WO2024018953A1 - Road drawing system - Google Patents

Road drawing system Download PDF

Info

Publication number
WO2024018953A1
WO2024018953A1 PCT/JP2023/025606 JP2023025606W WO2024018953A1 WO 2024018953 A1 WO2024018953 A1 WO 2024018953A1 JP 2023025606 W JP2023025606 W JP 2023025606W WO 2024018953 A1 WO2024018953 A1 WO 2024018953A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedestrian
bright line
line
road
vehicle
Prior art date
Application number
PCT/JP2023/025606
Other languages
French (fr)
Japanese (ja)
Inventor
直也 内山
裕樹 小林
利彦 矢嶋
海乃 渋谷
耕介 長谷川
Original Assignee
スタンレー電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタンレー電気株式会社 filed Critical スタンレー電気株式会社
Publication of WO2024018953A1 publication Critical patent/WO2024018953A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/02Controlling the distribution of the light emitted by adjustment of elements by movement of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/60Projection of signs from lighting devices, e.g. symbols or information being projected onto the road
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present disclosure relates to a road surface drawing system.
  • Patent Document 1 discloses that a person's clothing can be detected by emitting light on the road surface that displays the direction of a person estimated to be dangerous and the distance from the own vehicle to the person. A warning illumination device is described that calls attention to both a driver and a person regardless of the color. As the light irradiated onto the road surface, T-shaped, Y-shaped, arrow-shaped light (road surface drawing) that is irradiated so as to extend toward a person is described.
  • Patent Document 1 when irradiating a complicated character drawing such as a T-shape, the driver of the own vehicle may have to pay attention to areas where the character drawing has an angle or is large in size. Because it is difficult to narrow down the pedestrian's location, it is difficult to recognize the exact location of the pedestrian. Additionally, as the vehicle approaches a pedestrian, complex character drawings such as the letter T move with it, but only the angle of the character drawing changes, making it difficult for the driver to recognize the sense of distance from the pedestrian. .
  • One of the objectives of the specific embodiments of the present disclosure is to provide a road surface drawing system that allows the driver of the own vehicle to grasp the situation of pedestrians with good visibility.
  • a road surface drawing system includes (a) a camera that photographs a space in front of a vehicle; (b) detecting a pedestrian existing in the space in front of the vehicle based on image data obtained by the camera; a controller that detects a white line on the road in front of the vehicle and controls to irradiate the road with light based on each detection result; and (c) irradiates the road with light under control by the controller.
  • the controller is configured to control the road corresponding to the pedestrian's position; (e) the first bright line is provided at an end of a lane in which the vehicle is traveling or an oncoming lane on the road; This is a road surface drawing system that irradiates linear light along the extending direction of the white line, overlapping the white line.
  • a road surface drawing system that can grasp the situation of pedestrians (accurate position and sense of distance) with good visibility is provided.
  • FIG. 1 is a block diagram showing the configuration of a road surface drawing system according to an embodiment.
  • FIG. 2(A) is a diagram schematically showing an installation example of each lamp unit.
  • FIG. 2(B) is a diagram schematically showing a configuration example of a lamp unit.
  • FIG. 3 is a diagram showing an example of the configuration of a computer system.
  • FIG. 4 is a flowchart showing the operating procedure of the road surface drawing system.
  • FIGS. 5A to 5C are diagrams for explaining how bright lines are drawn.
  • FIGS. 6A to 6C are diagrams for explaining how bright lines are drawn.
  • FIGS. 7(A) to 7(C) are diagrams for explaining how bright lines are drawn.
  • FIGS. 8(A) to 8(C) are diagrams for explaining how bright lines are drawn.
  • FIGS. 9A to 9B are diagrams for explaining how bright lines are drawn.
  • FIGS. 10(A) to 10(C) are diagrams for explaining how bright lines are drawn.
  • FIGS. 11(A) to 11(C) are diagrams for explaining how bright lines are drawn.
  • FIGS. 12(A) to 12(C) are diagrams for explaining how bright lines are drawn.
  • FIG. 13 is a flowchart showing the operating procedure of the road surface drawing system.
  • FIG. 1 is a block diagram showing the configuration of a road surface drawing system according to an embodiment.
  • the road surface drawing system 1 of this embodiment includes a controller 10, a camera 11, a raindrop sensor 12, a vehicle speed sensor 13, and a pair of lamp units 30L and 30R.
  • This road surface drawing system 1 is mounted on the front of a vehicle, and draws bright lines (line-shaped lights) on the road surface in front of the vehicle depending on the situation of pedestrians present in front of the vehicle.
  • Pedestrians include not only people walking but also people riding bicycles.
  • the controller 10 controls light irradiation by each headlamp unit 30L, 30R.
  • the controller 10 is configured using a computer system equipped with, for example, a processor (CPU: Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), storage devices such as flash memory, input/output interfaces, etc. be able to.
  • the controller 10 of this embodiment is brought into a state where it can perform a predetermined function by having a processor read and execute a program stored in advance in a storage device (or ROM).
  • the camera 11 photographs the space in front of the own vehicle and generates image data. Based on this image data, the image processing unit 20 of the controller 10 detects conditions such as the position of the pedestrian. Note that the function of the image processing section 20 may be provided on the camera 11 side.
  • the raindrop sensor 12 detects the amount of rainfall at the location where the own vehicle is present, and outputs a signal (or data) indicating a change according to the amount of rainfall.
  • Various known raindrop sensors can be used as the raindrop sensor 12.
  • the vehicle speed sensor 13 detects the vehicle speed of the own vehicle and outputs a vehicle speed signal (vehicle speed pulse). Note that if there is a vehicle speed sensor already installed in the own vehicle for other purposes, it may be used as the vehicle speed sensor 13.
  • the own vehicle position data 14 is generated by a position detection means (not shown) such as a car navigation system or a GPS sensor included in the own vehicle, and is input to the own vehicle position detection unit 21 of the controller 10.
  • a position detection means such as a car navigation system or a GPS sensor included in the own vehicle
  • the pair of lamp units 30L and 30R are mounted at predetermined positions on the left and right sides of the front of the host vehicle, and operate in response to control signals given from the controller 10 to move to a desired position in front of the host vehicle in a straight line (line shape). irradiate with light.
  • Each lamp unit 30L, 30R includes a driver 31 and an LED array 32 driven by the driver 31.
  • the above-described controller 10 includes an image processing section 20, an own vehicle position detection section 21, a weather detection section 22, a relative position calculation section 23, a relative distance calculation section 24, and a boundary line calculation section 25 as functional blocks realized by program execution. , a road surface drawing control section 26.
  • the image processing unit 20 performs image recognition processing on the image data generated by the camera 11 to determine the position of the pedestrian, the position of the vehicle ahead (the preceding vehicle or the oncoming vehicle), and the information in front of the own vehicle such as the white line on the road. Detect the situation.
  • the own vehicle position detection unit 21 detects the position of the own vehicle based on the own vehicle position data 14.
  • this own vehicle position data 14 may include a car navigation system, and from the map information of this car navigation system, it is determined whether the own vehicle position is in the city or on a road with a straight line of 100 meters or more. , or it can also be calculated whether the own vehicle is located on a road with only a straight line of less than 100 m.
  • the definition of a road in this disclosure is a road with good visibility that the driver can see, so it includes not only straight roads but also curves if the road is visible. In other words, crossroads and S-curves where you can see ahead are also included as roads.
  • the weather detection unit 22 detects the weather condition, specifically, the amount of rain, based on the output of the raindrop sensor 13. When the amount of rain exceeds a predetermined value, the weather detection section 22 outputs a notification to that effect to the road surface drawing control section 26.
  • the relative position calculation unit 23 detects the position and shape of the white line in front of the own vehicle based on the image recognition result by the image processing unit 20.
  • the relative distance calculating unit 24 calculates the relative distance between the pedestrian and the own vehicle based on the current position detected by the own vehicle position detection based on the own vehicle position data and the image recognition result by the image processing unit 20.
  • the boundary line calculation unit 25 calculates a boundary line, which is a virtual line that can be substituted for a white line, based on the image recognition result by the image processing unit 20 when there is no white line on the road surface.
  • the road surface drawing control unit 26 calculates the position and shape of the white line calculated by the relative position calculation unit 23, the relative distance between the pedestrian and the own vehicle calculated by the relative distance calculation unit 24, the boundary line calculated by the boundary line calculation unit 25, Based on the weather conditions detected by the weather detection section 22, a control signal for drawing bright lines on the road surface is generated, and the control signal is output to each lamp unit 30L, 30R.
  • FIG. 2(A) is a diagram schematically showing an installation example of each lamp unit.
  • Each lamp unit 30L, 30R is arranged at a predetermined position on the left and right sides of the front part of the own vehicle 50.
