WO2024019121A1 - Motor driving system - Google Patents

Motor driving system Download PDF

Info

Publication number
WO2024019121A1
WO2024019121A1 PCT/JP2023/026631 JP2023026631W WO2024019121A1 WO 2024019121 A1 WO2024019121 A1 WO 2024019121A1 JP 2023026631 W JP2023026631 W JP 2023026631W WO 2024019121 A1 WO2024019121 A1 WO 2024019121A1
Authority
WO
WIPO (PCT)
Prior art keywords
harmonic
wave
fundamental
initial phase
motor
Prior art date
Application number
PCT/JP2023/026631
Other languages
French (fr)
Japanese (ja)
Inventor
敬介 藤▲崎▼
賢哉 成瀬
Original Assignee
学校法人トヨタ学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人トヨタ学園 filed Critical 学校法人トヨタ学園
Publication of WO2024019121A1 publication Critical patent/WO2024019121A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to a motor drive system that drives a synchronous motor using a pulse width modulation control method.
  • Synchronous motors that exhibit high efficiency are widely used, and in particular, permanent magnet synchronous motors (PMSM) have been put into practical use as energy-saving, high-performance motors for electric vehicles, air conditioners, refrigerators, etc. is progressing.
  • a PWM control method is often adopted to drive a synchronous motor, in which a pulse width modulation (PWM) voltage supplied from an inverter circuit is input and controlled.
  • PWM pulse width modulation
  • a PWM drive signal for forming a PWM voltage is input to an inverter circuit that outputs a PWM voltage.
  • the signal wave (modulation wave) is a sine wave signal
  • the carrier wave carrier wave
  • the pulse width is determined so that the intersection of the signal wave and the carrier wave becomes an edge.
  • Patent Document 1 a waveform obtained by adding and superimposing harmonic components to a sine wave signal serving as a fundamental wave is used as a signal wave.
  • a method is disclosed in which the pulse width is determined based on the intersection of the signal wave and the carrier wave. According to this PWM signal generation method, it is stated that the motor output capacity is large and the synchronous motor can be driven with low vibration and low noise.
  • an object of the present invention is to provide a motor drive system with reduced loss compared to the case where a sine wave serving as a fundamental wave is used as a signal wave.
  • the invention according to claim 1 is a motor drive system that drives a motor with an inverter, which generates a signal wave h(t) obtained by superimposing a harmonic on a fundamental sine wave g(t).
  • the upper limit of n/m is the value of n/m at which the fundamental wave current starts to decrease due to changes in magnetic properties
  • n The present invention is characterized in that the lower limit of /m is a value of n/m at which the increase due to harmonic components is greater than the reduction effect of the fundamental wave current.
  • the invention according to claim 2 is characterized in that, in addition to the configuration according to claim 1, the invention operates with n/m greater than ⁇ 0.3 and less than 0.
  • the invention according to claim 4 is such that the maximum phase angle of the initial phase ⁇ of the harmonic is the initial phase angle at which the fundamental wave current starts to decrease due to a change in the magnetic property.
  • the operation is characterized in that the value of the phase ⁇ and the minimum phase angle of the initial phase ⁇ are such that the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current.
  • the invention according to claim 5 is a motor drive system in which a motor is driven by an inverter, in which a signal wave h(t) obtained by superimposing a harmonic wave on a fundamental sine wave g(t) and a carrier wave intersect within the inverter.
  • a is an integer of 5 or more
  • the upper limit of n/m is the value of n/m at which the fundamental wave current starts to decrease due to changes in magnetic properties.
  • n/m is operated at a value where the lower limit of n/m is such that the increase due to harmonic components is greater than the reduction effect of the fundamental wave current.
  • the invention according to claim 6 is characterized in that, in addition to the configuration according to claim 5, the invention operates with n/m greater than ⁇ 0.3 and less than 0.
  • the invention according to claim 7 provides, in addition to the configuration according to claim 5 or 6, when the fundamental sine wave g(t) has a phase angle (2 ⁇ f 1 t) of ⁇ /2 radian.
  • the invention according to claim 8 provides that the maximum phase angle of the initial phase ⁇ of the harmonic is the initial phase angle at which the fundamental wave current starts to decrease due to a change in the magnetic property.
  • the operation is characterized in that the value of the phase ⁇ and the minimum phase angle of the initial phase ⁇ are such that the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current.
  • the invention according to claim 9 provides a motor comprising: an inverter section that outputs a pulse width modulated drive voltage for driving a synchronous motor; and a motor control section that controls the inverter section so as to form the pulse width modulation drive voltage.
  • the motor control unit generates a pulse at the intersection of a carrier wave and a signal wave obtained by superimposing a fifth harmonic of the fundamental sine wave on a fundamental sine wave that defines the fundamental frequency of the pulse width modulated drive voltage. It is configured to generate a PWM drive signal that changes the width to form the pulse width modulated drive voltage, and supplies the PWM drive signal to the switching element input section of the inverter section, and to change the frequency of the fundamental sine wave.
  • the upper and lower limits of the superimposition rate n/m which is the ratio of the modulation rate n of the fifth harmonic of the initial phase ⁇ to m, are the primary
  • a pulse width modulated voltage using the signal wave h(t) is applied to the coil while changing the superimposition ratio n/m, and the primary current flowing through the primary coil and the secondary coil wound around the ring sample are The upper limit value of the superimposition ratio n/m is determined by a ring test that measures the secondary voltage generated in the first harmonic than when the modulation ratio n of the fifth harmonic is zero.
  • the superposition ratio n/m which is the upper limit of the range below which the fundamental wave current, which is the component of the fundamental sine wave frequency f1 of the current, is zero, or the modulation rate n of the fifth harmonic is zero.
  • the superimposition ratio n/m is determined as the upper limit of the range below which the predetermined loss calculated based on the primary current and the secondary voltage falls, and the lower limit value of the superimposition ratio n/m is the fifth harmonic.
  • the fundamental sine wave frequency of the primary current is based on the case where the modulation rate n of the fifth harmonic is zero, compared to the amount of reduction of the fundamental wave current based on the case where the modulation rate n of the fifth harmonic is zero.
  • the predetermined loss is greater than when the superimposition ratio n/m, which is the lower limit of the range below which the amount of increase in the harmonic current, which is the harmonic component of f1 , or the modulation ratio n of the fifth harmonic is zero.
  • the superimposition ratio is determined as n/m, which is the lower limit of the range below.
  • the maximum phase angle and the minimum phase angle of the initial phase ⁇ of the fifth harmonic are changed by changing the initial phase ⁇ to adjust the pulse width.
  • the maximum phase angle is determined by the ring test in which a modulation voltage is applied to the primary coil, and the maximum phase angle is within a range in which the fundamental current is lower than when the modulation rate n of the fifth harmonic is zero.
  • the initial phase ⁇ is determined as the maximum value of ⁇ , or the initial phase ⁇ is determined as the maximum value of the range in which the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero, and the minimum phase
  • the angle is the amount of reduction in the fundamental wave current based on the case where the modulation rate n of the fifth-order harmonic is zero, compared to the amount of reduction of the fundamental wave current based on the case where the modulation rate n of the fifth-order harmonic is zero.
  • the initial phase ⁇ is a minimum value in a range where the increase in wave current is below, or the initial phase is a minimum value in a range where the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero. It is characterized in that it is determined as ⁇ .
  • the invention according to claim 11 provides a motor comprising: an inverter section that outputs a pulse width modulated drive voltage for driving a synchronous motor; and a motor control section that controls the inverter section so as to form the pulse width modulation drive voltage.
  • the motor control unit generates a pulse at the intersection of a carrier wave and a signal wave obtained by superimposing a fifth harmonic of the fundamental sine wave on a fundamental sine wave that defines the fundamental frequency of the pulse width modulated drive voltage. It is configured to generate a PWM drive signal that changes the width to form the pulse width modulated drive voltage, and supplies the PWM drive signal to the switching element input section of the inverter section, and to change the frequency of the fundamental sine wave.
  • the upper and lower limits of the superimposition rate n/m which is the ratio of the modulation rate n of the fifth harmonic of the initial phase ⁇ to m, are determined by the pulse width modulation drive voltage using the signal wave h(t).
  • the synchronous motor is rotationally driven by changing the superimposition ratio n/m, and at least one of the input power to the inverter section, the input power of each phase of the synchronous motor, or the input current of each phase of the synchronous motor is measured.
  • the upper limit of the superimposition ratio n/m is determined by a motor test in which the fundamental wave current, which is a component of the fundamental sine wave frequency f1 calculated from the input current, is
  • the superimposition ratio n/m is the upper limit of the range below when the harmonic modulation ratio n is zero, or the input power to the inverter section, the input power to each phase of the synchronous motor, or the input power to each phase of the synchronous motor.
  • the predetermined loss calculated based on at least one of the input currents is determined as the superimposition ratio n/m that is the upper limit of a range in which the modulation ratio n of the fifth harmonic is lower than when the modulation ratio n is zero,
  • the lower limit value of the superposition ratio n/m is such that the modulation rate n of the fifth harmonic is zero compared to the amount of reduction in the fundamental wave current based on the case where the modulation rate n of the fifth harmonic is zero.
  • the superimposition ratio n/m is the lower limit of the range below which the amount of increase in the harmonic current, which is a harmonic component of the fundamental sine wave frequency f1 of the input current, is based on the case where It is characterized in that the superimposition ratio n/m is determined as the lower limit of the range in which the predetermined loss is lower than when the wave modulation ratio n is zero.
  • the maximum phase angle and the minimum phase angle of the initial phase ⁇ of the fifth harmonic are changed by changing the initial phase ⁇ to adjust the pulse width.
  • the maximum phase angle is determined by the motor test in which the synchronous motor is rotationally driven by a modulated drive voltage, and the maximum phase angle is determined when the fundamental wave current is lower than when the modulation rate n of the fifth harmonic is zero.
  • the initial phase ⁇ is determined as the maximum value in the range below which the predetermined loss falls below that when the modulation rate n of the fifth harmonic is zero, and The minimum phase angle is based on the case where the modulation rate n of the fifth-order harmonic is zero compared to the amount of reduction in the fundamental wave current based on the case where the modulation rate n of the fifth-order harmonic is zero.
  • the initial phase ⁇ is a minimum value in a range below which the increase amount of the harmonic current is lower, or the initial phase ⁇ is a minimum value in a range where the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero. It is characterized in that it is determined as the initial phase ⁇ .
  • the fifth harmonic is superimposed on the signal wave
  • the upper limit of the superimposition ratio n/m is the value of n/m at which the fundamental wave current starts to decrease due to a change in magnetic characteristics
  • n/m is the upper limit of the superimposition ratio n/m. It operates so that the lower limit of m is a value of n/m at which the increase due to harmonic components is greater than the effect of reducing the fundamental wave current. Because of this, the loss of the motor drive system can be reduced compared to the case where a fundamental sine wave is used as a signal wave.
  • the maximum phase angle of the initial phase ⁇ of the harmonics is the value of the initial phase ⁇ at which the fundamental wave current starts to decrease due to a change in magnetic characteristics
  • the minimum phase angle of the initial phase ⁇ is the value of the fundamental wave current. It operates at an initial phase ⁇ value at which the increase due to harmonic components is greater than the current reduction effect. Because of this, the loss of the motor drive system can be reduced compared to the case where a fundamental sine wave is used as a signal wave.
  • the fifth or higher harmonics are superimposed on the signal wave
  • the upper limit of the superimposition ratio n/m is the value n/m at which the fundamental wave current starts to decrease due to a change in magnetic characteristics.
  • the lower limit of n/m is a value of n/m at which the increase due to harmonic components is greater than the effect of reducing the fundamental wave current. Because of this, the loss of the motor drive system can be reduced compared to the case where a fundamental sine wave is used as a signal wave.
  • the maximum phase angle of the initial phase ⁇ of the harmonic is the value of the initial phase ⁇ at which the fundamental wave current starts to decrease due to a change in magnetic characteristics
  • the minimum phase angle of the initial phase ⁇ is It operates at an initial phase ⁇ value at which the increase due to harmonic components is greater than the current reduction effect. Because of this, loss can be reduced compared to the case where a fundamental sine wave is used as a signal wave.
  • the upper and lower limits of the superimposition rate n/m which is the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine wave constituting the signal wave, are determined by a ring test.
  • the upper limit of the superposition ratio n/m is the upper limit of the range in which the fundamental wave current is lower than when the modulation rate n of the fifth harmonic is zero, or
  • the modulation rate n/m is determined as the upper limit of the range where the predetermined loss is lower than when the modulation rate n of the 5th harmonic is zero, and the lower limit of the modulation rate n/m is the modulation rate of the 5th harmonic.
  • Superposition that is the lower limit of the range in which the amount of increase in harmonic current based on the case where the modulation rate n of the fifth harmonic is zero is lower than the amount of reduction in the fundamental wave current based on the case where the modulation rate n of the fifth harmonic is zero.
  • the modulation rate n/m or the superimposition rate n/m is determined as the lower limit of the range in which the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero. Because of this, loss can be reduced compared to the case where a fundamental sine wave is used as a signal wave.
  • the maximum phase angle and minimum phase angle of the initial phase ⁇ of the fifth harmonic are determined by a ring test performed by changing the initial phase ⁇ , and the maximum phase angle is the initial phase ⁇ that is the maximum value in the range in which the fundamental wave current is lower than when the modulation rate n of the fifth harmonic is zero, or the predetermined loss than when the modulation rate n of the fifth harmonic is zero.
  • the minimum phase angle is determined as the initial phase ⁇ that is the maximum value in the range in which the 5th harmonic
  • the initial phase ⁇ is the minimum value in the range in which the increase in harmonic current is below the case where the modulation rate n of the fifth harmonic is zero, or the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero.
  • the initial phase ⁇ is set to be the minimum value within the range below. Because of this, loss can be reduced compared to the case where a fundamental sine wave is used as a signal wave.
  • the upper and lower limits of the superimposition rate n/m which is the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine wave constituting the signal wave, are determined by a motor test.
  • the upper limit of the superposition ratio n/m is the superposition ratio n/m that is the upper limit of the range in which the fundamental wave current is lower than when the modulation rate n of the fifth harmonic is zero, or
  • the upper limit of the range where the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero is determined as the superimposition rate n/m
  • the lower limit value of the superimposition rate n/m is the modulation rate of the fifth harmonic.
  • Superimposition rate that is the lower limit of the range in which the amount of increase in harmonic current based on the case where the modulation rate n of the fifth harmonic is zero is lower than the amount of reduction in the fundamental wave current based on the case where n is zero.
  • n/m, or a superimposition rate n/m that is the lower limit of a range in which the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero. Because of this, loss can be reduced compared to the case where a fundamental sine wave is used as a signal wave.
  • the maximum phase angle and the minimum phase angle of the initial phase ⁇ of the fifth harmonic are determined by a motor test performed by changing the initial phase ⁇ , and the maximum phase angle is the initial phase ⁇ that is the maximum value in the range in which the fundamental wave current is lower than when the modulation rate n of the fifth harmonic is zero, or the predetermined loss than when the modulation rate n of the fifth harmonic is zero.
  • the minimum phase angle is determined as the initial phase ⁇ that is the maximum value in the range in which the 5th harmonic
  • the initial phase ⁇ is the minimum value in the range in which the increase in harmonic current is below the case where the modulation rate n of the fifth harmonic is zero, or the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero.
  • the initial phase ⁇ is set to be the minimum value within the range below. Because of this, loss can be reduced compared to the case where a fundamental sine wave is used as a signal wave.
  • FIG. 1 is a schematic configuration diagram of a motor drive system according to an embodiment of the present invention. It is a schematic block diagram of the motor control part of the motor drive system based on the same embodiment.
  • FIG. 3 is a diagram illustrating pulse width modulation of a PWM drive signal of the motor drive system according to the same embodiment, in which (a) is a diagram showing a signal wave and a carrier wave, (b) is a diagram showing a PWM drive signal, and (c ) is a diagram showing the PWM drive voltage.
  • FIG. 3 is a diagram showing three-phase fundamental sine waves of the motor drive system according to the embodiment. It is a figure showing the flow of operation of a motor control part of a motor drive system concerning the same embodiment.
  • FIG. 3 is a diagram illustrating pulse width modulation of a PWM drive signal of the motor drive system according to the same embodiment, in which (a) is a diagram showing a signal wave and a carrier wave, (b) is a diagram showing a PWM drive signal, and
  • FIG. 2 is a schematic configuration diagram of a ring testing device used for setting, designing, and manufacturing a motor drive system according to the same embodiment.
  • 3 is a diagram illustrating an example of setting conditions for a ring test used in setting, designing, and manufacturing a motor drive system according to the same embodiment;
  • FIG. FIG. It is a figure which shows the example of the time waveform of the magnetic field strength and magnetic flux density by the ring test used for the setting, design, and manufacturing of the motor drive system based on the same embodiment, (a) is when the superimposition ratio n/m is 0.
  • (b) is a diagram showing the major loop component when the superposition ratio n/m is 0.
  • (c) is a diagram showing the measured waveform when the superposition ratio n/m is -0.2.
  • FIG. 3 is a diagram showing a major loop component of -0.2.
  • FIG. 3 is a diagram showing an example of iron loss and fundamental wave current obtained by a ring test used in setting, designing, and manufacturing the motor drive system according to the embodiment.
  • FIG. 3 is a diagram showing an example of measurement results by a ring test used for setting, designing, and manufacturing the motor drive system according to the embodiment, in which (a) is a diagram showing fundamental wave current, and (b) is a diagram showing iron loss. It is. It is a figure which shows the rough flow of setting superimposition ratio n/m in the ring test used for the setting, design, and manufacturing of the motor drive system based on the same embodiment.
  • FIG. 2 is a schematic configuration diagram of a motor testing device used for setting, designing, and manufacturing a motor drive system according to the same embodiment.
  • FIG. 2 is a diagram showing an example of a test motor for a motor test used for setting, designing, and manufacturing a motor drive system according to the same embodiment, in which (a) is a schematic cross-sectional view of the motor, and (b) is a diagram showing specifications of the motor. It is.
  • FIG. 3 is a diagram showing an example of a fundamental wave current and a fundamental sine wave modulation rate from a motor test used in setting, designing, and manufacturing the motor drive system according to the embodiment. It is a figure which shows the example of the total loss by the motor test used for the setting, design, and manufacture of the motor drive system based on the same embodiment. It is a figure which shows the example of the measurement conditions (phase angle) of the motor test used for the setting, design, and manufacturing of the motor drive system based on the same embodiment.
  • FIG. 3 is a diagram showing an example of a fundamental wave current and a fundamental sine wave modulation rate from a motor test used in setting, designing, and manufacturing the motor drive system according to the embodiment. It is a figure which shows the example of the total loss by the motor test used for the setting, design, and manufacture of the motor drive system based on the same embodiment. It is a figure which shows the example of the measurement conditions (phase angle) of the motor test used for the setting, design, and manufacturing of the motor drive system based on the same
  • FIG. 3 is a diagram showing an example of a fundamental sine wave modulation factor and fundamental wave current obtained by a motor test used in setting, designing, and manufacturing the motor drive system according to the embodiment. It is a figure which shows the example of the total loss by the motor test used for the setting, design, and manufacture of the motor drive system based on the same embodiment. It is a figure which shows the rough flow of setting superimposition ratio n/m in the motor test used for the setting, design, and manufacturing of the motor drive system based on the same embodiment. It is a figure which shows the rough flow of setting initial phase (phi) of the 5th harmonic in the motor test used for the setting, design, and manufacture of the motor drive system based on the same embodiment.
  • FIG. 1 is a schematic configuration diagram of a test device related to characteristic evaluation test 1 (ring test) conducted to determine the configuration of the present invention.
  • FIG. 3 is a diagram showing the specifications of a ring sample of the test device related to the characteristic evaluation test 1. It is a figure which shows the measurement conditions (superimposition rate characteristic) of the test device based on the same characteristic evaluation test 1.
  • 2 is a diagram showing the waveform of a signal wave of the test device according to the characteristic evaluation test 1, in which (a) is a diagram showing a fundamental sine wave, and (b) is a diagram showing a fifth harmonic obtained by superimposing a fifth harmonic on the fundamental sine wave.
  • FIG. 3 is a diagram showing a superimposed signal.
  • FIG. 3 is a diagram showing the measurement results of the time waveforms of the magnetic field strength and magnetic flux density by the test device according to the characteristic evaluation test 1, in which (a) shows the measured waveform when the superimposition ratio n/m is 0, and (b) ) is a diagram showing the major loop component when the superimposition ratio n/m is 0, (c) is a diagram showing the measured waveform when the superimposition ratio n/m is 0.2, (d) is a diagram showing the measurement waveform when the superimposition ratio n/m is 0.2.
  • FIG. 3 is a diagram showing a major loop component when is 0.2.
  • FIG. 3 is a diagram showing measurement results of fundamental wave current and fundamental sine wave modulation factor by the test device according to the characteristic evaluation test 1.
  • FIG. 2 is a diagram showing the measurement results of iron loss, major loop iron loss, and carrier harmonic iron loss (minor loop iron loss) by the test equipment related to Characteristic Evaluation Test 1, in which (a) is a diagram showing iron loss, and (b) is a diagram showing iron loss. ) is a diagram showing the rate of change in iron loss when the superimposition ratio n/m is 0 as a reference.
  • FIG. 3 is a diagram showing measurement conditions (phase angle characteristics of fifth harmonic) of the test device according to the characteristic evaluation test 1.
  • FIG. 2 is a diagram showing the waveform of a signal wave of the test device according to the same characteristic evaluation test 1, in which (a) is a diagram showing a fundamental sine wave, and (b) is a diagram showing a 5th order of the fundamental sine wave with an initial phase of ⁇ /4 [rad].
  • FIG. 3 is a diagram showing a fifth-order harmonic superimposed signal on which harmonics are superimposed. It is a figure which shows the measurement result when changing the initial phase of the 5th harmonic by the test device concerning the same characteristic evaluation test 1, (a) is a figure which shows the fundamental wave current, (b) is a figure which shows iron loss. It is a diagram.
  • FIG. 2 is a diagram showing the measurement results when the carrier frequency is changed by the test device according to the characteristic evaluation test 1, in which (a) is a diagram showing the fundamental wave current, and (b) is a diagram showing the iron loss.
  • FIG. 2 is a schematic configuration diagram of a test device related to characteristic evaluation test 2 (motor test) conducted to determine the configuration of the present invention.
  • FIG. 2 is a diagram showing waveforms of three-phase signal waves of the test equipment related to the characteristic evaluation test 2, in which (a) is a diagram showing a fundamental sine wave, and (b) is a diagram showing a 5th harmonic wave superimposed on the fundamental sine wave.
  • FIG. 3 is a diagram showing a harmonic superimposed signal.
  • FIG. 6 is a diagram showing measurement results of fundamental wave current and fundamental sine wave modulation factor by the test device according to the characteristic evaluation test 2.
  • FIG. 7 is a diagram showing the measurement results of the overall loss by the test device according to the characteristic evaluation test 2.
  • FIG. 6 is a diagram showing the measurement results of motor core loss and mechanical loss by the test device according to the characteristic evaluation test 2. It is a figure which shows the measurement result of the copper loss and fundamental wave current copper loss by the test device based on the same characteristic evaluation test 2.
  • FIG. 7 is a diagram showing the measurement results of inverter loss by the test device according to the characteristic evaluation test 2.
  • FIG. 7 is a diagram showing the measurement conditions (phase angle characteristics of fifth harmonic) of the test device related to the characteristic evaluation test 2.
  • FIG. 3 is a diagram showing waveforms of three-phase signal waves of the test equipment related to the same characteristic evaluation test 2
  • (a) is a diagram showing a fundamental sine wave
  • (b) is a diagram showing the fundamental sine wave with an initial phase of ⁇ /4 [rad]
  • FIG. 6 is a diagram showing the measurement results of the fundamental sine wave modulation factor and the fundamental wave current by the test device according to the characteristic evaluation test 2.
  • FIG. 7 is a diagram showing the measurement results of the overall loss by the test device according to the characteristic evaluation test 2.
  • FIG. 6 is a diagram showing the measurement results of motor core loss and mechanical loss by the test device according to the characteristic evaluation test 2.
  • FIG. 7 is a diagram showing the measurement results of inverter loss by the test device according to the characteristic evaluation test 2.
  • a motor drive system 1 according to an embodiment of the present invention will be explained using FIGS. 1 to 26. Further, the results of characteristic evaluation tests conducted to determine the configuration of the present invention will be explained using FIGS. 27 to 56.
  • FIG. 1 is a schematic configuration diagram of a motor drive system 1 according to an embodiment of the present invention.
  • This motor drive system 1 is a system that drives a synchronous motor using a pulse width modulation (PWM, hereinafter referred to as PWM) control method, and includes a three-phase inverter section 2 (three-phase inverter circuit), It is configured to include a boost chopper section 3 (boost chopper circuit), a motor control section 4, a permanent magnet synchronous motor 5, a current sensor 9, and a position sensor 10.
  • PWM pulse width modulation
  • the three-phase inverter section 2 switches the DC voltage supplied from the step-up chopper section 3 and performs pulse width modulation drive to become the motor drive voltage of three phases (U phase, V phase, W phase) of the permanent magnet synchronous motor 5.
  • a voltage (hereinafter referred to as PWM drive voltage) is output.
  • a three-phase PWM drive voltage output from the three-phase inverter section 2 is supplied to a three-phase stator coil 6 of the motor 5, and a permanent magnet rotor 7 is rotationally driven.
  • the three-phase inverter unit 2 includes switching elements S 1 , S 2 , S 3 , S 4 , S 5 , and S 6 made up of IGBTs (Insulated Gate Bipolar Transistors), and free-wheeling diodes D 1 , D 2 , D 3 , There are three sets of configurations in which D 4 , D 5 , and D 6 are connected in series as pairs on the upper and lower sides, and the upper and lower switching elements (S 1 and S 2 , S 3 and S 4 , Power for one phase of the motor 5 is output from the connection point of the pair of freewheeling diodes (D 1 and D 2 , D 3 and D 4 , D 5 and D 6 ).
  • IGBTs Insulated Gate Bipolar Transistors
  • the upper and lower switching elements (S 1 and S 2 , S 3 and S 4 , S 5 and S 6 ) are driven so that if one is on, the other is off. Furthermore, in order to prevent short circuits, the upper and lower switching elements are driven to include a dead time in which both the upper and lower switching elements are turned off when switching between on and off, so that they are not turned on at the same time.
  • the on/off drive of the switching elements S 1 to S 6 is performed by a motor control unit at the switching element input parts 8 1 , 8 2 , 8 3 , 8 4 , 8 5 , 8 6 which are the gate terminals of the switching elements S 1 to S 6 . This is performed by inputting the PWM drive signal supplied from 4.
  • MOSFETs Metal-Oxide-Semiconductor Field Effect Transistors
  • power transistors and the like can be used for the switching elements S 1 to S 6 .
  • the boost chopper section 3 supplies DC voltage to the three-phase inverter section 2.
  • This boost chopper section 3 is composed of a battery 11, an inductor 12, a capacitor 13, a switching element Sc for the chopper section consisting of an IGBT, a diode 15, and the like.
  • the boost chopper control signal supplied from the motor control section 4 is input to the gate terminal of the switching element Sc for the chopper section, and this switching element Sc is turned on and off, due to the actions of the inductor 12, capacitor 13, and diode 15, , a DC voltage higher than the voltage of the battery 11 is output between both terminals of the capacitor 13.
  • This output voltage is input to the collector terminals of the upper switching elements S 1 , S 3 , S 5 of the three-phase inverter section 2, and becomes the input DC voltage to the three-phase inverter section 2.
  • the input DC voltage to the three-phase inverter unit 2 changes, and thereby the magnitude of the motor drive current flowing through the stator coil 6 of the permanent magnet synchronous motor 5 also changes. do.
  • step-up chopper section 3 is not essential, and the voltage of the battery 11, which is a DC power source, is directly supplied as the input DC voltage to the three-phase inverter section 2 without providing the step-up chopper section 3.
  • the motor drive current to the permanent magnet synchronous motor 5 may be controlled by changing the modulation rate m, which is the amplitude of .
  • the current sensor 9 detects the motor drive current flowing through the stator coil 6 of the permanent magnet synchronous motor 5. The current value detected by this sensor 9 is output to the motor control section 4 and used to control the motor 5.
  • a shunt resistor and amplifier type sensor, a current sensor with a core, or a coreless current sensor can be used.
  • the permanent magnet synchronous motor 5 uses an interior permanent magnet synchronous motor (IPMSM).
  • the motor 5 includes a stator having a stator coil 6 wound around a stator core made of a magnetic material, and a rotor 7 made of a permanent magnet rotatably supported inside the stator.
  • the rotor 7 is rotationally driven by passing three-phase motor drive current through the stator coil 6 to form a rotating magnetic field.
  • the three-phase PWM drive voltage output from the three-phase inverter section 2 is applied to the three-phase stator coil 6, a motor drive current flows through the stator coil 6, causing the rotor 7 to rotate.
  • a surface permanent magnet synchronous motor (SPMSM) can also be used. Also, other synchronous motors than this motor can be used.
  • the position sensor 10 detects the position of the magnetic poles of the permanent magnets constituting the rotor 7, and sensor detection signals corresponding to the U phase, V phase, and W phase are output to the motor control unit 4 and used to control the motor 5.
  • a Hall IC or a Hall element can be used for the position sensor 10.
  • the motor control unit 4 receives the detection signals from the current sensor 9 and the position sensor 10, obtains the driving state of the permanent magnet synchronous motor 5, and compares it with command values such as a rotation speed command and a torque command, which are control commands for the motor 5. Then, the three-phase inverter section 2 and boost chopper section 3 are controlled so that the motor 5 operates in accordance with the command value.
  • the three-phase inverter section 2 is controlled by outputting three-phase PWM drive signals to the switching element input sections 8 1 to 8 6 . This PWM drive signal is generated by comparing a signal wave (modulated wave) and a carrier wave (carrier wave) and switching at the intersection of the signal wave and the carrier wave.
  • FIG. 2 is a schematic block diagram of the motor control section 4 of the motor drive system 1.
  • This motor control section 4 includes a CPU 40, a ROM 41, a RAM 42, a signal wave generation section 43, a carrier wave generation section 44, a PWM drive signal generation section 45, a PWM drive signal output section 46, a boost chopper control signal output section 47, a rotor detection position
  • the configuration includes a receiving section 48, a motor input current value receiving section 49, and a command value receiving section 50.
  • the CPU 40 executes programs that control the motor drive system 1 and performs arithmetic processing.
  • the ROM 41 which is a non-volatile memory, stores programs executed by the CPU 40 and data used for processing the programs.
  • the RAM 42 which is a volatile memory, operates as a work area for program execution and arithmetic processing by the CPU 40.
  • the command value receiving unit 50 receives command values such as a rotational speed command and a torque command, which are control commands for the permanent magnet synchronous motor 5, from the outside.
  • the motor control section 4 controls the three-phase inverter section 2 and the boost chopper section 3 to drive the motor 5 so as to match the received command value.
  • the motor input current value receiving unit 49 receives the detected value of the three-phase motor drive current output from the current sensor 9. Further, the rotor detection position receiving unit 48 receives a detected value of the magnetic pole position of the rotor 7 output from the position sensor 10. By detecting the position of the rotor 7 in time series, the rotational speed, rotational phase, etc. of the rotor 7 are calculated. The motor control unit 4 obtains the driving state of the permanent magnet synchronous motor 5 from the received motor drive current and the magnetic pole position of the rotor 7 .
  • the step-up chopper control signal output section 47 supplies a step-up chopper control signal to the switching element Sc for the chopper section of the step-up chopper section 3, and switches this switching element Sc. Drive on/off.
  • the signal wave generation section 43 generates a signal wave used as a base waveform when forming the PWM drive signals input to the switching element input sections 8 1 to 8 6 .
  • the driving state of the permanent magnet synchronous motor 5 obtained from the signals of the current sensor 9 and the position sensor 10 is compared with the command value received by the command value reception unit 50, so that the operation of the motor 5 follows the command value.
  • the CPU 40 performs calculations to set the modulation rate and phase, which is the amplitude of the signal wave.
  • This signal wave is generated as a three-phase waveform corresponding to the U phase, V phase, and W phase.
  • the signal wave is generated as numerical data by the calculation of the CPU 40.
  • the carrier wave generation unit 44 generates a carrier wave used as a base waveform when forming a PWM drive signal. This carrier wave is generated as numerical data by the calculation of the CPU 40.
  • the PWM drive signal generation unit 45 generates a PWM drive signal such that the edge position is switched at the intersection of the signal wave generated by the signal wave generation unit 43 and the carrier wave generated by the carrier wave generation unit 44.
  • This PWM drive signal is generated as a three-phase signal corresponding to the U phase, V phase, and W phase.
  • the PWM drive signal is generated by the calculation of the CPU 40.
  • the PWM drive signal output section 46 supplies the three-phase PWM drive signal generated by the PWM drive signal generation section 45 to the switching element input sections 8 1 to 8 6 . By inputting this PWM drive signal, a three-phase PWM drive voltage is output from the three-phase inverter section 2 to the permanent magnet synchronous motor 5.
  • the PWM drive signal supplied to the upper and lower switching elements (S 1 and S 2 , S 3 and S 4 , S 5 and S 6 ) is applied to the upper and lower switching elements (S 1 and S 2 , S 3 and S 4 , S 5 and S 6 ) is turned on, the other is driven to be turned off, so that the waveforms are reversed on the upper and lower sides.
  • a dead time is provided to prevent the upper and lower switching elements from being turned on at the same time.
  • the generation of the signal wave, carrier wave, and PWM drive signal is performed by the CPU 40 based on a program stored in the ROM 41 and calculated numerically. With this software configuration, parameters for forming signal waves and carrier waves can be changed flexibly and easily.
  • the generation of the signal wave, carrier wave, and PWM drive signal is not limited to the software configuration, and the generation of the signal wave, carrier wave, and PWM drive signal may be realized using an electronic circuit as a hardware configuration.
  • FIG. 3 is a diagram illustrating pulse width modulation of the PWM drive signal of the motor drive system 1, in which (a) is a diagram showing a signal wave and a carrier wave, (b) is a diagram showing a PWM drive signal, and (c) is a diagram showing a PWM drive signal. is a diagram showing PWM drive voltage.
  • FIG. 3A shows a signal wave h(t) generated by the signal wave generation unit 43 and a carrier wave c(t) generated by the carrier wave generation unit 44.
  • the signal wave h(t) is generated by adding and superimposing the fifth harmonic to the fundamental sine wave g(t). If the frequency of this fundamental sine wave g(t) is the fundamental sine wave frequency f1 , the frequency of the fifth harmonic is five times 5 ⁇ f1 . Furthermore, when the modulation rate expressed as the amplitude of the fundamental sine wave g(t) is m, and the modulation rate expressed as the amplitude of the fifth harmonic is n, 5 for the modulation rate m of the fundamental sine wave g(t). The ratio of the modulation rate n of the harmonics is defined as the superimposition rate n/m.
  • the carrier wave c(t) is a triangular wave with a carrier frequency fc , and the amplitude of the triangular wave is 1.
  • the modulation rate m of the fundamental sine wave g(t) takes a smaller value than the amplitude of the carrier wave c(t).
  • the horizontal axis shows the phase converted from time t
  • the vertical axis shows the magnitude of the signal
  • the PWM drive signal generation unit 45 performs switching at the intersection of the signal wave h(t) and the carrier wave c(t), modulates the pulse width, and generates a PWM drive signal. That is, a PWM drive signal is generated by switching the pulse width at the intersection of the signal wave h(t) and the carrier wave c(t).
  • FIG. 3(b) shows the PWM drive signal generated by the PWM drive signal generation section 45.
  • the horizontal axis represents the phase converted from time t
  • the vertical axis represents the magnitude of the PWM drive signal.
  • the PWM drive signal is composed of a rectangular waveform, and in comparing the signal wave h(t) and the carrier wave c(t) in FIG. ), it becomes a high level, and when the magnitude of the signal wave h(t) is smaller than the carrier wave c(t), it becomes a low level.
  • a rising edge or a falling edge is formed at the intersection of the signal wave h(t) and the carrier wave c(t).
  • the pulse width indicated as the high level width increases, and the magnitude of the signal wave h(t) increases.
  • the pulse width which is the high level width, becomes narrower. In this manner, the time period during which the pulse width of the PWM drive signal is at a high level changes periodically within one period of the signal wave h(t).
  • the fundamental sine wave frequency f1 included in the signal wave h(t) becomes the fundamental frequency of the fluctuation in the pulse width of the PWM drive signal, and the signal wave h(t) The frequency component of the fifth harmonic included in is added.
  • the upper and lower switching A permanent magnet is connected to the connection point of a pair of elements (S 1 and S 2 , S 3 and S 4 , S 5 and S 6 ) and free-wheeling diodes (D 1 and D 2 , D 3 and D 4 , D 5 and D 6 ).
  • a PWM drive voltage is output as the drive voltage of the synchronous motor 5.
  • FIG. 3(c) shows the PWM drive voltage output from the three-phase inverter section 2.
  • the horizontal axis represents the phase converted from time t
  • the vertical axis represents the magnitude of the PWM drive voltage.
  • the waveform of the PWM drive voltage has a similar shape to the waveform of the PWM drive signal on the time (phase) axis.
  • the pulse width indicated as the high-level width of the PWM drive voltage also repeats periodic fluctuations, similar to the PWM drive signal.
  • the fundamental sine wave frequency f1 included in the signal wave h(t) becomes the fundamental frequency of the fluctuation in the pulse width of the PWM drive voltage, and this is in addition to the signal wave h(t ) is added with the frequency component of the fifth harmonic included in .
  • the fundamental sine wave frequency f1 included in the signal wave h(t) defines the fundamental frequency of the pulse width of the PWM drive voltage.
  • the intersection point with the carrier wave c(t) changes depending on the fifth harmonic component, and the PWM drive output from the three-phase inverter section 2 A fifth harmonic is superimposed on the voltage.
  • the PWM drive voltage is output from the three-phase inverter section 2 as a three-phase waveform corresponding to the U phase, V phase, and W phase of the permanent magnet synchronous motor 5, but since these three phases are configured, the initial phases are different from each other.
  • a three-phase PWM drive signal is generated using three signal waves shifted by 2 ⁇ /3 [rad].
  • FIG. 4 shows fundamental sine waves g u (t), g v (t), and g w (t) included in the three-phase signal waves.
  • the horizontal axis shows the phase converted from time t
  • the vertical axis shows the magnitude of the signal.
  • a signal wave h u ( t ), h v (t), h w (t) and as mentioned above, these signal waves h u (t), h v (t), h w (t) and the triangular carrier wave c (t) It is formed so that the pulse width is switched at the intersection with
  • g u (t) is a U-phase fundamental sine wave among three-phase fundamental sine waves
  • g v (t) is a V-phase fundamental sine wave
  • g w (t) is a W-phase fundamental sine wave.
  • h u (t) is a U-phase signal wave among three-phase signal waves
  • h v (t) is a V-phase signal wave
  • h w (t) is a W-phase signal wave.
  • f 1 is the fundamental sine wave frequency of the fundamental sine waves g u (t), g v (t), g w (t), and m is the fundamental sine wave frequency g u (t), g v (t ), the modulation factor expressed as the amplitude of g w (t).
  • n is a modulation rate expressed as the amplitude of the fifth harmonic to be superimposed, and ⁇ is the initial phase of this fifth harmonic.
  • t is time.
  • the upper limit of the superposition ratio n/m is set to the value n/m at which the fundamental wave currents I f1 and I f1_rms start to decrease due to changes in magnetic properties
  • the lower limit of the superposition ratio n/m is The value n/m is set such that the increase due to the harmonic component is greater than the reduction effect of the fundamental wave currents I f1 and I f1_rms , and the superimposition ratio n/m operates within this lower limit and upper limit.
  • phase angle of the fundamental sine wave g(t) shown in FIG. 3(a) is ⁇ /2 radian (rad)
  • the numerical value of the fundamental sine wave g(t) is the signal wave h(t) It is preferable to operate by setting the initial phase ⁇ of the fifth harmonic to be equal to or greater than the value of .
  • the maximum phase angle of the initial phase ⁇ is set to the value of the initial phase ⁇ at which the fundamental wave currents I f1 and I f1_rms begin to decrease due to changes in magnetic properties, and the minimum phase angle of the initial phase ⁇
  • the initial phase ⁇ may be set to a value where the increase due to the harmonic component is greater than the reduction effect of the currents I f1 and I f1_rms , and the operation may be performed within the range between the minimum phase angle and the maximum phase angle.
  • the basic sine waves g u (t), g v (t), g w (t) are used as signal waves, and the basic sine waves g u (t), g v (t) are used as signal waves.
  • g w (t) with a fifth-order harmonic superimposed thereon the losses are compared when signal waves h u (t), h v (t), and h w (t) are used.
  • the superposition ratio n/m is -0.25 or more and -0.05 or less, and the initial phase ⁇ of the fifth harmonic is - ⁇ /4 [rad] or more and ⁇ /2 [rad]
  • the loss is reduced compared to when the fundamental sine waves g u (t), g v (t), and g w (t) are used as signal waves, and setting this condition , it was shown that it is preferable to operate it.
  • the possible range of the superimposition ratio n/m is set to -0.15 or more and -0.1 or less, and the possible range of the initial phase ⁇ is set to ⁇ /8 [rad] or more and 5 ⁇ It was shown that setting the value to /16 [rad] or less further reduces the loss and is more preferable.
  • the loss reduction effect is was shown to be even higher and more preferable.
  • the harmonics to be superimposed on the fundamental sine waves g u (t), g v (t), and g w (t) can be of the 5th or higher order, and the a-th harmonic that is a times the fundamental sine wave frequency f 1
  • n a is the modulation rate expressed as the amplitude of the fifth harmonic to be superimposed
  • ⁇ a is the initial phase of this a harmonic.
  • the upper limit of the superposition ratio n a /m is set to the value of n a /m at which the fundamental wave currents I f1 and I f1_rms start to decrease due to changes in magnetic properties
  • the lower limit of the superposition ratio n a /m is set to the value
  • the wave current I f1 , I f1_rms is set to a value of n a /m where the increase due to the harmonic component is greater than the reduction effect, and the superimposition rate n a /m operates within this lower limit and upper limit.
  • n a /m it is preferable to operate by setting the superimposition ratio n a /m to a range of -0.3 or more and less than 0.
  • the value of the fundamental sine wave g(t) is the value of the signal wave h a (t) at that time. It is preferable to operate by setting the initial phase ⁇ a of the a-th harmonic as above.
  • the maximum phase angle of the initial phase ⁇ a of the a-th harmonic is set to the value of the initial phase ⁇ a where the fundamental wave current I f1 , I f1_rms starts to decrease due to a change in the magnetic characteristics, and the initial phase ⁇ a
  • the minimum phase angle of is set to the value of the initial phase ⁇ a at which the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1 , I f1_rms , and the operation is performed within the range of this minimum phase angle and the maximum phase angle. You can do it like this.
  • the superposition ratio n a /m is -0. .25 or more and -0.05 or less, and when the initial phase ⁇ a of the a-th harmonic is - ⁇ /4 [rad] or more and ⁇ /2 [rad] or less, the fundamental sine wave g u ( t), g v (t), and g w (t) as signal waves, it is estimated that the loss will be reduced, so it is preferable to set and operate under these conditions.
  • the possible range of the superposition ratio n a /m is set to -0.15 or more and -0.1 or less, and the possible range of the initial phase ⁇ a is set to ⁇ /8 [rad] or more. In addition, it is preferable to set it to 5 ⁇ /16 [rad] or less because it is estimated that the loss will be further reduced by analogy with the results of the characteristic evaluation test.
  • FIG. 5 is a diagram showing the flow of operation of the motor control section 4 of this motor drive system 1.
  • the motor control unit 4 receives command values such as a rotation speed command and a torque command, which are control commands for the permanent magnet synchronous motor 5, from the outside in a command value reception unit 50 (step S1), and stores the received command values in the RAM 42. (S2 step). Thereafter, when a motor rotation start instruction is input from the outside, the motor control unit 4 receives this rotation start instruction (step S3) and starts the operation of driving the motor 5 to rotate.
  • command values such as a rotation speed command and a torque command, which are control commands for the permanent magnet synchronous motor 5
  • the motor control unit 4 receives the magnetic pole position of the rotor 7 output from the position sensor 10 and the detected value of the three-phase motor drive current output from the current sensor 9 (step S4). Based on the magnetic pole position of the rotor 7 and the detected value of the motor drive current, the driving state of the permanent magnet synchronous motor 5 is acquired. The motor control unit 4 performs control so that the drive of the motor 5 matches the command value.
  • a step-up chopper control signal is generated so that the input DC voltage to the three-phase inverter section 2 becomes an appropriate value (step S5), and the generated step-up chopper control signal is applied to the chopper section switching of the step-up chopper section 3. Output to element Sc (step S6).
  • the signal waves h u (t), h v (t), h w ( t) (signal wave generation processing) (step S7). Specifically, by setting the fundamental sine wave frequency f 1 , phase, and modulation rate m of the fundamental sine waves g u (t), g v (t), and g w (t), this fundamental sine wave g u ( t), g v (t), and g w (t) with a modulation rate n and a fifth harmonic of the initial phase ⁇ is superimposed on them.
  • a carrier wave configured as a triangular wave is generated (carrier wave generation process) (step S8).
  • a PWM drive signal is generated so that the pulse width is switched at the intersection of the signal waves h u (t), h v (t), h w (t) and the carrier wave (PWM drive signal processing) (S9 step).
  • the generated PWM drive signal is output to the switching element input sections 8 1 to 8 6 of the three-phase inverter section 2 (PWM drive supply process) (step S10).
  • the switching elements S 1 and S 2 , S 3 and S 4 , S 5 and S 6
  • the freewheeling diodes D 1 and D 2 , D 3 and D 4 , D 5 and D 6
  • a PWM drive voltage is output as the drive voltage of the permanent magnet synchronous motor 5.
  • the motor control unit 4 receives a new command value from the outside and determines whether there is a change in the command value with respect to the previously stored command value (step S11). If there is a change in the command value (Yes in step S11), the changed command value is stored in the RAM and updated (step S12). If there is no change in the command value (No in step S11), the operation continues without doing anything.
  • the superposition ratio of the signal wave h(t) shown in equation (11) obtained by superimposing the fifth harmonic on the fundamental sine wave g(t) shown in equation (10) is The upper and lower limits of n/m, the set value of the superimposition ratio n/m, the maximum and minimum phase angles of the initial phase ⁇ of the fifth harmonic, and the set value of the initial phase ⁇ are determined.
  • a method using a ring test will be explained, and then a method using a motor test will be explained. In both the ring test method and the motor test method, measurements are performed while changing the superimposition ratio n/m.
  • FIG. 6 is a schematic configuration diagram of a ring testing device 109 used for setting, designing, and manufacturing this motor drive system 1.
  • This ring test device 109 has the same configuration as the ring test device 69 used in characteristic evaluation test 1 (ring test) described later (therefore, refer to characteristic evaluation test 1 (ring test) described later for details).
  • FIG. 7 is a diagram showing an example of the setting conditions for the ring test, in which (a) is a diagram showing the specifications of the ring sample 101, and (b) is a diagram showing the measurement conditions (overlapping ratio).
  • the same material as the iron core material (core material) of the rotor and stator of the permanent magnet synchronous motor 5 used in the motor drive system 1 is used for the iron core material (core material) that is the ring sample 101 for this ring test. That is, the ring sample 101 is made of the same material as the iron core material of the permanent magnet synchronous motor 5 used in the motor drive system 1.
  • the IGBT inverter 102 shown in FIG. 6 is a single-phase Si-IGBT inverter.
  • This IGBT inverter 102 includes Si-IGBTs as switching elements S 101 , S 102 , S 103 , and S 104 and Si diodes as freewheeling diodes D 101 , D 102 , D 103 , and D 104 .
  • the switching elements S 101 to S 104 and the free wheel diodes D 101 to D 104 used in the IGBT inverter 102 of the ring test device 69 are the same as the switching elements S 1 to S 104 used in the three-phase inverter section 2 of the motor drive system 1 .
  • S 6 and the free wheel diodes D 1 to D 6 are the same.
  • the measurement conditions are, for example, a fundamental sine wave frequency f 1 of 50 [Hz], a carrier frequency f c of 1 [kHz], and an input voltage V dc supplied from the DC power supply 103 to the IGBT inverter 102 of 15 [V]. Then, the fundamental sine wave modulation rate m is adjusted so that the fundamental sine wave magnetic flux density B f1 becomes 1 [T]. It is considered that the constant fundamental sinusoidal magnetic flux density B f1 in the ring test corresponds to the constant average torque in the motor test.
  • a fifth harmonic superimposition PWM method is adopted for controlling the IGBT inverter 102. That is, a PWM signal is generated by switching the pulse width at the intersection of the signal wave h(t) on which the fifth harmonic shown in the above equation (11) is superimposed and the carrier wave configured as a triangular wave. is input to the switching element input sections 108 1 and 108 2 which are the gate terminals of the pair of upper and lower switching elements (S 101 and S 102 ) of the IGBT inverter 102 .
  • a PWM signal is generated by switching the pulse width at the intersection of the vertically inverted signal wave h(t) and the carrier wave, and this PWM signal is transmitted to the pair of upper and lower switching elements (S 103 and S 104 ) of the IGBT inverter 102. ) are input to switching element input sections 108 3 and 108 4 which are the gate terminals of the switching elements 108 3 and 108 4 .
  • the upper and lower switching elements (upper and lower S 101 and S 102 , and upper and lower S 103 and S 104 ) are driven so that if one is on, the other is off.
  • the upper and lower switching elements S 101 and S 102 , S 103 and S 104
  • the pulse width modulated voltage input to the primary coil is output from the connection point of the pair of freewheeling diodes (D 101 and D 102 , D 103 and D 104 ).
  • the application of this pulse width modulated voltage causes a primary current I1 to flow in the primary coil.
  • f 3 is the frequency of the 3rd harmonic of the fundamental sine wave frequency f 1
  • f 5 is the fundamental sine wave frequency f (fifth harmonic frequency of 1 ).
  • the obtained magnetic field strength H and magnetic flux density B are fitted using cftool (approximation curve tool) by the numerical calculation software MATLAB (registered trademark) R2019b (The MathWorks, Inc.) to calculate the magnetic field strength.
  • MATLAB registered trademark
  • R2019b The MathWorks, Inc.
  • the difference between the iron loss P fe and the major loop iron loss P major is defined as a carrier harmonic iron loss (minor loop iron loss) P carrier .
  • FIG. 8 is a diagram showing an example of the time waveform of the magnetic field strength H and magnetic flux density B in the ring test
  • (a) is a diagram showing the measured waveform when the superimposition ratio n/m is 0
  • (b) is a diagram showing the major loop components (H major , B major ) when the superimposition ratio n/m is 0
  • (c) is a diagram showing the measured waveform when the superimposition ratio n/m is -0.2
  • (d ) is a diagram showing major loop components (H major , B major ) when the superimposition ratio n/m is ⁇ 0.2.
  • FIG. 9 is a diagram showing an example of a BH curve of magnetic field strength H and magnetic flux density B in a ring test, where (a) shows the measurement results (solid line) when the superimposition ratio n/m is 0 and the major loop component. (dashed line), (b) is a diagram showing the measurement results (solid line) and the major loop component (dashed line) when the superimposition ratio n/m is -0.2, (c) is a diagram showing the measurement results when the superimposition ratio n/m is -0.2, and (c) is a diagram showing the measurement results when the superimposition ratio n/m is FIG. 3 is a diagram showing major loop components of 0 (broken line) and ⁇ 0.2 (solid line).
  • FIG. 9(c) shows the measurement data shown in FIG. 8, with the horizontal axis representing the magnetic field strength H and the vertical axis representing the magnetic flux density B.
  • FIG. 9(c) when comparing the cases where the superimposition ratio n/m is 0 and -0.2, the BH curve of the major loop component H major of the magnetic field strength and the major loop component B major of the magnetic flux density is The shapes of the two are different, and it can be seen that a change appears in the magnetization phenomenon due to fifth-order harmonic superposition. In other words, "changes in magnetic properties" occur due to fifth-order harmonic superposition.
  • FIG. 10 is a diagram showing an example of the fundamental wave current I f1 and the fundamental sine wave modulation factor m obtained by the ring test.
  • the fundamental wave current I f1 in the ring test is the effective value of the component of the fundamental sine wave frequency f 1 of the primary current I 1 flowing through the primary coil.
  • This fundamental wave current I f1 is an excitation current component for obtaining the fundamental wave magnetic flux density B f1 , and increases slightly when the superposition rate n/m is greater than 0 compared to when the superposition rate n/m is 0. , tends to decrease significantly when the superimposition ratio n/m is smaller than 0.
  • the fundamental wave current I f1 starts to decrease due to a change in magnetic properties.
  • the value of this superimposition ratio n/m may be set as an upper limit. Furthermore, in the range where the superposition ratio n/m is -0.1 or less, the fundamental wave current I f1 decreases rapidly, and when this superposition ratio n/m is -0.1, it is defined as "change in magnetic properties.” It can also be said to be the value of the superimposition ratio n/m at which the fundamental wave current I f1 starts to decrease at . The value of this superimposition ratio n/m may be set as an upper limit.
  • the basic sine wave modulation rate m is adjusted so that the basic sine wave magnetic flux density B f1 becomes 1 [T] under a constant DC voltage V dc to the IGBT inverter 102, and the superimposition rate n/m is 0.
  • the superimposition ratio n/m becomes larger, the fundamental sine wave modulation rate m increases, and when the superimposition ratio n/m becomes smaller than 0, the fundamental sine wave modulation rate m decreases.
  • the fundamental wave current I f1 decreases when the fundamental sinusoidal magnetic flux density B f1 is constant.
  • FIG. 11 is a diagram showing an example of iron loss P fe , major loop iron loss P major , and carrier harmonic iron loss (minor loop iron loss) P carrier in a ring test; (a) is a diagram showing iron loss; (b) is a diagram showing the rate of change in iron loss when the superimposition ratio n/m is 0 as a reference.
  • the iron loss P fe increases in the range where the superposition ratio n/m is greater than 0, and the superposition ratio n/m is smaller than 0. In this range, the iron loss P fe decreases. Furthermore, the major loop iron loss P major is reduced when the superimposition ratio n/m is -0.15, -0.1, and -0.05, compared to when the superposition ratio n/m is 0. Compared to the case where the superposition ratio n/m is 0, the carrier harmonic iron loss P carrier increases when the superposition ratio n/m is greater than 0, and decreases when the superposition ratio n/m is smaller than 0.
  • FIG. 11(b) shows the results when the superposition ratio n/m is changed based on the iron loss P fe , major loop iron loss P major , and carrier harmonic iron loss P carrier when the superposition ratio n/m is 0. It shows the rate of change of iron loss P fe , major loop iron loss P major , and carrier harmonic iron loss P carrier .
  • the iron loss P fe increases, and in a range where the superimposition ratio n/m is smaller than 0, the iron loss P fe decreases. Further, when the superimposition ratio n/m was ⁇ 0.2, the iron loss P fe showed the minimum value, and the iron loss reduction rate was 3.3%. Further, the iron loss P fe when the superimposition ratio n/m is -0.25 is slightly higher than when the superimposition ratio n/m is -0.2.
  • the major loop iron loss P major decreases when the overlap ratio n/m is ⁇ 0.15, ⁇ 0.1, and ⁇ 0.05.
  • the superimposition ratio n/m is ⁇ 0.1
  • the major loop iron loss P major is at its minimum, and the reduction rate is 2.3%.
  • the carrier harmonic iron loss P carrier increases when the superposition ratio n/m is greater than 0, and decreases when the superposition ratio n/m is smaller than 0.
  • the superimposition ratio n/m is ⁇ 0.25, it is minimum, and the iron loss reduction rate of the carrier harmonic iron loss P carrier is 17.8%.
  • the value of the superposition ratio n/m is such that "the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1 .” This value may be set as the lower limit of the superimposition ratio n/m.
  • FIG. 12 is a diagram showing an example of iron loss P fe and fundamental wave current I f1 obtained by a ring test. This FIG. 12 summarizes measurement results different from those in FIGS. 10 and 11.
  • the iron loss P fe increases in the range where the superimposition ratio n/m is larger than 0, and the iron loss P fe decreases in the range where the superimposition ratio n/m is smaller than 0. ing. Further, when the superimposition ratio n/m is ⁇ 0.15, the iron loss P fe is the minimum.
  • the iron loss P fe decreases, and when the superposition ratio n/m becomes smaller than 0, the iron loss P fe decreases compared to when the superposition ratio n/m is 0. do. Then, when the superimposition ratio n/m is further reduced, the iron loss P fe becomes minimum when the superimposition ratio n/m is -0.15, and thereafter the iron loss P fe tends to increase.
  • the fifth harmonic is It can be said that the iron loss P fe is reduced compared to the case where there is no overlap (the case where the overlap ratio n/m is 0). Then, compared to the case where the superposition ratio n/m is 0, the range in which the iron loss P fe is reduced is the range where the superposition ratio n/m is ⁇ 0.3 or more and smaller than 0.
  • the fundamental wave current I f1 tends to increase slightly when the superposition ratio n/m is greater than 0, and to decrease significantly when the superposition ratio n/m is smaller than 0, compared to when the superposition ratio n/m is 0. .
  • FIG. 13 is a diagram showing an example of measurement conditions (phase angle) for a ring test in which measurement is performed by changing the initial phase ⁇ of the fifth harmonic.
  • FIG. 14 is a diagram showing an example of measurement results by a ring test, in which (a) is a diagram showing the fundamental wave current I f1 , and (b) is a diagram showing the iron loss P fe .
  • the horizontal broken line in the figure indicates the fundamental wave current I f1 and the iron loss when the modulation rate n of the fifth harmonic is 0, that is, when the fundamental sine wave g(t) is used as the signal wave h(t). Measured values of P fe are shown.
  • the fundamental wave current I f1 decreases when the initial phase ⁇ is 0 [rad] or less, and increases when the initial phase ⁇ is ⁇ /4 [rad] or more.
  • the initial phase ⁇ becomes smaller than ⁇ /4 [rad], it can be said that "the fundamental wave current I f1 starts to decrease due to a change in magnetic characteristics.”
  • the value of this initial phase ⁇ ( ⁇ /4) may be set as the maximum phase angle.
  • the iron loss P fe is reduced in the range where the initial phase ⁇ is - ⁇ /4 [rad] or more and ⁇ /2 [rad] or less, and when the initial phase ⁇ is ⁇ /4 [rad] ] is the minimum value.
  • the iron loss P fe decreases, and the initial phase ⁇ becomes ⁇ /2 [rad]. ] the iron loss P fe is lower than when the superimposition ratio n/m is 0. As the initial phase ⁇ is further reduced, the iron loss P fe becomes the minimum when the initial phase ⁇ is ⁇ /4 [rad], and thereafter the iron loss P fe increases.
  • the initial phase ⁇ becomes - ⁇ /4 [rad]
  • the iron loss P fe becomes larger than when P fe is 0.
  • the value of the initial phase ⁇ is such that “the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1 .” This value may be set as the minimum phase angle of the initial phase ⁇ .
  • the phase angle (2 ⁇ f 1 t) of the fundamental sine wave g(t) is ⁇ /2 radian
  • the initial phase ⁇ of the fifth harmonic is set at .
  • FIG. 15 is a diagram schematically showing the flow of setting the superimposition ratio n/m in the ring test.
  • the initial phase ⁇ of the fifth harmonic is set to 0 [rad], and the measurement is performed while changing the superimposition ratio n/m from the larger side to the smaller side.
  • the superimposition ratio n/m is set to the maximum value (step S100). For example, under the measurement conditions shown in FIG. 7(b), the superimposition ratio n/m is set to 0.25, which is the maximum value.
  • the ring test device 109 is adjusted to the measurement conditions (step S101). For example, under the measurement conditions shown in FIG. 7(b), the ring test device 109 is operated so that the input voltage V dc to the IGBT inverter 62 is 15 [V], and the fundamental sine wave magnetic flux density B f1 is 1 [T].
  • the basic sine wave modulation rate m is adjusted so that Then, a PWM signal is generated by configuring the signal wave h(t) shown in the above equation (11) so that the superimposition ratio is set to n/m, and this PWM signal is input to the IGBT inverter 102 to operate it. .
  • the IGBT inverter 102 outputs a pulse width modulated voltage based on the PWM signal, and this pulse width modulated voltage is applied to the primary coil. This causes a primary current I1 to flow through the primary coil.
  • the superimposition ratio n/m is set to be lowered by a predetermined amount (step S103). For example, in the case of the measurement conditions shown in FIG. 7(b), the superimposition ratio n/m is set to be reduced by 0.05.
  • the process returns to step S101 and the measurement is repeated.
  • the minimum value of the superimposition ratio n/m used for the inspection is, for example, a value at which the superimposition ratio n/m is ⁇ 0.25 under the measurement conditions shown in FIG. 7(b).
  • step S104 If the set superimposition ratio n/m is not equal to or greater than the minimum value (No in step S104), the fundamental wave current I f1 , iron loss P fe , harmonic current I harmonic are determined for the measurement data of each superposition ratio n/m. is calculated (step S105).
  • the harmonic current I harmonic in the ring test is the effective value of the harmonic component (harmonic component of the primary current I 1 ) of the fundamental sine wave frequency f 1 of the primary current I 1 flowing through the primary coil.
  • step S106 the upper limit value of the superimposition ratio n/m is determined (upper limit value determination step, upper limit value determination step) (step S106).
  • the upper limit of the range in which the fundamental wave current I f1 is lower than when the modulation rate n of the fifth harmonic is 0 (zero) is determined by determining the superimposition ratio n/m of the superposition ratio n/m. It may also be an upper limit value.
  • the upper limit is the superposition ratio n/m, which is the upper limit of the range of the superposition ratio n/m in which the fundamental wave current I f1 decreases compared to the fundamental wave current I f1 when the superposition ratio n/m is 0 (zero). The value may be determined. For example, in FIG.
  • the fundamental wave current I f1 decreases in the range where the superposition ratio n/m is less than 0, compared to when the superposition ratio n/m is 0, so the upper limit of this range is The superimposition ratio n/m becomes less than 0.
  • the upper limit of the superimposition ratio n/m may be determined to be less than 0.
  • the fundamental wave current I f1 decreases rapidly, and if this range is used, the upper limit becomes -0.1.
  • the upper limit of the superimposition ratio n/m is determined to be -0.1. In FIG.
  • the fundamental wave current I f1 decreases in the range where the superimposition ratio n/m is smaller than 0, compared to when the superimposition ratio n/m is 0, and the upper limit of the superposition ratio n/m is determined to be less than 0. This corresponds to determining the upper limit value of the superimposition ratio n/m to a value of the superimposition ratio n/m at which "the fundamental wave current I f1 starts to decrease due to a change in magnetic characteristics."
  • the upper limit value may be determined as a superimposition ratio n/m that is the upper limit of the range below which the iron loss P fe as the calculated predetermined loss falls.
  • the upper limit value is determined to be the superposition ratio n/m, which is the upper limit of the range of the superposition ratio n/m in which the iron loss P fe is reduced compared to the iron loss P fe when the superposition ratio n/m is 0. Good too. For example, in FIGS.
  • the range of the overlap ratio n/m in which the iron loss P fe is reduced compared to the iron loss P fe when the overlap ratio n/m is 0 is ⁇ 0.3 or more and less than 0. Since this is a range, the upper limit of the superimposition ratio n/m in this range is less than 0. In this case, the upper limit of the superimposition ratio n/m is determined to be less than 0. Note that a loss other than the iron loss P fe may be used as the predetermined loss.
  • the modulation rate n of the fifth harmonic is 0 (zero) compared to the amount of reduction in the fundamental wave current I f1 based on the case where the modulation rate n of the fifth harmonic is 0 (zero).
  • the lower limit value may be determined to be the superimposition ratio n/m, which is the lower limit of the range in which the increase amount of the harmonic current I harmonic is less than the case where the harmonic current I harmonic is (zero). That is, the determination may be made by comparing the amount of reduction in the fundamental wave current I f1 and the amount of increase in the harmonic current I harmonic when the superimposition ratio n/m is 0 (zero) as a reference. .
  • the amount of reduction in the fundamental wave current I f1 from the reference when the superimposition ratio n/m changes is calculated. Further, with the harmonic current I harmonic when the superposition ratio n/m is 0 (zero) as a reference, the amount of increase in the harmonic current I harmonic from the reference when the superposition ratio n/m changes is calculated. Then, the amount of reduction of the fundamental wave current I f1 based on the case where the superimposition ratio n/m is 0 (zero), and the reduction amount of the harmonic current I harmonic based on the case where the superposition ratio n/m is 0 (zero).
  • the lower limit value of the superimposition ratio n/m may be determined.
  • the absolute value of the amount of reduction in fundamental wave current I f1 becomes larger than the absolute value of the amount of increase in harmonic current I harmonic . .
  • the lower limit of the range in which the iron loss P fe as a "predetermined loss” is lower than when the modulation rate n of the fifth harmonic is 0 (zero) is determined.
  • the lower limit may be determined to be a superimposition ratio n/m.
  • the lower limit value may be determined as the lower limit of the range of the superposition ratio n/m in which the iron loss P fe is reduced compared to the iron loss P fe when the superposition ratio n/m is 0 (zero). .
  • the range of the overlap ratio n/m in which the iron loss P fe is reduced compared to the iron loss P fe when the overlap ratio n/m is 0 is ⁇ 0.3 or more and less than 0. Since this is a range, the lower limit of the overlap ratio n/m for this range is -0.3. In this case, the lower limit value of the superimposition ratio n/m is determined to be -0.3.
  • the lower limit value may be determined within the range where measurement data exists. In this case, the lower limit value is determined to be -0.25 in FIG. 11, and the lower limit value is determined to be -0.2 in FIG. 12.
  • the above two methods for determining the lower limit value of the superimposition ratio n/m are to determine the lower limit value to a value of the superposition ratio n/m at which "the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1 ". It corresponds to doing.
  • a set value of the superimposition ratio n/m is set (superposition ratio setting step, superposition ratio setting step) (step S108).
  • the signal wave h(t) shown in equation (11) above is within the range between the upper limit value of the superimposition ratio n/m determined in step S106 and the lower limit value of the superimposition ratio n/m determined in step S107.
  • Set the setting value of the superimposition ratio n/m The motor drive system 1 is designed or manufactured based on the set value of this superimposition ratio n/m. That is, as the setting value of this superimposition ratio n/m, the three-phase signal waves h u (t), h v (t ), h w (t) are set.
  • FIG. 15 shows the flow of measuring by changing the superimposition ratio n/m from a large side to a small side, it is also possible to change the superimposition ratio n/m from a small side to a large side. Further, although the flow of changing the superimposition ratio n/m by setting the initial phase ⁇ of the fifth harmonic to 0 [rad] has been shown, it may be performed by setting the initial phase to a value other than 0 [rad].
  • the superimposition ratio n/m is set according to the flow shown in FIG. (t) may be determined. If the initial phase ⁇ of the fifth harmonic is not fixed and is set by changing it, then the set value of the initial phase ⁇ is determined as shown below.
  • FIG. 16 is a diagram showing a schematic flow of setting the initial phase ⁇ of the fifth harmonic in the ring test.
  • the superimposition ratio n/m is set within the range of the upper limit value and lower limit value of the superimposition ratio n/m (step S110).
  • the superimposition ratio n/m is set according to the flow for setting the superimposition ratio n/m shown in FIG. Under the measurement conditions shown in FIG. 13, the superimposition ratio n/m is set to -0.2.
  • the initial phase ⁇ of the fifth harmonic is changed while the superimposition ratio is fixed at the set superimposition ratio n/m.
  • the initial phase ⁇ of the fifth harmonic is set to the maximum value (step S111).
  • the ring test device 109 is adjusted to the measurement conditions (step S112). For example, under the measurement conditions shown in FIG. 13, the ring test device 109 is set such that the input voltage V dc to the IGBT inverter 62 is 15 [V], and the fundamental sine wave magnetic flux density B f1 is 1 [T]. Adjust the basic sine wave modulation rate m. Then, a PWM signal is generated by configuring the signal wave h(t) shown in equation (11) above so that the set superimposition ratio n/m and initial phase ⁇ are obtained, and this PWM signal is input to the IGBT inverter 102. and make it work. A pulse width modulated voltage is output from the IGBT inverter 102, and the application of this pulse width modulated voltage causes a primary current I1 to flow through the primary coil.
  • the process returns to step S112 and the measurement is repeated.
  • the fundamental wave current I f1 , iron loss P fe , and harmonic current I harmonic are calculated for the measurement data of each initial phase ⁇ ( S116 step).
  • step S117 the maximum phase angle of the initial phase ⁇ of the fifth harmonic is determined (maximum phase angle determination step, maximum phase angle determination step) (step S117).
  • the initial phase ⁇ that is the maximum value in the range in which the fundamental wave current I f1 is lower than when the modulation rate n of the fifth harmonic is 0 (zero) is determined as the initial phase. It may also be the maximum phase angle of ⁇ . In other words, the initial phase ⁇ that is the maximum value of the range of initial phase ⁇ in which the fundamental wave current I f1 decreases compared to the fundamental wave current I f1 when the superimposition ratio n/m is 0 (zero) is set to the maximum phase angle. It may be decided. For example, in the case of FIG.
  • the fundamental wave current I f1 decreases in the range where the initial phase ⁇ is 0 [rad] or less, compared to the case where the superimposition ratio n/m shown as a horizontal broken line is 0. Therefore, the maximum value in this range is when the initial phase ⁇ is 0 [rad]. In this case, the maximum phase angle of the initial phase ⁇ is determined to be 0 [rad].
  • the plot showing the fundamental wave current I f1 is obtained by interpolating between the plots where the initial phase ⁇ is ⁇ /4 [rad] and 0 [rad] that sandwich the horizontal broken line above and below, and the fundamental wave current I f1 of the horizontal broken line is Alternatively, the initial phase ⁇ that is f1 may be calculated, and the calculated initial phase ⁇ may be determined as the maximum phase angle. These correspond to determining the maximum phase angle of the initial phase ⁇ of the fifth harmonic to the value of the initial phase ⁇ at which "the fundamental wave current I f1 starts to decrease due to a change in magnetic characteristics.”
  • the maximum phase angle of the initial phase ⁇ the maximum value in the range in which the iron loss P fe as a "predetermined loss” is lower than that when the modulation rate n of the fifth harmonic is 0 (zero).
  • the maximum phase angle may be determined as the initial phase ⁇ .
  • the maximum phase angle is determined to be the initial phase ⁇ that is the maximum value in the range of initial phase ⁇ in which the iron loss P fe is reduced compared to the iron loss P fe when the superimposition ratio n/m is 0 (zero). You can. For example, compared to the iron loss P fe when the superposition ratio n/m is 0, which is shown as a horizontal broken line in FIG.
  • the range of the initial phase ⁇ in which the iron loss P fe is reduced is ⁇ /4[ rad] or more and ⁇ /2 [rad] or less, the maximum value of the initial phase ⁇ in this range is ⁇ /2 [rad].
  • the maximum phase angle of the initial phase ⁇ is determined to be ⁇ /2 [rad].
  • step S118 the minimum phase angle of the initial phase ⁇ of the fifth harmonic is determined (minimum phase angle determination step, minimum phase angle determination step) (step S118).
  • the amount of reduction of the fundamental wave current I f1 based on the case where the modulation rate n of the fifth harmonic is 0 (zero) is The minimum phase angle may be determined to be the initial phase ⁇ that is the minimum value within the range in which the amount of increase in the harmonic current I harmonic is below the case where the modulation rate n is 0 (zero).
  • the amount of increase in the harmonic current I harmonic from the reference when the initial phase ⁇ changes is calculated. Then, the reduction amount of the fundamental wave current I f1 with reference to the case where the superimposition ratio n/m is 0 (zero), and the reduction amount of the harmonic current I harmonic with reference to the case where the superposition ratio n/m is 0 (zero).
  • the range of the initial phase ⁇ in which the amount of reduction in the fundamental wave current I f1 is lower than the amount of increase in the harmonic current I harmonic is determined by comparing the amount of increase, and the initial phase ⁇ that is the minimum value in this range is set as the initial phase ⁇ .
  • the minimum phase angle may be determined.
  • the absolute value of the amount of reduction in fundamental wave current I f1 is greater than the absolute value of the amount of increase in harmonic current I harmonic . It gets bigger.
  • the minimum phase angle of the initial phase ⁇ may be determined to be the minimum value. That is, the minimum phase angle may be determined as the minimum value of the range of initial phase ⁇ in which the iron loss P fe is reduced compared to the iron loss P fe when the superimposition ratio n/m is 0 (zero). . For example, compared to the iron loss P fe when the superposition ratio n/m is 0, which is shown as a horizontal broken line in FIG.
  • the range of the initial phase ⁇ in which the iron loss P fe is reduced is ⁇ /4[ rad] or more and ⁇ /2 [rad] or less, the minimum value of the initial phase ⁇ in this range is ⁇ /4 [rad].
  • the minimum phase angle of the initial phase ⁇ is determined to be ⁇ /4 [rad].
  • the above two methods for determining the minimum phase angle of the initial phase ⁇ are to determine the minimum phase angle to a value of the initial phase ⁇ at which “the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1 ”. corresponds to
  • a set value of the initial phase ⁇ is set (initial phase setting step, initial phase setting step) (step S119).
  • the 5th order of the signal wave h(t) shown in the above equation (11) Set the setting value of the initial phase ⁇ of the harmonic.
  • the motor drive system 1 is designed or manufactured based on the set value of this initial phase ⁇ . That is, as the setting value of this initial phase ⁇ , the three-phase signal waves h u (t), h v (t), h w (t) is set.
  • FIG. 16 shows the flow of measuring by changing the initial phase ⁇ from the larger side to the smaller side
