferably, the metal salt and the precipitated carbonate are stored as a mixture and added to the mixture to form an aqueous solution, thereby preventing agglomeration between particles during the storage process.
상기 침강탄산염은 염수과 같은 알칼리 토금속 함유수와 같이, 물에서부터 침강된 준안정성(metastable) 탄산염 화합물로 침강된 결정 및/또는 무정형 탄산염 화합물이 포함된다. The precipitated carbonate includes crystalline and/or amorphous carbonate compounds precipitated as metastable carbonate compounds precipitated from water, such as alkaline earth metal-containing water such as brine.
이러한 탈황촉매는 상기 침전물을 분리시켜 건조시킴 없이 상기 조성들을 혼합후 일정시간 침전시켜 안정화를 시키며 침전물을 분리하여 건조시킴에 의해 도면에 도시된 바는 없으나 배출원(4)에서 연소시 첨가되는 고체형 탈황촉매로 사용되도록 할 수 있으며, 침전물을 분리시키고 남은 액상 형태의 조성물은 도 1에서 보는 바와 같이 배출원(4)에서 연료로 사용되는 화석연료를 분쇄하는 석탄분쇄부(3)에 투입되어 분쇄과정에서 석탄의 표면에 도포되는 액상형 탈황촉매로 사용되도록 하는 것이다. This desulfurization catalyst is stabilized by mixing the compositions and allowing them to precipitate for a certain period of time without separating and drying the precipitate. Although not shown in the drawing, the desulfurization catalyst is a solid type added during combustion at the emission source 4. It can be used as a desulfurization catalyst, and the liquid composition remaining after separating the sediment is input into the coal crushing unit 3, which crushes fossil fuel used as fuel from the discharge source 4, as shown in FIG. 1, and carries out the crushing process. It is intended to be used as a liquid desulfurization catalyst applied to the surface of coal.
상기 1차 침전조(9)는 상기 이산화탄소 흡수조(8)로부터 반응액을 유입받아 응집제와 응집반응에 의해 이물질을 침전시키는 구성으로 반응액으로부터 중금속, ash, SS 등 이물질이 응집에 의해 제거되도록 함으로써 후단의 2차 침전조(10)에서 수득되는 탄산칼슘의 순도를 높이도록 하는 것이며, 반응액을 재생시 불순물이 없는 재생 이산화탄소 흡수제가 재생되도록 하기 위한 것이다. The primary sedimentation tank (9) receives the reaction solution from the carbon dioxide absorption tank (8) and precipitates foreign substances through a coagulation reaction with a coagulant, thereby removing foreign substances such as heavy metals, ash, and SS from the reaction solution by coagulation. This is to increase the purity of calcium carbonate obtained in the secondary precipitation tank 10 at the rear stage, and to ensure that a regenerated carbon dioxide absorbent without impurities is regenerated when regenerating the reaction solution.
상기 응집제는 그 종류를 한정하지 않으며, 예로 수산화칼슘(Ca(OH)2)이 적용될 수 있다. The type of coagulant is not limited, and for example, calcium hydroxide (Ca(OH) 2 ) may be applied.
상기 2차 침전조(10)는 상기 1차 침전조(9)로부터 반응액을 유입받아 산화칼슘과 반응시켜 탄산칼슘을 생성함과 동시에 반응액으로부터 포집된 이산화탄소가 제거됨에 의해 이산화탄소 흡수제가 재생되도록 하는 구성에 해당한다. The secondary settling tank 10 receives the reaction liquid from the primary settling tank 9 and reacts it with calcium oxide to produce calcium carbonate, and at the same time, the carbon dioxide captured from the reaction liquid is removed to regenerate the carbon dioxide absorbent. corresponds to
여기서 반응액은 이산화탄소가 포집된 상태의 이산화탄소 흡수제로서 2차 침전조(10)에서는 산화칼슘의 투하에 의해 반응액에서 포집된 이산화탄소가 탄산칼슘으로 전환되도록 함으로써 동시에 이산화탄소 흡수제가 재생이 되도록 하는 것이다. Here, the reaction solution is a carbon dioxide absorbent in which carbon dioxide is captured, and in the secondary precipitation tank 10, the carbon dioxide captured in the reaction solution is converted to calcium carbonate by dropping calcium oxide, thereby simultaneously regenerating the carbon dioxide absorbent.
