WO2024019213A1 - Presse sintering method and apparatus - Google Patents

Presse sintering method and apparatus Download PDF

Info

Publication number
WO2024019213A1
WO2024019213A1 PCT/KR2022/012178 KR2022012178W WO2024019213A1 WO 2024019213 A1 WO2024019213 A1 WO 2024019213A1 KR 2022012178 W KR2022012178 W KR 2022012178W WO 2024019213 A1 WO2024019213 A1 WO 2024019213A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
sintered body
sleeve
sintering
pressure sintering
Prior art date
Application number
PCT/KR2022/012178
Other languages
French (fr)
Korean (ko)
Inventor
주경
이기복
송주현
Original Assignee
(주)삼양세라텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)삼양세라텍 filed Critical (주)삼양세라텍
Publication of WO2024019213A1 publication Critical patent/WO2024019213A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/025Hot pressing, e.g. of ceramic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/08Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form with two or more rams per mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/08Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form with two or more rams per mould
    • B28B3/086The rams working in different directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/10Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form each charge of material being compressed against previously formed body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/0097Press moulds; Press-mould and press-ram assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/24Unitary mould structures with a plurality of moulding spaces, e.g. moulds divided into multiple moulding spaces by integratable partitions, mould part structures providing a number of moulding spaces in mutual co-operation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering

Definitions

  • the present invention relates to a method and device for molding a product by pressure sintering, and more specifically, to prevent the sintered body from being damaged by the difference in thermal expansion coefficient between the mold and the sintered body that occurs during the process of pressing and then cooling the sintered body. It relates to a pressure sintering method and device for.
  • Non-sintering non-oxide ceramics with a low coefficient of thermal expansion such as hexagonal boron nitride and hexagonal boron nitride composites, are produced by a hot pressing sintering process.
  • the sintered body is lower than the mold housing. Due to the thermal expansion coefficient, stress occurs in the sintered body and mold housing during the cooling process. At this time, the stress applied to the sintered body not only lowers the physical properties of the sintered body and causes cracks, thereby lowering the yield of the sintered body, but also causes stress to the mold housing, causing damage or deformation of the mold housing.
  • hexagonal boron nitride which has an extremely low coefficient of thermal expansion, is produced using mold housings made of expensive carbon composites.
  • mold housings made of expensive carbon composites.
  • hexagonal boron nitride is produced by manufacturing the mold housing from a carbon composite with a very low coefficient of thermal expansion.
  • the carbon composite also has a relatively high coefficient of thermal expansion compared to hexagonal boron nitride, so it is cooled. The problem is that it is impossible to completely eliminate the stress that occurs during the process.
  • the present invention was proposed to solve the above problems, and provides a pressure sintering method and device that can prevent damage such as cracks or breakage that occurs during cooling to all parts of the product even if the product is molded by the pressure sintering method.
  • the purpose is to provide
  • the pressure sintering device includes a sintering mold including a mold housing having an internal space open up and down, and a mold sleeve seated on the inner wall of the mold housing; An upper punch and a lower punch that press upward and downward on the sintered base material introduced into the mold sleeve; After forming a sintered body by pressing the sintered base material introduced inside the mold sleeve, including a housing support portion that does not support the lower end of the mold sleeve and only supports the lower end of the mold housing, the sintered body is subjected to a preset primary cooling. It is configured to cool to a temperature, demold the sintering mold, and then cool to a preset secondary cooling temperature.
  • It is formed in the shape of a hollow tube that is inserted into the mold sleeve so that the outer surface is spaced apart from the inner surface of the mold sleeve, and includes a plurality of first inner split pieces whose width decreases toward the bottom and a plurality of first inner split pieces whose width increases toward the bottom.
  • It further includes a demolding rod that lowers the second inner split piece, wherein the mold housing is formed in the shape of a hollow tube whose inner diameter increases downward, and the mold sleeve is formed in the shape of a hollow tube whose outer diameter increases toward the downward side.
  • the lower punch presses the sintered body inserted between the mold sleeve and the inner sleeve upward and downward, and the housing support part is configured to raise the mold housing.
  • It further includes a plurality of spacers inserted between the mold sleeve and the inner sleeve in a stacked manner, and the sintered body is formed in a ring shape inserted between two adjacent spacers.
  • the second inner split piece is mounted so that its upper end is positioned higher than the first inner split piece.
  • the mold sleeve is composed of a plurality of outer divided pieces arranged in the circumferential direction.
  • the two adjacent outer split pieces each have outer grooves that communicate with each other formed at the side ends in the width direction, and inside the two outer grooves that communicate with each other, there is a compression spring that applies an elastic force in the direction in which the two adjacent outer split pieces move away from each other. This is provided.
  • a first inner groove is formed at a side end of the first inner split piece, a second inner groove communicating with the first inner groove is formed at a side end of the second inner split piece, and the first inner groove and the second inner groove are in communication with each other.
  • a tension spring is provided inside the inner groove to apply an elastic force in a direction in which the first inner split piece and the second inner split piece approach.
  • the pressure sintering method according to the present invention is a manufacturing method using a pressure sintering device configured as described above, comprising: a first step of charging raw material powder into the sintering mold; A second step of charging the sintering mold into the chamber; A third step of sintering the raw material powder charged into the sintering mold by hot pressing; A fourth step of cooling the inside of the chamber to a temperature between 1600°C and 2000°C, which is the primary cooling temperature; A fifth step of demolding the mold sleeve from the mold housing; When demolding of the mold sleeve is completed, a sixth step of cooling the inside of the chamber to a secondary cooling temperature lower than the primary cooling temperature; A seventh step of pulling the sintering mold out of the chamber; It includes; an eighth step of removing the sintered base material from the mold sleeve.
  • the pressure sintering method is a manufacturing method using a pressure sintering device configured as described above, comprising: a first step of preparing raw material powder for sintering molding; A second step of first forming a hollow product by pressurizing the raw material powder; A third step of positioning the first molded body manufactured in the second step between the inner sleeve and the mold sleeve; A fourth step of forming a sintered body by pressurizing and sintering the primary molded body using the upper punch and the lower punch; A fifth step of raising the mold housing and lowering the second inner split piece to remove the pressing force between the mold sleeve and the sintered body and the pressing force between the inner sleeve and the sintered body; A sixth step of cooling the sintered body to room temperature; A seventh step of demolding the sintering mold; It consists of an eighth step of withdrawing the sintered body.
  • the fourth step is configured to heat the sintered body to a preset temperature to remove impurities in the sintered body, and then hot press the sintered body.
  • the method of pressurizing and sintering the sintered body in the fourth step includes one or more sintering methods among hot pressing sintering, sparking plasma sintering, and gas pressure sintering. It is composed.
  • the third step is configured to insert the sintered body between a plurality of spacers inserted between the mold sleeve and the inner sleeve in a stacked manner.
  • the pressure sintering method and device according to the present invention it is possible to prevent the mold housing or the sintered body from being damaged due to the difference in shrinkage rate between the mold housing and the sintered body that occurs during the cooling process after hot pressing, thereby improving the productivity of the sintered body. It has the advantage of increasing the lifespan of the mold housing.
  • FIG. 1 is a schematic diagram of a pressure sintering device according to the present invention.
  • Figure 2 is a schematic diagram of a sintering mold included in the pressure sintering device according to the present invention.
  • Figure 3 is a flow chart of the pressure sintering method according to the present invention.
  • Figures 4 and 5 are a cross-sectional perspective view and a vertical cross-sectional view of the sintering mold included in the second embodiment of the pressure sintering device according to the present invention.
  • Figures 6 and 7 are a perspective view and an exploded perspective view of the inner sleeve included in the second embodiment of the pressure sintering device according to the present invention.
  • Figure 8 is an exploded perspective view of the mold sleeve included in the second embodiment of the pressure sintering device according to the present invention.
  • Figure 9 is a state diagram of the second embodiment of the pressure sintering device according to the present invention.
  • Figures 10 and 11 are horizontal cross-sectional views of the inner sleeve included in the third embodiment of the pressure sintering device according to the present invention.
  • Figure 12 is a horizontal cross-sectional view of the mold sleeve included in the third embodiment of the pressure sintering device according to the present invention.
  • Figure 13 is a flowchart of another embodiment of the pressure sintering method according to the present invention.
  • Figure 1 is a schematic diagram of a pressure sintering device according to the present invention
  • Figure 4 is a schematic diagram of a sintering mold included in the pressure sintering device according to the present invention
  • Figure 5 is a flow chart of the pressure sintering method according to the present invention.
  • the pressure sintering device is a device for forming a sintered body by pressing non-sintering non-oxide ceramics (hereinafter abbreviated as 'raw material powder') with a low coefficient of thermal expansion, such as hexagonal boron nitride, into a certain shape, and performing a cooling process.
  • 'raw material powder' non-sintering non-oxide ceramics
  • the most notable feature is that it has a structure that allows demolding at a high temperature above a certain level to prevent damage to the mold housing or sintered body.
  • the pressure sintering device includes a sintering mold 200 into which the sintered body 10 is charged, an upper punch 310 and a lower punch ( 410) are provided as basic components.
  • the sintering mold 200 is installed inside the chamber 100, and includes a vacuum pump 500 that creates a vacuum inside the chamber 100, and an upper pressure cylinder 300 that operates the upper punch 310.
  • a lower pressurizing cylinder 400 that operates the lower punch 410 is provided.
  • the vacuum pump 500, the upper pressurizing cylinder 300, and the lower pressurizing cylinder 400 are practically effective even in the conventional pressurizing sintering device. Since the same applies, a detailed description of the detailed structure and operating principle of the vacuum pump 500, the upper pressure cylinder 300, and the lower pressure cylinder 400 will be omitted.
  • the sintering mold 200 includes a mold housing 240 having an internal space open up and down, and a mold sleeve 230 seated on the inner wall of the mold housing 240. It is composed. At this time, a housing support portion 700 supporting the lower end of the mold housing 240 and a demolding rod 600 coupled to the upper end of the upper punch 310 may be additionally provided.
  • the outer edge of the demolding rod 600 is manufactured to be larger than the inner surface of the mold sleeve 230 and smaller than the outer surface of the mold sleeve 230, so that the upper end of the mold housing 240 is not pressed when lowered.
  • the mold sleeve 230 can be removed from the mold housing 240 by pressing only the top of the mold sleeve 230.
  • the sintered body 10 is inserted into the space between the upper punch 310 and the lower punch 410 in the inner space of the mold sleeve 230, and is provided with a plurality of spacers so that a plurality of sintered products can be produced at once. It is separated by (210).
  • the mold sleeve 230 is formed in the shape of a hollow tube, and its outer surface is inclined in a direction in which the outer diameter widens downward, and the mold housing 240 is formed to have an inner surface inclined in a direction in which the inner diameter widens downward. As shown in FIG. 2, when the mold sleeve 230 is press-fitted into the mold housing 240, it cannot be pulled out to the top but can only be pulled out to the bottom.
  • the mold housing 240 is simply mounted on the housing support 700, and the lower punch 410 is press-fitted into the lower side of the mold sleeve 230, as shown in Figure 2.
  • the bottom surface of the mold housing 240 is spaced upward from the upper surface of the housing support portion 700 by the distance the lower punch 410 moves.
  • the sintering mold 200 configured as described above is mounted so that it can be inserted and withdrawn into the chamber 200, and the chamber 200 may be equipped with a heating element for heating the sintering mold 200.
  • the raw material powder is first charged into the sintering mold 200 (S10) and then the sintering mold is charged into the chamber 100 (S20).
  • the raw material powder charged into the sintering mold 200 is hot-pressed and sintered (S30).
  • the sintering conditions at this time depend on the type of raw material powder or the product to be manufactured. It can be appropriately selected depending on various conditions such as characteristics.
  • S40 primary cooling temperature
  • S50 mold sleeve
  • S60 secondary cooling temperature
  • the sintering mold 200 is taken out of the chamber 100 (S70), and then the sintered body is removed from the mold sleeve (S80) to complete the product production process.
  • the thermal expansion coefficient of the mold housing 240 is greater than that of the sintered body 10, so the mold sleeve ( When 230) is mounted on the mold housing 240 and cooled to the secondary cooling temperature at once, the mold housing 240 shrinks more than the sintered body 10, resulting in stress between the sintered body 10 and the mold housing. This happens.
  • this stress is transmitted to the sintered body 10
  • deformation of the sintered body 10 is caused, and when the stress is transmitted to the mold housing 240, cracks are generated in the mold housing 240, thereby shortening the life of the mold housing 240. This results in a significant shortening.
  • the mold sleeve 230 is cooled to the primary cooling temperature rather than being cooled to the secondary cooling temperature at once while the mold sleeve 230 is mounted on the mold housing 240.
  • the phenomenon of stress occurring due to the difference in shrinkage rate between the sintered body 10 and the mold housing 240 can be fundamentally prevented. There is an advantage to having it.
  • Figures 4 and 5 are a cross-sectional perspective view and a vertical cross-sectional view of the second embodiment of the sintering mold included in the second embodiment of the pressure sintering device according to the present invention
  • Figures 6 and 7 are the second embodiment of the pressure sintering device according to the present invention.
  • This is a perspective view and an exploded perspective view of the inner sleeve included in .
  • the pressure sintering device can be configured to manufacture products with a hollow formed in the center, such as a ring or hollow tube, by pressure sintering.
  • the sintering mold 200 is formed in a hollow tube shape whose inner diameter increases toward the bottom, and a hollow tube shape whose inner diameter increases toward the bottom, so that the inner surface of the mold housing 240 is formed.
  • a mold sleeve 230 in close contact with the mold sleeve 230, and a plurality of hollow tubes formed in the shape of a hollow tube that are inserted into the mold sleeve 230 so that the outer surface is spaced apart from the inner surface of the mold sleeve 230, and the width decreases toward the bottom.
  • It may be composed of an inner sleeve 220 in which a first inner split piece 221 and a plurality of second inner split pieces 225 whose width increases toward the bottom are alternately arranged in the circumferential direction.
  • the sintered body 10 is inserted between the mold sleeve 230 and the inner sleeve 220, and the demold rod 600 lowers the second inner split piece 225 so that the inner sleeve 220 It allows the mold sleeve 230 to be spaced apart from the inner side of the sintered body 10, and the housing support portion 700 raises the mold housing 240 so that the mold sleeve 230 can be spaced apart from the outer side of the sintered body 10. .
  • the sintered body 10 heated to a high temperature is By separating the inner sleeve 220 and the mold sleeve 230 from the surface of the sintered body 10 before cooling to room temperature, damage to the sintered body 10 and the sleeve that occurs during the cooling process of the sintered body 10 is prevented. There is an advantage to being able to do it.
  • the sintered body 10 to be sintered has a hollow tube shape, insert the sintered body 10 into the space between the inner sleeve 220 and the mold sleeve 230 and then punch the sintered body using the upper punch 310 and the lower punch 410.
  • the sintered body 10 is formed by pressing the sintered body 10. Even if the sintered body 10 to be sintered has a thin ring shape, if the sintered body 10 is formed in the same manner as above, one sintered body 10 can be formed in one process. There is a problem that it is difficult to increase productivity because only
  • the sintered body 10 to be molded has a ring shape
  • a plurality of sintered bodies 10 are inserted in a stacked manner between the mold sleeve 230 and the inner sleeve 220 so that a plurality of sintered bodies 10 can be molded at once.
  • Two spacers 210 may be additionally provided.
  • the spacers 210 are provided in pairs so as to be in close contact with the upper and lower surfaces of the sintered body 10, respectively, and are stacked in large numbers between the inner sleeve 220 and the mold sleeve 230. As shown in FIG. 5, the spacers 210 are located at the uppermost side.
  • the spacer 210 located at the bottom is pressed downward by the upper punch 310, and the spacer 210 located at the bottom is pressed upward by the lower punch 410.
  • the number of spacers 210 may increase or decrease depending on the thickness of the sintered body 10 to be manufactured, and the shape of the surface of the spacers 210 in contact with the sintered body 10 is determined by the shape of the sintered body 10 to be manufactured. ) can be freely changed depending on the shape.
  • the first inner split piece 221 and the second inner part are formed in the process of the upper punch 310 and lower punch 410 pressing the sintered body 10.
  • the split piece 225 may be pushed into the empty space on the inside and move.
  • the first inner split piece 221 and the second inner split piece 225 are moved, there is a risk that the sintered body 10 may be deformed during sintering, and the inside of the inner sleeve 220 is
  • a center shaft 250 press-fitted to support the inner surfaces of the split piece 221 and the second inner split piece 225 may be additionally provided (see FIGS. 6 and 7).
  • the first inner split piece 221 or the second inner split piece 225 is pressed downward while the center shaft 250 is press-fitted into the inner space of the inner sleeve 220.
  • the center shaft 250 moves downward so that the inner surfaces of the first inner split piece 221 and the second inner split piece 225 can be pressed more strongly against the outer surface of the center shaft 250, It is formed in a cone shape with an increasing outer diameter, and the first inner split piece 221 and the second inner split piece 225 are formed to gradually become thinner in thickness toward the bottom in accordance with the shape of the center shaft 250. This is desirable.
  • Figure 8 is an exploded perspective view of the mold sleeve 230 included in the second embodiment of the pressure sintering device according to the present invention.
  • the mold sleeve 230 surrounding the outer surface of the sintered body 10 has a cone shape whose outer diameter increases downward so that it is tightened when the mold housing 240 is lowered and the tightening force is released when the mold housing 240 rises. It is formed by At this time, when the mold sleeve 230 is formed in the shape of a single hollow tube, the inner diameter strain is very small when tightened and loosened by the mold housing 240, so the effect of being separated from the outer surface of the sintered body 10 is very low. There is a downside.
  • the mold sleeve 230 is composed of a plurality of outer split pieces 231 arranged in the circumferential direction as shown in FIG. 8 so that the sintered body 10 can be reliably separated from the sintered body 10 before cooling. desirable.
  • the mold sleeve 230 is composed of a plurality of outer split pieces 231, when the mold housing 240 is raised, the outer split pieces 231 can move in a direction away from the sintered body 10. , there is an advantage that the sintered body 10 is not damaged during cooling even if the thermal expansion coefficient between the sintered body 10 and the mold sleeve 230 is significantly different.
  • Figure 9 is a state diagram of the second embodiment of the pressure sintering device according to the present invention.
  • a plurality of spacers 210 into which the sintered body 10 is inserted are stacked between the inner sleeve 220 and the mold sleeve 230, and then 2
  • the inner split piece 225 is raised and the mold housing 240 is lowered to press the inner sleeve 220 and the mold sleeve 230 to the inner and outer surfaces of the sintered body 10, and then press the upper punch 310. ) and the lower punch 410 to pressurize the sintered body 10.
  • the method of pressing the sintered body 10 is configured to use hot pressing sintering, sparking plasma sintering, or gas pressure sintering. It can be. Furthermore, it may be configured to include one or more sintering methods among the pressure sintering methods mentioned above.
  • the electric pressure sintering is a sintering method that is attracting attention in the field of advanced new material synthesis, and is configured to fill the sintered body into a sintered mold, sandwich it between electrodes of the electric pressure sintering stage, and then pressurize it while applying a current.
  • This type of electric pressure sintering method handling becomes easy, sintering is possible under a wide range of pressure and temperature conditions, so it can be sintered with various types of materials, and rapid heating is possible, which has the advantage of obtaining a dense sintered body in a short time. there is.
  • the gas pressure sintering is a method of sintering under gas pressure such as high-pressure nitrogen or argon. It can increase the sintering density by removing residual internal pores and defects as much as possible, and improve the mechanical properties of the material to extend strength and lifespan. There is an advantage to making this possible.
  • the hot pressing sintering is a sintering method that heats and pressurizes the sintered body 10 using a separate heating element such as a heating wire.
  • the construction is relatively simple and does not require advanced skills for the operator, so the cost of sintering is low. It has the advantage of being relatively inexpensive.
  • the sintered body 10 Since the sintered body 10 is pressurized above a certain temperature while being pressed, it must undergo a cooling process.
  • the inner sleeve 220 and the mold sleeve 230 undergo the cooling process while being pressed to the sintered body 10, the sintered body 10 ) and the sleeves 220 and 230, stress is applied to the sintered body 10 due to the difference in cooling shrinkage rate, which may cause the sintered body 10 to be damaged.
  • the inner sleeve 220 is lowered by using the demolding rod 600 to lower the second inner split piece 225 as shown in FIG. 9.
  • the pressing force between the mold sleeve 230 and the sintered body 10 is removed by raising the mold housing 240 using the housing support part 700.
  • the inner sleeve 220 is positioned on the inner surface of the sintered body 10 so that the demold rod 600 can press only the second inner split piece 225 and not the first inner split piece 221.
  • the second inner split piece 225 is preferably mounted so that its upper end is higher than the first inner split piece 221.
  • Figures 10 and 11 are horizontal cross-sectional views of the inner sleeve 220 included in the third embodiment of the pressure sintering device according to the present invention
  • Figure 12 is a mold sleeve included in the third embodiment of the pressure sintering device according to the present invention ( 230) is a horizontal cross-sectional view.
  • the sleeves 220 and 230 are spaced apart from the sintered body 10.
  • the second inner split piece 225 is lowered to remove the pressing force between the inner sleeve 220 and the sintered body 10, and the mold housing 240 is raised to form the mold sleeve 230 and the sintered body ( 10)
  • the first sleeve is spaced apart from the inner surface of the sintered body 10 and the second sleeve is spaced from the outer surface of the sintered body 10, as shown in FIG. 9. It can be configured to be spaced apart. .
  • the second inner split piece 225 is lowered so that the side end of the first inner split piece 221 and the side end of the second inner split piece 225 are spaced apart.
  • the width direction side edges of the first inner split piece 221 and the second inner split piece 225 must be in close contact. Therefore, a first inner groove 222 is formed at the side end of the first inner split piece 221, and a second inner groove communicating with the first inner groove 222 is formed at the side end of the second inner split piece 225.
  • a groove 226 is formed, and inside the first inner groove 222 and the second inner groove 226 that communicate with each other, the first inner split piece 221 and the second inner split piece 225 are close to each other.
  • a tension spring 228 may be provided to apply elastic force in one direction.
  • the second inner split piece 225 is lowered, as shown in Figure 11. As described above, even if the first inner split piece 221 and the second inner split piece 225 are spaced apart, the first inner split piece 221 and the second inner split piece 225 are brought into close contact by the tension spring 228. Since the state of FIG. 10 is restored, the outer surfaces of the first inner split piece 221 and the second inner split piece 225 are spaced apart from the sintered body 10 as shown in FIG. 9.
  • the mold sleeve 230 is spaced apart from the outer surface of the sintered body 10 only when the outer split pieces 231 are spread apart from each other when the mold housing 240 is raised.
  • outer grooves 232 that communicate with each other are formed at the width direction side edges of the two neighboring outer split pieces 231, and two adjacent outer split pieces 231 are formed inside the two outer grooves 232 that communicate with each other.
  • a compression spring 238 that applies elastic force in a direction away from each other (see Figure 12).
  • each of the outer split pieces 231 is spread apart from each other, and can be spaced apart from the sintered body 10 as shown in FIG. 9 .
  • Figure 13 is a flowchart of another embodiment of the pressure sintering method according to the present invention.
  • Another embodiment of the pressure sintering method according to the present invention is a method of molding a hollow sintered body 10 using the pressure sintering device shown in FIGS. 4 to 12, and raw material powder for sintering is prepared (S21) After initially molding a hollow product capable of maintaining a certain level of shape by pressing the raw material powder (S22), the primary molded body manufactured in the second step is placed in the inner sleeve 220 and the mold sleeve 230. ) (S23). At this time, when the sintered body 10 to be manufactured has a ring shape, a plurality of spacers are installed between the mold sleeve 230 and the inner sleeve 220 so that a plurality of sintered bodies 10 can be formed in one process. (210) may be inserted in a stacked manner, and the sintered body (10) may be set to be inserted between two neighboring spacers (210).
  • the inner sleeve 220 and mold sleeve 230 are in close contact with the sintered body 10 and the upper punch 310 and lower punch 410 are used to form the primary molded body.
  • the sintered body is formed by second pressure sintering (S24). At this time, before pressing the primary molded body, a process of heating the sintered body 10 to a preset temperature may be preceded so that impurities contained in the sintered body 10 can be burned and removed.
  • the mold housing 240 is raised and the second inner split piece 225 is lowered (see FIG. 9) to form the mold sleeve 230 and the sintered body 10.
  • the sintered body 10 is cooled to room temperature (S26). At this time, the sintered body 10 is spaced apart from the inner sleeve 220 and the mold sleeve 230, so that damage due to shrinkage stress of each sleeve 220 and 230 does not occur even after the cooling process.
  • the sintered mold 200 is demolded (S27) and the sintered body 10 is taken out (S28), thereby completing the molding of the sintered body 10.
  • a boron carbide ring-shaped sintered body was manufactured using the pressure sintering method according to the present invention.
  • the boron carbide raw material was selected in powder form with a purity of 118.3% and an average particle size of 0.7 ⁇ m.
  • the prepared raw materials were placed in a metal mold and uniaxially pressed and molded at a pressure of 300 kgf/cm2 to produce a primary molded body with a density of 1.2g/cm3.
  • the prepared primary molded body was stacked between the inner sleeve 220 and the mold sleeve 230, and the sintered mold 200 was assembled, placed in the chamber 100, and evacuated.
  • the interior of the chamber 100 was heated to 1,500°C in a vacuum atmosphere to remove impurities such as carbon and oxygen remaining inside the primary molded body, and then heated to 2,150°C under a pressure of 300 kgf/cm2 to sinter boron carbide.
  • the pressure was released, the compressing force between the inner sleeve 220 and the sintered body and the compressing force between the mold sleeve 230 and the sintered body were removed, and then cooling was performed.
  • the boron carbide sintered body was demolded from the sintering mold 200 and taken out.
  • a silicon carbide ring-shaped sintered body was manufactured using the pressure sintering method according to the present invention.
  • the silicon carbide raw material was selected as a spherical raw material with an average particle size of 120 ⁇ m containing carbon as a sintering aid.
  • the degreased primary molded body is stacked between the inner sleeve 220 and the mold sleeve 230, and the sintered mold 200 is assembled and placed in the chamber. It was placed in (100) and vacuum evacuation was performed.
  • Impurities such as carbon and oxygen remaining inside the molded body were removed by heating to 1,500°C in a vacuum atmosphere, and sintering of silicon carbide was performed by heating to 2,150°C under a pressure of 150 kgf/cm2.
  • the pressure was released, the compressing force between the inner sleeve 220 and the sintered body and the compressing force between the mold sleeve 230 and the sintered body were removed, and then cooling was performed.
  • the silicon carbide sintered body was demolded from the sintering mold 200 and taken out.
  • a silicon nitride disc-shaped sintered body was manufactured using the pressure sintering method according to the present invention.
  • silicon nitride raw material 3% yttria and 2% alumina were added as sintering aids to powder raw materials with an average particle size of 1 ⁇ m, and wet mixing was performed in a ball mill. The mixed raw materials were dried and then sieved.
  • the prepared raw materials were placed in a metal mold, and uniaxial press molding was performed at a pressure of 150 kgf/cm2 to produce a high-density primary molded body with a density of 1.8 g/cm3.
  • the prepared primary molded body was stacked between the inner sleeve 220 and the mold sleeve 230, the graphite mold was assembled, and then placed in the chamber 100 of the pressure sintering device and evacuated.
  • the pressure was released, the compressing force between the inner sleeve 220 and the sintered body and the compressing force between the mold sleeve 230 and the sintered body were removed, and then cooling was performed.
  • the nitrous silicon sintered body was demolded from the sintering mold 200 and taken out.
  • a tube-shaped sintered body of silicon carbide with a length of 150 mm was manufactured using the pressure sintering method according to the present invention.
  • the cylindrical silicon carbide sintered body was made in the same manner as in 'Example 2'.
  • the present invention enables uniform pressure distribution in the longitudinal direction of the cylindrical sintered body. It was confirmed that it was possible to manufacture a high-density sintered body in a long tube shape.
  • the pressure sintering method according to the present invention can not only easily produce sintered bodies of superior quality compared to the existing pressure sintering method for non-sintering ceramics and high-density ceramics that cannot be sintered under normal pressure, but also their shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