  • the initial phase ⁇ may also be changed from the smaller side to the larger side.
  • the phase angle of the fundamental sine wave g(t) shown in the above equation (10) is ⁇ /2
  • the initial phase ⁇ of the fifth harmonic may be set such that the value of the fundamental sine wave g(t) in radians is greater than or equal to the value of the signal wave h(t) at that time.
  • the numerical value m ⁇ sin( ⁇ /2) of the fundamental sine wave g(t) is the signal wave h(t)
  • FIG. 17 is a schematic configuration diagram of a motor testing device 289 used for setting, designing, and manufacturing this motor drive system 1.
  • This motor test device 289 has the same configuration as the motor test device 89 used in characteristic evaluation test 2 (motor test) described later (therefore, refer to characteristic evaluation test 2 (motor test) described later for details).
  • FIG. 18 is a diagram showing an example of a test motor (embedded permanent magnet synchronous motor 273) for the motor test, in which (a) is a schematic cross-sectional view of the motor, and (b) is a diagram showing the specifications of the motor.
  • the same motor as the permanent magnet synchronous motor 5 used in the motor drive system 1 is used as the embedded structure permanent magnet synchronous motor 273 in this motor test.
  • this test motor (embedded structure permanent magnet synchronous motor 273) is composed of a rotor and a stator, and the iron core material of the rotor and stator is the same as the ring sample 101 of the ring test device 109 used in the above ring test method. It is the material of
  • the IGBT inverter 271 shown in FIG. 17 is a three-phase Si-IGBT inverter equipped with a Si-IGBT as a switching element and a Si diode as a freewheeling diode.
  • This IGBT inverter 271 has the same configuration as the three-phase inverter section 2 of the motor drive system 1, and the switching elements and free wheel diodes used in this IGBT inverter 271 are the same as the three-phase inverter section 2 of the motor drive system 1.
  • the switching elements S 1 to S 6 and free wheel diodes D 1 to D 6 used are the same.
  • a fifth harmonic superimposition PWM method is adopted for controlling this IGBT inverter 271. That is, a PWM signal is generated by switching the pulse width at the intersection of the signal wave h(t) on which the fifth harmonic shown in the above equation (11) is superimposed and the carrier wave configured as a triangular wave, and this PWM signal is It is input to the IGBT inverter 271.
  • the IGBT inverter 271 to which the PWM signal is input outputs a PWM drive voltage that rotates the embedded permanent magnet synchronous motor 273, causing the synchronous motor 273 to rotate.
  • the power measurement and waveform observation are performed using the power meter 272.
  • FIG. 19 is a diagram showing an example of measurement conditions (superimposition ratio) for a motor test.
  • the measurement conditions are, for example, rotational speed ⁇ of 750 [rpm], average torque T of 0.611 [Nm], carrier frequency fc of 1 [kHz], and input voltage V dc to the IGBT inverter 271 of 50 [V]. ], and the basic sine wave modulation rate m is adjusted by performing feedback control so that the rotational speed ⁇ and the torque T are constant.
  • the range to be measured by changing the superimposition ratio n/m is from ⁇ 0.25 to 0, but the overlap ratio n/m becomes positive.
  • the measurement may be performed by changing the superimposition ratio over a wider range of n/m on the plus side and the minus side. Note that in FIG. 19, the initial phase ⁇ of the fifth harmonic is 0 [rad].
  • Input power P in to the IGBT inverter 271 input power P u , P v , P w of each phase of the motor, effective input current value I u_rms , I v_rms , I w_rms , input current I u of each phase of the motor , I v , and I w are measured and used to calculate the loss.
  • the input current effective values I u_rms , I v_rms , and I w_rms of each phase of the motor are measured and calculated as the effective values of the input currents I u , I v , and I w of each phase of the motor.
  • the overall loss P total of this motor testing device 289 is composed of an inverter loss P inv , a copper loss P Cu , and a motor core loss/mechanical loss P core&mech .
  • the inverter loss P inv is the input power P in to the IGBT inverter 271 , the input power P u , P v , P w of each phase of the motor, the loss P w of the power measuring device 272 . It is calculated using equation (18) using m . Loss P of power meter 272 w.
  • the motor core loss/mechanical loss P core&mech is calculated as shown in equation (21) using the input power P u , P v , P w of each phase of the motor, the copper loss P Cu , and the mechanical output ⁇ T. Note that since it is difficult to directly measure both motor core loss P core and mechanical loss P mech , mechanical loss P mech and motor core loss P core are not classified, and the loss is calculated as motor core loss/mechanical loss P core & mech. did. Examples of measurement results in motor tests measured while changing the superimposition ratio n/m are shown below.
  • FIG. 20 is a diagram showing an example of the fundamental wave current I f1_rms and the fundamental sine wave modulation rate m obtained by motor testing.
  • the fundamental wave current I f1_rms in the motor test is the phase average of the effective value of the component of the fundamental sine wave frequency f 1 calculated from the input currents I u , I v , I w of each phase of the motor.
  • the fundamental sine wave modulation rate m is -0.25, -0.15, -0. It is decreasing by 1.
  • the fundamental wave current I f1_rms has a superimposition rate n/m of -0.25, -0.15, -0 compared to the case where the fifth harmonic is not superimposed (the case where the superposition ratio n/m is 0). It has decreased by .1. This is the same phenomenon as the measurement result of the ring test described above (see FIG. 10).
  • the value of the superposition ratio n/m is such that "the fundamental wave current I f1_rms starts to decrease due to a change in the magnetic characteristics.” This value may be set as the upper limit of the superimposition ratio n/m.
  • FIG. 21 is a diagram illustrating an example of the total loss P total due to a motor test.
  • the horizontal broken line in the figure indicates the measured value of the total loss P total when the modulation rate n of the fifth harmonic is 0, that is, when the fundamental sine wave g(t) is used as the signal wave h(t). Showing.
  • the overall loss P total is greater when the superposition rate n/m is -0.25, -0.15, and -0.1 compared to the case where the fifth harmonic is not superimposed (when the superposition ratio n/m is 0). is decreasing. Further, when the superimposition ratio n/m is -0.15, it shows the minimum value, and the loss reduction rate is 1.5% compared to the case where the fifth harmonic is not superimposed. Also, when the superimposition ratio n/m is ⁇ 0.10, the loss reduction rate is 1.4%, and the loss is greatly reduced. From this figure, it is assumed that when the superimposition ratio n/m becomes less than -0.25, the overall loss P total becomes larger than when the fifth harmonic is not superimposed.
  • the value of the superposition ratio n/m will be such that "the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1_rms ". I can say that. This value may be set as the lower limit of the superimposition ratio n/m.
  • FIG. 22 is a diagram showing an example of measurement conditions (phase angle) for a motor test in which measurement is performed by changing the initial phase ⁇ of the fifth harmonic.
  • the range to be measured by changing the initial phase ⁇ is only 0 [rad] and ⁇ /4 [rad], but the range where the initial phase ⁇ is negative includes the range where the initial phase ⁇ is negative.
  • Measurement may be performed by changing the initial phase ⁇ within a wider range between the negative side and the negative side. Note that in FIG. 22, the superimposition ratio n/m is ⁇ 0.1, which is 0.
  • FIG. 23 is a diagram showing an example of the fundamental sine wave modulation factor m and the fundamental wave current I f1_rms in a motor test.
  • the left side is when the superposition rate n/m is 0, the center is when the superposition rate n/m is -0.1 and the initial phase ⁇ of the fifth harmonic is 0 [rad], and the right side is the superposition rate n/m.
  • the case where m is ⁇ 0.1 and the initial phase ⁇ is ⁇ /4 [rad] is shown.
  • Both the fundamental sine wave modulation rate m and the fundamental wave current I f1_rms are higher when the superposition ratio n/m is -0.1 than when the fifth harmonic is not superimposed (when the superposition ratio n/m is 0). is decreasing.
  • the initial phase ⁇ of the fifth harmonic is ⁇ /4 [rad] than 0 [rad]
  • the fundamental sine wave modulation rate m and the fundamental wave current I f1_rms is decreasing.
  • the data of the initial phase ⁇ is only at two points, 0 [rad] and ⁇ /4 [rad], and if we consider this range, if the initial phase ⁇ becomes smaller than ⁇ /4 [rad], "change in magnetic properties" will occur. It can be said that the fundamental wave current I f1_rms starts to decrease.
  • the value of this initial phase ⁇ ( ⁇ /4) may be set as the maximum phase angle.
  • FIG. 24 is a diagram illustrating an example of the total loss P total due to a motor test.
  • the horizontal broken line in the figure indicates the measured value of the overall loss P total when the fundamental sine wave g(t) is used as the signal wave h(t) (when the modulation rate n of the fifth harmonic is 0). ing.
  • the overall loss P total is reduced when the superposition ratio n/m is -0.1 compared to the case where the fifth harmonic is not superimposed (the case where the superposition ratio n/m is 0). Further, under the condition that the superposition ratio n/m is ⁇ 0.1, the overall loss P total is reduced when the initial phase ⁇ of the fifth harmonic is 0 [rad] than ⁇ /4 [rad].
  • the fundamental wave current I f1_rms This can be said to be the value of the initial phase ⁇ where the increase due to harmonic components is greater than the reduction effect. This value may be set as the minimum phase angle of the initial phase ⁇ .
  • the numerical value of the fundamental sine wave g(t) when the phase angle of the fundamental sine wave g(t) is ⁇ /2 radian as shown in FIG. 3(a) is The initial phase ⁇ of the 5th harmonic is set to be greater than the value of the signal wave h(t) at that time, and when it operates, compared to the case where the 5th harmonic is not superimposed (when the superimposition rate n/m is 0) Therefore, it is conceivable that the fundamental wave current I f1_rms decreases. It is also possible to reduce the overall loss P total .
  • FIG. 25 is a diagram schematically showing the flow of setting the superimposition ratio n/m in a motor test.
  • the initial phase ⁇ of the fifth harmonic is set to 0 [rad], and measurements are performed while changing the superimposition ratio n/m from a large side to a small side.
  • the superimposition ratio n/m is set to the maximum value (step S200). For example, when changing the superimposition ratio n/m in the range of ⁇ 0.3 or more and 0.3 or less, the superposition ratio n/m is set to 0.3, which is the maximum value.
  • the motor testing device 289 is adjusted to the measurement conditions (step S201).
  • the motor testing device 289 is configured such that the rotational speed ⁇ is 750 [rpm], the average torque T is 0.611 [Nm], the carrier frequency fc is 1 [kHz], and the IGBT inverter
  • the basic sine wave modulation rate m is adjusted by setting the input voltage V dc to 271 to 50 [V] and performing feedback control so that the rotational speed ⁇ and the torque T are constant.
  • a PWM signal is generated by configuring the signal wave h(t) shown in the above equation (11) so that the set superimposition ratio n/m is achieved, and this PWM signal is input to the IGBT inverter 271.
  • the IGBT inverter 271 outputs a PWM drive voltage based on the PWM signal, and the embedded permanent magnet synchronous motor 273 is driven to rotate.
  • the superimposition ratio n/m is set to be lowered by a predetermined amount (step S203). For example, when the predetermined amount is 0.05, the superimposition ratio n/m is set to be reduced by 0.05.
  • the process returns to step S201 and the measurement is repeated.
  • the minimum value of the superposition ratio n/m used for inspection means, for example, when the superposition ratio n/m is changed in the range of -0.3 or more and 0.3 or less, the superposition ratio n/m is -0.3.
  • step S204 If the set superimposition ratio n/m is not greater than or equal to the minimum value (No in step S204), for the measurement data of each superimposition ratio n/m, the phase average fundamental wave current I f1_rms , motor core loss/mechanical loss P core&mech Each loss P, total loss P total , and phase average harmonic current I harmonic_rms are calculated (step S205).
  • the harmonic current I harmonic_rms in the motor test is the harmonic component of the fundamental sine wave frequency f 1 calculated from the input current I u , I v , I w of each phase of the motor (the harmonic component of the input current I u , I v , I w is the phase average of the effective values of harmonic components).
  • step S206 the upper limit value of the superimposition ratio n/m is determined (upper limit value determination step, upper limit value determination step) (step S206).
  • the upper limit of the range in which the fundamental wave current I f1_rms is lower than when the modulation rate n of the fifth harmonic is 0 (zero) is determined by determining the superimposition ratio n/m of the superposition ratio n/m. It may also be an upper limit value.
  • the upper limit is the superposition ratio n/m, which is the upper limit of the range of the superposition ratio n/m in which the fundamental wave current I f1_rms decreases compared to the fundamental wave current I f1_rms when the superposition ratio n/m is 0 (zero).
  • the value may be determined. For example, in FIG.
  • the fundamental wave current I f1_rms decreases in a range where the superimposition ratio n/m is less than 0, compared to when the superimposition ratio n/m is 0, so the upper limit of this range is The superimposition ratio n/m becomes less than 0.
  • the upper limit of the superimposition ratio n/m may be determined to be less than 0. This corresponds to determining the upper limit value of the superimposition ratio n/m to a value of the superimposition ratio n/m at which "the fundamental wave current I f1_rms starts to decrease due to a change in magnetic characteristics."
  • the upper limit value of the superimposition ratio n/m compared to the case where the modulation ratio n of the fifth harmonic is 0 (zero)
  • "input power P in to the IGBT inverter 271, synchronous motor each phase The total loss P as a predetermined loss calculated based on at least one of the input powers P u , P v , P w of the synchronous motor, or the input currents I u , I v , I w of each phase of the synchronous motor.
  • the upper limit value may be determined as the superimposition ratio n/m that is the upper limit of the range below which the total falls.
  • the upper limit value is determined to be the superposition ratio n/m, which is the upper limit of the range of the superposition ratio n/m in which the overall loss P total is reduced compared to the total loss P total when the superposition ratio n/m is 0. Good too.
  • the range of the superposition ratio n/m in which the overall loss P total is reduced compared to the total loss P total when the superposition ratio n/m is 0 is a range of -0.25 or more and less than 0. Therefore, the upper limit of the superimposition ratio n/m in this range is less than 0. In this case, the upper limit of the superimposition ratio n/m is determined to be less than 0.
  • other losses other than the overall loss P total such as motor core loss/mechanical loss P core&mech , inverter loss P inv , and copper loss P Cu , may be used as the predetermined loss.
  • step S207 the lower limit value of the superimposition ratio n/m is determined (lower limit value determination step, lower limit value determination step) (step S207).
  • the modulation rate n of the fifth harmonic is 0 (zero) compared to the amount of reduction in the fundamental wave current I f1_rms based on the case where the modulation rate n of the fifth harmonic is 0 (zero).
  • the lower limit value may be determined to be the superimposition ratio n/m, which is the lower limit of the range in which the amount of increase in the harmonic current I harmonic_rms is lower than the case where the harmonic current I harmonic_rms is zero.
  • the determination may be made by comparing the amount of reduction in the fundamental wave current I f1_rms and the amount of increase in the harmonic current I harmonic_rms when the superimposition ratio n/m is 0 (zero). .
  • the amount of reduction in the fundamental wave current I f1_rms from the reference when the superimposition ratio n/m changes is calculated.
  • the amount of increase in the harmonic current I harmonic_rms from the reference when the superposition ratio n/m changes is calculated. Then, the amount of reduction of the fundamental wave current I f1_rms with reference to the case where the superimposition ratio n/m is 0 (zero), and the amount of reduction of the harmonic current I harmonic_rms with reference to the case where the superposition ratio n/m is 0 (zero).
  • the lower limit value of the superimposition ratio n/m may be determined. In a state where the amount of reduction in the fundamental wave current I f1_rms is lower than the amount of increase in the harmonic current I harmonic_rms , the absolute value of the amount of reduction in the fundamental wave current I f1_rms is larger than the absolute value of the amount of increase in the harmonic current I harmonic_rms .
  • the lower limit of the range in which the overall loss P total as a "predetermined loss” is lower than when the modulation rate n of the fifth harmonic is 0 (zero) is determined.
  • the lower limit may be determined to be a superimposition ratio n/m. That is, the lower limit value may be determined as the lower limit of the range of the superposition ratio n/m in which the overall loss P total is reduced compared to the total loss P total when the superposition ratio n/m is 0 (zero). .
  • the lower limit value may be determined as the lower limit of the range of the superposition ratio n/m in which the overall loss P total is reduced compared to the total loss P total when the superposition ratio n/m is 0 (zero).
  • the range of the superposition ratio n/m in which the overall loss P total is reduced compared to the total loss P total when the superposition ratio n/m is 0 is a range of -0.25 or more and less than 0. Therefore, the lower limit of the superimposition ratio n/m in this range is -0.25. In this case, the lower limit value of the superimposition ratio n/m is determined to be -0.25.
  • the above two methods for determining the lower limit value of the superposition ratio n/m are to determine the lower limit value to a value of the superposition ratio n/m at which "the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1_rms " It corresponds to doing.
  • a set value of the superimposition ratio n/m is set (superposition ratio setting step, superposition ratio setting step) (step S208).
  • the signal wave h(t) shown in equation (11) above is within the range between the upper limit value of the superimposition ratio n/m determined in step S206 and the lower limit value of the superimposition ratio n/m determined in step S207.
  • Set the setting value of the superimposition ratio n/m The motor drive system 1 is designed or manufactured based on the set value of this superimposition ratio n/m. That is, as the setting value of this superimposition ratio n/m, the three-phase signal waves h u (t), h v (t ), h w (t) are set.
  • FIG. 25 shows the flow of measuring by changing the superimposition ratio n/m from a large side to a small side, it is also possible to change the superimposition ratio n/m from a small side to a large side. Further, although the flow of changing the superimposition ratio n/m by setting the initial phase ⁇ of the fifth harmonic to 0 [rad] has been shown, it may be performed by setting the initial phase to a value other than 0 [rad].
  • the superimposition ratio n/m is set according to the flow shown in FIG. 25 to generate the signal wave h shown in the above equation (11). (t) may be determined. If the initial phase ⁇ of the fifth harmonic is not fixed and is set by changing it, then the set value of the initial phase ⁇ is determined as shown below.
  • FIG. 26 is a diagram showing a schematic flow of setting the initial phase ⁇ of the fifth harmonic in a motor test.
  • the superimposition ratio n/m is kept constant and the initial phase ⁇ of the fifth harmonic is changed from the larger side to the smaller side.
  • the superimposition ratio n/m is set within the range of the upper limit value and the lower limit value of the superimposition ratio n/m (step S210).
  • the superimposition ratio n/m is set according to the flow for setting the superimposition ratio n/m shown in FIG. Under the measurement conditions shown in FIG. 22, the superimposition ratio n/m is set to -0.1.
  • the initial phase ⁇ of the fifth harmonic is changed while the superimposition ratio is fixed at the set superimposition ratio n/m.
  • the motor testing device 289 is adjusted to the measurement conditions (step S212).
  • the motor testing device 289 is configured such that the rotational speed ⁇ is 750 [rpm], the average torque T is 0.611 [Nm], the carrier frequency fc is 1 [kHz], and the IGBT inverter
  • the basic sine wave modulation rate m is adjusted by setting the input voltage V dc to 271 to 50 [V] and performing feedback control so that the rotational speed ⁇ and the torque T are constant.
  • a PWM signal is generated by configuring the signal wave h(t) shown in the above equation (11) so that the set superimposition ratio n/m is achieved, and this PWM signal is input to the IGBT inverter 271.
  • the IGBT inverter 271 outputs a PWM drive voltage based on the PWM signal, and the embedded permanent magnet synchronous motor 273 is driven to rotate.
  • each loss such as the phase average fundamental wave current I f1_rms and motor core loss/mechanical loss P core&mech is calculated for the measurement data of each initial phase ⁇ .
  • P, the overall loss P total , and the phase average harmonic current I harmonic_rms are calculated (step S216).
  • the maximum phase angle of the initial phase ⁇ of the fifth harmonic is determined (maximum phase angle determination step, maximum phase angle determination step) (S217 step).
  • the initial phase ⁇ that is the maximum value in the range where the fundamental wave current I f1_rms is lower than when the modulation rate n of the fifth harmonic is 0 (zero) is determined as the initial phase. It may also be the maximum phase angle of ⁇ .
  • the initial phase ⁇ which is the maximum value in the range of initial phase ⁇ in which the fundamental wave current I f1 decreases compared to the fundamental wave current I f1_rms when the superposition ratio n/m is 0 (zero) is set to the maximum phase angle. It may be decided. This corresponds to determining the maximum phase angle of the initial phase ⁇ to a value of the initial phase ⁇ at which “the fundamental wave current I f1_rms starts to decrease due to a change in magnetic characteristics.”
  • the maximum phase angle of the initial phase ⁇ the maximum value in the range where the overall loss P total as a "predetermined loss" is lower than when the modulation rate n of the fifth harmonic is 0 (zero).
  • the maximum phase angle may be determined as the initial phase ⁇ .
  • the maximum phase angle is determined to be the initial phase ⁇ that is the maximum value in the range of initial phases ⁇ in which the total loss P total is reduced compared to the total loss P total when the superposition ratio n/m is 0 (zero). You can.
  • the minimum phase angle of the initial phase ⁇ of the fifth harmonic is determined (minimum phase angle determination step, minimum phase angle determination step) (S218 step).
  • the amount of reduction of the fundamental wave current I f1_rms based on the case where the modulation rate n of the fifth harmonic is 0 (zero) is The minimum phase angle may be determined to be the initial phase ⁇ that is the minimum value within the range in which the amount of increase in the harmonic current I harmonic_rms is below the case where the modulation rate n is 0 (zero).
  • the amount of reduction in the fundamental wave current I f1_rms from the reference when the initial phase ⁇ changes is calculated.
  • the amount of increase in the harmonic current I harmonic_rms from the reference when the initial phase ⁇ changes is calculated. Then, the reduction amount of the fundamental wave current I f1_rms based on the case where the superimposition ratio n/m is 0 (zero), and the reduction amount of the harmonic current I harmonic based on the case where the superposition ratio n/m is 0 (zero).
  • the amount of increase By comparing the amount of increase, find the range of initial phase ⁇ in which the amount of reduction of fundamental wave current I f1_rms is lower than the amount of increase of harmonic current I harmonic_rms , and set the initial phase ⁇ that is the minimum value of this range as initial phase ⁇ The minimum phase angle may be determined.
  • the absolute value of the amount of reduction in fundamental wave current I f1_rms is greater than the absolute value of the amount of increase in harmonic current I harmonic_rms . It gets bigger.
  • the minimum phase angle of the initial phase ⁇ the minimum value in the range where the overall loss P total as a "predetermined loss" is lower than that when the modulation rate n of the fifth harmonic is 0 (zero).
  • the initial phase ⁇ may be determined as the minimum phase angle. That is, the minimum phase angle may be determined as the minimum value of the range of the initial phase ⁇ in which the total loss P total is reduced compared to the total loss P total when the superimposition ratio n/m is 0 (zero). .
  • the above two methods for determining the minimum phase angle of the initial phase ⁇ are to determine the minimum phase angle to a value of the initial phase ⁇ at which “the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1_rms ”. corresponds to
  • a set value of the initial phase ⁇ is set (initial phase setting step, initial phase setting process) (step S219).
  • the 5th order of the signal wave h(t) shown in equation (11) above Set the setting value of the initial phase ⁇ of the harmonic.
  • the motor drive system 1 is designed or manufactured based on the set value of this initial phase ⁇ . That is, as the setting value of this initial phase ⁇ , the three-phase signal waves h u (t), h v (t), h w (t) is set.
  • FIG. 26 shows the flow of measuring by changing the initial phase ⁇ from the larger side to the smaller side
  • the initial phase ⁇ may also be changed from the smaller side to the larger side.
  • the phase angle of the fundamental sine wave g(t) shown in the above equation (10) is ⁇ /2
  • the initial phase ⁇ of the fifth harmonic may be set such that the value of the fundamental sine wave g(t) in radians is greater than or equal to the value of the signal wave h(t) at that time.
  • the harmonics to be superimposed on the fundamental sine wave g(t) shown in the above formula (10) are not limited to the fifth harmonic, but may be superimposed with the a-th harmonic, where a is an integer greater than or equal to the fifth harmonic.
  • the signal wave h a (t) is expressed as equation (22).
  • the motor drive system 1 is designed or manufactured based on the set values of the minimum phase angle and the initial phase ⁇ a . That is, the three-phase signal waves h ua (t), h va (t), h wa (t) when the a-th harmonics of the motor drive system 1 shown in the above formulas (7) to (9) are superimposed. is set.
  • the fifth harmonic is superimposed on the signal wave h(t), and the upper limit of the superimposition ratio n/m is n/m where the fundamental wave currents I f1 and I f1_rms start to decrease due to changes in magnetic characteristics. It operates so that the lower limit of n/m is a value of n/m at which the increase due to harmonic components is greater than the reduction effect of the fundamental wave currents I f1 and I f1_rms . Because of this, the loss of the motor drive system 1 can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
  • the operation is performed in a range where the superimposition ratio n/m is greater than ⁇ 0.3 and less than 0, it is possible to stably reduce the loss of the motor drive system 1.
  • the phase angle (2 ⁇ f 1 t) of the fundamental sine wave g(t) is ⁇ /2 radian
  • the loss of the motor drive system 1 can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
  • the maximum phase angle of the initial phase ⁇ of the fifth harmonic is the value of the initial phase ⁇ at which the fundamental wave current I f1 , I f1_rms starts to decrease due to a change in magnetic characteristics, and the value of the initial phase ⁇ of the initial phase ⁇ The minimum phase angle operates at a value of the initial phase ⁇ at which the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1 , I f1_rms . Because of this, the loss of the motor drive system 1 can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
  • the fifth or higher harmonics are superimposed on the signal wave h a (t), and the upper limit of the superimposition rate n a /m is the fundamental wave current I f1 , I This is the value of n a /m at which f1_rms starts to decrease, and the lower limit of n a /m is the value of n a /m at which the increase due to harmonic components is greater than the reduction effect of fundamental wave current I f1 and I f1_rms . It works like this. Because of this, the loss of the motor drive system 1 can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h a (t).
  • the maximum phase angle of the initial phase ⁇ a of the fifth or higher a-th harmonic is the same as the initial phase ⁇ a at which the fundamental wave currents I f1 and I f1_rms begin to decrease due to changes in magnetic properties.
  • the value of the initial phase ⁇ a is such that the minimum phase angle of the initial phase ⁇ a is such that the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1 , I f1_rms . Because of this, the loss of the motor drive system 1 can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h a (t).
  • the fifth harmonic is superimposed on the signal wave h(t), and the value of the superimposition rate n/m at which the fundamental wave currents I f1 and I f1_rms start to decrease due to changes in magnetic properties is n /m as the upper limit, and a lower limit value determining step where the lower limit of n/m is the value of n/m where the increase due to harmonic components is greater than the reduction effect of the fundamental wave currents I f1 and I f1_rms.
  • the motor drive system 1 is manufactured so that the superimposition ratio n/m is set in a range of not less than the lower limit of n/m and not more than the upper limit of n/m. Because of this, it is possible to manufacture a motor drive system 1 that reduces loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
  • the fifth or higher harmonics are superimposed on the signal wave h a (t), and the fundamental wave currents I f1 and I f1_rms start to decrease due to changes in the magnetic characteristics, resulting in a superimposition rate n a /m as the upper limit of n a /m, and the value of n a /m where the increase due to harmonic components is greater than the reduction effect of the fundamental wave currents I f1 and I f1_rms is determined as n a / m .
  • the motor drive system 1 is manufactured so as to include a lower limit value determining step for setting the lower limit of m, and to set the superimposition ratio n a / m in a range that is greater than or equal to the lower limit of n a /m and less than or equal to the upper limit of n a /m. . Because of this, it is possible to manufacture a motor drive system 1 that reduces loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h a (t).
  • the motor drive system 1 is manufactured with the superimposition ratio n/m set to a range greater than -0.3 and less than 0. Because of this, it is possible to manufacture the motor drive system 1 with stable loss reduction.
  • the fifth harmonic is superimposed on the signal wave h(t), and the value of the superimposition rate n/m at which the fundamental wave currents I f1 and I f1_rms start to decrease due to changes in magnetic properties is n /m, and a lower limit determining step, which sets the lower limit of n/m to the value of n/m where the increase due to harmonic components is greater than the reduction effect of the fundamental wave currents I f1 and I f1_rms .
  • the motor drive system 1 is designed so that the superimposition ratio n/m is set in a range that is greater than or equal to the lower limit of n/m and less than or equal to the upper limit of n/m. Because of this, it is possible to design a motor drive system 1 that reduces loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
  • the fifth or higher harmonics are superimposed on the signal wave h a (t), and the fundamental wave currents I f1 and I f1_rms start to decrease due to changes in the magnetic characteristics, resulting in a superimposition rate n a /m as the upper limit of n a /m; and determining the value of n a /m at which the increase due to harmonic components is greater than the reduction effect of the fundamental wave currents I f1 and I f1_rms .
  • the motor drive system 1 is designed to have a step of determining a lower limit value as the lower limit of m, and to set the superimposition ratio n a / m in a range that is greater than or equal to the lower limit of n a /m and less than or equal to the upper limit of n a /m. . Because of this, it is possible to design a motor drive system 1 that reduces loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h a (t).
  • the motor drive system 1 is designed with the superimposition ratio n/m set in a range greater than -0.3 and less than 0. Because of this, it is possible to design a motor drive system 1 that stably reduces loss.
  • the upper limit value of the superimposition rate n/m which is the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine wave g(t) constituting the signal wave h(t).
  • the lower limit value is determined by a ring test, and the upper limit value of the superposition ratio n/m is the upper limit of the range in which the fundamental wave current I f1 is lower than when the modulation rate n of the fifth harmonic is zero.
  • the superimposition ratio n/m is determined as the upper limit of the range in which the iron loss P fe is lower than when the modulation rate n of the fifth harmonic is zero, or the superposition ratio n/m Compared to the amount of reduction in fundamental wave current I f1 based on the case where the modulation rate n of the fifth harmonic is zero, the lower limit of The superimposition ratio n/m that is the lower limit of the range in which the amount of increase in the wave current I harmonic is below, or the superimposition ratio n that is the lower limit of the range in which the iron loss P fe is lower than when the modulation rate n of the fifth harmonic is zero. /m. Because of this, loss can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
  • the maximum phase angle and minimum phase angle of the initial phase ⁇ of the fifth harmonic are determined by a ring test performed by changing the initial phase ⁇ , and the maximum phase angle is the initial phase ⁇ that is the maximum value in the range in which the fundamental wave current I f1 is lower than when the modulation rate n of the fifth harmonic is zero, or
  • the initial phase ⁇ is determined as the maximum value in the range in which the loss P fe is lower, and the minimum phase angle is compared to the amount of reduction in the fundamental wave current I f1 based on the case where the modulation rate n of the fifth harmonic is zero.
  • the initial phase ⁇ that is the minimum value in the range below which the amount of increase in the harmonic current I harmonic is based on the case where the modulation rate n of the fifth harmonic is zero, or the initial phase ⁇ when the modulation rate n of the fifth harmonic is zero.
  • the minimum phase angle is determined as the initial phase ⁇ that is the minimum value in the range in which the iron loss P fe is lower than in the case. Because of this, the loss of the motor drive system 1 can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
  • the upper limit value of the superimposition rate n/m which is the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine wave g(t) constituting the signal wave h(t).
  • the lower limit value is determined by motor tests, and the upper limit value of the superposition ratio n/m is the upper limit of the range in which the fundamental wave current I f1_rms is lower than when the modulation rate n of the fifth harmonic is zero.
  • the superimposition ratio n/m is determined as the upper limit of the range in which the overall loss P total is lower than when the modulation rate n of the fifth harmonic is zero, and
  • the lower limit value is the reduction amount of the fundamental wave current I f1_rms based on the case where the modulation rate n of the fifth harmonic is zero, compared to the amount of reduction of the fundamental wave current I f1_rms based on the case where the modulation rate n of the fifth harmonic is zero.
  • the superimposition ratio n/m is the lower limit of the range in which the increase in the current I harmonic_rms falls below, or the superimposition ratio n/m is the lower limit of the range in which the overall loss P total is lower than when the modulation rate n of the fifth harmonic is zero. m. Because of this, loss can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
  • the maximum phase angle and minimum phase angle of the initial phase ⁇ of the fifth harmonic are determined by a motor test performed by changing the initial phase ⁇ , and the maximum phase angle is the initial phase ⁇ that is the maximum value in the range in which the fundamental wave current I f1_rms is lower than when the modulation rate n of the fifth harmonic is zero, or the overall value is lower than when the modulation rate n of the fifth harmonic is zero.
  • the initial phase ⁇ is determined as the maximum value within the range in which the loss P total is below, and the minimum phase angle is compared to the amount of reduction in the fundamental wave current I f1_rms based on the case where the modulation rate n of the fifth harmonic is zero.
  • the initial phase ⁇ that is the minimum value in the range below which the amount of increase in the harmonic current I harmonic_rms is based on the case where the modulation rate n of the fifth harmonic is zero, or the initial phase ⁇ when the modulation rate n of the fifth harmonic is zero.
  • the initial phase ⁇ is determined to be the minimum value in the range in which the overall loss P total is lower than in the case of the initial phase ⁇ . Because of this, the loss of the motor drive system 1 can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
  • the superimposition rate is the ratio of the modulation rate n a of the fifth or higher harmonics to the modulation rate m of the fundamental sine wave g(t) constituting the signal wave h a (t).
  • the upper and lower limits of n a /m are determined by a ring test, and the upper limit of the superimposition rate n a /m is more fundamental than when the modulation rate n a of the a-th harmonic is zero.
  • the superimposition ratio n a /m is the upper limit of the range in which the wave current I f1 is lower, or the superimposition ratio n a is the upper limit in the range in which the iron loss P fe is lower than when the modulation rate n of the a-th harmonic is zero .
  • the lower limit value of the superimposition rate n a / m is determined as follows:
  • the modulation rate na / m is the lower limit of the range in which the increase in the harmonic current I harmonic is lower than the case where the modulation rate n a of is zero, or when the modulation rate n a of the a-th harmonic is zero
  • the overlap ratio n a /m is determined as the lower limit of the range in which the iron loss P fe is lower than . Because of this, loss can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h a (t).
  • the superimposition rate is the ratio of the modulation rate n a of the fifth or higher harmonics to the modulation rate m of the fundamental sine wave g(t) constituting the signal wave h a (t).
  • the upper and lower limits of n a /m are determined by motor tests, and the upper limit of the superimposition rate n a /m is lower than the fundamental wave when the modulation rate n of the a-th harmonic is zero.
  • the superimposition ratio n a /m is the upper limit of the range in which the current I f1_rms is lower, or the superimposition ratio n a /m is the upper limit in the range in which the overall loss P total is lower than when the modulation rate n a of the a-th harmonic is zero.
  • m and the lower limit of the superimposition rate n a / m is determined as
  • the superimposition rate n a /m is the lower limit of the range in which the amount of increase in the harmonic current I harmonic_rms is lower than the case where the modulation rate n a is zero, or the case where the modulation rate n a of the a-th harmonic is zero.
  • n a /m is also determined as the overlap ratio n a /m, which is the lower limit of the range below which the overall loss P total is. Because of this, the loss can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h a (t).
  • the upper limit value of the superimposition rate n/m which is the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine wave g(t) constituting the signal wave h(t).
  • the lower limit value is determined by a ring test, and in the upper limit value determination process, the superposition that is the upper limit of the range in which the fundamental wave current I f1 is lower than when the modulation rate n of the fifth harmonic is zero is determined.
  • the upper limit value is determined as the ratio n/m, or the superimposition ratio n/m, which is the upper limit of the range in which the iron loss P fe is lower than when the modulation rate n of the fifth harmonic is zero, and in the lower limit value determination step, , compared to the amount of reduction in the fundamental wave current I f1 based on the case where the modulation factor n of the fifth harmonic is zero, the harmonic current I harmonic based on the case where the modulation factor n of the fifth harmonic is zero
  • the lower limit is the superimposition ratio n/m, which is the lower limit of the range in which the increase in the amount of increase in
  • the value is determined, and in the superimposition rate setting step, the motor drive system 1 is manufactured so that the set value of the superimposition ratio n/m of the signal wave h(t) is set within a range of not less than the lower limit value and not more than the upper limit value. be done. Because of this, it is possible to manufacture the motor drive system 1 with reduced loss
  • the upper limit value of the superimposition rate n/m which is the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine wave g(t) constituting the signal wave h(t).
  • the lower limit value is determined by a motor test, and in the upper limit value determination process, the superposition that is the upper limit of the range in which the fundamental wave current I f1_rms is lower than when the modulation rate n of the fifth harmonic is zero is determined.
  • the upper limit value is determined as the ratio n/m, or the superposition ratio n/m, which is the upper limit of the range in which the overall loss P total is lower than when the modulation rate n of the fifth harmonic is zero, and in the lower limit value determination step, , compared to the amount of reduction in the fundamental wave current I f1_rms based on the case where the modulation rate n of the fifth harmonic is zero, the harmonic current I harmonic_rms based on the case where the modulation rate n of the fifth harmonic is zero.
  • the lower limit is the superimposition ratio n/m, which is the lower limit of the range in which the increase amount of The value is determined, and in the superimposition rate setting step, the motor drive system 1 is manufactured so that the set value of the superimposition ratio n/m of the signal wave h(t) is set within a range of not less than the lower limit value and not more than the upper limit value. be done. Because of this, it is possible to manufacture the motor drive system 1 with reduced loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
  • the upper limit value of the superimposition rate n/m which is the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine wave g(t) constituting the signal wave h(t).
  • the lower limit value is determined by a ring test, and in the upper limit value determination step, the superposition that is the upper limit of the range in which the fundamental wave current I f1 is lower than when the modulation rate n of the fifth harmonic is zero is determined.
  • the upper limit value is determined as the ratio n/m, or the superimposition ratio n/m, which is the upper limit of the range in which the iron loss P fe is lower than when the modulation rate n of the fifth harmonic is zero, and in the lower limit value determination step, , compared to the amount of reduction in the fundamental wave current I f1 based on the case where the modulation factor n of the fifth harmonic is zero, the harmonic current I harmonic based on the case where the modulation factor n of the fifth harmonic is zero
  • the lower limit is the superimposition ratio n/m, which is the lower limit of the range in which the increase in the amount of increase in
  • the value is determined, and in the superimposition ratio setting step, the motor drive system 1 is designed so that the set value of the superimposition ratio n/m of the signal wave h(t) is set within a range of not less than the lower limit value and not more than the upper limit value. be done. Because of this, it is possible to design a motor drive system 1 with reduced loss
  • the maximum phase angle and minimum phase angle of the initial phase ⁇ of the fifth harmonic are determined by a ring test performed by changing the initial phase ⁇ , and the maximum phase angle
  • the initial phase ⁇ is determined to be the maximum value in the range in which the fundamental wave current I f1 is lower than when the modulation rate n of the fifth harmonic is zero, or when the modulation rate n of the fifth harmonic is zero.
  • the maximum phase angle is determined as the initial phase ⁇ that is the maximum value in the range in which the iron loss P fe is below, and in the minimum phase angle determination step, the fundamental wave current is The initial phase ⁇ that is the minimum value in the range in which the increase in harmonic current I harmonic is less than the amount of reduction in I f1 when the modulation rate n of the fifth harmonic is zero, or the fifth harmonic
  • the minimum phase angle is determined as the initial phase ⁇ that is the minimum value in the range in which the iron loss P fe is lower than when the wave modulation rate n is zero, and in the initial phase setting step, the The motor drive system 1 is designed such that the set value of the initial phase ⁇ of the signal wave h(t) is set within the range. Because of this, it is possible to set and design a motor drive system with reduced loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
  • the upper limit value of the superimposition rate n/m which is the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine wave g(t) constituting the signal wave h(t).
  • the lower limit value is determined by a motor test, and in the upper limit value determination step, a superimposition value that is the upper limit of the range in which the fundamental wave current I f1_rms is lower than when the modulation rate n of the fifth harmonic is zero is determined.
  • the upper limit value is determined as the ratio n/m, or the superimposition ratio n/m, which is the upper limit of the range in which the overall loss P total is lower than when the modulation rate n of the fifth harmonic is zero, and in the lower limit value determination step, , compared to the amount of reduction in the fundamental wave current I f1_rms based on the case where the modulation rate n of the fifth harmonic is zero, the harmonic current I harmonic_rms based on the case where the modulation rate n of the fifth harmonic is zero.
  • the lower limit is the superimposition ratio n/m, which is the lower limit of the range in which the increase amount of The value is determined, and in the superimposition ratio setting step, the motor drive system 1 is designed so that the set value of the superimposition ratio n/m of the signal wave h(t) is set within a range of not less than the lower limit value and not more than the upper limit value. be done. Because of this, it is possible to design a motor drive system 1 with reduced loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
  • the maximum phase angle and minimum phase angle of the initial phase ⁇ of the fifth harmonic are determined by a motor test performed by changing the initial phase ⁇ , and the maximum phase angle
  • the initial phase ⁇ is determined to be the maximum value in the range in which the fundamental wave current I f1_rms is lower than when the modulation rate n of the fifth harmonic is zero, or when the modulation rate n of the fifth harmonic is zero.
  • the maximum phase angle is determined as the initial phase ⁇ that is the maximum value in the range below the total loss P total , and in the minimum phase angle determination step, the fundamental wave current is The initial phase ⁇ , which is the minimum value in the range in which the increase in harmonic current I harmonic_rms based on the case where the modulation rate n of the fifth harmonic is zero, is lower than the reduction in I f1_rms , or the fifth harmonic
  • the minimum phase angle is determined as the initial phase ⁇ that is the minimum value in the range in which the overall loss P total is lower than when the wave modulation rate n is zero, and in the initial phase setting step, the The motor drive system 1 is designed such that the set value of the initial phase ⁇ of the signal wave h(t) is set within the range. Because of this, it is possible to set and design a motor drive system 1 with reduced loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
  • the waveforms obtained by superimposing the fifth harmonic on the fundamental sine waves g u (t), g v (t), and g w (t) are used as the signal waves h u (t), h v (t), h w (t), and three-phase pulse width modulation is performed by switching the pulse width at the intersection of the signal waves h u (t), h v (t), h w (t) and the carrier wave.
  • the superimposition ratio n/m is -0.25 or more and -0.05 or less, and the initial phase ⁇ of the fifth harmonic is - ⁇ /4 [rad] or more and ⁇ /2 [rad] or less. There is. Because of this, loss can be reduced compared to the case where the fundamental sine waves g u (t), g v (t), and g w (t) are used as signal waves.
  • the loss is further reduced.
  • the initial phase ⁇ of the fifth harmonic is greater than or equal to ⁇ /8 [rad] and less than or equal to 5 ⁇ /16 [rad], thereby improving the effect of reducing loss. Also, the loss is reduced compared to the case where the initial phase ⁇ is 0.
  • the superimposition ratio n/m is ⁇ 0.15 or more and ⁇ 0.1 or less, and the initial phase ⁇ of the fifth harmonic is ⁇ /4 [rad].
  • a stable loss reduction effect can be obtained. Also, the loss is reduced compared to the case where the initial phase ⁇ is 0 [rad].
  • the fundamental sine waves g u (t), g v (t), g w (t) are combined with the fundamental sine waves g u (t), g v (t), g w (t). ) is used as the signal waves h ua (t), h va (t), h wa (t), and the signal waves h ua (t), h va (t), A three-phase PWM drive signal that switches the pulse width at the intersection of h wa (t) and the carrier wave to form a three-phase pulse width modulated drive voltage is generated, and the basic sine waves g u (t), g v ( t), the superimposition rate n a /m, which is the ratio of the modulation rate n a of the fifth or higher harmonic to the modulation rate m of g w (t), is -0.25 or more and -0.05 or less, and 5
  • the initial phase ⁇ of the harmonics of the next or higher order is greater than or equal to
  • the present invention can be applied not only to three-phase motors but also to multi-phase motors such as six-phase motors and twelve-phase motors.
  • the fundamental sine waves g u (t), g v (t), g w (t) are used as signal waves (when the superimposition ratio n/m is 0), and the fundamental sine wave g Tests were conducted using signal waves h u (t), h v (t), and h w (t), which are obtained by superimposing fifth-order harmonics on u (t), g v (t), and g w (t). Is going.
  • FIG. 27 is a schematic configuration diagram of a ring test device 69 related to characteristic evaluation test 1 (ring test). Further, FIG. 28 shows the specifications of the ring sample 61 used in this ring test.
  • the IGBT inverter 62 is a single-phase Si-IGBT inverter using a power module (PM75RSD060) manufactured by Mitsubishi Electric Corporation. This IGBT inverter 62 is equipped with a Si-IGBT (manufactured by Mitsubishi Electric Corporation, PM75RSD060) as a switching element, and a Si diode (manufactured by Mitsubishi Electric Corporation, RM30TB-H) as a freewheeling diode.
  • the measurement conditions are as follows: fundamental sine wave frequency f 1 is 50 [Hz], carrier frequency f c is 1 [kHz], and input voltage V dc to IGBT inverter 62 supplied from DC power supply 63 is 15 [V].
  • the basic sine wave modulation rate m was adjusted so that the sine wave magnetic flux density B f1 was 1 [T]. It is considered that the constant fundamental sinusoidal magnetic flux density B f1 in the ring test corresponds to the constant average torque in the motor test.
  • a fifth harmonic superimposition PWM method is adopted. That is, a waveform obtained by superimposing the fifth harmonic on the fundamental sine wave g(t) is used as the signal wave h(t), the pulse width is switched at the intersection with the carrier wave, and the IGBT inverter 62 is controlled by the PWM signal.
  • the primary current I 1 and secondary voltage V 2 shown in FIG. 27 are measured, and the magnetic field strength H and magnetic flux density B are determined as in the above equations (12) and (13). Further, using the strength H of the magnetic field and the magnetic flux density B, the iron loss P fe is determined as in the above equation (14).
  • the magnetic field strength H and magnetic flux density B determined by the above equations (12) and (13) include carrier harmonic components, the magnetization phenomenon becomes complicated.
  • f 3 is the frequency of the 3rd harmonic of the fundamental sine wave frequency f 1
  • f 5 is the fundamental sine wave frequency f (fifth harmonic frequency of 1 ).
  • the obtained magnetic field strength H and magnetic flux density B are fitted using cftool (approximate curve tool) by numerical calculation software MATLAB (registered trademark) R2019b (The MathWorks, Inc.), and the major loop component H major , B major .
  • the major loop iron loss P major is calculated as in the above equation (15).
  • the difference between the iron loss P fe and the major loop iron loss P major is the carrier harmonic iron loss (minor loop iron loss) P carrier .
  • FIG. 29 shows the measurement conditions (overlapping rate characteristics) of the ring test. Note that the initial phase ⁇ of the fifth harmonic was set to 0.
  • FIG. 30 is a diagram showing the waveform of the signal wave h(t), (a) is a diagram showing the fundamental sine wave g(t), and (b) is a diagram showing the fifth harmonic to the fundamental sine wave g(t).
  • FIG. 3 is a diagram showing a superimposed fifth harmonic superimposed signal. The horizontal axis represents time, and the vertical axis represents signal magnitude.
  • FIG. 30A corresponds to the case where the signal wave is a signal in which the fifth harmonic is not superimposed on the fundamental sine wave g(t). That is, this is a case where the modulation rate n of the fifth harmonic is 0.
  • FIG. 30(b) shows the waveform of the signal wave h(t) when the superimposition ratio n/m is ⁇ 0.2.
  • FIG. 31 is a diagram showing the measurement results of the time waveforms of magnetic field strength H and magnetic flux density B by the ring test, and (a) is a diagram showing the measured waveform when the superimposition ratio n/m is -0.2. , (b) is a diagram showing the major loop component when the superposition ratio n/m is -0.2, (c) is a diagram showing the measured waveform when the superposition ratio n/m is -0.1, (d ) is a diagram showing the major loop component when the superimposition ratio n/m is ⁇ 0.1. Moreover, FIG.
  • FIG. 32 is a diagram showing the measurement results of the time waveforms of the magnetic field strength H and the magnetic flux density B by the ring test, and (a) is a diagram showing the measured waveform when the superimposition ratio n/m is 0, (b) is a diagram showing the major loop component when the superimposition ratio n/m is 0, (c) is a diagram showing the measured waveform when the superimposition ratio n/m is 0.2, (d) is a diagram showing the measured waveform when the superimposition ratio n/m is 0.2.
  • FIG. 6 is a diagram showing a major loop component when /m is 0.2.
  • the horizontal axis shows time
  • the right vertical axis shows the magnetic field strength H
  • the left vertical axis shows the magnetic flux density B.
  • FIG. 33 is a diagram showing the measurement results of the BH curve of magnetic field strength H and magnetic flux density B by the ring test, and (a) is the measurement result when the superimposition ratio n/m is -0.2 (solid line) (b) is a diagram showing the measurement results (solid line) and the major loop component (dashed line) when the superposition ratio n/m is -0.1, (c) is the superposition ratio A diagram showing the measurement results (solid line) and the major loop component (broken line) when n/m is 0, and (d) shows the measurement results (solid line) and the major loop component ( (dashed line).
  • This figure shows the measurement data shown in FIGS. 31 and 32, with the horizontal axis representing the magnetic field strength H and the vertical axis representing the magnetic flux density B. Note that the graph indicated by the broken line indicates the major loop components H major and B major calculated by the above method.
  • FIG. 34 is a diagram showing measurement results of the fundamental wave current I f1 and the fundamental sine wave modulation factor m by the ring test.
  • the horizontal axis is the superposition ratio n/m
  • the vertical axis on the left is the fundamental wave current I f1
  • the vertical axis on the right is the fundamental sine wave modulation rate m.
  • the fundamental wave current I f1 is an excitation current component for obtaining the fundamental wave magnetic flux density B f1 , and increases slightly when the superimposition ratio n/m is greater than 0, and greatly decreases when the superposition ratio n/m is smaller than 0. A trend was observed. Under a constant DC voltage V dc to the IGBT inverter 62, the basic sine wave modulation rate m is adjusted so that the basic sine wave magnetic flux density B f1 becomes 1 [T], and the superimposition rate n/m is greater than 0. Then, the basic sine wave modulation rate m increases, and when the superimposition rate n/m becomes smaller than 0, the basic sine wave modulation rate m decreases. In other words, it can be said that due to the superposition of the fifth harmonic, the fundamental wave current I f1 decreases while the fundamental sinusoidal magnetic flux density B f1 is constant.
  • FIG. 35 is a diagram showing measurement results of iron loss P fe , major loop iron loss P major , and carrier harmonic iron loss (minor loop iron loss) P carrier by a ring test, and (a) is a diagram showing iron loss. , (b) are diagrams showing the rate of change in iron loss when the superimposition ratio n/m is 0 as a reference.
  • FIG. 35(b) shows the results when the superposition ratio n/m is changed based on the iron loss P fe , the major loop iron loss P major , and the carrier harmonic iron loss P carrier when the superposition ratio n/m is 0. It shows the rate of change of iron loss P fe , major loop iron loss P major , and carrier harmonic iron loss P carrier .
  • the iron loss P fe increases, and in a range where the superimposition ratio n/m is smaller than 0, the iron loss P fe decreases. Further, when the superimposition ratio n/m was ⁇ 0.2, the iron loss P fe showed the minimum value, and the iron loss reduction rate was 3.3%.
  • the major loop iron loss P major decreases when the overlap ratio n/m is ⁇ 0.15, ⁇ 0.1, and ⁇ 0.05. When the superimposition ratio n/m is ⁇ 0.1, the major loop iron loss P major is at its minimum, and the reduction rate is 2.3%.
  • the carrier harmonic iron loss P carrier increases when the superposition ratio n/m is greater than 0, and decreases when the superposition ratio n/m is smaller than 0.
  • the superimposition ratio n/m is ⁇ 0.25, it is minimum, and the iron loss reduction rate of the carrier harmonic iron loss P carrier is 17.8%.
  • the iron loss P fe is reduced when the superposition ratio n/m is in the range of -0.25 or more and -0.05 or less. are doing.
  • ⁇ Ring test (phase angle characteristics of 5th harmonic)>
  • the initial phase ⁇ was varied in the range of ⁇ 3 ⁇ /4 [rad] to 3 ⁇ /4 [rad] in a ring test, and the electromagnetic characteristics were measured.
  • FIG. 36 is a diagram showing the measurement conditions (phase angle characteristics of the fifth harmonic) of the ring test. Note that the superimposition ratio n/m was fixed at -0.2. Further, in this measurement, the DC voltage V dc to the IGBT inverter 62 was adjusted so that the fundamental sinusoidal magnetic flux density B f1 of the ring sample 61 was 1 [T].
  • FIG. 37 is a diagram showing the waveform of the signal wave h(t), (a) is a diagram showing the fundamental sine wave g(t), and (b) is a diagram showing the fundamental sine wave g(t) with an initial phase ⁇ of ⁇ .
  • FIG. 3 is a diagram showing a fifth-order harmonic superimposed signal on which a fifth-order harmonic of /4 [rad] is superimposed. The horizontal axis represents time, and the vertical axis represents signal magnitude.
  • FIG. 37A corresponds to the case where the modulation rate n of the fifth harmonic is 0 and the signal wave is a signal in which the fifth harmonic is not superimposed on the fundamental sine wave g(t).
  • FIG. 37(b) shows the waveform of the signal wave h(t) when the superimposition ratio n/m is ⁇ 0.2.
  • FIG. 38 is a diagram showing the measurement results when the initial phase ⁇ of the fifth harmonic was changed by the ring test, (a) is a diagram showing the fundamental wave current I f1 , and (b) is a diagram showing the iron loss P fe FIG.
  • the horizontal axis is the initial phase ⁇
  • the vertical axis is the fundamental wave current I f1 in FIG. 38(a)
  • the horizontal broken line in the figure indicates the fundamental wave current I f1 when the modulation rate n of the fifth harmonic is 0, that is, when the fundamental sine wave g(t) is used as the signal wave h(t), It shows the measured value of iron loss Pfe .
  • the fundamental wave current I f1 decreases when the initial phase ⁇ is 0 [rad] or less, and increases when the initial phase ⁇ is ⁇ /4 [rad] or more.
  • the iron loss P fe is reduced in the range where the initial phase ⁇ is - ⁇ /4 [rad] or more and ⁇ /2 [rad] or less, and when the initial phase ⁇ is ⁇ /4 [rad] ] is the minimum value.
  • the iron loss P fe is smaller than the plot where the initial phase ⁇ is 0. It can be seen that the range is such that the initial phase ⁇ is greater than or equal to ⁇ /4 [rad] and less than or equal to 5 ⁇ /16 [rad].
  • FIG. 39 is a diagram showing the measurement conditions (carrier frequency characteristics) of the ring test, in which (a) shows the basic measurement conditions and (b) shows the superimposition conditions of the fifth harmonic.
  • the superimposition ratio n/m is fixed at -0.2
  • the initial phase ⁇ of the fifth harmonic is 0 in case X
  • the initial phase ⁇ is ⁇ /4 [rad ].
  • the DC voltage V dc to the IGBT inverter 62 was adjusted so that the fundamental sinusoidal magnetic flux density B f1 of the ring sample 61 was 1 [T].
  • FIG. 40 is a diagram showing the measurement results when changing the carrier frequency f c by the ring test
  • (a) is a diagram showing the fundamental wave current I f1
  • (b) is a diagram showing the iron loss P fe .
  • the horizontal axis is the carrier frequency f c
  • the vertical axis is the fundamental wave current I f1 in FIG. 40(a)
  • the diamond plots show the measurement results for case X
  • the triangle plots show the measurement results for case Y.
  • the circle plot shows the measurement results when the fifth harmonic is not superimposed (when the superimposition ratio n/m is 0).
  • the fundamental wave current I f1 in case It is the smallest in the range.
  • the fundamental wave current I f1 in case Y (superimposition rate n/m is set to -0.2 and initial phase ⁇ is set to ⁇ /4 [rad]) is 5 in the range where the carrier frequency f c is 10 [kHz] or more. This is smaller than when the harmonics are not superimposed.
  • the iron loss P fe in case Y (the superimposition ratio n/m is set to -0.2 and the initial phase ⁇ is set to ⁇ /4 [rad]) is is the smallest in the range.
  • the iron loss P fe in case It is smaller than when it is not superimposed.
  • FIG. 41 is a schematic configuration diagram of a motor testing device 89 related to characteristic evaluation test 2 (motor test).
  • an IGBT inverter 71 is used to drive an embedded permanent magnet synchronous motor (IPMSM) 73.
  • IPMSM embedded permanent magnet synchronous motor
  • FIG. 42 is a diagram showing a test motor (embedded structure permanent magnet synchronous motor 73) for the motor test, (a) is a schematic cross-sectional view of the motor, and (b) is a diagram showing the specifications of the motor.
  • a test motor embedded structure permanent magnet synchronous motor 73
  • This embedded structure permanent magnet synchronous motor 73 is composed of a rotor and a stator, and the core material of the rotor and stator is non-oriented electrical steel plate 35H300 (manufactured by Nippon Steel Corporation), similar to the ring sample 61 of the ring test. be.
  • the permanent magnet is a bonded magnet (manufactured by Aichi Steel Corporation, S5P-12ME).
  • the IGBT inverter 71 is a three-phase Si-IGBT inverter that uses a power module (PM75RSD060) manufactured by Mitsubishi Electric Co., Ltd. as a switching element, and a Si diode (RM30TB-H, manufactured by Mitsubishi Electric Co., Ltd.) as a freewheeling diode. ing. Power measurement and waveform observation are performed using Yokogawa PX-8000 (power meter 72).
  • the measurement conditions were that the rotational speed ⁇ was 750 [rpm], the average torque T was 0.611 [Nm], the carrier frequency fc was 1 [kHz], and the input voltage V dc to the IGBT inverter 71 was 50 [V]. .
  • the fundamental sine wave modulation factor m was adjusted by performing feedback control so that the rotational speed ⁇ and the torque T were constant.
  • Input power P in to the IGBT inverter 71, input power P u , P v , P w of each phase of the motor, effective input current value I u_rms , I v_rms , I w_rms , input current I u of each phase of the motor , I v , and I w are measured and used to calculate the loss.
  • the overall loss P total of the test device 89 is composed of the inverter loss P inv , the copper loss P Cu , and the motor core loss/mechanical loss P core&mech .
  • the inverter loss P inv is the input power P in to the IGBT inverter 71 , the input power P u , P v , P w of each phase of the motor, the loss P w of the power measuring device 72 . m is calculated as in the above equation (18).
  • the motor core loss/mechanical loss P core&mech is calculated as shown in the above formula (21) using the input power P u , P v , P w of each phase of the motor, the copper loss P Cu , and the mechanical output ⁇ T.
  • the results are the average value of seven measurements, and the error is expressed as standard deviation.
  • mechanical loss P mech and motor core loss P core are not classified, and motor core loss/mechanical loss P core&mech
  • the measurement results were obtained as follows.
  • FIG. 43 shows the measurement conditions (superimposition rate characteristics) of the motor test. Note that the initial phase ⁇ of the fifth harmonic was set to 0.
  • FIG. 44 is a diagram showing the waveforms of three-phase signal waves h u (t), h v (t), and h w (t), and (a) is a diagram showing the waveforms of the three-phase signal waves h u (t), h v (t), and g v ( t), g w (t), (b) is a 5th harmonic superimposed signal in which the 5th harmonic is superimposed on the fundamental sine waves g u (t), g v (t), and g w (t).
  • FIG. The horizontal axis represents time, and the vertical axis represents signal magnitude.
  • FIG. 44(a) corresponds to the case where the signal wave is a signal in which the fifth harmonic is not superimposed on the fundamental sine waves g u (t), g v (t), and g w (t). That is, this is a case where the modulation rate n of the fifth harmonic is 0.
  • FIG. 44(b) shows the waveforms of three-phase signal waves h u (t), h v (t), and h w (t) when the superimposition ratio n/m is ⁇ 0.1.
  • FIG. 45 is a diagram showing the measurement results of the fundamental wave current I f1_rms and the fundamental sine wave modulation factor m in the motor test.
  • the fundamental sine wave modulation rate m is -0.25, -0.15, -0. It is decreasing by 1.
  • the phase average fundamental wave current I f1_rms obtained from the observed waveform also has a superimposition ratio n/m of ⁇ 0. 25, -0.15, and -0.1. This is the same phenomenon as the measurement result of the ring test (see FIG. 34).
  • FIG. 46 shows the measurement results of the overall loss P total in the motor test.
  • the horizontal axis is the superimposition ratio n/m, and the vertical axis is the overall loss P total .
  • the horizontal broken line in the figure is the measurement of the total loss P total when the modulation rate n of the fifth harmonic is 0, that is, when the fundamental sine wave g(t) is used as the signal wave h(t). It shows the value.
  • the overall loss P total is greater when the superposition rate n/m is -0.25, -0.15, and -0.1 compared to the case where the fifth harmonic is not superimposed (when the superposition ratio n/m is 0). is decreasing. Further, when the superimposition ratio n/m is -0.15, it shows the minimum value, and the loss reduction rate is 1.5% compared to the case where the fifth harmonic is not superimposed. Also, when the superimposition ratio n/m is ⁇ 0.10, the loss reduction rate is 1.4%, and the loss is greatly reduced.
  • the superimposition ratio n/m is set to a range of -0.25 or more and -0.05 or less, or set to a range of -0.15 or more and -0.10 or less. This is effective.
  • the superimposition ratio is Fifth-order harmonic superposition with n/m of ⁇ 0.15 and ⁇ 0.10 may be effective.
  • FIG. 47 shows the measurement results of motor core loss and mechanical loss P core&mech by motor test.
  • the horizontal broken line in the figure is the measurement of motor core loss/mechanical loss P core&mech when the fundamental sine wave g(t) is used as the signal wave h(t) (when the modulation rate n of the fifth harmonic is 0). It shows the value.
  • Motor core loss/mechanical loss P core&mech decreases when the superposition ratio n/m is -0.15 and -0.1 compared to when the fifth harmonic is not superimposed (when the superposition ratio n/m is 0) are doing. Furthermore, when the superimposition ratio n/m is -0.10, it shows the minimum value, and the loss reduction rate is 2.5% compared to the case where the fifth harmonic is not superimposed.
  • the mechanical loss P mech is constant since the rotational speed is constant.
  • the reason for the decrease in motor core loss P core is a decrease in major loop iron loss P major and carrier harmonic iron loss P carrier .
  • the trend is very similar to the trend of the major loop iron loss P major in the ring test, including the case where the superimposition ratio n/m is ⁇ 0.25 (see FIG. 35).
  • FIG. 48 shows the measurement results of copper loss P Cu and fundamental wave current copper loss P Cu_If1 in the motor test.
  • the horizontal broken line in the figure indicates the measured value when the fundamental sine wave g(t) is used as the signal wave h(t) (when the modulation rate n of the fifth harmonic is 0).
  • the fundamental wave current copper loss P Cu_If1 is calculated similarly to the above formula (20) using the fundamental wave current I f1_rms in FIG. 45.
  • the copper loss P Cu decreases when the superposition ratio n/m is -0.15 and -0.1 compared to when the fifth harmonic is not superimposed (when the superposition ratio n/m is 0). . Further, when the superimposition ratio n/m is -0.10, it shows the minimum value, and the loss reduction rate is 0.4% compared to the case where the fifth harmonic is not superimposed.
  • FIG. 49 shows the measurement results of the inverter loss P inv in the motor test.
  • the inverter loss P inv is greater when the superposition ratio n/m is -0.25, -0.15, and -0.1 compared to the case where the fifth harmonic is not superimposed (when the superposition ratio n/m is 0). is decreasing. Further, when the superimposition ratio n/m is -0.25, it shows the minimum value, and the loss reduction rate is 5.1% compared to the case where the fifth harmonic is not superimposed.
  • FIG. 50 shows the measurement conditions for the motor test (phase angle characteristics of the fifth harmonic). Note that the superimposition ratio n/m was set to -0.1.
  • FIG. 51 is a diagram showing the waveforms of three-phase signal waves h u (t), h v (t), h w (t), and (a) is a diagram showing the waveforms of the three-phase signal waves h u (t), h v (t), and g v ( (b) is a diagram showing fundamental sine waves g u ( t), g v (t), g w (t) with an initial phase ⁇ of ⁇ /4 [rad].
  • FIG. 3 is a diagram showing a fifth-order harmonic superimposed signal on which harmonics are superimposed. The horizontal axis represents time, and the vertical axis represents signal magnitude.
  • FIG. 51(a) corresponds to the case where the signal wave is a signal on which the fifth harmonic is not superimposed on the fundamental sine waves g u (t), g v (t), g w (t) (fifth harmonic (When the harmonic modulation rate n is 0).
  • FIG. 51(b) shows three-phase signal waves h u (t), h when a fifth-order harmonic with a superposition ratio n/m of ⁇ 0.1 and an initial phase ⁇ of ⁇ /4 [rad] is superimposed. These are the waveforms of v (t) and h w (t).
  • FIG. 52 shows the measurement results of the fundamental sine wave modulation factor m and the fundamental wave current I f1_rms in the motor test.
  • the left side is when the superposition rate n/m is 0, the center is when the superposition rate n/m is -0.1 and the initial phase ⁇ of the fifth harmonic is 0 [rad], and the right side is the superposition rate n/m.
  • the case where m is ⁇ 0.1 and the initial phase ⁇ is ⁇ /4 [rad] is shown.
  • Both the fundamental sine wave modulation rate m and the fundamental wave current I f1_rms are higher when the superposition ratio n/m is -0.1 than when the fifth harmonic is not superimposed (when the superposition ratio n/m is 0). is decreasing.
  • the initial phase ⁇ of the fifth harmonic is ⁇ /4 [rad] than 0 [rad]
  • the fundamental sine wave modulation rate m and the fundamental wave current I f1_rms is decreasing.
  • FIG. 53 is a diagram showing the measurement results of the overall loss P total in the motor test.
  • the left side is when the superposition rate n/m is 0, the center is when the superposition rate n/m is -0.1 and the initial phase ⁇ of the fifth harmonic is 0 [rad], and the right side is the superposition rate n/m.
  • the case where m is ⁇ 0.1 and the initial phase ⁇ is ⁇ /4 [rad] is shown, and the vertical axis is the overall loss P total .
  • the horizontal broken line in the figure is the measured value of the overall loss P total when the fundamental sine wave g(t) is used as the signal wave h(t) (when the modulation rate n of the fifth harmonic is 0). It shows.
  • the overall loss P total is reduced when the superposition ratio n/m is -0.1 compared to the case where the fifth harmonic is not superimposed (the case where the superposition ratio n/m is 0). Further, under the condition that the superposition ratio n/m is ⁇ 0.1, the overall loss P total is reduced when the initial phase ⁇ of the fifth harmonic is 0 [rad] than ⁇ /4 [rad].
  • the reduction rate of the motor core loss/mechanical loss P core &mech in the case where the fifth harmonic is not superimposed showed a larger value when the initial phase ⁇ was ⁇ /4 [rad] than when it was 0 [rad].
  • the reduction rate of copper loss P Cu showed a slightly larger value when the initial phase ⁇ was 0 [rad] than when the initial phase ⁇ was 0 [rad].
  • the reduction rate of the inverter loss P inv was larger when the initial phase ⁇ was 0 [rad] than when the initial phase ⁇ was ⁇ /4 [rad].
  • the following configuration of the invention may be considered. Under low speed/high torque conditions, the copper loss P Cu and inverter loss P inv are assumed to be large, and under high speed/low torque conditions, the motor core loss/mechanical loss P core&mech is assumed to be large.
  • a predetermined threshold value such as a predetermined rotation speed threshold value is set in advance, and if a command value such as a rotation speed command that is a motor control command input from the outside is smaller than this predetermined threshold value, the 5th harmonic
  • the initial phase ⁇ of the wave is set to 0 [rad]
  • the command value is greater than or equal to a predetermined threshold
  • the initial phase ⁇ is switched to ⁇ /4 [rad], superimposed on the fundamental sine wave g(t), and the signal wave h(t ) may be generated.
  • a predetermined threshold value such as a predetermined torque threshold value is set in advance, and if a command value such as a torque command that is a motor control command input from the outside is greater than or equal to this predetermined threshold value, the fifth harmonic The phase ⁇ is set to 0 [rad], and if the command value is smaller than a predetermined threshold, the initial phase ⁇ is switched to ⁇ /4 [rad] and superimposed on the fundamental sine wave g(t) to generate the signal wave h(t). You may also do so.
  • the rotational speed and torque of the operating motor are detected, and when the detected rotational speed and torque reach a predetermined threshold, the initial phase ⁇ of the fifth harmonic is switched. You may also do so.
  • the initial phase ⁇ may be switched smoothly in a linear or curved manner instead of discontinuously when the predetermined threshold is reached.
  • two predetermined thresholds a smaller predetermined threshold and a larger predetermined threshold, are prepared, and when the detected rotational speed or torque reaches the smaller predetermined threshold, the initial phase ⁇ of the fifth harmonic is switched. Then, when the detected rotational speed or torque reaches the larger predetermined threshold and the initial phase ⁇ is switched, the initial phase ⁇ is then set to the smaller predetermined threshold.
  • the predetermined threshold value may be set with hysteresis.
  • the initial phase ⁇ of the fifth harmonic to be superimposed on the fundamental sine wave g(t) may be switched based on input values such as a command value to the motor or a detected value of the motor during operation. .
  • a predetermined threshold value such as a predetermined rotation speed threshold value is set in advance, and when a command value such as a rotation speed command input from the outside is smaller than this predetermined threshold value, the initial phase ⁇ is changed from 0 [rad].
  • the signal is superimposed on the fundamental sine wave g(t) so that the initial phase ⁇ becomes ⁇ /4 [rad] when the command value is greater than or equal to a predetermined threshold.
  • a wave h(t) may be generated.
  • ⁇ /4 [rad] is the maximum initial phase ⁇ added to the fifth harmonic.
  • the method for continuously changing the initial phase ⁇ may be linear or curved.
  • a predetermined threshold value such as a predetermined torque threshold value is set in advance, and when a command value such as a torque command input from the outside is greater than or equal to this predetermined threshold value, the initial phase ⁇ is changed from ⁇ /4 [rad] to 0. [rad], and when the command value is smaller than a predetermined threshold value, the signal wave h( t) may be generated.
  • the rotational speed and torque of the operating motor may be detected, and the initial phase ⁇ of the fifth harmonic may be changed based on the detected rotational speed and torque. good.
  • the initial phase ⁇ of the fifth harmonic superimposed on the fundamental sine wave g(t) is continuously changed based on the input values such as the command value to the motor and the detected value of the motor during operation. You may also do so.
  • the initial phase ⁇ of the fifth harmonic to be superimposed is not a fixed value, but may be changed. Furthermore, the state of change in the initial phase ⁇ of the fifth harmonic may be switched based on a predetermined threshold value.
  • FIG. 54 shows the measurement results of motor core loss and mechanical loss P core&mech by motor test.
  • the horizontal broken line in the figure is the measurement of motor core loss/mechanical loss P core&mech when the fundamental sine wave g(t) is used as the signal wave h(t) (when the modulation rate n of the fifth harmonic is 0). It shows the value.
  • the motor core loss/mechanical loss P core&mech is reduced when the superposition ratio n/m is ⁇ 0.1 compared to the case where the fifth harmonic is not superimposed (the case where the superposition ratio n/m is 0). Furthermore, under the condition that the superimposition ratio n/m is -0.1, the motor core loss/mechanical loss P core&mech is reduced when the initial phase ⁇ of the fifth harmonic is ⁇ /4 [rad] than when it is 0 [rad]. .
  • the loss reduction rate when the initial phase ⁇ is ⁇ /4 [rad] is 3.4% compared to the case where the fifth harmonic is not superimposed.
  • FIG. 55 shows the measurement results of copper loss P Cu and fundamental wave current copper loss P Cu_If1 in the motor test.
  • the horizontal broken line in the figure indicates the measured value of the copper loss P Cu when the modulation rate n of the fifth harmonic is 0.
  • the copper loss P Cu is reduced when the superposition ratio n/m is -0.1 compared to the case where the fifth harmonic is not superimposed (when the superposition ratio n/m is 0). Furthermore, under the condition where the superimposition ratio n/m is -0.1, the copper loss P Cu of 0 [rad] is reduced compared to the case where the initial phase ⁇ of the fifth harmonic is ⁇ /4 [rad]. .
  • the loss reduction rate when the initial phase ⁇ is 0 [rad] is 0.4% compared to the case where the fifth harmonic is not superimposed.
  • the fundamental wave current copper loss P Cu_If1 is reduced when the superimposition ratio n/m is -0.1, compared to the case where the fifth harmonic is not superimposed (when the superposition ratio n/m is 0).
  • the fundamental wave current copper loss P Cu_If1 of ⁇ /4 [rad] is reduced compared to the case where the initial phase ⁇ of the fifth harmonic is 0 [rad]. are doing.
  • FIG. 56 shows the measurement results of the inverter loss P inv in the motor test.
  • the horizontal broken line in the figure indicates the measured value of the inverter loss P inv when the modulation rate n of the fifth harmonic is 0.
  • the inverter loss P inv is reduced when the superposition ratio n/m is -0.1 compared to the case where the fifth harmonic is not superimposed (the case where the superposition ratio n/m is 0). Furthermore, under the condition where the superposition ratio n/m is -0.1, the inverter loss P inv of 0 [rad] is reduced compared to the case where the initial phase ⁇ of the fifth harmonic is ⁇ /4 [rad]. .
  • the loss reduction rate when the initial phase ⁇ is 0 [rad] is 2.2% compared to the case where the fifth harmonic is not superimposed.
  • SYMBOLS 1 Motor drive system, 2... Three-phase inverter part, 3... Boost chopper part, 4... Motor control part, 5... Permanent magnet synchronous motor, 6... Stator coil, 7... Rotor, S1 , S2 , S3 , S 4 , S 5 , S 6 ... switching element, D 1 , D 2 , D 3 , D 4 , D 5 , D 6 ...
  • free-wheeling diode 8 1 , 8 2 , 8 3 , 8 4 , 8 5 , 8 6 ...Switching element input section, 9...Current sensor, 10...Position sensor, 11...Battery, 12...Inductor, 13...Capacitor, Sc...Switching element for chopper section, 15...Diode, 40...CPU, 41...ROM, 42... RAM, 43... Signal wave generation section, 44... Carrier wave generation section, 45... PWM drive signal generation section, 46... PWM drive signal output section, 47... Boost chopper control signal output section, 48...
  • Rotor detection position reception section 49 ...Motor input current value acceptance unit, 50...Command value acceptance unit, 60...5th harmonic superposition PWM controller, 61...Ring sample, 62...IGBT inverter, 63...DC power supply, 64...A/D converter, 69... Ring test device, 70... Fifth harmonic superposition PWM controller, 71... IGBT inverter, 72... Power measuring instrument, 73... Embedded structure permanent magnet synchronous motor (IPMSM), 74... Encoder, 75, 76...
  • IPMSM Embedded structure permanent magnet synchronous motor
  • Torque meter 77 ...Power analyzer, 78...Load, 79...BLDC motor, 80...Rectifier, 81...MCU & MOSFET, 89...Motor test equipment, 109...Ring test equipment, 100...Fifth harmonic superposition PWM controller, 101...Ring sample, 102... IGBT inverter, 103... DC power supply, 104... A/D converter, 108 1 , 108 2 , 108 3 , 108 4 ... Switching element input section, 289... Motor testing device, 270... Fifth harmonic superposition PWM controller, 271 ... IGBT inverter, 272 ... Power measuring device, 273 ... Embedded structure permanent magnet synchronous motor, 274 ...
  • Encoder 275 ... Torque meter, 276 ... Torque meter, 277 ... Power analyzer, 278 ... Load, 279 ... BLDC motor, 280 ... Rectifier, 281...MCU&MOSFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