즉 상기 2차 침전조(10)에서 반응액에서 탄산으로 존재하는 포집된 이산화탄소의 당량수에 맞춰 CaO를 투입함으로써 유용한 자원인 고순도 고부가가치 침강성 탄산칼슘이 제조되도록 하는 것이다. That is, by adding CaO to the secondary precipitation tank 10 in accordance with the equivalent number of carbon dioxide present as carbonic acid in the reaction solution, high-purity, high-value precipitated calcium carbonate, which is a useful resource, is produced.
또한 이렇게 1차 침전조(9) 및 2차 침전조(10)를 거치면서 이물질은 물론 포집된 이산화탄소가 제거된 반응액은 재생 이산화탄소 흡수제로 재이용이 가능하게 되는 것이다. In addition, the reaction solution from which foreign substances as well as captured carbon dioxide are removed while passing through the first sedimentation tank 9 and the second sedimentation tank 10 can be reused as a regenerated carbon dioxide absorbent.
이산화탄소 저감목적을 달성하기 위해서도 추가 시설의 규모나 흡수제와 같은 비용 및 운전 편의성을 고려해야 되며 투입되는 에너지 비용도 중요한 항목 중의 하나이다. In order to achieve the goal of reducing carbon dioxide, costs such as the size of additional facilities, absorbents, and convenience of operation must be considered, and the cost of input energy is also one of the important items.
따라서 본 발명에 따르면 제공된 이산화탄소 흡수제의 비용은 이산화탄소의 화학흡수 반응 후 다시 탄산칼슘으로 침전시켜 흡수력을 회복시키는 메커니즘을 가지면서, 순환 시스템을 통해 배관 및 흡수탑에서의 약간의 손실 외에는 없게 되고, 상기 2차 침전조(10)에서 CaO 투입시 발생하는 희석열에 의해 탄산칼슘 침전 후 여액의 온도가 60℃ 이상으로 유지되는 등 열에너지 손실도 거의 없이 오히려 발열반응이 전개된다. 물론 탄산칼슘은 60℃ 이상의 고온에서도 알카리성 물에 대한 용해도가 거의 없고, 다만 온도에 따르는 침전물의 Size나 결정형에 영향을 줄 뿐이다. Therefore, according to the present invention, the cost of the provided carbon dioxide absorbent is that it has a mechanism for recovering the absorption power by precipitating it again as calcium carbonate after the chemical absorption reaction of carbon dioxide, and there is no loss other than a slight loss in the pipe and absorption tower through the circulation system, After calcium carbonate precipitation, the temperature of the filtrate is maintained above 60°C due to the dilution heat generated when CaO is added in the secondary precipitation tank 10, and an exothermic reaction occurs with little heat energy loss. Of course, calcium carbonate has almost no solubility in alkaline water even at high temperatures above 60℃, but it only affects the size and crystal form of the precipitate depending on the temperature.
상기 2차 침전조(10)에서 수득되는 탄산칼슘은 수득조(11)에 저장이 되는데, 수득조(11)에 저장되는 탄산칼슘 중 일부는 상기에서 언급한 바와 같이 탈황부(6)에서 촉매로 재이용 되도록 하는 것이다. Calcium carbonate obtained in the secondary precipitation tank 10 is stored in the harvest tank 11, and some of the calcium carbonate stored in the harvest tank 11 is used as a catalyst in the desulfurization unit 6 as mentioned above. It is to be reused.