A press sintering apparatus according to the present invention comprises: a sintering mold having a mold housing having an inner space open vertically, and a mold sleeve stably placed on the inner wall of the mold housing; an upper punch and a lower punch for vertically pressing a sintered base material introduced into the mold sleeve; and a housing support part for supporting only the lower end of the mold housing without supporting the lower end of the mold sleeve, wherein after forming a sintered body by pressing the sintered base material introduced into the mold sleeve, the sintered body is cooled to a preset primary cooling temperature, is removed from the sintered mold, and then cooled to a preset secondary cooling temperature. The press sintering method and apparatus according to the present invention can prevent damage to the mold housing or the sintered body due to the difference in shrinkage between the mold housing and the sintered body, which occurs during the cooling process after hot pressing, and thus can advantageously improve productivity of the sintered body and increase the lifetime of the mold housing.

Description

가압 소결 방법 및 장치Pressure sintering method and device
본 발명은 가압 소결 방식으로 제품을 성형하기 위한 방법 및 장치에 관한 것으로, 더 상세하게는 소결체를 가압하였다가 냉각시키는 과정에서 발생하는 금형과 소결체의 열팽창률 차이에 의해 소결체가 파손되는 것을 방지하기 위한 가압 소결 방법 및 장치에 관한 것이다.The present invention relates to a method and device for molding a product by pressure sintering, and more specifically, to prevent the sintered body from being damaged by the difference in thermal expansion coefficient between the mold and the sintered body that occurs during the process of pressing and then cooling the sintered body. It relates to a pressure sintering method and device for.
육방정 질화붕소 및 육방정 질화붕소 복합체와 같은 열팽창계수가 낮은 난소결성 비산화물계 세라믹스는 열간가압 소결 공정에 의해 생산되어지고 있는데, 이러한 육방정 질화붕소와 그 복합체 제조 시 몰드하우징보다 낮은 소결체의 열팽창 계수로 인하여 냉각과정에서 소결체와 몰드하우징에 스트레스가 발생하게 된다. 이때 소결체에 가해지는 스트레스는 소결체의 물성을 저하시키고 균열을 초래하여 소결체의 수율을 낮출뿐만 아니라, 몰드하우징에도 스트레스가 가해져 몰드하우징의 파손 또는 변형이 발생한다는 문제점이 있다.Non-sintering non-oxide ceramics with a low coefficient of thermal expansion, such as hexagonal boron nitride and hexagonal boron nitride composites, are produced by a hot pressing sintering process. When manufacturing such hexagonal boron nitride and its composites, the sintered body is lower than the mold housing. Due to the thermal expansion coefficient, stress occurs in the sintered body and mold housing during the cooling process. At this time, the stress applied to the sintered body not only lowers the physical properties of the sintered body and causes cracks, thereby lowering the yield of the sintered body, but also causes stress to the mold housing, causing damage or deformation of the mold housing.
이에 따라, 육방정 질화붕소와 그 복합체의 가격 경쟁력을 떨어져 그 우수한 물성에도 불구하고, 일부 제품에만 제한적으로 사용되고 있다. 특히, 극단적으로 낮은 열팽창계수를 가지는 육방정 질화붕소는 고가의 탄소복합체로 제작된 몰드하우징을 사용하여 생산하고 있으나, 이러한 탄소복합체 몰드하우징은 워낙 고가이기 때문에 제조비용이 상승한다는 문제점이 있다.Accordingly, the price competitiveness of hexagonal boron nitride and its composites is reduced, and despite its excellent physical properties, its use is limited to some products. In particular, hexagonal boron nitride, which has an extremely low coefficient of thermal expansion, is produced using mold housings made of expensive carbon composites. However, because these carbon composite mold housings are so expensive, there is a problem in that manufacturing costs increase.
몰드하우징 및 소결체의 손상을 방지하기 위하여 열팽창계수가 매우 낮은 탄소복합체로 몰드하우징을 제작하여 육방정 질화붕소를 생산하고 있으나, 탄소복합체 또한 육방정 질화붕소에 비해 상대적으로 높은 열팽창계수를 가지고 있어 냉각과정에서 발생하는 스트레스를 완벽히 제거할 수 없는 문제점을 안고 있는 실정이다.In order to prevent damage to the mold housing and sintered body, hexagonal boron nitride is produced by manufacturing the mold housing from a carbon composite with a very low coefficient of thermal expansion. However, the carbon composite also has a relatively high coefficient of thermal expansion compared to hexagonal boron nitride, so it is cooled. The problem is that it is impossible to completely eliminate the stress that occurs during the process.
본 발명은 상기와 같은 문제점을 해결하기 위하여 제안된 것으로, 제품을 가압 소결 방식으로 성형하더라도 냉각 시 발생하는 균열이나 파손 등의 손상을 제품의 모든 부위에 걸쳐 방지할 수 있는 가압 소결 방법 및 장치를 제공하는데 목적이 있다.The present invention was proposed to solve the above problems, and provides a pressure sintering method and device that can prevent damage such as cracks or breakage that occurs during cooling to all parts of the product even if the product is molded by the pressure sintering method. The purpose is to provide
본 발명에 의한 가압 소결장치는, 상하로 개방된 내부공간을 구비하는 몰드하우징과, 상기 몰드하우징의 내벽에 안착되는 몰드슬리브를 구비하는 소결금형; 상기 몰드슬리브의 내측으로 인입된 소결모재를 상하로 가압하는 상부펀치 및 하부펀치; 상기 몰드슬리브의 하단은 지지하지 아니하고 상기 몰드하우징의 하단만을 지지하는 하우징 지지부;를 포함하여, 상기 몰드슬리브 내측에 인입된 소결모재를 가압하여 소결체를 성형한 후 상기 소결체를 사전에 설정된 1차 냉각 온도까지 냉각시키고, 상기 소결금형을 탈형한 후 사전에 설정된 2차 냉각 온도까지 냉각시키도록 구성된다.The pressure sintering device according to the present invention includes a sintering mold including a mold housing having an internal space open up and down, and a mold sleeve seated on the inner wall of the mold housing; An upper punch and a lower punch that press upward and downward on the sintered base material introduced into the mold sleeve; After forming a sintered body by pressing the sintered base material introduced inside the mold sleeve, including a housing support portion that does not support the lower end of the mold sleeve and only supports the lower end of the mold housing, the sintered body is subjected to a preset primary cooling. It is configured to cool to a temperature, demold the sintering mold, and then cool to a preset secondary cooling temperature.
외측면이 상기 몰드슬리브의 내측면과 이격되도록 상기 몰드슬리브 내부에 인입되는 중공관 형상으로 형성되되 하측으로 갈수록 폭이 감소하는 복수 개의 제1 내측분할편과 하측으로 갈수록 폭이 증가하는 복수 개의 제2 내측분할편이 원주방향으로 교번으로 배열되는 내측슬리브; 상기 제2 내측분할편을 하강시키는 탈형로드;를 더 포함하고, 상기 몰드하우징은 하측으로 갈수록 내경이 증가하는 중공관 형상으로 형성되고, 상기 몰드슬리브는 하측으로 갈수록 외경이 증가하는 중공관 형상으로 형성되며, 상기 하부펀치는 상기 몰드슬리브와 상기 내측슬리브의 사이로 인입된 소결체를 상하로 가압하고, 상기 하우징 지지부는 상기 몰드하우징을 상승시키도록 구성된다.It is formed in the shape of a hollow tube that is inserted into the mold sleeve so that the outer surface is spaced apart from the inner surface of the mold sleeve, and includes a plurality of first inner split pieces whose width decreases toward the bottom and a plurality of first inner split pieces whose width increases toward the bottom. 2 inner sleeves in which inner split pieces are arranged alternately in the circumferential direction; It further includes a demolding rod that lowers the second inner split piece, wherein the mold housing is formed in the shape of a hollow tube whose inner diameter increases downward, and the mold sleeve is formed in the shape of a hollow tube whose outer diameter increases toward the downward side. The lower punch presses the sintered body inserted between the mold sleeve and the inner sleeve upward and downward, and the housing support part is configured to raise the mold housing.
상기 몰드슬리브와 상기 내측슬리브 사이에 적층 방식으로 삽입되는 복수 개의 스페이서를 더 포함하고, 상기 소결체는 이웃하는 두 개의 스페이서 사이에 삽입되는 링 형상으로 형성된다.It further includes a plurality of spacers inserted between the mold sleeve and the inner sleeve in a stacked manner, and the sintered body is formed in a ring shape inserted between two adjacent spacers.
상기 내측슬리브의 내부에 압입되는 센터샤프트를 더 포함하되, 상기 센터샤프트는 하측으로 갈수록 외경이 증가하는 원추 형상으로 형성되고, 상기 제1 내측분할편과 상기 제2 내측분할편은 하측으로 갈수록 두께가 점진적으로 얇아지도록 형성된다.It further includes a center shaft press-fitted into the inner sleeve, wherein the center shaft is formed in a cone shape whose outer diameter increases downward, and the first inner split piece and the second inner split piece have a thickness toward the bottom. is formed to gradually become thinner.
상기 제2 내측분할편은 상기 제1 내측분할편보다 상단이 높게 위치되도록 장착된다. The second inner split piece is mounted so that its upper end is positioned higher than the first inner split piece.
상기 몰드슬리브는 원주방향으로 배열되는 복수 개의 외측분할편으로 구성된다.The mold sleeve is composed of a plurality of outer divided pieces arranged in the circumferential direction.
이웃하는 두 개의 외측분할편은, 폭방향 측단에 상호 연통되는 외측홈이 각각 형성되고, 상호 연통되는 두 개의 외측홈 내부에는, 이웃하는 두 개의 외측분할편이 서로 멀어지는 방향으로 탄성력을 인가하는 압축스프링이 구비된다.The two adjacent outer split pieces each have outer grooves that communicate with each other formed at the side ends in the width direction, and inside the two outer grooves that communicate with each other, there is a compression spring that applies an elastic force in the direction in which the two adjacent outer split pieces move away from each other. This is provided.
상기 제1 내측분할편의 측단에는 제1 내측홈이 형성되고, 상기 제2 내측분할편의 측단에는 상기 제1 내측홈과 연통되는 제2 내측홈이 형성되며, 상호 연통되는 제1 내측홈과 제2 내측홈 내부에는, 상기 제1 내측분할편과 상기 제2 내측분할편이 가까워지는 방향으로 탄성력은 인가하는 인장스프링이 구비된다.A first inner groove is formed at a side end of the first inner split piece, a second inner groove communicating with the first inner groove is formed at a side end of the second inner split piece, and the first inner groove and the second inner groove are in communication with each other. Inside the inner groove, a tension spring is provided to apply an elastic force in a direction in which the first inner split piece and the second inner split piece approach.
본 발명에 의한 가압 소결 방법은 상기와 같이 구성되는 가압 소결 장치를 이용하는 제조방법으로서, 원료분말을 상기 소결금형 내측으로 장입하는 제1 단계; 상기 소결금형을 챔버에 장입하는 제2 단계; 상기 소결금형에 장입된 원료분말을 열간 가압하여 소결하는 제3 단계; 상기 챔버 내부를 1차 냉각 온도인 1600℃ 내지 2000℃ 사이의 온도로 냉각시키는 제4 단계; 상기 몰드슬리브를 상기 몰드하우징으로부터 탈형하는 제5 단계; 상기 몰드슬리브의 탈형이 완료되면, 상기 챔버 내부를 상기 1차 냉각 온도보다 낮은 2차 냉각 온도까지 냉각시키는 제6 단계; 상기 소결금형을 상기 챔버 외부로 인출시키는 제7 단계; 소결모재를 상기 몰드슬리브로부터 탈거하는 제8 단계;를 포함한다.The pressure sintering method according to the present invention is a manufacturing method using a pressure sintering device configured as described above, comprising: a first step of charging raw material powder into the sintering mold; A second step of charging the sintering mold into the chamber; A third step of sintering the raw material powder charged into the sintering mold by hot pressing; A fourth step of cooling the inside of the chamber to a temperature between 1600°C and 2000°C, which is the primary cooling temperature; A fifth step of demolding the mold sleeve from the mold housing; When demolding of the mold sleeve is completed, a sixth step of cooling the inside of the chamber to a secondary cooling temperature lower than the primary cooling temperature; A seventh step of pulling the sintering mold out of the chamber; It includes; an eighth step of removing the sintered base material from the mold sleeve.
본 발명에 의한 가압 소결 방법은 상기와 같이 구성되는 가압 소결 장치를 이용하는 제조방법으로서, 소결성형을 위한 원료분말을 마련하는 제1 단계; 상기 원료분말을 가압하여 중공형 제품을 1차 성형하는 제2 단계; 상기 제2 단계에서 제작된 1차 성형체를 상기 내측슬리브와 상기 몰드슬리브 사이에 위치시키는 제3 단계; 상기 상부펀치 및 하부펀치를 이용하여 상기 1차 성형체를 가압 소결함으로써 소결체를 성형하는 제4 단계; 상기 몰드하우징을 상승시키고 상기 제2 내측분할편을 하강시켜, 상기 몰드슬리브와 상기 소결체 간의 압착력과 상기 내측슬리브와 상기 소결체 간의 압착력을 제거하는 제5 단계; 상기 소결체를 상온까지 냉각시키는 제6 단계; 상기 소결금형을 탈형하는 제7 단계; 상기 소결체를 인출하는 제8 단계;로 구성된다.The pressure sintering method according to the present invention is a manufacturing method using a pressure sintering device configured as described above, comprising: a first step of preparing raw material powder for sintering molding; A second step of first forming a hollow product by pressurizing the raw material powder; A third step of positioning the first molded body manufactured in the second step between the inner sleeve and the mold sleeve; A fourth step of forming a sintered body by pressurizing and sintering the primary molded body using the upper punch and the lower punch; A fifth step of raising the mold housing and lowering the second inner split piece to remove the pressing force between the mold sleeve and the sintered body and the pressing force between the inner sleeve and the sintered body; A sixth step of cooling the sintered body to room temperature; A seventh step of demolding the sintering mold; It consists of an eighth step of withdrawing the sintered body.
상기 제4 단계는, 상기 소결체를 사전에 설정된 온도까지 가열하여 상기 소결체의 불순물을 제거한 후, 상기 소결체를 열간 가압하도록 구성된다.The fourth step is configured to heat the sintered body to a preset temperature to remove impurities in the sintered body, and then hot press the sintered body.