  • lamp units 30L and 30R are arranged adjacent to lamp units 40L and 40R for emitting high beams and low beams, respectively.
  • FIG. 2(B) is a diagram schematically showing a configuration example of a lamp unit.
  • the illustrated lamp unit 30L (30R) includes an LED array 32 having a plurality of LEDs (Light Emitting Diodes) arranged in two directions, and a lens 33 that projects light emitted from the LED array 32. It is configured.
  • the LED array 32 is arranged so that its center substantially coincides with the focal point of the lens 33.
  • the area where the road surface drawing is irradiated is an area that includes at least both the high beam area and the low beam area in the front and rear directions (it may be within 100 m from the front of the vehicle or more than 100 m), and at least the driving lane (driving lane) in the left and right direction.
  • the area includes the side white lines and the center white line), and also includes the oncoming lane (including the white line on the opposite lane side).
  • the longitudinal direction is 100 m from the front of the host vehicle
  • the lateral direction is an area including both the driving lane and the oncoming lane.
  • the configuration of the lamp unit 30L etc. is not limited to this, and various known configurations can be adopted.
  • a lamp unit configured by combining a light source bulb, a reflecting mirror, or a shielding plate may be used.
  • a lamp unit may be used that includes a light source, a liquid crystal element, etc., and can individually control the light transmission state of each pixel of the liquid crystal element.
  • the lamp unit includes a light emitting element such as a laser diode and a scanning element such as a mirror device that scans the light emitted from the light emitting element, and can control the timing of turning on and off the light emitting element and the timing of scanning by the scanning element. May be used.
  • FIG. 3 is a diagram showing an example of the configuration of a computer system.
  • the controller 10 described above can be configured using, for example, a computer system as illustrated.
  • a CPU (central processing unit) 201 performs information processing by reading a program 207 stored in a storage device 204 and executing it.
  • a ROM (read-only memory) 202 stores basic control programs and the like necessary for the operation of the CPU 201.
  • a RAM (temporary storage memory) 203 temporarily stores data necessary for information processing by the CPU 201.
  • the storage device 204 is a mass storage device for storing data, and is configured with a hard disk drive, solid state drive, or the like.
  • the communication device 205 performs processing related to data communication with other external devices.
  • the input/output unit 206 is an interface for connecting with external devices, and in this embodiment is used for connecting with the camera 11, the raindrop sensor 12, the vehicle speed sensor 13, and each of the lamp units 30L and 30R.
  • the CPUs 201 and the like are connected to each other via a bus so that they can communicate with each other.
  • FIG. 4 is a flowchart showing the operating procedure of the road surface drawing system. Note that the order of each process can be changed as long as it does not cause inconsistency in the control results, and other processes not described may be added, and such aspects are not excluded.
  • pedestrians are A short bright line (first bright line) 113 whose drawing position changes depending on the position of the pedestrian 100 is drawn over the white line 111, and when the position of the pedestrian 100 is inside the white line 111 (on the road side), The operating procedure of the road surface drawing system 1 will be explained with reference to the manner in which the bright spot 113 is blinked to draw the image.
  • the vehicle speed of the host vehicle detected by the vehicle speed sensor 13 is 10 km/h or more (step S10; YES), and a pedestrian is detected in front of the host vehicle by the image processing unit 20 based on the image data obtained by the camera 11. If the pedestrian is present (Step S11; YES), the relative distance calculation unit 24 calculates the relative distance between the pedestrian and the vehicle based on the current position detected by the vehicle position detection and the image processing result (Step S12). . Furthermore, the relative position calculation section 23 detects the positions and shapes of the white lines 110, 111, and 112 that are present in front of the own vehicle based on the image recognition result by the image processing section 20 (step S13). The calculated relative distance, position, and shape data are temporarily stored in memory.
  • the predetermined threshold value is set to 100 m because it is assumed that monitoring starts within the high beam area, but in the case of a city, roads with good visibility are short, so there may be no road 100 m ahead. In that case, the predetermined threshold value may be set between 30 m and 50 m (40 m as an example), assuming that the monitoring starts near the low beam area. If it is known in advance from map information such as a car navigation system that the vehicle's location is in the city or on a road section with good visibility of less than 100 meters, the predetermined threshold value may be automatically changed. .
  • the road surface drawing control unit 26 A control signal is generated to draw a bright line of a predetermined length on the white line corresponding to the person's position, and this control signal is output to each lamp unit 30L, 30R (step S16).
  • the bright line (short bright line) 113 here is made of linear light that is approximately parallel to the white line 111, that is, approximately parallel to the direction in which the road extends.
  • the width of the bright line (short bright line) 113 is preferably set to be approximately the same as or slightly wider than the white line 111 at each position to be drawn.
  • the white line 111 becomes the same or similar color to the drawn bright line 113 due to deterioration or dirt, or if the brightness of the bright line (short bright line) 113 is insufficient, if it is wider than the white line 111, the white line 111 This is because it becomes easier for the driver of the own vehicle or a pedestrian to visually recognize the drawn bright line 113 by the extent that it protrudes.
  • the length of the bright line (short bright line) 113 is a length necessary and sufficient to visually recognize the position of a pedestrian (a length of 0.5 m or more and less than 2 m, which is wider than the width of a human). Alternatively, it is preferably about 1.5 m, which is about the length of an outstretched hand.
  • the width and length of the white line may be the same or slightly wider and the bright line size is 1.5 m long, making it difficult for the driver of the own vehicle to see. may be changed to, for example, 1.5 times to 2 times to improve visibility.
  • the width or length may be shortened and returned to a predetermined width or length (the width or length may be adjusted gradually or in stages). This means that when the relative distance calculation unit 24 detects that the relative distance is far, the road surface drawing control unit 26 generates a control signal so that the width and length of the bright line (short bright line) 113 are adjusted. Then, this control signal may be output to each lamp unit 30L, 30R.
  • a bright line 113 is drawn so as to overlap the part of the white line 111 corresponding to the position of the pedestrian 100.
  • FIGS. 5(B) and 5(C) when the position of the pedestrian 100 and the position of the own vehicle become relatively close, each pedestrian 100 A bright line (short bright line) 113 is drawn so as to overlap the white line 111 corresponding to the position.
  • This allows drivers to intuitively recognize the location of pedestrians by emitting a short bright line, and since the short bright line is overlaid on the white line, the driver can intuitively recognize the pedestrian's position. Since a short bright line appears to be shining, it is possible for the driver to recognize the relative distance between the vehicle and the pedestrian, that is, the exact location of the pedestrian.
  • step S14 If the relative distance between the pedestrian and the vehicle is less than or equal to the threshold (step S14; YES), and the pedestrian is located inside the white line, that is, within the road (step S15; NO), the road surface drawing control unit 26 generates a control signal to blink and irradiate a bright line of a predetermined length (short bright line) on the white line corresponding to the pedestrian's position, and outputs this control signal to each lamp unit 30L, 30R ( Step S17).
  • a predetermined length short bright line
  • a bright line 113 is drawn blinking so as to overlap the white line 111 corresponding to the position of the pedestrian 100.
  • FIGS. 5(B) and 5(C) when the position of the pedestrian 100 and the position of the own vehicle become relatively close, each pedestrian 100 A bright line 113 is drawn blinking so as to overlap a part of the white line 111 corresponding to the position.
  • step S10 By repeating the processing from step S10 onward, the drawing position of the bright line 113 is changed in accordance with the change in the relative position of the pedestrian 100. Further, when the pedestrian's position moves from outside the white line to inside the white line, the bright line 113 is switched to blinking illumination. For example, if the position of the pedestrian 100 is outside the white line far from the host vehicle at one timing, and the position of the pedestrian 100 is inside the white line at the next timing, the drawing mode shown in FIG. 5(A) (continuous irradiation) to the drawing mode (blinking irradiation) shown in FIG. 6(A).
  • the position of pedestrian 100 which was far away from the own vehicle and outside the white line at one timing, becomes relatively close to the own vehicle at the next timing, and the position of pedestrian 100 becomes within the white line at the next timing.
  • the drawing mode shown in FIG. 5(A) continuous irradiation
  • the drawing mode shown in FIG. 5(B) continuous irradiation
  • the drawing mode shown in FIG. 6(B) blinkking irradiation
  • the short bright lines are overlaid on the white line, so the short bright lines appear to move closer and closer along the continuous white line (and transition in one direction), which makes it difficult to drive.
  • the hand becomes able to intuitively recognize the sense of distance from pedestrians.
  • step S10 if the vehicle speed is less than 10 km/h (step S10; NO), or if there are no pedestrians even if the vehicle speed is 10 km/h or more (step S11; NO), the bright line Irradiation ends (step S18). Note that if the bright line irradiation was not originally performed, that state is maintained.