이렇게 수득한 탄산칼슘이 매우 높은 불순물이 없는 순도를 가지므로 그 자체로도 제지, 건설, 제강 등 산업 전반에 걸쳐 수요처의 제한 없이 사용할 수 있고, 소결과정을 통해 고순도의 이산화탄소와 소석회를 제조하여 자원 재활용 할 수 있다. 또한 이와 같은 순수한 탄산칼슘은 자연계의 영향이 없는 오염없는 자원으로써 최소한 폐광 매립 등에 활용 할 수도 있다. Since the calcium carbonate obtained in this way has a very high purity without impurities, it can be used without restrictions across industries such as papermaking, construction, and steelmaking. High-purity carbon dioxide and slaked lime are manufactured through the sintering process, making it a natural resource. It can be recycled. In addition, pure calcium carbonate like this is a pollution-free resource that is not affected by the natural world and can at least be used for reclaiming abandoned mines.
또한 본 발명의 시스템(1)은 이산화탄소를 직접 포집 후 저장이나 재활용 하는 것도 아닌, 대규모 시설도 불필요하면서 폐수발생이 없거나 요인이 적고, 탄산과 1:1 반응에 의해 매우 낮은 용해도의 탄산칼슘이 빠른 속도로 전량 침전됨으로써 작은 규모의 침전조에서 전환 에너지 비용도 오히려 탄산칼슘 발열반응으로 열에너지가 획득되며, 도면에 도시된 바는 없으나 성능을 회복한 이산화탄소 흡수제의 순환으로 추가적인 약제비 등 운전 경비도 최소화가 예상되어진다.In addition, the system (1) of the present invention does not directly collect carbon dioxide and then store or recycle it. It does not require large-scale facilities, generates little or no wastewater, and quickly produces calcium carbonate of very low solubility through a 1:1 reaction with carbonic acid. As the entire amount is deposited at a rapid rate, heat energy is obtained through the exothermic reaction of calcium carbonate, rather than reducing conversion energy costs in a small-scale sedimentation tank. Although not shown in the drawing, operating costs such as additional chemical costs are expected to be minimized through the circulation of carbon dioxide absorbents with restored performance. It is done.
역시 전환 산물로써 고순도의 침강형 탄산칼슘은 시장 규모와 가격 등에도 높은 부가가치를 예상해볼 수 있다.As a conversion product, high purity precipitated calcium carbonate can be expected to have high added value in terms of market size and price.
이하 실험 예에 의거 상기 이산화탄소 흡수제의 바람직한 실시 예를 설명한다. Below, a preferred embodiment of the carbon dioxide absorbent will be described based on an experimental example.
[실시예 1][Example 1]
1,000Mesh로 분쇄된 Yellow상의 일라이트 1,350g을 60℃로 가열된 RO수 15L에 투입하여 30분간 교반하였다. 그 다음 사붕산나트륨 150g을 투입하여 10분간 교반하여 잘 녹인 후(약 10℃ 온도 강하) 수산화나트륨 300g을 천천히 투입 교반하여 희석열에 의해 반응액 온도가 70℃가되면 물유리 300g을 투입하고 1시간동안 교반하였다. 반응액 온도가 자연 강하되어 상온이 될때까지 교반하여 주었다. 상온에서 교반을 멈추고 overnight 정치하여 상등액을 여과하여 흡착제를 제조하였다. 1,350 g of yellow illite ground to 1,000 mesh was added to 15 L of RO water heated to 60°C and stirred for 30 minutes. Next, add 150g of sodium tetraborate and stir for 10 minutes to dissolve it well (temperature drop of about 10℃), then slowly add 300g of sodium hydroxide and stir. When the temperature of the reaction solution reaches 70℃ due to the heat of dilution, add 300g of water glass and stir for 1 hour. It was stirred. The temperature of the reaction solution naturally decreased and was stirred until it reached room temperature. Stirring was stopped at room temperature, left to stand overnight, and the supernatant was filtered to prepare an adsorbent.