[Problem] To provide a motor driving system of which loss is reduced further than a case where a sinusoidal wave, which is a fundamental wave, is adopted as a signal wave. [Solution] This motor driving system 1 comprises: a 3-phase inverter unit 2 which outputs a 3-phased PWM driving voltage that drives a permanent magnet synchronization motor 5; and a motor control unit 4 which controls the 3-phase inverter unit 2. This motor control unit 4 switches a pulse width at an intersection point of a carrier wave and a signal wave h(t)(=m•sin(2πf11t)+n•sin(2π•5 f1t+φ)) in which a fifth-order harmonic wave is overlapped with a fundamental sinusoidal wave g(t) and generates a PWM drive signal, supplies the PWM drive signal to the 3-phase inverter unit 2 and causes a PWM driving voltage to be output. This motor driving system 1 operates with an upper limit of an overlap ratio n/m of the signal wave h(t) and a lower limit of the overlap ratio n/m, the upper limit being a value of n/m at which a fundamental wave current If1 begins to decrease due to a change in magnetic characteristics, and the lower limit being a value of n/m at which a decrease effect of the fundamental wave current If1 is greater than an increase due to harmonic components.

Description

モータ駆動システムmotor drive system
 この発明は、同期モータをパルス幅変調制御方式で駆動するモータ駆動システムに関するものである。 The present invention relates to a motor drive system that drives a synchronous motor using a pulse width modulation control method.
 高効率を示す同期モータは、広く用いられており、特に、永久磁石同期モータ(PMSM:Permanent Magnet Synchronous Motor)は、電気自動車、エアコン、冷蔵庫などの省エネ・高性能モータとして実用化が進み、技術が進展している。同期モータの駆動には、インバータ回路から供給されるパルス幅変調(PWM:Pulse Width Modulation)電圧が入力され制御されるPWM制御方式が採用されることが多い。PWM電圧を出力するインバータ回路には、PWM電圧を形成するためのPWMドライブ信号が入力される。このPWMドライブ信号は、信号波(変調波)を正弦波信号、キャリア波(搬送波)を三角波信号として、信号波とキャリア波との交点がエッジとなるようにパルス幅を決定することが行われる。このPWMドライブ信号の生成の方法にも様々な提案がなされており、例えば、下記特許文献1には、基本波となる正弦波信号にその高調波成分を加算して重畳した波形を信号波として用い、その信号波とキャリア波との交点に基づいてパルス幅を決定する方法が開示されている。このPWM信号の生成方法によれば、モータ出力容量が大きく、かつ低振動、低騒音で同期モータを駆動できる旨の記載がある。 Synchronous motors that exhibit high efficiency are widely used, and in particular, permanent magnet synchronous motors (PMSM) have been put into practical use as energy-saving, high-performance motors for electric vehicles, air conditioners, refrigerators, etc. is progressing. A PWM control method is often adopted to drive a synchronous motor, in which a pulse width modulation (PWM) voltage supplied from an inverter circuit is input and controlled. A PWM drive signal for forming a PWM voltage is input to an inverter circuit that outputs a PWM voltage. In this PWM drive signal, the signal wave (modulation wave) is a sine wave signal, the carrier wave (carrier wave) is a triangular wave signal, and the pulse width is determined so that the intersection of the signal wave and the carrier wave becomes an edge. . Various proposals have been made for the method of generating this PWM drive signal. For example, in Patent Document 1 listed below, a waveform obtained by adding and superimposing harmonic components to a sine wave signal serving as a fundamental wave is used as a signal wave. A method is disclosed in which the pulse width is determined based on the intersection of the signal wave and the carrier wave. According to this PWM signal generation method, it is stated that the motor output capacity is large and the synchronous motor can be driven with low vibration and low noise.
特開2012-135100号公報Japanese Patent Application Publication No. 2012-135100
 しかしながら、特許文献1に記載の方法のように、信号波に高調波成分を付加すると、その高調波成分による実効値の増加が起こり、一般的には損失の増加が想定される。線形特性の範囲内であればその想定通りであるが、モータコアに使用される磁性材料のように磁気的非線形性を持つ場合、高調波を重畳することによって損失が低減する可能性も期待される。 However, when harmonic components are added to the signal wave as in the method described in Patent Document 1, the effective value increases due to the harmonic components, and it is generally assumed that loss increases. This is as expected if it is within the range of linear characteristics, but if it has magnetic nonlinearity, such as the magnetic material used in the motor core, it is expected that the loss may be reduced by superimposing harmonics. .
 そこで、本発明の課題は、基本波となる正弦波を信号波とする場合に比べて、損失が低減するモータ駆動システムを提供することである。 Therefore, an object of the present invention is to provide a motor drive system with reduced loss compared to the case where a sine wave serving as a fundamental wave is used as a signal wave.
 かかる課題を解決するために、請求項1に記載の発明は、インバータでモータを駆動するモータ駆動システムであって、基本正弦波g(t)に高調波を重畳した信号波h(t)とキャリア波の交点で前記インバータ内の半導体のスイッチング動作において、前記基本正弦波g(t)がg(t)=m・sin(2πft)であり、前記信号波h(t)がh(t)=m・sin(2πft)+n・sin(2π・5ft+φ)であり、n/mの上限が、磁気特性の変化で基本波電流の低減し始めるn/mの値、n/mの下限が、前記基本波電流の低減効果より高調波成分による増加のほうが大きくなるn/mの値、で動作することを特徴とする。 In order to solve this problem, the invention according to claim 1 is a motor drive system that drives a motor with an inverter, which generates a signal wave h(t) obtained by superimposing a harmonic on a fundamental sine wave g(t). In the switching operation of the semiconductor in the inverter at the intersection of carrier waves, the fundamental sine wave g(t) is g(t)=m·sin(2πf 1 t), and the signal wave h(t) is h( t)=m・sin(2πf 1 t)+n・sin(2π・5f 1 t+φ), and the upper limit of n/m is the value of n/m at which the fundamental wave current starts to decrease due to changes in magnetic properties, n The present invention is characterized in that the lower limit of /m is a value of n/m at which the increase due to harmonic components is greater than the reduction effect of the fundamental wave current.
 請求項2に係る発明は、請求項1に記載の構成に加えて、n/mが-0.3より大きくかつ0未満で動作することを特徴とする。 The invention according to claim 2 is characterized in that, in addition to the configuration according to claim 1, the invention operates with n/m greater than −0.3 and less than 0.
 請求項3に係る発明は、請求項1または2に記載の構成に加えて、前記基本正弦波g(t)の位相角(2πft)がπ/2ラジアンのときの前記基本正弦波g(t)の数値m・sin(π/2)が、前記信号波h(t)=m・sin(π/2)+n・sin(5・π/2+φ)の数値以上となる前記高調波の初期位相φで動作することを特徴とする。 The invention according to claim 3 provides, in addition to the configuration according to claim 1 or 2, when the fundamental sine wave g(t) has a phase angle (2πf 1 t) of π/2 radian. of the harmonics in which the value m・sin(π/2) of (t) is greater than or equal to the value of the signal wave h(t)=m・sin(π/2)+n・sin(5・π/2+φ) It is characterized by operating with an initial phase φ.
 請求項4に係る発明は、請求項1または2に記載の構成に加えて、前記高調波の初期位相φの最大位相角が、前記磁気特性の変化で前記基本波電流の低減し始める前記初期位相φの値、前記初期位相φの最小位相角が、前記基本波電流の低減効果より高調波成分による増加のほうが大きくなる前記初期位相φの値、で動作することを特徴とする。 In addition to the structure according to claim 1 or 2, the invention according to claim 4 is such that the maximum phase angle of the initial phase φ of the harmonic is the initial phase angle at which the fundamental wave current starts to decrease due to a change in the magnetic property. The operation is characterized in that the value of the phase φ and the minimum phase angle of the initial phase φ are such that the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current.
 請求項5に記載の発明は、インバータでモータを駆動するモータ駆動システムであって、基本正弦波g(t)に高調波を重畳した信号波h(t)とキャリア波の交点で前記インバータ内の半導体のスイッチング動作において、前記基本正弦波g(t)がg(t)=m・sin(2πft)であり、前記信号波h(t)がh(t)=m・sin(2πft)+n・sin(2π・aft+φ)であり、aは、5以上の整数であり、n/mの上限が、磁気特性の変化で基本波電流の低減し始めるn/mの値、n/mの下限が、前記基本波電流の低減効果より高調波成分による増加のほうが大きくなるn/mの値、で動作することを特徴とする。 The invention according to claim 5 is a motor drive system in which a motor is driven by an inverter, in which a signal wave h(t) obtained by superimposing a harmonic wave on a fundamental sine wave g(t) and a carrier wave intersect within the inverter. In the semiconductor switching operation of 1 t) + n・sin (2π・af 1 t+φ), where a is an integer of 5 or more, and the upper limit of n/m is the value of n/m at which the fundamental wave current starts to decrease due to changes in magnetic properties. , n/m is operated at a value where the lower limit of n/m is such that the increase due to harmonic components is greater than the reduction effect of the fundamental wave current.
 請求項6に係る発明は、請求項5に記載の構成に加えて、n/mが-0.3より大きくかつ0未満で動作することを特徴とする。 The invention according to claim 6 is characterized in that, in addition to the configuration according to claim 5, the invention operates with n/m greater than −0.3 and less than 0.
 請求項7に係る発明は、請求項5または6に記載の構成に加えて、前記基本正弦波g(t)の位相角(2πft)がπ/2ラジアンのときの前記基本正弦波g(t)の数値m・sin(π/2)が、前記信号波h(t)=m・sin(π/2)+n・sin(a・π/2+φ)の数値以上となる前記高調波の初期位相φで動作することを特徴とする。 The invention according to claim 7 provides, in addition to the configuration according to claim 5 or 6, when the fundamental sine wave g(t) has a phase angle (2πf 1 t) of π/2 radian. The harmonic wave whose numerical value m・sin(π/2) of (t) is greater than or equal to the value of the signal wave h(t)=m・sin(π/2)+n・sin(a・π/2+φ) It is characterized by operating with an initial phase φ.
 請求項8に係る発明は、請求項5または6に記載の構成に加えて、前記高調波の初期位相φの最大位相角が、前記磁気特性の変化で前記基本波電流の低減し始める前記初期位相φの値、前記初期位相φの最小位相角が、前記基本波電流の低減効果より高調波成分による増加のほうが大きくなる前記初期位相φの値、で動作することを特徴とする。 In addition to the configuration described in claim 5 or 6, the invention according to claim 8 provides that the maximum phase angle of the initial phase φ of the harmonic is the initial phase angle at which the fundamental wave current starts to decrease due to a change in the magnetic property. The operation is characterized in that the value of the phase φ and the minimum phase angle of the initial phase φ are such that the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current.
 請求項9に記載の発明は、同期モータを駆動するパルス幅変調駆動電圧を出力するインバータ部と、前記パルス幅変調駆動電圧を形成するように前記インバータ部を制御するモータ制御部とを備えるモータ駆動システムであって、モータ制御部は、前記パルス幅変調駆動電圧の基本周波数を規定する基本正弦波に該基本正弦波の5次高調波を重畳した信号波と、キャリア波との交点でパルス幅を切り替えて前記パルス幅変調駆動電圧を形成するPWMドライブ信号を生成して、該PWMドライブ信号を前記インバータ部のスイッチング素子入力部に供給する構成になっており、前記基本正弦波の周波数を基本正弦波周波数fとするとき、前記信号波h(t)をh(t)=m・sin(2πft)+n・sin(2π・5ft+φ)として、前記基本正弦波の変調率mに対する初期位相φの前記5次高調波の変調率nの比率である重畳率n/mの上限値と下限値が、前記同期モータの鉄心材料で形成されたリング試料に巻回された一次コイルに前記信号波h(t)を用いたパルス幅変調電圧を前記重畳率n/mを変化させて印加して、前記一次コイルに流れる一次電流と前記リング試料に巻回された二次コイルに発生する二次電圧とを測定するリング試験により決定されるようになっており、前記重畳率n/mの上限値が、前記5次高調波の変調率nがゼロの場合よりも前記一次電流の前記基本正弦波周波数fの成分である基本波電流が下回る範囲の上限となる前記重畳率n/m、または、前記5次高調波の変調率nがゼロの場合に比べて、前記一次電流と前記二次電圧とに基づいて算出される所定の損失が下回る範囲の上限となる前記重畳率n/mとして決定され、前記重畳率n/mの下限値が、前記5次高調波の変調率nがゼロの場合を基準とする前記基本波電流の低減量に比べて、前記5次高調波の変調率nがゼロの場合を基準とする、前記一次電流の前記基本正弦波周波数fの高調波成分である高調波電流の増加量が下回る範囲の下限となる前記重畳率n/m、または、前記5次高調波の変調率nがゼロの場合よりも前記所定の損失が下回る範囲の下限となる前記重畳率n/mとして決定されることを特徴とする。 The invention according to claim 9 provides a motor comprising: an inverter section that outputs a pulse width modulated drive voltage for driving a synchronous motor; and a motor control section that controls the inverter section so as to form the pulse width modulation drive voltage. In the drive system, the motor control unit generates a pulse at the intersection of a carrier wave and a signal wave obtained by superimposing a fifth harmonic of the fundamental sine wave on a fundamental sine wave that defines the fundamental frequency of the pulse width modulated drive voltage. It is configured to generate a PWM drive signal that changes the width to form the pulse width modulated drive voltage, and supplies the PWM drive signal to the switching element input section of the inverter section, and to change the frequency of the fundamental sine wave. When the fundamental sine wave frequency f is 1 , the signal wave h(t) is set as h(t)=m・sin(2πf 1 t)+n・sin(2π・5f 1 t+φ), and the modulation rate of the fundamental sine wave is The upper and lower limits of the superimposition rate n/m, which is the ratio of the modulation rate n of the fifth harmonic of the initial phase φ to m, are the primary A pulse width modulated voltage using the signal wave h(t) is applied to the coil while changing the superimposition ratio n/m, and the primary current flowing through the primary coil and the secondary coil wound around the ring sample are The upper limit value of the superimposition ratio n/m is determined by a ring test that measures the secondary voltage generated in the first harmonic than when the modulation ratio n of the fifth harmonic is zero. The superposition ratio n/m, which is the upper limit of the range below which the fundamental wave current, which is the component of the fundamental sine wave frequency f1 of the current, is zero, or the modulation rate n of the fifth harmonic is zero. The superimposition ratio n/m is determined as the upper limit of the range below which the predetermined loss calculated based on the primary current and the secondary voltage falls, and the lower limit value of the superimposition ratio n/m is the fifth harmonic. The fundamental sine wave frequency of the primary current is based on the case where the modulation rate n of the fifth harmonic is zero, compared to the amount of reduction of the fundamental wave current based on the case where the modulation rate n of the fifth harmonic is zero. The predetermined loss is greater than when the superimposition ratio n/m, which is the lower limit of the range below which the amount of increase in the harmonic current, which is the harmonic component of f1 , or the modulation ratio n of the fifth harmonic is zero. The superimposition ratio is determined as n/m, which is the lower limit of the range below.
 請求項10に係る発明は、請求項9に記載の構成に加えて、前記5次高調波の前記初期位相φの最大位相角と最小位相角が、前記初期位相φを変化させて前記パルス幅変調電圧を前記一次コイルに印加する前記リング試験によって決定されるようになっており、前記最大位相角は、前記5次高調波の変調率nがゼロの場合よりも前記基本波電流が下回る範囲の最大値となる前記初期位相φ、または、前記5次高調波の変調率nがゼロの場合よりも前記所定の損失が下回る範囲の最大値となる前記初期位相φとして決定され、前記最小位相角は、前記5次高調波の変調率nがゼロの場合を基準とする前記基本波電流の低減量に比べて、前記5次高調波の変調率nがゼロの場合を基準とする前記高調波電流の増加量が下回る範囲の最小値となる前記初期位相φ、または、前記5次高調波の変調率nがゼロの場合よりも前記所定の損失が下回る範囲の最小値となる前記初期位相φとして決定されることを特徴とする。 In the invention according to claim 10, in addition to the configuration according to claim 9, the maximum phase angle and the minimum phase angle of the initial phase φ of the fifth harmonic are changed by changing the initial phase φ to adjust the pulse width. The maximum phase angle is determined by the ring test in which a modulation voltage is applied to the primary coil, and the maximum phase angle is within a range in which the fundamental current is lower than when the modulation rate n of the fifth harmonic is zero. The initial phase φ is determined as the maximum value of φ, or the initial phase φ is determined as the maximum value of the range in which the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero, and the minimum phase The angle is the amount of reduction in the fundamental wave current based on the case where the modulation rate n of the fifth-order harmonic is zero, compared to the amount of reduction of the fundamental wave current based on the case where the modulation rate n of the fifth-order harmonic is zero. The initial phase φ is a minimum value in a range where the increase in wave current is below, or the initial phase is a minimum value in a range where the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero. It is characterized in that it is determined as φ.
 請求項11に記載の発明は、同期モータを駆動するパルス幅変調駆動電圧を出力するインバータ部と、前記パルス幅変調駆動電圧を形成するように前記インバータ部を制御するモータ制御部とを備えるモータ駆動システムであって、モータ制御部は、前記パルス幅変調駆動電圧の基本周波数を規定する基本正弦波に該基本正弦波の5次高調波を重畳した信号波と、キャリア波との交点でパルス幅を切り替えて前記パルス幅変調駆動電圧を形成するPWMドライブ信号を生成して、該PWMドライブ信号を前記インバータ部のスイッチング素子入力部に供給する構成になっており、前記基本正弦波の周波数を基本正弦波周波数fとするとき、前記信号波h(t)をh(t)=m・sin(2πft)+n・sin(2π・5ft+φ)として、前記基本正弦波の変調率mに対する初期位相φの前記5次高調波の変調率nの比率である重畳率n/mの上限値と下限値が、前記信号波h(t)を用いた前記パルス幅変調駆動電圧により前記重畳率n/mを変化させて前記同期モータを回転駆動させ、前記インバータ部への入力電力、前記同期モータ各相の入力電力若しくは前記同期モータ各相の入力電流の内の少なくとも何れかを測定するモータ試験により決定されるようになっており、前記重畳率n/mの上限値は、前記入力電流から算出される前記基本正弦波周波数fの成分である基本波電流が、前記5次高調波の変調率nがゼロの場合よりも下回る範囲の上限となる前記重畳率n/m、または、前記インバータ部への入力電力、前記同期モータ各相の入力電力若しくは前記同期モータ各相の入力電流の内の少なくとも何れかに基づいて算出される所定の損失が前記5次高調波の変調率nがゼロの場合に比べて下回る範囲の上限となる前記重畳率n/mとして決定され、前記重畳率n/mの下限値は、前記5次高調波の変調率nがゼロの場合を基準とする前記基本波電流の低減量に比べて、前記5次高調波の変調率nがゼロの場合を基準とする、前記入力電流の前記基本正弦波周波数fの高調波成分である高調波電流の増加量が下回る範囲の下限となる前記重畳率n/m、または、前記5次高調波の変調率nがゼロの場合よりも前記所定の損失が下回る範囲の下限となる前記重畳率n/mとして決定されることを特徴とする。 The invention according to claim 11 provides a motor comprising: an inverter section that outputs a pulse width modulated drive voltage for driving a synchronous motor; and a motor control section that controls the inverter section so as to form the pulse width modulation drive voltage. In the drive system, the motor control unit generates a pulse at the intersection of a carrier wave and a signal wave obtained by superimposing a fifth harmonic of the fundamental sine wave on a fundamental sine wave that defines the fundamental frequency of the pulse width modulated drive voltage. It is configured to generate a PWM drive signal that changes the width to form the pulse width modulated drive voltage, and supplies the PWM drive signal to the switching element input section of the inverter section, and to change the frequency of the fundamental sine wave. When the fundamental sine wave frequency f is 1 , the signal wave h(t) is set as h(t)=m・sin(2πf 1 t)+n・sin(2π・5f 1 t+φ), and the modulation rate of the fundamental sine wave is The upper and lower limits of the superimposition rate n/m, which is the ratio of the modulation rate n of the fifth harmonic of the initial phase φ to m, are determined by the pulse width modulation drive voltage using the signal wave h(t). The synchronous motor is rotationally driven by changing the superimposition ratio n/m, and at least one of the input power to the inverter section, the input power of each phase of the synchronous motor, or the input current of each phase of the synchronous motor is measured. The upper limit of the superimposition ratio n/m is determined by a motor test in which the fundamental wave current, which is a component of the fundamental sine wave frequency f1 calculated from the input current, is The superimposition ratio n/m is the upper limit of the range below when the harmonic modulation ratio n is zero, or the input power to the inverter section, the input power to each phase of the synchronous motor, or the input power to each phase of the synchronous motor. The predetermined loss calculated based on at least one of the input currents is determined as the superimposition ratio n/m that is the upper limit of a range in which the modulation ratio n of the fifth harmonic is lower than when the modulation ratio n is zero, The lower limit value of the superposition ratio n/m is such that the modulation rate n of the fifth harmonic is zero compared to the amount of reduction in the fundamental wave current based on the case where the modulation rate n of the fifth harmonic is zero. The superimposition ratio n/m is the lower limit of the range below which the amount of increase in the harmonic current, which is a harmonic component of the fundamental sine wave frequency f1 of the input current, is based on the case where It is characterized in that the superimposition ratio n/m is determined as the lower limit of the range in which the predetermined loss is lower than when the wave modulation ratio n is zero.
 請求項12に係る発明は、請求項11に記載の構成に加えて、前記5次高調波の前記初期位相φの最大位相角と最小位相角が、前記初期位相φを変化させて前記パルス幅変調駆動電圧により前記同期モータを回転駆動させる前記モータ試験により決定されるようになっており、前記最大位相角は、前記5次高調波の変調率nがゼロの場合よりも前記基本波電流が下回る範囲の最大値となる前記初期位相φ、または、前記5次高調波の変調率nがゼロの場合よりも前記所定の損失が下回る範囲の最大値となる前記初期位相φとして決定され、前記最小位相角は、前記5次高調波の変調率nがゼロの場合を基準とする前記基本波電流の低減量に比べて、前記5次高調波の変調率nがゼロの場合を基準とする前記高調波電流の増加量が下回る範囲の最小値となる前記初期位相φ、または、前記5次高調波の変調率nがゼロの場合よりも前記所定の損失が下回る範囲の最小値となる前記初期位相φとして決定されることを特徴とする。 In the invention according to claim 12, in addition to the configuration according to claim 11, the maximum phase angle and the minimum phase angle of the initial phase φ of the fifth harmonic are changed by changing the initial phase φ to adjust the pulse width. The maximum phase angle is determined by the motor test in which the synchronous motor is rotationally driven by a modulated drive voltage, and the maximum phase angle is determined when the fundamental wave current is lower than when the modulation rate n of the fifth harmonic is zero. The initial phase φ is determined as the maximum value in the range below which the predetermined loss falls below that when the modulation rate n of the fifth harmonic is zero, and The minimum phase angle is based on the case where the modulation rate n of the fifth-order harmonic is zero compared to the amount of reduction in the fundamental wave current based on the case where the modulation rate n of the fifth-order harmonic is zero. The initial phase φ is a minimum value in a range below which the increase amount of the harmonic current is lower, or the initial phase φ is a minimum value in a range where the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero. It is characterized in that it is determined as the initial phase φ.
 請求項1の発明によれば、信号波に5次高調波が重畳され、重畳率n/mの上限が磁気特性の変化で基本波電流の低減し始めるn/mの値であり、n/mの下限が基本波電流の低減効果より高調波成分による増加のほうが大きくなるn/mの値であるように動作する。このようになっているため、基本正弦波を信号波として用いる場合に比べて、モータ駆動システムの損失を低減できる。 According to the invention of claim 1, the fifth harmonic is superimposed on the signal wave, and the upper limit of the superimposition ratio n/m is the value of n/m at which the fundamental wave current starts to decrease due to a change in magnetic characteristics, and n/m is the upper limit of the superimposition ratio n/m. It operates so that the lower limit of m is a value of n/m at which the increase due to harmonic components is greater than the effect of reducing the fundamental wave current. Because of this, the loss of the motor drive system can be reduced compared to the case where a fundamental sine wave is used as a signal wave.
 請求項2の発明によれば、重畳率n/mが-0.3より大きくかつ0未満の範囲で動作するため、安定してモータ駆動システムの損失を低減できる。 According to the invention of claim 2, since the superimposition ratio n/m operates within a range of greater than -0.3 and less than 0, it is possible to stably reduce the loss of the motor drive system.
 請求項3の発明によれば、基本正弦波g(t)の位相角(2πft)がπ/2ラジアン(rad)のときの基本正弦波g(t)の数値m・sin(π/2)が、信号波h(t)=m・sin(π/2)+n・sin(5・π/2+φ)の数値以上となる高調波の初期位相φで動作する。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、モータ駆動システムの損失を低減できる。 According to the invention of claim 3, the numerical value m · sin(π/ 2) operates with an initial phase φ of the harmonic that is greater than or equal to the value of the signal wave h(t)=m·sin(π/2)+n·sin(5·π/2+φ). Because of this, the loss of the motor drive system can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
 請求項4の発明によれば、高調波の初期位相φの最大位相角が、磁気特性の変化で基本波電流の低減し始める初期位相φの値、初期位相φの最小位相角が、基本波電流の低減効果より高調波成分による増加のほうが大きくなる初期位相φの値、で動作する。このようになっているため、基本正弦波を信号波として用いる場合に比べて、モータ駆動システムの損失を低減できる。 According to the invention of claim 4, the maximum phase angle of the initial phase φ of the harmonics is the value of the initial phase φ at which the fundamental wave current starts to decrease due to a change in magnetic characteristics, and the minimum phase angle of the initial phase φ is the value of the fundamental wave current. It operates at an initial phase φ value at which the increase due to harmonic components is greater than the current reduction effect. Because of this, the loss of the motor drive system can be reduced compared to the case where a fundamental sine wave is used as a signal wave.
 請求項5の発明によれば、信号波に5次以上のa次高調波が重畳され、重畳率n/mの上限が磁気特性の変化で基本波電流の低減し始めるn/mの値であり、n/mの下限が基本波電流の低減効果より高調波成分による増加のほうが大きくなるn/mの値であるように動作する。このようになっているため、基本正弦波を信号波として用いる場合に比べて、モータ駆動システムの損失を低減できる。 According to the invention of claim 5, the fifth or higher harmonics are superimposed on the signal wave, and the upper limit of the superimposition ratio n/m is the value n/m at which the fundamental wave current starts to decrease due to a change in magnetic characteristics. The lower limit of n/m is a value of n/m at which the increase due to harmonic components is greater than the effect of reducing the fundamental wave current. Because of this, the loss of the motor drive system can be reduced compared to the case where a fundamental sine wave is used as a signal wave.
 請求項6の発明によれば、重畳率n/mが-0.3より大きくかつ0未満の範囲で動作するため、安定して損失を低減できる。 According to the invention of claim 6, since the superimposition ratio n/m operates within a range of greater than −0.3 and less than 0, it is possible to stably reduce loss.
 請求項7の発明によれば、基本正弦波g(t)の位相角(2πft)がπ/2ラジアンのときの基本正弦波g(t)の数値m・sin(π/2)が、信号波h(t)=m・sin(π/2)+n・sin(a・π/2+φ)の数値以上となる高調波の初期位相φで動作する。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、損失を低減できる。 According to the invention of claim 7, when the phase angle (2πf 1 t) of the fundamental sine wave g(t) is π/2 radian, the numerical value m·sin(π/2) of the fundamental sine wave g(t) is , the signal wave operates at an initial phase φ of the harmonic that is greater than or equal to the value of h(t)=m·sin(π/2)+n·sin(a·π/2+φ). Because of this, loss can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
 請求項8の発明によれば、高調波の初期位相φの最大位相角が、磁気特性の変化で基本波電流の低減し始める初期位相φの値、初期位相φの最小位相角が、基本波電流の低減効果より高調波成分による増加のほうが大きくなる初期位相φの値、で動作する。このようになっているため、基本正弦波を信号波として用いる場合に比べて、損失を低減できる。 According to the invention of claim 8, the maximum phase angle of the initial phase φ of the harmonic is the value of the initial phase φ at which the fundamental wave current starts to decrease due to a change in magnetic characteristics, and the minimum phase angle of the initial phase φ is It operates at an initial phase φ value at which the increase due to harmonic components is greater than the current reduction effect. Because of this, loss can be reduced compared to the case where a fundamental sine wave is used as a signal wave.
 請求項9の発明によれば、信号波を構成する基本正弦波の変調率mに対する5次高調波の変調率nの比率である重畳率n/mの上限値と下限値がリング試験により決定されるようになっており、重畳率n/mの上限値が、5次高調波の変調率nがゼロの場合よりも基本波電流が下回る範囲の上限となる重畳率n/m、または、5次高調波の変調率nがゼロの場合に比べて所定の損失が下回る範囲の上限となる重畳率n/mとして決定され、重畳率n/mの下限値が、5次高調波の変調率nがゼロの場合を基準とする基本波電流の低減量に比べて、5次高調波の変調率nがゼロの場合を基準とする高調波電流の増加量が下回る範囲の下限となる重畳率n/m、または、5次高調波の変調率nがゼロの場合よりも所定の損失が下回る範囲の下限となる重畳率n/mとして決定される。このようになっているため、基本正弦波を信号波として用いる場合に比べて、損失を低減できる。 According to the invention of claim 9, the upper and lower limits of the superimposition rate n/m, which is the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine wave constituting the signal wave, are determined by a ring test. The upper limit of the superposition ratio n/m is the upper limit of the range in which the fundamental wave current is lower than when the modulation rate n of the fifth harmonic is zero, or The modulation rate n/m is determined as the upper limit of the range where the predetermined loss is lower than when the modulation rate n of the 5th harmonic is zero, and the lower limit of the modulation rate n/m is the modulation rate of the 5th harmonic. Superposition that is the lower limit of the range in which the amount of increase in harmonic current based on the case where the modulation rate n of the fifth harmonic is zero is lower than the amount of reduction in the fundamental wave current based on the case where the modulation rate n of the fifth harmonic is zero. The modulation rate n/m or the superimposition rate n/m is determined as the lower limit of the range in which the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero. Because of this, loss can be reduced compared to the case where a fundamental sine wave is used as a signal wave.
 請求項10の発明によれば、5次高調波の初期位相φの最大位相角と最小位相角が、初期位相φを変化させて行うリング試験によって決定されるようになっており、最大位相角は、5次高調波の変調率nがゼロの場合よりも基本波電流が下回る範囲の最大値となる初期位相φ、または、5次高調波の変調率nがゼロの場合よりも所定の損失が下回る範囲の最大値となる初期位相φとして決定され、最小位相角は、5次高調波の変調率nがゼロの場合を基準とする基本波電流の低減量に比べて、5次高調波の変調率nがゼロの場合を基準とする高調波電流の増加量が下回る範囲の最小値となる初期位相φ、または、5次高調波の変調率nがゼロの場合よりも所定の損失が下回る範囲の最小値となる初期位相φとしてされる。このようになっているため、基本正弦波を信号波として用いる場合に比べて、損失が低減できる。 According to the invention of claim 10, the maximum phase angle and minimum phase angle of the initial phase φ of the fifth harmonic are determined by a ring test performed by changing the initial phase φ, and the maximum phase angle is the initial phase φ that is the maximum value in the range in which the fundamental wave current is lower than when the modulation rate n of the fifth harmonic is zero, or the predetermined loss than when the modulation rate n of the fifth harmonic is zero. The minimum phase angle is determined as the initial phase φ that is the maximum value in the range in which the 5th harmonic The initial phase φ is the minimum value in the range in which the increase in harmonic current is below the case where the modulation rate n of the fifth harmonic is zero, or the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero. The initial phase φ is set to be the minimum value within the range below. Because of this, loss can be reduced compared to the case where a fundamental sine wave is used as a signal wave.
 請求項11の発明によれば、信号波を構成する基本正弦波の変調率mに対する5次高調波の変調率nの比率である重畳率n/mの上限値と下限値がモータ試験により決定されるようになっており、重畳率n/mの上限値は、5次高調波の変調率nがゼロの場合よりも基本波電流が下回る範囲の上限となる重畳率n/m、または、5次高調波の変調率nがゼロの場合よりも所定の損失が下回る範囲の上限となる重畳率n/mとして決定され、重畳率n/mの下限値は、5次高調波の変調率nがゼロの場合を基準とする基本波電流の低減量に比べて、5次高調波の変調率nがゼロの場合を基準とする高調波電流の増加量が下回る範囲の下限となる重畳率n/m、または、5次高調波の変調率nがゼロの場合よりも所定の損失が下回る範囲の下限となる重畳率n/mとして決定される。このようになっているため、基本正弦波を信号波として用いる場合に比べて、損失を低減できる。 According to the invention of claim 11, the upper and lower limits of the superimposition rate n/m, which is the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine wave constituting the signal wave, are determined by a motor test. The upper limit of the superposition ratio n/m is the superposition ratio n/m that is the upper limit of the range in which the fundamental wave current is lower than when the modulation rate n of the fifth harmonic is zero, or The upper limit of the range where the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero is determined as the superimposition rate n/m, and the lower limit value of the superimposition rate n/m is the modulation rate of the fifth harmonic. Superimposition rate that is the lower limit of the range in which the amount of increase in harmonic current based on the case where the modulation rate n of the fifth harmonic is zero is lower than the amount of reduction in the fundamental wave current based on the case where n is zero. n/m, or a superimposition rate n/m that is the lower limit of a range in which the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero. Because of this, loss can be reduced compared to the case where a fundamental sine wave is used as a signal wave.
 請求項12の発明によれば、5次高調波の初期位相φの最大位相角と最小位相角が、初期位相φを変化させて行うモータ試験により決定されるようになっており、最大位相角は、5次高調波の変調率nがゼロの場合よりも基本波電流が下回る範囲の最大値となる初期位相φ、または、5次高調波の変調率nがゼロの場合よりも所定の損失が下回る範囲の最大値となる初期位相φとして決定され、最小位相角は、5次高調波の変調率nがゼロの場合を基準とする基本波電流の低減量に比べて、5次高調波の変調率nがゼロの場合を基準とする高調波電流の増加量が下回る範囲の最小値となる初期位相φ、または、5次高調波の変調率nがゼロの場合よりも所定の損失が下回る範囲の最小値となる初期位相φとしてされる。このようになっているため、基本正弦波を信号波として用いる場合に比べて、損失が低減できる。 According to the invention of claim 12, the maximum phase angle and the minimum phase angle of the initial phase φ of the fifth harmonic are determined by a motor test performed by changing the initial phase φ, and the maximum phase angle is the initial phase φ that is the maximum value in the range in which the fundamental wave current is lower than when the modulation rate n of the fifth harmonic is zero, or the predetermined loss than when the modulation rate n of the fifth harmonic is zero. The minimum phase angle is determined as the initial phase φ that is the maximum value in the range in which the 5th harmonic The initial phase φ is the minimum value in the range in which the increase in harmonic current is below the case where the modulation rate n of the fifth harmonic is zero, or the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero. The initial phase φ is set to be the minimum value within the range below. Because of this, loss can be reduced compared to the case where a fundamental sine wave is used as a signal wave.
この発明の実施の形態に係るモータ駆動システムの概略構成図である。1 is a schematic configuration diagram of a motor drive system according to an embodiment of the present invention. 同実施の形態に係るモータ駆動システムのモータ制御部の概略ブロック図である。It is a schematic block diagram of the motor control part of the motor drive system based on the same embodiment. 同実施の形態に係るモータ駆動システムのPWMドライブ信号のパルス幅変調を説明する図であり、(a)は信号波とキャリア波を示す図、(b)はPWMドライブ信号を示す図、(c)はPWM駆動電圧を示す図である。FIG. 3 is a diagram illustrating pulse width modulation of a PWM drive signal of the motor drive system according to the same embodiment, in which (a) is a diagram showing a signal wave and a carrier wave, (b) is a diagram showing a PWM drive signal, and (c ) is a diagram showing the PWM drive voltage. 同実施の形態に係るモータ駆動システムの三相の基本正弦波を示す図である。FIG. 3 is a diagram showing three-phase fundamental sine waves of the motor drive system according to the embodiment. 同実施の形態に係るモータ駆動システムのモータ制御部の動作の流れを示す図である。It is a figure showing the flow of operation of a motor control part of a motor drive system concerning the same embodiment. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるリング試験装置の概略構成図である。FIG. 2 is a schematic configuration diagram of a ring testing device used for setting, designing, and manufacturing a motor drive system according to the same embodiment. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるリング試験の設定条件の例を示す図であり、(a)はリング試料の仕様を示す図、(b)は測定条件(重畳率)を示す図である。3 is a diagram illustrating an example of setting conditions for a ring test used in setting, designing, and manufacturing a motor drive system according to the same embodiment; FIG. FIG. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるリング試験による磁界の強さと磁束密度の時間波形の例を示す図であり、(a)は重畳率n/mが0のときの測定波形を示す図、(b)は重畳率n/mが0のときのメジャーループ成分を示す図、(c)は重畳率n/mが-0.2のときの測定波形を示す図、(d)は重畳率n/mが-0.2のときのメジャーループ成分を示す図である。It is a figure which shows the example of the time waveform of the magnetic field strength and magnetic flux density by the ring test used for the setting, design, and manufacturing of the motor drive system based on the same embodiment, (a) is when the superimposition ratio n/m is 0. (b) is a diagram showing the major loop component when the superposition ratio n/m is 0, (c) is a diagram showing the measured waveform when the superposition ratio n/m is -0.2. , (d) are diagrams showing major loop components when the superimposition ratio n/m is -0.2. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるリング試験による磁界の強さと磁束密度のBHカーブの例を示す図であり、(a)は重畳率n/mが0のときの測定結果とメジャーループ成分を示す図、(b)は重畳率n/mが-0.2のときの測定結果とメジャーループ成分を示す図、(c)は重畳率n/mが0と-0.2のメジャーループ成分を示す図である。It is a figure which shows the example of the BH curve of the magnetic field strength and magnetic flux density by the ring test used for the setting, design, and manufacturing of the motor drive system based on the same embodiment, (a) is when the superimposition ratio n/m is 0. (b) is a diagram showing the measurement results and major loop component when the superposition ratio n/m is -0.2, (c) is a diagram showing the measurement results and the major loop component when the superposition ratio n/m is 0. FIG. 3 is a diagram showing a major loop component of -0.2. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるリング試験による基本波電流と基本正弦波変調率の例を示す図である。It is a figure which shows the example of the fundamental wave current and fundamental sine wave modulation factor by the ring test used for the setting, design, and manufacture of the motor drive system based on the same embodiment. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるリング試験による鉄損、メジャーループ鉄損、キャリア高調波鉄損(マイナーループ鉄損)の例を示す図であり、(a)は鉄損を示す図、(b)は重畳率n/mが0の場合を基準としたときの鉄損の変化率を示す図である。It is a figure showing an example of iron loss, major loop iron loss, carrier harmonic iron loss (minor loop iron loss) by a ring test used for setting, design, and manufacturing of a motor drive system concerning the embodiment, and (a) is a diagram showing the iron loss, and (b) is a diagram showing the rate of change in the iron loss when the superimposition ratio n/m is 0 as a reference. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるリング試験による鉄損と基本波電流の例を示す図である。FIG. 3 is a diagram showing an example of iron loss and fundamental wave current obtained by a ring test used in setting, designing, and manufacturing the motor drive system according to the embodiment. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるリング試験の測定条件(位相角)の例を示す図である。It is a figure which shows the example of the measurement conditions (phase angle) of the ring test used for the setting, design, and manufacture of the motor drive system based on the same embodiment. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるリング試験による測定結果の例を示す図であり、(a)は基本波電流を示す図、(b)は鉄損を示す図である。FIG. 3 is a diagram showing an example of measurement results by a ring test used for setting, designing, and manufacturing the motor drive system according to the embodiment, in which (a) is a diagram showing fundamental wave current, and (b) is a diagram showing iron loss. It is. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるリング試験で重畳率n/mを設定する概略的な流れを示す図である。It is a figure which shows the rough flow of setting superimposition ratio n/m in the ring test used for the setting, design, and manufacturing of the motor drive system based on the same embodiment. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるリング試験で5次高調波の初期位相φを設定する概略的な流れを示す図である。It is a figure which shows the rough flow of setting initial phase (phi) of a 5th harmonic in the ring test used for the setting, design, and manufacturing of the motor drive system based on the same embodiment. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるモータ試験装置の概略構成図である。FIG. 2 is a schematic configuration diagram of a motor testing device used for setting, designing, and manufacturing a motor drive system according to the same embodiment. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるモータ試験の試験モータの例を示す図であり、(a)はモータの概略断面図、(b)はモータの仕様を示す図である。FIG. 2 is a diagram showing an example of a test motor for a motor test used for setting, designing, and manufacturing a motor drive system according to the same embodiment, in which (a) is a schematic cross-sectional view of the motor, and (b) is a diagram showing specifications of the motor. It is. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるモータ試験の測定条件(重畳率)の例を示す図である。It is a figure which shows the example of the measurement conditions (superimposition rate) of the motor test used for the setting, design, and manufacture of the motor drive system based on the same embodiment. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるモータ試験による基本波電流と基本正弦波変調率の例を示す図である。FIG. 3 is a diagram showing an example of a fundamental wave current and a fundamental sine wave modulation rate from a motor test used in setting, designing, and manufacturing the motor drive system according to the embodiment. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるモータ試験による全体損失の例を示す図である。It is a figure which shows the example of the total loss by the motor test used for the setting, design, and manufacture of the motor drive system based on the same embodiment. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるモータ試験の測定条件(位相角)の例を示す図である。It is a figure which shows the example of the measurement conditions (phase angle) of the motor test used for the setting, design, and manufacturing of the motor drive system based on the same embodiment. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるモータ試験による基本正弦波変調率と基本波電流の例を示す図である。FIG. 3 is a diagram showing an example of a fundamental sine wave modulation factor and fundamental wave current obtained by a motor test used in setting, designing, and manufacturing the motor drive system according to the embodiment. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるモータ試験による全体損失の例を示す図である。It is a figure which shows the example of the total loss by the motor test used for the setting, design, and manufacture of the motor drive system based on the same embodiment. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるモータ試験で重畳率n/mを設定する概略的な流れを示す図である。It is a figure which shows the rough flow of setting superimposition ratio n/m in the motor test used for the setting, design, and manufacturing of the motor drive system based on the same embodiment. 同実施の形態に係るモータ駆動システムの設定、設計及び製造に用いるモータ試験で5次高調波の初期位相φを設定する概略的な流れを示す図である。It is a figure which shows the rough flow of setting initial phase (phi) of the 5th harmonic in the motor test used for the setting, design, and manufacture of the motor drive system based on the same embodiment. この発明の構成を決定するために行った特性評価試験1(リング試験)に係る試験装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a test device related to characteristic evaluation test 1 (ring test) conducted to determine the configuration of the present invention. 同特性評価試験1に係る試験装置のリング試料の仕様を示す図である。FIG. 3 is a diagram showing the specifications of a ring sample of the test device related to the characteristic evaluation test 1. 同特性評価試験1に係る試験装置の測定条件(重畳率特性)を示す図である。It is a figure which shows the measurement conditions (superimposition rate characteristic) of the test device based on the same characteristic evaluation test 1. 同特性評価試験1に係る試験装置の信号波の波形を示す図であり、(a)は基本正弦波を示す図、(b)は基本正弦波に5次高調波を重畳した5次調波重畳信号を示す図である。2 is a diagram showing the waveform of a signal wave of the test device according to the characteristic evaluation test 1, in which (a) is a diagram showing a fundamental sine wave, and (b) is a diagram showing a fifth harmonic obtained by superimposing a fifth harmonic on the fundamental sine wave. FIG. 3 is a diagram showing a superimposed signal. 同特性評価試験1に係る試験装置による磁界の強さと磁束密度の時間波形の測定結果を示す図であり、(a)は重畳率n/mが-0.2のときの測定波形を示す図、(b)は重畳率n/mが-0.2のときのメジャーループ成分を示す図、(c)は重畳率n/mが-0.1のときの測定波形を示す図、(d)は重畳率n/mが-0.1のときのメジャーループ成分を示す図である。It is a figure which shows the measurement result of the time waveform of the magnetic field strength and magnetic flux density by the test device based on the same characteristic evaluation test 1, (a) is a figure which shows the measured waveform when superimposition ratio n/m is -0.2. , (b) is a diagram showing the major loop component when the superposition ratio n/m is -0.2, (c) is a diagram showing the measured waveform when the superposition ratio n/m is -0.1, (d ) is a diagram showing the major loop component when the superimposition ratio n/m is −0.1. 同特性評価試験1に係る試験装置による磁界の強さと磁束密度の時間波形の測定結果を示す図であり、(a)は重畳率n/mが0のときの測定波形を示す図、(b)は重畳率n/mが0のときのメジャーループ成分を示す図、(c)は重畳率n/mが0.2のときの測定波形を示す図、(d)は重畳率n/mが0.2のときのメジャーループ成分を示す図である。3 is a diagram showing the measurement results of the time waveforms of the magnetic field strength and magnetic flux density by the test device according to the characteristic evaluation test 1, in which (a) shows the measured waveform when the superimposition ratio n/m is 0, and (b) ) is a diagram showing the major loop component when the superimposition ratio n/m is 0, (c) is a diagram showing the measured waveform when the superimposition ratio n/m is 0.2, (d) is a diagram showing the measurement waveform when the superimposition ratio n/m is 0.2. FIG. 3 is a diagram showing a major loop component when is 0.2. 同特性評価試験1に係る試験装置による磁界の強さと磁束密度のBHカーブの測定結果を示す図であり、(a)は重畳率n/mが-0.2のときの測定結果とメジャーループ成分を示す図、(b)は重畳率n/mが-0.1のときの測定結果とメジャーループ成分を示す図、(c)は重畳率n/mが0のときの測定結果とメジャーループ成分を示す図、(d)は重畳率n/mが0.2のときの測定結果とメジャーループ成分を示す図である。It is a figure showing the measurement results of the BH curve of magnetic field strength and magnetic flux density by the test device related to the same characteristic evaluation test 1, and (a) is the measurement result when the superimposition ratio n/m is -0.2 and the measure loop. A diagram showing the components, (b) is a diagram showing the measurement results and the major loop component when the superimposition ratio n/m is -0.1, (c) is a diagram showing the measurement results and the major loop component when the superimposition ratio n/m is 0. A diagram showing loop components, (d) is a diagram showing measurement results and major loop components when the superimposition ratio n/m is 0.2. 同特性評価試験1に係る試験装置による基本波電流と基本正弦波変調率の測定結果を示す図である。FIG. 3 is a diagram showing measurement results of fundamental wave current and fundamental sine wave modulation factor by the test device according to the characteristic evaluation test 1. 同特性評価試験1に係る試験装置による鉄損、メジャーループ鉄損、キャリア高調波鉄損(マイナーループ鉄損)の測定結果を示す図であり、(a)は鉄損を示す図、(b)は重畳率n/mが0の場合を基準としたときの鉄損の変化率を示す図である。FIG. 2 is a diagram showing the measurement results of iron loss, major loop iron loss, and carrier harmonic iron loss (minor loop iron loss) by the test equipment related to Characteristic Evaluation Test 1, in which (a) is a diagram showing iron loss, and (b) is a diagram showing iron loss. ) is a diagram showing the rate of change in iron loss when the superimposition ratio n/m is 0 as a reference. 同特性評価試験1に係る試験装置の測定条件(5次高調波の位相角特性)を示す図である。FIG. 3 is a diagram showing measurement conditions (phase angle characteristics of fifth harmonic) of the test device according to the characteristic evaluation test 1. 同特性評価試験1に係る試験装置の信号波の波形を示す図であり、(a)は基本正弦波を示す図、(b)は基本正弦波に初期位相π/4[rad]の5次高調波を重畳した5次調波重畳信号を示す図である。2 is a diagram showing the waveform of a signal wave of the test device according to the same characteristic evaluation test 1, in which (a) is a diagram showing a fundamental sine wave, and (b) is a diagram showing a 5th order of the fundamental sine wave with an initial phase of π/4 [rad]. FIG. 3 is a diagram showing a fifth-order harmonic superimposed signal on which harmonics are superimposed. 同特性評価試験1に係る試験装置による5次高調波の初期位相を変化させたときの測定結果を示す図であり、(a)は基本波電流を示す図、(b)は鉄損を示す図である。It is a figure which shows the measurement result when changing the initial phase of the 5th harmonic by the test device concerning the same characteristic evaluation test 1, (a) is a figure which shows the fundamental wave current, (b) is a figure which shows iron loss. It is a diagram. 同特性評価試験1に係る試験装置の測定条件(キャリア周波数特性)を示す図であり、(a)は基礎測定条件、(b)は5次高調波の重畳条件を示す図である。It is a figure which shows the measurement conditions (carrier frequency characteristic) of the test device based on the same characteristic evaluation test 1, (a) is a figure which shows the basic measurement condition, (b) is a figure which shows the superimposition condition of the 5th harmonic. 同特性評価試験1に係る試験装置によるキャリア周波数を変化させたときの測定結果を示す図であり、(a)は基本波電流を示す図、(b)は鉄損を示す図である。FIG. 2 is a diagram showing the measurement results when the carrier frequency is changed by the test device according to the characteristic evaluation test 1, in which (a) is a diagram showing the fundamental wave current, and (b) is a diagram showing the iron loss. この発明の構成を決定するために行った特性評価試験2(モータ試験)に係る試験装置の概略構成図である。FIG. 2 is a schematic configuration diagram of a test device related to characteristic evaluation test 2 (motor test) conducted to determine the configuration of the present invention. 同特性評価試験2に係る試験装置の試験モータを示す図であり、(a)はモータの概略断面図、(b)はモータの仕様を示す図である。It is a figure which shows the test motor of the test apparatus based on the same characteristic evaluation test 2, (a) is a schematic sectional drawing of a motor, (b) is a figure which shows the specification of a motor. 同特性評価試験2に係る試験装置の測定条件(重畳率特性)を示す図である。It is a figure which shows the measurement conditions (superimposition rate characteristic) of the test device based on the same characteristic evaluation test 2. 同特性評価試験2に係る試験装置の三相の信号波の波形を示す図であり、(a)は基本正弦波を示す図、(b)は基本正弦波に5次高調波を重畳した5次調波重畳信号を示す図である。2 is a diagram showing waveforms of three-phase signal waves of the test equipment related to the characteristic evaluation test 2, in which (a) is a diagram showing a fundamental sine wave, and (b) is a diagram showing a 5th harmonic wave superimposed on the fundamental sine wave. FIG. 3 is a diagram showing a harmonic superimposed signal. 同特性評価試験2に係る試験装置による基本波電流と基本正弦波変調率の測定結果を示す図である。FIG. 6 is a diagram showing measurement results of fundamental wave current and fundamental sine wave modulation factor by the test device according to the characteristic evaluation test 2. 同特性評価試験2に係る試験装置による全体損失の測定結果を示す図である。FIG. 7 is a diagram showing the measurement results of the overall loss by the test device according to the characteristic evaluation test 2. 同特性評価試験2に係る試験装置によるモータコア損・機械損の測定結果を示す図である。FIG. 6 is a diagram showing the measurement results of motor core loss and mechanical loss by the test device according to the characteristic evaluation test 2. 同特性評価試験2に係る試験装置による銅損と基本波電流銅損の測定結果を示す図である。It is a figure which shows the measurement result of the copper loss and fundamental wave current copper loss by the test device based on the same characteristic evaluation test 2. 同特性評価試験2に係る試験装置によるインバータ損の測定結果を示す図である。FIG. 7 is a diagram showing the measurement results of inverter loss by the test device according to the characteristic evaluation test 2. 同特性評価試験2に係る試験装置の測定条件(5次高調波の位相角特性)を示す図である。FIG. 7 is a diagram showing the measurement conditions (phase angle characteristics of fifth harmonic) of the test device related to the characteristic evaluation test 2. 同特性評価試験2に係る試験装置の三相の信号波の波形を示す図であり、(a)は基本正弦波を示す図、(b)は基本正弦波に初期位相π/4[rad]の5次高調波を重畳した5次調波重畳信号を示す図である。3 is a diagram showing waveforms of three-phase signal waves of the test equipment related to the same characteristic evaluation test 2, (a) is a diagram showing a fundamental sine wave, (b) is a diagram showing the fundamental sine wave with an initial phase of π/4 [rad] It is a figure which shows the 5th harmonic superimposition signal which superimposed the 5th harmonic of. 同特性評価試験2に係る試験装置による基本正弦波変調率と基本波電流の測定結果を示す図である。FIG. 6 is a diagram showing the measurement results of the fundamental sine wave modulation factor and the fundamental wave current by the test device according to the characteristic evaluation test 2. 同特性評価試験2に係る試験装置による全体損失の測定結果を示す図である。FIG. 7 is a diagram showing the measurement results of the overall loss by the test device according to the characteristic evaluation test 2. 同特性評価試験2に係る試験装置によるモータコア損・機械損の測定結果を示す図である。FIG. 6 is a diagram showing the measurement results of motor core loss and mechanical loss by the test device according to the characteristic evaluation test 2. 同特性評価試験2に係る試験装置による銅損と基本波電流銅損の測定結果を示す図である。It is a figure which shows the measurement result of the copper loss and fundamental wave current copper loss by the test device based on the same characteristic evaluation test 2. 同特性評価試験2に係る試験装置によるインバータ損の測定結果を示す図である。FIG. 7 is a diagram showing the measurement results of inverter loss by the test device according to the characteristic evaluation test 2.
 この発明の実施の形態に係るモータ駆動システム1について、図1~図26を用いて説明する。また、この発明の構成を決定するために行った特性評価試験の結果について図27~図56を用いて説明する。 A motor drive system 1 according to an embodiment of the present invention will be explained using FIGS. 1 to 26. Further, the results of characteristic evaluation tests conducted to determine the configuration of the present invention will be explained using FIGS. 27 to 56.
 図1は、この発明の実施の形態に係るモータ駆動システム1の概略構成図である。このモータ駆動システム1は、同期モータをパルス幅変調(Pulse Width Modulation:PWM、以下、パルス幅変調をPWMという)制御方式で駆動するシステムであり、三相インバータ部2(三相インバータ回路)、昇圧チョッパ部3(昇圧チョッパ回路)、モータ制御部4、永久磁石同期モータ5、電流センサ9、位置センサ10を含むように構成されている。 FIG. 1 is a schematic configuration diagram of a motor drive system 1 according to an embodiment of the present invention. This motor drive system 1 is a system that drives a synchronous motor using a pulse width modulation (PWM, hereinafter referred to as PWM) control method, and includes a three-phase inverter section 2 (three-phase inverter circuit), It is configured to include a boost chopper section 3 (boost chopper circuit), a motor control section 4, a permanent magnet synchronous motor 5, a current sensor 9, and a position sensor 10.
 三相インバータ部2は、昇圧チョッパ部3から供給される直流電圧をスイッチングして、永久磁石同期モータ5の三相(U相、V相、W相)のモータ駆動電圧となるパルス幅変調駆動電圧(以下、PWM駆動電圧という)を出力する。三相インバータ部2から出力される三相のPWM駆動電圧がモータ5の三相のステータコイル6に供給され、永久磁石のロータ7が回転駆動される。 The three-phase inverter section 2 switches the DC voltage supplied from the step-up chopper section 3 and performs pulse width modulation drive to become the motor drive voltage of three phases (U phase, V phase, W phase) of the permanent magnet synchronous motor 5. A voltage (hereinafter referred to as PWM drive voltage) is output. A three-phase PWM drive voltage output from the three-phase inverter section 2 is supplied to a three-phase stator coil 6 of the motor 5, and a permanent magnet rotor 7 is rotationally driven.
 この三相インバータ部2には、IGBT(Insulated Gate Bipolar Transistor)からなるスイッチング素子S、S、S、S、S、Sと、還流ダイオードD、D、D、D、D、Dが、上側と下側にペアとして直列に接続した構成が、3組備えられており、それぞれの上下のスイッチング素子(SとS、SとS、SとS)と還流ダイオード(DとD、DとD、DとD)のペアの接続点からモータ5の1つの相の電源を出力する。上下のスイッチング素子(SとS、SとS、SとS)は、一方がオンであれば、他方がオフになるように駆動される。また、短絡防止のため、上下のスイッチング素子が同時にオンにならないように、オンとオフの切り替わりで上下が共にオフとなるデッドタイムを含むように駆動される。 The three-phase inverter unit 2 includes switching elements S 1 , S 2 , S 3 , S 4 , S 5 , and S 6 made up of IGBTs (Insulated Gate Bipolar Transistors), and free-wheeling diodes D 1 , D 2 , D 3 , There are three sets of configurations in which D 4 , D 5 , and D 6 are connected in series as pairs on the upper and lower sides, and the upper and lower switching elements (S 1 and S 2 , S 3 and S 4 , Power for one phase of the motor 5 is output from the connection point of the pair of freewheeling diodes (D 1 and D 2 , D 3 and D 4 , D 5 and D 6 ). The upper and lower switching elements (S 1 and S 2 , S 3 and S 4 , S 5 and S 6 ) are driven so that if one is on, the other is off. Furthermore, in order to prevent short circuits, the upper and lower switching elements are driven to include a dead time in which both the upper and lower switching elements are turned off when switching between on and off, so that they are not turned on at the same time.
 このスイッチング素子S~Sのオンオフ駆動は、スイッチング素子S~Sのゲート端子であるスイッチング素子入力部8、8、8、8、8、8にモータ制御部4から供給されるPWMドライブ信号が入力されることにより行われる。 The on/off drive of the switching elements S 1 to S 6 is performed by a motor control unit at the switching element input parts 8 1 , 8 2 , 8 3 , 8 4 , 8 5 , 8 6 which are the gate terminals of the switching elements S 1 to S 6 . This is performed by inputting the PWM drive signal supplied from 4.
 なお、スイッチング素子S~Sには、IGBT以外にも、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)やパワー・トランジスタ等を使用できる。 Note that, in addition to IGBTs, MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors), power transistors, and the like can be used for the switching elements S 1 to S 6 .
 昇圧チョッパ部3は、三相インバータ部2への直流電圧を供給する。この昇圧チョッパ部3は、バッテリ11、インダクタ12、コンデンサ13、IGBTからなるチョッパ部用スイッチング素子Sc、ダイオード15などで構成される。モータ制御部4から供給される昇圧チョッパ制御信号が、チョッパ部用スイッチング素子Scのゲート端子に入力されて、このスイッチング素子Scがオンオフ駆動されると、インダクタ12、コンデンサ13、ダイオード15の作用により、コンデンサ13の両端子間にバッテリ11の電圧よりも高い直流電圧が出力される。この出力電圧が、三相インバータ部2の上側スイッチング素子S、S、Sのコレクタ端子に入力され、三相インバータ部2への入力直流電圧となる。昇圧チョッパ部3から出力される直流電圧の高低に応じて、三相インバータ部2への入力直流電圧が変化し、これにより永久磁石同期モータ5のステータコイル6に流れるモータ駆動電流の大きさも変化する。 The boost chopper section 3 supplies DC voltage to the three-phase inverter section 2. This boost chopper section 3 is composed of a battery 11, an inductor 12, a capacitor 13, a switching element Sc for the chopper section consisting of an IGBT, a diode 15, and the like. When the boost chopper control signal supplied from the motor control section 4 is input to the gate terminal of the switching element Sc for the chopper section, and this switching element Sc is turned on and off, due to the actions of the inductor 12, capacitor 13, and diode 15, , a DC voltage higher than the voltage of the battery 11 is output between both terminals of the capacitor 13. This output voltage is input to the collector terminals of the upper switching elements S 1 , S 3 , S 5 of the three-phase inverter section 2, and becomes the input DC voltage to the three-phase inverter section 2. Depending on the level of the DC voltage output from the step-up chopper unit 3, the input DC voltage to the three-phase inverter unit 2 changes, and thereby the magnitude of the motor drive current flowing through the stator coil 6 of the permanent magnet synchronous motor 5 also changes. do.
 なお、昇圧チョッパ部3は必須でなく、この昇圧チョッパ部3を設けず、直流電源であるバッテリ11の電圧を直接、三相インバータ部2への入力直流電圧として供給し、後述する基本正弦波の振幅である変調率mを変化させて、永久磁石同期モータ5へのモータ駆動電流を制御するようにしてもよい。 Note that the step-up chopper section 3 is not essential, and the voltage of the battery 11, which is a DC power source, is directly supplied as the input DC voltage to the three-phase inverter section 2 without providing the step-up chopper section 3. The motor drive current to the permanent magnet synchronous motor 5 may be controlled by changing the modulation rate m, which is the amplitude of .
 電流センサ9は、永久磁石同期モータ5のステータコイル6に流れるモータ駆動電流を検出する。このセンサ9で検出された電流値は、モータ制御部4に出力されてモータ5の制御に利用される。電流センサ9としては、シャント抵抗とアンプ方式のセンサ、コア付き電流センサ、コアレス電流センサを使用できる。 The current sensor 9 detects the motor drive current flowing through the stator coil 6 of the permanent magnet synchronous motor 5. The current value detected by this sensor 9 is output to the motor control section 4 and used to control the motor 5. As the current sensor 9, a shunt resistor and amplifier type sensor, a current sensor with a core, or a coreless current sensor can be used.
 永久磁石同期モータ5には、埋込構造永久磁石同期電動機(IPMSM:Interior Permanent Magnet Synchronous Motor)が用いられている。このモータ5は、磁性体で形成されるステータコアにステータコイル6が巻回されたステータと、このステータの内側に回転可能に支持される永久磁石からなるロータ7により構成される。ステータコイル6に三相のモータ駆動電流を流して、回転磁界を形成することによりロータ7が回転駆動される。三相インバータ部2から出力される三相のPWM駆動電圧が三相のステータコイル6に印加されると、ステータコイル6にはモータ駆動電流が流れロータ7が回転する。 The permanent magnet synchronous motor 5 uses an interior permanent magnet synchronous motor (IPMSM). The motor 5 includes a stator having a stator coil 6 wound around a stator core made of a magnetic material, and a rotor 7 made of a permanent magnet rotatably supported inside the stator. The rotor 7 is rotationally driven by passing three-phase motor drive current through the stator coil 6 to form a rotating magnetic field. When the three-phase PWM drive voltage output from the three-phase inverter section 2 is applied to the three-phase stator coil 6, a motor drive current flows through the stator coil 6, causing the rotor 7 to rotate.
 永久磁石同期モータ5としては、表面構造永久磁石同期電動機(SPMSM:Surface Permanent Magnet Synchronous Motor)を用いることもできる。また、このモータ以外のその他の同期モータを用いることができる。 As the permanent magnet synchronous motor 5, a surface permanent magnet synchronous motor (SPMSM) can also be used. Also, other synchronous motors than this motor can be used.
 位置センサ10は、ロータ7を構成する永久磁石の磁極の位置を検出するものであり、U相、V相、W相に対応するセンサ検出信号がモータ制御部4に出力されモータ5の制御に利用される。位置センサ10には、ホールICやホール素子を用いることができる。 The position sensor 10 detects the position of the magnetic poles of the permanent magnets constituting the rotor 7, and sensor detection signals corresponding to the U phase, V phase, and W phase are output to the motor control unit 4 and used to control the motor 5. used. A Hall IC or a Hall element can be used for the position sensor 10.
 モータ制御部4は、電流センサ9や位置センサ10の検出信号を受け付けて永久磁石同期モータ5の駆動状態を取得し、モータ5の制御指令である回転速度指令やトルク指令などの指令値と比較して、モータ5が指令値に一致して動作するように三相インバータ部2と昇圧チョッパ部3を制御する。三相インバータ部2の制御は、スイッチング素子入力部8~8に三相のPWMドライブ信号を出力することにより行われる。このPWMドライブ信号は、信号波(変調波)とキャリア波(搬送波)とを比較して、信号波とキャリア波の交点でスイッチングして生成される。 The motor control unit 4 receives the detection signals from the current sensor 9 and the position sensor 10, obtains the driving state of the permanent magnet synchronous motor 5, and compares it with command values such as a rotation speed command and a torque command, which are control commands for the motor 5. Then, the three-phase inverter section 2 and boost chopper section 3 are controlled so that the motor 5 operates in accordance with the command value. The three-phase inverter section 2 is controlled by outputting three-phase PWM drive signals to the switching element input sections 8 1 to 8 6 . This PWM drive signal is generated by comparing a signal wave (modulated wave) and a carrier wave (carrier wave) and switching at the intersection of the signal wave and the carrier wave.
 次に、モータ制御部4について詳細に説明する。 Next, the motor control section 4 will be explained in detail.
 図2は、モータ駆動システム1のモータ制御部4の概略ブロック図である。このモータ制御部4は、CPU40、ROM41、RAM42、信号波生成部43、キャリア波生成部44、PWMドライブ信号生成部45、PWMドライブ信号出力部46、昇圧チョッパ制御信号出力部47、ロータ検出位置受付部48、モータ入力電流値受付部49、指令値受付部50を含む構成になっている。 FIG. 2 is a schematic block diagram of the motor control section 4 of the motor drive system 1. This motor control section 4 includes a CPU 40, a ROM 41, a RAM 42, a signal wave generation section 43, a carrier wave generation section 44, a PWM drive signal generation section 45, a PWM drive signal output section 46, a boost chopper control signal output section 47, a rotor detection position The configuration includes a receiving section 48, a motor input current value receiving section 49, and a command value receiving section 50.
 CPU40は、このモータ駆動システム1を制御するプログラムの実行や演算処理を行う。不揮発性メモリであるROM41には、CPU40が実行するプログラムやそのプログラムの処理に用いられるデータが記憶される。揮発性メモリであるRAM42は、CPU40によるプログラムの実行や演算処理のワークエリアとして動作する。 The CPU 40 executes programs that control the motor drive system 1 and performs arithmetic processing. The ROM 41, which is a non-volatile memory, stores programs executed by the CPU 40 and data used for processing the programs. The RAM 42, which is a volatile memory, operates as a work area for program execution and arithmetic processing by the CPU 40.
 指令値受付部50は、永久磁石同期モータ5の制御指令である回転速度指令やトルク指令などの指令値を外部から受け付ける。モータ制御部4は、受け付けた指令値に一致するように三相インバータ部2と昇圧チョッパ部3を制御してモータ5を駆動させる。 The command value receiving unit 50 receives command values such as a rotational speed command and a torque command, which are control commands for the permanent magnet synchronous motor 5, from the outside. The motor control section 4 controls the three-phase inverter section 2 and the boost chopper section 3 to drive the motor 5 so as to match the received command value.
 モータ入力電流値受付部49は、電流センサ9から出力される三相のモータ駆動電流の検出値を受け付ける。また、ロータ検出位置受付部48は、位置センサ10から出力されるロータ7の磁極位置の検出値を受け付ける。ロータ7位置を時系列的に検出することでロータ7の回転速度や回転の位相などが算出される。モータ制御部4では、受け付けたモータ駆動電流とロータ7の磁極位置から永久磁石同期モータ5の駆動状態を取得する。 The motor input current value receiving unit 49 receives the detected value of the three-phase motor drive current output from the current sensor 9. Further, the rotor detection position receiving unit 48 receives a detected value of the magnetic pole position of the rotor 7 output from the position sensor 10. By detecting the position of the rotor 7 in time series, the rotational speed, rotational phase, etc. of the rotor 7 are calculated. The motor control unit 4 obtains the driving state of the permanent magnet synchronous motor 5 from the received motor drive current and the magnetic pole position of the rotor 7 .
 昇圧チョッパ制御信号出力部47は、三相インバータ部2への入力直流電圧を設定するため、昇圧チョッパ部3のチョッパ部用スイッチング素子Scに昇圧チョッパ制御信号を供給して、このスイッチング素子Scをオンオフ駆動させる。 In order to set the input DC voltage to the three-phase inverter section 2, the step-up chopper control signal output section 47 supplies a step-up chopper control signal to the switching element Sc for the chopper section of the step-up chopper section 3, and switches this switching element Sc. Drive on/off.
 信号波生成部43は、スイッチング素子入力部8~8に入力されるPWMドライブ信号の形成に際し、その基の波形として用いられる信号波を生成する。電流センサ9や位置センサ10の信号から取得した永久磁石同期モータ5の駆動状態と、指令値受付部50で受け付けた指令値とを比較して、モータ5の動作が指令値に追従するようにCPU40で演算を行い、信号波の振幅である変調率や位相が設定される。この信号波は、U相、V相、W相に対応する三相の波形として生成される。信号波は、CPU40の演算により、数値データとして生成される。 The signal wave generation section 43 generates a signal wave used as a base waveform when forming the PWM drive signals input to the switching element input sections 8 1 to 8 6 . The driving state of the permanent magnet synchronous motor 5 obtained from the signals of the current sensor 9 and the position sensor 10 is compared with the command value received by the command value reception unit 50, so that the operation of the motor 5 follows the command value. The CPU 40 performs calculations to set the modulation rate and phase, which is the amplitude of the signal wave. This signal wave is generated as a three-phase waveform corresponding to the U phase, V phase, and W phase. The signal wave is generated as numerical data by the calculation of the CPU 40.
 キャリア波生成部44は、PWMドライブ信号の形成に際し、その基の波形として用いられるキャリア波を生成する。このキャリア波は、CPU40の演算により、数値データとして生成される。 The carrier wave generation unit 44 generates a carrier wave used as a base waveform when forming a PWM drive signal. This carrier wave is generated as numerical data by the calculation of the CPU 40.
 PWMドライブ信号生成部45は、信号波生成部43で生成された信号波と、キャリア波生成部44で生成されたキャリア波との交点でエッジ位置が切り替わるようにPWMドライブ信号を生成する。このPWMドライブ信号は、U相、V相、W相に対応する三相の信号として生成される。PWMドライブ信号は、CPU40の演算により生成される。 The PWM drive signal generation unit 45 generates a PWM drive signal such that the edge position is switched at the intersection of the signal wave generated by the signal wave generation unit 43 and the carrier wave generated by the carrier wave generation unit 44. This PWM drive signal is generated as a three-phase signal corresponding to the U phase, V phase, and W phase. The PWM drive signal is generated by the calculation of the CPU 40.
 PWMドライブ信号出力部46は、PWMドライブ信号生成部45で生成された三相のPWMドライブ信号をスイッチング素子入力部8~8に供給する。このPWMドライブ信号の入力により、三相インバータ部2から三相のPWM駆動電圧が永久磁石同期モータ5に出力される。 The PWM drive signal output section 46 supplies the three-phase PWM drive signal generated by the PWM drive signal generation section 45 to the switching element input sections 8 1 to 8 6 . By inputting this PWM drive signal, a three-phase PWM drive voltage is output from the three-phase inverter section 2 to the permanent magnet synchronous motor 5.
 上側と下側のスイッチング素子(SとS、SとS、SとS)に供給されるPWMドライブ信号は、上下の素子(SとS、SとS、SとS)の一方がオンであれば、他方がオフになるように駆動されるため、上側と下側で反転したような波形となる。ただし、上下のスイッチング素子が同時にオンにならないように、デッドタイムが設けられる。 The PWM drive signal supplied to the upper and lower switching elements (S 1 and S 2 , S 3 and S 4 , S 5 and S 6 ) is applied to the upper and lower switching elements (S 1 and S 2 , S 3 and S 4 , S 5 and S 6 ) is turned on, the other is driven to be turned off, so that the waveforms are reversed on the upper and lower sides. However, a dead time is provided to prevent the upper and lower switching elements from being turned on at the same time.
 信号波、キャリア波、PWMドライブ信号の生成は、ROM41に記憶されたプログラムに基づいてCPU40で演算を行い数値的に算出するようになっている。このようにソフトウェアの構成とすることで、信号波やキャリア波を形成するパラメータ等の変更が柔軟かつ容易に行える。ただし、ソフトウェアの構成に限らず、信号波、キャリア波、PWMドライブ信号の生成をハードウェアの構成として電子回路で実現するようにしてもよい。 The generation of the signal wave, carrier wave, and PWM drive signal is performed by the CPU 40 based on a program stored in the ROM 41 and calculated numerically. With this software configuration, parameters for forming signal waves and carrier waves can be changed flexibly and easily. However, the generation of the signal wave, carrier wave, and PWM drive signal is not limited to the software configuration, and the generation of the signal wave, carrier wave, and PWM drive signal may be realized using an electronic circuit as a hardware configuration.
 図3は、モータ駆動システム1のPWMドライブ信号のパルス幅変調を説明する図であり、(a)は信号波とキャリア波を示す図、(b)はPWMドライブ信号を示す図、(c)はPWM駆動電圧を示す図である。 FIG. 3 is a diagram illustrating pulse width modulation of the PWM drive signal of the motor drive system 1, in which (a) is a diagram showing a signal wave and a carrier wave, (b) is a diagram showing a PWM drive signal, and (c) is a diagram showing a PWM drive signal. is a diagram showing PWM drive voltage.
 図3(a)には、信号波生成部43で生成される信号波h(t)とキャリア波生成部44で生成されるキャリア波c(t)が示されている。 FIG. 3A shows a signal wave h(t) generated by the signal wave generation unit 43 and a carrier wave c(t) generated by the carrier wave generation unit 44.
 信号波h(t)は、基本正弦波g(t)にその5次高調波を加算し重畳して生成される。この基本正弦波g(t)の周波数を基本正弦波周波数fとすると、5次高調波の周波数は、5倍の5・fである。また、基本正弦波g(t)の振幅として示される変調率をmとし、5次高調波の振幅として示される変調率をnとするとき、基本正弦波g(t)の変調率mに対する5次高調波の変調率nの比率を重畳率n/mと定義する。 The signal wave h(t) is generated by adding and superimposing the fifth harmonic to the fundamental sine wave g(t). If the frequency of this fundamental sine wave g(t) is the fundamental sine wave frequency f1 , the frequency of the fifth harmonic is five times 5· f1 . Furthermore, when the modulation rate expressed as the amplitude of the fundamental sine wave g(t) is m, and the modulation rate expressed as the amplitude of the fifth harmonic is n, 5 for the modulation rate m of the fundamental sine wave g(t). The ratio of the modulation rate n of the harmonics is defined as the superimposition rate n/m.
 キャリア波c(t)は、キャリア周波数fの三角波であり、三角波の振幅は1である。基本正弦波g(t)の変調率mは、キャリア波c(t)の振幅よりも小さい数値をとる。 The carrier wave c(t) is a triangular wave with a carrier frequency fc , and the amplitude of the triangular wave is 1. The modulation rate m of the fundamental sine wave g(t) takes a smaller value than the amplitude of the carrier wave c(t).
 この図の横軸は時間tから変換した位相、縦軸は信号の大きさを示す。 In this figure, the horizontal axis shows the phase converted from time t, and the vertical axis shows the magnitude of the signal.
 PWMドライブ信号生成部45では、信号波h(t)とキャリア波c(t)との交点でスイッチングを行い、パルス幅を変調してPWMドライブ信号を生成する。すなわち、信号波h(t)と、キャリア波c(t)との交点でパルス幅を切り替えてPWMドライブ信号を生成する。 The PWM drive signal generation unit 45 performs switching at the intersection of the signal wave h(t) and the carrier wave c(t), modulates the pulse width, and generates a PWM drive signal. That is, a PWM drive signal is generated by switching the pulse width at the intersection of the signal wave h(t) and the carrier wave c(t).
 図3(b)には、PWMドライブ信号生成部45で生成されるPWMドライブ信号が示されている。この図の横軸は時間tから変換した位相、縦軸はPWMドライブ信号の大きさである。PWMドライブ信号は矩形波形により構成され、図3(a)での信号波h(t)とキャリア波c(t)との比較において、信号波h(t)の大きさがキャリア波c(t)よりも大きい場合、ハイレベルとなり、信号波h(t)の大きさがキャリア波c(t)よりも小さい場合、ローレベルとなる。そして、信号波h(t)とキャリア波c(t)との交点で立ち上がりエッジ、または、立ち下がりエッジが形成される。 FIG. 3(b) shows the PWM drive signal generated by the PWM drive signal generation section 45. In this figure, the horizontal axis represents the phase converted from time t, and the vertical axis represents the magnitude of the PWM drive signal. The PWM drive signal is composed of a rectangular waveform, and in comparing the signal wave h(t) and the carrier wave c(t) in FIG. ), it becomes a high level, and when the magnitude of the signal wave h(t) is smaller than the carrier wave c(t), it becomes a low level. A rising edge or a falling edge is formed at the intersection of the signal wave h(t) and the carrier wave c(t).
 信号波h(t)の1周期の中で信号波h(t)の信号の大きさが大きくなるとハイレベル幅として示されるパルス幅が広くなり、信号波h(t)の信号の大きさが小さくなるとハイレベル幅であるパルス幅が狭くなる。このように信号波h(t)の1周期の中で、PWMドライブ信号のパルス幅のハイレベルの時間が周期的に変化する。 When the magnitude of the signal wave h(t) increases within one period of the signal wave h(t), the pulse width indicated as the high level width increases, and the magnitude of the signal wave h(t) increases. When it becomes smaller, the pulse width, which is the high level width, becomes narrower. In this manner, the time period during which the pulse width of the PWM drive signal is at a high level changes periodically within one period of the signal wave h(t).
 PWMドライブ信号のパルス幅の周期的な変動について、信号波h(t)に含まれる基本正弦波周波数fがPWMドライブ信号のパルス幅の変動の基本周波数となり、これに信号波h(t)に含まれる5次高調波の周波数成分が付加されたものになる。 Regarding periodic fluctuations in the pulse width of the PWM drive signal, the fundamental sine wave frequency f1 included in the signal wave h(t) becomes the fundamental frequency of the fluctuation in the pulse width of the PWM drive signal, and the signal wave h(t) The frequency component of the fifth harmonic included in is added.
 図3(b)に示すPWMドライブ信号が、PWMドライブ信号出力部46から出力されて、三相インバータ部2のスイッチング素子入力部8~8に供給されると、上側と下側のスイッチング素子(SとS、SとS、SとS)と還流ダイオード(DとD、DとD、DとD)のペアの接続点から永久磁石同期モータ5の駆動電圧としてPWM駆動電圧が出力される。 When the PWM drive signal shown in FIG. 3(b) is output from the PWM drive signal output section 46 and supplied to the switching element input sections 8 1 to 8 6 of the three-phase inverter section 2, the upper and lower switching A permanent magnet is connected to the connection point of a pair of elements (S 1 and S 2 , S 3 and S 4 , S 5 and S 6 ) and free-wheeling diodes (D 1 and D 2 , D 3 and D 4 , D 5 and D 6 ). A PWM drive voltage is output as the drive voltage of the synchronous motor 5.
 このように、信号波h(t)とキャリア波c(t)の交点で三相インバータ部2内の半導体のスイッチング動作を行わせて、永久磁石同期モータ5の駆動電圧としてPWM駆動電圧を出力させる。 In this way, the switching operation of the semiconductor in the three-phase inverter unit 2 is performed at the intersection of the signal wave h(t) and the carrier wave c(t), and a PWM drive voltage is output as the drive voltage of the permanent magnet synchronous motor 5. let
 図3(c)には、三相インバータ部2から出力されるPWM駆動電圧が示されている。この図の横軸は時間tから変換した位相、縦軸はPWM駆動電圧の大きさである。PWM駆動電圧の波形は、時間(位相)軸についてPWMドライブ信号の波形と同様の形状を示す。 FIG. 3(c) shows the PWM drive voltage output from the three-phase inverter section 2. In this figure, the horizontal axis represents the phase converted from time t, and the vertical axis represents the magnitude of the PWM drive voltage. The waveform of the PWM drive voltage has a similar shape to the waveform of the PWM drive signal on the time (phase) axis.
 このように、PWM駆動電圧のハイレベル幅として示されるパルス幅も、PWMドライブ信号と同様に、周期的な変動を繰り返す。このPWM駆動電圧のパルス幅の周期的な変動について、信号波h(t)に含まれる基本正弦波周波数fがPWM駆動電圧のパルス幅の変動の基本周波数となり、これに信号波h(t)に含まれる5次高調波の周波数成分が付加されたものになる。 In this way, the pulse width indicated as the high-level width of the PWM drive voltage also repeats periodic fluctuations, similar to the PWM drive signal. Regarding periodic fluctuations in the pulse width of the PWM drive voltage, the fundamental sine wave frequency f1 included in the signal wave h(t) becomes the fundamental frequency of the fluctuation in the pulse width of the PWM drive voltage, and this is in addition to the signal wave h(t ) is added with the frequency component of the fifth harmonic included in .