  • step S10 is set as "vehicle speed of the own vehicle is 10 km/h or more", but the vehicle speed is just an example, and if the car is in a running state, step S10 will be YES, and to be extreme, the ignition before driving If it is ON, step S10 may be YES.
  • FIGS. 7(A) to 7(C) and FIGS. 8(A) to 8(C) are diagrams for explaining an example of how bright lines are drawn. Each figure shows the road ahead as seen from the own vehicle. According to the above operating procedure, bright line irradiation can be performed when there is a pedestrian near the white line on the opposite lane as well as when there is a pedestrian near the white line on the lane in which the own vehicle is traveling. can.
  • a bright line (a bright line 1 bright line) 114 is irradiated.
  • a bright line 1 bright line 114 is irradiated.
  • FIGS. 7(B) and 7(C) when the position of the pedestrian 100 and the position of the own vehicle become relatively close, each pedestrian 100 A bright line 114 is irradiated so as to overlap a part of the white line 112 on the oncoming lane side corresponding to the position.
  • each pedestrian 100 A bright line 114 is illuminated in a blinking manner so as to overlap a part of the white line 112 on the opposite lane side corresponding to the oncoming lane.
  • each pedestrian 100 A bright line 114 is illuminated in a blinking manner so as to overlap a part of the white line 112 on the oncoming lane side corresponding to the position.
  • the irradiation position of the bright line 114 is changed. Further, when the pedestrian's position moves from outside the white line to inside the white line, the bright line 114 is switched to blinking illumination. For example, if the position of the pedestrian 100 is outside the white line far from the host vehicle at one timing, and the position of the pedestrian 100 is inside the white line at the next timing, the drawing mode shown in FIG. 7(A) (continuous irradiation) to the drawing mode (blinking irradiation) shown in FIG. 8(A).
  • the drawing mode shown in FIG. 7(A) continuous irradiation
  • the drawing mode shown in FIG. 7(B) continuous irradiation
  • the drawing mode shown in FIG. 8(B) blinkking irradiation
  • FIGS. 9(A) to 9(B) are diagrams for explaining an example of how bright lines are drawn.
  • a relatively short bright line 113 or bright line 114 is drawn depending on the position of the pedestrian 100, but as illustrated in FIG. If the distance is a certain distance or more, a long bright line (second bright line) 113a extending from the vehicle position to the pedestrian 100 position may be drawn overlapping the white line 111.
  • step S14 the processing after step S14 in the flowchart shown in FIG. 4 described above is changed as follows. That is, after step S13, it is recognized in step S14 whether the relative distance to the pedestrian is 100 m or more, and if the pedestrian's position is outside the white line in step S15, a relatively long bright line 113a is irradiated in step S31.
  • a short bright line 113 is irradiated in step S34.
  • the relatively long bright line differs from the short bright line only in length in the front-back direction, and it is sufficient that it is sufficiently longer than the short bright line.
  • the length may be between 9 m and 100 m, which is three times or more.
  • the long bright line 113a can be illuminated in a blinking manner.
  • a relatively short bright line 113 is blinked in the same way as the above-mentioned drawing mode. irradiate.
  • FIG. 13 the processing after step S14 in the flowchart shown in FIG. 4 described above is changed as follows.
  • step S14 it is recognized in step S14 whether the threshold value regarding the relative distance to the pedestrian is 100 m or more, and if the pedestrian's position in step S31 is not outside the white line (that is, if it is within the white line or on the road) , in step S32, the relatively long bright line 113a is irradiated in a blinking manner, and then in step S14, the relative distance is not 100 m or more (that is, less than 100 m), and in step S33, it is determined that the pedestrian is outside the white line. If it is within the white line or on the road, the short bright line 113 is irradiated in step S35 so as to blink.
  • FIGS. 10(A) to 10(C) are diagrams for explaining an example of how bright lines are drawn.
  • Each of the drawing modes described above assumes that there are white lines on both sides of the vehicle's direction of travel, but if the white line does not exist or cannot be detected due to weather, etc., the drawing mode is exemplified in FIG. It is also possible to draw a long bright line 113b corresponding to a white line.
  • the boundary line calculation section 25 determines whether the own vehicle and the pedestrian 110 can safely pass through.
  • a boundary line which is an imaginary line indicating the boundary that is considered to be, is calculated.
  • the boundary line is a virtual line extending in the direction in which the road extends, and can be determined based on the width or shape of the road.
  • the road width which is the distance between the white line 110 and the end contour 121
  • the boundary line at a position a certain distance away from the end contour 121 based on this road width.
  • a long bright line 113b can be drawn along this determined boundary line.
  • This long bright line 113b can be used as a substitute for the white line, and the length in this embodiment is, for example, 100 m that the high beam can reach from the own vehicle position, but it can be within 100 m, It may be set to 40m, which is the range within which the low beam can reach, or if the straight-line distance is short, it may be made shorter depending on the distance.
  • a long bright line 113b is drawn as a substitute for the white line. This drawing allows the driver to intuitively and visually recognize the presence of a pedestrian in the distance.
  • the bright line 113b overlaps with the relatively long bright line 113b. Therefore, a relatively short bright line 113c corresponding to the position of the pedestrian 100 can be irradiated. Since this short bright line 113c appears to shine above the long bright line 113b, the driver can recognize the exact position of the pedestrian. At this time, it is preferable that the short bright line 113c has a higher illumination intensity than the long bright line 113b, or is irradiated with a different color tone than the long bright line 113b. This is because the visibility of the short bright line 113c can be further improved.
  • the bright line 113c is visible because the bright line 113c has a higher illuminance.
  • the short bright line 113c is illuminated in a blinking manner. This flashing allows the driver to intuitively recognize that the pedestrian situation changes, that a pedestrian has entered the road, and drive while paying attention to the pedestrian's actions.
  • FIGS. 11(A) to 11(B) are diagrams for explaining an example of how bright lines are drawn. If it is raining where the vehicle is driving, the visibility of the bright line illuminated on the road surface may be reduced, so the same drawing mode as described above is applied when the white line does not exist. It is preferable.
  • the occurrence of rainy weather is detected by the weather detection section 22 based on the output of the raindrop sensor 12. For example, if the amount of rain exceeding a predetermined value is detected, the weather detection section 22 outputs a notification to that effect to the road surface drawing control section 26.
  • a long bright line 113b overlaps the white line 111.
  • a short bright line 113c corresponding to the position of the pedestrian 110 can be irradiated.
  • the driver can only see the short bright line 114a, making the relative position of the short bright line 114a unclear. This makes it difficult for drivers to accurately recognize the location of pedestrians.
  • the short bright line 114a since the long bright line 113a is irradiated instead of the hard-to-see central white line 110, the short bright line 114a appears to shine on the long bright line 113a, so the relative position of the short bright line 114a becomes clear. Drivers will be able to recognize the exact location of pedestrians. Furthermore, as shown in FIG. 11(B), when the pedestrian 100 enters the long bright line 113b (inside the lane 111), the short bright line 113c is illuminated in a blinking manner. By switching the short bright line 114a to blinking, the driver can intuitively recognize that the pedestrian situation has changed and a pedestrian has entered the road, and can drive while paying attention to the pedestrian's actions.
  • the short bright line 113c has a higher illumination intensity than the long bright line 113b, or is irradiated with a different color tone than the long bright line 113b. Thereby, the visibility of the short bright line 113c can be further improved.
  • FIGS. 12(A) to 12(C) are diagrams for explaining an example of how bright lines are drawn.
  • a short bright line can be irradiated corresponding to the position of each pedestrian.
  • FIG. 12(A) when a plurality of pedestrians 100a and 100b are present outside the white line 111, a short bright line 113d corresponding to each position of the pedestrians 100a and 100b is displayed. , 113e are irradiated. This allows the driver to recognize the exact locations of multiple pedestrians.
  • the bright line 113d corresponding to this pedestrian 100a is illuminated in a blinking manner.
  • the bright line 113e corresponding to this pedestrian 100b is illuminated in a blinking manner.
  • each of the bright lines 113d and 113e is flashed.
  • any drawing mode can be implemented in the same manner even when the pedestrian 100 is present on the oncoming lane side.
  • the driver can clearly recognize the relative positions of the short bright lines. It is possible to obtain a road surface drawing system that can grasp the situation (accurate position, sense of distance, presence or absence of intrusion into the road) with good visibility.
  • the linear bright line along the white line on the side of the road conveys the presence of pedestrians and their exact location to the driver, so it is easier for drivers to understand than when irradiating complex lights such as T-shaped lights.
  • the area to be focused on is further narrowed down, and the location of the pedestrian becomes clearer and easier to understand.