[실시예 2][Example 2]
325Mesh로 분쇄된 Yellow상의 일라이트 540g을 60℃로 가열된 RO수 6L에 넣어 30분간 교반하였다. 사붕산나트륨 300g을 투입하고 30분간 교반하여 (반응액 약 20℃ 온도강하) 자연상태에서 반응액 온도가 40℃이하가 되었을 때 수산화나트륨900g을 천천히 투입 교반하여 희석열에 의해 반응액 온도가 80℃가되면 물유리 300g을 투입하고 1시간동안 교반하였다. 540 g of yellow illite ground to 325 mesh was added to 6 L of RO water heated to 60°C and stirred for 30 minutes. Add 300g of sodium tetraborate and stir for 30 minutes (temperature drop of reaction solution about 20℃). When the temperature of the reaction solution under natural conditions falls below 40℃, slowly add 900g of sodium hydroxide and stir. The temperature of the reaction solution drops to 80℃ due to the heat of dilution. Once added, 300 g of water glass was added and stirred for 1 hour.
반응액온도가 자연 강하되어 60℃아래로 떨어지고 난 다음 과산화수소 90g을 투입한 뒤 반응액이 상온이 될때까지 교반하여 주었다. 상온에서 교반을 멈추고 overnight 정치하여 상등액을 여과하여 흡착제를 제조하였다. After the temperature of the reaction solution naturally decreased to below 60°C, 90 g of hydrogen peroxide was added and the reaction solution was stirred until it reached room temperature. Stirring was stopped at room temperature, left to stand overnight, and the supernatant was filtered to prepare an adsorbent.
<배기가스 분석장비><Exhaust gas analysis equipment>
NOVA 9K(MRU Emission Monitoring System, Germany)를 사용하였고, 각 측정 대상에 대한 센서, 측정범위 및 분해능은 하기에서 보는 바와 같다. NOVA 9K (MRU Emission Monitoring System, Germany) was used, and the sensor, measurement range, and resolution for each measurement target are as shown below.
- O2(E.C) : 0 ~ 21 Vol% / 0.2%- O 2 (EC): 0 ~ 21 Vol% / 0.2%
- CO2(NDIR) : 0 ~ 40 Vol% / 0.3%- CO 2 (NDIR): 0 ~ 40 Vol% / 0.3%
- SO2(E.C) : 0 ~ 2,000 ppm / 5ppm- SO 2 (EC): 0 ~ 2,000 ppm / 5ppm
* E.C : 전기화학식 센서, NDIR : 비분산적외선 센서* E.C: Electrochemical sensor, NDIR: Non-dispersive infrared sensor
<배기가스 분석방법><Exhaust gas analysis method>
-. SO2 분석-. SO2 analysis
메세타 해리 화목난로에 착화탄을 넣고 점화한 뒤 5분후 갈탄을 1Kg 올려 연소를 시작하였다. 약 15분이 지난 뒤 실시예 1에서 제조한 액상형 탈황촉매 100g 을 고르게 분사 받은 갈탄 3Kg을 더 올리고 본격적으로 연소를 시작하였다. Ignition coal was put into the Meseta Harry wood stove and ignited, and after 5 minutes, 1kg of lignite was added to start combustion. After about 15 minutes, 100 g of the liquid desulfurization catalyst prepared in Example 1 was evenly sprayed with 3 kg of lignite, and combustion began in earnest.
연통으로 배기되는 배가스 중의 일부를 흡입하기 위해 연통 중간부에 구멍을 뚫고 실리콘 호스를 연결한 뒤 실리콘으로 틈새를 완전 밀폐하고 다이아프램 펌프를 통해 배가스를 흡입하여 플로우메터를 35L/분으로 조정하고 실험장치 중 반응조에 가스트랩 어뎁터의 In-Let 관으로 불어넣어 주었다. 가스트랩 어뎁터의 Out-Let 관으로 배출되는 배가스를 NOVA 9K에 연결해 주고 SO2의 량을 측정하였다.In order to suck in some of the exhaust gases exhausted through the flue, a hole was drilled in the middle of the flue, a silicone hose was connected, the gap was completely sealed with silicone, and the exhaust gas was sucked in through a diaphragm pump. The flowmeter was adjusted to 35L/min and the experiment was conducted. Blow was blown into the reaction tank of the device through the In-Let pipe of the gas trap adapter. The exhaust gas discharged through the out-let pipe of the gas trap adapter was connected to NOVA 9K and the amount of SO 2 was measured.