상기 제4 단계에서 상기 소결체를 가압 소결하는 방법은, 열간 가압 소결(Hot Pressing Sintering)과, 통전 가압 소결(Sparking Plazma Sinterign)과, 가스 가압 소결(Gas Pressure Sintering) 중 하나 이상의 소결공법을 포함하도록 구성된다.The method of pressurizing and sintering the sintered body in the fourth step includes one or more sintering methods among hot pressing sintering, sparking plasma sintering, and gas pressure sintering. It is composed.
상기 제3 단계는, 상기 몰드슬리브와 상기 내측슬리브 사이에 적층 방식으로 삽입되는 복수 개의 스페이서 사이에 상기 소결체를 삽입하도록 구성된다.The third step is configured to insert the sintered body between a plurality of spacers inserted between the mold sleeve and the inner sleeve in a stacked manner.
본 발명에 의한 가압 소결 방법 및 장치를 이용하면, 열간 가압 후 냉각 과정에서 발생하는 몰드하우징과 소결체 간의 수축률 차이에 의해 몰드하우징이나 소결체가 손상되는 현상을 방지할 수 있으므로, 소결체 생산성을 향상시킬 수 있고 몰드하우징의 수명을 증대시킬 수 있다는 장점이 있다.By using the pressure sintering method and device according to the present invention, it is possible to prevent the mold housing or the sintered body from being damaged due to the difference in shrinkage rate between the mold housing and the sintered body that occurs during the cooling process after hot pressing, thereby improving the productivity of the sintered body. It has the advantage of increasing the lifespan of the mold housing.
또한 본 발명에 의한 가압 소결 방법 및 장치를 이용하면, 중공형 제품을 가압 소결 방식으로 성형하더라도 냉각 시 발생하는 균열이나 파손 등의 손상을 제품의 모든 부위에 걸쳐 방지할 수 있고, 링 형상의 제품을 한 번의 공정으로 다수 개 성형할 수 있어 생산성을 높일 수 있다는 장점이 있다.In addition, by using the pressure sintering method and device according to the present invention, even if a hollow product is molded by the pressure sintering method, damage such as cracks or breakage that occurs during cooling can be prevented in all parts of the product, and ring-shaped products can be prevented. It has the advantage of increasing productivity as multiple pieces can be molded in one process.
도 1은 본 발명에 의한 가압 소결 장치의 개략도이다.1 is a schematic diagram of a pressure sintering device according to the present invention.
도 2는 본 발명에 의한 가압 소결 장치에 포함되는 소결금형의 개략도이다.Figure 2 is a schematic diagram of a sintering mold included in the pressure sintering device according to the present invention.
도 3은 본 발명에 의한 가압 소결 방법의 순서도이다.Figure 3 is a flow chart of the pressure sintering method according to the present invention.
도 4 및 도 5는 본 발명에 의한 가압 소결 장치 제2 실시예에 포함되는 소결금형의 단면사시도 및 수직단면도이다.Figures 4 and 5 are a cross-sectional perspective view and a vertical cross-sectional view of the sintering mold included in the second embodiment of the pressure sintering device according to the present invention.
도 6 및 도 7은 본 발명에 의한 가압 소결 장치 제2 실시예에 포함되는 내측슬리브의 사시도 및 분해사시도이다.Figures 6 and 7 are a perspective view and an exploded perspective view of the inner sleeve included in the second embodiment of the pressure sintering device according to the present invention.
도 8은 본 발명에 의한 가압 소결 장치 제2 실시예에 포함되는 몰드슬리브의 분해사시도이다.Figure 8 is an exploded perspective view of the mold sleeve included in the second embodiment of the pressure sintering device according to the present invention.
도 9는 본 발명에 의한 가압 소결 장치 제2 실시예의 사용상태도이다.Figure 9 is a state diagram of the second embodiment of the pressure sintering device according to the present invention.
도 10 및 도 11은 본 발명에 의한 가압 소결 장치 제3 실시예에 포함되는 내측슬리브의 수평단면도이다.Figures 10 and 11 are horizontal cross-sectional views of the inner sleeve included in the third embodiment of the pressure sintering device according to the present invention.
도 12는 본 발명에 의한 가압 소결 장치 제3 실시예에 포함되는 몰드슬리브의 수평단면도이다.Figure 12 is a horizontal cross-sectional view of the mold sleeve included in the third embodiment of the pressure sintering device according to the present invention.
도 13은 본 발명에 의한 가압 소결 방법의 다른 실시예 순서도이다.Figure 13 is a flowchart of another embodiment of the pressure sintering method according to the present invention.
이하 첨부된 도면을 참조하여 본 발명에 의한 열간 가압 소결 방법 및 장치의 실시예를 상세히 설명한다.Hereinafter, embodiments of the hot pressure sintering method and device according to the present invention will be described in detail with reference to the attached drawings.
도 1은 본 발명에 의한 가압 소결 장치의 개략도이고, 도 4는 본 발명에 의한 가압 소결 장치에 포함되는 소결금형의 개략도이며, 도 5는 본 발명에 의한 가압 소결 방법의 순서도이다.Figure 1 is a schematic diagram of a pressure sintering device according to the present invention, Figure 4 is a schematic diagram of a sintering mold included in the pressure sintering device according to the present invention, and Figure 5 is a flow chart of the pressure sintering method according to the present invention.
본 발명에 의한 가압 소결 장치는 육방정 질화붕소와 같이 열팽창계수가 낮은 난소결성 비산화물계 세라믹스(이하 '원료 분말'이라 약칭한다)를 일정한 형상으로 가압하여 소결체를 성형하기 위한 장치로서, 냉각과정에서 몰드하우징이나 소결체의 손상이 발생되지 아니하도록 일정 수준 이상의 고온 상태에서 탈형이 가능한 구조로 구성된다는 점에 가장 큰 특징이 있다.The pressure sintering device according to the present invention is a device for forming a sintered body by pressing non-sintering non-oxide ceramics (hereinafter abbreviated as 'raw material powder') with a low coefficient of thermal expansion, such as hexagonal boron nitride, into a certain shape, and performing a cooling process. The most notable feature is that it has a structure that allows demolding at a high temperature above a certain level to prevent damage to the mold housing or sintered body.
즉, 본 발명에 의한 가압 소결장치는, 소결체(10)가 내부에 장입되는 소결금형(200)과, 소결금형(200) 내의 소결체(10)를 가압하기 위한 상부펀치(310) 및 하부펀치(410)를 기본 구성요소로 구비한다. 상기 소결금형(200)은 챔버(100)의 내부에 설치되며, 상기 챔버(100) 내부에 진공을 형성하는 진공펌프(500)와, 상기 상부펀치(310)를 작동시키는 상부가압실린더(300)와, 상기 하부펀치(410)를 작동시키는 하부가압실린더(400)가 구비되는데, 이와 같은 진공펌프(500)와 상부가압실린더(300), 하부가압실린더(400)는 종래의 가압 소결장치에서도 실질적으로 동일하게 적용되고 있는바, 상기 진공펌프(500)와 상부가압실린더(300), 하부가압실린더(400)의 상세 구조 및 작동원리에 대한 상세한 설명은 생략한다.That is, the pressure sintering device according to the present invention includes a sintering mold 200 into which the sintered body 10 is charged, an upper punch 310 and a lower punch ( 410) are provided as basic components. The sintering mold 200 is installed inside the chamber 100, and includes a vacuum pump 500 that creates a vacuum inside the chamber 100, and an upper pressure cylinder 300 that operates the upper punch 310. And, a lower pressurizing cylinder 400 that operates the lower punch 410 is provided. The vacuum pump 500, the upper pressurizing cylinder 300, and the lower pressurizing cylinder 400 are practically effective even in the conventional pressurizing sintering device. Since the same applies, a detailed description of the detailed structure and operating principle of the vacuum pump 500, the upper pressure cylinder 300, and the lower pressure cylinder 400 will be omitted.
상기 소결금형(200)은 도 2에 도시된 바와 같이, 상하로 개방된 내부공간을 구비하는 몰드하우징(240)과, 상기 몰드하우징(240)의 내벽에 안착되는 몰드슬리브(230)를 포함하여 구성된다. 이때, 상기 몰드하우징(240)의 하단을 지지하는 하우징 지지부(700)와, 상기 상부펀치(310)의 상단에 결합되는 탈형로드(600)가 추가로 구비될 수 있다.As shown in FIG. 2, the sintering mold 200 includes a mold housing 240 having an internal space open up and down, and a mold sleeve 230 seated on the inner wall of the mold housing 240. It is composed. At this time, a housing support portion 700 supporting the lower end of the mold housing 240 and a demolding rod 600 coupled to the upper end of the upper punch 310 may be additionally provided.
이때 상기 탈형로드(600)는 외측 가장자리가 몰드슬리브(230)의 내측면보다는 크고 몰드슬리브(230)의 외측면보다는 작게 제작되는바, 하강 시 상기 몰드하우징(240)의 상단은 가압하지 아니하고 상기 몰드슬리브(230)의 상단만을 가압하여 몰드슬리브(230)를 몰드하우징(240)으로부터 탈거시킬 수 있게 된다. 한편, 상기 소결체(10)는 몰드슬리브(230)의 내부공간 중 상부펀치(310)와 하부펀치(410) 사이의 공간에 장입되며, 한 번에 다수 개의 소결제품이 생산될 수 있도록 다수 개의 스페이서(210)에 의해 분리된다. At this time, the outer edge of the demolding rod 600 is manufactured to be larger than the inner surface of the mold sleeve 230 and smaller than the outer surface of the mold sleeve 230, so that the upper end of the mold housing 240 is not pressed when lowered. The mold sleeve 230 can be removed from the mold housing 240 by pressing only the top of the mold sleeve 230. Meanwhile, the sintered body 10 is inserted into the space between the upper punch 310 and the lower punch 410 in the inner space of the mold sleeve 230, and is provided with a plurality of spacers so that a plurality of sintered products can be produced at once. It is separated by (210).
상기 몰드슬리브(230)는 중공관 형상으로 형성되되 하측으로 갈수록 외경이 넓어지는 방향으로 외측면이 경사지게 형성되고, 상기 몰드하우징(240)은 하측으로 갈수록 내경이 넓어지는 방향으로 내측면이 경사지게 형성되는바, 도 2에 도시된 바와 같이 몰드슬리브(230)가 몰드하우징(240)에 압입된 상태에서는 상측으로는 빠지지 못하고 하측으로만 빠질 수 있게 된다. The mold sleeve 230 is formed in the shape of a hollow tube, and its outer surface is inclined in a direction in which the outer diameter widens downward, and the mold housing 240 is formed to have an inner surface inclined in a direction in which the inner diameter widens downward. As shown in FIG. 2, when the mold sleeve 230 is press-fitted into the mold housing 240, it cannot be pulled out to the top but can only be pulled out to the bottom.
또한 몰드하우징(240)은 하우징 지지부(700) 상에 단순히 거치되는 구조로 안착되고, 상기 하부펀치(410)는 몰드슬리브(230)의 하측에 끼워맞춤 방식으로 압입되는바, 도 2에 도시된 상태에서 하부펀치(410)를 상측으로 이동시키면 하부펀치(410)의 이동거리만큼 몰드하우징(240)의 저면은 하우징 지지부(700)의 상면으로부터 상향 이격된다. 상기와 같이 구성되는 소결금형(200)은 챔버(200) 내측으로 인입 및 인출 가능하도록 장착되며, 상기 챔버(200)에는 소결금형(200)을 가열하기 위한 발열체가 구비될 수 있다.In addition, the mold housing 240 is simply mounted on the housing support 700, and the lower punch 410 is press-fitted into the lower side of the mold sleeve 230, as shown in Figure 2. In this state, when the lower punch 410 is moved upward, the bottom surface of the mold housing 240 is spaced upward from the upper surface of the housing support portion 700 by the distance the lower punch 410 moves. The sintering mold 200 configured as described above is mounted so that it can be inserted and withdrawn into the chamber 200, and the chamber 200 may be equipped with a heating element for heating the sintering mold 200.
본 발명에 의한 열간 가압 소결 방법으로 제품을 성형하고자 하는 경우에는, 먼저 원료분말을 소결금형(200) 내측으로 장입한 후(S10) 상기 소결금형을 챔버(100) 내부로 장입한다(S20).When attempting to mold a product using the hot pressing sintering method according to the present invention, the raw material powder is first charged into the sintering mold 200 (S10) and then the sintering mold is charged into the chamber 100 (S20).
소결금형(200)이 챔버(100) 내부로 장입되면, 상기 소결금형(200)에 장입된 원료분말을 열간 가압하여 소결하는데(S30), 이때의 소결조건은 원료분말의 종류나 제작하고자 하는 제품의 특성 등 여러가지 조건에 따라 적절하게 선택될 수 있다. 열간 가압 소결이 완료되면, 상기 챔버(100) 내부를 사전에 설정된 1차 냉각 온도까지 냉각시킨 후(S40) 몰드슬리브(230)를 몰드하우징(240)으로부터 탈형하고(S50), 상기 몰드슬리브(230)의 탈형이 완료되면 상기 챔버(100) 내부를 사전에 설정된 2차 냉각 온도까지 냉각시킨다(S60).When the sintering mold 200 is charged into the chamber 100, the raw material powder charged into the sintering mold 200 is hot-pressed and sintered (S30). The sintering conditions at this time depend on the type of raw material powder or the product to be manufactured. It can be appropriately selected depending on various conditions such as characteristics. When hot press sintering is completed, the inside of the chamber 100 is cooled to a preset primary cooling temperature (S40), then the mold sleeve 230 is demolded from the mold housing 240 (S50), and the mold sleeve ( When demolding of 230) is completed, the inside of the chamber 100 is cooled to a preset secondary cooling temperature (S60).
2차 냉각 온도까지 냉각이 완료되면, 상기 소결금형(200)을 상기 챔버(100) 외부로 인출시킨 후(S70), 소결체를 상기 몰드슬리브로부터 탈거하여(S80) 제품 생산과정을 완료한다.When cooling to the secondary cooling temperature is completed, the sintering mold 200 is taken out of the chamber 100 (S70), and then the sintered body is removed from the mold sleeve (S80) to complete the product production process.
이때, 원료분말을 육방정 질화붕소 분말로 사용하고 몰드하우징(240)을 흑연 소재로 제작하는 경우에는 소결체(10)의 열팽창률보다 몰드하우징(240)의 열팽창률이 더 크므로, 몰드슬리브(230)가 몰드하우징(240)에 장착되어 있는 상태에서 2차 냉각 온도까지 한 번에 냉각시켰을 때 소결체(10)보다 몰드하우징(240)이 더 많이 수축되어 소결체(10)와 몰드하우징 사이에 응력이 발생하게 된다. 이와 같은 응력이 소결체(10)로 전달되면 소결체(10)의 변형이 유발되고, 상기 응력이 몰드하우징(240)으로 전달되면 몰드하우징(240)에 크랙이 발생되어 몰드하우징(240)의 수명이 현저히 단축되는 결과를 초래하게 된다.At this time, when hexagonal boron nitride powder is used as the raw material powder and the mold housing 240 is made of graphite material, the thermal expansion coefficient of the mold housing 240 is greater than that of the sintered body 10, so the mold sleeve ( When 230) is mounted on the mold housing 240 and cooled to the secondary cooling temperature at once, the mold housing 240 shrinks more than the sintered body 10, resulting in stress between the sintered body 10 and the mold housing. This happens. When this stress is transmitted to the sintered body 10, deformation of the sintered body 10 is caused, and when the stress is transmitted to the mold housing 240, cracks are generated in the mold housing 240, thereby shortening the life of the mold housing 240. This results in a significant shortening.