  • the driver's line of sight movement is also reduced. This is particularly noticeable when pedestrians are far away. These make it possible to grasp the situation of pedestrians with good visibility.
  • the bright line drawing mode is switched from continuous irradiation to flashing irradiation according to the pedestrian's position with respect to the white line (inside the white line/outside the white line), making it easier to understand changes in the pedestrian's situation. Furthermore, since the bright line drawing mode is switched even when the weather is bad or when there are no white lines (including when they are undetectable), it is easier to understand changes in the pedestrian's situation. Furthermore, since bright lines are drawn under the feet of pedestrians, there is also the advantage that it is easy to alert pedestrians who are looking down to operate a smartphone, for example.
  • a camera that photographs the space in front of the vehicle, Detecting pedestrians existing in the space ahead based on image data obtained by the camera, detecting white lines on the road in front of the vehicle, and irradiating light on the road based on the respective detection results.
  • a controller that performs control; a lamp unit that irradiates the road with light under the control of the controller; including; The controller is configured to irradiate a first bright line to a position on the road corresponding to a position of the pedestrian when the pedestrian is present and a relative distance between the pedestrian and the vehicle is less than or equal to a threshold value.
  • the lamp unit is controlled as follows.
  • the first bright line is linear light along the extending direction of the white line provided at the end of the lane in which the vehicle is traveling or the oncoming lane on the road, and is irradiated to overlap the white line.
  • Road drawing system (Additional note 2)
  • the controller continuously irradiates the first bright line when the pedestrian's position is on the outside of the road rather than the white line, and when the pedestrian's position is on the inner side of the road than the white line. controls the lamp unit so that the first bright line is illuminated in a blinking manner;
  • the road surface drawing system described in Appendix 1.
  • the controller controls the controller to generate a second line of light that is a straight line of light that is longer than the first bright line. controlling the lamp unit so as to irradiate a bright line overlapping the white line;
  • the road surface drawing system according to appendix 1 or 2.
  • the controller is configured to continuously irradiate the second bright line when the pedestrian's position is on the outside of the road rather than the white line, and to continuously irradiate the second bright line when the pedestrian's position is on the inner side of the road than the white line.
  • the first bright line is irradiated with a higher illuminance than the second bright line, and/or is irradiated with a different color tone than the second bright line.
  • the road surface drawing system described in Appendix 6. If the white line cannot be detected, the controller detects a virtual line extending along the direction of extension of the road, based on the width or shape of the road, on the edge side of the lane in which the vehicle is traveling or the oncoming lane. calculates a boundary line to be placed in the vehicle, and irradiates the second bright line along the boundary line regardless of the relative distance between the pedestrian and the vehicle, and superimposes the second bright line on the second bright line.
  • the controller is configured to control the controller to apply the first signal to each position on the road corresponding to the position of each pedestrian, regardless of the relative distance between each pedestrian and the vehicle. controlling the lamp unit so that one bright line is irradiated;
  • the road surface drawing system according to any one of Supplementary Notes 1 to 9.

Abstract

The purpose of the present invention is to ascertain the circumstances of a pedestrian with excellent visibility. A road drawing system including: a camera that photographs a space in front of a vehicle; a controller that detects a pedestrian present in the front space and detects white lines on a road in front of the vehicle on the basis of image data obtained by the camera, and that performs control to irradiate the road with light on the basis of the results of detection; and a lamp unit that irradiates the road with light under the control of the controller. When the pedestrian is present and the relative distance between the pedestrian and the vehicle is less than or equal to a threshold value, the controller controls the lamp unit so that a position on the road corresponding to the position of the pedestrian is irradiated with a first bright line. The first bright line is a straight line of light following the extension direction of the white line provided at the end of the oncoming lane or the lane in which the vehicle is traveling on the road, the first bright line being displayed overlapping the white line.

Description

路面描画システムRoad drawing system
 本開示は、路面描画システムに関する。 The present disclosure relates to a road surface drawing system.
 特開2008-143510号公報(特許文献1)には、自車両から危険であると推定された人物の方向及び該人物までの距離を表示する光を路面に照射することにより、人物の着衣の色に係わらずドライバ及び人物の両者に対して注意喚起を行う注意喚起照射装置が記載されている。路面に照射される光としては、それぞれ人物へ向かって延びるように照射されるT字形状、Y字形状、矢印形状などの光(路面描画)が記載されている。 Japanese Unexamined Patent Application Publication No. 2008-143510 (Patent Document 1) discloses that a person's clothing can be detected by emitting light on the road surface that displays the direction of a person estimated to be dangerous and the distance from the own vehicle to the person. A warning illumination device is described that calls attention to both a driver and a person regardless of the color. As the light irradiated onto the road surface, T-shaped, Y-shaped, arrow-shaped light (road surface drawing) that is irradiated so as to extend toward a person is described.
特開2008-143510号公報Japanese Patent Application Publication No. 2008-143510
 特許文献1に記載の従来技術のように、T字等の複雑な文字描画を照射する場合、文字描画に角度が付いてたり、サイズが大きかったりと、自車両の運転者は注目すべき箇所を絞り込みづらいため、歩行者の正確な位置を認識することが難しい。また、自車両が歩行者に近づくにつれて、T字等の複雑な文字描画も一緒に移動するが、文字描画の角度が変わるだけなので、運転者は歩行者との距離感を認識することが難しい。本開示に係る具体的態様は、自車両の運転者が歩行者の状況を視認性よく把握することができる路面描画システムを提供することを目的の1つとする。 As in the prior art described in Patent Document 1, when irradiating a complicated character drawing such as a T-shape, the driver of the own vehicle may have to pay attention to areas where the character drawing has an angle or is large in size. Because it is difficult to narrow down the pedestrian's location, it is difficult to recognize the exact location of the pedestrian. Additionally, as the vehicle approaches a pedestrian, complex character drawings such as the letter T move with it, but only the angle of the character drawing changes, making it difficult for the driver to recognize the sense of distance from the pedestrian. . One of the objectives of the specific embodiments of the present disclosure is to provide a road surface drawing system that allows the driver of the own vehicle to grasp the situation of pedestrians with good visibility.
 本開示に係る一態様の路面描画システムは、(a)車両の前方空間を撮影するカメラと、(b)前記カメラによって得られる画像データに基づいて前記前方空間に存在する歩行者を検出するとともに前記車両の前方の道路の白線を検出し、当該各検出結果に基づいて前記道路に光を照射するための制御を行うコントローラと、(c)前記コントローラによる制御を受けて前記道路に光を照射するランプユニットと、を含み、(d)前記コントローラは、前記歩行者が存在し、かつ当該歩行者と前記車両との相対距離が閾値以下の場合に、前記歩行者の位置に対応する前記道路上の位置に第1輝線が照射されるように前記ランプユニットを制御するものであり、(e)前記第1輝線は、前記道路における前記車両の走行車線又は対向車線の端部に設けられている前記白線の延在方向に沿った直線状の光であって当該白線に重ねて照射される、路面描画システムである。 A road surface drawing system according to one aspect of the present disclosure includes (a) a camera that photographs a space in front of a vehicle; (b) detecting a pedestrian existing in the space in front of the vehicle based on image data obtained by the camera; a controller that detects a white line on the road in front of the vehicle and controls to irradiate the road with light based on each detection result; and (c) irradiates the road with light under control by the controller. (d) when the pedestrian is present and the relative distance between the pedestrian and the vehicle is less than or equal to a threshold, the controller is configured to control the road corresponding to the pedestrian's position; (e) the first bright line is provided at an end of a lane in which the vehicle is traveling or an oncoming lane on the road; This is a road surface drawing system that irradiates linear light along the extending direction of the white line, overlapping the white line.
 上記構成によれば、歩行者の状況(正確な位置や距離感)を視認性よく把握することができる路面描画システムが提供される。 According to the above configuration, a road surface drawing system that can grasp the situation of pedestrians (accurate position and sense of distance) with good visibility is provided.