-. CO2 분석-. CO2 analysis
N2 Bombe와 Heating 장치가 부착된 CO2 Bombe를 준비한 뒤 각각 N2 30L/분, CO2 5L/분으로 Flow Meter를 조정하여 Y자 어뎁터를 통해 기체를 혼합하여 가스트랩 어뎁터의 In-Let 관을 통해 반응조에 불어 넣어 주었다. 가스트랩 어뎁터의 Out-Let 에서 CO2 농도를 측정하고, 다시 실시예 2에서 제조한 CO2 화학흡착제 1L를 Dropping Funnel을 통해 반응조에 투입한 뒤 CO2 농도를 측정하였다.After preparing an N 2 bomb and a CO 2 bomb with a heating device, adjust the flow meter to N 2 30L/min and CO 2 5L/min, respectively, and mix the gases through the Y-shaped adapter through the in-let pipe of the gas trap adapter. It was blown into the reaction tank through . The CO 2 concentration was measured at the Out-Let of the gas trap adapter, and 1L of the CO 2 chemical adsorbent prepared in Example 2 was added to the reaction tank through the dropping funnel and the CO 2 concentration was measured.
<실험예 1> SOx 제거능 측정<Experimental Example 1> Measurement of SOx removal ability
화목난로에서 갈탄 연소후 상기 실험장치를 통해 배가스 중 SOx 발생량을 측정하고 SOx 저감량을 측정하였다. After burning lignite in a wood-burning stove, the amount of SOx generated in exhaust gas was measured using the above experimental device, and the amount of SOx reduction was measured.
실험결과가 도 3에 도시되고 있는 바, 그래프에서 보는 바와 같이 개략 37분에서 91분까지 실시예 1의 흡수제의 작용에 의해 SOx 저감능이 발현됨을 알 수 있다. The experimental results are shown in FIG. 3. As can be seen from the graph, it can be seen that the SOx reduction ability was developed by the action of the absorbent of Example 1 from approximately 37 minutes to 91 minutes.
<실험예 2> CO2 제거능 측정<Experimental Example 2> Measurement of CO 2 removal capacity
상기 실험장치에서 N2 Bombe 와 CO2 Bombe를 통해 14% CO2 Gas를 주 Reactor에 투입되도록 맞춘뒤 실시예 2에서 제조한 CO2 화학흡수제 1L를 넣고 투입되는 Gas를 통과하도록 한 뒤 CO2 저감량을 측정하였다.In the above experimental device, 14% CO 2 Gas is adjusted to be injected into the main reactor through the N 2 Bombe and CO 2 Bombe, then 1L of the CO 2 chemical absorbent prepared in Example 2 is added and the injected gas is passed through, and the CO 2 reduction amount is calculated. was measured.
실험결과가 도 3에 도시되고 있는 바, 그래프상에 첫 번째 하강곡선이 실시예 2가 주입되어 CO2가 저감되고 있는 것을 나타내고 CO2의 저감이 이루어지던 중 상승곡선은 반응기의 뚜껑을 열어 외기가 유입되도록 함으로써 CO2가 상승되도록 한 뒤에 기 사용된 실시예 2의 흡수제를 재생한 재생 흡수제를 투입한 결과 다시 CO2의 저감이 이루어짐을 알 수 있다. The experimental results are shown in FIG. 3. The first downward curve on the graph indicates that CO 2 is being reduced due to the injection of Example 2, and the rising curve while CO 2 is being reduced is when the lid of the reactor is opened to allow outside air. It can be seen that CO 2 is reduced again as a result of introducing a regenerated absorbent obtained by regenerating the previously used absorbent of Example 2 after allowing CO 2 to rise.