그러나 본 발명에 의한 열간 가압 소결 방법은, 몰드슬리브(230)가 몰드하우징(240)에 장착되어 있는 상태에서 2차 냉각 온도까지 한 번에 냉각시키는 것이 아니라, 1차 냉각 온도까지 냉각시킨 상태에서 몰드슬리브(230)를 몰드하우징(240)으로부터 탈형시킨 후 2차 냉각 온도까지 냉각시키는바, 소결체(10)와 몰드하우징(240) 간의 수축률 차이로 인해 응력이 발생되는 현상을 근본적으로 방지할 수 있다는 장점이 있다.However, in the hot press sintering method according to the present invention, the mold sleeve 230 is cooled to the primary cooling temperature rather than being cooled to the secondary cooling temperature at once while the mold sleeve 230 is mounted on the mold housing 240. After the mold sleeve 230 is demolded from the mold housing 240 and cooled to the secondary cooling temperature, the phenomenon of stress occurring due to the difference in shrinkage rate between the sintered body 10 and the mold housing 240 can be fundamentally prevented. There is an advantage to having it.
도 4 및 도 5는 본 발명에 의한 가압 소결 장치 제2 실시예에 포함되는 소결금형 제2 실시예의 단면사시도 및 수직단면도이고, 도 6 및 도 7은 본 발명에 의한 가압 소결 장치 제2 실시예에 포함되는 내측슬리브의 사시도 및 분해사시도이다.Figures 4 and 5 are a cross-sectional perspective view and a vertical cross-sectional view of the second embodiment of the sintering mold included in the second embodiment of the pressure sintering device according to the present invention, and Figures 6 and 7 are the second embodiment of the pressure sintering device according to the present invention. This is a perspective view and an exploded perspective view of the inner sleeve included in .
본 발명에 의한 가압 소결장치는 링이나 중공관 등과 같이 가운데 부위에 중공이 형성된 제품을 가압 소결 방식으로 제작할 수 있도록 구성될 수 있다.The pressure sintering device according to the present invention can be configured to manufacture products with a hollow formed in the center, such as a ring or hollow tube, by pressure sintering.
즉, 상기 소결금형(200)은, 하측으로 갈수록 내경이 증가하는 중공관 형상의 몰드하우징(240)과, 하측으로 갈수록 외경이 증가하는 중공관 형상으로 형성되어 상기 몰드하우징(240)의 내측면에 밀착되는 몰드슬리브(230)와, 외측면이 상기 몰드슬리브(230)의 내측면과 이격되도록 상기 몰드슬리브(230) 내부에 인입되는 중공관 형상으로 형성되되 하측으로 갈수록 폭이 감소하는 복수 개의 제1 내측분할편(221)과 하측으로 갈수록 폭이 증가하는 복수 개의 제2 내측분할편(225)이 원주방향으로 교번으로 배열되는 내측슬리브(220)로 구성될 수 있다.That is, the sintering mold 200 is formed in a hollow tube shape whose inner diameter increases toward the bottom, and a hollow tube shape whose inner diameter increases toward the bottom, so that the inner surface of the mold housing 240 is formed. A mold sleeve 230 in close contact with the mold sleeve 230, and a plurality of hollow tubes formed in the shape of a hollow tube that are inserted into the mold sleeve 230 so that the outer surface is spaced apart from the inner surface of the mold sleeve 230, and the width decreases toward the bottom. It may be composed of an inner sleeve 220 in which a first inner split piece 221 and a plurality of second inner split pieces 225 whose width increases toward the bottom are alternately arranged in the circumferential direction.
상기 소결체(10)는 상기 몰드슬리브(230)와 상기 내측슬리브(220)의 사이로 인입되며, 상기 탈형로드(600)는 상기 제2 내측분할편(225)을 하강시켜 상기 내측슬리브(220)가 소결체(10)의 내측면으로부터 이격될 수 있도록 하고, 상기 하우징 지지부(700)는 상기 몰드하우징(240)을 상승시킴으로서 상기 몰드슬리브(230)가 소결체(10)의 외측면으로부터 이격될 수 있도록 한다.The sintered body 10 is inserted between the mold sleeve 230 and the inner sleeve 220, and the demold rod 600 lowers the second inner split piece 225 so that the inner sleeve 220 It allows the mold sleeve 230 to be spaced apart from the inner side of the sintered body 10, and the housing support portion 700 raises the mold housing 240 so that the mold sleeve 230 can be spaced apart from the outer side of the sintered body 10. .
이와 같이 소결체(10)의 내측면 및 외측면에 압착되었던 내측슬리브(220) 및 몰드슬리브(230)가 소결체(10)의 표면으로부터 이격될 수 있도록 구성되면, 고온으로 가열된 소결체(10)를 상온으로 냉각시키기 이전에 상기 내측슬리브(220) 및 몰드슬리브(230)를 소결체(10)의 표면으로부터 이격시킴으로써, 상기 소결체(10)의 냉각과정에서 발생하는 소결체(10) 및 슬리브의 손상을 방지할 수 있다는 장점이 있다.In this way, when the inner sleeve 220 and the mold sleeve 230, which were pressed to the inner and outer surfaces of the sintered body 10, are configured to be spaced apart from the surface of the sintered body 10, the sintered body 10 heated to a high temperature is By separating the inner sleeve 220 and the mold sleeve 230 from the surface of the sintered body 10 before cooling to room temperature, damage to the sintered body 10 and the sleeve that occurs during the cooling process of the sintered body 10 is prevented. There is an advantage to being able to do it.
이때, 상기 내측슬리브(220) 및 몰드슬리브(230)가 소결체(10)의 표면으로부터 이격되는 과정에 대해서는 이하 도 9을 참조하여 상세히 설명한다.At this time, the process of separating the inner sleeve 220 and the mold sleeve 230 from the surface of the sintered body 10 will be described in detail with reference to FIG. 9 below.
소결하고자 하는 소결체(10)가 중공관 형상인 경우에는 내측슬리브(220)와 몰드슬리브(230) 사이의 공간에 소결체(10)를 삽입시킨 후 상부펀치(310)와 하부펀치(410)로 소결체(10)를 가압함으로써 소결체(10)를 성형하는데, 소결하고자 하는 소결체(10)가 얇은 링 형상인 경우에도 상기와 같은 방식으로 소결체(10)를 성형하면 한 번의 공정으로 하나의 소결체(10)만을 얻을 수 있으므로 생산성을 높이기 어렵다는 문제점이 있다.If the sintered body 10 to be sintered has a hollow tube shape, insert the sintered body 10 into the space between the inner sleeve 220 and the mold sleeve 230 and then punch the sintered body using the upper punch 310 and the lower punch 410. The sintered body 10 is formed by pressing the sintered body 10. Even if the sintered body 10 to be sintered has a thin ring shape, if the sintered body 10 is formed in the same manner as above, one sintered body 10 can be formed in one process. There is a problem that it is difficult to increase productivity because only
따라서 성형하고자 하는 소결체(10)가 링 형상인 경우에는, 한 번에 다수 개의 소결체(10)를 성형할 수 있도록 상기 몰드슬리브(230)와 상기 내측슬리브(220) 사이에 적층 방식으로 삽입되는 복수 개의 스페이서(210)가 추가로 구비될 수 있다. 상기 스페이서(210)는 소결체(10)의 상면과 저면에 각각 밀착되도록 쌍으로 구비되어 내측슬리브(220)와 몰드슬리브(230) 사이에 다수 개 적층되며, 도 5에 도시된 바와 같이 가장 상측에 위치하는 스페이서(210)는 상부펀치(310)에 의해 하향 가압되고 가장 하측에 위치하는 스페이서(210)는 하부펀치(410)에 의해 상향 가압된다.Therefore, when the sintered body 10 to be molded has a ring shape, a plurality of sintered bodies 10 are inserted in a stacked manner between the mold sleeve 230 and the inner sleeve 220 so that a plurality of sintered bodies 10 can be molded at once. Two spacers 210 may be additionally provided. The spacers 210 are provided in pairs so as to be in close contact with the upper and lower surfaces of the sintered body 10, respectively, and are stacked in large numbers between the inner sleeve 220 and the mold sleeve 230. As shown in FIG. 5, the spacers 210 are located at the uppermost side. The spacer 210 located at the bottom is pressed downward by the upper punch 310, and the spacer 210 located at the bottom is pressed upward by the lower punch 410.
이와 같은 방식으로 소결체(10)를 가압하는 경우, 한 번의 가압 공정으로 다수 개의 소결체(10)를 얻을 수 있으므로 생산성을 현저히 높일 수 있다는 장점이 있다. When pressurizing the sintered body 10 in this manner, there is an advantage that productivity can be significantly increased because a plurality of sintered bodies 10 can be obtained through a single pressing process.
이때, 상기 스페이서(210)의 개수는 제작하고자 하는 소결체(10)의 두께에 따라 증감될 수 있고, 상기 스페이서(210) 중 상기 소결체(10)와 접촉되는 면의 형상은 제작하고자 하는 소결체(10)의 형상에 따라 자유롭게 변경될 수 있다.At this time, the number of spacers 210 may increase or decrease depending on the thickness of the sintered body 10 to be manufactured, and the shape of the surface of the spacers 210 in contact with the sintered body 10 is determined by the shape of the sintered body 10 to be manufactured. ) can be freely changed depending on the shape.
한편, 상기 내측슬리브(220)의 내측이 비어 있도록 설정되면, 상부펀치(310) 및 하부펀치(410)가 소결체(10)를 가압하는 과정에서 상기 제1 내측분할편(221) 및 제2 내측분할편(225)이 내측의 비어 있는 공간으로 밀려 움직일 우려가 있다. 이와 같이 제1 내측분할편(221) 및 제2 내측분할편(225)이 움직이면 소결체(10)가 소결되는 과정에서 변형될 우려가 있는바, 상기 내측슬리브(220)의 내부에는 상기 제1 내측분할편(221) 및 제2 내측분할편(225)의 내측면을 지지하도록 압입되는 센터샤프트(250)가 추가로 구비될 수 있다(도 6 및 도 7 참조).Meanwhile, when the inside of the inner sleeve 220 is set to be empty, the first inner split piece 221 and the second inner part are formed in the process of the upper punch 310 and lower punch 410 pressing the sintered body 10. There is a risk that the split piece 225 may be pushed into the empty space on the inside and move. In this way, if the first inner split piece 221 and the second inner split piece 225 are moved, there is a risk that the sintered body 10 may be deformed during sintering, and the inside of the inner sleeve 220 is A center shaft 250 press-fitted to support the inner surfaces of the split piece 221 and the second inner split piece 225 may be additionally provided (see FIGS. 6 and 7).
이때 도 6에 도시된 바와 같이 상기 센터샤프트(250)가 내측슬리브(220)의 내부공간에 압입되어 있는 상태에서 제1 내측분할편(221)이나 제2 내측분할편(225)을 하향 가압하였을 때 상기 상기 제1 내측분할편(221) 및 제2 내측분할편(225)의 내측면이 센터샤프트(250)의 외측면에 더욱 강하게 압착될 수 있도록, 상기 센터샤프트(250)는 하측으로 갈수록 외경이 증가하는 원추 형상으로 형성되고, 상기 제1 내측분할편(221)과 상기 제2 내측분할편(225)은 상기 센터샤프트(250)의 형상에 맞춰 하측으로 갈수록 두께가 점진적으로 얇아지도록 형성됨이 바람직하다.At this time, as shown in FIG. 6, the first inner split piece 221 or the second inner split piece 225 is pressed downward while the center shaft 250 is press-fitted into the inner space of the inner sleeve 220. When the center shaft 250 moves downward so that the inner surfaces of the first inner split piece 221 and the second inner split piece 225 can be pressed more strongly against the outer surface of the center shaft 250, It is formed in a cone shape with an increasing outer diameter, and the first inner split piece 221 and the second inner split piece 225 are formed to gradually become thinner in thickness toward the bottom in accordance with the shape of the center shaft 250. This is desirable.
도 8은 본 발명에 의한 가압 소결 장치 제2 실시예에 포함되는 몰드슬리브(230)의 분해사시도이다.Figure 8 is an exploded perspective view of the mold sleeve 230 included in the second embodiment of the pressure sintering device according to the present invention.
소결체(10)의 외측면을 둘러싸는 몰드슬리브(230)는 몰드하우징(240)이 하강될 때 조여지고 몰드하우징(240)이 상승할 때 조임력이 풀어지도록, 하측으로 갈수록 외경이 증가하는 원추 형상으로 형성된다. 이때, 상기 몰드슬리브(230)가 하나의 중공관 형상으로 형성되면 몰드하우징(240)에 의해 조여지고 풀어질 때 내경 변형률이 매우 미미하므로 소결체(10)의 외측면과 이격되는 효과가 매우 낮아진다는 단점이 있다.The mold sleeve 230 surrounding the outer surface of the sintered body 10 has a cone shape whose outer diameter increases downward so that it is tightened when the mold housing 240 is lowered and the tightening force is released when the mold housing 240 rises. It is formed by At this time, when the mold sleeve 230 is formed in the shape of a single hollow tube, the inner diameter strain is very small when tightened and loosened by the mold housing 240, so the effect of being separated from the outer surface of the sintered body 10 is very low. There is a downside.
따라서 상기 몰드슬리브(230)는 소결체(10) 냉각 이전에 소결체(10)와 확실하게 이격될 수 있도록, 도 8에 도시된 바와 같이 원주방향으로 배열되는 복수 개의 외측분할편(231)으로 구성됨이 바람직하다.Therefore, the mold sleeve 230 is composed of a plurality of outer split pieces 231 arranged in the circumferential direction as shown in FIG. 8 so that the sintered body 10 can be reliably separated from the sintered body 10 before cooling. desirable.
이와 같이 상기 몰드슬리브(230)가 복수 개의 외측분할편(231)으로 구성되면, 몰드하우징(240)이 상승하였을 때 외측분할편(231)들이 소결체(10)와 이격되는 방향으로 이동이 가능해지므로, 상기 소결체(10)와 몰드슬리브(230) 간의 열팽창계수가 크게 차이나더라도 냉각 시 소결체(10)가 손상되지 아니한다는 장점이 있다.In this way, when the mold sleeve 230 is composed of a plurality of outer split pieces 231, when the mold housing 240 is raised, the outer split pieces 231 can move in a direction away from the sintered body 10. , there is an advantage that the sintered body 10 is not damaged during cooling even if the thermal expansion coefficient between the sintered body 10 and the mold sleeve 230 is significantly different.
도 9는 본 발명에 의한 가압 소결 장치 제2 실시예의 사용상태도이다.Figure 9 is a state diagram of the second embodiment of the pressure sintering device according to the present invention.
본 발명에 의한 가압 소결 장치를 이용하여 소결체(10)를 가압할 때에는 소결체(10)가 삽입된 다수 개의 스페이서(210)를 내측슬리브(220)와 몰드슬리브(230) 사이에 적층시킨 후, 제2 내측분할편(225)을 상승시키고 몰드하우징(240)을 하강시켜 내측슬리브(220)와 몰드슬리브(230)를 소결체(10)의 내측면과 외측면에 압착킨 상태에서, 상부펀치(310) 및 하부펀치(410)를 이용하여 소결체(10)를 가압한다.When pressurizing the sintered body 10 using the pressure sintering device according to the present invention, a plurality of spacers 210 into which the sintered body 10 is inserted are stacked between the inner sleeve 220 and the mold sleeve 230, and then 2 The inner split piece 225 is raised and the mold housing 240 is lowered to press the inner sleeve 220 and the mold sleeve 230 to the inner and outer surfaces of the sintered body 10, and then press the upper punch 310. ) and the lower punch 410 to pressurize the sintered body 10.