図1は、一実施形態の路面描画システムの構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a road surface drawing system according to an embodiment. 図2(A)は、各ランプユニットの設置例を模式的に示す図である。図2(B)は、ランプユニットの構成例を模式的に示す図である。FIG. 2(A) is a diagram schematically showing an installation example of each lamp unit. FIG. 2(B) is a diagram schematically showing a configuration example of a lamp unit. 図3は、コンピュータシステムの構成例を示す図である。FIG. 3 is a diagram showing an example of the configuration of a computer system. 図4は、路面描画システムの動作手順を示すフローチャートである。FIG. 4 is a flowchart showing the operating procedure of the road surface drawing system. 図5(A)~図5(C)は、輝線の描画態様を説明するための図である。FIGS. 5A to 5C are diagrams for explaining how bright lines are drawn. 図6(A)~図6(C)は、輝線の描画態様を説明するための図である。FIGS. 6A to 6C are diagrams for explaining how bright lines are drawn. 図7(A)~図7(C)は、輝線の描画態様を説明するための図である。FIGS. 7(A) to 7(C) are diagrams for explaining how bright lines are drawn. 図8(A)~図8(C)は、輝線の描画態様を説明するための図である。FIGS. 8(A) to 8(C) are diagrams for explaining how bright lines are drawn. 図9(A)~図9(B)は、輝線の描画態様を説明するための図である。FIGS. 9A to 9B are diagrams for explaining how bright lines are drawn. 図10(A)~図10(C)は、輝線の描画態様を説明するための図である。FIGS. 10(A) to 10(C) are diagrams for explaining how bright lines are drawn. 図11(A)~図11(C)は、輝線の描画態様を説明するための図である。FIGS. 11(A) to 11(C) are diagrams for explaining how bright lines are drawn. 図12(A)~図12(C)は、輝線の描画態様を説明するための図である。FIGS. 12(A) to 12(C) are diagrams for explaining how bright lines are drawn. 図13は、路面描画システムの動作手順を示すフローチャートである。FIG. 13 is a flowchart showing the operating procedure of the road surface drawing system.
 図1は、一実施形態の路面描画システムの構成を示すブロック図である。本実施形態の路面描画システム1は、コントローラ10、カメラ11、雨滴センサ12、車速センサ13、一対のランプユニット30L、30Rを含んで構成されている。この路面描画システム1は、車両前部に搭載され、車両前方に存在する歩行者の状況に応じて車両前方の路面に輝線(ライン状の光)を描画するものである。歩行者とは、歩いている人間だけでなく、自転車に乗った人間も含む。 FIG. 1 is a block diagram showing the configuration of a road surface drawing system according to an embodiment. The road surface drawing system 1 of this embodiment includes a controller 10, a camera 11, a raindrop sensor 12, a vehicle speed sensor 13, and a pair of lamp units 30L and 30R. This road surface drawing system 1 is mounted on the front of a vehicle, and draws bright lines (line-shaped lights) on the road surface in front of the vehicle depending on the situation of pedestrians present in front of the vehicle. Pedestrians include not only people walking but also people riding bicycles.
 コントローラ10は、各前照灯ユニット30L、30Rによる光照射を制御するものである。このコントローラ10は、例えばプロセッサ(CPU:Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリ等の記憶デバイス、入出力インターフェースなどを備えたコンピュータシステムを用いて構成することができる。本実施形態のコントローラ10は、予め記憶デバイス(あるいはROM)に記憶されたプログラムがプロセッサによって読み出されて実行されることにより、所定の機能を発揮できる状態となる。 The controller 10 controls light irradiation by each headlamp unit 30L, 30R. The controller 10 is configured using a computer system equipped with, for example, a processor (CPU: Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), storage devices such as flash memory, input/output interfaces, etc. be able to. The controller 10 of this embodiment is brought into a state where it can perform a predetermined function by having a processor read and execute a program stored in advance in a storage device (or ROM).
 カメラ11は、自車両前方の空間を撮影して画像データを生成する。この画像データに基づいてコントローラ10の画像処理部20により歩行者の位置などの状況が検出される。なお、画像処理部20による機能はカメラ11側に設けられていてもよい。 The camera 11 photographs the space in front of the own vehicle and generates image data. Based on this image data, the image processing unit 20 of the controller 10 detects conditions such as the position of the pedestrian. Note that the function of the image processing section 20 may be provided on the camera 11 side.
 雨滴センサ12は、自車両の存在する場所における降雨量を検出し、降雨量に応じた変化を示す信号(又はデータ)を出力する。雨滴センサ12としては公知の種々のものを用いることが可能である。一例を挙げると、特開2006-29807号公報に記載されるような、自車両のフロントガラスの内側に設置されて当該ガラスの外面に付着する雨滴を光学的手法によって検出するセンサを用いることができる。 The raindrop sensor 12 detects the amount of rainfall at the location where the own vehicle is present, and outputs a signal (or data) indicating a change according to the amount of rainfall. Various known raindrop sensors can be used as the raindrop sensor 12. For example, it is possible to use a sensor that is installed inside the windshield of the own vehicle and uses an optical method to detect raindrops adhering to the outer surface of the windshield, as described in Japanese Patent Application Laid-open No. 2006-29807. can.
 車速センサ13は、自車両の車速を検出して車速信号(車速パルス)を出力する。なお、他の用途などで予め自車両に備わっている車速センサがある場合にはそれを車速センサ13として用いてもよい。 The vehicle speed sensor 13 detects the vehicle speed of the own vehicle and outputs a vehicle speed signal (vehicle speed pulse). Note that if there is a vehicle speed sensor already installed in the own vehicle for other purposes, it may be used as the vehicle speed sensor 13.
 自車位置データ14は、自車両に備わっているカーナビゲーションシステムやGPSセンサなどの位置検出手段(図示せず)により生成され、コントローラ10の自車位置検出部21へ入力される。 The own vehicle position data 14 is generated by a position detection means (not shown) such as a car navigation system or a GPS sensor included in the own vehicle, and is input to the own vehicle position detection unit 21 of the controller 10.
 一対のランプユニット30L、30Rは、自車両前部の左右の所定位置に搭載されており、コントローラ10から与えられる制御信号に応じて動作して自車両前方の所望位置へ直線状(ライン状)の光を照射する。各ランプユニット30L、30Rは、ドライバ31と、このドライバ31によって駆動されるLEDアレイ32を備える。 The pair of lamp units 30L and 30R are mounted at predetermined positions on the left and right sides of the front of the host vehicle, and operate in response to control signals given from the controller 10 to move to a desired position in front of the host vehicle in a straight line (line shape). irradiate with light. Each lamp unit 30L, 30R includes a driver 31 and an LED array 32 driven by the driver 31.
 上記したコントローラ10は、プログラム実行によって実現される機能ブロックとしての画像処理部20、自車位置検出部21、天候検出部22、相対位置演算部23、相対距離演算部24、境界線演算部25、路面描画制御部26を含んで構成されている。 The above-described controller 10 includes an image processing section 20, an own vehicle position detection section 21, a weather detection section 22, a relative position calculation section 23, a relative distance calculation section 24, and a boundary line calculation section 25 as functional blocks realized by program execution. , a road surface drawing control section 26.
 画像処理部20は、カメラ11によって生成された画像データに対して画像認識処理を行うことにより、歩行者の位置、前方車両(先行車両または対向車両)の位置、道路上の白線など自車両前方の状況を検出する。 The image processing unit 20 performs image recognition processing on the image data generated by the camera 11 to determine the position of the pedestrian, the position of the vehicle ahead (the preceding vehicle or the oncoming vehicle), and the information in front of the own vehicle such as the white line on the road. Detect the situation.
 自車位置検出部21は、自車位置データ14に基づいて自車両の位置を検出する。自車両の位置を知るために、この自車位置データ14はカーナビゲーションシステムを含んだ構成でもよく、このカーナビの地図情報から自車両位置が、街中か、または、100m以上の直線をもつ道路か、または100m未満の直線しかない道路を自車両が位置しているか演算することもできる。本開示でいう道路の定義は、運転手が視認できるような見通しのよい道路としているため、直線道路はもちろんだが、見通せるならばカーブも含まれる。言い換えれば、前方を見通せる十字路やS字も道路として含めている。 The own vehicle position detection unit 21 detects the position of the own vehicle based on the own vehicle position data 14. In order to know the position of the own vehicle, this own vehicle position data 14 may include a car navigation system, and from the map information of this car navigation system, it is determined whether the own vehicle position is in the city or on a road with a straight line of 100 meters or more. , or it can also be calculated whether the own vehicle is located on a road with only a straight line of less than 100 m. The definition of a road in this disclosure is a road with good visibility that the driver can see, so it includes not only straight roads but also curves if the road is visible. In other words, crossroads and S-curves where you can see ahead are also included as roads.
 天候検出部22は、雨滴センサ13の出力に基づいて天候状態、具体的には雨量を検出する。天候検出部22は、雨量が所定値を超えた場合にはその旨を路面描画制御部26へ出力する。 The weather detection unit 22 detects the weather condition, specifically, the amount of rain, based on the output of the raindrop sensor 13. When the amount of rain exceeds a predetermined value, the weather detection section 22 outputs a notification to that effect to the road surface drawing control section 26.
 相対位置演算部23は、画像処理部20による画像認識結果に基づいて、自車両の前方に存在する白線の位置と形状を検出する。 The relative position calculation unit 23 detects the position and shape of the white line in front of the own vehicle based on the image recognition result by the image processing unit 20.