 信号波h(t)に含まれる基本正弦波周波数fがPWM駆動電圧のパルス幅の基本周波数を規定している。また、5次高調波を重畳した信号波h(t)を用いることで、5次高調波成分によってキャリア波c(t)との交点が変化し、三相インバータ部2から出力されるPWM駆動電圧に5次高調波が重畳される。 The fundamental sine wave frequency f1 included in the signal wave h(t) defines the fundamental frequency of the pulse width of the PWM drive voltage. In addition, by using the signal wave h(t) on which the fifth harmonic is superimposed, the intersection point with the carrier wave c(t) changes depending on the fifth harmonic component, and the PWM drive output from the three-phase inverter section 2 A fifth harmonic is superimposed on the voltage.
 PWM駆動電圧は、永久磁石同期モータ5のU相、V相、W相に対応する三相の波形として三相インバータ部2から出力されるが、この三相を構成するため、初期位相がそれぞれ2π/3[rad]ずれた3個の信号波を用いて、三相のPWMドライブ信号を生成する。 The PWM drive voltage is output from the three-phase inverter section 2 as a three-phase waveform corresponding to the U phase, V phase, and W phase of the permanent magnet synchronous motor 5, but since these three phases are configured, the initial phases are different from each other. A three-phase PWM drive signal is generated using three signal waves shifted by 2π/3 [rad].
 図4に、三相の信号波に含まれるそれぞれの基本正弦波g(t)、g(t)、g(t)を示す。この図の横軸は時間tから変換した位相、縦軸は信号の大きさを示す。PWMドライブ信号の生成には、この三相の基本正弦波g(t)、g(t)、g(t)のそれぞれに5次高調波を重畳した波形を信号波h(t)、h(t)、h(t)として用い、上述のようにこれらの信号波h(t)、h(t)、h(t)と三角波のキャリア波c(t)との交点でパルス幅を切り替えるように形成する。 FIG. 4 shows fundamental sine waves g u (t), g v (t), and g w (t) included in the three-phase signal waves. In this figure, the horizontal axis shows the phase converted from time t, and the vertical axis shows the magnitude of the signal. To generate the PWM drive signal, a signal wave h u ( t ), h v (t), h w (t), and as mentioned above, these signal waves h u (t), h v (t), h w (t) and the triangular carrier wave c (t) It is formed so that the pulse width is switched at the intersection with
 この三相の基本正弦波g(t)、g(t)、g(t)と、三相の信号波h(t)、h(t)、h(t)は、式(1)~式(6)のように示される。
 g(t)は、三相の基本正弦波の内のU相基本正弦波、g(t)はV相基本正弦波、g(t)はW相基本正弦波である。
These three-phase fundamental sine waves g u (t), g v (t), g w (t) and three-phase signal waves h u (t), h v (t), h w (t) are as follows. Expressions (1) to (6) are shown below.
g u (t) is a U-phase fundamental sine wave among three-phase fundamental sine waves, g v (t) is a V-phase fundamental sine wave, and g w (t) is a W-phase fundamental sine wave.
 h(t)は三相の信号波の内のU相信号波、h(t)はV相信号波、h(t)はW相信号波である。 h u (t) is a U-phase signal wave among three-phase signal waves, h v (t) is a V-phase signal wave, and h w (t) is a W-phase signal wave.
 ここで、fは、基本正弦波g(t)、g(t)、g(t)の基本正弦波周波数であり、mは基本正弦波g(t)、g(t)、g(t)の振幅として示される変調率である。また、nは重畳される5次高調波の振幅として示される変調率であり、φはこの5次高調波の初期位相である。そして、tは時間である。 Here, f 1 is the fundamental sine wave frequency of the fundamental sine waves g u (t), g v (t), g w (t), and m is the fundamental sine wave frequency g u (t), g v (t ), the modulation factor expressed as the amplitude of g w (t). Further, n is a modulation rate expressed as the amplitude of the fifth harmonic to be superimposed, and φ is the initial phase of this fifth harmonic. And t is time.
 後述するように重畳率n/mの上限が、磁気特性の変化で基本波電流If1、If1_rmsの低減し始めるn/mの値に設定され、また、重畳率n/mの下限が、基本波電流If1、If1_rmsの低減効果より高調波成分による増加のほうが大きくなるn/mの値に設定され、重畳率n/mがこの下限と上限の範囲で動作する。 As will be described later, the upper limit of the superposition ratio n/m is set to the value n/m at which the fundamental wave currents I f1 and I f1_rms start to decrease due to changes in magnetic properties, and the lower limit of the superposition ratio n/m is The value n/m is set such that the increase due to the harmonic component is greater than the reduction effect of the fundamental wave currents I f1 and I f1_rms , and the superimposition ratio n/m operates within this lower limit and upper limit.
 重畳率n/mは、-0.3以上かつ0未満の範囲に設定し動作することが好ましい。 It is preferable to operate by setting the superimposition ratio n/m to a range of −0.3 or more and less than 0.
 また、図3(a)に示す基本正弦波g(t)の位相角がπ/2ラジアン(rad)のときの基本正弦波g(t)の数値が、そのときの信号波h(t)の数値以上となる5次高調波の初期位相φに設定され、動作することが好ましい。 Furthermore, when the phase angle of the fundamental sine wave g(t) shown in FIG. 3(a) is π/2 radian (rad), the numerical value of the fundamental sine wave g(t) is the signal wave h(t) It is preferable to operate by setting the initial phase φ of the fifth harmonic to be equal to or greater than the value of .
 例えば、式(1)に示す基本正弦波g(t)と式(2)に示す信号波h(t)を用いて説明すると、基本正弦波g(t)の位相角(2πft)がπ/2ラジアンのときの基本正弦波g(t)の数値m・sin(π/2)が、信号波h(t)=m・sin(π/2)+n・sin(5・π/2+φ)の数値以上となる初期位相φに設定されて動作することになる。すなわち、g(t)(=m・sin(π/2)) >= h(t)(=m・sin(π/2)+n・sin(5・π/2+φ))となる条件を満たすように5次高調波の初期位相φを設定し、動作することになる。 For example, when explaining using the fundamental sine wave g u (t) shown in equation (1) and the signal wave h u (t) shown in equation (2), the phase angle (2πf 1 The numerical value m・sin(π/2) of the fundamental sine wave g u (t) when t) is π/2 radian is the signal wave h u (t)=m・sin(π/2)+n・sin( The initial phase φ is set to be equal to or greater than the numerical value of 5·π/2+φ). In other words, the condition that g u (t) (= m・sin (π/2)) >= h u (t) (= m・sin (π/2) + n・sin (5・π/2 + φ)) is The initial phase φ of the fifth-order harmonic is set so as to satisfy the following conditions.
 また、初期位相φの最大位相角が、磁気特性の変化で基本波電流If1、If1_rmsの低減し始める初期位相φの値に設定され、また、初期位相φの最小位相角が、基本波電流If1、If1_rmsの低減効果より高調波成分による増加のほうが大きくなる初期位相φの値に設定され、この最小位相角と最大位相角の範囲で動作するようにしてもよい。 Further, the maximum phase angle of the initial phase φ is set to the value of the initial phase φ at which the fundamental wave currents I f1 and I f1_rms begin to decrease due to changes in magnetic properties, and the minimum phase angle of the initial phase φ The initial phase φ may be set to a value where the increase due to the harmonic component is greater than the reduction effect of the currents I f1 and I f1_rms , and the operation may be performed within the range between the minimum phase angle and the maximum phase angle.
 後述する特性評価試験では、基本正弦波g(t)、g(t)、g(t)を信号波として用いた場合と、基本正弦波g(t)、g(t)、g(t)に5次高調波を重畳した信号波h(t)、h(t)、h(t)を用いた場合の損失の比較を行っている。 In the characteristic evaluation test described later, the basic sine waves g u (t), g v (t), g w (t) are used as signal waves, and the basic sine waves g u (t), g v (t) are used as signal waves. , g w (t) with a fifth-order harmonic superimposed thereon, the losses are compared when signal waves h u (t), h v (t), and h w (t) are used.
 この特性評価試験の結果、重畳率n/mが、-0.25以上かつ-0.05以下であり、5次高調波の初期位相φが、-π/4[rad]以上かつπ/2[rad]以下の条件のとき、基本正弦波g(t)、g(t)、g(t)を信号波に用いた場合に比べて、損失が低減し、この条件に設定し、動作させても好ましいことが示された。 As a result of this characteristic evaluation test, the superposition ratio n/m is -0.25 or more and -0.05 or less, and the initial phase φ of the fifth harmonic is -π/4 [rad] or more and π/2 [rad] Under the following conditions, the loss is reduced compared to when the fundamental sine waves g u (t), g v (t), and g w (t) are used as signal waves, and setting this condition , it was shown that it is preferable to operate it.
 また、この条件から重畳率n/mのとり得る範囲を、-0.15以上かつ-0.1以下に設定したり、初期位相φのとり得る範囲を、π/8[rad]以上かつ5π/16[rad]以下に設定したりすると、さらに損失が低減しさらに好ましいことが示された。 Also, based on this condition, the possible range of the superimposition ratio n/m is set to -0.15 or more and -0.1 or less, and the possible range of the initial phase φ is set to π/8 [rad] or more and 5π It was shown that setting the value to /16 [rad] or less further reduces the loss and is more preferable.
 また、重畳率n/mを、-0.15以上かつ-0.1以下の範囲に設定し、5次高調波の初期位相φをπ/4[rad]に設定とすると、損失低減の効果がさらに高く、さらに好ましいことが示された。 Furthermore, if the superimposition ratio n/m is set in the range of -0.15 or more and -0.1 or less, and the initial phase φ of the fifth harmonic is set to π/4 [rad], the loss reduction effect is was shown to be even higher and more preferable.
 また、基本正弦波g(t)、g(t)、g(t)に重畳する高調波は、5次以上でも可能であり、基本正弦波周波数fのa倍のa次高調波を重畳する場合の三相の信号波hua(t)、hva(t)、hwa(t)は、式(7)~式(9)のように示される。
 ここで、nは重畳される5次高調波の振幅として示される変調率であり、φはこのa次高調波の初期位相である。
Furthermore, the harmonics to be superimposed on the fundamental sine waves g u (t), g v (t), and g w (t) can be of the 5th or higher order, and the a-th harmonic that is a times the fundamental sine wave frequency f 1 Three-phase signal waves h ua (t), h va (t), and h wa (t) in the case of superimposing waves are shown as in equations (7) to (9).
Here, n a is the modulation rate expressed as the amplitude of the fifth harmonic to be superimposed, and φ a is the initial phase of this a harmonic.
 重畳率n/mの上限が、磁気特性の変化で基本波電流If1、If1_rmsの低減し始めるn/mの値に設定され、また、重畳率n/mの下限が、基本波電流If1、If1_rmsの低減効果より高調波成分による増加のほうが大きくなるn/mの値に設定され、重畳率n/mがこの下限と上限の範囲で動作する。 The upper limit of the superposition ratio n a /m is set to the value of n a /m at which the fundamental wave currents I f1 and I f1_rms start to decrease due to changes in magnetic properties, and the lower limit of the superposition ratio n a /m is set to the value The wave current I f1 , I f1_rms is set to a value of n a /m where the increase due to the harmonic component is greater than the reduction effect, and the superimposition rate n a /m operates within this lower limit and upper limit.
 重畳率n/mは、-0.3以上かつ0未満の範囲に設定し動作することが好ましい。 It is preferable to operate by setting the superimposition ratio n a /m to a range of -0.3 or more and less than 0.
 また、図3(a)に示す基本正弦波g(t)の位相角がπ/2ラジアンのときの基本正弦波g(t)の数値が、そのときの信号波h(t)の数値以上となるa次高調波の初期位相φに設定され、動作することが好ましい。 Also, when the phase angle of the fundamental sine wave g(t) shown in FIG. 3(a) is π/2 radian, the value of the fundamental sine wave g(t) is the value of the signal wave h a (t) at that time. It is preferable to operate by setting the initial phase φ a of the a-th harmonic as above.
 例えば、式(1)に示す基本正弦波g(t)と式(7)に示す信号波hua(t)を用いて説明すると、基本正弦波g(t)の位相角(2πft)がπ/2ラジアンのときの基本正弦波g(t)の数値m・sin(π/2)が、信号波hua(t)=m・sin(π/2)+n・sin(a・π/2+φ)の数値以上となる初期位相φに設定されて動作することになる。すなわち、g(t)(=m・sin(π/2)) >= hua(t)(=m・sin(π/2)+n・sin(a・π/2+φ))となる条件を満たすようにa次高調波の初期位相φを設定し、動作することになる。 For example, when explaining using the fundamental sine wave g u (t) shown in equation (1) and the signal wave h ua (t) shown in equation ( 7 ), the phase angle (2πf 1 The numerical value m・sin(π/2) of the fundamental sine wave g u (t) when t) is π/2 radian is the signal wave h ua (t)=m・sin(π/2)+n a・sin It operates by setting the initial phase φ a to be equal to or greater than the value of (a·π/2+φ a ). In other words, the condition that g u (t)(=m・sin(π/2)) >= h ua (t)(=m・sin(π/2)+n・sin(a・π/2+φ)) is The initial phase φ a of the a-th harmonic is set so as to satisfy the following conditions.
 また、a次高調波の初期位相φの最大位相角が、磁気特性の変化で基本波電流If1、If1_rmsの低減し始める初期位相φの値に設定され、また、初期位相φの最小位相角が、基本波電流If1、If1_rmsの低減効果より高調波成分による増加のほうが大きくなる初期位相φの値に設定され、この最小位相角と最大位相角の範囲で動作するようにしてもよい。 Further, the maximum phase angle of the initial phase φ a of the a-th harmonic is set to the value of the initial phase φ a where the fundamental wave current I f1 , I f1_rms starts to decrease due to a change in the magnetic characteristics, and the initial phase φ a The minimum phase angle of is set to the value of the initial phase φ a at which the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1 , I f1_rms , and the operation is performed within the range of this minimum phase angle and the maximum phase angle. You can do it like this.
 5次高調波を重畳した信号波h(t)、h(t)、h(t)を用いた後述する特性評価試験の結果の類推から、重畳率n/mが、-0.25以上かつ-0.05以下であり、a次高調波の初期位相φが、-π/4[rad]以上かつπ/2[rad]以下の条件のとき、基本正弦波g(t)、g(t)、g(t)を信号波に用いる場合に比べて、損失が低減することが推測されるため、この条件に設定、動作することが好ましい。 By analogy with the results of the characteristic evaluation test described later using signal waves h u (t), h v (t), and h w (t) on which fifth-order harmonics are superimposed, the superposition ratio n a /m is -0. .25 or more and -0.05 or less, and when the initial phase φ a of the a-th harmonic is -π/4 [rad] or more and π/2 [rad] or less, the fundamental sine wave g u ( t), g v (t), and g w (t) as signal waves, it is estimated that the loss will be reduced, so it is preferable to set and operate under these conditions.
 また、この条件から重畳率n/mのとり得る範囲を、-0.15以上かつ-0.1以下に設定したり、初期位相φのとり得る範囲を、π/8[rad]以上かつ5π/16[rad]以下に設定したりすると、特性評価試験の結果の類推から、さらに損失が低減することが推測され好ましい。 Also, based on this condition, the possible range of the superposition ratio n a /m is set to -0.15 or more and -0.1 or less, and the possible range of the initial phase φ a is set to π/8 [rad] or more. In addition, it is preferable to set it to 5π/16 [rad] or less because it is estimated that the loss will be further reduced by analogy with the results of the characteristic evaluation test.
 また、重畳率n/mを、-0.15以上かつ-0.1以下の範囲に設定し、a次高調波の初期位相φをπ/4[rad]に設定して動作すると、特性評価試験の結果の類推から、損失低減の効果がさらに高くなることが推測され好ましい。 In addition, when operating with the superimposition ratio n a /m set to a range of -0.15 or more and -0.1 or less, and the initial phase φ a of the a-th harmonic set to π/4 [rad], By analogy with the results of the characteristic evaluation test, it can be inferred that the loss reduction effect will be even higher, which is preferable.
 なお、三相モータの場合には、重畳する5次以上のa次高調波について、偶数次と3の倍数次を重畳しても効果が生じないと考えられるため、それ以外の例えば、7次、11次、13次などの高調波を重畳することが有効である。 In addition, in the case of a three-phase motor, it is thought that there will be no effect even if even-numbered harmonics and multiples of 3 are superimposed on the a-th harmonics of the fifth or higher harmonics, so other harmonics, such as the seventh It is effective to superimpose harmonics such as , 11th, and 13th harmonics.
 次に、この発明の実施の形態に係るモータ駆動システム1の動作について説明する。 Next, the operation of the motor drive system 1 according to the embodiment of the present invention will be explained.
 図5は、このモータ駆動システム1のモータ制御部4の動作の流れを示す図である。 FIG. 5 is a diagram showing the flow of operation of the motor control section 4 of this motor drive system 1.
 モータ制御部4は、指令値受付部50で、永久磁石同期モータ5の制御指令である回転速度指令やトルク指令などの指令値を外部から受け付け(S1ステップ)、受け付けた指令値をRAM42に記憶する(S2ステップ)。その後、外部からモータ回転開始指示が入力されると、モータ制御部4は、この回転開始指示を受け付けて(S3ステップ)、モータ5を回転駆動させる動作を開始する。 The motor control unit 4 receives command values such as a rotation speed command and a torque command, which are control commands for the permanent magnet synchronous motor 5, from the outside in a command value reception unit 50 (step S1), and stores the received command values in the RAM 42. (S2 step). Thereafter, when a motor rotation start instruction is input from the outside, the motor control unit 4 receives this rotation start instruction (step S3) and starts the operation of driving the motor 5 to rotate.
 モータ制御部4は、位置センサ10から出力されるロータ7の磁極位置と、電流センサ9から出力される三相のモータ駆動電流の検出値とを受け付ける(S4ステップ)。このロータ7の磁極位置やモータ駆動電流の検出値に基づいて、永久磁石同期モータ5の駆動状態が取得される。モータ制御部4は、モータ5の駆動が指令値に一致するように制御を行う。 The motor control unit 4 receives the magnetic pole position of the rotor 7 output from the position sensor 10 and the detected value of the three-phase motor drive current output from the current sensor 9 (step S4). Based on the magnetic pole position of the rotor 7 and the detected value of the motor drive current, the driving state of the permanent magnet synchronous motor 5 is acquired. The motor control unit 4 performs control so that the drive of the motor 5 matches the command value.
 まず、三相インバータ部2への入力直流電圧が適正値になるように、昇圧チョッパ制御信号を生成して(S5ステップ)、生成した昇圧チョッパ制御信号を、昇圧チョッパ部3のチョッパ部用スイッチング素子Scに出力する(S6ステップ)。 First, a step-up chopper control signal is generated so that the input DC voltage to the three-phase inverter section 2 becomes an appropriate value (step S5), and the generated step-up chopper control signal is applied to the chopper section switching of the step-up chopper section 3. Output to element Sc (step S6).
 次に、モータ5の駆動状態が指令値に追従するように、上記式(2)、式(4)、式(6)の信号波h(t)、h(t)、h(t)を生成する(信号波生成処理)(S7ステップ)。具体的には、基本正弦波g(t)、g(t)、g(t)の基本正弦波周波数f、位相、変調率mを設定して、この基本正弦波g(t)、g(t)、g(t)に変調率nで初期位相φの5次高調波を重畳する。 Next, the signal waves h u (t), h v (t), h w ( t) (signal wave generation processing) (step S7). Specifically, by setting the fundamental sine wave frequency f 1 , phase, and modulation rate m of the fundamental sine waves g u (t), g v (t), and g w (t), this fundamental sine wave g u ( t), g v (t), and g w (t) with a modulation rate n and a fifth harmonic of the initial phase φ is superimposed on them.
 続いて、三角波として構成されるキャリア波を生成する(キャリア波生成処理)(S8ステップ)。 Next, a carrier wave configured as a triangular wave is generated (carrier wave generation process) (step S8).
 その後、図3に示したように、信号波h(t)、h(t)、h(t)とキャリア波との交点でパルス幅が切り替わるようにPWMドライブ信号を生成する(PWMドライブ信号処理)(S9ステップ)。 Thereafter, as shown in FIG. 3, a PWM drive signal is generated so that the pulse width is switched at the intersection of the signal waves h u (t), h v (t), h w (t) and the carrier wave (PWM drive signal processing) (S9 step).
 そして、生成されたPWMドライブ信号を、三相インバータ部2のスイッチング素子入力部8~8に出力する(PWMドライブ供給処理)(S10ステップ)。これにより、三相インバータ部2の上側と下側のスイッチング素子(SとS、SとS、SとS)と還流ダイオード(DとD、DとD、DとD)のペアの接続点から永久磁石同期モータ5の駆動電圧としてPWM駆動電圧が出力される。 Then, the generated PWM drive signal is output to the switching element input sections 8 1 to 8 6 of the three-phase inverter section 2 (PWM drive supply process) (step S10). As a result, the switching elements (S 1 and S 2 , S 3 and S 4 , S 5 and S 6 ) on the upper and lower sides of the three-phase inverter section 2 and the freewheeling diodes (D 1 and D 2 , D 3 and D 4 , D 5 and D 6 ), a PWM drive voltage is output as the drive voltage of the permanent magnet synchronous motor 5.
 モータ制御部4は、外部から新たな指令値の入力があり、前回記憶した指令値に対して、指令値の変更があるか判断する(S11ステップ)。指令値の変更がある場合(S11ステップのYesの場合)、変更された指令値をRAMに記憶して更新する(S12ステップ)。指令値の変更がない場合(S11ステップのNoの場合)には、何もせずそのままの動作を継続する。 The motor control unit 4 receives a new command value from the outside and determines whether there is a change in the command value with respect to the previously stored command value (step S11). If there is a change in the command value (Yes in step S11), the changed command value is stored in the RAM and updated (step S12). If there is no change in the command value (No in step S11), the operation continues without doing anything.
 以降、上記S4ステップからS12ステップを繰り返し、指令値に一致するように永久磁石同期モータ5を駆動させる。 Thereafter, the steps S4 to S12 are repeated to drive the permanent magnet synchronous motor 5 so as to match the command value.
 次に、この発明の実施の形態に係るモータ駆動システム1の設定方法、設計方法及び製造方法について説明する。 Next, the setting method, design method, and manufacturing method of the motor drive system 1 according to the embodiment of the present invention will be explained.
 この設定方法、設計方法及び製造方法では、式(10)に示す基本正弦波g(t)にその5次高調波を重畳した式(11)に示す信号波h(t)について、その重畳率n/mの上限値と下限値、重畳率n/mの設定値、5次高調波の初期位相φの最大位相角と最小位相角、初期位相φの設定値を決定する。
 モータ駆動システム1の設定方法、設計方法及び製造方法について、はじめに、リング試験による方法を説明し、続いて、モータ試験による方法を説明する。リング試験による方法、モータ試験による方法ともに、重畳率n/mを変化させて測定が行われる。
In this setting method, design method, and manufacturing method, the superposition ratio of the signal wave h(t) shown in equation (11) obtained by superimposing the fifth harmonic on the fundamental sine wave g(t) shown in equation (10) is The upper and lower limits of n/m, the set value of the superimposition ratio n/m, the maximum and minimum phase angles of the initial phase φ of the fifth harmonic, and the set value of the initial phase φ are determined.
Regarding the setting method, design method, and manufacturing method of the motor drive system 1, first, a method using a ring test will be explained, and then a method using a motor test will be explained. In both the ring test method and the motor test method, measurements are performed while changing the superimposition ratio n/m.
 <リング試験による設定方法、設計方法及び製造方法>
 まず、リング試験によるモータ駆動システム1の設定方法、設計方法及び製造方法について説明する。
<Setting method, design method, and manufacturing method using ring test>
First, a method of setting, designing, and manufacturing the motor drive system 1 using a ring test will be explained.
 図6は、このモータ駆動システム1の設定、設計及び製造に用いるリング試験装置109の概略構成図である。このリング試験装置109は、後述する特性評価試験1(リング試験)で用いたリング試験装置69と同じ構成である(このため、詳細は後述する特性評価試験1(リング試験)を参照)。 FIG. 6 is a schematic configuration diagram of a ring testing device 109 used for setting, designing, and manufacturing this motor drive system 1. This ring test device 109 has the same configuration as the ring test device 69 used in characteristic evaluation test 1 (ring test) described later (therefore, refer to characteristic evaluation test 1 (ring test) described later for details).
 図7は、リング試験の設定条件の例を示す図であり、(a)はリング試料101の仕様を示す図、(b)は測定条件(重畳率)を示す図である。このリング試験のリング試料101である鉄心材料(コア材料)には、モータ駆動システム1に用いられる永久磁石同期モータ5のロータとステータの鉄心材料(コア材料)と同一の材料が使用される。すなわち、リング試料101は、モータ駆動システム1に用いられる永久磁石同期モータ5の鉄心材料(コア材料)と同一の材料で形成される。 FIG. 7 is a diagram showing an example of the setting conditions for the ring test, in which (a) is a diagram showing the specifications of the ring sample 101, and (b) is a diagram showing the measurement conditions (overlapping ratio). The same material as the iron core material (core material) of the rotor and stator of the permanent magnet synchronous motor 5 used in the motor drive system 1 is used for the iron core material (core material) that is the ring sample 101 for this ring test. That is, the ring sample 101 is made of the same material as the iron core material of the permanent magnet synchronous motor 5 used in the motor drive system 1.
 図6に示すIGBTインバータ102は、単相Si-IGBTインバータである。このIGBTインバータ102は、スイッチング素子S101、S102、S103、S104としてSi-IGBT、還流ダイオードD101、D102、D103、D104としてSiダイオードを搭載している。リング試験装置69のIGBTインバータ102に用いられているスイッチング素子S101~S104と還流ダイオードD101~D104は、モータ駆動システム1の三相インバータ部2に用いられているスイッチング素子S~Sと還流ダイオードD~Dと同じものである。 The IGBT inverter 102 shown in FIG. 6 is a single-phase Si-IGBT inverter. This IGBT inverter 102 includes Si-IGBTs as switching elements S 101 , S 102 , S 103 , and S 104 and Si diodes as freewheeling diodes D 101 , D 102 , D 103 , and D 104 . The switching elements S 101 to S 104 and the free wheel diodes D 101 to D 104 used in the IGBT inverter 102 of the ring test device 69 are the same as the switching elements S 1 to S 104 used in the three-phase inverter section 2 of the motor drive system 1 . S 6 and the free wheel diodes D 1 to D 6 are the same.
 測定条件は、例として、基本正弦波周波数fを50[Hz]、キャリア周波数fを1[kHz]、直流電源103から供給されるIGBTインバータ102への入力電圧Vdcを15[V]とし、基本正弦波磁束密度Bf1が1[T]となるように基本正弦波変調率mを調節する。リング試験における基本正弦波磁束密度Bf1一定は、モータ試験における平均トルク一定に相当すると考えられる。 The measurement conditions are, for example, a fundamental sine wave frequency f 1 of 50 [Hz], a carrier frequency f c of 1 [kHz], and an input voltage V dc supplied from the DC power supply 103 to the IGBT inverter 102 of 15 [V]. Then, the fundamental sine wave modulation rate m is adjusted so that the fundamental sine wave magnetic flux density B f1 becomes 1 [T]. It is considered that the constant fundamental sinusoidal magnetic flux density B f1 in the ring test corresponds to the constant average torque in the motor test.
 IGBTインバータ102の制御には、5次調波重畳PWM方式が採用される。すなわち、上記式(11)に示す5次高調波を重畳した信号波h(t)と、三角波として構成されるキャリア波との交点でパルス幅を切り替えてPWM信号を生成して、このPWM信号をIGBTインバータ102の上下のスイッチング素子のペア(S101とS102)のゲート端子であるスイッチング素子入力部108、108に入力する。また、上下反転した信号波h(t)とキャリア波との交点でパルス幅を切り替えてPWM信号を生成して、このPWM信号をIGBTインバータ102の上下のスイッチング素子のペア(S103とS104)のゲート端子であるスイッチング素子入力部108、108に入力する。このとき、上下のスイッチング素子(上下のS101とS102、上下のS103とS104)は、一方がオンであれば、他方がオフになるように駆動される。また、短絡防止のため、上下のスイッチング素子(上下のS101とS102、上下のS103とS104)が同時にオンにならないように、オンとオフの切り替わりで上下が共にオフとなるデッドタイムを含むように駆動される。 A fifth harmonic superimposition PWM method is adopted for controlling the IGBT inverter 102. That is, a PWM signal is generated by switching the pulse width at the intersection of the signal wave h(t) on which the fifth harmonic shown in the above equation (11) is superimposed and the carrier wave configured as a triangular wave. is input to the switching element input sections 108 1 and 108 2 which are the gate terminals of the pair of upper and lower switching elements (S 101 and S 102 ) of the IGBT inverter 102 . In addition, a PWM signal is generated by switching the pulse width at the intersection of the vertically inverted signal wave h(t) and the carrier wave, and this PWM signal is transmitted to the pair of upper and lower switching elements (S 103 and S 104 ) of the IGBT inverter 102. ) are input to switching element input sections 108 3 and 108 4 which are the gate terminals of the switching elements 108 3 and 108 4 . At this time, the upper and lower switching elements (upper and lower S 101 and S 102 , and upper and lower S 103 and S 104 ) are driven so that if one is on, the other is off. In addition, to prevent short circuits, to prevent the upper and lower switching elements (upper and lower S 101 and S 102 , and upper and lower S 103 and S 104 ) from turning on at the same time, there is a dead time in which both the top and bottom are turned off when switching between on and off. is driven to include.
 このようにすると、スイッチング素子入力部108、108、108、108に入力されたPWM信号に基づいて、上側と下側のスイッチング素子(S101とS102、S103とS104)と還流ダイオード(D101とD102、D103とD104)のペアの接続点から一次コイルに入力されるパルス幅変調電圧が出力される。このパルス幅変調電圧の印加によって一次コイルに一次電流Iが流れる。 In this way, the upper and lower switching elements ( S 101 and S 102 , S 103 and S 104 The pulse width modulated voltage input to the primary coil is output from the connection point of the pair of freewheeling diodes (D 101 and D 102 , D 103 and D 104 ). The application of this pulse width modulated voltage causes a primary current I1 to flow in the primary coil.
 そして、このリング試料101に巻回された一次コイルに流れる一次電流Iと、リング試料101に巻回された二次コイルに発生する二次電圧Vが測定される。 Then, a primary current I 1 flowing through the primary coil wound around the ring sample 101 and a secondary voltage V 2 generated at the secondary coil wound around the ring sample 101 are measured.
 次に、リング試験の鉄損算出方法について説明する。図6に示す一次電流Iと二次電圧Vを測定し、磁界の強さH、磁束密度Bを式(12)、式(13)のように求める。
 この磁界の強さHと磁束密度Bを用いて、式(14)のように鉄損Pfeを求める。
 ここで、上記式(12)、式(13)で求められる磁界の強さHと磁束密度Bにはキャリア高調波成分を含むので、磁化現象が複雑化する。そこで5次高調波重畳の影響を明確にするため、低次の周波数成分(f、f、f成分:fは基本正弦波周波数fの3次高調波の周波数、fは基本正弦波周波数fの5次高調波の周波数)を抽出することを考える。得られた磁界の強さHと磁束密度Bに対し、数値計算ソフトウェアMATLAB(登録商標)R2019b(The MathWorks,Inc.)によるcftool(近似曲線ツール)を用いたフィッティングを行い、磁界の強さのメジャーループ成分Hmajor、磁束密度のメジャーループ成分Bmajorを算出する。これらより、メジャーループ鉄損Pmajorを式(15)のように算出する。また、式(16)のように、鉄損Pfeとメジャーループ鉄損Pmajorの差をキャリア高調波鉄損(マイナーループ鉄損)Pcarrierと定義する。
 以下に、重畳率n/mを変化させて測定したリング試験における測定結果の例を示す。
Next, a method for calculating iron loss in a ring test will be explained. The primary current I 1 and secondary voltage V 2 shown in FIG. 6 are measured, and the magnetic field strength H and magnetic flux density B are determined as shown in equations (12) and (13).
Using this magnetic field strength H and magnetic flux density B, iron loss P fe is determined as shown in equation (14).
Here, since the magnetic field strength H and magnetic flux density B determined by the above equations (12) and (13) include carrier harmonic components, the magnetization phenomenon becomes complicated. Therefore, in order to clarify the influence of fifth-order harmonic superposition, we investigated the low-order frequency components (f 1 , f 3 , f 5 components: f 3 is the frequency of the 3rd harmonic of the fundamental sine wave frequency f 1 , and f 5 is Consider extracting the fundamental sine wave frequency f (fifth harmonic frequency of 1 ). The obtained magnetic field strength H and magnetic flux density B are fitted using cftool (approximation curve tool) by the numerical calculation software MATLAB (registered trademark) R2019b (The MathWorks, Inc.) to calculate the magnetic field strength. A major loop component H major and a major loop component B major of magnetic flux density are calculated. From these, the major loop iron loss P major is calculated as shown in equation (15). Further, as in equation (16), the difference between the iron loss P fe and the major loop iron loss P major is defined as a carrier harmonic iron loss (minor loop iron loss) P carrier .
Below, examples of measurement results in a ring test measured while changing the superimposition ratio n/m are shown.
 図8は、リング試験による磁界の強さHと磁束密度Bの時間波形の例を示す図であり、(a)は重畳率n/mが0のときの測定波形を示す図、(b)は重畳率n/mが0のときのメジャーループ成分(Hmajor、Bmajor)を示す図、(c)は重畳率n/mが-0.2のときの測定波形を示す図、(d)は重畳率n/mが-0.2のときのメジャーループ成分(Hmajor、Bmajor)を示す図である。 FIG. 8 is a diagram showing an example of the time waveform of the magnetic field strength H and magnetic flux density B in the ring test, (a) is a diagram showing the measured waveform when the superimposition ratio n/m is 0, (b) is a diagram showing the major loop components (H major , B major ) when the superimposition ratio n/m is 0, (c) is a diagram showing the measured waveform when the superimposition ratio n/m is -0.2, (d ) is a diagram showing major loop components (H major , B major ) when the superimposition ratio n/m is −0.2.
 重畳率n/mが0の場合は、5次高調波を付加せず基本正弦波g(t)を信号波h(t)として用いる場合に該当する。重畳率n/mが0と-0.2の場合を比べると、磁界の強さHと磁束密度Bの時間波形の形状が異なっており、5次高調波重畳により、磁化現象に変化が現れることがわかる。 When the superimposition ratio n/m is 0, this corresponds to the case where the fundamental sine wave g(t) is used as the signal wave h(t) without adding the fifth harmonic. Comparing the cases where the superposition ratio n/m is 0 and -0.2, the time waveform shapes of the magnetic field strength H and magnetic flux density B are different, and changes appear in the magnetization phenomenon due to the fifth harmonic superposition. I understand that.
 図9は、リング試験による磁界の強さHと磁束密度BのBHカーブの例を示す図であり、(a)は重畳率n/mが0のときの測定結果(実線)とメジャーループ成分(破線)を示す図、(b)は重畳率n/mが-0.2のときの測定結果(実線)とメジャーループ成分(破線)を示す図、(c)は重畳率n/mが0(破線)と-0.2(実線)のメジャーループ成分を示す図である。 FIG. 9 is a diagram showing an example of a BH curve of magnetic field strength H and magnetic flux density B in a ring test, where (a) shows the measurement results (solid line) when the superimposition ratio n/m is 0 and the major loop component. (dashed line), (b) is a diagram showing the measurement results (solid line) and the major loop component (dashed line) when the superimposition ratio n/m is -0.2, (c) is a diagram showing the measurement results when the superimposition ratio n/m is -0.2, and (c) is a diagram showing the measurement results when the superimposition ratio n/m is FIG. 3 is a diagram showing major loop components of 0 (broken line) and −0.2 (solid line).
 この図は、図8に示した測定データについて、横軸を磁界の強さH、縦軸を磁束密度Bとして表示したものである。図9(c)に示すように、重畳率n/mが0と-0.2の場合を比べると、磁界の強さのメジャーループ成分Hmajorと磁束密度のメジャーループ成分BmajorのBHカーブの形状が異なっており、5次高調波重畳により、磁化現象に変化が現れることがわかる。言い換えると、5次高調波重畳により、「磁気特性の変化」が生じている。図9(c)に示すメジャーループ成分のBHカーブには、基本正弦波磁束密度Bf1が1[T]となった点を、重畳率n/mが0と-0.2の場合のそれぞれについて×印、*印でプロットしている。5次高調波の重畳によりメジャーループ成分が大きく変化し、それに伴い重畳率n/mが-0.2の条件である*印の位置は透磁率が大きくなる点に変化している。すなわち、5次高調波重畳により磁化現象が変化し、透磁率が大きくなる点で基本正弦波磁束密度Bf1が1[T]に達することになる。 This figure shows the measurement data shown in FIG. 8, with the horizontal axis representing the magnetic field strength H and the vertical axis representing the magnetic flux density B. As shown in FIG. 9(c), when comparing the cases where the superimposition ratio n/m is 0 and -0.2, the BH curve of the major loop component H major of the magnetic field strength and the major loop component B major of the magnetic flux density is The shapes of the two are different, and it can be seen that a change appears in the magnetization phenomenon due to fifth-order harmonic superposition. In other words, "changes in magnetic properties" occur due to fifth-order harmonic superposition. The BH curve of the major loop component shown in FIG. 9(c) shows the points where the fundamental sinusoidal magnetic flux density B f1 becomes 1 [T] when the superimposition rate n/m is 0 and -0.2, respectively. The plots are marked with × and *. The major loop component changes greatly due to the superposition of the fifth harmonic, and accordingly, the position marked *, which is a condition where the superposition ratio n/m is -0.2, changes to a point where the magnetic permeability increases. That is, the fundamental sinusoidal magnetic flux density B f1 reaches 1 [T] at the point where the magnetization phenomenon changes due to the fifth-order harmonic superposition and the magnetic permeability increases.
 図10は、リング試験による基本波電流If1と基本正弦波変調率mの例を示す図である。 FIG. 10 is a diagram showing an example of the fundamental wave current I f1 and the fundamental sine wave modulation factor m obtained by the ring test.
 リング試験における基本波電流If1は、一次コイルに流れる一次電流Iの基本正弦波周波数fの成分の実効値である。 The fundamental wave current I f1 in the ring test is the effective value of the component of the fundamental sine wave frequency f 1 of the primary current I 1 flowing through the primary coil.
 この基本波電流If1は、基本波磁束密度Bf1を得るための励磁電流成分であり、重畳率n/mが0の場合に比べて、重畳率n/mが0より大きいとき僅かに増加、重畳率n/mが0より小さいとき大きく減少する傾向がある。 This fundamental wave current I f1 is an excitation current component for obtaining the fundamental wave magnetic flux density B f1 , and increases slightly when the superposition rate n/m is greater than 0 compared to when the superposition rate n/m is 0. , tends to decrease significantly when the superimposition ratio n/m is smaller than 0.
 重畳率n/mが0より小さくなると、「磁気特性の変化で基本波電流If1の低減し始める」。この重畳率n/mの値を上限に設定するようにしてもよい。また、重畳率n/mが-0.1以下の範囲では、急激に基本波電流If1が減少しており、この重畳率n/mが-0.1のときを、「磁気特性の変化で基本波電流If1の低減し始める」重畳率n/mの値ということもできる。この重畳率n/mの値を上限に設定するようにしてもよい。 When the superimposition ratio n/m becomes smaller than 0, "the fundamental wave current I f1 starts to decrease due to a change in magnetic properties." The value of this superimposition ratio n/m may be set as an upper limit. Furthermore, in the range where the superposition ratio n/m is -0.1 or less, the fundamental wave current I f1 decreases rapidly, and when this superposition ratio n/m is -0.1, it is defined as "change in magnetic properties." It can also be said to be the value of the superimposition ratio n/m at which the fundamental wave current I f1 starts to decrease at . The value of this superimposition ratio n/m may be set as an upper limit.
 また、IGBTインバータ102への直流電圧Vdc一定下で、基本正弦波磁束密度Bf1が1[T]となるように基本正弦波変調率mが調節されており、重畳率n/mが0より大きくなると基本正弦波変調率mが増加し、重畳率n/mが0より小さくなると基本正弦波変調率mが減少している。 Further, the basic sine wave modulation rate m is adjusted so that the basic sine wave magnetic flux density B f1 becomes 1 [T] under a constant DC voltage V dc to the IGBT inverter 102, and the superimposition rate n/m is 0. When the superimposition ratio n/m becomes larger, the fundamental sine wave modulation rate m increases, and when the superimposition ratio n/m becomes smaller than 0, the fundamental sine wave modulation rate m decreases.
 5次高調波の重畳により、基本正弦波磁束密度Bf1が一定の下で基本波電流If1の減少が生じることがいえる。 It can be said that due to the superposition of the fifth harmonic, the fundamental wave current I f1 decreases when the fundamental sinusoidal magnetic flux density B f1 is constant.
 図11は、リング試験による鉄損Pfe、メジャーループ鉄損Pmajor、キャリア高調波鉄損(マイナーループ鉄損)Pcarrierの例を示す図であり、(a)は鉄損を示す図、(b)は重畳率n/mが0の場合を基準としたときの鉄損の変化率を示す図である。 FIG. 11 is a diagram showing an example of iron loss P fe , major loop iron loss P major , and carrier harmonic iron loss (minor loop iron loss) P carrier in a ring test; (a) is a diagram showing iron loss; (b) is a diagram showing the rate of change in iron loss when the superimposition ratio n/m is 0 as a reference.
 図11(a)に示すように重畳率n/mが0の場合に比べて、重畳率n/mが0より大きい範囲では鉄損Pfeが増加し、重畳率n/mが0より小さい範囲では鉄損Pfeが減少している。また、メジャーループ鉄損Pmajorは、重畳率n/mが0の場合に比べて、重畳率n/mが-0.15、-0.1、-0.05のとき減少している。キャリア高調波鉄損Pcarrierは重畳率n/mが0の場合に比べて、重畳率n/mが0より大きいとき増加し、重畳率n/mが0より小さいとき減少している。 As shown in Fig. 11(a), compared to the case where the superposition ratio n/m is 0, the iron loss P fe increases in the range where the superposition ratio n/m is greater than 0, and the superposition ratio n/m is smaller than 0. In this range, the iron loss P fe decreases. Furthermore, the major loop iron loss P major is reduced when the superimposition ratio n/m is -0.15, -0.1, and -0.05, compared to when the superposition ratio n/m is 0. Compared to the case where the superposition ratio n/m is 0, the carrier harmonic iron loss P carrier increases when the superposition ratio n/m is greater than 0, and decreases when the superposition ratio n/m is smaller than 0.
 図11(b)は、重畳率n/mが0の場合の鉄損Pfe、メジャーループ鉄損Pmajor、キャリア高調波鉄損Pcarrierを基準として、重畳率n/mを変化させたときの鉄損Pfe、メジャーループ鉄損Pmajor、キャリア高調波鉄損Pcarrierの変化率を示している。 FIG. 11(b) shows the results when the superposition ratio n/m is changed based on the iron loss P fe , major loop iron loss P major , and carrier harmonic iron loss P carrier when the superposition ratio n/m is 0. It shows the rate of change of iron loss P fe , major loop iron loss P major , and carrier harmonic iron loss P carrier .
 重畳率n/mが0より大きい範囲では、鉄損Pfeが増加し、重畳率n/mが0より小さい範囲では、鉄損Pfeが減少している。また、重畳率n/mが-0.2のとき、鉄損Pfeが最小値を示し、鉄損低減率は3.3%であった。また、重畳率n/mが-0.25のときの鉄損Pfeは、重畳率n/mが-0.2のときよりも僅かに増加している。 In a range where the superimposition ratio n/m is larger than 0, the iron loss P fe increases, and in a range where the superimposition ratio n/m is smaller than 0, the iron loss P fe decreases. Further, when the superimposition ratio n/m was −0.2, the iron loss P fe showed the minimum value, and the iron loss reduction rate was 3.3%. Further, the iron loss P fe when the superimposition ratio n/m is -0.25 is slightly higher than when the superimposition ratio n/m is -0.2.
 メジャーループ鉄損Pmajorは、重畳率n/mが-0.15、-0.1、-0.05のとき減少している。重畳率n/mが-0.1のとき、メジャーループ鉄損Pmajorは最小をとり、低減率は2.3%である。キャリア高調波鉄損Pcarrierは重畳率n/mが0より大きいとき増加し、重畳率n/mが0より小さいとき減少している。重畳率n/mが-0.25のとき最小を示し、キャリア高調波鉄損Pcarrierの鉄損低減率は17.8%である。 The major loop iron loss P major decreases when the overlap ratio n/m is −0.15, −0.1, and −0.05. When the superimposition ratio n/m is −0.1, the major loop iron loss P major is at its minimum, and the reduction rate is 2.3%. The carrier harmonic iron loss P carrier increases when the superposition ratio n/m is greater than 0, and decreases when the superposition ratio n/m is smaller than 0. When the superimposition ratio n/m is −0.25, it is minimum, and the iron loss reduction rate of the carrier harmonic iron loss P carrier is 17.8%.
 このように重畳率n/mを大きい側(例えば重畳率n/m=0.25)から小さくしていくと鉄損Pfeが減少し、重畳率n/mが0より小さくなると、重畳率n/mが0のときよりも鉄損Pfeが低減する。そして、重畳率n/mをさらに小さくしていくと、重畳率n/mが-0.2のときに鉄損Pfeが最小となり、その後、鉄損Pfeが増加する傾向がある。図11(b)に示す鉄損Pfeの変化率のグラフについて重畳率n/mが-0.25よりも小さい範囲に外挿すると、重畳率n/mが-0.3以上の範囲で、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、鉄損Pfeが低減しているといえる。そうすると、重畳率n/mが0の場合に比べて、鉄損Pfeが低減する範囲は、重畳率n/mが-0.3以上かつ0未満の範囲となる。重畳率n/mが-0.3のとき、「基本波電流If1の低減効果より高調波成分による増加のほうが大きくなる」重畳率n/mの値といえる。この値を重畳率n/mの下限に設定するようにしてもよい。 In this way, as the superimposition ratio n/m is decreased from the larger side (for example, superimposition ratio n/m = 0.25), the iron loss P fe decreases, and when the superimposition ratio n/m becomes smaller than 0, the superposition ratio Iron loss P fe is reduced compared to when n/m is 0. Then, when the superimposition ratio n/m is further reduced, the iron loss P fe becomes minimum when the superimposition ratio n/m is -0.2, and thereafter the iron loss P fe tends to increase. When extrapolating the graph of the rate of change of iron loss P fe shown in FIG. 11(b) to a range where the superimposition ratio n/m is smaller than -0.25, it is found that in a range where the superimposition ratio n/m is -0.3 or more, , it can be said that the iron loss P fe is reduced compared to the case where the fifth harmonic is not superimposed (when the superimposition ratio n/m is 0). Then, compared to the case where the superimposition ratio n/m is 0, the range in which the iron loss P fe is reduced is the range where the superimposition ratio n/m is −0.3 or more and less than 0. When the superimposition ratio n/m is -0.3, it can be said that the value of the superposition ratio n/m is such that "the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1 ." This value may be set as the lower limit of the superimposition ratio n/m.
 図12は、リング試験による鉄損Pfeと基本波電流If1の例を示す図である。この図12は、図10と図11とは異なる測定結果をまとめたものである。 FIG. 12 is a diagram showing an example of iron loss P fe and fundamental wave current I f1 obtained by a ring test. This FIG. 12 summarizes measurement results different from those in FIGS. 10 and 11.
 重畳率n/mが0の場合に比べて、重畳率n/mが0より大きい範囲では鉄損Pfeが増加し、重畳率n/mが0より小さい範囲では鉄損Pfeが減少している。また、重畳率n/mが-0.15のとき鉄損Pfeが最小となっている。 Compared to the case where the superimposition ratio n/m is 0, the iron loss P fe increases in the range where the superimposition ratio n/m is larger than 0, and the iron loss P fe decreases in the range where the superimposition ratio n/m is smaller than 0. ing. Further, when the superimposition ratio n/m is −0.15, the iron loss P fe is the minimum.
 重畳率n/mを大きい側から小さくしていくと鉄損Pfeが減少し、重畳率n/mが0より小さくなると、重畳率n/mが0のときよりも鉄損Pfeが低減する。そして、重畳率n/mをさらに小さくしていくと、重畳率n/mが-0.15のときに鉄損Pfeが最小となり、その後、鉄損Pfeが増加する傾向がある。図12に示す鉄損Pfeのグラフについて重畳率n/mが-0.2よりも小さい範囲に外挿すると、重畳率n/mが-0.3以上の範囲で、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、鉄損Pfeが低減しているといえる。そうすると、重畳率n/mが0の場合に比べて、鉄損Pfeが低減する範囲は、重畳率n/mが-0.3以上かつ0より小さい範囲となる。 As the superposition ratio n/m decreases from the larger side, the iron loss P fe decreases, and when the superposition ratio n/m becomes smaller than 0, the iron loss P fe decreases compared to when the superposition ratio n/m is 0. do. Then, when the superimposition ratio n/m is further reduced, the iron loss P fe becomes minimum when the superimposition ratio n/m is -0.15, and thereafter the iron loss P fe tends to increase. If we extrapolate the graph of iron loss P fe shown in Figure 12 to the range where the superposition ratio n/m is smaller than -0.2, we can see that the fifth harmonic is It can be said that the iron loss P fe is reduced compared to the case where there is no overlap (the case where the overlap ratio n/m is 0). Then, compared to the case where the superposition ratio n/m is 0, the range in which the iron loss P fe is reduced is the range where the superposition ratio n/m is −0.3 or more and smaller than 0.
 基本波電流If1は、重畳率n/mが0の場合に比べて、重畳率n/mが0より大きいとき僅かに増加、重畳率n/mが0より小さいとき大きく減少する傾向がある。 The fundamental wave current I f1 tends to increase slightly when the superposition ratio n/m is greater than 0, and to decrease significantly when the superposition ratio n/m is smaller than 0, compared to when the superposition ratio n/m is 0. .
 以下に、5次高調波の初期位相φを変化させて測定したリング試験における測定結果の例を示す。 Below, examples of measurement results in a ring test measured while changing the initial phase φ of the fifth harmonic are shown.
 図13は、5次高調波の初期位相φを変化させて測定を行うリング試験の測定条件(位相角)の例を示す図である。 FIG. 13 is a diagram showing an example of measurement conditions (phase angle) for a ring test in which measurement is performed by changing the initial phase φ of the fifth harmonic.
 図14は、リング試験による測定結果の例を示す図であり、(a)は基本波電流If1を示す図、(b)は鉄損Pfeを示す図である。図中の水平の破線は、5次高調波の変調率nが0の場合、すなわち、基本正弦波g(t)を信号波h(t)として用いた場合の基本波電流If1、鉄損Pfeの測定値を示している。 FIG. 14 is a diagram showing an example of measurement results by a ring test, in which (a) is a diagram showing the fundamental wave current I f1 , and (b) is a diagram showing the iron loss P fe . The horizontal broken line in the figure indicates the fundamental wave current I f1 and the iron loss when the modulation rate n of the fifth harmonic is 0, that is, when the fundamental sine wave g(t) is used as the signal wave h(t). Measured values of P fe are shown.
 基本波電流If1は、水平の破線に比べて、初期位相φが0[rad]以下で減少し、初期位相φがπ/4[rad]以上で増加している。 Compared to the horizontal broken line, the fundamental wave current I f1 decreases when the initial phase φ is 0 [rad] or less, and increases when the initial phase φ is π/4 [rad] or more.
 初期位相φがπ/4[rad]より小さくなると、「磁気特性の変化で基本波電流If1の低減し始める」といえる。この初期位相φの値(π/4)を最大位相角に設定するようにしてもよい。 When the initial phase φ becomes smaller than π/4 [rad], it can be said that "the fundamental wave current I f1 starts to decrease due to a change in magnetic characteristics." The value of this initial phase φ (π/4) may be set as the maximum phase angle.
 鉄損Pfeは、水平の破線に比べて、初期位相φが-π/4[rad]以上かつπ/2[rad]以下の範囲で低減しており、初期位相φがπ/4[rad]で最小値となっている。 Compared to the horizontal broken line, the iron loss P fe is reduced in the range where the initial phase φ is -π/4 [rad] or more and π/2 [rad] or less, and when the initial phase φ is π/4 [rad] ] is the minimum value.
 このように5次高調波の初期位相φを大きい側(例えば初期位相φ=3π/4[rad])から小さくしていくと鉄損Pfeが減少し、初期位相φがπ/2[rad]より小さくなると、重畳率n/mが0のときよりも鉄損Pfeが低減する。初期位相φをさらに小さくしていくと、初期位相φがπ/4[rad]のときに鉄損Pfeが最小となり、その後、鉄損Pfeが増加する。そして、初期位相φが-π/4[rad]になると、重畳率n/mが0のときの鉄損Pfeとほぼ同じ値を示し、さらに初期位相φを小さくすると、重畳率n/mが0のときよりも鉄損Pfeが大きくなる。初期位相φが-π/4[rad]のとき、「基本波電流If1の低減効果より高調波成分による増加のほうが大きくなる」初期位相φの値といえる。この値を初期位相φの最小位相角に設定するようにしてもよい。 In this way, by decreasing the initial phase φ of the fifth harmonic from the large side (for example, initial phase φ = 3π/4 [rad]), the iron loss P fe decreases, and the initial phase φ becomes π/2 [rad]. ], the iron loss P fe is lower than when the superimposition ratio n/m is 0. As the initial phase φ is further reduced, the iron loss P fe becomes the minimum when the initial phase φ is π/4 [rad], and thereafter the iron loss P fe increases. When the initial phase φ becomes -π/4 [rad], it shows almost the same value as the iron loss P fe when the superposition ratio n/m is 0, and when the initial phase φ is further reduced, the superposition ratio n/m The iron loss P fe becomes larger than when P fe is 0. When the initial phase φ is −π/4 [rad], it can be said that the value of the initial phase φ is such that “the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1 .” This value may be set as the minimum phase angle of the initial phase φ.
 図14(a)(b)に基づいて検討すると、基本正弦波g(t)の位相角がπ/2ラジアン(rad)のときの基本正弦波g(t)の数値が、そのときの信号波h(t)の数値以上となる5次高調波の初期位相φに設定され、動作すると基本正弦波g(t)を信号波h(t)として用いる場合に比べて、基本波電流If1が低減することが考えられる。また、鉄損Pfeも低減することが考えられる。 Examining based on FIGS. 14(a) and (b), when the phase angle of the fundamental sine wave g(t) is π/2 radian (rad), the numerical value of the fundamental sine wave g(t) is the signal at that time. The initial phase φ of the fifth harmonic is set to be equal to or higher than the value of the wave h(t), and when it operates, the fundamental wave current I f1 is lower than when the fundamental sine wave g(t) is used as the signal wave h(t) It is thought that this will reduce the It is also possible that the iron loss P fe is also reduced.
 上記式(10)に示す基本正弦波g(t)と式(11)に示す信号波h(t)を用いて説明すると、基本正弦波g(t)の位相角(2πft)がπ/2ラジアンのときの基本正弦波g(t)の数値m・sin(π/2)が、信号波h(t)=m・sin(π/2)+n・sin(5・π/2+φ)の数値以上となる初期位相φに設定されることになる。すなわち、g(t)(=m・sin(π/2)) >= h(t)(=m・sin(π/2)+n・sin(5・π/2+φ))となる条件を満たすように5次高調波の初期位相φが設定されることになる。 Explaining using the fundamental sine wave g(t) shown in the above equation (10) and the signal wave h(t) shown in the equation (11), the phase angle (2πf 1 t) of the fundamental sine wave g(t) is π /2 radian, the value m・sin(π/2) of the fundamental sine wave g(t) is the signal wave h(t)=m・sin(π/2)+n・sin(5・π/2+φ) The initial phase φ is set to be greater than or equal to the value of . In other words, the condition that g(t) (=m・sin(π/2)) >= h(t)(=m・sin(π/2)+n・sin(5・π/2+φ)) is satisfied. The initial phase φ of the fifth harmonic is set at .
 図15は、リング試験で重畳率n/mを設定する概略的な流れを示す図である。 FIG. 15 is a diagram schematically showing the flow of setting the superimposition ratio n/m in the ring test.
 このリング試験では、5次高調波の初期位相φを0[rad]として、重畳率n/mを大きい側から小さい側に変化させて測定を行う。 In this ring test, the initial phase φ of the fifth harmonic is set to 0 [rad], and the measurement is performed while changing the superimposition ratio n/m from the larger side to the smaller side.
 まず、重畳率n/mを最大値に設定する(S100ステップ)。例えば、図7(b)に示す測定条件であれば、重畳率n/mを最大値となる0.25に設定する。 First, the superimposition ratio n/m is set to the maximum value (step S100). For example, under the measurement conditions shown in FIG. 7(b), the superimposition ratio n/m is set to 0.25, which is the maximum value.
 次に、リング試験装置109を測定条件に調整する(S101ステップ)。例えば、図7(b)に示す測定条件であれば、リング試験装置109を、IGBTインバータ62への入力電圧Vdcを15[V]とし、基本正弦波磁束密度Bf1が1[T]となるように基本正弦波変調率mを調整する。そして、設定された重畳率n/mになるように上記式(11)に示す信号波h(t)を構成してPWM信号を生成し、このPWM信号をIGBTインバータ102に入力して動作させる。IGBTインバータ102からは、PWM信号に基づいてパルス幅変調電圧が出力され、このパルス幅変調電圧が一次コイルに印加される。これにより、一次コイルに一次電流Iが流れる。 Next, the ring test device 109 is adjusted to the measurement conditions (step S101). For example, under the measurement conditions shown in FIG. 7(b), the ring test device 109 is operated so that the input voltage V dc to the IGBT inverter 62 is 15 [V], and the fundamental sine wave magnetic flux density B f1 is 1 [T]. The basic sine wave modulation rate m is adjusted so that Then, a PWM signal is generated by configuring the signal wave h(t) shown in the above equation (11) so that the superimposition ratio is set to n/m, and this PWM signal is input to the IGBT inverter 102 to operate it. . The IGBT inverter 102 outputs a pulse width modulated voltage based on the PWM signal, and this pulse width modulated voltage is applied to the primary coil. This causes a primary current I1 to flow through the primary coil.
 次に、リング試験装置109のリング試料101に巻回された一次コイルに流れる一次電流Iと、リング試料101に巻回された二次コイルに発生する二次電圧Vを測定する(S102ステップ)。 Next, the primary current I 1 flowing in the primary coil wound around the ring sample 101 of the ring test device 109 and the secondary voltage V 2 generated in the secondary coil wound around the ring sample 101 are measured (S102 step).
 一次電流Iと二次電圧Vの測定後、重畳率n/mを所定量低下させて設定する(S103ステップ)。例えば、図7(b)に示す測定条件であれば、重畳率n/mを0.05低下させて設定する。 After measuring the primary current I1 and the secondary voltage V2 , the superimposition ratio n/m is set to be lowered by a predetermined amount (step S103). For example, in the case of the measurement conditions shown in FIG. 7(b), the superimposition ratio n/m is set to be reduced by 0.05.
 このように設定された重畳率n/mが最小値以上であるか検査され、最小値以上の場合(S104ステップのYesの場合)、S101ステップに戻って測定が繰り返される。ここで、検査に用いられる重畳率n/mの最小値とは、例えば、図7(b)に示す測定条件であれば、重畳率n/mが-0.25となる値である。 It is checked whether the superimposition ratio n/m set in this way is greater than or equal to the minimum value, and if it is greater than or equal to the minimum value (Yes in step S104), the process returns to step S101 and the measurement is repeated. Here, the minimum value of the superimposition ratio n/m used for the inspection is, for example, a value at which the superimposition ratio n/m is −0.25 under the measurement conditions shown in FIG. 7(b).
 設定された重畳率n/mが最小値以上でない場合(S104ステップのNoの場合)、各重畳率n/mの測定データについて、基本波電流If1、鉄損Pfe、高調波電流Iharmonicを算出する(S105ステップ)。 If the set superimposition ratio n/m is not equal to or greater than the minimum value (No in step S104), the fundamental wave current I f1 , iron loss P fe , harmonic current I harmonic are determined for the measurement data of each superposition ratio n/m. is calculated (step S105).
 リング試験における高調波電流Iharmonicは、一次コイルに流れる一次電流Iの基本正弦波周波数fの高調波成分(一次電流Iの高調波成分)の実効値である。 The harmonic current I harmonic in the ring test is the effective value of the harmonic component (harmonic component of the primary current I 1 ) of the fundamental sine wave frequency f 1 of the primary current I 1 flowing through the primary coil.
 次に、重畳率n/mの上限値を決定する(上限値決定ステップ、上限値決定工程)(S106ステップ)。 Next, the upper limit value of the superimposition ratio n/m is determined (upper limit value determination step, upper limit value determination step) (step S106).
 この上限値を決定する方法として、5次高調波の変調率nが0(ゼロ)の場合よりも基本波電流If1が下回る範囲の上限となる重畳率n/mを重畳率n/mの上限値としてもよい。すなわち、重畳率n/mが0(ゼロ)の場合の基本波電流If1に比べて、基本波電流If1が減少する重畳率n/mの範囲の上限となる重畳率n/mを上限値に決定するようにしてもよい。例えば、図10であれば、基本波電流If1は、重畳率n/mが0の場合に比べて、重畳率n/mが0より小さい範囲で減少しているため、この範囲の上限は重畳率n/mが0未満となる。この場合には、重畳率n/mの上限値を0未満と決定してもよい。また、重畳率n/mが-0.1以下の範囲では、基本波電流If1が急激に減少しており、この範囲を用いれば上限が-0.1となる。この場合には、重畳率n/mの上限値が-0.1に決定される。図12であれば、基本波電流If1は、重畳率n/mが0の場合に比べて、重畳率n/mが0より小さい範囲で減少しており、重畳率n/mの上限値が0未満に決定される。これは、重畳率n/mの上限値を「磁気特性の変化で基本波電流If1の低減し始める」重畳率n/mの値に決定することに相当する。 As a method of determining this upper limit value, the upper limit of the range in which the fundamental wave current I f1 is lower than when the modulation rate n of the fifth harmonic is 0 (zero) is determined by determining the superimposition ratio n/m of the superposition ratio n/m. It may also be an upper limit value. In other words, the upper limit is the superposition ratio n/m, which is the upper limit of the range of the superposition ratio n/m in which the fundamental wave current I f1 decreases compared to the fundamental wave current I f1 when the superposition ratio n/m is 0 (zero). The value may be determined. For example, in FIG. 10, the fundamental wave current I f1 decreases in the range where the superposition ratio n/m is less than 0, compared to when the superposition ratio n/m is 0, so the upper limit of this range is The superimposition ratio n/m becomes less than 0. In this case, the upper limit of the superimposition ratio n/m may be determined to be less than 0. Further, in a range where the superimposition ratio n/m is -0.1 or less, the fundamental wave current I f1 decreases rapidly, and if this range is used, the upper limit becomes -0.1. In this case, the upper limit of the superimposition ratio n/m is determined to be -0.1. In FIG. 12, the fundamental wave current I f1 decreases in the range where the superimposition ratio n/m is smaller than 0, compared to when the superimposition ratio n/m is 0, and the upper limit of the superposition ratio n/m is determined to be less than 0. This corresponds to determining the upper limit value of the superimposition ratio n/m to a value of the superimposition ratio n/m at which "the fundamental wave current I f1 starts to decrease due to a change in magnetic characteristics."
 また、重畳率n/mの上限値を決定する方法として、5次高調波の変調率nが0(ゼロ)の場合に比べて、「一次電流Iと二次電圧Vとに基づいて算出される所定の損失」としての鉄損Pfeが下回る範囲の上限となる重畳率n/mとして上限値を決定するようにしてもよい。すなわち、重畳率n/mが0の場合の鉄損Pfeに比べて、鉄損Pfeが低減する重畳率n/mの範囲の上限となる重畳率n/mを上限値に決定してもよい。例えば、図11や図12では重畳率n/mが0のときの鉄損Pfeに比べて、鉄損Pfeが低減する重畳率n/mの範囲は-0.3以上かつ0未満の範囲であるので、この範囲の重畳率n/mの上限が0未満となる。この場合、重畳率n/mの上限値が0未満に決定される。なお、所定の損失として、鉄損Pfe以外の損失を用いてもよい。 In addition, as a method for determining the upper limit value of the superimposition ratio n/m, compared to the case where the modulation ratio n of the fifth harmonic is 0 (zero), "based on the primary current I 1 and the secondary voltage V 2 The upper limit value may be determined as a superimposition ratio n/m that is the upper limit of the range below which the iron loss P fe as the calculated predetermined loss falls. In other words, the upper limit value is determined to be the superposition ratio n/m, which is the upper limit of the range of the superposition ratio n/m in which the iron loss P fe is reduced compared to the iron loss P fe when the superposition ratio n/m is 0. Good too. For example, in FIGS. 11 and 12, the range of the overlap ratio n/m in which the iron loss P fe is reduced compared to the iron loss P fe when the overlap ratio n/m is 0 is −0.3 or more and less than 0. Since this is a range, the upper limit of the superimposition ratio n/m in this range is less than 0. In this case, the upper limit of the superimposition ratio n/m is determined to be less than 0. Note that a loss other than the iron loss P fe may be used as the predetermined loss.
 次に、重畳率n/mの下限値を決定する(下限値決定ステップ、下限値決定工程)(S107ステップ)。 Next, the lower limit value of the superimposition ratio n/m is determined (lower limit value determination step, lower limit value determination step) (S107 step).
 この下限値を決定する方法として、5次高調波の変調率nが0(ゼロ)の場合を基準とする基本波電流If1の低減量に比べて、5次高調波の変調率nが0(ゼロ)の場合を基準とする高調波電流Iharmonicの増加量が下回る範囲の下限となる重畳率n/mを下限値に決定するようにしてもよい。すなわち、重畳率n/mが0(ゼロ)の場合を基準とするときの基本波電流If1の低減量と高調波電流Iharmonicの増加量との比較を用いて決定するようにしてもよい。まず、重畳率n/mが0(ゼロ)の場合の基本波電流If1を基準として、重畳率n/mが変化したときのその基準からの基本波電流If1の低減量を算出する。また、重畳率n/mが0(ゼロ)の場合の高調波電流Iharmonicを基準として、重畳率n/mが変化したときのその基準からの高調波電流Iharmonicの増加量を算出する。そして、重畳率n/mが0(ゼロ)の場合を基準とする基本波電流If1の低減量と、重畳率n/mが0(ゼロ)の場合を基準とする高調波電流Iharmonicの増加量とを比較して、基本波電流If1の低減量が高調波電流Iharmonicの増加量よりも下回る重畳率n/mの範囲を求め、この範囲の下限となる重畳率n/mを重畳率n/mの下限値に決定するようにしてもよい。基本波電流If1の低減量が高調波電流Iharmonicの増加量よりも下回る状態では、基本波電流If1の低減量の絶対値が高調波電流Iharmonicの増加量の絶対値よりも大きくなる。 As a method for determining this lower limit value, the modulation rate n of the fifth harmonic is 0 (zero) compared to the amount of reduction in the fundamental wave current I f1 based on the case where the modulation rate n of the fifth harmonic is 0 (zero). The lower limit value may be determined to be the superimposition ratio n/m, which is the lower limit of the range in which the increase amount of the harmonic current I harmonic is less than the case where the harmonic current I harmonic is (zero). That is, the determination may be made by comparing the amount of reduction in the fundamental wave current I f1 and the amount of increase in the harmonic current I harmonic when the superimposition ratio n/m is 0 (zero) as a reference. . First, using the fundamental wave current I f1 when the superimposition ratio n/m is 0 (zero) as a reference, the amount of reduction in the fundamental wave current I f1 from the reference when the superimposition ratio n/m changes is calculated. Further, with the harmonic current I harmonic when the superposition ratio n/m is 0 (zero) as a reference, the amount of increase in the harmonic current I harmonic from the reference when the superposition ratio n/m changes is calculated. Then, the amount of reduction of the fundamental wave current I f1 based on the case where the superimposition ratio n/m is 0 (zero), and the reduction amount of the harmonic current I harmonic based on the case where the superposition ratio n/m is 0 (zero). Find the range of the superimposition ratio n/m in which the reduction amount of the fundamental wave current I f1 is lower than the increase amount of the harmonic current I harmonic by comparing the increase amount, and find the superposition ratio n/m that is the lower limit of this range. The lower limit value of the superimposition ratio n/m may be determined. When the amount of reduction in fundamental wave current I f1 is lower than the amount of increase in harmonic current I harmonic , the absolute value of the amount of reduction in fundamental wave current I f1 becomes larger than the absolute value of the amount of increase in harmonic current I harmonic . .
 また、重畳率n/mの下限値を決定する方法として、5次高調波の変調率nが0(ゼロ)の場合よりも「所定の損失」としての鉄損Pfeが下回る範囲の下限となる重畳率n/mを下限値に決定するようにしてもよい。すなわち、重畳率n/mが0(ゼロ)の場合の鉄損Pfeに比べて、鉄損Pfeが低減する重畳率n/mの範囲の下限として下限値を決定するようにしてもよい。例えば、図11や図12では重畳率n/mが0のときの鉄損Pfeに比べて、鉄損Pfeが低減する重畳率n/mの範囲は-0.3以上かつ0未満の範囲であるので、この範囲の重畳率n/mの下限が-0.3となる。この場合、重畳率n/mの下限値が-0.3に決定される。 In addition, as a method for determining the lower limit value of the superposition ratio n/m, the lower limit of the range in which the iron loss P fe as a "predetermined loss" is lower than when the modulation rate n of the fifth harmonic is 0 (zero) is determined. The lower limit may be determined to be a superimposition ratio n/m. In other words, the lower limit value may be determined as the lower limit of the range of the superposition ratio n/m in which the iron loss P fe is reduced compared to the iron loss P fe when the superposition ratio n/m is 0 (zero). . For example, in FIGS. 11 and 12, the range of the overlap ratio n/m in which the iron loss P fe is reduced compared to the iron loss P fe when the overlap ratio n/m is 0 is −0.3 or more and less than 0. Since this is a range, the lower limit of the overlap ratio n/m for this range is -0.3. In this case, the lower limit value of the superimposition ratio n/m is determined to be -0.3.
 なお、測定データの存在する範囲で下限値を決定するようにしてもよい。この場合、図11では下限値が-0.25に決定され、図12では下限値が-0.2に決定されることになる。 Note that the lower limit value may be determined within the range where measurement data exists. In this case, the lower limit value is determined to be -0.25 in FIG. 11, and the lower limit value is determined to be -0.2 in FIG. 12.
 以上の重畳率n/mの下限値を決定する2つの方法は、下限値を「基本波電流If1の低減効果より高調波成分による増加のほうが大きくなる」重畳率n/mの値に決定することに相当する。 The above two methods for determining the lower limit value of the superimposition ratio n/m are to determine the lower limit value to a value of the superposition ratio n/m at which "the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1 ". It corresponds to doing.
 次に、重畳率n/mの設定値を設定する(重畳率設定ステップ、重畳率設定工程)(S108ステップ)。S106ステップで決定された重畳率n/mの上限値とS107ステップで決定された重畳率n/mの下限値との間の範囲で、上記式(11)に示す信号波h(t)の重畳率n/mの設定値を設定する。この重畳率n/mの設定値として、モータ駆動システム1を設計したり、製造したりする。すなわち、この重畳率n/mの設定値として、上記式(2)、式(4)、式(6)に示すモータ駆動システム1の三相の信号波h(t)、h(t)、h(t)が設定される。 Next, a set value of the superimposition ratio n/m is set (superposition ratio setting step, superposition ratio setting step) (step S108). The signal wave h(t) shown in equation (11) above is within the range between the upper limit value of the superimposition ratio n/m determined in step S106 and the lower limit value of the superimposition ratio n/m determined in step S107. Set the setting value of the superimposition ratio n/m. The motor drive system 1 is designed or manufactured based on the set value of this superimposition ratio n/m. That is, as the setting value of this superimposition ratio n/m, the three-phase signal waves h u (t), h v (t ), h w (t) are set.
 なお、図15では、重畳率n/mを大きい側から小さい側に変化させて測定を行う流れを示したが、重畳率n/mを小さい側から大きい側に変化させるようにしてもよい。また、5次高調波の初期位相φを0[rad]として重畳率n/mを変化させる流れを示したが、初期位相を0[rad]以外に設定して行うようにしてもよい。 Note that although FIG. 15 shows the flow of measuring by changing the superimposition ratio n/m from a large side to a small side, it is also possible to change the superimposition ratio n/m from a small side to a large side. Further, although the flow of changing the superimposition ratio n/m by setting the initial phase φ of the fifth harmonic to 0 [rad] has been shown, it may be performed by setting the initial phase to a value other than 0 [rad].
 5次高調波の初期位相φが0[rad]などとしてあらかじめ固定されている場合には、図15に示した流れで重畳率n/mを設定して上記式(11)に示す信号波h(t)を決定すればよい。5次高調波の初期位相φが固定されておらず変化させて設定する場合には、続けて、以下に示すように初期位相φの設定値を決定する。 If the initial phase φ of the fifth harmonic is fixed in advance as 0 [rad], etc., the superimposition ratio n/m is set according to the flow shown in FIG. (t) may be determined. If the initial phase φ of the fifth harmonic is not fixed and is set by changing it, then the set value of the initial phase φ is determined as shown below.
 図16は、リング試験で5次高調波の初期位相φを設定する概略的な流れを示す図である。 FIG. 16 is a diagram showing a schematic flow of setting the initial phase φ of the fifth harmonic in the ring test.
 このリング試験では、重畳率n/mを一定として、5次高調波の初期位相φを大きい側から小さい側に変化させて測定を行う。 In this ring test, measurements are performed while keeping the superimposition ratio n/m constant and changing the initial phase φ of the fifth harmonic from the larger side to the smaller side.
 まず、重畳率n/mの上限値と下限値の範囲内で重畳率n/mを設定する(S110ステップ)。例えば、図15に示した重畳率n/mを設定する流れにより設定された重畳率n/mに設定する。図13に示す測定条件であれば、重畳率n/mを-0.2に設定する。設定したこの重畳率n/mに固定した状態で5次高調波の初期位相φを変化させる。 First, the superimposition ratio n/m is set within the range of the upper limit value and lower limit value of the superimposition ratio n/m (step S110). For example, the superimposition ratio n/m is set according to the flow for setting the superimposition ratio n/m shown in FIG. Under the measurement conditions shown in FIG. 13, the superimposition ratio n/m is set to -0.2. The initial phase φ of the fifth harmonic is changed while the superimposition ratio is fixed at the set superimposition ratio n/m.
 次に、5次高調波の初期位相φを最大値に設定する(S111ステップ)。例えば、図13に示す測定条件であれば、初期位相φを最大値となる3π/4[rad](=135°)に設定する。 Next, the initial phase φ of the fifth harmonic is set to the maximum value (step S111). For example, under the measurement conditions shown in FIG. 13, the initial phase φ is set to 3π/4 [rad] (=135°), which is the maximum value.
 次に、リング試験装置109を測定条件に調整する(S112ステップ)。例えば、図13に示す測定条件であれば、リング試験装置109を、IGBTインバータ62への入力電圧Vdcを15[V]とし、基本正弦波磁束密度Bf1が1[T]となるように基本正弦波変調率mを調整する。そして、設定された重畳率n/mと初期位相φになるように上記式(11)に示す信号波h(t)を構成してPWM信号を生成し、このPWM信号をIGBTインバータ102に入力して動作させる。IGBTインバータ102からは、パルス幅変調電圧が出力され、このパルス幅変調電圧の印加により一次コイルに一次電流Iが流れる。 Next, the ring test device 109 is adjusted to the measurement conditions (step S112). For example, under the measurement conditions shown in FIG. 13, the ring test device 109 is set such that the input voltage V dc to the IGBT inverter 62 is 15 [V], and the fundamental sine wave magnetic flux density B f1 is 1 [T]. Adjust the basic sine wave modulation rate m. Then, a PWM signal is generated by configuring the signal wave h(t) shown in equation (11) above so that the set superimposition ratio n/m and initial phase φ are obtained, and this PWM signal is input to the IGBT inverter 102. and make it work. A pulse width modulated voltage is output from the IGBT inverter 102, and the application of this pulse width modulated voltage causes a primary current I1 to flow through the primary coil.
 次に、リング試験装置109のリング試料101に巻回された一次コイルに流れる一次電流Iと、リング試料101に巻回された二次コイルに発生する二次電圧Vを測定する(S113ステップ)。 Next, the primary current I 1 flowing in the primary coil wound around the ring sample 101 of the ring test device 109 and the secondary voltage V 2 generated in the secondary coil wound around the ring sample 101 are measured (S113 step).
 一次電流Iと二次電圧Vの測定後、5次高調波の初期位相φを所定量低下させて設定する(S114ステップ)。例えば、図13に示す測定条件であれば、初期位相φをπ/4[rad](=45°)低下させて設定する。 After measuring the primary current I1 and the secondary voltage V2 , the initial phase φ of the fifth harmonic is set to be lowered by a predetermined amount (step S114). For example, in the measurement conditions shown in FIG. 13, the initial phase φ is set to be lowered by π/4 [rad] (=45°).
 このように設定された初期位相φが最小値以上であるか検査され、最小値以上の場合(S115ステップのYesの場合)、S112ステップに戻って測定が繰り返される。ここで、検査に用いられる5次高調波の初期位相φの最小値とは、例えば、図13に示す測定条件であれば、初期位相φが-3π/4[rad](=-135°)となる値である。 It is checked whether the initial phase φ set in this way is greater than or equal to the minimum value, and if it is greater than or equal to the minimum value (Yes in step S115), the process returns to step S112 and the measurement is repeated. Here, the minimum value of the initial phase φ of the fifth harmonic used for inspection is, for example, under the measurement conditions shown in FIG. 13, the initial phase φ is -3π/4 [rad] (=-135°). This is the value.
 設定された初期位相φが最小値以上でない場合(S115ステップのNoの場合)、各初期位相φの測定データについて、基本波電流If1、鉄損Pfe、高調波電流Iharmonicを算出する(S116ステップ)。 If the set initial phase φ is not greater than or equal to the minimum value (No in step S115), the fundamental wave current I f1 , iron loss P fe , and harmonic current I harmonic are calculated for the measurement data of each initial phase φ ( S116 step).
 次に、5次高調波の初期位相φの最大位相角を決定する(最大位相角決定ステップ、最大位相角決定工程)(S117ステップ)。 Next, the maximum phase angle of the initial phase φ of the fifth harmonic is determined (maximum phase angle determination step, maximum phase angle determination step) (step S117).
 この初期位相φの最大位相角を決定する方法として、5次高調波の変調率nが0(ゼロ)の場合よりも基本波電流If1が下回る範囲の最大値となる初期位相φを初期位相φの最大位相角としてもよい。すなわち、重畳率n/mが0(ゼロ)の場合の基本波電流If1に比べて、基本波電流If1が減少する初期位相φの範囲の最大値となる初期位相φを最大位相角に決定するようにしてもよい。例えば、図14(a)であれば、基本波電流If1は、水平の破線として示される重畳率n/mが0の場合に比べて、初期位相φが0[rad]以下の範囲で減少しているため、この範囲の最大値は初期位相φが0[rad]のときとなる。この場合には、初期位相φの最大位相角が0[rad]と決定される。また、基本波電流If1を示すプロットが、水平の破線を上下に挟む初期位相φがπ/4[rad]と0[rad]のプロット間を内挿して、水平の破線の基本波電流If1となる初期位相φを算出し、この算出された初期位相φを最大位相角に決定するようにしてもよい。これらは、5次高調波の初期位相φの最大位相角を「磁気特性の変化で基本波電流If1の低減し始める」初期位相φの値に決定することに相当する。 As a method of determining the maximum phase angle of this initial phase φ, the initial phase φ that is the maximum value in the range in which the fundamental wave current I f1 is lower than when the modulation rate n of the fifth harmonic is 0 (zero) is determined as the initial phase. It may also be the maximum phase angle of φ. In other words, the initial phase φ that is the maximum value of the range of initial phase φ in which the fundamental wave current I f1 decreases compared to the fundamental wave current I f1 when the superimposition ratio n/m is 0 (zero) is set to the maximum phase angle. It may be decided. For example, in the case of FIG. 14(a), the fundamental wave current I f1 decreases in the range where the initial phase φ is 0 [rad] or less, compared to the case where the superimposition ratio n/m shown as a horizontal broken line is 0. Therefore, the maximum value in this range is when the initial phase φ is 0 [rad]. In this case, the maximum phase angle of the initial phase φ is determined to be 0 [rad]. In addition, the plot showing the fundamental wave current I f1 is obtained by interpolating between the plots where the initial phase φ is π/4 [rad] and 0 [rad] that sandwich the horizontal broken line above and below, and the fundamental wave current I f1 of the horizontal broken line is Alternatively, the initial phase φ that is f1 may be calculated, and the calculated initial phase φ may be determined as the maximum phase angle. These correspond to determining the maximum phase angle of the initial phase φ of the fifth harmonic to the value of the initial phase φ at which "the fundamental wave current I f1 starts to decrease due to a change in magnetic characteristics."
 また、初期位相φの最大位相角を決定する方法として、5次高調波の変調率nが0(ゼロ)の場合よりも、「所定の損失」としての鉄損Pfeが下回る範囲の最大値となる初期位相φとして最大位相角を決定するようにしてもよい。すなわち、重畳率n/mが0(ゼロ)の場合の鉄損Pfeに比べて、鉄損Pfeが低減する初期位相φの範囲の最大値となる初期位相φを最大位相角に決定してもよい。例えば、図14(b)では水平の破線として示される重畳率n/mが0のときの鉄損Pfeに比べて、鉄損Pfeが低減する初期位相φの範囲は-π/4[rad]以上かつπ/2[rad]以下の範囲であるので、この範囲の初期位相φの最大値がπ/2[rad]となる。この場合、初期位相φの最大位相角がπ/2[rad]に決定される。 In addition, as a method for determining the maximum phase angle of the initial phase φ, the maximum value in the range in which the iron loss P fe as a "predetermined loss" is lower than that when the modulation rate n of the fifth harmonic is 0 (zero). The maximum phase angle may be determined as the initial phase φ. In other words, the maximum phase angle is determined to be the initial phase φ that is the maximum value in the range of initial phase φ in which the iron loss P fe is reduced compared to the iron loss P fe when the superimposition ratio n/m is 0 (zero). You can. For example, compared to the iron loss P fe when the superposition ratio n/m is 0, which is shown as a horizontal broken line in FIG. 14(b), the range of the initial phase φ in which the iron loss P fe is reduced is −π/4[ rad] or more and π/2 [rad] or less, the maximum value of the initial phase φ in this range is π/2 [rad]. In this case, the maximum phase angle of the initial phase φ is determined to be π/2 [rad].
 次に、5次高調波の初期位相φの最小位相角を決定する(最小位相角決定ステップ、最小位相角決定工程)(S118ステップ)。 Next, the minimum phase angle of the initial phase φ of the fifth harmonic is determined (minimum phase angle determination step, minimum phase angle determination step) (step S118).
 この初期位相φの最小位相角を決定する方法として、5次高調波の変調率nが0(ゼロ)の場合を基準とする基本波電流If1の低減量に比べて、5次高調波の変調率nが0(ゼロ)の場合を基準とする高調波電流Iharmonicの増加量が下回る範囲の最小値となる初期位相φを最小位相角に決定するようにしてもよい。まず、重畳率n/mが0(ゼロ)の場合の基本波電流If1を基準として、初期位相φが変化したときのその基準からの基本波電流If1の低減量を算出する。また、重畳率n/mが0(ゼロ)の場合の高調波電流Iharmonicを基準として、初期位相φが変化したときのその基準からの高調波電流Iharmonicの増加量を算出する。そして、重畳率n/mが0(ゼロ)の場合を基準とする基本波電流If1の低減量と、重畳率n/mが0(ゼロ)の場合を基準とする高調波電流Iharmonicの増加量とを比較して、基本波電流If1の低減量が高調波電流Iharmonicの増加量よりも下回る初期位相φの範囲を求め、この範囲の最小値となる初期位相φを初期位相φの最小位相角に決定するようにしてもよい。基本波電流If1の低減量が高調波電流Iharmonicの増加量よりも下回る状態では、基本波電流If1の低減量の絶対値の方が高調波電流Iharmonicの増加量の絶対値に比べて大きくなる。 As a method of determining the minimum phase angle of this initial phase φ, the amount of reduction of the fundamental wave current I f1 based on the case where the modulation rate n of the fifth harmonic is 0 (zero) is The minimum phase angle may be determined to be the initial phase φ that is the minimum value within the range in which the amount of increase in the harmonic current I harmonic is below the case where the modulation rate n is 0 (zero). First, using the fundamental wave current I f1 when the superimposition ratio n/m is 0 (zero) as a reference, the amount of reduction in the fundamental wave current I f1 from the reference when the initial phase φ changes is calculated. Furthermore, using the harmonic current I harmonic when the superimposition ratio n/m is 0 (zero) as a reference, the amount of increase in the harmonic current I harmonic from the reference when the initial phase φ changes is calculated. Then, the reduction amount of the fundamental wave current I f1 with reference to the case where the superimposition ratio n/m is 0 (zero), and the reduction amount of the harmonic current I harmonic with reference to the case where the superposition ratio n/m is 0 (zero). The range of the initial phase φ in which the amount of reduction in the fundamental wave current I f1 is lower than the amount of increase in the harmonic current I harmonic is determined by comparing the amount of increase, and the initial phase φ that is the minimum value in this range is set as the initial phase φ. Alternatively, the minimum phase angle may be determined. When the amount of reduction in fundamental wave current I f1 is lower than the amount of increase in harmonic current I harmonic , the absolute value of the amount of reduction in fundamental wave current I f1 is greater than the absolute value of the amount of increase in harmonic current I harmonic . It gets bigger.
 また、初期位相φの最小位相角を決定する方法として、5次高調波の変調率nが0(ゼロ)の場合よりも「所定の損失」としての鉄損Pfeが下回る範囲の最小値となる初期位相φを最小値に決定するようにしてもよい。すなわち、重畳率n/mが0(ゼロ)の場合の鉄損Pfeに比べて、鉄損Pfeが低減する初期位相φの範囲の最小値として最小位相角を決定するようにしてもよい。例えば、図14(b)では水平の破線として示される重畳率n/mが0のときの鉄損Pfeに比べて、鉄損Pfeが低減する初期位相φの範囲は-π/4[rad]以上かつπ/2[rad]以下の範囲であるので、この範囲の初期位相φの最小値が-π/4[rad]となる。この場合、初期位相φの最小位相角が-π/4[rad]に決定される。 In addition, as a method of determining the minimum phase angle of the initial phase φ, the minimum value in the range where the iron loss P fe as a "predetermined loss" is lower than that when the modulation rate n of the fifth harmonic is 0 (zero). The initial phase φ may be determined to be the minimum value. That is, the minimum phase angle may be determined as the minimum value of the range of initial phase φ in which the iron loss P fe is reduced compared to the iron loss P fe when the superimposition ratio n/m is 0 (zero). . For example, compared to the iron loss P fe when the superposition ratio n/m is 0, which is shown as a horizontal broken line in FIG. 14(b), the range of the initial phase φ in which the iron loss P fe is reduced is −π/4[ rad] or more and π/2 [rad] or less, the minimum value of the initial phase φ in this range is −π/4 [rad]. In this case, the minimum phase angle of the initial phase φ is determined to be −π/4 [rad].