<실험예 3> CaCO3 제조 및 CO2 흡수제의 재생<Experimental Example 3> CaCO 3 production and regeneration of CO 2 absorbent
실험예 2에서 CO2를 흡수한 흡수제 1L(용액 온도 32℃)를 2L Beaker에 옮기고 교반해 주면서 CaO(assay 90%) 62.16g을 투입하였다.(용액 온도 62℃로 상승) 투입과 동시에 흰색 고체가 석출되면서 회갈색의 CaO 입자가 빠르게 녹아들어간 뒤 고체를 여과하고 열풍건조 하여 흰색의 CaCO3 100.1g 을 얻었다. 여액은 다시 실험예 2의 CO2 흡수 재생액으로 사용하였다.In Experimental Example 2, 1L of the absorbent (solution temperature 32℃) that absorbed CO 2 was transferred to a 2L Beaker and stirred while adding 62.16g of CaO (assay 90%). (Solution temperature rose to 62℃) As soon as it was added, a white solid formed. As precipitated, the gray-brown CaO particles quickly dissolved, and then the solid was filtered and dried with hot air to obtain 100.1 g of white CaCO 3 . The filtrate was again used as the CO 2 absorption regeneration liquid in Experimental Example 2.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기 실시예에 한정되지 않음은 물론이며, 본 발명이 속하는 분야에서 통상의 기술적 지식을 가진 자에 의해 상기 기재된 내용으로부터 다양한 수정 및 변형이 가능할 수 있음은 물론이다.As described above, although the present invention has been described with reference to limited examples and drawings, the present invention is of course not limited to the above-mentioned examples, and those skilled in the art in the field to which the present invention pertains can easily understand the above-described content. Of course, various modifications and variations may be possible.

Claims (6)

  1. 배기가스 배출원에서 배출되는 배기가스를 유입받아 배기가스로부터 오염물질을 제거하는 전처리부;A pre-processing unit that receives exhaust gas discharged from an exhaust gas source and removes pollutants from the exhaust gas;
    상기 전처리부에서 배기가스를 유입받아 배기가스로부터 황산화물을 제거하여 배출하는 탈황부; A desulfurization unit that receives exhaust gas from the pretreatment unit, removes sulfur oxides from the exhaust gas, and discharges the exhaust gas;
    상기 탈황부 전단 또는 후단에서 배기가스를 유입받아 이산화탄소 흡수제와 반응에 의해 배기가스로부터 이산화탄소 및 황산화물을 제거하고 처리가스를 배출하는 이산화탄소 흡수조;a carbon dioxide absorption tank that receives exhaust gas from the front or rear end of the desulfurization unit, removes carbon dioxide and sulfur oxides from the exhaust gas by reacting with a carbon dioxide absorbent, and discharges treated gas;
    상기 이산화탄소 흡수조로부터 반응액을 유입받아 응집제와 응집반응에 의해 이물질을 침전시키는 1차 침전조;a primary sedimentation tank that receives the reaction solution from the carbon dioxide absorption tank and precipitates foreign substances through a coagulation reaction with a coagulant;
    상기 1차 침전조로부터 반응액을 유입받아 산화칼슘과 반응시켜 탄산칼슘을 생성함과 동시에 반응액으로부터 포집된 이산화탄소가 제거됨에 의해 이산화탄소 흡수제가 재생되는 2차 침전조;a secondary precipitation tank in which the reaction liquid is introduced from the primary precipitation tank and reacts with calcium oxide to produce calcium carbonate, and at the same time, the carbon dioxide collected from the reaction liquid is removed to regenerate the carbon dioxide absorbent;
    상기 2차 침전조로부터 탄산칼슘을 전달받아 저장하는 수득조;a yield tank that receives calcium carbonate from the secondary precipitation tank and stores it;
    상기 2차 침전조로부터 재생된 이산화탄소 흡수제를 전달받아 상기 이산화탄소 흡수조로 순환시키는 재생 이산화탄소 흡수제 저장조;a regenerated carbon dioxide absorbent storage tank that receives the regenerated carbon dioxide absorbent from the secondary sedimentation tank and circulates it to the carbon dioxide absorbent tank;
    를 포함하는 것을 특징으로 하는 자원순환 시스템. A resource circulation system comprising:
  2. 제 1항에 있어서, According to clause 1,
    상기 탈황부에서 배출되는 처리가스 또는 상기 이산화탄소 흡수조를 통해 배출되는 처리가스는 열교환기를 거쳐 외부로 배출됨을 특징으로 하는 자원순환 시스템. A resource circulation system, characterized in that the process gas discharged from the desulfurization unit or the process gas discharged through the carbon dioxide absorption tank is discharged to the outside through a heat exchanger.