 相対距離演算部24は、自車位置データに基づいて自車位置検出により検出される現在位置や画像処理部20による画像認識結果に基づいて歩行者と自車両との相対距離を演算する。 The relative distance calculating unit 24 calculates the relative distance between the pedestrian and the own vehicle based on the current position detected by the own vehicle position detection based on the own vehicle position data and the image recognition result by the image processing unit 20.
 境界線演算部25は、路面上に白線が存在しない場合において、画像処理部20による画像認識結果に基づいて白線に代替し得る仮想線である境界線を演算する。 The boundary line calculation unit 25 calculates a boundary line, which is a virtual line that can be substituted for a white line, based on the image recognition result by the image processing unit 20 when there is no white line on the road surface.
 路面描画制御部26は、相対位置演算部23により求められる白線の位置や形状、相対距離演算部24によって求められる歩行者と自車両との相対距離、境界線演算部25によって求められる境界線、天候検出部22によって検出される天候状態などに基づいて、路面上に輝線を描画するための制御信号を生成し、当該制御信号を各ランプユニット30L、30Rへ出力する。 The road surface drawing control unit 26 calculates the position and shape of the white line calculated by the relative position calculation unit 23, the relative distance between the pedestrian and the own vehicle calculated by the relative distance calculation unit 24, the boundary line calculated by the boundary line calculation unit 25, Based on the weather conditions detected by the weather detection section 22, a control signal for drawing bright lines on the road surface is generated, and the control signal is output to each lamp unit 30L, 30R.
 図2(A)は、各ランプユニットの設置例を模式的に示す図である。各ランプユニット30L、30Rは、自車両50の前部において左右それぞれの所定位置に配置されている。図示の例では、ランプユニット30L、30Rは、それぞれ、ハイビームやロービームを照射するためのランプユニット40L、40Rと隣り合って配置されている。 FIG. 2(A) is a diagram schematically showing an installation example of each lamp unit. Each lamp unit 30L, 30R is arranged at a predetermined position on the left and right sides of the front part of the own vehicle 50. In the illustrated example, lamp units 30L and 30R are arranged adjacent to lamp units 40L and 40R for emitting high beams and low beams, respectively.
 図2(B)は、ランプユニットの構成例を模式的に示す図である。図示の例のランプユニット30L(30R)は、二方向に配列された複数のLED(Light Emitting Diode)を有するLEDアレイ32と、このLEDアレイ32から放出される光を投影するレンズ33を含んで構成されている。LEDアレイ32は、その中心がレンズ33の焦点と略一致するように配置されている。LEDアレイ32の各LEDの点灯状態をドライバ31によって個別に制御することにより、路面上の所望の位置へ輝線を照射することができる。路面描画を照射する領域は、前後方向は少なくともハイビーム領域とロービーム領域の両方を含くんだ領域(車両手前付近から100m以内、または100m以上でもよい)であり、左右方向は少なくとも走行車線(走行車線側白線と中央白線含む)の領域であり、さらには対向車線(対向車線側の白線含む)も含めた領域のことを指す。実施形態においては、前後方向は自車両手前から100mであり、左右方向は走行車線と対向車線の両方を含んだ領域となっている。 FIG. 2(B) is a diagram schematically showing a configuration example of a lamp unit. The illustrated lamp unit 30L (30R) includes an LED array 32 having a plurality of LEDs (Light Emitting Diodes) arranged in two directions, and a lens 33 that projects light emitted from the LED array 32. It is configured. The LED array 32 is arranged so that its center substantially coincides with the focal point of the lens 33. By individually controlling the lighting state of each LED of the LED array 32 by the driver 31, it is possible to irradiate a bright line to a desired position on the road surface. The area where the road surface drawing is irradiated is an area that includes at least both the high beam area and the low beam area in the front and rear directions (it may be within 100 m from the front of the vehicle or more than 100 m), and at least the driving lane (driving lane) in the left and right direction. The area includes the side white lines and the center white line), and also includes the oncoming lane (including the white line on the opposite lane side). In the embodiment, the longitudinal direction is 100 m from the front of the host vehicle, and the lateral direction is an area including both the driving lane and the oncoming lane.
 なお、ランプユニット30L等の構成はこれに限定されず公知の種々の構成を採用することができる。例えば、光源バルブと反射鏡や遮蔽板を組み合わせた構成のランプユニットを用いてもよい。また、光源と液晶素子などを備え、液晶素子の各画素の光透過状態を個別に制御可能なランプユニットを用いてもよい。また、レーザダイオードなどの発光素子と、この発光素子から出射する光を走査するミラーデバイス等の走査素子などを備え、発光素子の点消灯のタイミングと走査素子による走査タイミングを制御可能なランプユニットを用いてもよい。 Note that the configuration of the lamp unit 30L etc. is not limited to this, and various known configurations can be adopted. For example, a lamp unit configured by combining a light source bulb, a reflecting mirror, or a shielding plate may be used. Alternatively, a lamp unit may be used that includes a light source, a liquid crystal element, etc., and can individually control the light transmission state of each pixel of the liquid crystal element. In addition, the lamp unit includes a light emitting element such as a laser diode and a scanning element such as a mirror device that scans the light emitted from the light emitting element, and can control the timing of turning on and off the light emitting element and the timing of scanning by the scanning element. May be used.
 図3は、コンピュータシステムの構成例を示す図である。上記したコントローラ10は、例えば図示のようなコンピュータシステムを用いて構成することが可能である。CPU(中央演算ユニット)201は、記憶デバイス204に格納されたプログラム207を読み出してこれを実行することにより情報処理を行う。ROM(読み出し専用メモリ)202は、CPU201の動作に必要な基本制御プログラムなどを格納する。RAM(一時記憶メモリ)203は、CPU201の情報処理に必要なデータを一時記憶する。記憶デバイス204は、データを記憶するための大容量記憶装置であり、ハードディスクドライブやソリッドステートドライブなどで構成される。通信デバイス205は、外部の他装置との間でのデータ通信に係る処理を行う。入出力部206は、外部装置との接続を図るインターフェースであり、本実施形態ではカメラ11、雨滴センサ12、車速センサ13、各ランプユニット30L、30Rとの間の接続に用いられる。CPU201等の相互間はバスにより相互に通信可能に接続されている。 FIG. 3 is a diagram showing an example of the configuration of a computer system. The controller 10 described above can be configured using, for example, a computer system as illustrated. A CPU (central processing unit) 201 performs information processing by reading a program 207 stored in a storage device 204 and executing it. A ROM (read-only memory) 202 stores basic control programs and the like necessary for the operation of the CPU 201. A RAM (temporary storage memory) 203 temporarily stores data necessary for information processing by the CPU 201. The storage device 204 is a mass storage device for storing data, and is configured with a hard disk drive, solid state drive, or the like. The communication device 205 performs processing related to data communication with other external devices. The input/output unit 206 is an interface for connecting with external devices, and in this embodiment is used for connecting with the camera 11, the raindrop sensor 12, the vehicle speed sensor 13, and each of the lamp units 30L and 30R. The CPUs 201 and the like are connected to each other via a bus so that they can communicate with each other.
 図4は、路面描画システムの動作手順を示すフローチャートである。なお、各処理の順番については制御結果に不整合を生じない限りにおいて入れ替えることも可能であり、また説明しない他の処理が追加されてもよく、それらの態様も排除されない。まず、基本的な描画態様として、図5(A)~図5(C)及び図6(A)~図6(C)に自車両から見た前方道路の様子を例示するように、歩行者100の位置に応じて描画位置が変化する短めの輝線(第1輝線)113を白線111に重ねて描画し、かつ歩行者100の位置が白線111の内側(道路側)に入った際には輝点113を点滅させて描画する態様を参照しつつ路面描画システム1の動作手順を説明する。 FIG. 4 is a flowchart showing the operating procedure of the road surface drawing system. Note that the order of each process can be changed as long as it does not cause inconsistency in the control results, and other processes not described may be added, and such aspects are not excluded. First, as a basic drawing mode, pedestrians are A short bright line (first bright line) 113 whose drawing position changes depending on the position of the pedestrian 100 is drawn over the white line 111, and when the position of the pedestrian 100 is inside the white line 111 (on the road side), The operating procedure of the road surface drawing system 1 will be explained with reference to the manner in which the bright spot 113 is blinked to draw the image.