 以上の初期位相φの最小位相角を決定する2つの方法は、最小位相角を「基本波電流If1の低減効果より高調波成分による増加のほうが大きくなる」初期位相φの値に決定することに相当する。 The above two methods for determining the minimum phase angle of the initial phase φ are to determine the minimum phase angle to a value of the initial phase φ at which “the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1 ”. corresponds to
 次に、初期位相φの設定値を設定する(初期位相設定ステップ、初期位相設定工程)(S119ステップ)。S117ステップで決定された初期位相φの最大位相角とS118ステップで決定された初期位相φの最小位相角との間の範囲で、上記式(11)に示す信号波h(t)の5次高調波の初期位相φの設定値を設定する。この初期位相φの設定値として、モータ駆動システム1を設計したり、製造したりする。すなわち、この初期位相φの設定値として、上記式(2)、式(4)、式(6)に示すモータ駆動システム1の三相の信号波h(t)、h(t)、h(t)が設定される。 Next, a set value of the initial phase φ is set (initial phase setting step, initial phase setting step) (step S119). In the range between the maximum phase angle of the initial phase φ determined in step S117 and the minimum phase angle of the initial phase φ determined in step S118, the 5th order of the signal wave h(t) shown in the above equation (11) Set the setting value of the initial phase φ of the harmonic. The motor drive system 1 is designed or manufactured based on the set value of this initial phase φ. That is, as the setting value of this initial phase φ, the three-phase signal waves h u (t), h v (t), h w (t) is set.
 なお、図16では、初期位相φを大きい側から小さい側に変化させて測定を行う流れを示したが、初期位相φを小さい側から大きい側に変化させるようにしてもよい。 Although FIG. 16 shows the flow of measuring by changing the initial phase φ from the larger side to the smaller side, the initial phase φ may also be changed from the smaller side to the larger side.
 また、上記式(11)に示す信号波h(t)の5次高調波の初期位相φの設定値として、上記式(10)に示す基本正弦波g(t)の位相角がπ/2ラジアンのときの基本正弦波g(t)の数値が、そのときの信号波h(t)の数値以上となる5次高調波の初期位相φに設定するようにしてもよい。すなわち、基本正弦波g(t)の位相角(2πft)がπ/2ラジアンのときの基本正弦波g(t)の数値m・sin(π/2)が、信号波h(t)=m・sin(π/2)+n・sin(5・π/2+φ)の数値以上となる初期位相φに設定してもよい。 Also, as the setting value of the initial phase φ of the fifth harmonic of the signal wave h(t) shown in the above equation (11), the phase angle of the fundamental sine wave g(t) shown in the above equation (10) is π/2 The initial phase φ of the fifth harmonic may be set such that the value of the fundamental sine wave g(t) in radians is greater than or equal to the value of the signal wave h(t) at that time. That is, when the phase angle (2πf 1 t) of the fundamental sine wave g(t) is π/2 radian, the numerical value m・sin(π/2) of the fundamental sine wave g(t) is the signal wave h(t) The initial phase φ may be set to be equal to or greater than the value of =m·sin(π/2)+n·sin(5·π/2+φ).
 <モータ試験による設定方法、設計方法及び製造方法>
 次に、モータ試験によるモータ駆動システム1の設定方法、設計方法及び製造方法について説明する。
<Setting method, design method, and manufacturing method by motor test>
Next, a method of setting, designing, and manufacturing the motor drive system 1 through a motor test will be described.
 図17は、このモータ駆動システム1の設定、設計及び製造に用いるモータ試験装置289の概略構成図である。このモータ試験装置289は、後述する特性評価試験2(モータ試験)で用いたモータ試験装置89と同じ構成である(このため、詳細は後述する特性評価試験2(モータ試験)を参照)。 FIG. 17 is a schematic configuration diagram of a motor testing device 289 used for setting, designing, and manufacturing this motor drive system 1. This motor test device 289 has the same configuration as the motor test device 89 used in characteristic evaluation test 2 (motor test) described later (therefore, refer to characteristic evaluation test 2 (motor test) described later for details).
 図18は、モータ試験の試験モータ(埋込構造永久磁石同期電動機273)の例を示す図であり、(a)はモータの概略断面図、(b)はモータの仕様を示す図である。このモータ試験の埋込構造永久磁石同期電動機273には、モータ駆動システム1に用いられる永久磁石同期モータ5と同一のモータが使用される。また、この試験モータ(埋込構造永久磁石同期電動機273)は、ロータとステータで構成され、ロータとステータの鉄心材料は上記のリング試験による方法に用いたリング試験装置109のリング試料101と同一の材料である。 FIG. 18 is a diagram showing an example of a test motor (embedded permanent magnet synchronous motor 273) for the motor test, in which (a) is a schematic cross-sectional view of the motor, and (b) is a diagram showing the specifications of the motor. The same motor as the permanent magnet synchronous motor 5 used in the motor drive system 1 is used as the embedded structure permanent magnet synchronous motor 273 in this motor test. Furthermore, this test motor (embedded structure permanent magnet synchronous motor 273) is composed of a rotor and a stator, and the iron core material of the rotor and stator is the same as the ring sample 101 of the ring test device 109 used in the above ring test method. It is the material of
 図17に示すIGBTインバータ271は、スイッチング素子としてSi-IGBT、還流ダイオードとしてSiダイオードを搭載した三相Si-IGBTインバータである。このIGBTインバータ271は、モータ駆動システム1の三相インバータ部2と同一の構成であり、このIGBTインバータ271に用いられているスイッチング素子と還流ダイオードは、モータ駆動システム1の三相インバータ部2に用いられているスイッチング素子S~Sと還流ダイオードD~Dと同じものである。 The IGBT inverter 271 shown in FIG. 17 is a three-phase Si-IGBT inverter equipped with a Si-IGBT as a switching element and a Si diode as a freewheeling diode. This IGBT inverter 271 has the same configuration as the three-phase inverter section 2 of the motor drive system 1, and the switching elements and free wheel diodes used in this IGBT inverter 271 are the same as the three-phase inverter section 2 of the motor drive system 1. The switching elements S 1 to S 6 and free wheel diodes D 1 to D 6 used are the same.
 このIGBTインバータ271の制御には、5次調波重畳PWM方式が採用される。すなわち、上記式(11)に示す5次高調波を重畳した信号波h(t)と、三角波として構成されるキャリア波との交点でパルス幅を切り替えてPWM信号を生成し、このPWM信号がIGBTインバータ271に入力される。PWM信号が入力されたIGBTインバータ271からは、埋込構造永久磁石同期電動機273を回転駆動させるPWM駆動電圧が出力され、この同期電動機273が回転する。 A fifth harmonic superimposition PWM method is adopted for controlling this IGBT inverter 271. That is, a PWM signal is generated by switching the pulse width at the intersection of the signal wave h(t) on which the fifth harmonic shown in the above equation (11) is superimposed and the carrier wave configured as a triangular wave, and this PWM signal is It is input to the IGBT inverter 271. The IGBT inverter 271 to which the PWM signal is input outputs a PWM drive voltage that rotates the embedded permanent magnet synchronous motor 273, causing the synchronous motor 273 to rotate.
 電力の測定と波形の観測は、電力計測器272を用いて行われる。 The power measurement and waveform observation are performed using the power meter 272.
 図19は、モータ試験の測定条件(重畳率)の例を示す図である。測定条件は、例として、回転速度ωを750[rpm]、平均トルクTを0.611[Nm]、キャリア周波数fを1[kHz]、IGBTインバータ271への入力電圧Vdcを50[V]とし、回転速度ωおよびトルクTが一定となるようにフィードバック制御することで、基本正弦波変調率mを調節する。また、図19に示す測定条件の例では、重畳率n/mを変化させて測定する範囲が、-0.25以上0以下の範囲となっているが、重畳率n/mがプラスになる範囲を含めて、プラス側とマイナス側にさらに広い重畳率n/mの範囲で変化させて測定してもよい。なお、図19では、5次高調波の初期位相φが0[rad]となっている。 FIG. 19 is a diagram showing an example of measurement conditions (superimposition ratio) for a motor test. The measurement conditions are, for example, rotational speed ω of 750 [rpm], average torque T of 0.611 [Nm], carrier frequency fc of 1 [kHz], and input voltage V dc to the IGBT inverter 271 of 50 [V]. ], and the basic sine wave modulation rate m is adjusted by performing feedback control so that the rotational speed ω and the torque T are constant. In addition, in the example of the measurement conditions shown in FIG. 19, the range to be measured by changing the superimposition ratio n/m is from −0.25 to 0, but the overlap ratio n/m becomes positive. The measurement may be performed by changing the superimposition ratio over a wider range of n/m on the plus side and the minus side. Note that in FIG. 19, the initial phase φ of the fifth harmonic is 0 [rad].
 次に、モータ試験装置289の損失算出方法について説明する。IGBTインバータ271への入力電力Pinとモータ各相の入力電力P、P、P、モータ各相の入力電流実効値Iu_rms、Iv_rms、Iw_rms、モータ各相の入力電流I、I、Iを測定し、損失の算出に用いる。 Next, a loss calculation method of the motor testing device 289 will be explained. Input power P in to the IGBT inverter 271, input power P u , P v , P w of each phase of the motor, effective input current value I u_rms , I v_rms , I w_rms , input current I u of each phase of the motor , I v , and I w are measured and used to calculate the loss.
 モータ各相の入力電流実効値Iu_rms、Iv_rms、Iw_rmsは、モータ各相の入力電流I、I、Iの実効値として測定、算出される。 The input current effective values I u_rms , I v_rms , and I w_rms of each phase of the motor are measured and calculated as the effective values of the input currents I u , I v , and I w of each phase of the motor.
 このモータ試験装置289の全体損失Ptotalは式(17)に示すように、インバータ損Pinv、銅損PCu、モータコア損・機械損Pcore&mechで構成される。インバータ損Pinvは、IGBTインバータ271への入力電力Pin、モータ各相の入力電力P、P、P、電力計測器272の損失Pw.mにより式(18)のように算出する。電力計測器272の損失Pw.mは、シャント抵抗Rshunt(=0.1[Ω])、接続ケーブルの抵抗Rcable(=0.012[Ω])、モータ各相の入力電流実効値Iu_rms、Iv_rms、Iw_rmsにより式(19)のように算出する。銅損PCuは巻線抵抗R(=0.5[Ω])、モータ各相の入力電流実効値Iu_rms、Iv_rms、Iw_rmsにより式(20)のように算出する。モータコア損・機械損Pcore&mechは、モータ各相の入力電力P、P、P、銅損PCu、機械出力ωTにより式(21)のように算出する。なお、モータコア損Pcoreと機械損Pmechは、いずれも直接測定することが困難であるため、機械損Pmechとモータコア損Pcoreを分類せず、モータコア損・機械損Pcore&mechとして損失を算出した。
 以下に、重畳率n/mを変化させて測定したモータ試験における測定結果の例を示す。
As shown in equation (17), the overall loss P total of this motor testing device 289 is composed of an inverter loss P inv , a copper loss P Cu , and a motor core loss/mechanical loss P core&mech . The inverter loss P inv is the input power P in to the IGBT inverter 271 , the input power P u , P v , P w of each phase of the motor, the loss P w of the power measuring device 272 . It is calculated using equation (18) using m . Loss P of power meter 272 w. m is determined by the shunt resistance R shunt (=0.1 [Ω]), the resistance R cable (=0.012 [Ω]) of the connection cable, and the effective input current values of each phase of the motor I u_rms , I v_rms , I w_rms Calculate as shown in equation (19). The copper loss P Cu is calculated as shown in equation (20) using the winding resistance R (=0.5 [Ω]) and the effective input current values I u_rms , I v_rms , and I w_rms of each phase of the motor. The motor core loss/mechanical loss P core&mech is calculated as shown in equation (21) using the input power P u , P v , P w of each phase of the motor, the copper loss P Cu , and the mechanical output ωT. Note that since it is difficult to directly measure both motor core loss P core and mechanical loss P mech , mechanical loss P mech and motor core loss P core are not classified, and the loss is calculated as motor core loss/mechanical loss P core & mech. did.
Examples of measurement results in motor tests measured while changing the superimposition ratio n/m are shown below.
 図20は、モータ試験による基本波電流If1_rmsと基本正弦波変調率mの例を示す図である。 FIG. 20 is a diagram showing an example of the fundamental wave current I f1_rms and the fundamental sine wave modulation rate m obtained by motor testing.
 モータ試験における基本波電流If1_rmsは、モータ各相の入力電流I、I、Iから算出される基本正弦波周波数fの成分の実効値の相平均である。 The fundamental wave current I f1_rms in the motor test is the phase average of the effective value of the component of the fundamental sine wave frequency f 1 calculated from the input currents I u , I v , I w of each phase of the motor.
 この図は、回転速度ω(=750[rpm])および平均トルクT(=0.611[Nm])が一定となるようにフィードバック制御することにより得られた基本正弦波変調率mの5次高調波の重畳率特性を示している。基本正弦波変調率mは、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.25、-0.15、-0.1で減少している。また、基本波電流If1_rmsも、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.25、-0.15、-0.1で減少している。これは上記のリング試験の測定結果と同じ現象である(図10参照)。重畳率n/mが0未満のときが、「磁気特性の変化で基本波電流If1_rmsの低減し始める」重畳率n/mの値になるといえる。この値を重畳率n/mの上限に設定するようにしてもよい。 This figure shows the fifth order of the fundamental sine wave modulation rate m obtained by feedback control so that the rotational speed ω (=750 [rpm]) and the average torque T (=0.611 [Nm]) are constant. It shows the superimposition rate characteristics of harmonics. The fundamental sine wave modulation rate m is -0.25, -0.15, -0. It is decreasing by 1. Also, the fundamental wave current I f1_rms has a superimposition rate n/m of -0.25, -0.15, -0 compared to the case where the fifth harmonic is not superimposed (the case where the superposition ratio n/m is 0). It has decreased by .1. This is the same phenomenon as the measurement result of the ring test described above (see FIG. 10). When the superposition ratio n/m is less than 0, it can be said that the value of the superposition ratio n/m is such that "the fundamental wave current I f1_rms starts to decrease due to a change in the magnetic characteristics." This value may be set as the upper limit of the superimposition ratio n/m.
 図21は、モータ試験による全体損失Ptotalの例を示す図である。図中の水平の破線は、5次高調波の変調率nが0の場合、すなわち、基本正弦波g(t)を信号波h(t)として用いた場合の全体損失Ptotalの測定値を示している。 FIG. 21 is a diagram illustrating an example of the total loss P total due to a motor test. The horizontal broken line in the figure indicates the measured value of the total loss P total when the modulation rate n of the fifth harmonic is 0, that is, when the fundamental sine wave g(t) is used as the signal wave h(t). Showing.
 全体損失Ptotalは、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.25、-0.15、-0.1で減少している。また、重畳率n/mが-0.15のとき最小値を示し、5次高調波を重畳しない場合との比較で、損失低減率は1.5%である。また、重畳率n/mが-0.10のときも損失低減率が1.4%であり、損失が大きく低減されている。この図から、重畳率n/mが-0.25より小さくなると5次高調波を重畳しない場合に比べて、全体損失Ptotalが大きくなることが想定される。このように想定されるため、重畳率n/mが-0.25のとき、「基本波電流If1_rmsの低減効果より高調波成分による増加のほうが大きくなる」重畳率n/mの値になるといえる。この値を重畳率n/mの下限に設定するようにしてもよい。 The overall loss P total is greater when the superposition rate n/m is -0.25, -0.15, and -0.1 compared to the case where the fifth harmonic is not superimposed (when the superposition ratio n/m is 0). is decreasing. Further, when the superimposition ratio n/m is -0.15, it shows the minimum value, and the loss reduction rate is 1.5% compared to the case where the fifth harmonic is not superimposed. Also, when the superimposition ratio n/m is −0.10, the loss reduction rate is 1.4%, and the loss is greatly reduced. From this figure, it is assumed that when the superimposition ratio n/m becomes less than -0.25, the overall loss P total becomes larger than when the fifth harmonic is not superimposed. Because of this assumption, when the superposition ratio n/m is -0.25, the value of the superposition ratio n/m will be such that "the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1_rms ". I can say that. This value may be set as the lower limit of the superimposition ratio n/m.
 以下に、5次高調波の初期位相φを変化させて測定したモータ試験における測定結果の例を示す。 Below, examples of measurement results in motor tests measured while changing the initial phase φ of the fifth harmonic are shown.
 図22は、5次高調波の初期位相φを変化させて測定を行うモータ試験の測定条件(位相角)の例を示す図である。この測定条件の例では、初期位相φを変化させて測定する範囲が、0[rad]とπ/4[rad]だけになっているが、初期位相φがマイナスになる範囲を含めて、プラス側とマイナス側にさらに広い初期位相φの範囲で変化させて測定してもよい。なお、図22では、重畳率n/mが-0.1と0となっている。 FIG. 22 is a diagram showing an example of measurement conditions (phase angle) for a motor test in which measurement is performed by changing the initial phase φ of the fifth harmonic. In this example of measurement conditions, the range to be measured by changing the initial phase φ is only 0 [rad] and π/4 [rad], but the range where the initial phase φ is negative includes the range where the initial phase φ is negative. Measurement may be performed by changing the initial phase φ within a wider range between the negative side and the negative side. Note that in FIG. 22, the superimposition ratio n/m is −0.1, which is 0.
 図23は、モータ試験による基本正弦波変調率mと基本波電流If1_rmsの例を示す図である。横軸は左側が重畳率n/mが0の場合、中央が重畳率n/mが-0.1で5次高調波の初期位相φが0[rad]の場合、右側が重畳率n/mが-0.1で初期位相φがπ/4[rad]の場合を示す。 FIG. 23 is a diagram showing an example of the fundamental sine wave modulation factor m and the fundamental wave current I f1_rms in a motor test. On the horizontal axis, the left side is when the superposition rate n/m is 0, the center is when the superposition rate n/m is -0.1 and the initial phase φ of the fifth harmonic is 0 [rad], and the right side is the superposition rate n/m. The case where m is −0.1 and the initial phase φ is π/4 [rad] is shown.
 この図は、回転速度ω(=750[rpm])および平均トルクT(=0.611[Nm])が一定となるようにフィードバック制御したときの基本正弦波変調率mである。基本正弦波変調率mと基本波電流If1_rmsは共に、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.1のとき減少している。また、重畳率n/mが-0.1の条件では、5次高調波の初期位相φが0[rad]よりもπ/4[rad]で基本正弦波変調率mと基本波電流If1_rmsが減少している。 This figure shows the basic sine wave modulation rate m when feedback control is performed so that the rotation speed ω (=750 [rpm]) and the average torque T (=0.611 [Nm]) are constant. Both the fundamental sine wave modulation rate m and the fundamental wave current I f1_rms are higher when the superposition ratio n/m is -0.1 than when the fifth harmonic is not superimposed (when the superposition ratio n/m is 0). is decreasing. In addition, under the condition that the superimposition ratio n/m is -0.1, the initial phase φ of the fifth harmonic is π/4 [rad] than 0 [rad], and the fundamental sine wave modulation rate m and the fundamental wave current I f1_rms is decreasing.
 仮に初期位相φのデータが0[rad]とπ/4[rad]の2点だけであり、この範囲で考えれば、初期位相φがπ/4[rad]より小さくなると、「磁気特性の変化で基本波電流If1_rmsの低減し始める」といえる。この初期位相φの値(π/4)を最大位相角に設定するようにしてもよい。 If the data of the initial phase φ is only at two points, 0 [rad] and π/4 [rad], and if we consider this range, if the initial phase φ becomes smaller than π/4 [rad], "change in magnetic properties" will occur. It can be said that the fundamental wave current I f1_rms starts to decrease. The value of this initial phase φ (π/4) may be set as the maximum phase angle.
 図24は、モータ試験による全体損失Ptotalの例を示す図である。図中の水平の破線は、基本正弦波g(t)を信号波h(t)として用いた場合(5次高調波の変調率nが0の場合)の全体損失Ptotalの測定値を示している。 FIG. 24 is a diagram illustrating an example of the total loss P total due to a motor test. The horizontal broken line in the figure indicates the measured value of the overall loss P total when the fundamental sine wave g(t) is used as the signal wave h(t) (when the modulation rate n of the fifth harmonic is 0). ing.
 全体損失Ptotalは、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.1のとき低減している。また、重畳率n/mが-0.1の条件では、5次高調波の初期位相φがπ/4[rad]よりも0[rad]で全体損失Ptotalが低減している。 The overall loss P total is reduced when the superposition ratio n/m is -0.1 compared to the case where the fifth harmonic is not superimposed (the case where the superposition ratio n/m is 0). Further, under the condition that the superposition ratio n/m is −0.1, the overall loss P total is reduced when the initial phase φ of the fifth harmonic is 0 [rad] than π/4 [rad].
 初期位相φをπ/4[rad]から小さくしていくと、全体損失Ptotalは初期位相φが0のときに減少している。しかし、初期位相φをさらに小さくしていくと全体損失Ptotalは増加していくことが予想される。そして、初期位相φをさらに小さくしていき、全体損失Ptotalが重畳率n/mが0のときの全体損失Ptotalとほぼ同じ値を示す初期位相φのとき、「基本波電流If1_rmsの低減効果より高調波成分による増加のほうが大きくなる」初期位相φの値といえる。この値を初期位相φの最小位相角に設定するようにしてもよい。 When the initial phase φ is decreased from π/4 [rad], the overall loss P total decreases when the initial phase φ is 0. However, it is expected that the overall loss P total will increase as the initial phase φ is further reduced. Then, the initial phase φ is further reduced, and when the initial phase φ has a value that is almost the same as the total loss P total when the superimposition ratio n/m is 0, “the fundamental wave current I f1_rms This can be said to be the value of the initial phase φ where the increase due to harmonic components is greater than the reduction effect. This value may be set as the minimum phase angle of the initial phase φ.
 図23と図24に基づいて検討すると、図3(a)に示したように基本正弦波g(t)の位相角がπ/2ラジアンのときの基本正弦波g(t)の数値が、そのときの信号波h(t)の数値以上となる5次高調波の初期位相φに設定され、動作すると、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、基本波電流If1_rmsが減少することが考えられる。また、全体損失Ptotalも低減することが考えられる。 Examining based on FIGS. 23 and 24, the numerical value of the fundamental sine wave g(t) when the phase angle of the fundamental sine wave g(t) is π/2 radian as shown in FIG. 3(a) is The initial phase φ of the 5th harmonic is set to be greater than the value of the signal wave h(t) at that time, and when it operates, compared to the case where the 5th harmonic is not superimposed (when the superimposition rate n/m is 0) Therefore, it is conceivable that the fundamental wave current I f1_rms decreases. It is also possible to reduce the overall loss P total .
 例えば、上記式(1)に示す基本正弦波g(t)と上記式(2)に示す信号波h(t)を用いて説明すると、基本正弦波g(t)の位相角(2πft)がπ/2ラジアンのときの基本正弦波g(t)の数値m・sin(π/2)が、信号波h(t)=m・sin(π/2)+n・sin(5・π/2+φ)の数値以上となる初期位相φに設定されることになる。すなわち、g(t)(=m・sin(π/2)) >= h(t)(=m・sin(π/2)+n・sin(5・π/2+φ))となる条件を満たすように5次高調波の初期位相φが設定されることになる。 For example, when explaining using the fundamental sine wave g u (t) shown in the above equation (1) and the signal wave h u (t) shown in the above equation (2), the phase angle of the fundamental sine wave g u (t) ( The numerical value m・sin(π/2) of the fundamental sine wave g u (t) when 2πf 1 t) is π/2 radian is the signal wave h u (t)=m・sin(π/2)+n・The initial phase φ is set to be equal to or greater than the value of sin(5·π/2+φ). In other words, the condition that g u (t) (= m・sin (π/2)) >= h u (t) (= m・sin (π/2) + n・sin (5・π/2 + φ)) is The initial phase φ of the fifth harmonic is set so as to satisfy the following conditions.
 図25は、モータ試験で重畳率n/mを設定する概略的な流れを示す図である。 FIG. 25 is a diagram schematically showing the flow of setting the superimposition ratio n/m in a motor test.
 このモータ試験では、5次高調波の初期位相φを0[rad]として、重畳率n/mを大きい側から小さい側に変化させて測定を行う。 In this motor test, the initial phase φ of the fifth harmonic is set to 0 [rad], and measurements are performed while changing the superimposition ratio n/m from a large side to a small side.
 まず、重畳率n/mを最大値に設定する(S200ステップ)。例えば、重畳率n/mを-0.3以上かつ0.3以下の範囲で変化させる場合には、重畳率n/mを最大値となる0.3に設定する。 First, the superimposition ratio n/m is set to the maximum value (step S200). For example, when changing the superimposition ratio n/m in the range of −0.3 or more and 0.3 or less, the superposition ratio n/m is set to 0.3, which is the maximum value.
 次に、モータ試験装置289を測定条件に調整する(S201ステップ)。例えば、図19に示す測定条件であれば、モータ試験装置289を、回転速度ωを750[rpm]、平均トルクTを0.611[Nm]、キャリア周波数fを1[kHz]、IGBTインバータ271への入力電圧Vdcを50[V]とし、回転速度ωおよびトルクTが一定となるようにフィードバック制御することで、基本正弦波変調率mを調節する。そして、設定された重畳率n/mになるように上記式(11)に示す信号波h(t)を構成してPWM信号を生成し、このPWM信号をIGBTインバータ271に入力する。IGBTインバータ271からは、PWM信号に基づいてPWM駆動電圧が出力され、埋込構造永久磁石同期電動機273が回転駆動する。 Next, the motor testing device 289 is adjusted to the measurement conditions (step S201). For example, under the measurement conditions shown in FIG. 19, the motor testing device 289 is configured such that the rotational speed ω is 750 [rpm], the average torque T is 0.611 [Nm], the carrier frequency fc is 1 [kHz], and the IGBT inverter The basic sine wave modulation rate m is adjusted by setting the input voltage V dc to 271 to 50 [V] and performing feedback control so that the rotational speed ω and the torque T are constant. Then, a PWM signal is generated by configuring the signal wave h(t) shown in the above equation (11) so that the set superimposition ratio n/m is achieved, and this PWM signal is input to the IGBT inverter 271. The IGBT inverter 271 outputs a PWM drive voltage based on the PWM signal, and the embedded permanent magnet synchronous motor 273 is driven to rotate.
 次に、モータ試験装置289のIGBTインバータ271への入力電力Pinとモータ各相の入力電力P、P、P、モータ各相の入力電流実効値Iu_rms、Iv_rms、Iw_rms、モータ各相の入力電流I、I、Iを測定する(S202ステップ)。 Next, the input power P in to the IGBT inverter 271 of the motor test device 289, the input power P u , P v , P w of each phase of the motor, the effective input current value of each phase of the motor I u_rms , I v_rms , I w_rms , The input currents I u , I v , I w of each phase of the motor are measured (step S202).
 入力電力Pin等を測定後、重畳率n/mを所定量低下させて設定する(S203ステップ)。例えば、所定量を0.05とした場合、重畳率n/mを0.05低下させて設定する。 After measuring the input power P in, etc., the superimposition ratio n/m is set to be lowered by a predetermined amount (step S203). For example, when the predetermined amount is 0.05, the superimposition ratio n/m is set to be reduced by 0.05.
 このように設定された重畳率n/mが最小値以上であるか検査され、最小値以上の場合(S204ステップのYesの場合)、S201ステップに戻って測定が繰り返される。ここで、検査に用いられる重畳率n/mの最小値とは、例えば、重畳率n/mを-0.3以上かつ0.3以下の範囲で変化させる場合には、重畳率n/mが-0.3となる値である。 It is checked whether the superimposition ratio n/m set in this way is greater than or equal to the minimum value, and if it is greater than or equal to the minimum value (Yes in step S204), the process returns to step S201 and the measurement is repeated. Here, the minimum value of the superposition ratio n/m used for inspection means, for example, when the superposition ratio n/m is changed in the range of -0.3 or more and 0.3 or less, the superposition ratio n/m is -0.3.
 設定された重畳率n/mが最小値以上でない場合(S204ステップのNoの場合)、各重畳率n/mの測定データについて、相平均の基本波電流If1_rms、モータコア損・機械損Pcore&mechなどの各損失P及び全体損失Ptotal、相平均の高調波電流Iharmonic_rmsを算出する(S205ステップ)。 If the set superimposition ratio n/m is not greater than or equal to the minimum value (No in step S204), for the measurement data of each superimposition ratio n/m, the phase average fundamental wave current I f1_rms , motor core loss/mechanical loss P core&mech Each loss P, total loss P total , and phase average harmonic current I harmonic_rms are calculated (step S205).
 モータ試験における高調波電流Iharmonic_rmsは、モータ各相の入力電流I、I、Iから算出される基本正弦波周波数fの高調波成分(入力電流I、I、Iの高調波成分)の実効値の相平均である。 The harmonic current I harmonic_rms in the motor test is the harmonic component of the fundamental sine wave frequency f 1 calculated from the input current I u , I v , I w of each phase of the motor (the harmonic component of the input current I u , I v , I w is the phase average of the effective values of harmonic components).
 次に、重畳率n/mの上限値を決定する(上限値決定ステップ、上限値決定工程)(S206ステップ)。 Next, the upper limit value of the superimposition ratio n/m is determined (upper limit value determination step, upper limit value determination step) (step S206).
 この上限値を決定する方法として、5次高調波の変調率nが0(ゼロ)の場合よりも基本波電流If1_rmsが下回る範囲の上限となる重畳率n/mを重畳率n/mの上限値としてもよい。すなわち、重畳率n/mが0(ゼロ)の場合の基本波電流If1_rmsに比べて、基本波電流If1_rmsが減少する重畳率n/mの範囲の上限となる重畳率n/mを上限値に決定するようにしてもよい。例えば、図20であれば、基本波電流If1_rmsは、重畳率n/mが0の場合に比べて、重畳率n/mが0より小さい範囲で減少しているため、この範囲の上限は重畳率n/mが0未満となる。この場合には、重畳率n/mの上限値を0未満と決定してもよい。これは、重畳率n/mの上限値を「磁気特性の変化で基本波電流If1_rmsの低減し始める」重畳率n/mの値に決定することに相当する。 As a method of determining this upper limit value, the upper limit of the range in which the fundamental wave current I f1_rms is lower than when the modulation rate n of the fifth harmonic is 0 (zero) is determined by determining the superimposition ratio n/m of the superposition ratio n/m. It may also be an upper limit value. In other words, the upper limit is the superposition ratio n/m, which is the upper limit of the range of the superposition ratio n/m in which the fundamental wave current I f1_rms decreases compared to the fundamental wave current I f1_rms when the superposition ratio n/m is 0 (zero). The value may be determined. For example, in FIG. 20, the fundamental wave current I f1_rms decreases in a range where the superimposition ratio n/m is less than 0, compared to when the superimposition ratio n/m is 0, so the upper limit of this range is The superimposition ratio n/m becomes less than 0. In this case, the upper limit of the superimposition ratio n/m may be determined to be less than 0. This corresponds to determining the upper limit value of the superimposition ratio n/m to a value of the superimposition ratio n/m at which "the fundamental wave current I f1_rms starts to decrease due to a change in magnetic characteristics."
 また、重畳率n/mの上限値を決定する方法として、5次高調波の変調率nが0(ゼロ)の場合に比べて、「IGBTインバータ271への入力電力Pin、同期モータ各相の入力電力P、P、P、または、同期モータ各相の入力電流I、I、Iの内の少なくとも何れかに基づいて算出される所定の損失」としての全体損失Ptotalが下回る範囲の上限となる重畳率n/mとして上限値を決定するようにしてもよい。すなわち、重畳率n/mが0の場合の全体損失Ptotalに比べて、全体損失Ptotalが低減する重畳率n/mの範囲の上限となる重畳率n/mを上限値に決定してもよい。例えば、図21では重畳率n/mが0のときの全体損失Ptotalに比べて、全体損失Ptotalが低減する重畳率n/mの範囲は-0.25以上かつ0未満の範囲であるので、この範囲の重畳率n/mの上限が0未満となる。この場合、重畳率n/mの上限値が0未満に決定される。なお、所定の損失として、全体損失Ptotal以外のモータコア損・機械損Pcore&mech、インバータ損Pinv、銅損PCuなどその他の損失を用いてもよい。 In addition, as a method for determining the upper limit value of the superimposition ratio n/m, compared to the case where the modulation ratio n of the fifth harmonic is 0 (zero), "input power P in to the IGBT inverter 271, synchronous motor each phase The total loss P as a predetermined loss calculated based on at least one of the input powers P u , P v , P w of the synchronous motor, or the input currents I u , I v , I w of each phase of the synchronous motor. The upper limit value may be determined as the superimposition ratio n/m that is the upper limit of the range below which the total falls. That is, the upper limit value is determined to be the superposition ratio n/m, which is the upper limit of the range of the superposition ratio n/m in which the overall loss P total is reduced compared to the total loss P total when the superposition ratio n/m is 0. Good too. For example, in FIG. 21, the range of the superposition ratio n/m in which the overall loss P total is reduced compared to the total loss P total when the superposition ratio n/m is 0 is a range of -0.25 or more and less than 0. Therefore, the upper limit of the superimposition ratio n/m in this range is less than 0. In this case, the upper limit of the superimposition ratio n/m is determined to be less than 0. Note that other losses other than the overall loss P total , such as motor core loss/mechanical loss P core&mech , inverter loss P inv , and copper loss P Cu , may be used as the predetermined loss.
 次に、重畳率n/mの下限値を決定する(下限値決定ステップ、下限値決定工程)(S207ステップ)。 Next, the lower limit value of the superimposition ratio n/m is determined (lower limit value determination step, lower limit value determination step) (step S207).
 この下限値を決定する方法として、5次高調波の変調率nが0(ゼロ)の場合を基準とする基本波電流If1_rmsの低減量に比べて、5次高調波の変調率nが0(ゼロ)の場合を基準とする高調波電流Iharmonic_rmsの増加量が下回る範囲の下限となる重畳率n/mを下限値に決定するようにしてもよい。すなわち、重畳率n/mが0(ゼロ)の場合を基準とするときの基本波電流If1_rmsの低減量と高調波電流Iharmonic_rmsの増加量との比較を用いて決定するようにしてもよい。まず、重畳率n/mが0(ゼロ)の場合の基本波電流If1_rmsを基準として、重畳率n/mが変化したときのその基準からの基本波電流If1_rmsの低減量を算出する。また、重畳率n/mが0(ゼロ)の場合の高調波電流Iharmonic_rmsを基準として、重畳率n/mが変化したときのその基準からの高調波電流Iharmonic_rmsの増加量を算出する。そして、重畳率n/mが0(ゼロ)の場合を基準とする基本波電流If1_rmsの低減量と、重畳率n/mが0(ゼロ)の場合を基準とする高調波電流Iharmonic_rmsの増加量とを比較して、基本波電流If1_rmsの低減量が高調波電流Iharmonic_rmsの増加量よりも下回る重畳率n/mの範囲を求め、この範囲の下限となる重畳率n/mを重畳率n/mの下限値に決定するようにしてもよい。基本波電流If1_rmsの低減量が高調波電流Iharmonic_rmsの増加量よりも下回る状態では、基本波電流If1_rmsの低減量の絶対値が高調波電流Iharmonic_rmsの増加量の絶対値より大きくなる。 As a method for determining this lower limit value, the modulation rate n of the fifth harmonic is 0 (zero) compared to the amount of reduction in the fundamental wave current I f1_rms based on the case where the modulation rate n of the fifth harmonic is 0 (zero). The lower limit value may be determined to be the superimposition ratio n/m, which is the lower limit of the range in which the amount of increase in the harmonic current I harmonic_rms is lower than the case where the harmonic current I harmonic_rms is zero. That is, the determination may be made by comparing the amount of reduction in the fundamental wave current I f1_rms and the amount of increase in the harmonic current I harmonic_rms when the superimposition ratio n/m is 0 (zero). . First, using the fundamental wave current I f1_rms when the superimposition ratio n/m is 0 (zero) as a reference, the amount of reduction in the fundamental wave current I f1_rms from the reference when the superimposition ratio n/m changes is calculated. Furthermore, with the harmonic current I harmonic_rms when the superposition ratio n/m is 0 (zero) as a reference, the amount of increase in the harmonic current I harmonic_rms from the reference when the superposition ratio n/m changes is calculated. Then, the amount of reduction of the fundamental wave current I f1_rms with reference to the case where the superimposition ratio n/m is 0 (zero), and the amount of reduction of the harmonic current I harmonic_rms with reference to the case where the superposition ratio n/m is 0 (zero). Find the range of the superimposition ratio n/m in which the reduction amount of the fundamental wave current I f1_rms is lower than the increase amount of the harmonic current I harmonic_rms by comparing the increase amount, and find the superimposition ratio n/m that is the lower limit of this range. The lower limit value of the superimposition ratio n/m may be determined. In a state where the amount of reduction in the fundamental wave current I f1_rms is lower than the amount of increase in the harmonic current I harmonic_rms , the absolute value of the amount of reduction in the fundamental wave current I f1_rms is larger than the absolute value of the amount of increase in the harmonic current I harmonic_rms .
 また、重畳率n/mの下限値を決定する方法として、5次高調波の変調率nが0(ゼロ)の場合よりも「所定の損失」としての全体損失Ptotalが下回る範囲の下限となる重畳率n/mを下限値に決定するようにしてもよい。すなわち、重畳率n/mが0(ゼロ)の場合の全体損失Ptotalに比べて、全体損失Ptotalが低減する重畳率n/mの範囲の下限として下限値を決定するようにしてもよい。例えば、図21では重畳率n/mが0のときの全体損失Ptotalに比べて、全体損失Ptotalが低減する重畳率n/mの範囲は-0.25以上かつ0未満の範囲であるので、この範囲の重畳率n/mの下限が-0.25となる。この場合、重畳率n/mの下限値が-0.25に決定される。 In addition, as a method for determining the lower limit value of the superposition ratio n/m, the lower limit of the range in which the overall loss P total as a "predetermined loss" is lower than when the modulation rate n of the fifth harmonic is 0 (zero) is determined. The lower limit may be determined to be a superimposition ratio n/m. That is, the lower limit value may be determined as the lower limit of the range of the superposition ratio n/m in which the overall loss P total is reduced compared to the total loss P total when the superposition ratio n/m is 0 (zero). . For example, in FIG. 21, the range of the superposition ratio n/m in which the overall loss P total is reduced compared to the total loss P total when the superposition ratio n/m is 0 is a range of -0.25 or more and less than 0. Therefore, the lower limit of the superimposition ratio n/m in this range is -0.25. In this case, the lower limit value of the superimposition ratio n/m is determined to be -0.25.
 以上の重畳率n/mの下限値を決定する2つの方法は、下限値を「基本波電流If1_rmsの低減効果より高調波成分による増加のほうが大きくなる」重畳率n/mの値に決定することに相当する。 The above two methods for determining the lower limit value of the superposition ratio n/m are to determine the lower limit value to a value of the superposition ratio n/m at which "the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1_rms " It corresponds to doing.
 次に、重畳率n/mの設定値を設定する(重畳率設定ステップ、重畳率設定工程)(S208ステップ)。S206ステップで決定された重畳率n/mの上限値とS207ステップで決定された重畳率n/mの下限値との間の範囲で、上記式(11)に示す信号波h(t)の重畳率n/mの設定値を設定する。この重畳率n/mの設定値として、モータ駆動システム1を設計したり、製造したりする。すなわち、この重畳率n/mの設定値として、上記式(2)、式(4)、式(6)に示すモータ駆動システム1の三相の信号波h(t)、h(t)、h(t)が設定される。 Next, a set value of the superimposition ratio n/m is set (superposition ratio setting step, superposition ratio setting step) (step S208). The signal wave h(t) shown in equation (11) above is within the range between the upper limit value of the superimposition ratio n/m determined in step S206 and the lower limit value of the superimposition ratio n/m determined in step S207. Set the setting value of the superimposition ratio n/m. The motor drive system 1 is designed or manufactured based on the set value of this superimposition ratio n/m. That is, as the setting value of this superimposition ratio n/m, the three-phase signal waves h u (t), h v (t ), h w (t) are set.
 なお、図25では、重畳率n/mを大きい側から小さい側に変化させて測定を行う流れを示したが、重畳率n/mを小さい側から大きい側に変化させるようにしてもよい。また、5次高調波の初期位相φを0[rad]として重畳率n/mを変化させる流れを示したが、初期位相を0[rad]以外に設定して行うようにしてもよい。 Although FIG. 25 shows the flow of measuring by changing the superimposition ratio n/m from a large side to a small side, it is also possible to change the superimposition ratio n/m from a small side to a large side. Further, although the flow of changing the superimposition ratio n/m by setting the initial phase φ of the fifth harmonic to 0 [rad] has been shown, it may be performed by setting the initial phase to a value other than 0 [rad].
 5次高調波の初期位相φが0[rad]などとしてあらかじめ固定されている場合には、図25に示した流れで重畳率n/mを設定して上記式(11)に示す信号波h(t)を決定すればよい。5次高調波の初期位相φが固定されておらず変化させて設定する場合には、続けて、以下に示すように初期位相φの設定値を決定する。 When the initial phase φ of the fifth harmonic is fixed in advance as 0 [rad], etc., the superimposition ratio n/m is set according to the flow shown in FIG. 25 to generate the signal wave h shown in the above equation (11). (t) may be determined. If the initial phase φ of the fifth harmonic is not fixed and is set by changing it, then the set value of the initial phase φ is determined as shown below.
 図26は、モータ試験で5次高調波の初期位相φを設定する概略的な流れを示す図である。 FIG. 26 is a diagram showing a schematic flow of setting the initial phase φ of the fifth harmonic in a motor test.
 このモータ試験では、重畳率n/mを一定として、5次高調波の初期位相φを大きい側から小さい側に変化させて測定を行う。 In this motor test, the superimposition ratio n/m is kept constant and the initial phase φ of the fifth harmonic is changed from the larger side to the smaller side.
 まず、重畳率n/mの上限値と下限値の範囲内で重畳率n/mを設定する(S210ステップ)。例えば、図25に示した重畳率n/mを設定する流れにより設定された重畳率n/mに設定する。図22に示す測定条件であれば、重畳率n/mを-0.1に設定する。設定したこの重畳率n/mに固定した状態で5次高調波の初期位相φを変化させる。 First, the superimposition ratio n/m is set within the range of the upper limit value and the lower limit value of the superimposition ratio n/m (step S210). For example, the superimposition ratio n/m is set according to the flow for setting the superimposition ratio n/m shown in FIG. Under the measurement conditions shown in FIG. 22, the superimposition ratio n/m is set to -0.1. The initial phase φ of the fifth harmonic is changed while the superimposition ratio is fixed at the set superimposition ratio n/m.
 次に、5次高調波の初期位相φを最大値に設定する(S211ステップ)。例えば、初期位相φを-3π/4[rad](=-135°)以上かつ3π/4[rad](=135°)以下の範囲で変化させる場合には、最大値となる3π/4[rad](=135°)に設定する。 Next, the initial phase φ of the fifth harmonic is set to the maximum value (step S211). For example, when changing the initial phase φ in the range from -3π/4[rad] (=-135°) to 3π/4[rad] (=135°), the maximum value is 3π/4[rad] (=-135°). rad] (=135°).
 次に、モータ試験装置289を測定条件に調整する(S212ステップ)。例えば、図22に示す測定条件であれば、モータ試験装置289を、回転速度ωを750[rpm]、平均トルクTを0.611[Nm]、キャリア周波数fを1[kHz]、IGBTインバータ271への入力電圧Vdcを50[V]とし、回転速度ωおよびトルクTが一定となるようにフィードバック制御することで、基本正弦波変調率mを調節する。そして、設定された重畳率n/mになるように上記式(11)に示す信号波h(t)を構成してPWM信号を生成し、このPWM信号をIGBTインバータ271に入力する。IGBTインバータ271からは、PWM信号に基づいてPWM駆動電圧が出力され、埋込構造永久磁石同期電動機273が回転駆動する。 Next, the motor testing device 289 is adjusted to the measurement conditions (step S212). For example, under the measurement conditions shown in FIG. 22, the motor testing device 289 is configured such that the rotational speed ω is 750 [rpm], the average torque T is 0.611 [Nm], the carrier frequency fc is 1 [kHz], and the IGBT inverter The basic sine wave modulation rate m is adjusted by setting the input voltage V dc to 271 to 50 [V] and performing feedback control so that the rotational speed ω and the torque T are constant. Then, a PWM signal is generated by configuring the signal wave h(t) shown in the above equation (11) so that the set superimposition ratio n/m is achieved, and this PWM signal is input to the IGBT inverter 271. The IGBT inverter 271 outputs a PWM drive voltage based on the PWM signal, and the embedded permanent magnet synchronous motor 273 is driven to rotate.
 次に、モータ試験装置289のIGBTインバータ271への入力電力Pinとモータ各相の入力電力P、P、P、モータ各相の入力電流実効値Iu_rms、Iv_rms、Iw_rms、モータ各相の入力電流I、I、Iを測定する(S213ステップ)。 Next, the input power P in to the IGBT inverter 271 of the motor test device 289, the input power P u , P v , P w of each phase of the motor, the effective input current value of each phase of the motor I u_rms , I v_rms , I w_rms , The input currents I u , I v , I w of each phase of the motor are measured (step S213).
 入力電力Pin等を測定後、5次高調波の初期位相φを所定量低下させて設定する(S214ステップ)。例えば、所定量がπ/4[rad](=45°)であれば、初期位相φをπ/4[rad](=45°)低下させて設定する。 After measuring the input power P in , etc., the initial phase φ of the fifth harmonic is set by lowering it by a predetermined amount (step S214). For example, if the predetermined amount is π/4 [rad] (=45°), the initial phase φ is set to be lowered by π/4 [rad] (=45°).
 このように設定された初期位相φが最小値以上であるか検査され、最小値以上の場合(S215ステップのYesの場合)、S212ステップに戻って測定が繰り返される。ここで、検査に用いられる5次高調波の初期位相φの最小値とは、例えば、初期位相φを-3π/4[rad](=-135°)以上かつ3π/4[rad](=135°)以下の範囲で変化させる場合には、初期位相φが-3π/4(=-135°)となる値である。 It is checked whether the initial phase φ set in this way is greater than or equal to the minimum value, and if it is greater than or equal to the minimum value (Yes in step S215), the process returns to step S212 and the measurement is repeated. Here, the minimum value of the initial phase φ of the fifth harmonic used for inspection means, for example, that the initial phase φ is -3π/4 [rad] (=-135°) or more and 3π/4 [rad] (= 135°), the initial phase φ is −3π/4 (=−135°).
 設定された初期位相φが最小値以上でない場合(S215ステップのNoの場合)、各初期位相φの測定データについて、相平均の基本波電流If1_rms、モータコア損・機械損Pcore&mechなどの各損失P及び全体損失Ptotal、相平均の高調波電流Iharmonic_rmsを算出する(S216ステップ)。 If the set initial phase φ is not greater than or equal to the minimum value (No in step S215), each loss such as the phase average fundamental wave current I f1_rms and motor core loss/mechanical loss P core&mech is calculated for the measurement data of each initial phase φ. P, the overall loss P total , and the phase average harmonic current I harmonic_rms are calculated (step S216).
 次に、5次高調波の初期位相φの最大位相角を決定する(最大位相角決定ステップ、最大位相角決定工程)(S217ステップ)。 Next, the maximum phase angle of the initial phase φ of the fifth harmonic is determined (maximum phase angle determination step, maximum phase angle determination step) (S217 step).
 この初期位相φの最大位相角を決定する方法として、5次高調波の変調率nが0(ゼロ)の場合よりも基本波電流If1_rmsが下回る範囲の最大値となる初期位相φを初期位相φの最大位相角としてもよい。すなわち、重畳率n/mが0(ゼロ)の場合の基本波電流If1_rmsに比べて、基本波電流If1が減少する初期位相φの範囲の最大値となる初期位相φを最大位相角に決定するようにしてもよい。これは、初期位相φの最大位相角を「磁気特性の変化で基本波電流If1_rmsの低減し始める」初期位相φの値に決定することに相当する。 As a method of determining the maximum phase angle of this initial phase φ, the initial phase φ that is the maximum value in the range where the fundamental wave current I f1_rms is lower than when the modulation rate n of the fifth harmonic is 0 (zero) is determined as the initial phase. It may also be the maximum phase angle of φ. In other words, the initial phase φ, which is the maximum value in the range of initial phase φ in which the fundamental wave current I f1 decreases compared to the fundamental wave current I f1_rms when the superposition ratio n/m is 0 (zero), is set to the maximum phase angle. It may be decided. This corresponds to determining the maximum phase angle of the initial phase φ to a value of the initial phase φ at which “the fundamental wave current I f1_rms starts to decrease due to a change in magnetic characteristics.”
 また、初期位相φの最大位相角を決定する方法として、5次高調波の変調率nが0(ゼロ)の場合よりも、「所定の損失」としての全体損失Ptotalが下回る範囲の最大値となる初期位相φとして最大位相角を決定するようにしてもよい。すなわち、重畳率n/mが0(ゼロ)の場合の全体損失Ptotalに比べて、全体損失Ptotalが低減する初期位相φの範囲の最大値となる初期位相φを最大位相角に決定してもよい。 In addition, as a method for determining the maximum phase angle of the initial phase φ, the maximum value in the range where the overall loss P total as a "predetermined loss" is lower than when the modulation rate n of the fifth harmonic is 0 (zero). The maximum phase angle may be determined as the initial phase φ. In other words, the maximum phase angle is determined to be the initial phase φ that is the maximum value in the range of initial phases φ in which the total loss P total is reduced compared to the total loss P total when the superposition ratio n/m is 0 (zero). You can.
 次に、5次高調波の初期位相φの最小位相角を決定する(最小位相角決定ステップ、最小位相角決定工程)(S218ステップ)。 Next, the minimum phase angle of the initial phase φ of the fifth harmonic is determined (minimum phase angle determination step, minimum phase angle determination step) (S218 step).
 この初期位相φの最小位相角を決定する方法として、5次高調波の変調率nが0(ゼロ)の場合を基準とする基本波電流If1_rmsの低減量に比べて、5次高調波の変調率nが0(ゼロ)の場合を基準とする高調波電流Iharmonic_rmsの増加量が下回る範囲の最小値となる初期位相φを最小位相角に決定するようにしてもよい。まず、重畳率n/mが0(ゼロ)の場合の基本波電流If1_rmsを基準として、初期位相φが変化したときのその基準からの基本波電流If1_rmsの低減量を算出する。また、重畳率n/mが0(ゼロ)の場合の高調波電流Iharmonic_rmsを基準として、初期位相φが変化したときのその基準からの高調波電流Iharmonic_rmsの増加量を算出する。そして、重畳率n/mが0(ゼロ)の場合を基準とする基本波電流If1_rmsの低減量と、重畳率n/mが0(ゼロ)の場合を基準とする高調波電流Iharmonicの増加量とを比較して、基本波電流If1_rmsの低減量が高調波電流Iharmonic_rmsの増加量よりも下回る初期位相φの範囲を求め、この範囲の最小値となる初期位相φを初期位相φの最小位相角に決定するようにしてもよい。基本波電流If1_rmsの低減量が高調波電流Iharmonic_rmsの増加量よりも下回る状態では、基本波電流If1_rmsの低減量の絶対値の方が高調波電流Iharmonic_rmsの増加量の絶対値に比べて大きくなる。 As a method of determining the minimum phase angle of this initial phase φ, the amount of reduction of the fundamental wave current I f1_rms based on the case where the modulation rate n of the fifth harmonic is 0 (zero) is The minimum phase angle may be determined to be the initial phase φ that is the minimum value within the range in which the amount of increase in the harmonic current I harmonic_rms is below the case where the modulation rate n is 0 (zero). First, using the fundamental wave current I f1_rms when the superimposition ratio n/m is 0 (zero) as a reference, the amount of reduction in the fundamental wave current I f1_rms from the reference when the initial phase φ changes is calculated. Furthermore, using the harmonic current I harmonic_rms when the superimposition ratio n/m is 0 (zero) as a reference, the amount of increase in the harmonic current I harmonic_rms from the reference when the initial phase φ changes is calculated. Then, the reduction amount of the fundamental wave current I f1_rms based on the case where the superimposition ratio n/m is 0 (zero), and the reduction amount of the harmonic current I harmonic based on the case where the superposition ratio n/m is 0 (zero). By comparing the amount of increase, find the range of initial phase φ in which the amount of reduction of fundamental wave current I f1_rms is lower than the amount of increase of harmonic current I harmonic_rms , and set the initial phase φ that is the minimum value of this range as initial phase φ The minimum phase angle may be determined. When the amount of reduction in fundamental wave current I f1_rms is lower than the amount of increase in harmonic current I harmonic_rms , the absolute value of the amount of reduction in fundamental wave current I f1_rms is greater than the absolute value of the amount of increase in harmonic current I harmonic_rms . It gets bigger.
 また、初期位相φの最小位相角を決定する方法として、5次高調波の変調率nが0(ゼロ)の場合よりも「所定の損失」としての全体損失Ptotalが下回る範囲の最小値となる初期位相φを最小位相角に決定するようにしてもよい。すなわち、重畳率n/mが0(ゼロ)の場合の全体損失Ptotalに比べて、全体損失Ptotalが低減する初期位相φの範囲の最小値として最小位相角を決定するようにしてもよい。 In addition, as a method of determining the minimum phase angle of the initial phase φ, the minimum value in the range where the overall loss P total as a "predetermined loss" is lower than that when the modulation rate n of the fifth harmonic is 0 (zero). The initial phase φ may be determined as the minimum phase angle. That is, the minimum phase angle may be determined as the minimum value of the range of the initial phase φ in which the total loss P total is reduced compared to the total loss P total when the superimposition ratio n/m is 0 (zero). .
 以上の初期位相φの最小位相角を決定する2つの方法は、最小位相角を「基本波電流If1_rmsの低減効果より高調波成分による増加のほうが大きくなる」初期位相φの値に決定することに相当する。 The above two methods for determining the minimum phase angle of the initial phase φ are to determine the minimum phase angle to a value of the initial phase φ at which “the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1_rms ”. corresponds to
 次に、初期位相φの設定値を設定する(初期位相設定ステップ、初期位相設定工程)(S219ステップ)。S217ステップで決定された初期位相φの最大位相角とS218ステップで決定された初期位相φの最小位相角との間の範囲で、上記式(11)に示す信号波h(t)の5次高調波の初期位相φの設定値を設定する。この初期位相φの設定値として、モータ駆動システム1を設計したり、製造したりする。すなわち、この初期位相φの設定値として、上記式(2)、式(4)、式(6)に示すモータ駆動システム1の三相の信号波h(t)、h(t)、h(t)が設定される。 Next, a set value of the initial phase φ is set (initial phase setting step, initial phase setting process) (step S219). In the range between the maximum phase angle of the initial phase φ determined in step S217 and the minimum phase angle of the initial phase φ determined in step S218, the 5th order of the signal wave h(t) shown in equation (11) above Set the setting value of the initial phase φ of the harmonic. The motor drive system 1 is designed or manufactured based on the set value of this initial phase φ. That is, as the setting value of this initial phase φ, the three-phase signal waves h u (t), h v (t), h w (t) is set.
 なお、図26では、初期位相φを大きい側から小さい側に変化させて測定を行う流れを示したが、初期位相φを小さい側から大きい側に変化させるようにしてもよい。 Although FIG. 26 shows the flow of measuring by changing the initial phase φ from the larger side to the smaller side, the initial phase φ may also be changed from the smaller side to the larger side.
 また、上記式(11)に示す信号波h(t)の5次高調波の初期位相φの設定値として、上記式(10)に示す基本正弦波g(t)の位相角がπ/2ラジアンのときの基本正弦波g(t)の数値が、そのときの信号波h(t)の数値以上となる5次高調波の初期位相φに設定するようにしてもよい。 Also, as the setting value of the initial phase φ of the fifth harmonic of the signal wave h(t) shown in the above equation (11), the phase angle of the fundamental sine wave g(t) shown in the above equation (10) is π/2 The initial phase φ of the fifth harmonic may be set such that the value of the fundamental sine wave g(t) in radians is greater than or equal to the value of the signal wave h(t) at that time.
 以上は、このモータ駆動システム1の設定方法、設計方法及び製造方法として、上記式(10)に示す基本正弦波g(t)にその5次高調波を重畳した上記式(11)に示す信号波h(t)の重畳率n/mの上限値と下限値、重畳率n/mの設定値、5次高調波の初期位相φの最大位相角と最小位相角、初期位相φの設定値を決定する方法について説明した。 The above is a method of setting, designing, and manufacturing this motor drive system 1, in which the signal shown in equation (11) above is obtained by superimposing the fifth harmonic of the fundamental sine wave g(t) shown in equation (10) above. The upper and lower limits of the superimposition rate n/m of wave h(t), the setting value of the superimposition ratio n/m, the maximum and minimum phase angles of the initial phase φ of the fifth harmonic, and the setting value of the initial phase φ We explained how to determine the
 上記式(10)に示す基本正弦波g(t)に重畳する高調波は、5次高調波に限らず、5次以上の整数をaとして、a次高調波を重畳するようにしてもよい。この場合には、信号波h(t)は、式(22)として示される。
 上記のリング試験による方法や、上記のモータ試験による方法により、a次高調波を重畳した上記式(22)に示す信号波h(t)の重畳率n/mの上限値と下限値、重畳率n/mの設定値、a次高調波の初期位相φの最大位相角と最小位相角、初期位相φの設定値を決定する。
The harmonics to be superimposed on the fundamental sine wave g(t) shown in the above formula (10) are not limited to the fifth harmonic, but may be superimposed with the a-th harmonic, where a is an integer greater than or equal to the fifth harmonic. . In this case, the signal wave h a (t) is expressed as equation (22).
The upper and lower limits of the superimposition ratio n a /m of the signal wave h a (t) shown in equation (22) above with the a-th harmonic superimposed using the ring test method or the motor test method described above. , the setting value of the superimposition ratio n a /m, the maximum phase angle and minimum phase angle of the initial phase φ a of the a-th harmonic, and the setting value of the initial phase φ a .
 このように決定された信号波h(t)の重畳率n/mの上限値と下限値、重畳率n/mの設定値、a次高調波の初期位相φの最大位相角と最小位相角、初期位相φの設定値により、モータ駆動システム1を設計したり、製造したりする。すなわち、上記式(7)~式(9)に示すモータ駆動システム1のa次高調波を重畳する場合の三相の信号波hua(t)、hva(t)、hwa(t)が設定される。 The upper and lower limits of the superimposition ratio n a /m of the signal wave h a (t) determined in this way, the set value of the superimposition ratio n a /m, and the maximum phase angle of the initial phase φ a of the a-th harmonic. The motor drive system 1 is designed or manufactured based on the set values of the minimum phase angle and the initial phase φa . That is, the three-phase signal waves h ua (t), h va (t), h wa (t) when the a-th harmonics of the motor drive system 1 shown in the above formulas (7) to (9) are superimposed. is set.
 次に、この発明の実施の形態に係るモータ駆動システム1の効果について説明する。 Next, the effects of the motor drive system 1 according to the embodiment of the present invention will be explained.
 本実施形態によれば、信号波h(t)に5次高調波が重畳され、重畳率n/mの上限が磁気特性の変化で基本波電流If1、If1_rmsの低減し始めるn/mの値であり、n/mの下限が基本波電流If1、If1_rmsの低減効果より高調波成分による増加のほうが大きくなるn/mの値であるように動作する。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、モータ駆動システム1の損失を低減できる。 According to this embodiment, the fifth harmonic is superimposed on the signal wave h(t), and the upper limit of the superimposition ratio n/m is n/m where the fundamental wave currents I f1 and I f1_rms start to decrease due to changes in magnetic characteristics. It operates so that the lower limit of n/m is a value of n/m at which the increase due to harmonic components is greater than the reduction effect of the fundamental wave currents I f1 and I f1_rms . Because of this, the loss of the motor drive system 1 can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
 また、本実施形態によれば、重畳率n/mが-0.3より大きくかつ0未満の範囲で動作するため、安定してモータ駆動システム1の損失を低減できる。
また、本実施形態によれば、基本正弦波g(t)の位相角(2πft)がπ/2ラジアンのときの基本正弦波g(t)の数値m・sin(π/2)が、信号波h(t)=m・sin(π/2)+n・sin(5・π/2+φ)の数値以上となる5次高調波の初期位相φで動作する。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、モータ駆動システム1の損失を低減できる。
また、本実施形態によれば、5次高調波の初期位相φの最大位相角が、磁気特性の変化で基本波電流If1、If1_rmsの低減し始める初期位相φの値、初期位相φの最小位相角が、基本波電流If1、If1_rmsの低減効果より高調波成分による増加のほうが大きくなる初期位相φの値、で動作する。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、モータ駆動システム1の損失を低減できる。
Further, according to the present embodiment, since the operation is performed in a range where the superimposition ratio n/m is greater than −0.3 and less than 0, it is possible to stably reduce the loss of the motor drive system 1.
Further, according to the present embodiment, when the phase angle (2πf 1 t) of the fundamental sine wave g(t) is π/2 radian, the numerical value m·sin(π/2) of the fundamental sine wave g(t) is , the initial phase φ of the fifth harmonic is greater than or equal to the value of the signal wave h(t)=m·sin(π/2)+n·sin(5·π/2+φ). Because of this, the loss of the motor drive system 1 can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
Further, according to the present embodiment, the maximum phase angle of the initial phase φ of the fifth harmonic is the value of the initial phase φ at which the fundamental wave current I f1 , I f1_rms starts to decrease due to a change in magnetic characteristics, and the value of the initial phase φ of the initial phase φ The minimum phase angle operates at a value of the initial phase φ at which the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1 , I f1_rms . Because of this, the loss of the motor drive system 1 can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
 また、本実施形態によれば、信号波h(t)に5次以上のa次高調波が重畳され、重畳率n/mの上限が磁気特性の変化で基本波電流If1、If1_rmsの低減し始めるn/mの値であり、n/mの下限が基本波電流If1、If1_rmsの低減効果より高調波成分による増加のほうが大きくなるn/mの値であるように動作する。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、モータ駆動システム1の損失を低減できる。 Further, according to the present embodiment, the fifth or higher harmonics are superimposed on the signal wave h a (t), and the upper limit of the superimposition rate n a /m is the fundamental wave current I f1 , I This is the value of n a /m at which f1_rms starts to decrease, and the lower limit of n a /m is the value of n a /m at which the increase due to harmonic components is greater than the reduction effect of fundamental wave current I f1 and I f1_rms . It works like this. Because of this, the loss of the motor drive system 1 can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h a (t).
 また、本実施形態によれば、基本正弦波g(t)の位相角(2πft)がπ/2ラジアンのときの基本正弦波g(t)の数値m・sin(π/2)が、信号波h(t)=m・sin(π/2)+n・sin(a・π/2+φ)の数値以上となる5次以上のa次高調波の初期位相φで動作する。このようになっているため、基本正弦波g(t)を信号波信号波h(t)として用いる場合に比べて、モータ駆動システム1の損失を低減できる。 Further, according to the present embodiment, when the phase angle (2πf 1 t) of the fundamental sine wave g(t) is π/2 radian, the numerical value m·sin(π/2) of the fundamental sine wave g(t) is , operates with the initial phase φ a of the fifth or higher a-order harmonic, which is equal to or greater than the value of the signal wave h a (t ) = m・sin (π/2) + na・sin (a・π/2 + φ a ) . . Because of this, the loss of the motor drive system 1 can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave ha (t).
 また、本実施形態によれば、5次以上のa次高調波の初期位相φの最大位相角が、磁気特性の変化で基本波電流If1、If1_rmsの低減し始める初期位相φの値、初期位相φの最小位相角が、基本波電流If1、If1_rmsの低減効果より高調波成分による増加のほうが大きくなる初期位相φの値、で動作する。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、モータ駆動システム1の損失を低減できる。 Further, according to the present embodiment, the maximum phase angle of the initial phase φ a of the fifth or higher a-th harmonic is the same as the initial phase φ a at which the fundamental wave currents I f1 and I f1_rms begin to decrease due to changes in magnetic properties. The value of the initial phase φ a is such that the minimum phase angle of the initial phase φ a is such that the increase due to the harmonic component is greater than the reduction effect of the fundamental wave current I f1 , I f1_rms . Because of this, the loss of the motor drive system 1 can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h a (t).
 また、本実施形態によれば、信号波h(t)に5次高調波が重畳され、磁気特性の変化で基本波電流If1、If1_rmsの低減し始める重畳率n/mの値をn/mの上限とする上限値決定工程と、基本波電流If1、If1_rmsの低減効果より高調波成分による増加のほうが大きくなるn/mの値をn/mの下限とする下限値決定工程を有し、n/mの下限以上かつn/mの上限以下の範囲に重畳率n/mを設定するようにモータ駆動システム1が製造される。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、損失を低減するモータ駆動システム1が製造できる。 Further, according to the present embodiment, the fifth harmonic is superimposed on the signal wave h(t), and the value of the superimposition rate n/m at which the fundamental wave currents I f1 and I f1_rms start to decrease due to changes in magnetic properties is n /m as the upper limit, and a lower limit value determining step where the lower limit of n/m is the value of n/m where the increase due to harmonic components is greater than the reduction effect of the fundamental wave currents I f1 and I f1_rms. The motor drive system 1 is manufactured so that the superimposition ratio n/m is set in a range of not less than the lower limit of n/m and not more than the upper limit of n/m. Because of this, it is possible to manufacture a motor drive system 1 that reduces loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
 また、本実施形態によれば、信号波h(t)に5次以上のa次高調波が重畳され、磁気特性の変化で基本波電流If1、If1_rmsの低減し始める重畳率n/mの値をn/mの上限とする上限値決定工程と、基本波電流If1、If1_rmsの低減効果より高調波成分による増加のほうが大きくなるn/mの値をn/mの下限とする下限値決定工程を有し、n/mの下限以上かつn/mの上限以下の範囲に重畳率n/mを設定するようにモータ駆動システム1が製造される。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、損失を低減するモータ駆動システム1が製造できる。 Further, according to the present embodiment, the fifth or higher harmonics are superimposed on the signal wave h a (t), and the fundamental wave currents I f1 and I f1_rms start to decrease due to changes in the magnetic characteristics, resulting in a superimposition rate n a /m as the upper limit of n a /m, and the value of n a /m where the increase due to harmonic components is greater than the reduction effect of the fundamental wave currents I f1 and I f1_rms is determined as n a / m . The motor drive system 1 is manufactured so as to include a lower limit value determining step for setting the lower limit of m, and to set the superimposition ratio n a / m in a range that is greater than or equal to the lower limit of n a /m and less than or equal to the upper limit of n a /m. . Because of this, it is possible to manufacture a motor drive system 1 that reduces loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h a (t).
 また、本実施形態によれば、重畳率n/mが-0.3より大きくかつ0未満の範囲に設定されてモータ駆動システム1が製造される。このようになっているため、安定して損失が低減するモータ駆動システム1を製造できる。 Furthermore, according to the present embodiment, the motor drive system 1 is manufactured with the superimposition ratio n/m set to a range greater than -0.3 and less than 0. Because of this, it is possible to manufacture the motor drive system 1 with stable loss reduction.
 また、本実施形態によれば、信号波h(t)に5次高調波が重畳され、磁気特性の変化で基本波電流If1、If1_rmsの低減し始める重畳率n/mの値をn/mの上限とする上限値決定ステップと、基本波電流If1、If1_rmsの低減効果より高調波成分による増加のほうが大きくなるn/mの値をn/mの下限とする下限値決定ステップを有し、n/mの下限以上かつn/mの上限以下の範囲に重畳率n/mを設定するようにモータ駆動システム1が設計される。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、損失を低減するモータ駆動システム1が設計できる。 Further, according to the present embodiment, the fifth harmonic is superimposed on the signal wave h(t), and the value of the superimposition rate n/m at which the fundamental wave currents I f1 and I f1_rms start to decrease due to changes in magnetic properties is n /m, and a lower limit determining step, which sets the lower limit of n/m to the value of n/m where the increase due to harmonic components is greater than the reduction effect of the fundamental wave currents I f1 and I f1_rms . The motor drive system 1 is designed so that the superimposition ratio n/m is set in a range that is greater than or equal to the lower limit of n/m and less than or equal to the upper limit of n/m. Because of this, it is possible to design a motor drive system 1 that reduces loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
 また、本実施形態によれば、信号波h(t)に5次以上のa次高調波が重畳され、磁気特性の変化で基本波電流If1、If1_rmsの低減し始める重畳率n/mの値をn/mの上限とする上限値決定ステップと、基本波電流If1、If1_rmsの低減効果より高調波成分による増加のほうが大きくなるn/mの値をn/mの下限とする下限値決定ステップを有し、n/mの下限以上かつn/mの上限以下の範囲に重畳率n/mを設定するようにモータ駆動システム1が設計される。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、損失を低減するモータ駆動システム1が設計できる。 Further, according to the present embodiment, the fifth or higher harmonics are superimposed on the signal wave h a (t), and the fundamental wave currents I f1 and I f1_rms start to decrease due to changes in the magnetic characteristics, resulting in a superimposition rate n a /m as the upper limit of n a /m; and determining the value of n a /m at which the increase due to harmonic components is greater than the reduction effect of the fundamental wave currents I f1 and I f1_rms . The motor drive system 1 is designed to have a step of determining a lower limit value as the lower limit of m, and to set the superimposition ratio n a / m in a range that is greater than or equal to the lower limit of n a /m and less than or equal to the upper limit of n a /m. . Because of this, it is possible to design a motor drive system 1 that reduces loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h a (t).
 また、本実施形態によれば、重畳率n/mが-0.3より大きくかつ0未満の範囲に設定されてモータ駆動システム1が設計される。このようになっているため、安定して損失が低減するモータ駆動システム1を設計できる。 Furthermore, according to the present embodiment, the motor drive system 1 is designed with the superimposition ratio n/m set in a range greater than -0.3 and less than 0. Because of this, it is possible to design a motor drive system 1 that stably reduces loss.
 また、本実施形態によれば、信号波h(t)を構成する基本正弦波g(t)の変調率mに対する5次高調波の変調率nの比率である重畳率n/mの上限値と下限値がリング試験により決定されるようになっており、重畳率n/mの上限値が、5次高調波の変調率nがゼロの場合よりも基本波電流If1が下回る範囲の上限となる重畳率n/m、または、5次高調波の変調率nがゼロの場合に比べて鉄損Pfeが下回る範囲の上限となる重畳率n/mとして決定され、重畳率n/mの下限値が、5次高調波の変調率nがゼロの場合を基準とする基本波電流If1の低減量に比べて、5次高調波の変調率nがゼロの場合を基準とする高調波電流Iharmonicの増加量が下回る範囲の下限となる重畳率n/m、または、5次高調波の変調率nがゼロの場合よりも鉄損Pfeが下回る範囲の下限となる重畳率n/mとして決定される。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、損失を低減できる。 Further, according to the present embodiment, the upper limit value of the superimposition rate n/m, which is the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine wave g(t) constituting the signal wave h(t). The lower limit value is determined by a ring test, and the upper limit value of the superposition ratio n/m is the upper limit of the range in which the fundamental wave current I f1 is lower than when the modulation rate n of the fifth harmonic is zero. The superimposition ratio n/m is determined as the upper limit of the range in which the iron loss P fe is lower than when the modulation rate n of the fifth harmonic is zero, or the superposition ratio n/m Compared to the amount of reduction in fundamental wave current I f1 based on the case where the modulation rate n of the fifth harmonic is zero, the lower limit of The superimposition ratio n/m that is the lower limit of the range in which the amount of increase in the wave current I harmonic is below, or the superimposition ratio n that is the lower limit of the range in which the iron loss P fe is lower than when the modulation rate n of the fifth harmonic is zero. /m. Because of this, loss can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
 また、本実施形態によれば、5次高調波の初期位相φの最大位相角と最小位相角が、初期位相φを変化させて行うリング試験によって決定されるようになっており、最大位相角は、5次高調波の変調率nがゼロの場合よりも基本波電流If1が下回る範囲の最大値となる初期位相φ、または、5次高調波の変調率nがゼロの場合よりも鉄損Pfeが下回る範囲の最大値となる初期位相φとして決定され、最小位相角は、5次高調波の変調率nがゼロの場合を基準とする基本波電流If1の低減量に比べて、5次高調波の変調率nがゼロの場合を基準とする高調波電流Iharmonicの増加量が下回る範囲の最小値となる初期位相φ、または、5次高調波の変調率nがゼロの場合よりも鉄損Pfeが下回る範囲の最小値となる初期位相φとして最小位相角が決定される。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、モータ駆動システム1の損失が低減できる。 Further, according to the present embodiment, the maximum phase angle and minimum phase angle of the initial phase φ of the fifth harmonic are determined by a ring test performed by changing the initial phase φ, and the maximum phase angle is the initial phase φ that is the maximum value in the range in which the fundamental wave current I f1 is lower than when the modulation rate n of the fifth harmonic is zero, or The initial phase φ is determined as the maximum value in the range in which the loss P fe is lower, and the minimum phase angle is compared to the amount of reduction in the fundamental wave current I f1 based on the case where the modulation rate n of the fifth harmonic is zero. , the initial phase φ that is the minimum value in the range below which the amount of increase in the harmonic current I harmonic is based on the case where the modulation rate n of the fifth harmonic is zero, or the initial phase φ when the modulation rate n of the fifth harmonic is zero. The minimum phase angle is determined as the initial phase φ that is the minimum value in the range in which the iron loss P fe is lower than in the case. Because of this, the loss of the motor drive system 1 can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
 また、本実施形態によれば、信号波h(t)を構成する基本正弦波g(t)の変調率mに対する5次高調波の変調率nの比率である重畳率n/mの上限値と下限値がモータ試験により決定されるようになっており、重畳率n/mの上限値は、5次高調波の変調率nがゼロの場合よりも基本波電流If1_rmsが下回る範囲の上限となる重畳率n/m、または、5次高調波の変調率nがゼロの場合よりも全体損失Ptotalが下回る範囲の上限となる重畳率n/mとして決定され、重畳率n/mの下限値は、5次高調波の変調率nがゼロの場合を基準とする基本波電流If1_rmsの低減量に比べて、5次高調波の変調率nがゼロの場合を基準とする高調波電流Iharmonic_rmsの増加量が下回る範囲の下限となる重畳率n/m、または、5次高調波の変調率nがゼロの場合よりも全体損失Ptotalが下回る範囲の下限となる重畳率n/mとして決定される。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、損失を低減できる。 Further, according to the present embodiment, the upper limit value of the superimposition rate n/m, which is the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine wave g(t) constituting the signal wave h(t). The lower limit value is determined by motor tests, and the upper limit value of the superposition ratio n/m is the upper limit of the range in which the fundamental wave current I f1_rms is lower than when the modulation rate n of the fifth harmonic is zero. The superimposition ratio n/m is determined as the upper limit of the range in which the overall loss P total is lower than when the modulation rate n of the fifth harmonic is zero, and The lower limit value is the reduction amount of the fundamental wave current I f1_rms based on the case where the modulation rate n of the fifth harmonic is zero, compared to the amount of reduction of the fundamental wave current I f1_rms based on the case where the modulation rate n of the fifth harmonic is zero. The superimposition ratio n/m is the lower limit of the range in which the increase in the current I harmonic_rms falls below, or the superimposition ratio n/m is the lower limit of the range in which the overall loss P total is lower than when the modulation rate n of the fifth harmonic is zero. m. Because of this, loss can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
 また、本実施形態によれば、5次高調波の初期位相φの最大位相角と最小位相角が、初期位相φを変化させて行うモータ試験により決定されるようになっており、最大位相角は、5次高調波の変調率nがゼロの場合よりも基本波電流If1_rmsが下回る範囲の最大値となる初期位相φ、または、5次高調波の変調率nがゼロの場合よりも全体損失Ptotalが下回る範囲の最大値となる初期位相φとして決定され、最小位相角は、5次高調波の変調率nがゼロの場合を基準とする基本波電流If1_rmsの低減量に比べて、5次高調波の変調率nがゼロの場合を基準とする高調波電流Iharmonic_rmsの増加量が下回る範囲の最小値となる初期位相φ、または、5次高調波の変調率nがゼロの場合よりも全体損失Ptotalが下回る範囲の最小値となる初期位相φとして決定される。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、モータ駆動システム1の損失が低減できる。 Further, according to the present embodiment, the maximum phase angle and minimum phase angle of the initial phase φ of the fifth harmonic are determined by a motor test performed by changing the initial phase φ, and the maximum phase angle is the initial phase φ that is the maximum value in the range in which the fundamental wave current I f1_rms is lower than when the modulation rate n of the fifth harmonic is zero, or the overall value is lower than when the modulation rate n of the fifth harmonic is zero. The initial phase φ is determined as the maximum value within the range in which the loss P total is below, and the minimum phase angle is compared to the amount of reduction in the fundamental wave current I f1_rms based on the case where the modulation rate n of the fifth harmonic is zero. , the initial phase φ that is the minimum value in the range below which the amount of increase in the harmonic current I harmonic_rms is based on the case where the modulation rate n of the fifth harmonic is zero, or the initial phase φ when the modulation rate n of the fifth harmonic is zero. The initial phase φ is determined to be the minimum value in the range in which the overall loss P total is lower than in the case of the initial phase φ. Because of this, the loss of the motor drive system 1 can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
 また、本実施形態によれば、信号波h(t)を構成する基本正弦波g(t)の変調率mに対する5次以上のa次高調波の変調率nの比率である重畳率n/mの上限値と下限値がリング試験により決定されるようになっており、重畳率n/mの上限値が、a次高調波の変調率nがゼロの場合よりも基本波電流If1が下回る範囲の上限となる重畳率n/m、または、a次高調波の変調率nがゼロの場合に比べて鉄損Pfeが下回る範囲の上限となる重畳率n/mとして決定され、重畳率n/mの下限値が、a次高調波の変調率nがゼロの場合を基準とする基本波電流If1の低減量に比べて、a次高調波の変調率nがゼロの場合を基準とする高調波電流Iharmonicの増加量が下回る範囲の下限となる重畳率n/m、または、a次高調波の変調率nがゼロの場合よりも鉄損Pfeが下回る範囲の下限となる重畳率n/mとして決定される。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、損失を低減できる。 Further, according to the present embodiment, the superimposition rate is the ratio of the modulation rate n a of the fifth or higher harmonics to the modulation rate m of the fundamental sine wave g(t) constituting the signal wave h a (t). The upper and lower limits of n a /m are determined by a ring test, and the upper limit of the superimposition rate n a /m is more fundamental than when the modulation rate n a of the a-th harmonic is zero. The superimposition ratio n a /m is the upper limit of the range in which the wave current I f1 is lower, or the superimposition ratio n a is the upper limit in the range in which the iron loss P fe is lower than when the modulation rate n of the a-th harmonic is zero . /m, and the lower limit value of the superimposition rate n a / m is determined as follows: When the modulation rate na / m is the lower limit of the range in which the increase in the harmonic current I harmonic is lower than the case where the modulation rate n a of is zero, or when the modulation rate n a of the a-th harmonic is zero The overlap ratio n a /m is determined as the lower limit of the range in which the iron loss P fe is lower than . Because of this, loss can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h a (t).
 また、本実施形態によれば、信号波h(t)を構成する基本正弦波g(t)の変調率mに対する5次以上のa次高調波の変調率nの比率である重畳率n/mの上限値と下限値がモータ試験により決定されるようになっており、重畳率n/mの上限値は、a次高調波の変調率nがゼロの場合よりも基本波電流If1_rmsが下回る範囲の上限となる重畳率n/m、または、a次高調波の変調率nがゼロの場合よりも全体損失Ptotalが下回る範囲の上限となる重畳率n/mとして決定され、重畳率n/mの下限値は、a次高調波の変調率nがゼロの場合を基準とする基本波電流If1_rmsの低減量に比べて、a次高調波の変調率nがゼロの場合を基準とする高調波電流Iharmonic_rmsの増加量が下回る範囲の下限となる重畳率n/m、または、a次高調波の変調率nがゼロの場合よりも全体損失Ptotalが下回る範囲の下限となる重畳率n/mとして決定される。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、損失を低減できる。 Further, according to the present embodiment, the superimposition rate is the ratio of the modulation rate n a of the fifth or higher harmonics to the modulation rate m of the fundamental sine wave g(t) constituting the signal wave h a (t). The upper and lower limits of n a /m are determined by motor tests, and the upper limit of the superimposition rate n a /m is lower than the fundamental wave when the modulation rate n of the a-th harmonic is zero. The superimposition ratio n a /m is the upper limit of the range in which the current I f1_rms is lower, or the superimposition ratio n a /m is the upper limit in the range in which the overall loss P total is lower than when the modulation rate n a of the a-th harmonic is zero. m, and the lower limit of the superimposition rate n a / m is determined as The superimposition rate n a /m is the lower limit of the range in which the amount of increase in the harmonic current I harmonic_rms is lower than the case where the modulation rate n a is zero, or the case where the modulation rate n a of the a-th harmonic is zero. is also determined as the overlap ratio n a /m, which is the lower limit of the range below which the overall loss P total is. Because of this, the loss can be reduced compared to the case where the fundamental sine wave g(t) is used as the signal wave h a (t).