이때, 상기 소결체(10)를 가압하는 방법으로는, 열간 가압 소결(Hot Pressing Sintering)을 사용하거나, 통전 가압 소결(Sparking Plazma Sinterign)을 사용하거나, 가스 가압 소결(Gas Pressure Sintering)을 사용하도록 구성될 수 있다. 더 나아가 상기 언급한 가압 소결공법 중 하나 이상의 소결공법을 포함하도록 구성될 수도 있다.At this time, the method of pressing the sintered body 10 is configured to use hot pressing sintering, sparking plasma sintering, or gas pressure sintering. It can be. Furthermore, it may be configured to include one or more sintering methods among the pressure sintering methods mentioned above.
상기 통전 가압 소결은 선진 신재료 합성분야에서 주목되고 있는 소결방법으로서, 소결체를 소결형으로 충진하여 통전 가압 소결 스테이지의 전극 간에 끼운 후 전류를 인가하면서 가압하도록 구성된다. 이와 같은 통전 가압 소결공법을 이용하면 취급 조작이 용이해지고, 광범위한 압력과 온도 조건 상에서 소결이 가능하므로 다양한 종류의 재료로 소결할 수 있으며, 급속 가열이 가능해져 단시간에 치밀한 소결체를 얻을 수 있다는 장점이 있다.The electric pressure sintering is a sintering method that is attracting attention in the field of advanced new material synthesis, and is configured to fill the sintered body into a sintered mold, sandwich it between electrodes of the electric pressure sintering stage, and then pressurize it while applying a current. Using this type of electric pressure sintering method, handling becomes easy, sintering is possible under a wide range of pressure and temperature conditions, so it can be sintered with various types of materials, and rapid heating is possible, which has the advantage of obtaining a dense sintered body in a short time. there is.
또한, 상기 가스 가압 소결은 고압의 질소나 아르곤 등의 가스 가압 하에서 소결하는 공법으로서, 내부의 잔류 기공 및 결함을 최대한 제거하여 소결 밀도를 높일 수 있고, 재료의 기계적 특성을 향상시켜 강도 및 수명 연장이 가능해진다는 장점이 있다.In addition, the gas pressure sintering is a method of sintering under gas pressure such as high-pressure nitrogen or argon. It can increase the sintering density by removing residual internal pores and defects as much as possible, and improve the mechanical properties of the material to extend strength and lifespan. There is an advantage to making this possible.
또한, 상기 열간 가압 소결은 열선 등과 같은 별도의 발열체를 이용하여 소결체(10)를 가열하면서 가압하는 소결공법으로서, 비교적 구성이 간단하고 작업자에게 고도한 숙련이 요구되지 아니하므로 소결에 소요되는 비용이 비교적 저렴하다는 장점이 있다.In addition, the hot pressing sintering is a sintering method that heats and pressurizes the sintered body 10 using a separate heating element such as a heating wire. The construction is relatively simple and does not require advanced skills for the operator, so the cost of sintering is low. It has the advantage of being relatively inexpensive.
이때, 본 실시예에서는 상기 소결체(10)를 가압하는 방법으로, 열간 가압 소결(Hot Pressing Sintering)과 통전 가압 소결(Sparking Plazma Sinterign)과 가스 가압 소결(Gas Pressure Sintering)만을 설명하고 있으나, 상기 언급한 소결공법 이외에 다양한 종류의 소결공법이 활용될 수 있다.At this time, in this embodiment, only hot pressing sintering, sparking plasma sintering, and gas pressure sintering are described as methods of pressing the sintered body 10, but the above-mentioned In addition to one sintering method, various types of sintering methods can be used.
상기 소결체(10)는 가압되는 동안 일정 온도 이상으로 가압되므로 냉각과정을 거쳐야 하는데, 내측슬리브(220)와 몰드슬리브(230)가 소결체(10)에 압착된 상태에서 냉각과정을 거치게 되면 소결체(10)와 슬리브(220, 230) 간의 냉각 수축률 차이에 의해 소결체(10)에 응력이 인가되고, 이에 따라 소결체(10)가 파손되는 현상이 발생될 수 있다.Since the sintered body 10 is pressurized above a certain temperature while being pressed, it must undergo a cooling process. When the inner sleeve 220 and the mold sleeve 230 undergo the cooling process while being pressed to the sintered body 10, the sintered body 10 ) and the sleeves 220 and 230, stress is applied to the sintered body 10 due to the difference in cooling shrinkage rate, which may cause the sintered body 10 to be damaged.
따라서 소결체(10)의 열간 가압이 완료된 이후에는 냉각과정에 들어가기 이전에 도 9에 도시된 바와 같이 탈형로드(600)를 이용하여 제2 내측분할편(225)을 하강시킴으로써 상기 내측슬리브(220)와 소결체(10) 간의 압착력을 제거하고, 하우징 지지부(700)를 이용하여 몰드하우징(240)을 상승시킴으로써 몰드슬리브(230)와 소결체(10) 간의 압착력을 제거한다. 이때, 상기 탈형로드(600)가 제1 내측분할편(221)은 가압하지 아니하고 상기 제2 내측분할편(225)만 가압할 수 있도록, 상기 내측슬리브(220)가 소결체(10)의 내측면에 압착되도록 세팅되었을 때 상기 제2 내측분할편(225)은 상기 제1 내측분할편(221)보다 상단이 높게 위치되도록 장착됨이 바람직하다.Therefore, after the hot pressing of the sintered body 10 is completed and before entering the cooling process, the inner sleeve 220 is lowered by using the demolding rod 600 to lower the second inner split piece 225 as shown in FIG. 9. The pressing force between the mold sleeve 230 and the sintered body 10 is removed by raising the mold housing 240 using the housing support part 700. At this time, the inner sleeve 220 is positioned on the inner surface of the sintered body 10 so that the demold rod 600 can press only the second inner split piece 225 and not the first inner split piece 221. When set to be pressed, the second inner split piece 225 is preferably mounted so that its upper end is higher than the first inner split piece 221.
이와 같이 내측슬리브(220)와 소결체(10) 간의 압착력과 몰드슬리브(230)와 소결체(10) 간의 압착력이 제거되면, 냉각과정에서 소결체(10)보다 슬리브(220, 230)들의 수축량이 커지더라도 소결체(10)가 손상되는 현상을 방지할 수 있다는 장점이 있다.In this way, if the compressing force between the inner sleeve 220 and the sintered body 10 and the compressing force between the mold sleeve 230 and the sintered body 10 are removed, even if the shrinkage of the sleeves 220 and 230 becomes greater than that of the sintered body 10 during the cooling process. There is an advantage in that damage to the sintered body 10 can be prevented.
도 10 및 도 11은 본 발명에 의한 가압 소결 장치 제3 실시예에 포함되는 내측슬리브(220)의 수평단면도이고, 도 12는 본 발명에 의한 가압 소결 장치 제3 실시예에 포함되는 몰드슬리브(230)의 수평단면도이다.Figures 10 and 11 are horizontal cross-sectional views of the inner sleeve 220 included in the third embodiment of the pressure sintering device according to the present invention, and Figure 12 is a mold sleeve included in the third embodiment of the pressure sintering device according to the present invention ( 230) is a horizontal cross-sectional view.
냉각 과정에서 각 슬리브(220, 230)가 수축되는 과정에서 상기 소결체(10)가 전혀 영향을 받지 아니하기 위해서는 각 슬리브(220, 230)가 소결체(10)와 이격됨이 바람직하다.In order to ensure that the sintered body 10 is not affected at all when the sleeves 220 and 230 shrink during the cooling process, it is preferable that the sleeves 220 and 230 are spaced apart from the sintered body 10.
본 발명에 의한 가압 소결 장치는 제2 내측분할편(225)이 하강하여 내측슬리브(220)와 소결체(10) 간의 압착력이 제거되고 몰드하우징(240)이 상승하여 몰드슬리브(230)와 소결체(10) 간의 압착력이 제거되었을 때, 도 9에 도시된 바와 같이 상기 제1 슬리브가 소결체(10)의 내측면으로부터 이격되고 상기 제2 슬리브가 소결체(10)의 외측면으로부터 이격되도록 구성될 수 있다.In the pressure sintering device according to the present invention, the second inner split piece 225 is lowered to remove the pressing force between the inner sleeve 220 and the sintered body 10, and the mold housing 240 is raised to form the mold sleeve 230 and the sintered body ( 10) When the compressive force between the two is removed, the first sleeve is spaced apart from the inner surface of the sintered body 10 and the second sleeve is spaced from the outer surface of the sintered body 10, as shown in FIG. 9. It can be configured to be spaced apart. .
이와 같이 제1 슬리브가 소결체(10)의 내측면으로부터 이격되기 위해서는, 제2 내측분할편(225)이 하강하여 제1 내측분할편(221) 측단과 제2 내측분할편(225) 측단이 이격되었을 때, 제1 내측분할편(221)과 제2 내측분할편(225)의 폭방향 측단이 밀착되어야 한다. 따라서 상기 제1 내측분할편(221)의 측단에는 제1 내측홈(222)이 형성되고, 상기 제2 내측분할편(225)의 측단에는 상기 제1 내측홈(222)과 연통되는 제2 내측홈(226)이 형성되며, 상호 연통되는 제1 내측홈(222)과 제2 내측홈(226) 내부에는 상기 제1 내측분할편(221)과 상기 제2 내측분할편(225)이 가까워지는 방향으로 탄성력은 인가하는 인장스프링(228)이 구비될 수 있다.In order for the first sleeve to be spaced apart from the inner surface of the sintered body 10 in this way, the second inner split piece 225 is lowered so that the side end of the first inner split piece 221 and the side end of the second inner split piece 225 are spaced apart. When this happens, the width direction side edges of the first inner split piece 221 and the second inner split piece 225 must be in close contact. Therefore, a first inner groove 222 is formed at the side end of the first inner split piece 221, and a second inner groove communicating with the first inner groove 222 is formed at the side end of the second inner split piece 225. A groove 226 is formed, and inside the first inner groove 222 and the second inner groove 226 that communicate with each other, the first inner split piece 221 and the second inner split piece 225 are close to each other. A tension spring 228 may be provided to apply elastic force in one direction.
상기 언급한 바와 같이 제1 내측분할편(221)과 제2 내측분할편(225)이 인장스프링(228)에 의해 당겨지도록 구성되면, 제2 내측분할편(225)이 하강하여 도 11에 도시된 바와 같이 제1 내측분할편(221)과 제2 내측분할편(225)이 이격되더라도 상기 인장스프링(228)에 의해 제1 내측분할편(221)과 제2 내측분할편(225)이 밀착된 도 10의 상태로 복원되므로, 제1 내측분할편(221) 및 제2 내측분할편(225)의 외측면은 도 9에 도시된 바와 같이 소결체(10)와 이격된 상태가 된다.As mentioned above, when the first inner split piece 221 and the second inner split piece 225 are configured to be pulled by the tension spring 228, the second inner split piece 225 is lowered, as shown in Figure 11. As described above, even if the first inner split piece 221 and the second inner split piece 225 are spaced apart, the first inner split piece 221 and the second inner split piece 225 are brought into close contact by the tension spring 228. Since the state of FIG. 10 is restored, the outer surfaces of the first inner split piece 221 and the second inner split piece 225 are spaced apart from the sintered body 10 as shown in FIG. 9.
반대로, 상기 몰드슬리브(230)는 몰드하우징(240)이 상승하였을 때 각 외측분할편(231)들이 상호 이격되도록 벌어져야만 소결체(10)의 외측면과 이격된다.Conversely, the mold sleeve 230 is spaced apart from the outer surface of the sintered body 10 only when the outer split pieces 231 are spread apart from each other when the mold housing 240 is raised.
따라서 이웃하는 두 개의 외측분할편(231)의 폭방향 측단에는 상호 연통되는 외측홈(232)이 각각 형성되고, 상호 연통되는 두 개의 외측홈(232) 내부에는 이웃하는 두 개의 외측분할편(231)이 서로 멀어지는 방향으로 탄성력을 인가하는 압축스프링(238)이 구비됨이 바람직하다(도 12 참조).Therefore, outer grooves 232 that communicate with each other are formed at the width direction side edges of the two neighboring outer split pieces 231, and two adjacent outer split pieces 231 are formed inside the two outer grooves 232 that communicate with each other. ) is preferably provided with a compression spring 238 that applies elastic force in a direction away from each other (see Figure 12).
이와 같이 이웃하는 두 개의 외측분할편(231)이 압축스프링(238)에 의해 상호 멀어지는 방향으로 탄성력을 인가받게 되면, 몰드하우징(240)이 상승하여 몰드슬리브(230)를 조이는 힘이 해제되었을 때 각 외측분할편(231)들은 서로 이격되도록 벌어지는바, 도 9에 도시된 바와 같이 소결체(10)와 이격된 상태가 될 수 있다.In this way, when the two neighboring outer split pieces 231 are applied with elastic force in a direction away from each other by the compression spring 238, the mold housing 240 rises and the force tightening the mold sleeve 230 is released. Each of the outer split pieces 231 is spread apart from each other, and can be spaced apart from the sintered body 10 as shown in FIG. 9 .
이때, 본 실시예에서는 상기 인장스프링(228)과 압축스프링(238)이 코일스프링 형상으로 형성되는 경우만을 도시하고 있으나, 상기 인장스프링(228)과 압축스프링(238)은 상기 내측분할편(221, 225) 및 외측분할편(231)에 탄성력을 인가할 수 있다면 어떠한 종류의 탄성체로도 대체될 수 있다.At this time, in this embodiment, only the case where the tension spring 228 and the compression spring 238 are formed in a coil spring shape is shown, but the tension spring 228 and the compression spring 238 are formed in the inner split piece 221. , 225) and the outer split piece 231 can be replaced with any type of elastic body as long as elastic force can be applied.
도 13은 본 발명에 의한 가압 소결 방법의 다른 실시예 순서도이다.Figure 13 is a flowchart of another embodiment of the pressure sintering method according to the present invention.
본 발명에 의한 가압 소결 방법의 다른 실시예는 도 4 내지 도 12에 의한 가압 소결 장치를 이용하여 중공형의 소결체(10)를 성형하는 방법으로서, 소결성형을 위한 원료분말을 마련하고(S21), 상기 원료분말을 가압하여 일정 수준 형상 유지가 가능한 중공형 제품을 1차적으로 성형한 후(S22), 상기 제2 단계에서 제작된 1차 성형체를 상기 내측슬리브(220)와 상기 몰드슬리브(230) 사이에 위치시킨다(S23). 이때, 제작하고자 하는 소결체(10)가 링 형상을 이루는 경우, 한 번의 공정으로 다수 개의 소결체(10)를 성형할 수 있도록, 상기 몰드슬리브(230)와 상기 내측슬리브(220) 사이에 복수 개의 스페이서(210)를 적층 방식으로 삽입하되, 상기 소결체(10)는 이웃하는 두 개의 스페이서(210) 사이에 삽입하도록 설정할 수 있다.Another embodiment of the pressure sintering method according to the present invention is a method of molding a hollow sintered body 10 using the pressure sintering device shown in FIGS. 4 to 12, and raw material powder for sintering is prepared (S21) After initially molding a hollow product capable of maintaining a certain level of shape by pressing the raw material powder (S22), the primary molded body manufactured in the second step is placed in the inner sleeve 220 and the mold sleeve 230. ) (S23). At this time, when the sintered body 10 to be manufactured has a ring shape, a plurality of spacers are installed between the mold sleeve 230 and the inner sleeve 220 so that a plurality of sintered bodies 10 can be formed in one process. (210) may be inserted in a stacked manner, and the sintered body (10) may be set to be inserted between two neighboring spacers (210).