  3. 제 1항에 있어서,According to clause 1,
    수산화나트륨 수용액, 일라이트 추출물, 사붕산나트륨, 물유리를 포함하도록 배합되어 이산화탄소 흡수제가 제조되며, 상기 이산화탄소 흡수조에 제조된 이산화탄소 흡수제를 공급하는 제조부가 더 포함되는 것을 특징으로 하는 자원순환 시스템. A resource circulation system in which a carbon dioxide absorbent is manufactured by mixing an aqueous solution of sodium hydroxide, illite extract, sodium tetraborate, and water glass, and further comprising a manufacturing unit that supplies the manufactured carbon dioxide absorbent to the carbon dioxide absorption tank.
  4. 제 3항에 있어서,According to clause 3,
    상기 이산화탄소 흡수제에는 과산화수소가 더 포함되는 것을 특징으로 하는 자원순환 시스템. A resource circulation system, characterized in that the carbon dioxide absorbent further contains hydrogen peroxide.
  5. 제 4항에 있어서,According to clause 4,
    상기 배출원 전단에는 배출원의 연료원으로서 공급되는 화석연료를 분쇄하는 석탄분쇄부가 더 구성되며, 상기 제조부에서는 상기 이산화탄소 흡수제 제조과정에서 생성되는 침전물을 상기 석탄분쇄부에 탈황촉매로 공급하는 것을 특징으로 하는 자원순환 시스템. The front end of the emission source further includes a coal crushing unit that crushes fossil fuel supplied as a fuel source of the emission source, and the manufacturing unit supplies sediment generated during the carbon dioxide absorbent manufacturing process to the coal crusher as a desulfurization catalyst. resource circulation system.
  6. 제 1항에 있어서, According to clause 1,
    상기 수득조에서 저장되는 탄산칼슘은 상기 탈황부로 전달되어 배기가스로부터 황산화물이 제거되도록 하는 것을 특징으로 하는 자원순환 시스템.A resource circulation system characterized in that the calcium carbonate stored in the yield tank is delivered to the desulfurization unit to remove sulfur oxides from the exhaust gas.
PCT/KR2023/010174 2022-07-19 2023-07-17 Resource recycling system WO2024019448A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0089149 2022-07-19
KR1020220089149A KR102556854B1 (en) 2022-07-19 2022-07-19 Resource Circulation System

Publications (1)

Publication Number Publication Date
WO2024019448A1 true WO2024019448A1 (en) 2024-01-25

Family

ID=87425657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010174 WO2024019448A1 (en) 2022-07-19 2023-07-17 Resource recycling system

Country Status (2)

Country Link
KR (1) KR102556854B1 (en)
WO (1) WO2024019448A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076140B1 (en) * 2011-03-28 2011-10-21 정훈 Liquid carbon dioxide produced by reaction of calcium hydroxide and calcium carbonate using rigid exhaust gas to remove sulfur compounds and the device
JP2017039105A (en) * 2015-08-21 2017-02-23 株式会社神戸製鋼所 Gas treatment system and gas treatment method
JP2018501082A (en) * 2014-10-28 2018-01-18 インターサージカル アクチェンゲゼルシャフト Chemical absorbent
KR101864999B1 (en) * 2017-09-18 2018-06-05 이철 A catalyst for desulfurization, a method for producing the same, and a desulfurization method using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752975B2 (en) * 2000-07-31 2004-06-22 Showa Denko K.K. Combustion exhaust gas treatment process and treatment apparatus
KR100934551B1 (en) * 2007-11-30 2009-12-29 김병준 How to remove sulfur oxides and carbon dioxide
KR101938424B1 (en) 2012-09-28 2019-01-14 한국전력공사 Device for Inorganic Carbonation of Carbon Dioxide
KR101937801B1 (en) * 2012-12-24 2019-04-11 재단법인 포항산업과학연구원 Method and apparatus for removing carbon dioxide and SOx from flue gas
KR101322370B1 (en) * 2013-04-08 2013-10-29 극동환경화학 주식회사 Apparatus and method for collecting carbon dioxide of exhaust gas using combustion byproducts and absorption liquid