 車速センサ13により検出される自車両の車速が時速10km以上であり(ステップS10;YES)、かつカメラ11により得られる画像データに基づいて画像処理部20により自車両前方に歩行者が検出されている場合に(ステップS11;YES)、相対距離演算部24は、自車位置検出により検出される現在位置や画像処理結果に基づいて歩行者と自車両との相対距離を演算する(ステップS12)。また、相対位置演算部23は、画像処理部20による画像認識結果に基づいて、自車両の前方に存在する白線110、111、112の位置と形状を検出する(ステップS13)。演算された相対距離、位置、形状の各データはメモリに一時記憶される。 The vehicle speed of the host vehicle detected by the vehicle speed sensor 13 is 10 km/h or more (step S10; YES), and a pedestrian is detected in front of the host vehicle by the image processing unit 20 based on the image data obtained by the camera 11. If the pedestrian is present (Step S11; YES), the relative distance calculation unit 24 calculates the relative distance between the pedestrian and the vehicle based on the current position detected by the vehicle position detection and the image processing result (Step S12). . Furthermore, the relative position calculation section 23 detects the positions and shapes of the white lines 110, 111, and 112 that are present in front of the own vehicle based on the image recognition result by the image processing section 20 (step S13). The calculated relative distance, position, and shape data are temporarily stored in memory.
 歩行者と自車両との相対距離が所定の閾値(一例として100m)よりも大きい場合には(ステップS14;NO)、輝線の路面描画は行われず、ステップS10へ戻る。実施形態では、監視開始をハイビーム領域内と想定したため、所定の閾値を100mとしたが、街中の場合は見通しのよい道路が短いため、100m先に道路がない場合もある。その場合、監視開始をロービーム領域付近と想定し、所定の閾値を30m~50mの間(一例として40m)に設定してもよい。予めカーナビゲーションシステムなどの地図情報から、自車両の位置が街中か、または100m未満の見通しのよい道路区間であることがわかっていれば、自動的に所定の閾値を変更できるようにしてもよい。 If the relative distance between the pedestrian and the own vehicle is larger than a predetermined threshold (100 m as an example) (step S14; NO), the bright line is not drawn on the road surface and the process returns to step S10. In the embodiment, the predetermined threshold value is set to 100 m because it is assumed that monitoring starts within the high beam area, but in the case of a city, roads with good visibility are short, so there may be no road 100 m ahead. In that case, the predetermined threshold value may be set between 30 m and 50 m (40 m as an example), assuming that the monitoring starts near the low beam area. If it is known in advance from map information such as a car navigation system that the vehicle's location is in the city or on a road section with good visibility of less than 100 meters, the predetermined threshold value may be automatically changed. .
 歩行者と自車両との相対距離が閾値以下であり(ステップS14;YES)、かつ、歩行者の位置が白線の外側である場合に(ステップS15;YES)、路面描画制御部26は、歩行者の位置に対応する白線上に所定長さの輝線を描画するように制御信号を生成し、この制御信号を各ランプユニット30L、30Rへ出力する(ステップS16)。ここでいう輝線(短い輝線)113は、白線111と略平行、すなわち道路の延在方向と略平行な直線状の光からなるものである。輝線(短い輝線)113の幅は、描画される各位置において白線111と同程度か白線111の幅よりも若干広いくらいに設定されることが好ましい。白線111が劣化や汚れなどで描画の輝線113と同じまたは類似の色になった場合や輝線(短い輝線)113の明るさが不十分だった場合、白線111の幅より広ければ、白線111からはみ出した分、描画のされた輝線113を自車両の運転手または歩行者が視認しやすくなるためである。また、輝線(短い輝線)113の長さは、歩行者の位置を視認させるに必要十分な長さ(人間の幅より広い長さの0.5m以上2m以内)であり、例えば、人間が身長または手を広げた長さぐらいの1.5m程度であることが好ましい。描画位置の距離が100mと遠方の場合、白線の幅の同程度または若干の広めと長さ1.5mの輝線サイズでは、自車両の運転手が視認しにくい場合もあるため、幅や長さを例えば1.5倍~2倍に変更して視認性を向上させてもよい。相対距離が短くなってきたら(例えば50m以下)、幅や長さを短くし所定の幅や長さに戻してもよい(幅や長さの調整は、徐変でも、段階的でもよい)。これは相対距離演算部24で相対距離が遠方であると検知できたとき、路面描画制御部26が輝線(短い輝線)113の幅と長さを調整したサイズを描画するように制御信号を生成し、この制御信号を各ランプユニット30L、30Rへ出力すればよい。 If the relative distance between the pedestrian and the own vehicle is less than the threshold value (step S14; YES) and the pedestrian's position is outside the white line (step S15; YES), the road surface drawing control unit 26 A control signal is generated to draw a bright line of a predetermined length on the white line corresponding to the person's position, and this control signal is output to each lamp unit 30L, 30R (step S16). The bright line (short bright line) 113 here is made of linear light that is approximately parallel to the white line 111, that is, approximately parallel to the direction in which the road extends. The width of the bright line (short bright line) 113 is preferably set to be approximately the same as or slightly wider than the white line 111 at each position to be drawn. If the white line 111 becomes the same or similar color to the drawn bright line 113 due to deterioration or dirt, or if the brightness of the bright line (short bright line) 113 is insufficient, if it is wider than the white line 111, the white line 111 This is because it becomes easier for the driver of the own vehicle or a pedestrian to visually recognize the drawn bright line 113 by the extent that it protrudes. In addition, the length of the bright line (short bright line) 113 is a length necessary and sufficient to visually recognize the position of a pedestrian (a length of 0.5 m or more and less than 2 m, which is wider than the width of a human). Alternatively, it is preferably about 1.5 m, which is about the length of an outstretched hand. If the distance of the drawing position is as far as 100 m, the width and length of the white line may be the same or slightly wider and the bright line size is 1.5 m long, making it difficult for the driver of the own vehicle to see. may be changed to, for example, 1.5 times to 2 times to improve visibility. When the relative distance becomes short (for example, 50 m or less), the width or length may be shortened and returned to a predetermined width or length (the width or length may be adjusted gradually or in stages). This means that when the relative distance calculation unit 24 detects that the relative distance is far, the road surface drawing control unit 26 generates a control signal so that the width and length of the bright line (short bright line) 113 are adjusted. Then, this control signal may be output to each lamp unit 30L, 30R.
 例えば図5(A)に示すように、歩行者100の位置が自車両から比較的遠い場合にはその歩行者100の位置に対応する白線111の部分に重ねるように輝線113が描画される。また、例えば図5(B)、図5(C)に示すように、歩行者100の位置と自車両の位置が相対的に近くなった場合には、近くなった分だけそれぞれの歩行者100の位置に対応する白線111の部分に重ねるように輝線(短い輝線)113が描画される。これにより、短い輝線を照射することにより、歩行者の位置を運転手は直感的に認識することができ、さらにその短い輝線が白線上に重ねて照射されているため、連続して続く白線上に短い輝線が光って見えるため、自車両と歩行者との相対的な距離感、つまり、正確な歩行者の位置を運転手は認識することが可能になる。 For example, as shown in FIG. 5A, when the position of a pedestrian 100 is relatively far from the own vehicle, a bright line 113 is drawn so as to overlap the part of the white line 111 corresponding to the position of the pedestrian 100. For example, as shown in FIGS. 5(B) and 5(C), when the position of the pedestrian 100 and the position of the own vehicle become relatively close, each pedestrian 100 A bright line (short bright line) 113 is drawn so as to overlap the white line 111 corresponding to the position. This allows drivers to intuitively recognize the location of pedestrians by emitting a short bright line, and since the short bright line is overlaid on the white line, the driver can intuitively recognize the pedestrian's position. Since a short bright line appears to be shining, it is possible for the driver to recognize the relative distance between the vehicle and the pedestrian, that is, the exact location of the pedestrian.
 歩行者と自車両との相対距離が閾値以下であり(ステップS14;YES)、かつ、歩行者の位置が白線の内側、すなわち道路内である場合に(ステップS15;NO)、路面描画制御部26は、歩行者の位置に対応する白線上に所定長さの輝線(短い輝線)を点滅させて照射するように制御信号を生成し、この制御信号を各ランプユニット30L、30Rへ出力する(ステップS17)。これにより、輝線の光り方の変化により、歩行者の状況(この場合は、道路内への侵入有無)に変化があったことを運転手が直感的に認識することができるため、運転手は歩行者に注意しつつ運転することが可能になる。 If the relative distance between the pedestrian and the vehicle is less than or equal to the threshold (step S14; YES), and the pedestrian is located inside the white line, that is, within the road (step S15; NO), the road surface drawing control unit 26 generates a control signal to blink and irradiate a bright line of a predetermined length (short bright line) on the white line corresponding to the pedestrian's position, and outputs this control signal to each lamp unit 30L, 30R ( Step S17). This allows the driver to intuitively recognize that there has been a change in the situation of the pedestrian (in this case, whether or not the pedestrian has entered the road) by changing the way the bright line shines. It becomes possible to drive while paying attention to pedestrians.