1차 성형체의 안착이 완료되면, 내측슬리브(220)와 몰드슬리브(230)를 소결체(10)에 밀착시킨 상태에서 상기 상부펀치(310) 및 하부펀치(410)를 이용하여 상기 1차 성형체를 2차로 가압 소결함으로써, 소결체를 성형한다(S24). 이때, 상기 1차 성형체를 가압하기 이전에 상기 소결체(10)에 포함되어 있는 불순물을 태워 제거할 수 있도록, 상기 소결체(10)를 사전에 설정된 온도까지 가열하는 과정이 선행될 수 있다.When seating of the primary molded body is completed, the inner sleeve 220 and mold sleeve 230 are in close contact with the sintered body 10 and the upper punch 310 and lower punch 410 are used to form the primary molded body. The sintered body is formed by second pressure sintering (S24). At this time, before pressing the primary molded body, a process of heating the sintered body 10 to a preset temperature may be preceded so that impurities contained in the sintered body 10 can be burned and removed.
소결체(10)의 2차 성형이 완료되면, 상기 몰드하우징(240)을 상승시키고 상기 제2 내측분할편(225)을 하강시켜(도 9 참조) 상기 몰드슬리브(230)와 상기 소결체(10) 간의 압착력과 상기 내측슬리브(220)와 상기 소결체(10) 간의 압착력을 제거한 후(S25), 상기 소결체(10)를 상온까지 냉각시킨다(S26). 이때, 상기 소결체(10)는 내측슬리브(220) 및 몰드슬리브(230)와 이격되어 있는바, 냉각 과정을 거치더라도 각 슬리브(220, 230)의 수축응력에 의한 손상이 발생하지 아니하게 된다. When the secondary molding of the sintered body 10 is completed, the mold housing 240 is raised and the second inner split piece 225 is lowered (see FIG. 9) to form the mold sleeve 230 and the sintered body 10. After removing the compressive force between the inner sleeve 220 and the sintered body 10 (S25), the sintered body 10 is cooled to room temperature (S26). At this time, the sintered body 10 is spaced apart from the inner sleeve 220 and the mold sleeve 230, so that damage due to shrinkage stress of each sleeve 220 and 230 does not occur even after the cooling process.
소결체(10)의 냉각이 완료되면, 상기 소결금형(200)을 탈형한 후(S27) 상기 소결체(10)를 인출함으로써(S28), 소결체(10)의 성형을 완료한다.When cooling of the sintered body 10 is completed, the sintered mold 200 is demolded (S27) and the sintered body 10 is taken out (S28), thereby completing the molding of the sintered body 10.
이하 본 발명에 의한 가압 소결 방법을 이용하여 소결체(10)를 제조하는 실시예를 설명한다.Hereinafter, an embodiment of manufacturing the sintered body 10 using the pressure sintering method according to the present invention will be described.
[ 실시 예 1][Example 1]
본 발명에 의한 가압 소결 방법으로 탄화붕소 링 형상의 소결체를 제조하였다. A boron carbide ring-shaped sintered body was manufactured using the pressure sintering method according to the present invention.
탄화붕소 원료는 순도 118.3%, 평균입도 0.7㎛의 분말 형태의 원료를 선정하였다. 준비된 원료를 금속 금형에 넣고, 300kgf/㎠의 압력에서 일축 가압 성형하여, 1.2g/㎤의 밀도를 가지는 1차 성형체를 제조하였다.The boron carbide raw material was selected in powder form with a purity of 118.3% and an average particle size of 0.7㎛. The prepared raw materials were placed in a metal mold and uniaxially pressed and molded at a pressure of 300 kgf/cm2 to produce a primary molded body with a density of 1.2g/cm3.
준비된 1차 성형체를 내측슬리브(220)와 몰드슬리브(230) 사이에 적층하고 소결금형(200)을 조립한 후 챔버(100) 내에 넣고, 진공 배기를 하였다.The prepared primary molded body was stacked between the inner sleeve 220 and the mold sleeve 230, and the sintered mold 200 was assembled, placed in the chamber 100, and evacuated.
진공 분위기에서 챔버(100) 내부를 1,500℃로 가열하여 1차 성형체 내부에 잔류하고 있는 카본 및 산소 등의 불순물을 제거한 후, 300kgf/㎠ 압력하에서 2,150℃ 까지 가열하여 탄화붕소의 소결을 실시하였다.The interior of the chamber 100 was heated to 1,500°C in a vacuum atmosphere to remove impurities such as carbon and oxygen remaining inside the primary molded body, and then heated to 2,150°C under a pressure of 300 kgf/cm2 to sinter boron carbide.
소결공법이 완료된 후 가압을 해제하고, 내측슬리브(220)와 소결체 간의 압착력과 몰드슬리브(230)와 소결체 간의 압착력을 제거한 후, 냉각을 실시하였다. 냉각이 완료되면 탄화붕소 소결체를 소결금형(200)으로부터 탈형하여 인출하였다. After the sintering method was completed, the pressure was released, the compressing force between the inner sleeve 220 and the sintered body and the compressing force between the mold sleeve 230 and the sintered body were removed, and then cooling was performed. When cooling was completed, the boron carbide sintered body was demolded from the sintering mold 200 and taken out.
인출된 탄화붕소 소결체의 밀도를 측정한 결과 2.52g/㎤로 이론밀도 119.9%이상의 소결체를 얻을 수 있으며, 내부 결함과 기공이 최소화 된 소결체를 제조할 수 있었다.As a result of measuring the density of the extracted boron carbide sintered body, it was possible to obtain a sintered body with a theoretical density of 119.9% or more at 2.52 g/cm3, and a sintered body with minimized internal defects and pores could be manufactured.
[ 실시 예 2][Example 2]
본 발명에 의한 가압 소결 방법으로 탄화규소 링 형상의 소결체를 제조하였다.A silicon carbide ring-shaped sintered body was manufactured using the pressure sintering method according to the present invention.
탄화 규소 원료는 소결조제로서 카본을 포함한 평균입도 120㎛의 구형화된 원료를 선정하였다.The silicon carbide raw material was selected as a spherical raw material with an average particle size of 120㎛ containing carbon as a sintering aid.
준비된 원료를 고무 금형에 넣고, 1,500kgf/㎠의 압력에서 냉간 등방압 성형을 실시하여 2.0g/㎤의 밀도를 가지는 고밀도 1차 성형체를 제조한 후, 1차 성형체를 최종 제품과 동일한 형상으로 가공을 실시하였다.Put the prepared raw materials into a rubber mold, perform cold isostatic molding at a pressure of 1,500kgf/cm2 to manufacture a high-density primary molded body with a density of 2.0g/cm3, and then process the primary molded body into the same shape as the final product. was carried out.
가공된 1차 성형체를 800℃, 진공분위기에서 탈지를 실시한 후, 탈지가 완료된 1차 성형체를 내측슬리브(220)와 몰드슬리브(230) 사이에 적층하고, 소결금형(200)을 조립한 후 챔버(100) 내에 넣고 진공 배기를 수행하였다.After degreasing the processed primary molded body at 800°C in a vacuum atmosphere, the degreased primary molded body is stacked between the inner sleeve 220 and the mold sleeve 230, and the sintered mold 200 is assembled and placed in the chamber. It was placed in (100) and vacuum evacuation was performed.
진공 분위기에서 1,500℃로 가열을 실시하여 성형체 내부에 잔류하고 있는 카본 및 산소 등의 불순물을 제거하고, 150kgf/㎠압력하에서 2,150℃ 까지 가열하여 탄화규소의 소결을 실시하였다.Impurities such as carbon and oxygen remaining inside the molded body were removed by heating to 1,500°C in a vacuum atmosphere, and sintering of silicon carbide was performed by heating to 2,150°C under a pressure of 150 kgf/cm2.
소결공법이 완료된 후 가압을 해제하고, 내측슬리브(220)와 소결체 간의 압착력과 몰드슬리브(230)와 소결체 간의 압착력을 제거한 후, 냉각을 실시하였다. 냉각이 완료되면 탄화규소 소결체를 소결금형(200)으로부터 탈형하여 인출하였다. After the sintering method was completed, the pressure was released, the compressing force between the inner sleeve 220 and the sintered body and the compressing force between the mold sleeve 230 and the sintered body were removed, and then cooling was performed. When cooling was completed, the silicon carbide sintered body was demolded from the sintering mold 200 and taken out.
인출된 탄화규소 소결체의 밀도를 측정한 결과 3.17g/㎤로 이론밀도 119.9%이상의 소결체를 얻을 수 있었으며, 내부 결함과 기공이 최소화 된 치밀한 소결체를 제조할 수 있었다.As a result of measuring the density of the extracted silicon carbide sintered body, it was possible to obtain a sintered body with a theoretical density of 119.9% or more at 3.17 g/cm3, and a dense sintered body with minimized internal defects and pores could be manufactured.
[ 실시 예 3][Example 3]
본 발명에 의한 가압 소결 방법으로 질화규소 원판형상의 소결체를 제조하였다.A silicon nitride disc-shaped sintered body was manufactured using the pressure sintering method according to the present invention.
질화규소 원료는 평균입도 1㎛의 분말원료에 소결조제로써 이트리아 3% 알루미나 2%를 넣고, 볼밀에서 습식 혼합을 실시하였다. 혼합이 완료된 원료는 건조 후 채거름을 실시하였다.For the silicon nitride raw material, 3% yttria and 2% alumina were added as sintering aids to powder raw materials with an average particle size of 1㎛, and wet mixing was performed in a ball mill. The mixed raw materials were dried and then sieved.
준비된 원료를 금속 금형에 넣고, 150kgf/㎠의 압력에서 일축 프레스 성형을 실시하여 1.8g/㎤의 밀도를 가지는 고밀도 1차 성형체를 제조하였다.The prepared raw materials were placed in a metal mold, and uniaxial press molding was performed at a pressure of 150 kgf/cm2 to produce a high-density primary molded body with a density of 1.8 g/cm3.
준비된 1차 성형체를 내측슬리브(220)와 몰드슬리브(230) 사이에 적층한 후 흑연 금형을 조립한 후 가압 소결 장치의 챔버(100) 내에 넣고, 진공 배기를 하였다.The prepared primary molded body was stacked between the inner sleeve 220 and the mold sleeve 230, the graphite mold was assembled, and then placed in the chamber 100 of the pressure sintering device and evacuated.
진공 분위기에서 1,000℃로 가열을 실시하여 성형체 내부에 잔류하고 있는 카본 및 산소 등의 불순물을 제거한 후, 1,000℃이상에서 1,850℃까지 질소가스를 50bar까지 넣어 주어 가스 가압 분위기를 형성하고, 가스가압 분위기기에서 100kgf/㎠압력, 1,850℃ 질화규소의 소결을 실시하였다.After heating to 1,000℃ in a vacuum atmosphere to remove impurities such as carbon and oxygen remaining inside the molded body, nitrogen gas is added up to 50 bar from above 1,000℃ to 1,850℃ to form a gas pressurized atmosphere. Sintering of silicon nitride was performed at 100kgf/cm2 pressure and 1,850°C.
소결공법이 완료된 후 가압을 해제하고, 내측슬리브(220)와 소결체 간의 압착력과 몰드슬리브(230)와 소결체 간의 압착력을 제거한 후, 냉각을 실시하였다. 냉각이 완료되면 질규소 소결체를 소결금형(200)으로부터 탈형하여 인출하였다. After the sintering process was completed, the pressure was released, the compressing force between the inner sleeve 220 and the sintered body and the compressing force between the mold sleeve 230 and the sintered body were removed, and then cooling was performed. When cooling was completed, the nitrous silicon sintered body was demolded from the sintering mold 200 and taken out.
인출된 질규소 소결체의 밀도를 측정한 결과 3.20g/㎤로 이론밀도 119.9%이상의 소결체를 얻을 수 있었다.As a result of measuring the density of the extracted silica sintered body, a sintered body with a theoretical density of 119.9% or more was obtained at 3.20 g/cm3.
상기의 결과로 가스가압 분위기하에서 가압소결 방법으로 원판형상의 세라믹 소결체의 제조가 가능함을 확인할 수 있었다.As a result of the above, it was confirmed that it was possible to manufacture a disk-shaped ceramic sintered body using the pressure sintering method in a gas pressurized atmosphere.
[ 실시 예 4][Example 4]
본 발명에 의한 가압 소결 방법으로 탄화규소 길이 150㎜ 튜브형상의 소결체를 제조하였다.A tube-shaped sintered body of silicon carbide with a length of 150 mm was manufactured using the pressure sintering method according to the present invention.
실린더 형상의 탄화규소 소결체는 '실시 예 2'의 방법과 동일하게 수행하였다.The cylindrical silicon carbide sintered body was made in the same manner as in 'Example 2'.
실린더 형상의 탄화규소 소결체의 상부에서 하부까지 30㎜ 간격으로 밀도를 측정한 결과 3.17g/㎤로 균일하게 측정되었으며, 이러한 결과로 보아 본 발명은 실린더 형상 소결체에 길이 방향으로 균일한 압력분포를 가능하게 하였으며, 고밀도의 소결체를 길이가 긴 튜브 형상의 제조도 가능함을 확인할 수 있었다.As a result of measuring the density at 30 mm intervals from the top to the bottom of the cylindrical silicon carbide sintered body, it was uniformly measured at 3.17 g/cm3. Based on these results, the present invention enables uniform pressure distribution in the longitudinal direction of the cylindrical sintered body. It was confirmed that it was possible to manufacture a high-density sintered body in a long tube shape.
상기의 실시 예를 통해 본 발명에 의한 가압 소결 방법은 상압소결이 되지 않는 난소결성 세라믹, 고밀도 세라믹 등을 기존의 가압 소결 방법에 비해 우수한 품질의 소결체를 용이하게 제조할 수 있을 뿐만 아니라, 그 형상의 구현에 있어서 링 형상, 튜브형, 원판형, 사각판형, 벌크 형상 소결체의 제조에 있어 기존의 방법보다 소재의 적용에 있어서도, 그 형상에 있어서도 광범위하게 적용할 수 있음을 확인 할 수 있었다.Through the above examples, the pressure sintering method according to the present invention can not only easily produce sintered bodies of superior quality compared to the existing pressure sintering method for non-sintering ceramics and high-density ceramics that cannot be sintered under normal pressure, but also their shape. In the implementation of , it was confirmed that it can be applied to a wider range of materials and shapes than existing methods in the production of ring-shaped, tube-shaped, disk-shaped, square plate-shaped, and bulk-shaped sintered bodies.
이상, 본 발명을 바람직한 실시예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.Above, the present invention has been described in detail using preferred embodiments, but the scope of the present invention is not limited to the specific embodiments and should be interpreted in accordance with the appended claims. Additionally, those skilled in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.