 また、本実施形態によれば、信号波h(t)を構成する基本正弦波g(t)の変調率mに対する5次高調波の変調率nの比率である重畳率n/mの上限値と下限値が、リング試験により決定されるようになっており、上限値決定工程では、5次高調波の変調率nがゼロの場合よりも基本波電流If1が下回る範囲の上限となる重畳率n/m、または、5次高調波の変調率nがゼロの場合に比べて鉄損Pfeが下回る範囲の上限となる重畳率n/mとして上限値が決定され、下限値決定工程では、5次高調波の変調率nがゼロの場合を基準とする基本波電流If1の低減量に比べて、5次高調波の変調率nがゼロの場合を基準とする高調波電流Iharmonicの増加量が下回る範囲の下限となる重畳率n/m、または、5次高調波の変調率nがゼロの場合よりも鉄損Pfeが下回る範囲の下限となる重畳率n/mとして下限値が決定され、重畳率設定工程では、下限値以上かつ上限値以下の範囲内で、信号波h(t)の重畳率n/mの設定値が設定されるようにモータ駆動システム1が製造される。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、損失が低減するモータ駆動システム1を製造できる。 Further, according to the present embodiment, the upper limit value of the superimposition rate n/m, which is the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine wave g(t) constituting the signal wave h(t). The lower limit value is determined by a ring test, and in the upper limit value determination process, the superposition that is the upper limit of the range in which the fundamental wave current I f1 is lower than when the modulation rate n of the fifth harmonic is zero is determined. The upper limit value is determined as the ratio n/m, or the superimposition ratio n/m, which is the upper limit of the range in which the iron loss P fe is lower than when the modulation rate n of the fifth harmonic is zero, and in the lower limit value determination step, , compared to the amount of reduction in the fundamental wave current I f1 based on the case where the modulation factor n of the fifth harmonic is zero, the harmonic current I harmonic based on the case where the modulation factor n of the fifth harmonic is zero The lower limit is the superimposition ratio n/m, which is the lower limit of the range in which the increase in the amount of increase in The value is determined, and in the superimposition rate setting step, the motor drive system 1 is manufactured so that the set value of the superimposition ratio n/m of the signal wave h(t) is set within a range of not less than the lower limit value and not more than the upper limit value. be done. Because of this, it is possible to manufacture the motor drive system 1 with reduced loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
 また、本実施形態によれば、信号波h(t)を構成する基本正弦波g(t)の変調率mに対する5次高調波の変調率nの比率である重畳率n/mの上限値と下限値が、モータ試験により決定されるようになっており、上限値決定工程では、5次高調波の変調率nがゼロの場合よりも基本波電流If1_rmsが下回る範囲の上限となる重畳率n/m、または、5次高調波の変調率nがゼロの場合に比べて全体損失Ptotalが下回る範囲の上限となる重畳率n/mとして上限値が決定され、下限値決定工程では、5次高調波の変調率nがゼロの場合を基準とする基本波電流If1_rmsの低減量に比べて、5次高調波の変調率nがゼロの場合を基準とする高調波電流Iharmonic_rmsの増加量が下回る範囲の下限となる重畳率n/m、または、5次高調波の変調率nがゼロの場合よりも全体損失Ptotalが下回る範囲の下限となる重畳率n/mとして下限値が決定され、重畳率設定工程では、下限値以上かつ上限値以下の範囲内で、信号波h(t)の重畳率n/mの設定値が設定されるようにモータ駆動システム1が製造される。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、損失が低減するモータ駆動システム1を製造できる。 Further, according to the present embodiment, the upper limit value of the superimposition rate n/m, which is the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine wave g(t) constituting the signal wave h(t). The lower limit value is determined by a motor test, and in the upper limit value determination process, the superposition that is the upper limit of the range in which the fundamental wave current I f1_rms is lower than when the modulation rate n of the fifth harmonic is zero is determined. The upper limit value is determined as the ratio n/m, or the superposition ratio n/m, which is the upper limit of the range in which the overall loss P total is lower than when the modulation rate n of the fifth harmonic is zero, and in the lower limit value determination step, , compared to the amount of reduction in the fundamental wave current I f1_rms based on the case where the modulation rate n of the fifth harmonic is zero, the harmonic current I harmonic_rms based on the case where the modulation rate n of the fifth harmonic is zero. The lower limit is the superimposition ratio n/m, which is the lower limit of the range in which the increase amount of The value is determined, and in the superimposition rate setting step, the motor drive system 1 is manufactured so that the set value of the superimposition ratio n/m of the signal wave h(t) is set within a range of not less than the lower limit value and not more than the upper limit value. be done. Because of this, it is possible to manufacture the motor drive system 1 with reduced loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
 また、本実施形態によれば、信号波h(t)を構成する基本正弦波g(t)の変調率mに対する5次高調波の変調率nの比率である重畳率n/mの上限値と下限値が、リング試験により決定されるようになっており、上限値決定ステップでは、5次高調波の変調率nがゼロの場合よりも基本波電流If1が下回る範囲の上限となる重畳率n/m、または、5次高調波の変調率nがゼロの場合に比べて鉄損Pfeが下回る範囲の上限となる重畳率n/mとして上限値が決定され、下限値決定ステップでは、5次高調波の変調率nがゼロの場合を基準とする基本波電流If1の低減量に比べて、5次高調波の変調率nがゼロの場合を基準とする高調波電流Iharmonicの増加量が下回る範囲の下限となる重畳率n/m、または、5次高調波の変調率nがゼロの場合よりも鉄損Pfeが下回る範囲の下限となる重畳率n/mとして下限値が決定され、重畳率設定ステップでは、下限値以上かつ上限値以下の範囲内で、信号波h(t)の重畳率n/mの設定値が設定されるようにモータ駆動システム1が設計される。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、損失が低減するモータ駆動システム1を設計できる。 Further, according to the present embodiment, the upper limit value of the superimposition rate n/m, which is the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine wave g(t) constituting the signal wave h(t). The lower limit value is determined by a ring test, and in the upper limit value determination step, the superposition that is the upper limit of the range in which the fundamental wave current I f1 is lower than when the modulation rate n of the fifth harmonic is zero is determined. The upper limit value is determined as the ratio n/m, or the superimposition ratio n/m, which is the upper limit of the range in which the iron loss P fe is lower than when the modulation rate n of the fifth harmonic is zero, and in the lower limit value determination step, , compared to the amount of reduction in the fundamental wave current I f1 based on the case where the modulation factor n of the fifth harmonic is zero, the harmonic current I harmonic based on the case where the modulation factor n of the fifth harmonic is zero The lower limit is the superimposition ratio n/m, which is the lower limit of the range in which the increase in the amount of increase in The value is determined, and in the superimposition ratio setting step, the motor drive system 1 is designed so that the set value of the superimposition ratio n/m of the signal wave h(t) is set within a range of not less than the lower limit value and not more than the upper limit value. be done. Because of this, it is possible to design a motor drive system 1 with reduced loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
 また、本実施形態によれば、5次高調波の初期位相φの最大位相角と最小位相角が、初期位相φを変化させて行うリング試験によって決定されるようになっており、最大位相角決定ステップでは、5次高調波の変調率nがゼロの場合よりも基本波電流If1が下回る範囲の最大値となる初期位相φ、または、5次高調波の変調率nがゼロの場合よりも鉄損Pfeが下回る範囲の最大値となる初期位相φとして最大位相角が決定され、最小位相角決定ステップでは、5次高調波の変調率nがゼロの場合を基準とする基本波電流If1の低減量に比べて、5次高調波の変調率nがゼロの場合を基準とする高調波電流Iharmonicの増加量が下回る範囲の最小値となる初期位相φ、または、5次高調波の変調率nがゼロの場合よりも鉄損Pfeが下回る範囲の最小値となる初期位相φとして最小位相角が決定され、初期位相設定ステップでは、最小位相角以上かつ最大位相角以下の範囲内で、信号波h(t)の初期位相φの設定値が設定されるようにモータ駆動システム1が設計される。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、損失が低減するモータ駆動システムを設定、設計できる。 Further, according to the present embodiment, the maximum phase angle and minimum phase angle of the initial phase φ of the fifth harmonic are determined by a ring test performed by changing the initial phase φ, and the maximum phase angle In the determination step, the initial phase φ is determined to be the maximum value in the range in which the fundamental wave current I f1 is lower than when the modulation rate n of the fifth harmonic is zero, or when the modulation rate n of the fifth harmonic is zero. The maximum phase angle is determined as the initial phase φ that is the maximum value in the range in which the iron loss P fe is below, and in the minimum phase angle determination step, the fundamental wave current is The initial phase φ that is the minimum value in the range in which the increase in harmonic current I harmonic is less than the amount of reduction in I f1 when the modulation rate n of the fifth harmonic is zero, or the fifth harmonic The minimum phase angle is determined as the initial phase φ that is the minimum value in the range in which the iron loss P fe is lower than when the wave modulation rate n is zero, and in the initial phase setting step, the The motor drive system 1 is designed such that the set value of the initial phase φ of the signal wave h(t) is set within the range. Because of this, it is possible to set and design a motor drive system with reduced loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
 また、本実施形態によれば、信号波h(t)を構成する基本正弦波g(t)の変調率mに対する5次高調波の変調率nの比率である重畳率n/mの上限値と下限値が、モータ試験により決定されるようになっており、上限値決定ステップでは、5次高調波の変調率nがゼロの場合よりも基本波電流If1_rmsが下回る範囲の上限となる重畳率n/m、または、5次高調波の変調率nがゼロの場合に比べて全体損失Ptotalが下回る範囲の上限となる重畳率n/mとして上限値が決定され、下限値決定ステップでは、5次高調波の変調率nがゼロの場合を基準とする基本波電流If1_rmsの低減量に比べて、5次高調波の変調率nがゼロの場合を基準とする高調波電流Iharmonic_rmsの増加量が下回る範囲の下限となる重畳率n/m、または、5次高調波の変調率nがゼロの場合よりも全体損失Ptotalが下回る範囲の下限となる重畳率n/mとして下限値が決定され、重畳率設定ステップでは、下限値以上かつ上限値以下の範囲内で、信号波h(t)の重畳率n/mの設定値が設定されるようにモータ駆動システム1が設計される。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、損失が低減するモータ駆動システム1を設計できる。 Further, according to the present embodiment, the upper limit value of the superimposition rate n/m, which is the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine wave g(t) constituting the signal wave h(t). The lower limit value is determined by a motor test, and in the upper limit value determination step, a superimposition value that is the upper limit of the range in which the fundamental wave current I f1_rms is lower than when the modulation rate n of the fifth harmonic is zero is determined. The upper limit value is determined as the ratio n/m, or the superimposition ratio n/m, which is the upper limit of the range in which the overall loss P total is lower than when the modulation rate n of the fifth harmonic is zero, and in the lower limit value determination step, , compared to the amount of reduction in the fundamental wave current I f1_rms based on the case where the modulation rate n of the fifth harmonic is zero, the harmonic current I harmonic_rms based on the case where the modulation rate n of the fifth harmonic is zero. The lower limit is the superimposition ratio n/m, which is the lower limit of the range in which the increase amount of The value is determined, and in the superimposition ratio setting step, the motor drive system 1 is designed so that the set value of the superimposition ratio n/m of the signal wave h(t) is set within a range of not less than the lower limit value and not more than the upper limit value. be done. Because of this, it is possible to design a motor drive system 1 with reduced loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
 また、本実施形態によれば、5次高調波の初期位相φの最大位相角と最小位相角が、初期位相φを変化させて行うモータ試験により決定されるようになっており、最大位相角決定ステップでは、5次高調波の変調率nがゼロの場合よりも基本波電流If1_rmsが下回る範囲の最大値となる初期位相φ、または、5次高調波の変調率nがゼロの場合よりも全体損失Ptotalが下回る範囲の最大値となる初期位相φとして最大位相角が決定され、最小位相角決定ステップでは、5次高調波の変調率nがゼロの場合を基準とする基本波電流If1_rmsの低減量に比べて、5次高調波の変調率nがゼロの場合を基準とする高調波電流Iharmonic_rmsの増加量が下回る範囲の最小値となる初期位相φ、または、5次高調波の変調率nがゼロの場合よりも全体損失Ptotalが下回る範囲の最小値となる初期位相φとして最小位相角が決定され、初期位相設定ステップでは、最小位相角以上かつ最大位相角以下の範囲内で、信号波h(t)の初期位相φの設定値が設定されるようにモータ駆動システム1が設計される。このようになっているため、基本正弦波g(t)を信号波h(t)として用いる場合に比べて、損失が低減するモータ駆動システム1を設定、設計できる。 Further, according to the present embodiment, the maximum phase angle and minimum phase angle of the initial phase φ of the fifth harmonic are determined by a motor test performed by changing the initial phase φ, and the maximum phase angle In the determination step, the initial phase φ is determined to be the maximum value in the range in which the fundamental wave current I f1_rms is lower than when the modulation rate n of the fifth harmonic is zero, or when the modulation rate n of the fifth harmonic is zero. The maximum phase angle is determined as the initial phase φ that is the maximum value in the range below the total loss P total , and in the minimum phase angle determination step, the fundamental wave current is The initial phase φ, which is the minimum value in the range in which the increase in harmonic current I harmonic_rms based on the case where the modulation rate n of the fifth harmonic is zero, is lower than the reduction in I f1_rms , or the fifth harmonic The minimum phase angle is determined as the initial phase φ that is the minimum value in the range in which the overall loss P total is lower than when the wave modulation rate n is zero, and in the initial phase setting step, the The motor drive system 1 is designed such that the set value of the initial phase φ of the signal wave h(t) is set within the range. Because of this, it is possible to set and design a motor drive system 1 with reduced loss compared to the case where the fundamental sine wave g(t) is used as the signal wave h(t).
 また、本実施形態によれば、基本正弦波g(t)、g(t)、g(t)にその5次高調波を重畳した波形を信号波h(t)、h(t)、h(t)として用い、その信号波h(t)、h(t)、h(t)とキャリア波との交点でパルス幅を切り替えて三相のパルス幅変調駆動電圧を形成する三相のPWMドライブ信号を生成し、基本正弦波g(t)、g(t)、g(t)の変調率mに対する5次高調波の変調率nの比率である重畳率n/mが-0.25以上かつ-0.05以下、そして、5次高調波の初期位相φが-π/4[rad]以上かつπ/2[rad]以下になっている。このようになっているため、基本正弦波g(t)、g(t)、g(t)を信号波として用いる場合に比べて、損失を低減できる。 Further, according to the present embodiment, the waveforms obtained by superimposing the fifth harmonic on the fundamental sine waves g u (t), g v (t), and g w (t) are used as the signal waves h u (t), h v (t), h w (t), and three-phase pulse width modulation is performed by switching the pulse width at the intersection of the signal waves h u (t), h v (t), h w (t) and the carrier wave. Generate a three-phase PWM drive signal that forms the drive voltage, and calculate the ratio of the modulation rate n of the fifth harmonic to the modulation rate m of the fundamental sine waves g u (t), g v (t), g w (t) . The superimposition ratio n/m is -0.25 or more and -0.05 or less, and the initial phase φ of the fifth harmonic is -π/4 [rad] or more and π/2 [rad] or less. There is. Because of this, loss can be reduced compared to the case where the fundamental sine waves g u (t), g v (t), and g w (t) are used as signal waves.
 また、本実施形態によれば、重畳率n/mが、-0.15以上かつ-0.1以下であるため、さらに損失が低減する。 Furthermore, according to the present embodiment, since the superimposition ratio n/m is greater than or equal to -0.15 and less than or equal to -0.1, the loss is further reduced.
 また、本実施形態によれば、5次高調波の初期位相φが、π/8[rad]以上かつ5π/16[rad]以下であるため、損失の低減の効果が向上する。また、初期位相φが0の場合に比べても、損失が低減する。 Furthermore, according to the present embodiment, the initial phase φ of the fifth harmonic is greater than or equal to π/8 [rad] and less than or equal to 5π/16 [rad], thereby improving the effect of reducing loss. Also, the loss is reduced compared to the case where the initial phase φ is 0.
 また、本実施形態によれば、重畳率n/mが、-0.15以上かつ-0.1以下であり、5次高調波の初期位相φが、π/4[rad]であるため、安定して損失の低減の効果を得られる。また、初期位相φが0[rad]の場合に比べても、損失が低減する。 Further, according to the present embodiment, the superimposition ratio n/m is −0.15 or more and −0.1 or less, and the initial phase φ of the fifth harmonic is π/4 [rad]. A stable loss reduction effect can be obtained. Also, the loss is reduced compared to the case where the initial phase φ is 0 [rad].
 また、本実施形態によれば、基本正弦波g(t)、g(t)、g(t)にその基本正弦波g(t)、g(t)、g(t)の5次以上の高調波を重畳した波形を信号波hua(t)、hva(t)、hwa(t)として用い、その信号波hua(t)、hva(t)、hwa(t)とキャリア波との交点でパルス幅を切り替えて三相のパルス幅変調駆動電圧を形成する三相のPWMドライブ信号を生成し、基本正弦波g(t)、g(t)、g(t)の変調率mに対する5次以上の高調波の変調率nの比率である重畳率n/mが-0.25以上かつ-0.05以下、そして、5次以上の高調波の初期位相φが-π/4[rad]以上かつπ/2[rad]以下である。このようになっているため、基本正弦波g(t)、g(t)、g(t)を信号波として用いる場合に比べて、損失の低減が期待できる。 Further, according to the present embodiment, the fundamental sine waves g u (t), g v (t), g w (t) are combined with the fundamental sine waves g u (t), g v (t), g w (t). ) is used as the signal waves h ua (t), h va (t), h wa (t), and the signal waves h ua (t), h va (t), A three-phase PWM drive signal that switches the pulse width at the intersection of h wa (t) and the carrier wave to form a three-phase pulse width modulated drive voltage is generated, and the basic sine waves g u (t), g v ( t), the superimposition rate n a /m, which is the ratio of the modulation rate n a of the fifth or higher harmonic to the modulation rate m of g w (t), is -0.25 or more and -0.05 or less, and 5 The initial phase φ of the harmonics of the next or higher order is greater than or equal to -π/4 [rad] and less than or equal to π/2 [rad]. Because of this, reduction in loss can be expected compared to the case where the fundamental sine waves g u (t), g v (t), and g w (t) are used as signal waves.
 また、本実施形態によれば、モータ制御部4のプログラムにより実現できるため、短期間での開発が可能となり、開発コストを低く抑えられ、また、柔軟な変更にも対応可能となる。 Furthermore, according to the present embodiment, since it can be realized by the program of the motor control unit 4, development can be done in a short period of time, development costs can be kept low, and changes can be made flexibly.
 なお、本発明は、上記の実施形態の構成に限定されるものでなく、発明概念に含まれる範囲で要素の付加、削除、変更を行える。 Note that the present invention is not limited to the configuration of the above-described embodiments, and elements can be added, deleted, and changed within the scope of the inventive concept.
 また、本発明は、三相モータだけでなく、六相モータや十二相モータなどの多相モータにも適用できる。 Furthermore, the present invention can be applied not only to three-phase motors but also to multi-phase motors such as six-phase motors and twelve-phase motors.
 [特性評価試験]
 次に、本発明の構成を決定するために行った特性評価試験の結果を示す。
[Characteristics evaluation test]
Next, the results of a characteristic evaluation test conducted to determine the configuration of the present invention will be shown.
 一般的に高調波が増加するとそれに伴い損失も増加すると考えられる。しかし、モータコア材である磁性体の材料特性は非線形性を持つため、高調波を利用した損失低減が不可能とは断定できない。そこで、特性評価試験として、リング試験とモータ駆動試験を行い、5次調波重畳PWMの損失低減性について評価した。 It is generally thought that as harmonics increase, loss also increases. However, since the material properties of the magnetic material that is the motor core material are nonlinear, it cannot be concluded that loss reduction using harmonics is impossible. Therefore, as a characteristic evaluation test, a ring test and a motor drive test were conducted to evaluate the loss reduction performance of the fifth harmonic superimposed PWM.
 この特性評価試験では、基本正弦波g(t)、g(t)、g(t)を信号波として用いた場合(重畳率n/mが0の場合)と、基本正弦波g(t)、g(t)、g(t)に5次高調波を重畳した信号波h(t)、h(t)、h(t)を用いた場合について試験を行っている。 In this characteristic evaluation test, the fundamental sine waves g u (t), g v (t), g w (t) are used as signal waves (when the superimposition ratio n/m is 0), and the fundamental sine wave g Tests were conducted using signal waves h u (t), h v (t), and h w (t), which are obtained by superimposing fifth-order harmonics on u (t), g v (t), and g w (t). Is going.
 [特性評価試験1(リング試験)]
 モータでの損失評価では、回転体であり磁束密度も分布しているため、非線形といった基礎的な磁気特性の把握が難しい。そこで、モータと同材料の軟磁性体で構成されたリング試験を行い、基礎的な磁気特性を評価した。
[Characteristics evaluation test 1 (ring test)]
When evaluating loss in a motor, it is difficult to understand basic magnetic properties such as nonlinearity because the motor is a rotating body and the magnetic flux density is distributed. Therefore, we conducted a ring test using a soft magnetic material made of the same material as the motor to evaluate its basic magnetic properties.
 図27は、特性評価試験1(リング試験)に係るリング試験装置69の概略構成図である。また、図28には、このリング試験に用いたリング試料61の仕様を示す。 FIG. 27 is a schematic configuration diagram of a ring test device 69 related to characteristic evaluation test 1 (ring test). Further, FIG. 28 shows the specifications of the ring sample 61 used in this ring test.
 リング試料61である鉄心材料(コア材料)には、無方向性電磁鋼板35H300(日本製鉄(株)製)を使用した。IGBTインバータ62は、三菱電機(株)製のパワーモジュール(PM75RSD060)を用いた単相Si-IGBTインバータである。このIGBTインバータ62は、スイッチング素子としてSi-IGBT(三菱電機(株)製、PM75RSD060)、還流ダイオードとしてSiダイオード(三菱電機(株)製、RM30TB-H)を搭載している。 For the iron core material (core material) of ring sample 61, non-oriented electrical steel sheet 35H300 (manufactured by Nippon Steel Corporation) was used. The IGBT inverter 62 is a single-phase Si-IGBT inverter using a power module (PM75RSD060) manufactured by Mitsubishi Electric Corporation. This IGBT inverter 62 is equipped with a Si-IGBT (manufactured by Mitsubishi Electric Corporation, PM75RSD060) as a switching element, and a Si diode (manufactured by Mitsubishi Electric Corporation, RM30TB-H) as a freewheeling diode.
 測定条件は、基本正弦波周波数fを50[Hz]、キャリア周波数fを1[kHz]、直流電源63から供給されるIGBTインバータ62への入力電圧Vdcを15[V]とし、基本正弦波磁束密度Bf1が1[T]となるように基本正弦波変調率mを調節した。リング試験における基本正弦波磁束密度Bf1一定は、モータ試験における平均トルク一定に相当すると考えられる。 The measurement conditions are as follows: fundamental sine wave frequency f 1 is 50 [Hz], carrier frequency f c is 1 [kHz], and input voltage V dc to IGBT inverter 62 supplied from DC power supply 63 is 15 [V]. The basic sine wave modulation rate m was adjusted so that the sine wave magnetic flux density B f1 was 1 [T]. It is considered that the constant fundamental sinusoidal magnetic flux density B f1 in the ring test corresponds to the constant average torque in the motor test.
 一次電流I・二次電圧Vの測定には岩崎通信機(株)製の電流プローブ(SS-250)と電圧プローブ(SS-320)およびNational Instruments製のA/D変換器64(NI PXI-1031)を使用した。 To measure the primary current I1 and secondary voltage V2 , we used a current probe (SS-250) and a voltage probe (SS-320) manufactured by Iwasaki Tsushinki Co., Ltd. and an A/D converter 64 (NI) manufactured by National Instruments. PXI-1031) was used.
 IGBTインバータ62の制御には、5次調波重畳PWM方式を採用する。すなわち、基本正弦波g(t)にその5次高調波を重畳した波形を信号波h(t)として用い、キャリア波との交点でパルス幅を切り替えてPWM信号によってIGBTインバータ62を制御する。 For controlling the IGBT inverter 62, a fifth harmonic superimposition PWM method is adopted. That is, a waveform obtained by superimposing the fifth harmonic on the fundamental sine wave g(t) is used as the signal wave h(t), the pulse width is switched at the intersection with the carrier wave, and the IGBT inverter 62 is controlled by the PWM signal.
 次に、リング試験の鉄損算出方法について説明する。図27に示す一次電流Iと二次電圧Vを測定し、磁界の強さH、磁束密度Bを上記式(12)、式(13)のように求める。また、この磁界の強さHと磁束密度Bを用いて、上記式(14)のように鉄損Pfeを求める。ここで、上記式(12)、式(13)で求められる磁界の強さHと磁束密度Bにはキャリア高調波成分を含むので、磁化現象が複雑化する。そこで5次高調波重畳の影響を明確にするため、低次の周波数成分(f、f、f成分:fは基本正弦波周波数fの3次高調波の周波数、fは基本正弦波周波数fの5次高調波の周波数)を抽出することを考える。得られた磁界の強さHと磁束密度Bに対し、数値計算ソフトウェアMATLAB(登録商標)R2019b(The MathWorks,Inc.)によるcftool(近似曲線ツール)を用いたフィッティングを行い、メジャーループ成分Hmajor、Bmajorを算出する。これらより、メジャーループ鉄損Pmajorを上記式(15)のように算出する。また、上記式(16)のように、鉄損Pfeとメジャーループ鉄損Pmajorの差がキャリア高調波鉄損(マイナーループ鉄損)Pcarrierである。 Next, a method for calculating iron loss in a ring test will be explained. The primary current I 1 and secondary voltage V 2 shown in FIG. 27 are measured, and the magnetic field strength H and magnetic flux density B are determined as in the above equations (12) and (13). Further, using the strength H of the magnetic field and the magnetic flux density B, the iron loss P fe is determined as in the above equation (14). Here, since the magnetic field strength H and magnetic flux density B determined by the above equations (12) and (13) include carrier harmonic components, the magnetization phenomenon becomes complicated. Therefore, in order to clarify the influence of fifth-order harmonic superposition, we investigated the low-order frequency components (f 1 , f 3 , f 5 components: f 3 is the frequency of the 3rd harmonic of the fundamental sine wave frequency f 1 , and f 5 is Consider extracting the fundamental sine wave frequency f (fifth harmonic frequency of 1 ). The obtained magnetic field strength H and magnetic flux density B are fitted using cftool (approximate curve tool) by numerical calculation software MATLAB (registered trademark) R2019b (The MathWorks, Inc.), and the major loop component H major , B major . From these, the major loop iron loss P major is calculated as in the above equation (15). Further, as in the above equation (16), the difference between the iron loss P fe and the major loop iron loss P major is the carrier harmonic iron loss (minor loop iron loss) P carrier .
 <リング試験(重畳率特性)>
 5次高調波重畳の特性を評価するため、リング試験にて重畳率n/mを-0.25~0.25の範囲で変化させ、電磁気特性を測定した。
<Ring test (superimposition rate characteristics)>
In order to evaluate the characteristics of fifth-order harmonic superposition, the electromagnetic characteristics were measured by changing the superposition ratio n/m in the range of -0.25 to 0.25 in a ring test.
 図29に、リング試験の測定条件(重畳率特性)を示す。なお、5次高調波の初期位相φは0とした。 FIG. 29 shows the measurement conditions (overlapping rate characteristics) of the ring test. Note that the initial phase φ of the fifth harmonic was set to 0.
 図30は、信号波h(t)の波形を示す図であり、(a)は基本正弦波g(t)を示す図、(b)は基本正弦波g(t)に5次高調波を重畳した5次調波重畳信号を示す図である。横軸が時間、縦軸が信号の大きさを示す。図30(a)は、基本正弦波g(t)に5次高調波が重畳されていない信号を信号波とする場合に該当する。すなわち、5次高調波の変調率nが0の場合である。図30(b)は、重畳率n/mを-0.2としたときの信号波h(t)の波形である。 FIG. 30 is a diagram showing the waveform of the signal wave h(t), (a) is a diagram showing the fundamental sine wave g(t), and (b) is a diagram showing the fifth harmonic to the fundamental sine wave g(t). FIG. 3 is a diagram showing a superimposed fifth harmonic superimposed signal. The horizontal axis represents time, and the vertical axis represents signal magnitude. FIG. 30A corresponds to the case where the signal wave is a signal in which the fifth harmonic is not superimposed on the fundamental sine wave g(t). That is, this is a case where the modulation rate n of the fifth harmonic is 0. FIG. 30(b) shows the waveform of the signal wave h(t) when the superimposition ratio n/m is −0.2.
 図31は、リング試験による磁界の強さHと磁束密度Bの時間波形の測定結果を示す図であり、(a)は重畳率n/mが-0.2のときの測定波形を示す図、(b)は重畳率n/mが-0.2のときのメジャーループ成分を示す図、(c)は重畳率n/mが-0.1のときの測定波形を示す図、(d)は重畳率n/mが-0.1のときのメジャーループ成分を示す図である。また、図32は、リング試験による磁界の強さHと磁束密度Bの時間波形の測定結果を示す図であり、(a)は重畳率n/mが0のときの測定波形を示す図、(b)は重畳率n/mが0のときのメジャーループ成分を示す図、(c)は重畳率n/mが0.2のときの測定波形を示す図、(d)は重畳率n/mが0.2のときのメジャーループ成分を示す図である。 FIG. 31 is a diagram showing the measurement results of the time waveforms of magnetic field strength H and magnetic flux density B by the ring test, and (a) is a diagram showing the measured waveform when the superimposition ratio n/m is -0.2. , (b) is a diagram showing the major loop component when the superposition ratio n/m is -0.2, (c) is a diagram showing the measured waveform when the superposition ratio n/m is -0.1, (d ) is a diagram showing the major loop component when the superimposition ratio n/m is −0.1. Moreover, FIG. 32 is a diagram showing the measurement results of the time waveforms of the magnetic field strength H and the magnetic flux density B by the ring test, and (a) is a diagram showing the measured waveform when the superimposition ratio n/m is 0, (b) is a diagram showing the major loop component when the superimposition ratio n/m is 0, (c) is a diagram showing the measured waveform when the superimposition ratio n/m is 0.2, (d) is a diagram showing the measured waveform when the superimposition ratio n/m is 0.2. FIG. 6 is a diagram showing a major loop component when /m is 0.2.
 横軸が時間、右側の縦軸が磁界の強さH、左側の縦軸が磁束密度Bを示す。 The horizontal axis shows time, the right vertical axis shows the magnetic field strength H, and the left vertical axis shows the magnetic flux density B.
 重畳率n/mが0の場合は、5次高調波を付加せず基本正弦波g(t)を信号波h(t)として用いる場合に該当する。重畳率n/mが-0.2、-0.1、0.2の場合と、重畳率n/mが0の場合とを比べると、磁界の強さHと磁束密度Bの時間波形の形状が異なっており、5次高調波重畳により、磁化現象に変化が現れることがわかる。 When the superimposition ratio n/m is 0, this corresponds to the case where the fundamental sine wave g(t) is used as the signal wave h(t) without adding the fifth harmonic. Comparing the cases where the superposition ratio n/m is -0.2, -0.1, 0.2 and the case where the superposition ratio n/m is 0, the time waveforms of the magnetic field strength H and magnetic flux density B are It can be seen that the shapes are different, and changes appear in the magnetization phenomenon due to fifth-order harmonic superposition.
 図33は、リング試験による磁界の強さHと磁束密度BのBHカーブの測定結果を示す図であり、(a)は重畳率n/mが-0.2のときの測定結果(実線)とメジャーループ成分(破線)を示す図、(b)は重畳率n/mが-0.1のときの測定結果(実線)とメジャーループ成分(破線)を示す図、(c)は重畳率n/mが0のときの測定結果(実線)とメジャーループ成分(破線)を示す図、(d)は重畳率n/mが0.2のときの測定結果(実線)とメジャーループ成分(破線)を示す図である。この図は、図31と図32に示した測定データについて、横軸を磁界の強さH、縦軸を磁束密度Bとして表示したものである。なお、破線で示すグラフは、上述の方法で算出したメジャーループ成分Hmajor、Bmajorを示す。 FIG. 33 is a diagram showing the measurement results of the BH curve of magnetic field strength H and magnetic flux density B by the ring test, and (a) is the measurement result when the superimposition ratio n/m is -0.2 (solid line) (b) is a diagram showing the measurement results (solid line) and the major loop component (dashed line) when the superposition ratio n/m is -0.1, (c) is the superposition ratio A diagram showing the measurement results (solid line) and the major loop component (broken line) when n/m is 0, and (d) shows the measurement results (solid line) and the major loop component ( (dashed line). This figure shows the measurement data shown in FIGS. 31 and 32, with the horizontal axis representing the magnetic field strength H and the vertical axis representing the magnetic flux density B. Note that the graph indicated by the broken line indicates the major loop components H major and B major calculated by the above method.
 図34は、リング試験による基本波電流If1と基本正弦波変調率mの測定結果を示す図である。横軸は重畳率n/m、左側の縦軸は基本波電流If1、右側の縦軸は基本正弦波変調率mである。 FIG. 34 is a diagram showing measurement results of the fundamental wave current I f1 and the fundamental sine wave modulation factor m by the ring test. The horizontal axis is the superposition ratio n/m, the vertical axis on the left is the fundamental wave current I f1 , and the vertical axis on the right is the fundamental sine wave modulation rate m.
 基本波電流If1は、基本波磁束密度Bf1を得るための励磁電流成分であり、重畳率n/mが0より大きいとき僅かに増加、重畳率n/mが0より小さいとき大きく減少する傾向がみられた。IGBTインバータ62への直流電圧Vdc一定下で、基本正弦波磁束密度Bf1が1[T]となるように基本正弦波変調率mが調節されており、重畳率n/mが0より大きくなると基本正弦波変調率mが増加し、重畳率n/mが0より小さくなると基本正弦波変調率mが減少している。つまり5次高調波の重畳により、基本正弦波磁束密度Bf1が一定の下で基本波電流If1の減少が生じることがいえる。 The fundamental wave current I f1 is an excitation current component for obtaining the fundamental wave magnetic flux density B f1 , and increases slightly when the superimposition ratio n/m is greater than 0, and greatly decreases when the superposition ratio n/m is smaller than 0. A trend was observed. Under a constant DC voltage V dc to the IGBT inverter 62, the basic sine wave modulation rate m is adjusted so that the basic sine wave magnetic flux density B f1 becomes 1 [T], and the superimposition rate n/m is greater than 0. Then, the basic sine wave modulation rate m increases, and when the superimposition rate n/m becomes smaller than 0, the basic sine wave modulation rate m decreases. In other words, it can be said that due to the superposition of the fifth harmonic, the fundamental wave current I f1 decreases while the fundamental sinusoidal magnetic flux density B f1 is constant.
 図35は、リング試験による鉄損Pfe、メジャーループ鉄損Pmajor、キャリア高調波鉄損(マイナーループ鉄損)Pcarrierの測定結果を示す図であり、(a)は鉄損を示す図、(b)は重畳率n/mが0の場合を基準としたときの鉄損の変化率を示す図である。 FIG. 35 is a diagram showing measurement results of iron loss P fe , major loop iron loss P major , and carrier harmonic iron loss (minor loop iron loss) P carrier by a ring test, and (a) is a diagram showing iron loss. , (b) are diagrams showing the rate of change in iron loss when the superimposition ratio n/m is 0 as a reference.
 図35(b)は、重畳率n/mが0の場合の鉄損Pfe、メジャーループ鉄損Pmajor、キャリア高調波鉄損Pcarrierを基準として、重畳率n/mを変化させたときの鉄損Pfe、メジャーループ鉄損Pmajor、キャリア高調波鉄損Pcarrierの変化率を示している。 FIG. 35(b) shows the results when the superposition ratio n/m is changed based on the iron loss P fe , the major loop iron loss P major , and the carrier harmonic iron loss P carrier when the superposition ratio n/m is 0. It shows the rate of change of iron loss P fe , major loop iron loss P major , and carrier harmonic iron loss P carrier .
 重畳率n/mが0より大きい範囲では、鉄損Pfeが増加し、重畳率n/mが0より小さい範囲では、鉄損Pfeが減少している。また、重畳率n/mが-0.2のとき、鉄損Pfeが最小値を示し、鉄損低減率は3.3%であった。メジャーループ鉄損Pmajorは、重畳率n/mが-0.15、-0.1、-0.05のとき減少している。重畳率n/mが-0.1のとき、メジャーループ鉄損Pmajorは最小をとり、低減率は2.3%である。キャリア高調波鉄損Pcarrierは重畳率n/mが0より大きいとき増加し、重畳率n/mが0より小さいとき減少している。重畳率n/mが-0.25のとき最小を示し、キャリア高調波鉄損Pcarrierの鉄損低減率は17.8%である。 In a range where the superimposition ratio n/m is larger than 0, the iron loss P fe increases, and in a range where the superimposition ratio n/m is smaller than 0, the iron loss P fe decreases. Further, when the superimposition ratio n/m was −0.2, the iron loss P fe showed the minimum value, and the iron loss reduction rate was 3.3%. The major loop iron loss P major decreases when the overlap ratio n/m is −0.15, −0.1, and −0.05. When the superimposition ratio n/m is −0.1, the major loop iron loss P major is at its minimum, and the reduction rate is 2.3%. The carrier harmonic iron loss P carrier increases when the superposition ratio n/m is greater than 0, and decreases when the superposition ratio n/m is smaller than 0. When the superimposition ratio n/m is −0.25, it is minimum, and the iron loss reduction rate of the carrier harmonic iron loss P carrier is 17.8%.
 5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.25以上かつ-0.05以下の範囲で、鉄損Pfeが低減している。 Compared to the case where the 5th harmonic is not superimposed (when the superimposition ratio n/m is 0), the iron loss P fe is reduced when the superposition ratio n/m is in the range of -0.25 or more and -0.05 or less. are doing.
 図35(b)に示す鉄損Pfeの変化率のグラフについて重畳率n/mが-0.25よりも小さい範囲に外挿すると、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.3以上の範囲でも、鉄損Pfeが低減しているといえる。また、図35(b)に示す鉄損Pfeの変化率のグラフでは、重畳率n/mが0と-0.05の範囲でも鉄損Pfeが低減している。 When extrapolating the graph of the rate of change of iron loss P fe shown in FIG. It can be said that the iron loss P fe is reduced even when the superimposition ratio n/m is −0.3 or more, compared to the case where n/m is 0. Further, in the graph of the rate of change of the iron loss P fe shown in FIG. 35(b), the iron loss P fe decreases even when the superimposition ratio n/m is in the range of 0 and −0.05.
 <リング試験(5次高調波の位相角特性)>
 5次高調波の初期位相φの特性を評価するため、リング試験にて初期位相φを-3π/4[rad]~3π/4[rad]の範囲で変化させ、電磁気特性を測定した。
<Ring test (phase angle characteristics of 5th harmonic)>
In order to evaluate the characteristics of the initial phase φ of the fifth harmonic, the initial phase φ was varied in the range of −3π/4 [rad] to 3π/4 [rad] in a ring test, and the electromagnetic characteristics were measured.
 図36は、リング試験の測定条件(5次高調波の位相角特性)を示す図である。なお、重畳率n/mは、-0.2で固定とした。また、この測定では、リング試料61の基本正弦波磁束密度Bf1が1[T]となるように、IGBTインバータ62への直流電圧Vdcを調節した。 FIG. 36 is a diagram showing the measurement conditions (phase angle characteristics of the fifth harmonic) of the ring test. Note that the superimposition ratio n/m was fixed at -0.2. Further, in this measurement, the DC voltage V dc to the IGBT inverter 62 was adjusted so that the fundamental sinusoidal magnetic flux density B f1 of the ring sample 61 was 1 [T].
 図37は、信号波h(t)の波形を示す図であり、(a)は基本正弦波g(t)を示す図、(b)は基本正弦波g(t)に初期位相φがπ/4[rad]の5次高調波を重畳した5次調波重畳信号を示す図である。横軸が時間、縦軸が信号の大きさを示す。図37(a)は、5次高調波の変調率nが0であり、基本正弦波g(t)に5次高調波が重畳されていない信号を信号波とする場合に該当する。図37(b)は、重畳率n/mを-0.2としたときの信号波h(t)の波形である。 FIG. 37 is a diagram showing the waveform of the signal wave h(t), (a) is a diagram showing the fundamental sine wave g(t), and (b) is a diagram showing the fundamental sine wave g(t) with an initial phase φ of π. FIG. 3 is a diagram showing a fifth-order harmonic superimposed signal on which a fifth-order harmonic of /4 [rad] is superimposed. The horizontal axis represents time, and the vertical axis represents signal magnitude. FIG. 37A corresponds to the case where the modulation rate n of the fifth harmonic is 0 and the signal wave is a signal in which the fifth harmonic is not superimposed on the fundamental sine wave g(t). FIG. 37(b) shows the waveform of the signal wave h(t) when the superimposition ratio n/m is −0.2.
 図38は、リング試験による5次高調波の初期位相φを変化させたときの測定結果を示す図であり、(a)は基本波電流If1を示す図、(b)は鉄損Pfeを示す図である。横軸が初期位相φ、縦軸が図38(a)では基本波電流If1、図38(b)では鉄損Pfeである。また、図中の水平の破線は、5次高調波の変調率nが0の場合、すなわち、基本正弦波g(t)を信号波h(t)として用いた場合の基本波電流If1、鉄損Pfeの測定値を示している。 FIG. 38 is a diagram showing the measurement results when the initial phase φ of the fifth harmonic was changed by the ring test, (a) is a diagram showing the fundamental wave current I f1 , and (b) is a diagram showing the iron loss P fe FIG. The horizontal axis is the initial phase φ, the vertical axis is the fundamental wave current I f1 in FIG. 38(a), and the iron loss P fe in FIG. 38(b). In addition, the horizontal broken line in the figure indicates the fundamental wave current I f1 when the modulation rate n of the fifth harmonic is 0, that is, when the fundamental sine wave g(t) is used as the signal wave h(t), It shows the measured value of iron loss Pfe .
 基本波電流If1は、水平の破線に比べて、初期位相φが0[rad]以下で減少し、初期位相φがπ/4[rad]以上で増加している。 Compared to the horizontal broken line, the fundamental wave current I f1 decreases when the initial phase φ is 0 [rad] or less, and increases when the initial phase φ is π/4 [rad] or more.
 鉄損Pfeは、水平の破線に比べて、初期位相φが-π/4[rad]以上かつπ/2[rad]以下の範囲で低減しており、初期位相φがπ/4[rad]で最小値となっている。また、この測定データを整理して、初期位相φがπ/4[rad]とπ/2[rad]のプロットを直線で結び、初期位相φが0のプロットよりも鉄損Pfeが小さくなる範囲は、初期位相φがπ/4[rad]以上かつ5π/16[rad]以下の範囲であることが分かる。そして、この図から、初期位相φが3π/8[rad]以上かつπ/4[rad]以下の範囲でも、初期位相φが0のときより鉄損Pfeが小さくなっていることが確認できる。すなわち、5次高調波の初期位相φを3π/8[rad]以上かつ5π/16[rad]以下の範囲に設定すると、初期位相φが0のときよりも鉄損Pfeが小さくなっている。 Compared to the horizontal broken line, the iron loss P fe is reduced in the range where the initial phase φ is -π/4 [rad] or more and π/2 [rad] or less, and when the initial phase φ is π/4 [rad] ] is the minimum value. In addition, by organizing this measurement data and connecting the plots where the initial phase φ is π/4 [rad] and π/2 [rad] with a straight line, the iron loss P fe is smaller than the plot where the initial phase φ is 0. It can be seen that the range is such that the initial phase φ is greater than or equal to π/4 [rad] and less than or equal to 5π/16 [rad]. From this figure, it can be confirmed that even when the initial phase φ is in the range of 3π/8 [rad] or more and π/4 [rad] or less, the iron loss P fe is smaller than when the initial phase φ is 0. . In other words, when the initial phase φ of the fifth harmonic is set in the range of 3π/8 [rad] or more and 5π/16 [rad] or less, the iron loss P fe becomes smaller than when the initial phase φ is 0. .
 以上より、鉄損Pfeの低減効果を活かしたい場合、初期位相φを、-π/4[rad]以上かつπ/2[rad]以下の範囲に設定したり、3π/8[rad]以上かつ5π/16[rad]以下の範囲に設定したり、π/4[rad]に設定したりすることが有効であることが確認されたといえる。 From the above, if you want to take advantage of the effect of reducing iron loss P fe , you can set the initial phase φ to a range of -π/4 [rad] or more and π/2 [rad] or less, or set the initial phase φ to a range of -π/4 [rad] or more and π/2 [rad] or more, or Moreover, it can be said that it has been confirmed that it is effective to set it to a range of 5π/16 [rad] or less, or to set it to π/4 [rad].
 <リング試験(キャリア周波数特性)>
 5次高調波のキャリア周波数fの特性を評価するため、リング試験にてキャリア周波数fを1[kHz]~20[kHz]の範囲で変化させ、電磁気特性を測定した。
<Ring test (carrier frequency characteristics)>
In order to evaluate the characteristics of the carrier frequency f c of the fifth harmonic, the carrier frequency f c was varied in the range of 1 [kHz] to 20 [kHz] in a ring test, and the electromagnetic characteristics were measured.
 図39は、リング試験の測定条件(キャリア周波数特性)を示す図であり、(a)は基礎測定条件、(b)は5次高調波の重畳条件を示す図である。図39(b)に示すように重畳率n/mは、-0.2で固定とし、ケースXでは5次高調波の初期位相φを0、ケースYでは初期位相φをπ/4[rad]とした。また、この測定では、リング試料61の基本正弦波磁束密度Bf1が1[T]となるように、IGBTインバータ62への直流電圧Vdcを調節した。 FIG. 39 is a diagram showing the measurement conditions (carrier frequency characteristics) of the ring test, in which (a) shows the basic measurement conditions and (b) shows the superimposition conditions of the fifth harmonic. As shown in FIG. 39(b), the superimposition ratio n/m is fixed at -0.2, the initial phase φ of the fifth harmonic is 0 in case X, and the initial phase φ is π/4 [rad ]. Further, in this measurement, the DC voltage V dc to the IGBT inverter 62 was adjusted so that the fundamental sinusoidal magnetic flux density B f1 of the ring sample 61 was 1 [T].
 図40は、リング試験によるキャリア周波数fを変化させたときの測定結果を示す図であり、(a)は基本波電流If1を示す図、(b)鉄損Pfeを示す図である。横軸がキャリア周波数f、縦軸が図40(a)では基本波電流If1、図40(b)では鉄損Pfeである。ひし形のプロットはケースXの測定結果を示し、三角形のプロットはケースYの測定結果を示す。また、丸プロットは、5次高調波を重畳しない場合(重畳率n/mが0の場合)の測定結果を示す。 FIG. 40 is a diagram showing the measurement results when changing the carrier frequency f c by the ring test, (a) is a diagram showing the fundamental wave current I f1 , (b) is a diagram showing the iron loss P fe . . The horizontal axis is the carrier frequency f c , the vertical axis is the fundamental wave current I f1 in FIG. 40(a), and the iron loss P fe in FIG. 40(b). The diamond plots show the measurement results for case X, and the triangle plots show the measurement results for case Y. Moreover, the circle plot shows the measurement results when the fifth harmonic is not superimposed (when the superimposition ratio n/m is 0).
 図40(a)に示すように、ケースX(重畳率n/mが-0.2、初期位相φが0[rad]の設定)の基本波電流If1は、全てのキャリア周波数fの範囲で最も小さくなっている。ケースY(重畳率n/mが-0.2、初期位相φがπ/4[rad]の設定)の基本波電流If1は、キャリア周波数fが10[kHz]以上の範囲で、5次高調波を重畳しない場合よりも、小さくなっている。 As shown in FIG. 40(a), the fundamental wave current I f1 in case It is the smallest in the range. The fundamental wave current I f1 in case Y (superimposition rate n/m is set to -0.2 and initial phase φ is set to π/4 [rad]) is 5 in the range where the carrier frequency f c is 10 [kHz] or more. This is smaller than when the harmonics are not superimposed.
 図40(b)に示すように、ケースY(重畳率n/mが-0.2、初期位相φがπ/4[rad]の設定)の鉄損Pfeは、全てのキャリア周波数fの範囲で最も小さくなっている。ケースX(重畳率n/mが-0.2、初期位相φが0[rad]の設定)の鉄損Pfeは、キャリア周波数fが10[kHz]以下の範囲で、5次高調波を重畳しない場合よりも、小さくなっている。 As shown in FIG. 40(b), the iron loss P fe in case Y (the superimposition ratio n/m is set to -0.2 and the initial phase φ is set to π/4 [rad]) is is the smallest in the range. The iron loss P fe in case It is smaller than when it is not superimposed.
 [特性評価試験2(モータ試験)]
 次に、モータ試験の測定結果を示す。重畳率n/mが0以下の範囲の条件で、モータ駆動試験を行い、モータ駆動試験装置89の損失特性を評価した。
[Characteristics evaluation test 2 (motor test)]
Next, the measurement results of the motor test are shown. A motor drive test was conducted under conditions in which the superimposition ratio n/m was 0 or less, and the loss characteristics of the motor drive test device 89 were evaluated.
 図41は、特性評価試験2(モータ試験)に係るモータ試験装置89の概略構成図である。このモータ試験では、IGBTインバータ71を用いて、埋込構造永久磁石同期電動機(IPMSM)73を駆動する。 FIG. 41 is a schematic configuration diagram of a motor testing device 89 related to characteristic evaluation test 2 (motor test). In this motor test, an IGBT inverter 71 is used to drive an embedded permanent magnet synchronous motor (IPMSM) 73.
 図42は、モータ試験の試験モータ(埋込構造永久磁石同期電動機73)を示す図であり、(a)はモータの概略断面図、(b)はモータの仕様を示す図である。 FIG. 42 is a diagram showing a test motor (embedded structure permanent magnet synchronous motor 73) for the motor test, (a) is a schematic cross-sectional view of the motor, and (b) is a diagram showing the specifications of the motor.
 この埋込構造永久磁石同期電動機73は、ロータとステータで構成され、ロータとステータの鉄心材料はリング試験のリング試料61と同様に、無方向性電磁鋼板35H300(日本製鉄(株)製)である。また、永久磁石はボンド磁石(愛知製鋼(株)製、S5P-12ME)である。IGBTインバータ71は、スイッチング素子として三菱電機(株)製のパワーモジュール(PM75RSD060)を用いた三相Si-IGBTインバータ、還流ダイオードとしてSiダイオード(三菱電機(株)製、RM30TB-H)を搭載している。YOKOGAWA製PX-8000(電力計測器72)を用いて、電力の測定と波形の観測を行う。 This embedded structure permanent magnet synchronous motor 73 is composed of a rotor and a stator, and the core material of the rotor and stator is non-oriented electrical steel plate 35H300 (manufactured by Nippon Steel Corporation), similar to the ring sample 61 of the ring test. be. The permanent magnet is a bonded magnet (manufactured by Aichi Steel Corporation, S5P-12ME). The IGBT inverter 71 is a three-phase Si-IGBT inverter that uses a power module (PM75RSD060) manufactured by Mitsubishi Electric Co., Ltd. as a switching element, and a Si diode (RM30TB-H, manufactured by Mitsubishi Electric Co., Ltd.) as a freewheeling diode. ing. Power measurement and waveform observation are performed using Yokogawa PX-8000 (power meter 72).
 測定条件は、回転速度ωが750[rpm]、平均トルクTが0.611[Nm]、キャリア周波数fが1[kHz]、IGBTインバータ71への入力電圧Vdcが50[V]とした。回転速度ωおよびトルクTが一定となるようにフィードバック制御することで、基本正弦波変調率mを調節した。 The measurement conditions were that the rotational speed ω was 750 [rpm], the average torque T was 0.611 [Nm], the carrier frequency fc was 1 [kHz], and the input voltage V dc to the IGBT inverter 71 was 50 [V]. . The fundamental sine wave modulation factor m was adjusted by performing feedback control so that the rotational speed ω and the torque T were constant.
 次に、モータ試験装置89の損失算出方法について説明する。IGBTインバータ71への入力電力Pinとモータ各相の入力電力P、P、P、モータ各相の入力電流実効値Iu_rms、Iv_rms、Iw_rms、モータ各相の入力電流I、I、Iを測定し、損失の算出に用いる。試験装置89の全体損失Ptotalは上記式(17)に示すように、インバータ損Pinv、銅損PCu、モータコア損・機械損Pcore&mechで構成される。インバータ損Pinvは、IGBTインバータ71への入力電力Pin、モータ各相の入力電力P、P、P、電力計測器72の損失Pw.mにより上記式(18)のように算出する。電力計測器72の損失Pw.mは、シャント抵抗Rshunt(=0.1[Ω])、接続ケーブルの抵抗Rcable(=0.012[Ω])、モータ各相の入力電流実効値Iu_rms、Iv_rms、Iw_rmsにより上記式(19)のように算出する。銅損PCuは巻線抵抗R(=0.5[Ω])、モータ各相の入力電流実効値Iu_rms、Iv_rms、Iw_rmsにより上記式(20)のように算出する。モータコア損・機械損Pcore&mechは、モータ各相の入力電力P、P、P、銅損PCu、機械出力ωTにより上記式(21)のように算出する。結果は7回の測定による平均値とし、誤差を標準偏差で表す。なお、モータコア損Pcoreと機械損Pmechは、いずれも直接測定することが困難であるため、本測定では、機械損Pmechとモータコア損Pcoreを分類せず、モータコア損・機械損Pcore&mechとして測定結果を得た。 Next, a loss calculation method of the motor testing device 89 will be explained. Input power P in to the IGBT inverter 71, input power P u , P v , P w of each phase of the motor, effective input current value I u_rms , I v_rms , I w_rms , input current I u of each phase of the motor , I v , and I w are measured and used to calculate the loss. As shown in the above equation (17), the overall loss P total of the test device 89 is composed of the inverter loss P inv , the copper loss P Cu , and the motor core loss/mechanical loss P core&mech . The inverter loss P inv is the input power P in to the IGBT inverter 71 , the input power P u , P v , P w of each phase of the motor, the loss P w of the power measuring device 72 . m is calculated as in the above equation (18). Loss P of power meter 72 w. m is determined by the shunt resistance R shunt (=0.1 [Ω]), the resistance R cable (=0.012 [Ω]) of the connection cable, and the effective input current values of each phase of the motor I u_rms , I v_rms , I w_rms It is calculated as in the above equation (19). Copper loss P Cu is calculated using the winding resistance R (=0.5 [Ω]) and the effective input current values of each phase of the motor I u_rms , I v_rms , and I w_rms as shown in the above formula (20). The motor core loss/mechanical loss P core&mech is calculated as shown in the above formula (21) using the input power P u , P v , P w of each phase of the motor, the copper loss P Cu , and the mechanical output ωT. The results are the average value of seven measurements, and the error is expressed as standard deviation. In addition, since it is difficult to directly measure both motor core loss P core and mechanical loss P mech , in this measurement, mechanical loss P mech and motor core loss P core are not classified, and motor core loss/mechanical loss P core&mech The measurement results were obtained as follows.
 <モータ試験(重畳率特性)>
 5次高調波重畳の特性を評価するため、モータ試験にて重畳率n/mを-0.25~0の範囲で変化させ損失特性を測定した。
<Motor test (superimposition rate characteristics)>
In order to evaluate the characteristics of 5th harmonic superposition, the loss characteristics were measured by varying the superposition ratio n/m in the range of -0.25 to 0 in a motor test.
 図43に、モータ試験の測定条件(重畳率特性)を示す。なお、5次高調波の初期位相φは0とした。 FIG. 43 shows the measurement conditions (superimposition rate characteristics) of the motor test. Note that the initial phase φ of the fifth harmonic was set to 0.
 図44は、三相の信号波h(t)、h(t)、h(t)の波形を示す図であり、(a)は基本正弦波g(t)、g(t)、g(t)を示す図、(b)は基本正弦波g(t)、g(t)、g(t)に5次高調波を重畳した5次調波重畳信号を示す図である。横軸が時間、縦軸が信号の大きさを示す。図44(a)は、基本正弦波g(t)、g(t)、g(t)に5次高調波が重畳されていない信号を信号波とする場合に該当する。すなわち、5次高調波の変調率nが0の場合である。図44(b)は、重畳率n/mを-0.1としたときの三相の信号波h(t)、h(t)、h(t)の波形である。 FIG. 44 is a diagram showing the waveforms of three-phase signal waves h u (t), h v (t), and h w (t), and (a) is a diagram showing the waveforms of the three-phase signal waves h u (t), h v (t), and g v ( t), g w (t), (b) is a 5th harmonic superimposed signal in which the 5th harmonic is superimposed on the fundamental sine waves g u (t), g v (t), and g w (t). FIG. The horizontal axis represents time, and the vertical axis represents signal magnitude. FIG. 44(a) corresponds to the case where the signal wave is a signal in which the fifth harmonic is not superimposed on the fundamental sine waves g u (t), g v (t), and g w (t). That is, this is a case where the modulation rate n of the fifth harmonic is 0. FIG. 44(b) shows the waveforms of three-phase signal waves h u (t), h v (t), and h w (t) when the superimposition ratio n/m is −0.1.
 図45は、モータ試験による基本波電流If1_rmsと基本正弦波変調率mの測定結果を示す図である。 FIG. 45 is a diagram showing the measurement results of the fundamental wave current I f1_rms and the fundamental sine wave modulation factor m in the motor test.
 この図は、回転速度ω(=750[rpm])および平均トルクT(=0.611[Nm])が一定となるようにフィードバック制御することにより得られた基本正弦波変調率mの5次高調波の重畳率特性を示している。基本正弦波変調率mは、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.25、-0.15、-0.1で減少している。また、観測波形より得られた相平均の基本波電流If1_rmsも、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.25、-0.15、-0.1で減少している。これはリング試験の測定結果と同じ現象である(図34参照)。 This figure shows the fifth order of the fundamental sine wave modulation rate m obtained by feedback control so that the rotational speed ω (=750 [rpm]) and the average torque T (=0.611 [Nm]) are constant. It shows the superimposition rate characteristics of harmonics. The fundamental sine wave modulation rate m is -0.25, -0.15, -0. It is decreasing by 1. Furthermore, the phase average fundamental wave current I f1_rms obtained from the observed waveform also has a superimposition ratio n/m of −0. 25, -0.15, and -0.1. This is the same phenomenon as the measurement result of the ring test (see FIG. 34).
 図46に、モータ試験による全体損失Ptotalの測定結果を示す。横軸が重畳率n/m、縦軸が全体損失Ptotalである。また、図中の水平の破線は、5次高調波の変調率nが0の場合、すなわち、基本正弦波g(t)を信号波h(t)として用いた場合の全体損失Ptotalの測定値を示している。 FIG. 46 shows the measurement results of the overall loss P total in the motor test. The horizontal axis is the superimposition ratio n/m, and the vertical axis is the overall loss P total . In addition, the horizontal broken line in the figure is the measurement of the total loss P total when the modulation rate n of the fifth harmonic is 0, that is, when the fundamental sine wave g(t) is used as the signal wave h(t). It shows the value.
 全体損失Ptotalは、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.25、-0.15、-0.1で減少している。また、重畳率n/mが-0.15のとき最小値を示し、5次高調波を重畳しない場合との比較で、損失低減率は1.5%である。また、重畳率n/mが-0.10のときも損失低減率が1.4%であり、損失が大きく低減されている。 The overall loss P total is greater when the superposition rate n/m is -0.25, -0.15, and -0.1 compared to the case where the fifth harmonic is not superimposed (when the superposition ratio n/m is 0). is decreasing. Further, when the superimposition ratio n/m is -0.15, it shows the minimum value, and the loss reduction rate is 1.5% compared to the case where the fifth harmonic is not superimposed. Also, when the superimposition ratio n/m is −0.10, the loss reduction rate is 1.4%, and the loss is greatly reduced.
 このように、重畳率n/mが-0.15、-0.10のとき、損失低減の効果が高いことが確認された。また、この測定結果から、重畳率n/mが0と-0.10の中間の-0.05でも、損失が低減することが容易に推測される。 In this way, it was confirmed that the loss reduction effect is high when the superimposition ratio n/m is -0.15 and -0.10. Further, from this measurement result, it is easily inferred that the loss is reduced even when the superimposition ratio n/m is -0.05, which is between 0 and -0.10.
 以上より、損失低減ため、重畳率n/mを、-0.25以上かつ-0.05以下の範囲に設定したり、-0.15以上かつ-0.10以下の範囲に設定したりすることが有効である。 From the above, in order to reduce loss, the superimposition ratio n/m is set to a range of -0.25 or more and -0.05 or less, or set to a range of -0.15 or more and -0.10 or less. This is effective.
 また、以下に示すようにこのモータ試験(重畳率特性)において、重畳率n/mが-0.15、-0.10のとき、全体損失Ptotalを構成するインバータ損Pinv、銅損PCu、モータコア損・機械損Pcore&mechのすべての損失が、5次高調波を重畳しない場合に比べて低減した。すなわち「銅損PCu、インバータ損Pinvが大きくなると想定される低速・高トルク条件」と「モータコア損・機械損Pcore&mechが大きくなると想定される高速・低トルク条件」の両者において、重畳率n/mが-0.15、-0.10の5次高調波重畳が有効である可能性がある。 In addition, as shown below, in this motor test (superposition ratio characteristics), when the superposition ratio n/m is -0.15, -0.10, the inverter loss P inv and copper loss P which constitute the overall loss P total are All losses including Cu , motor core loss and mechanical loss P core & mech were reduced compared to the case where the fifth harmonic was not superimposed. In other words , the superimposition ratio is Fifth-order harmonic superposition with n/m of −0.15 and −0.10 may be effective.
 図47に、モータ試験によるモータコア損・機械損Pcore&mechの測定結果を示す。図中の水平の破線は、基本正弦波g(t)を信号波h(t)として用いた場合(5次高調波の変調率nが0の場合)のモータコア損・機械損Pcore&mechの測定値を示している。 FIG. 47 shows the measurement results of motor core loss and mechanical loss P core&mech by motor test. The horizontal broken line in the figure is the measurement of motor core loss/mechanical loss P core&mech when the fundamental sine wave g(t) is used as the signal wave h(t) (when the modulation rate n of the fifth harmonic is 0). It shows the value.
 モータコア損・機械損Pcore&mechは、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.15、-0.1のとき減少している。また、重畳率n/mが-0.10のとき最小値を示し、5次高調波を重畳しない場合との比較で、損失低減率は2.5%である。ここで、回転速度一定より、機械損Pmechが一定であると仮定する。この場合、モータコア損Pcoreの減少理由は、メジャーループ鉄損Pmajorとキャリア高調波鉄損Pcarrierの減少にあると上記のリング試験より考察される。特に重畳率n/mが-0.25の場合を含め、リング試験におけるメジャーループ鉄損Pmajorの傾向と酷似している(図35参照)。 Motor core loss/mechanical loss P core&mech decreases when the superposition ratio n/m is -0.15 and -0.1 compared to when the fifth harmonic is not superimposed (when the superposition ratio n/m is 0) are doing. Furthermore, when the superimposition ratio n/m is -0.10, it shows the minimum value, and the loss reduction rate is 2.5% compared to the case where the fifth harmonic is not superimposed. Here, it is assumed that the mechanical loss P mech is constant since the rotational speed is constant. In this case, it is considered from the above ring test that the reason for the decrease in motor core loss P core is a decrease in major loop iron loss P major and carrier harmonic iron loss P carrier . In particular, the trend is very similar to the trend of the major loop iron loss P major in the ring test, including the case where the superimposition ratio n/m is −0.25 (see FIG. 35).
 図48に、モータ試験による銅損PCuと基本波電流銅損PCu_If1の測定結果を示す。図中の水平の破線は、基本正弦波g(t)を信号波h(t)として用いた場合(5次高調波の変調率nが0の場合)の測定値を示している。 FIG. 48 shows the measurement results of copper loss P Cu and fundamental wave current copper loss P Cu_If1 in the motor test. The horizontal broken line in the figure indicates the measured value when the fundamental sine wave g(t) is used as the signal wave h(t) (when the modulation rate n of the fifth harmonic is 0).
 基本波電流銅損PCu_If1は、図45の基本波電流If1_rmsを用いて、上記式(20)同様に算出する。銅損PCuは、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.15、-0.1のとき減少している。また、重畳率n/mが-0.10のとき最小値を示し、5次高調波を重畳しない場合との比較で、損失低減率は0.4%である。重畳率n/mの絶対値が大きくなるにつれて、高調波銅損(=PCu-PCu_If1)が大きくなる一方、基本波電流銅損PCu_If1は小さくなる。これより、銅損PCuは、基本波電流If1_rmsの減少によることがわかる。 The fundamental wave current copper loss P Cu_If1 is calculated similarly to the above formula (20) using the fundamental wave current I f1_rms in FIG. 45. The copper loss P Cu decreases when the superposition ratio n/m is -0.15 and -0.1 compared to when the fifth harmonic is not superimposed (when the superposition ratio n/m is 0). . Further, when the superimposition ratio n/m is -0.10, it shows the minimum value, and the loss reduction rate is 0.4% compared to the case where the fifth harmonic is not superimposed. As the absolute value of the superposition ratio n/m increases, the harmonic copper loss (=P Cu -P Cu_If1 ) increases, while the fundamental current copper loss P Cu_If1 decreases. From this, it can be seen that the copper loss P Cu is due to a decrease in the fundamental wave current I f1_rms .
 図49に、モータ試験によるインバータ損Pinvの測定結果を示す。 FIG. 49 shows the measurement results of the inverter loss P inv in the motor test.
 インバータ損Pinvは、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.25、-0.15、-0.1で減少している。また、重畳率n/mが-0.25のとき最小値を示し、5次高調波を重畳しない場合との比較で、損失低減率は5.1%である。 The inverter loss P inv is greater when the superposition ratio n/m is -0.25, -0.15, and -0.1 compared to the case where the fifth harmonic is not superimposed (when the superposition ratio n/m is 0). is decreasing. Further, when the superimposition ratio n/m is -0.25, it shows the minimum value, and the loss reduction rate is 5.1% compared to the case where the fifth harmonic is not superimposed.
 <モータ試験(5次高調波の位相角特性)>
 5次高調波の初期位相φの特性を評価するため、モータ試験にて初期位相φを0[rad]とπ/4[rad]に設定して損失特性を測定した。
<Motor test (5th harmonic phase angle characteristics)>
In order to evaluate the characteristics of the initial phase φ of the fifth harmonic, loss characteristics were measured by setting the initial phase φ to 0 [rad] and π/4 [rad] in a motor test.
 図50に、モータ試験の測定条件(5次高調波の位相角特性)を示す。なお、重畳率n/mは-0.1とした。 FIG. 50 shows the measurement conditions for the motor test (phase angle characteristics of the fifth harmonic). Note that the superimposition ratio n/m was set to -0.1.
 図51は、三相の信号波h(t)、h(t)、h(t)の波形を示す図であり、(a)は基本正弦波g(t)、g(t)、g(t)を示す図、(b)は基本正弦波g(t)、g(t)、g(t)に初期位相φがπ/4[rad]の5次高調波を重畳した5次調波重畳信号を示す図である。横軸が時間、縦軸が信号の大きさを示す。図51(a)は、基本正弦波g(t)、g(t)、g(t)に5次高調波が重畳されていない信号を信号波とする場合に該当する(5次高調波の変調率nが0の場合)。図51(b)は、重畳率n/mが-0.1、初期位相φがπ/4[rad]の5次高調波を重畳したときの三相の信号波h(t)、h(t)、h(t)の波形である。 FIG. 51 is a diagram showing the waveforms of three-phase signal waves h u (t), h v (t), h w (t), and (a) is a diagram showing the waveforms of the three-phase signal waves h u (t), h v (t), and g v ( (b) is a diagram showing fundamental sine waves g u ( t), g v (t), g w (t) with an initial phase φ of π/4 [rad]. FIG. 3 is a diagram showing a fifth-order harmonic superimposed signal on which harmonics are superimposed. The horizontal axis represents time, and the vertical axis represents signal magnitude. FIG. 51(a) corresponds to the case where the signal wave is a signal on which the fifth harmonic is not superimposed on the fundamental sine waves g u (t), g v (t), g w (t) (fifth harmonic (When the harmonic modulation rate n is 0). FIG. 51(b) shows three-phase signal waves h u (t), h when a fifth-order harmonic with a superposition ratio n/m of −0.1 and an initial phase φ of π/4 [rad] is superimposed. These are the waveforms of v (t) and h w (t).
 図52に、モータ試験による基本正弦波変調率mと基本波電流If1_rmsの測定結果を示す。横軸は左側が重畳率n/mが0の場合、中央が重畳率n/mが-0.1で5次高調波の初期位相φが0[rad]の場合、右側が重畳率n/mが-0.1で初期位相φがπ/4[rad]の場合を示す。 FIG. 52 shows the measurement results of the fundamental sine wave modulation factor m and the fundamental wave current I f1_rms in the motor test. On the horizontal axis, the left side is when the superposition rate n/m is 0, the center is when the superposition rate n/m is -0.1 and the initial phase φ of the fifth harmonic is 0 [rad], and the right side is the superposition rate n/m. The case where m is −0.1 and the initial phase φ is π/4 [rad] is shown.
 この図は、回転速度ω(=750[rpm])および平均トルクT(=0.611[Nm])が一定となるようにフィードバック制御したときの基本正弦波変調率mである。基本正弦波変調率mと基本波電流If1_rmsは共に、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.1のとき減少している。また、重畳率n/mが-0.1の条件では、5次高調波の初期位相φが0[rad]よりもπ/4[rad]で基本正弦波変調率mと基本波電流If1_rmsが減少している。 This figure shows the basic sine wave modulation rate m when feedback control is performed so that the rotation speed ω (=750 [rpm]) and the average torque T (=0.611 [Nm]) are constant. Both the fundamental sine wave modulation rate m and the fundamental wave current I f1_rms are higher when the superposition ratio n/m is -0.1 than when the fifth harmonic is not superimposed (when the superposition ratio n/m is 0). is decreasing. In addition, under the condition that the superimposition ratio n/m is -0.1, the initial phase φ of the fifth harmonic is π/4 [rad] than 0 [rad], and the fundamental sine wave modulation rate m and the fundamental wave current I f1_rms is decreasing.
 図53は、モータ試験による全体損失Ptotalの測定結果を示す図である。横軸は左側が重畳率n/mが0の場合、中央が重畳率n/mが-0.1で5次高調波の初期位相φが0[rad]の場合、右側が重畳率n/mが-0.1で初期位相φがπ/4[rad]の場合を示し、縦軸は全体損失Ptotalである。また、図中の水平の破線は、基本正弦波g(t)を信号波h(t)として用いた場合(5次高調波の変調率nが0の場合)の全体損失Ptotalの測定値を示している。 FIG. 53 is a diagram showing the measurement results of the overall loss P total in the motor test. On the horizontal axis, the left side is when the superposition rate n/m is 0, the center is when the superposition rate n/m is -0.1 and the initial phase φ of the fifth harmonic is 0 [rad], and the right side is the superposition rate n/m. The case where m is −0.1 and the initial phase φ is π/4 [rad] is shown, and the vertical axis is the overall loss P total . In addition, the horizontal broken line in the figure is the measured value of the overall loss P total when the fundamental sine wave g(t) is used as the signal wave h(t) (when the modulation rate n of the fifth harmonic is 0). It shows.
 全体損失Ptotalは、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.1のとき低減している。また、重畳率n/mが-0.1の条件では、5次高調波の初期位相φがπ/4[rad]よりも0[rad]で全体損失Ptotalが低減している。 The overall loss P total is reduced when the superposition ratio n/m is -0.1 compared to the case where the fifth harmonic is not superimposed (the case where the superposition ratio n/m is 0). Further, under the condition that the superposition ratio n/m is −0.1, the overall loss P total is reduced when the initial phase φ of the fifth harmonic is 0 [rad] than π/4 [rad].
 後述するように、重畳率n/mが-0.1の条件で、5次高調波の初期位相φが0[rad]とπ/4[rad]の場合の試験結果を比較すると、以下のようになった。 As described later, when comparing the test results when the initial phase φ of the fifth harmonic is 0 [rad] and π/4 [rad] under the condition that the superposition ratio n/m is -0.1, the following is obtained. It became so.
 5次高調波を重畳しない場合に対するモータコア損・機械損Pcore&mechの低減率は、初期位相φがπ/4[rad]の方が、0[rad]に比べて大きい数値を示した。銅損PCuの低減率は、初期位相φが0[rad]の方が、π/4[rad]に比べて僅かに大きい数値を示した。インバータ損Pinvの低減率は、初期位相φが0[rad]の方が、π/4[rad]に比べて大きい数値を示した。 The reduction rate of the motor core loss/mechanical loss P core &mech in the case where the fifth harmonic is not superimposed showed a larger value when the initial phase φ was π/4 [rad] than when it was 0 [rad]. The reduction rate of copper loss P Cu showed a slightly larger value when the initial phase φ was 0 [rad] than when the initial phase φ was 0 [rad]. The reduction rate of the inverter loss P inv was larger when the initial phase φ was 0 [rad] than when the initial phase φ was π/4 [rad].
 この結果に基づいて、次のような発明の構成も考えられる。低速・高トルク条件では、銅損PCu、インバータ損Pinvが大きくなると想定され、高速・低トルク条件では、モータコア損・機械損Pcore&mechが大きくなると想定される。 Based on this result, the following configuration of the invention may be considered. Under low speed/high torque conditions, the copper loss P Cu and inverter loss P inv are assumed to be large, and under high speed/low torque conditions, the motor core loss/mechanical loss P core&mech is assumed to be large.
 そうすると、所定の回転速度閾値などの所定閾値をあらかじめ設定しておき、外部から入力されるモータの制御指令である回転速度指令などの指令値が、この所定閾値よりも小さい場合には5次高調波の初期位相φを0[rad]とし、指令値が所定閾値以上の場合には初期位相φをπ/4[rad]に切り替えて基本正弦波g(t)に重畳し信号波h(t)を生成するようにしてもよい。 In this case, a predetermined threshold value such as a predetermined rotation speed threshold value is set in advance, and if a command value such as a rotation speed command that is a motor control command input from the outside is smaller than this predetermined threshold value, the 5th harmonic The initial phase φ of the wave is set to 0 [rad], and when the command value is greater than or equal to a predetermined threshold, the initial phase φ is switched to π/4 [rad], superimposed on the fundamental sine wave g(t), and the signal wave h(t ) may be generated.
 また、所定のトルク閾値などの所定閾値をあらかじめ設定しておき、外部から入力されるモータの制御指令であるトルク指令などの指令値が、この所定閾値以上の場合には5次高調波の初期位相φを0[rad]とし、指令値が所定閾値より小さい場合には初期位相φをπ/4[rad]に切り替えて基本正弦波g(t)に重畳し信号波h(t)を生成するようにしてもよい。 In addition, a predetermined threshold value such as a predetermined torque threshold value is set in advance, and if a command value such as a torque command that is a motor control command input from the outside is greater than or equal to this predetermined threshold value, the fifth harmonic The phase φ is set to 0 [rad], and if the command value is smaller than a predetermined threshold, the initial phase φ is switched to π/4 [rad] and superimposed on the fundamental sine wave g(t) to generate the signal wave h(t). You may also do so.
 また、入力される指令値に代えて、作動中のモータの回転速度やトルクを検出し、この検出した回転速度やトルクが所定閾値に達したときに5次高調波の初期位相φを切り替えるようにしてもよい。 In addition, instead of the input command value, the rotational speed and torque of the operating motor are detected, and when the detected rotational speed and torque reach a predetermined threshold, the initial phase φ of the fifth harmonic is switched. You may also do so.
 また、所定閾値に達したときの初期位相φの切り替えは、不連続に切り替えるのでなく、直線的または曲線的に滑らかに切り替えるようにしてもよい。また、所定閾値として小さい側の所定閾値と大きい側の所定閾値の2個を用意しておき、検出された回転速度やトルクが小さい側の所定閾値に達し5次高調波の初期位相φが切り替わると、その後は大きい側の所定閾値に設定され、検出された回転速度やトルクが大きい側の所定閾値に達して初期位相φが切り替わると、その後は小さい側の所定閾値に設定されるように、所定閾値の設定にヒステリシスを持たせるようにしてもよい。 Furthermore, the initial phase φ may be switched smoothly in a linear or curved manner instead of discontinuously when the predetermined threshold is reached. In addition, two predetermined thresholds, a smaller predetermined threshold and a larger predetermined threshold, are prepared, and when the detected rotational speed or torque reaches the smaller predetermined threshold, the initial phase φ of the fifth harmonic is switched. Then, when the detected rotational speed or torque reaches the larger predetermined threshold and the initial phase φ is switched, the initial phase φ is then set to the smaller predetermined threshold. The predetermined threshold value may be set with hysteresis.
 このように、モータへの指令値や作動中のモータの検出値などの入力値に基づいて、基本正弦波g(t)に重畳する5次高調波の初期位相φを切り替えるようにしてもよい。 In this way, the initial phase φ of the fifth harmonic to be superimposed on the fundamental sine wave g(t) may be switched based on input values such as a command value to the motor or a detected value of the motor during operation. .
 また、所定の回転速度閾値などの所定閾値をあらかじめ設定しておき、外部から入力される回転速度指令などの指令値が、この所定閾値よりも小さい場合には初期位相φを0[rad]からπ/4[rad]に向けて連続的に変化させ、指令値が所定閾値以上の場合には初期位相φがπ/4[rad]となるように基本正弦波g(t)に重畳し信号波h(t)を生成するようにしてもよい。この場合、π/4[rad]が5次高調波に加えられる最大の初期位相φとなる。初期位相φを連続的に変化させる方法は、直線的に変化させてもよいし、曲線的に変化させるようにしてもよい。 In addition, a predetermined threshold value such as a predetermined rotation speed threshold value is set in advance, and when a command value such as a rotation speed command input from the outside is smaller than this predetermined threshold value, the initial phase φ is changed from 0 [rad]. The signal is superimposed on the fundamental sine wave g(t) so that the initial phase φ becomes π/4 [rad] when the command value is greater than or equal to a predetermined threshold. A wave h(t) may be generated. In this case, π/4 [rad] is the maximum initial phase φ added to the fifth harmonic. The method for continuously changing the initial phase φ may be linear or curved.
 また、所定のトルク閾値などの所定閾値をあらかじめ設定しておき、外部から入力されるトルク指令などの指令値が、この所定閾値以上の場合には初期位相φをπ/4[rad]から0[rad]に向けて連続的に変化させ、指令値が所定閾値より小さい場合には初期位相φがπ/4[rad]となるように基本正弦波g(t)に重畳し信号波h(t)を生成するようにしてもよい。 In addition, a predetermined threshold value such as a predetermined torque threshold value is set in advance, and when a command value such as a torque command input from the outside is greater than or equal to this predetermined threshold value, the initial phase φ is changed from π/4 [rad] to 0. [rad], and when the command value is smaller than a predetermined threshold value, the signal wave h( t) may be generated.
 また、入力される指令値に代えて、作動中のモータの回転速度やトルクを検出し、この検出した回転速度やトルクに基づいて、5次高調波の初期位相φを変化させるようにしてもよい。 Alternatively, instead of the input command value, the rotational speed and torque of the operating motor may be detected, and the initial phase φ of the fifth harmonic may be changed based on the detected rotational speed and torque. good.
 このように、モータへの指令値や作動中のモータの検出値などの入力値に基づいて、基本正弦波g(t)に重畳する5次高調波の初期位相φを連続的に変化させるようにしてもよい。 In this way, the initial phase φ of the fifth harmonic superimposed on the fundamental sine wave g(t) is continuously changed based on the input values such as the command value to the motor and the detected value of the motor during operation. You may also do so.
 すなわち、重畳する5次高調波の初期位相φが固定値でなく、変化するようにしてもよい。また、5次高調波の初期位相φの変化の状態が、所定閾値に基づいて切り替わるようにしてもよい。 That is, the initial phase φ of the fifth harmonic to be superimposed is not a fixed value, but may be changed. Furthermore, the state of change in the initial phase φ of the fifth harmonic may be switched based on a predetermined threshold value.
 図54に、モータ試験によるモータコア損・機械損Pcore&mechの測定結果を示す。図中の水平の破線は、基本正弦波g(t)を信号波h(t)として用いた場合(5次高調波の変調率nが0の場合)のモータコア損・機械損Pcore&mechの測定値を示している。 FIG. 54 shows the measurement results of motor core loss and mechanical loss P core&mech by motor test. The horizontal broken line in the figure is the measurement of motor core loss/mechanical loss P core&mech when the fundamental sine wave g(t) is used as the signal wave h(t) (when the modulation rate n of the fifth harmonic is 0). It shows the value.
 モータコア損・機械損Pcore&mechは、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.1のとき低減している。また、重畳率n/mが-0.1の条件では、5次高調波の初期位相φが0[rad]よりもπ/4[rad]でモータコア損・機械損Pcore&mechが低減している。初期位相φをπ/4[rad]としたときの損失低減率は、5次高調波を重畳しない場合と比較して3.4%である。 The motor core loss/mechanical loss P core&mech is reduced when the superposition ratio n/m is −0.1 compared to the case where the fifth harmonic is not superimposed (the case where the superposition ratio n/m is 0). Furthermore, under the condition that the superimposition ratio n/m is -0.1, the motor core loss/mechanical loss P core&mech is reduced when the initial phase φ of the fifth harmonic is π/4 [rad] than when it is 0 [rad]. . The loss reduction rate when the initial phase φ is π/4 [rad] is 3.4% compared to the case where the fifth harmonic is not superimposed.
 「モータコア損・機械損Pcore&mechが大きくなると想定される高速・低トルク条件」では、5次高調波の初期位相φをπ/4[rad]に設定する方が有効であると考えられる。 In "high speed/low torque conditions where motor core loss/mechanical loss Pcore &mech is expected to be large", it is considered more effective to set the initial phase φ of the fifth harmonic to π/4 [rad].
 図55に、モータ試験による銅損PCuと基本波電流銅損PCu_If1の測定結果を示す。図中の水平の破線は、5次高調波の変調率nが0の場合の銅損PCuの測定値を示している。 FIG. 55 shows the measurement results of copper loss P Cu and fundamental wave current copper loss P Cu_If1 in the motor test. The horizontal broken line in the figure indicates the measured value of the copper loss P Cu when the modulation rate n of the fifth harmonic is 0.
 銅損PCuは、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.1のとき低減している。また、重畳率n/mが-0.1の条件では、5次高調波の初期位相φがπ/4[rad]の場合に比べ、0[rad]の銅損PCuが低減している。初期位相φを0[rad]としたときの損失低減率は、5次高調波を重畳しない場合と比較して0.4%である。 The copper loss P Cu is reduced when the superposition ratio n/m is -0.1 compared to the case where the fifth harmonic is not superimposed (when the superposition ratio n/m is 0). Furthermore, under the condition where the superimposition ratio n/m is -0.1, the copper loss P Cu of 0 [rad] is reduced compared to the case where the initial phase φ of the fifth harmonic is π/4 [rad]. . The loss reduction rate when the initial phase φ is 0 [rad] is 0.4% compared to the case where the fifth harmonic is not superimposed.
 基本波電流銅損PCu_If1は、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.1のとき低減している。また、重畳率n/mが-0.1の条件では、5次高調波の初期位相φが0[rad]の場合に比べ、π/4[rad]の基本波電流銅損PCu_If1が低減している。 The fundamental wave current copper loss P Cu_If1 is reduced when the superimposition ratio n/m is -0.1, compared to the case where the fifth harmonic is not superimposed (when the superposition ratio n/m is 0). In addition, under the condition where the superimposition ratio n/m is -0.1, the fundamental wave current copper loss P Cu_If1 of π/4 [rad] is reduced compared to the case where the initial phase φ of the fifth harmonic is 0 [rad]. are doing.
 図56に、モータ試験によるインバータ損Pinvの測定結果を示す。図中の水平の破線は、5次高調波の変調率nが0の場合のインバータ損Pinvの測定値を示している。 FIG. 56 shows the measurement results of the inverter loss P inv in the motor test. The horizontal broken line in the figure indicates the measured value of the inverter loss P inv when the modulation rate n of the fifth harmonic is 0.
 インバータ損Pinvは、5次高調波を重畳しない場合(重畳率n/mが0の場合)に比べて、重畳率n/mが-0.1のとき低減している。また、重畳率n/mが-0.1の条件では、5次高調波の初期位相φがπ/4[rad]の場合に比べ、0[rad]のインバータ損Pinvが低減している。初期位相φを0[rad]としたときの損失低減率は、5次高調波を重畳しない場合と比較して2.2%である。 The inverter loss P inv is reduced when the superposition ratio n/m is -0.1 compared to the case where the fifth harmonic is not superimposed (the case where the superposition ratio n/m is 0). Furthermore, under the condition where the superposition ratio n/m is -0.1, the inverter loss P inv of 0 [rad] is reduced compared to the case where the initial phase φ of the fifth harmonic is π/4 [rad]. . The loss reduction rate when the initial phase φ is 0 [rad] is 2.2% compared to the case where the fifth harmonic is not superimposed.
1…モータ駆動システム、2…三相インバータ部、3…昇圧チョッパ部、4…モータ制御部、5…永久磁石同期モータ、6…ステータコイル、7…ロータ、S,S,S,S,S,S…スイッチング素子、D,D,D,D,D,D…還流ダイオード、8,8,8,8,8,8…スイッチング素子入力部、9…電流センサ、10…位置センサ、11…バッテリ、12…インダクタ、13…コンデンサ、Sc…チョッパ部用スイッチング素子、15…ダイオード、40…CPU、41…ROM、42…RAM、43…信号波生成部、44…キャリア波生成部、45…PWMドライブ信号生成部、46…PWMドライブ信号出力部、47…昇圧チョッパ制御信号出力部、48…ロータ検出位置受付部、49…モータ入力電流値受付部、50…指令値受付部、60…5次調波重畳PWMコントローラ、61…リング試料、62…IGBTインバータ、63…直流電源、64…A/D変換器、69…リング試験装置、70…5次調波重畳PWMコントローラ、71…IGBTインバータ、72…電力計測器、73…埋込構造永久磁石同期電動機(IPMSM)、74…エンコーダ、75,76…トルク計、77…パワーアナライザ、78…負荷、79…BLDCモータ、80…整流器、81…MCU&MOSFET、89…モータ試験装置、109…リング試験装置、100…5次調波重畳PWMコントローラ、101…リング試料、102…IGBTインバータ、103…直流電源、104…A/D変換器、108,108、108,108…スイッチング素子入力部、289…モータ試験装置、270…5次調波重畳PWMコントローラ、271…IGBTインバータ、272…電力計測器、273…埋込構造永久磁石同期電動機、274…エンコーダ、275…トルク計、276…トルク計、277…パワーアナライザ、278…負荷、279…BLDCモータ、280…整流器、281…MCU&MOSFET