JP6998174B2 (en) * 2017-10-20 2022-01-18 三菱重工エンジニアリング株式会社 Acid gas removal device and acid gas removal method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076140B1 (en) * 2011-03-28 2011-10-21 정훈 Liquid carbon dioxide produced by reaction of calcium hydroxide and calcium carbonate using rigid exhaust gas to remove sulfur compounds and the device
JP2018501082A (en) * 2014-10-28 2018-01-18 インターサージカル アクチェンゲゼルシャフト Chemical absorbent
JP2017039105A (en) * 2015-08-21 2017-02-23 株式会社神戸製鋼所 Gas treatment system and gas treatment method
KR101864999B1 (en) * 2017-09-18 2018-06-05 이철 A catalyst for desulfurization, a method for producing the same, and a desulfurization method using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEON PIL RIP, CHOI JIWON, YUN TAE SUP, LEE CHANG-HA: "Sorption equilibrium and kinetics of CO2 on clay minerals from subcritical to supercritical conditions: CO2 sequestration at nanoscale interfaces", CHEMICAL ENGENEERING JOURNAL, ELSEVIER, AMSTERDAM, NL, vol. 255, 1 November 2014 (2014-11-01), AMSTERDAM, NL , pages 705 - 715, XP093130313, ISSN: 1385-8947, DOI: 10.1016/j.cej.2014.06.090 *

Also Published As

Publication number Publication date
KR102556854B1 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
CN105381680B (en) Acid gas removal using dry sorbent injection
US6613141B2 (en) Recovery of cement kiln dust through precipitation of calcium sulfate using sulfuric acid solution
CN110124507B (en) Method and device for cleaning and treating multi-pollutant flue gas
US6997119B2 (en) Combustion emissions control and utilization of byproducts
JP2004261658A (en) Method for absorbing/fixing carbon dioxide in combustion exhaust gas
CN113797728B (en) Treatment method for generating smoke in valuable secondary material treatment process
WO2024019288A1 (en) Method for manufacturing combustion aid for addition before fossil fuel combustion and desulfurization catalyst
CN114733888A (en) Method and system for comprehensively utilizing secondary aluminum ash
WO2024019448A1 (en) Resource recycling system
WO2024019449A1 (en) System for removal of carbon dioxide from exhaust gas
CN109126435B (en) Double-alkali flue gas desulfurization process
WO2023234462A1 (en) Method for manufacturing sodium bicarbonate and gypsum using sodium sulfate
WO2024019446A1 (en) Method for producing carbon dioxide absorbent and desulfurization catalyst
WO2022085895A1 (en) Pretreatment desulfurization system for reducing sulfur content of coal by immersing coal in catalyst
KR102069662B1 (en) Method and apparatus for synthesizing calcium carbonate using by-product
WO2024019447A1 (en) Carbon dioxide absorbent
JP2002166125A (en) Combustion exhaust gas treatment method
WO2000058528A1 (en) Method of treating spent potliner material from aluminum reduction cells
JP7143233B2 (en) Incineration ash disposal method
WO2023210876A1 (en) System for capturing and recycling carbon dioxide and producing hydrogen for cement manufacturing facility
JP4097573B2 (en) Waste gas treatment furnace waste gas treatment method and treatment system
CN211770757U (en) Tail gas purification and waste heat utilization device of hot blast stove for active carbon desorption
CN214719281U (en) Resource disposal system for incineration slag and fly ash
WO2023140440A1 (en) System for capturing carbon dioxide and recycling carbon for use in cement manufacturing facilities
CN113753922A (en) Method for purifying waste incineration flue gas and comprehensively utilizing fly ash

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843297

Country of ref document: EP

Kind code of ref document: A1