Claims (13)

  1. 상하로 개방된 내부공간을 구비하는 몰드하우징과, 상기 몰드하우징의 내벽에 안착되는 몰드슬리브를 구비하는 소결금형;A sintering mold including a mold housing having an internal space open up and down, and a mold sleeve seated on the inner wall of the mold housing;
    상기 몰드슬리브의 내측으로 인입된 소결모재를 상하로 가압하는 상부펀치 및 하부펀치;An upper punch and a lower punch that press upward and downward on the sintered base material introduced into the mold sleeve;
    상기 몰드슬리브의 하단은 지지하지 아니하고 상기 몰드하우징의 하단만을 지지하는 하우징 지지부;a housing support portion that supports only the lower end of the mold housing and does not support the lower end of the mold sleeve;
    를 포함하여,Including,
    상기 몰드슬리브 내측에 인입된 소결모재를 가압하여 소결체를 성형한 후 상기 소결체를 사전에 설정된 1차 냉각 온도까지 냉각시키고, 상기 소결금형을 탈형한 후 사전에 설정된 2차 냉각 온도까지 냉각시키도록 구성되는 것을 특징으로 하는 가압 소결 장치.After forming the sintered body by pressing the sintered base material introduced inside the mold sleeve, the sintered body is cooled to a preset primary cooling temperature, and after demolding the sintering mold, it is cooled to a preset secondary cooling temperature. A pressure sintering device characterized in that.
  2. 청구항 1에 있어서,In claim 1,
    외측면이 상기 몰드슬리브의 내측면과 이격되도록 상기 몰드슬리브 내부에 인입되는 중공관 형상으로 형성되되 하측으로 갈수록 폭이 감소하는 복수 개의 제1 내측분할편과 하측으로 갈수록 폭이 증가하는 복수 개의 제2 내측분할편이 원주방향으로 교번으로 배열되는 내측슬리브;It is formed in the shape of a hollow tube that is inserted into the mold sleeve so that the outer surface is spaced apart from the inner surface of the mold sleeve, and includes a plurality of first inner split pieces whose width decreases toward the bottom and a plurality of first inner split pieces whose width increases toward the bottom. 2 inner sleeves in which inner split pieces are arranged alternately in the circumferential direction;
    상기 제2 내측분할편을 하강시키는 탈형로드;a demolding rod that lowers the second inner split piece;
    를 더 포함하고,It further includes,
    상기 몰드하우징은 하측으로 갈수록 내경이 증가하는 중공관 형상으로 형성되고, 상기 몰드슬리브는 하측으로 갈수록 외경이 증가하는 중공관 형상으로 형성되며,The mold housing is formed in the shape of a hollow tube whose inner diameter increases toward the bottom, and the mold sleeve is formed in the shape of a hollow tube whose outer diameter increases toward the bottom,
    상기 하부펀치는 상기 몰드슬리브와 상기 내측슬리브의 사이로 인입된 소결체를 상하로 가압하고,The lower punch presses the sintered body introduced between the mold sleeve and the inner sleeve upward and downward,
    상기 하우징 지지부는 상기 몰드하우징을 상승시키도록 구성되는 것을 특징으로 하는 가압 소결장치.A pressure sintering device, characterized in that the housing support portion is configured to raise the mold housing.
  3. 청구항 2에 있어서,In claim 2,
    상기 몰드슬리브와 상기 내측슬리브 사이에 적층 방식으로 삽입되는 복수 개의 스페이서를 더 포함하고,Further comprising a plurality of spacers inserted between the mold sleeve and the inner sleeve in a stacked manner,
    상기 소결체는 이웃하는 두 개의 스페이서 사이에 삽입되는 링 형상으로 형성되는 것을 특징으로 하는 가압 소결장치.A pressure sintering device, characterized in that the sintered body is formed in a ring shape inserted between two adjacent spacers.
  4. 청구항 2에 있어서,In claim 2,
    상기 내측슬리브의 내부에 압입되는 센터샤프트를 더 포함하되,It further includes a center shaft press-fitted into the inner sleeve,
    상기 센터샤프트는 하측으로 갈수록 외경이 증가하는 원추 형상으로 형성되고,The center shaft is formed in a cone shape whose outer diameter increases toward the bottom,
    상기 제1 내측분할편과 상기 제2 내측분할편은 하측으로 갈수록 두께가 점진적으로 얇아지도록 형성되는 것을 특징으로 하는 가압 소결장치.A pressure sintering device, wherein the first inner split piece and the second inner split piece are formed to gradually become thinner toward the bottom.
  5. 청구항 2에 있어서,In claim 2,
    상기 제2 내측분할편은 상기 제1 내측분할편보다 상단이 높게 위치되도록 장착되는 것을 특징으로 하는 가압 소결장치.A pressure sintering device, characterized in that the second inner split piece is mounted so that its upper end is positioned higher than the first inner split piece.
  6. 청구항 2에 있어서,In claim 2,
    상기 몰드슬리브는 원주방향으로 배열되는 복수 개의 외측분할편으로 구성되는 것을 특징으로 하는 가압 소결장치.A pressure sintering device, characterized in that the mold sleeve is composed of a plurality of outer split pieces arranged in the circumferential direction.
  7. 청구항 6에 있어서,In claim 6,
    이웃하는 두 개의 외측분할편은, 폭방향 측단에 상호 연통되는 외측홈이 각각 형성되고, The two adjacent outer split pieces each have outer grooves formed at the width direction side ends that communicate with each other,
    상호 연통되는 두 개의 외측홈 내부에는, 이웃하는 두 개의 외측분할편이 서로 멀어지는 방향으로 탄성력을 인가하는 압축스프링이 구비되는 것을 특징으로 하는 가압 소결장치.A pressure sintering device characterized in that a compression spring is provided inside the two mutually communicating outer grooves to apply an elastic force in a direction in which the two adjacent outer split pieces move away from each other.
  8. 청구항 1에 있어서,In claim 1,
    상기 제1 내측분할편의 측단에는 제1 내측홈이 형성되고, 상기 제2 내측분할편의 측단에는 상기 제1 내측홈과 연통되는 제2 내측홈이 형성되며, 상호 연통되는 제1 내측홈과 제2 내측홈 내부에는, 상기 제1 내측분할편과 상기 제2 내측분할편이 가까워지는 방향으로 탄성력은 인가하는 인장스프링이 구비되는 것을 특징으로 하는 가압 소결장치.A first inner groove is formed at a side end of the first inner split piece, a second inner groove communicating with the first inner groove is formed at a side end of the second inner split piece, and the first inner groove and the second inner groove are in communication with each other. A pressure sintering device characterized in that a tension spring is provided inside the inner groove to apply an elastic force in a direction in which the first inner split piece and the second inner split piece approach.
  9. 청구항 1에 의한 가압 소결 장치를 이용하여 소결체를 성형하는 제조방법으로서,A manufacturing method for forming a sintered body using the pressure sintering device according to claim 1,
    원료분말을 상기 소결금형 내측으로 장입하는 제1 단계;A first step of charging raw material powder into the sintering mold;
    상기 소결금형을 챔버에 장입하는 제2 단계;A second step of charging the sintering mold into the chamber;
    상기 소결금형에 장입된 원료분말을 열간 가압하여 소결하는 제3 단계; A third step of sintering the raw material powder charged into the sintering mold by hot pressing;
    상기 챔버 내부를 1차 냉각 온도인 1600℃ 내지 2000℃ 사이의 온도로 냉각시키는 제4 단계;A fourth step of cooling the inside of the chamber to a temperature between 1600°C and 2000°C, which is the primary cooling temperature;
    상기 몰드슬리브를 상기 몰드하우징으로부터 탈형하는 제5 단계;A fifth step of demolding the mold sleeve from the mold housing;
    상기 몰드슬리브의 탈형이 완료되면, 상기 챔버 내부를 상기 1차 냉각 온도보다 낮은 2차 냉각 온도까지 냉각시키는 제6 단계;When demolding of the mold sleeve is completed, a sixth step of cooling the inside of the chamber to a secondary cooling temperature lower than the primary cooling temperature;
    상기 소결금형을 상기 챔버 외부로 인출시키는 제7 단계;A seventh step of pulling the sintering mold out of the chamber;
    소결모재를 상기 몰드슬리브로부터 탈거하는 제8 단계;An eighth step of removing the sintered base material from the mold sleeve;
    를 포함하는 가압 소결방법.Pressure sintering method comprising.
  10. 청구항 2 내지 청구항 8 중 어느 하나의 청구항에 의한 가압 소결 장치를 이용하여 소결체를 성형하는 제조방법으로서,A manufacturing method for forming a sintered body using the pressure sintering device according to any one of claims 2 to 8, comprising:
    소결성형을 위한 원료분말을 마련하는 제1 단계;A first step of preparing raw material powder for sintering molding;
    상기 원료분말을 가압하여 중공형 제품을 1차 성형하는 제2 단계; A second step of first forming a hollow product by pressurizing the raw material powder;
    상기 제2 단계에서 제작된 1차 성형체를 상기 내측슬리브와 상기 몰드슬리브 사이에 위치시키는 제3 단계; A third step of positioning the first molded body produced in the second step between the inner sleeve and the mold sleeve;
    상기 상부펀치 및 하부펀치를 이용하여 상기 1차 성형체를 가압 소결함으로써 소결체를 성형하는 제4 단계; A fourth step of forming a sintered body by pressurizing and sintering the primary molded body using the upper punch and the lower punch;
    상기 몰드하우징을 상승시키고 상기 제2 내측분할편을 하강시켜, 상기 몰드슬리브와 상기 소결체 간의 압착력과 상기 내측슬리브와 상기 소결체 간의 압착력을 제거하는 제5 단계;A fifth step of raising the mold housing and lowering the second inner split piece to remove the pressing force between the mold sleeve and the sintered body and the pressing force between the inner sleeve and the sintered body;
    상기 소결체를 상온까지 냉각시키는 제6 단계; A sixth step of cooling the sintered body to room temperature;
    상기 소결금형을 탈형하는 제7 단계; A seventh step of demolding the sintering mold;
    상기 소결체를 인출하는 제8 단계;An eighth step of withdrawing the sintered body;
    를 포함하는 가압 소결방법.Pressure sintering method comprising.
  11. 청구항 10에 있어서,In claim 10,
    상기 제4 단계는, 상기 소결체를 사전에 설정된 온도까지 가열하여 상기 소결체의 불순물을 제거한 후, 상기 소결체를 열간 가압하도록 구성되는 가압 소결방법.The fourth step is a pressure sintering method configured to heat the sintered body to a preset temperature to remove impurities in the sintered body and then hot press the sintered body.
  12. 청구항 10에 있어서,In claim 10,
    상기 제4 단계에서 상기 소결체를 가압 소결하는 방법은, 열간 가압 소결(Hot Pressing Sintering)과, 통전 가압 소결(Sparking Plazma Sinterign)과, 가스 가압 소결(Gas Pressure Sintering) 중 하나 이상의 소결공법을 포함하도록 구성되는 가압 소결방법.The method of pressurizing and sintering the sintered body in the fourth step includes one or more sintering methods among hot pressing sintering, sparking plasma sintering, and gas pressure sintering. A pressure sintering method consisting of:
  13. 청구항 10에 있어서,In claim 10,
    상기 제3 단계는, 상기 몰드슬리브와 상기 내측슬리브 사이에 적층 방식으로 삽입되는 복수 개의 스페이서 사이에 상기 소결체를 삽입하도록 구성되는 가압 소결방법.The third step is a pressure sintering method configured to insert the sintered body between a plurality of spacers inserted in a stacked manner between the mold sleeve and the inner sleeve.
PCT/KR2022/012178 2022-07-21 2022-08-16 Presse sintering method and apparatus WO2024019213A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0090267 2022-07-21
KR1020220090267A KR20240012822A (en) 2022-07-21 2022-07-21 Method and apparatus of pressure sintering for hollow product