 
DESCRIPTION OF SYMBOLS 1... Motor drive system, 2... Three-phase inverter part, 3... Boost chopper part, 4... Motor control part, 5... Permanent magnet synchronous motor, 6... Stator coil, 7... Rotor, S1 , S2 , S3 , S 4 , S 5 , S 6 ... switching element, D 1 , D 2 , D 3 , D 4 , D 5 , D 6 ... free-wheeling diode, 8 1 , 8 2 , 8 3 , 8 4 , 8 5 , 8 6 ...Switching element input section, 9...Current sensor, 10...Position sensor, 11...Battery, 12...Inductor, 13...Capacitor, Sc...Switching element for chopper section, 15...Diode, 40...CPU, 41...ROM, 42... RAM, 43... Signal wave generation section, 44... Carrier wave generation section, 45... PWM drive signal generation section, 46... PWM drive signal output section, 47... Boost chopper control signal output section, 48... Rotor detection position reception section, 49 ...Motor input current value acceptance unit, 50...Command value acceptance unit, 60...5th harmonic superposition PWM controller, 61...Ring sample, 62...IGBT inverter, 63...DC power supply, 64...A/D converter, 69... Ring test device, 70... Fifth harmonic superposition PWM controller, 71... IGBT inverter, 72... Power measuring instrument, 73... Embedded structure permanent magnet synchronous motor (IPMSM), 74... Encoder, 75, 76... Torque meter, 77 ...Power analyzer, 78...Load, 79...BLDC motor, 80...Rectifier, 81...MCU & MOSFET, 89...Motor test equipment, 109...Ring test equipment, 100...Fifth harmonic superposition PWM controller, 101...Ring sample, 102... IGBT inverter, 103... DC power supply, 104... A/D converter, 108 1 , 108 2 , 108 3 , 108 4 ... Switching element input section, 289... Motor testing device, 270... Fifth harmonic superposition PWM controller, 271 ... IGBT inverter, 272 ... Power measuring device, 273 ... Embedded structure permanent magnet synchronous motor, 274 ... Encoder, 275 ... Torque meter, 276 ... Torque meter, 277 ... Power analyzer, 278 ... Load, 279 ... BLDC motor, 280 ... Rectifier, 281...MCU&MOSFET