Publications (1)

Publication Number Publication Date
WO2024019213A1 true WO2024019213A1 (en) 2024-01-25

Family

ID=89618017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012178 WO2024019213A1 (en) 2022-07-21 2022-08-16 Presse sintering method and apparatus

Country Status (2)

Country Link
KR (1) KR20240012822A (en)
WO (1) WO2024019213A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120012342A (en) * 2010-07-30 2012-02-09 엘지이노텍 주식회사 Hot press sintering apparatus
KR102061269B1 (en) * 2019-05-21 2019-12-31 (주)삼양컴텍 Mold system for hot pressed ceramic with cavity
KR102132251B1 (en) * 2019-01-31 2020-07-09 비씨엔씨 주식회사 Method of manufacturing a cylinder or a ring type boron carbaide sintered body and method of manufacturing a edge ring for plasma device using thereof
KR20200089921A (en) * 2019-01-18 2020-07-28 (주)삼양세라텍 Method and apparatus of hot pressure sintering
JP2021195612A (en) * 2020-06-18 2021-12-27 株式会社日本製鋼所 Energization sintering method and energization sintering apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120012342A (en) * 2010-07-30 2012-02-09 엘지이노텍 주식회사 Hot press sintering apparatus
KR20200089921A (en) * 2019-01-18 2020-07-28 (주)삼양세라텍 Method and apparatus of hot pressure sintering
KR102132251B1 (en) * 2019-01-31 2020-07-09 비씨엔씨 주식회사 Method of manufacturing a cylinder or a ring type boron carbaide sintered body and method of manufacturing a edge ring for plasma device using thereof
KR102061269B1 (en) * 2019-05-21 2019-12-31 (주)삼양컴텍 Mold system for hot pressed ceramic with cavity
JP2021195612A (en) * 2020-06-18 2021-12-27 株式会社日本製鋼所 Energization sintering method and energization sintering apparatus

Also Published As

Publication number Publication date
KR20240012822A (en) 2024-01-30

Similar Documents

Publication Publication Date Title
KR102132251B1 (en) Method of manufacturing a cylinder or a ring type boron carbaide sintered body and method of manufacturing a edge ring for plasma device using thereof
WO2018199402A1 (en) Curved glass manufacturing method
WO2012015243A2 (en) Hot press sintering apparatus and press element
KR102145545B1 (en) Method and apparatus of hot pressure sintering
WO2024019213A1 (en) Presse sintering method and apparatus
WO2017160030A1 (en) Battery case manufacturing device having improved production processability and manufacturing method using same
KR102310046B1 (en) Mould of multi-layered structure for hot press sintering
WO2017034119A1 (en) Method for preparing transparent yttria through hot-press sintering
KR102541331B1 (en) Plasma resistant material with added fine particles and manufacturing method thereof
KR101412519B1 (en) Method for manufacturing boron nitride sintered body by adding sintering agent
KR102061269B1 (en) Mold system for hot pressed ceramic with cavity
WO2018016824A1 (en) Material molding device
CN111278792B (en) Method for producing oriented ceramic sintered body and flat sheet
WO2020040515A1 (en) Apparatus and method for plasticizing solid oxide fuel cell
KR102249470B1 (en) Method for manufacturing high density boron carbide ceramic with suppressed particle growth ceramic
US11715661B2 (en) Composite sintered body and method of manufacturing composite sintered body
KR101053101B1 (en) Hot press sintering mold and its manufacturing method
WO2022270832A1 (en) High-precision sintered body having embedded electrode pattern and method for manufacturing same
KR102419521B1 (en) Boron carbide sintered body manufacturing equipment
KR102352039B1 (en) Manufacturing Method Edge Ring of Electrostatic Chuck and Electrostatic Chuck Comprising Same
KR102427219B1 (en) Manufacturing method for plasma resistance edge ring using prepress and the plasma resistance edge ring using thereof
KR20040087906A (en) Method and apparatus for forming a quartz glass
KR102487220B1 (en) Uniformly doped plasma resistant material and manufacturing method thereof
CN115057711A (en) Flat sheet
JP3109433B2 (en) Method and apparatus for firing ceramic molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952062

Country of ref document: EP

Kind code of ref document: A1