Claims (12)

  1.  インバータでモータを駆動するモータ駆動システムであって、
     基本正弦波g(t)に高調波を重畳した信号波h(t)とキャリア波の交点で前記インバータ内の半導体のスイッチング動作において、
     前記基本正弦波g(t)がg(t)=m・sin(2πft)であり、
     前記信号波h(t)がh(t)=m・sin(2πft)+n・sin(2π・5ft+φ)であり、
     n/mの上限が、磁気特性の変化で基本波電流の低減し始めるn/mの値、
     n/mの下限が、前記基本波電流の低減効果より高調波成分による増加のほうが大きくなるn/mの値、
    で動作することを特徴とするモータ駆動システム。
    A motor drive system that drives a motor with an inverter,
    In the switching operation of the semiconductor in the inverter at the intersection of the signal wave h(t) obtained by superimposing harmonics on the fundamental sine wave g(t) and the carrier wave,
    The fundamental sine wave g(t) is g(t)=m・sin(2πf 1 t),
    The signal wave h(t) is h(t)=m・sin(2πf 1 t)+n・sin(2π・5f 1 t+φ),
    The upper limit of n/m is the value of n/m at which the fundamental wave current starts to decrease due to changes in magnetic properties,
    The lower limit of n/m is a value of n/m at which the increase due to harmonic components is greater than the reduction effect of the fundamental wave current,
    A motor drive system that operates with
  2.  n/mが-0.3より大きくかつ0未満で動作することを特徴とする請求項1に記載のモータ駆動システム。 The motor drive system according to claim 1, characterized in that it operates with n/m greater than -0.3 and less than 0.
  3.  前記基本正弦波g(t)の位相角(2πft)がπ/2ラジアンのときの前記基本正弦波g(t)の数値m・sin(π/2)が、前記信号波h(t)=m・sin(π/2)+n・sin(5・π/2+φ)の数値以上となる前記高調波の初期位相φで動作することを特徴とする請求項1または2に記載のモータ駆動システム。 When the phase angle (2πf 1 t) of the fundamental sine wave g(t) is π/2 radians, the numerical value m·sin(π/2) of the fundamental sine wave g(t) is the signal wave h(t )=m・sin(π/2)+n・sin(5・π/2+φ) or more, the motor drive according to claim 1 or 2, characterized in that the motor operates at an initial phase φ of the harmonics that is greater than or equal to a numerical value of system.
  4.  前記高調波の初期位相φの最大位相角が、前記磁気特性の変化で前記基本波電流の低減し始める前記初期位相φの値、
     前記初期位相φの最小位相角が、前記基本波電流の低減効果より高調波成分による増加のほうが大きくなる前記初期位相φの値、
    で動作することを特徴とする請求項1または2に記載のモータ駆動システム。
    The maximum phase angle of the initial phase φ of the harmonics is the value of the initial phase φ at which the fundamental current starts to decrease due to a change in the magnetic characteristics;
    a value of the initial phase φ at which the minimum phase angle of the initial phase φ is increased by a harmonic component more than the fundamental wave current reduction effect;
    3. The motor drive system according to claim 1, wherein the motor drive system operates as follows.
  5.  インバータでモータを駆動するモータ駆動システムであって、
     基本正弦波g(t)に高調波を重畳した信号波h(t)とキャリア波の交点で前記インバータ内の半導体のスイッチング動作において、
     前記基本正弦波g(t)がg(t)=m・sin(2πft)であり、
     前記信号波h(t)がh(t)=m・sin(2πft)+n・sin(2π・aft+φ)であり、
     aは、5以上の整数であり、
     n/mの上限が、磁気特性の変化で基本波電流の低減し始めるn/mの値、
     n/mの下限が、前記基本波電流の低減効果より高調波成分による増加のほうが大きくなるn/mの値、
    で動作することを特徴とするモータ駆動システム。
    A motor drive system that drives a motor with an inverter,
    In the switching operation of the semiconductor in the inverter at the intersection of the signal wave h(t) obtained by superimposing harmonics on the fundamental sine wave g(t) and the carrier wave,
    The fundamental sine wave g(t) is g(t)=m・sin(2πf 1 t),
    The signal wave h(t) is h(t)=m・sin(2πf 1 t)+n・sin(2π・af 1 t+φ),
    a is an integer of 5 or more,
    The upper limit of n/m is the value of n/m at which the fundamental wave current starts to decrease due to changes in magnetic properties,
    The lower limit of n/m is a value of n/m at which the increase due to harmonic components is greater than the reduction effect of the fundamental wave current,
    A motor drive system that operates with
  6.  n/mが-0.3より大きくかつ0未満で動作することを特徴とする請求項5に記載のモータ駆動システム。 The motor drive system according to claim 5, characterized in that it operates with n/m greater than -0.3 and less than 0.
  7.  前記基本正弦波g(t)の位相角(2πft)がπ/2ラジアンのときの前記基本正弦波g(t)の数値m・sin(π/2)が、前記信号波h(t)=m・sin(π/2)+n・sin(a・π/2+φ)の数値以上となる前記高調波の初期位相φで動作することを特徴とする請求項5または6に記載のモータ駆動システム。 When the phase angle (2πf 1 t) of the fundamental sine wave g(t) is π/2 radians, the numerical value m·sin(π/2) of the fundamental sine wave g(t) is the signal wave h(t )=m·sin(π/2)+n·sin(a·π/2+φ) The motor drive according to claim 5 or 6, characterized in that the motor operates at an initial phase φ of the harmonic that is equal to or greater than a value of n·sin(a·π/2+φ). system.
  8.  前記高調波の初期位相φの最大位相角が、前記磁気特性の変化で前記基本波電流の低減し始める前記初期位相φの値、
     前記初期位相φの最小位相角が、前記基本波電流の低減効果より高調波成分による増加のほうが大きくなる前記初期位相φの値、
    で動作することを特徴とする請求項5または6に記載のモータ駆動システム。
    The maximum phase angle of the initial phase φ of the harmonics is the value of the initial phase φ at which the fundamental current starts to decrease due to a change in the magnetic characteristics;
    a value of the initial phase φ at which the minimum phase angle of the initial phase φ is increased by a harmonic component more than the fundamental wave current reduction effect;
    The motor drive system according to claim 5 or 6, characterized in that the motor drive system operates as follows.
  9.  同期モータを駆動するパルス幅変調駆動電圧を出力するインバータ部と、前記パルス幅変調駆動電圧を形成するように前記インバータ部を制御するモータ制御部とを備えるモータ駆動システムであって、
     モータ制御部は、
      前記パルス幅変調駆動電圧の基本周波数を規定する基本正弦波に該基本正弦波の5次高調波を重畳した信号波と、キャリア波との交点でパルス幅を切り替えて前記パルス幅変調駆動電圧を形成するPWMドライブ信号を生成して、該PWMドライブ信号を前記インバータ部のスイッチング素子入力部に供給する構成になっており、
     前記基本正弦波の周波数を基本正弦波周波数fとするとき、前記信号波h(t)をh(t)=m・sin(2πft)+n・sin(2π・5ft+φ)として、前記基本正弦波の変調率mに対する初期位相φの前記5次高調波の変調率nの比率である重畳率n/mの上限値と下限値が、前記同期モータの鉄心材料で形成されたリング試料に巻回された一次コイルに前記信号波h(t)を用いたパルス幅変調電圧を前記重畳率n/mを変化させて印加して、前記一次コイルに流れる一次電流と前記リング試料に巻回された二次コイルに発生する二次電圧とを測定するリング試験により決定されるようになっており、
     前記重畳率n/mの上限値が、
      前記5次高調波の変調率nがゼロの場合よりも前記一次電流の前記基本正弦波周波数fの成分である基本波電流が下回る範囲の上限となる前記重畳率n/m、または、前記5次高調波の変調率nがゼロの場合に比べて、前記一次電流と前記二次電圧とに基づいて算出される所定の損失が下回る範囲の上限となる前記重畳率n/mとして決定され、
     前記重畳率n/mの下限値が、
      前記5次高調波の変調率nがゼロの場合を基準とする前記基本波電流の低減量に比べて、前記5次高調波の変調率nがゼロの場合を基準とする、前記一次電流の前記基本正弦波周波数fの高調波成分である高調波電流の増加量が下回る範囲の下限となる前記重畳率n/m、または、前記5次高調波の変調率nがゼロの場合よりも前記所定の損失が下回る範囲の下限となる前記重畳率n/mとして決定されることを特徴とするモータ駆動システム。
    A motor drive system comprising: an inverter section that outputs a pulse width modulated drive voltage for driving a synchronous motor; and a motor control section that controls the inverter section to form the pulse width modulation drive voltage.
    The motor control section is
    The pulse width modulation drive voltage is changed by switching the pulse width at the intersection of a carrier wave and a signal wave in which a fifth harmonic of the fundamental sine wave is superimposed on a fundamental sine wave that defines the fundamental frequency of the pulse width modulation drive voltage. The PWM drive signal is configured to generate a PWM drive signal and supply the PWM drive signal to a switching element input section of the inverter section,
    When the frequency of the fundamental sine wave is the fundamental sine wave frequency f1 , the signal wave h(t) is set as h(t)=m・sin(2πf 1 t)+n・sin(2π・5f 1 t+φ), A ring formed of the iron core material of the synchronous motor, the upper and lower limits of a superimposition rate n/m being a ratio of the modulation rate n of the fifth harmonic of the initial phase φ to the modulation rate m of the fundamental sine wave. A pulse width modulated voltage using the signal wave h(t) is applied to the primary coil wound around the sample while changing the superposition ratio n/m, and the primary current flowing through the primary coil and the ring sample are It is determined by a ring test that measures the secondary voltage generated in the wound secondary coil.
    The upper limit of the superimposition rate n/m is
    The superimposition ratio n/m is the upper limit of a range in which the fundamental wave current, which is a component of the fundamental sine wave frequency f1 of the primary current, is lower than when the modulation rate n of the fifth harmonic is zero, or The superimposition ratio n/m is determined as the upper limit of a range in which the predetermined loss calculated based on the primary current and the secondary voltage is lower than when the modulation ratio n of the fifth harmonic is zero. ,
    The lower limit of the superimposition rate n/m is
    Compared to the amount of reduction in the fundamental wave current based on the case where the modulation rate n of the fifth harmonic is zero, the amount of reduction in the primary current is based on the case where the modulation rate n of the fifth harmonic is zero. The superimposition ratio n/m, which is the lower limit of the range below which the amount of increase in the harmonic current, which is a harmonic component of the fundamental sine wave frequency f1 , or the modulation ratio n of the fifth harmonic is zero. A motor drive system characterized in that the superimposition ratio n/m is determined as the lower limit of a range below which the predetermined loss falls.
  10.  前記5次高調波の前記初期位相φの最大位相角と最小位相角が、前記初期位相φを変化させて前記パルス幅変調電圧を前記一次コイルに印加する前記リング試験によって決定されるようになっており、
     前記最大位相角は、
      前記5次高調波の変調率nがゼロの場合よりも前記基本波電流が下回る範囲の最大値となる前記初期位相φ、または、前記5次高調波の変調率nがゼロの場合よりも前記所定の損失が下回る範囲の最大値となる前記初期位相φとして決定され、
     前記最小位相角は、
      前記5次高調波の変調率nがゼロの場合を基準とする前記基本波電流の低減量に比べて、前記5次高調波の変調率nがゼロの場合を基準とする前記高調波電流の増加量が下回る範囲の最小値となる前記初期位相φ、または、前記5次高調波の変調率nがゼロの場合よりも前記所定の損失が下回る範囲の最小値となる前記初期位相φとして決定されることを特徴とする請求項9に記載のモータ駆動システム。
    Maximum and minimum phase angles of the initial phase φ of the fifth harmonic are determined by the ring test in which the initial phase φ is varied and the pulse width modulated voltage is applied to the primary coil. and
    The maximum phase angle is
    The initial phase φ is the maximum value of the range in which the fundamental wave current is lower than when the modulation rate n of the fifth harmonic is zero, or the initial phase φ is lower than when the modulation rate n of the fifth harmonic is zero. The initial phase φ is determined as the maximum value in the range below a predetermined loss,
    The minimum phase angle is
    Compared to the amount of reduction in the fundamental wave current based on the case where the modulation rate n of the fifth-order harmonic is zero, the harmonic current is reduced based on the case where the modulation rate n of the fifth-order harmonic is zero. Determine the initial phase φ as the minimum value in the range below which the increase amount is lower, or the initial phase φ as the minimum value in the range in which the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero. The motor drive system according to claim 9, characterized in that:
  11.  同期モータを駆動するパルス幅変調駆動電圧を出力するインバータ部と、前記パルス幅変調駆動電圧を形成するように前記インバータ部を制御するモータ制御部とを備えるモータ駆動システムであって、
     モータ制御部は、
      前記パルス幅変調駆動電圧の基本周波数を規定する基本正弦波に該基本正弦波の5次高調波を重畳した信号波と、キャリア波との交点でパルス幅を切り替えて前記パルス幅変調駆動電圧を形成するPWMドライブ信号を生成して、該PWMドライブ信号を前記インバータ部のスイッチング素子入力部に供給する構成になっており、
     前記基本正弦波の周波数を基本正弦波周波数fとするとき、前記信号波h(t)をh(t)=m・sin(2πft)+n・sin(2π・5ft+φ)として、前記基本正弦波の変調率mに対する初期位相φの前記5次高調波の変調率nの比率である重畳率n/mの上限値と下限値が、前記信号波h(t)を用いた前記パルス幅変調駆動電圧により前記重畳率n/mを変化させて前記同期モータを回転駆動させ、前記インバータ部への入力電力、前記同期モータ各相の入力電力若しくは前記同期モータ各相の入力電流の内の少なくとも何れかを測定するモータ試験により決定されるようになっており、
     前記重畳率n/mの上限値は、
      前記入力電流から算出される前記基本正弦波周波数fの成分である基本波電流が、前記5次高調波の変調率nがゼロの場合よりも下回る範囲の上限となる前記重畳率n/m、または、前記インバータ部への入力電力、前記同期モータ各相の入力電力若しくは前記同期モータ各相の入力電流の内の少なくとも何れかに基づいて算出される所定の損失が前記5次高調波の変調率nがゼロの場合に比べて下回る範囲の上限となる前記重畳率n/mとして決定され、
     前記重畳率n/mの下限値は、
      前記5次高調波の変調率nがゼロの場合を基準とする前記基本波電流の低減量に比べて、前記5次高調波の変調率nがゼロの場合を基準とする、前記入力電流の前記基本正弦波周波数fの高調波成分である高調波電流の増加量が下回る範囲の下限となる前記重畳率n/m、または、前記5次高調波の変調率nがゼロの場合よりも前記所定の損失が下回る範囲の下限となる前記重畳率n/mとして決定されることを特徴とするモータ駆動システム。
    A motor drive system comprising: an inverter section that outputs a pulse width modulated drive voltage for driving a synchronous motor; and a motor control section that controls the inverter section to form the pulse width modulation drive voltage.
    The motor control section is
    The pulse width modulation drive voltage is changed by switching the pulse width at the intersection of a carrier wave and a signal wave in which a fifth harmonic of the fundamental sine wave is superimposed on a fundamental sine wave that defines the fundamental frequency of the pulse width modulation drive voltage. The PWM drive signal is configured to generate a PWM drive signal and supply the PWM drive signal to a switching element input section of the inverter section,
    When the frequency of the fundamental sine wave is the fundamental sine wave frequency f1 , the signal wave h(t) is set as h(t)=m・sin(2πf 1 t)+n・sin(2π・5f 1 t+φ), The upper and lower limits of the superimposition rate n/m, which is the ratio of the modulation rate n of the fifth harmonic of the initial phase φ to the modulation rate m of the fundamental sine wave, are determined by the The synchronous motor is rotationally driven by changing the superimposition ratio n/m by a pulse width modulation drive voltage, and the input power to the inverter section, the input power of each phase of the synchronous motor, or the input current of each phase of the synchronous motor is It is determined by a motor test that measures at least one of the following:
    The upper limit of the superimposition rate n/m is
    The superimposition ratio n/m is the upper limit of a range in which the fundamental wave current, which is a component of the fundamental sine wave frequency f1 calculated from the input current, is lower than when the modulation rate n of the fifth harmonic is zero. or, the predetermined loss calculated based on at least one of the input power to the inverter section, the input power to each phase of the synchronous motor, or the input current to each phase of the synchronous motor is the fifth harmonic. The superimposition rate n/m is determined as the upper limit of the range below the modulation rate n when it is zero,
    The lower limit of the superimposition ratio n/m is:
    Compared to the amount of reduction in the fundamental wave current based on the case where the modulation rate n of the fifth harmonic is zero, the input current is reduced based on the case where the modulation rate n of the fifth harmonic is zero. The superimposition ratio n/m, which is the lower limit of the range below which the amount of increase in the harmonic current, which is a harmonic component of the fundamental sine wave frequency f1 , or the modulation ratio n of the fifth harmonic is zero. A motor drive system characterized in that the superimposition ratio n/m is determined as the lower limit of a range below which the predetermined loss falls.
  12.  前記5次高調波の前記初期位相φの最大位相角と最小位相角が、前記初期位相φを変化させて前記パルス幅変調駆動電圧により前記同期モータを回転駆動させる前記モータ試験により決定されるようになっており、
     前記最大位相角は、
      前記5次高調波の変調率nがゼロの場合よりも前記基本波電流が下回る範囲の最大値となる前記初期位相φ、または、前記5次高調波の変調率nがゼロの場合よりも前記所定の損失が下回る範囲の最大値となる前記初期位相φとして決定され、
     前記最小位相角は、
      前記5次高調波の変調率nがゼロの場合を基準とする前記基本波電流の低減量に比べて、前記5次高調波の変調率nがゼロの場合を基準とする前記高調波電流の増加量が下回る範囲の最小値となる前記初期位相φ、または、前記5次高調波の変調率nがゼロの場合よりも前記所定の損失が下回る範囲の最小値となる前記初期位相φとして決定されることを特徴とする請求項11に記載のモータ駆動システム。

     
    The maximum phase angle and the minimum phase angle of the initial phase φ of the fifth harmonic are determined by the motor test in which the initial phase φ is varied and the synchronous motor is rotationally driven by the pulse width modulated drive voltage. It is
    The maximum phase angle is
    The initial phase φ is the maximum value of the range in which the fundamental wave current is lower than when the modulation rate n of the fifth harmonic is zero, or the initial phase φ is lower than when the modulation rate n of the fifth harmonic is zero. The initial phase φ is determined as the maximum value in the range below a predetermined loss,
    The minimum phase angle is
    Compared to the amount of reduction in the fundamental wave current based on the case where the modulation rate n of the fifth-order harmonic is zero, the harmonic current is reduced based on the case where the modulation rate n of the fifth-order harmonic is zero. Determine the initial phase φ as the minimum value in the range below which the increase amount is lower, or the initial phase φ as the minimum value in the range in which the predetermined loss is lower than when the modulation rate n of the fifth harmonic is zero. The motor drive system according to claim 11, characterized in that:

PCT/JP2023/026631 2022-07-21 2023-07-20 Motor driving system WO2024019121A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-116769 2022-07-21
JP2022116769A JP2024014146A (en) 2022-07-21 2022-07-21 motor drive system

Publications (1)

Publication Number Publication Date
WO2024019121A1 true WO2024019121A1 (en) 2024-01-25

Family

ID=89617837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026631 WO2024019121A1 (en) 2022-07-21 2023-07-20 Motor driving system

Country Status (2)

Country Link
JP (1) JP2024014146A (en)
WO (1) WO2024019121A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020381A (en) * 2004-06-30 2006-01-19 Hitachi Ltd Motor drive, electric actuator, and electric power steering system
JP2016208668A (en) * 2015-04-22 2016-12-08 株式会社デンソー Controller of three-phase rotary machine
JP2017147840A (en) * 2016-02-17 2017-08-24 株式会社デンソー Control device for three-phase rotary machine and electrically-driven power steering device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006020381A (en) * 2004-06-30 2006-01-19 Hitachi Ltd Motor drive, electric actuator, and electric power steering system
JP2016208668A (en) * 2015-04-22 2016-12-08 株式会社デンソー Controller of three-phase rotary machine
JP2017147840A (en) * 2016-02-17 2017-08-24 株式会社デンソー Control device for three-phase rotary machine and electrically-driven power steering device

Also Published As

Publication number Publication date
JP2024014146A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
CN101355338B (en) Motor control device
US9083276B2 (en) Rotary electric machine driving system
CN110235357B (en) Inverter control device
US20110241584A1 (en) Control device of motor driving apparatus
US9325274B2 (en) Apparatus for carrying out improved control of rotary machine
US20130334937A1 (en) Rotary electric machine driving system
US20110241583A1 (en) Control device of motor driving apparatus
CN106712631B (en) Permanent magnet synchronous motor system and its method and a device for controlling weak magnetism
KR101716589B1 (en) Method for determining the rotor position of an electronically-commuted multi-phase direct current motor
CN101702614B (en) Device and method for inhibiting rotor rotation and oscillation of hybrid stepping motor
CN104145417A (en) Control system
CN104106209A (en) Magnetic pole position estimating apparatus for electric motor, controlling apparatus for electric motor, and magnetic pole position estimating method for electric motor
US9450523B2 (en) Motor drive apparatus
CN110880894B (en) Rapid calculation method for PWM harmonic loss of permanent magnet motor
CN103907282A (en) Power conversion device
JP5561550B2 (en) Rotating electrical machine control device
Kano et al. Sensorless control of interior permanent magnet synchronous motor: An overview and design study
US10868488B2 (en) Six-wire three-phase motor, inverter device, and motor system
Iwama et al. Three-phase inverter fed adjustable field IPMSM drive utilizing zero-sequence current
Masisi et al. A three-level neutral-point-clamped inverter synchronous reluctance machine drive
Viswanathan et al. A novel space-vector current control method for commutation torque ripple reduction of brushless DC motor drive
CN109104134A (en) The control device of AC rotary motor
WO2024019121A1 (en) Motor driving system
JP6075161B2 (en) Switched reluctance motor controller
Zhang et al. A Study of Charging Equivalent Inductances for Zero-Average Torque Three-Phase Integrated on-Board EV Chargers With Segmented Machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843044

Country of ref document: EP

Kind code of ref document: A1