 例えば図6(A)に示すように、歩行者100の位置が自車両から比較的遠い場合にはその歩行者100の位置に対応する白線111の部分に重ねるように輝線113が点滅して描画される。また、例えば図5(B)、図5(C)に示すように、歩行者100の位置と自車両の位置が相対的に近くなった場合には、近くなった分だけそれぞれの歩行者100の位置に対応する白線111の一部分に重ねるように輝線113が点滅して描画される。 For example, as shown in FIG. 6(A), when the position of a pedestrian 100 is relatively far from the host vehicle, a bright line 113 is drawn blinking so as to overlap the white line 111 corresponding to the position of the pedestrian 100. be done. For example, as shown in FIGS. 5(B) and 5(C), when the position of the pedestrian 100 and the position of the own vehicle become relatively close, each pedestrian 100 A bright line 113 is drawn blinking so as to overlap a part of the white line 111 corresponding to the position.
 その後、ステップS10へ戻る。ステップS10以降の処理が繰り返されることで、歩行者100の相対位置が変化するのに追随して輝線113の描画位置が変更される。また、歩行者の位置が白線外から白線内へ移動した際には輝線113が点滅照射に切り替えられる。例えば、あるタイミングで歩行者100の位置が自車両から遠方の白線外で、次のタイミングで歩行者100の位置が白線内となった場合には、図5(A)に示す描画態様(連続照射)から図6(A)に示す描画態様(点滅照射)へ遷移する。また、あるタイミングで自車両から遠方かつ白線外であった歩行者100の位置が次のタイミングで相対的に自車両へ近づき、さらにその次のタイミングで歩行者100の位置が白線内となった場合には、図5(A)に示す描画態様(連続照射)、図5(B)に示す描画態様(連続照射)、図6(B)に示す描画態様(点滅照射)というように描画態様が遷移する。これにより、短い輝線が白線上に重ねて照射されているため、連続して続く白線上に沿って短い輝線が遷移しながらどんどん近づいてくるように見える(しかも一方方向に遷移する)ため、運転手は歩行者との距離感を直感的に認識することが可能になる。 After that, return to step S10. By repeating the processing from step S10 onward, the drawing position of the bright line 113 is changed in accordance with the change in the relative position of the pedestrian 100. Further, when the pedestrian's position moves from outside the white line to inside the white line, the bright line 113 is switched to blinking illumination. For example, if the position of the pedestrian 100 is outside the white line far from the host vehicle at one timing, and the position of the pedestrian 100 is inside the white line at the next timing, the drawing mode shown in FIG. 5(A) (continuous irradiation) to the drawing mode (blinking irradiation) shown in FIG. 6(A). Furthermore, the position of pedestrian 100, which was far away from the own vehicle and outside the white line at one timing, becomes relatively close to the own vehicle at the next timing, and the position of pedestrian 100 becomes within the white line at the next timing. In this case, the drawing mode shown in FIG. 5(A) (continuous irradiation), the drawing mode shown in FIG. 5(B) (continuous irradiation), the drawing mode shown in FIG. 6(B) (blinking irradiation), etc. transitions. As a result, the short bright lines are overlaid on the white line, so the short bright lines appear to move closer and closer along the continuous white line (and transition in one direction), which makes it difficult to drive. The hand becomes able to intuitively recognize the sense of distance from pedestrians.
 他方で、車速が時速10kmより小さい場合(ステップS10;NO)、又は車速が時速10km以上であっても歩行者が存在しない場合(ステップS11;NO)においては、路面描画制御部26による輝線の照射が終了する(ステップS18)。なお、元々輝線の照射が行われていなかった場合はその状態が維持される。実施形態ではステップS10を「自車両の車速が時速10km以上」としたが、車速は一例であり車が走行状態であれば、ステップS10はYESとなるし、極端に言えば、走行前のイグニッションONでステップS10をYESとしてもよい。 On the other hand, if the vehicle speed is less than 10 km/h (step S10; NO), or if there are no pedestrians even if the vehicle speed is 10 km/h or more (step S11; NO), the bright line Irradiation ends (step S18). Note that if the bright line irradiation was not originally performed, that state is maintained. In the embodiment, step S10 is set as "vehicle speed of the own vehicle is 10 km/h or more", but the vehicle speed is just an example, and if the car is in a running state, step S10 will be YES, and to be extreme, the ignition before driving If it is ON, step S10 may be YES.
 図7(A)~図7(C)及び図8(A)~図8(C)は、輝線の描画態様の一例を説明するための図である。各図では自車両から見た前方道路の様子が示されている。上記した動作手順によれば、自車両の走行する車線側の白線付近に歩行者が存在する場合と同様に、対向車線側の白線付近に歩行者が存在する場合についても輝線照射を行うことができる。 FIGS. 7(A) to 7(C) and FIGS. 8(A) to 8(C) are diagrams for explaining an example of how bright lines are drawn. Each figure shows the road ahead as seen from the own vehicle. According to the above operating procedure, bright line irradiation can be performed when there is a pedestrian near the white line on the opposite lane as well as when there is a pedestrian near the white line on the lane in which the own vehicle is traveling. can.
 例えば図7(A)に示すように、歩行者100の位置が自車両から比較的遠い場合にはその歩行者100の位置に対応する対向車線側の白線112の部分に重ねるように輝線(第1輝線)114が照射される。また、例えば図7(B)、図7(C)に示すように、歩行者100の位置と自車両の位置が相対的に近くなった場合には、近くなった分だけそれぞれの歩行者100の位置に対応する対向車線側の白線112の一部分に重ねるように輝線114が照射される。 For example, as shown in FIG. 7A, when the position of a pedestrian 100 is relatively far from the own vehicle, a bright line (a bright line 1 bright line) 114 is irradiated. For example, as shown in FIGS. 7(B) and 7(C), when the position of the pedestrian 100 and the position of the own vehicle become relatively close, each pedestrian 100 A bright line 114 is irradiated so as to overlap a part of the white line 112 on the oncoming lane side corresponding to the position.
 また、例えば図8(A)に示すように、歩行者100の位置が自車両から比較的遠い場合であって白線内(つまり、対向車線内)に存在する場合にはその歩行者100の位置に対応する対向車線側の白線112の一部分に重ねるように輝線114が点滅して照射される。また、例えば図8(B)、図8(C)に示すように、歩行者100の位置と自車両の位置が相対的に近くなった場合には、近くなった分だけそれぞれの歩行者100の位置に対応する対向車線側の白線112の一部分に重ねるように輝線114が点滅して照射される。 For example, as shown in FIG. 8(A), when the pedestrian 100 is relatively far from the own vehicle and is within the white line (that is, within the oncoming lane), the position of the pedestrian 100 is A bright line 114 is illuminated in a blinking manner so as to overlap a part of the white line 112 on the opposite lane side corresponding to the oncoming lane. For example, as shown in FIGS. 8(B) and 8(C), when the position of the pedestrian 100 and the position of the own vehicle become relatively close, each pedestrian 100 A bright line 114 is illuminated in a blinking manner so as to overlap a part of the white line 112 on the oncoming lane side corresponding to the position.
 そして、歩行者100の相対位置が変化するのに伴って輝線114の照射位置は変更される。また、歩行者の位置が白線外から白線内へ移動した際には輝線114が点滅照射に切り替えられる。例えば、あるタイミングで歩行者100の位置が自車両から遠方の白線外で、次のタイミングで歩行者100の位置が白線内となった場合には、図7(A)に示す描画態様(連続照射)から図8(A)に示す描画態様(点滅照射)へ遷移する。また、あるタイミングで自車両から遠方かつ白線外であった歩行者100の位置が次のタイミングで相対的に自車両へ近づき、さらにその次のタイミングで歩行者100の位置が白線内となった場合には、図7(A)に示す描画態様(連続照射)、図7(B)に示す描画態様(連続照射)、図8(B)に示す描画態様(点滅照射)というように描画態様が遷移する。 Then, as the relative position of the pedestrian 100 changes, the irradiation position of the bright line 114 is changed. Further, when the pedestrian's position moves from outside the white line to inside the white line, the bright line 114 is switched to blinking illumination. For example, if the position of the pedestrian 100 is outside the white line far from the host vehicle at one timing, and the position of the pedestrian 100 is inside the white line at the next timing, the drawing mode shown in FIG. 7(A) (continuous irradiation) to the drawing mode (blinking irradiation) shown in FIG. 8(A). Furthermore, the position of pedestrian 100, which was far away from the own vehicle and outside the white line at one timing, becomes relatively close to the own vehicle at the next timing, and the position of pedestrian 100 becomes within the white line at the next timing. In this case, the drawing mode shown in FIG. 7(A) (continuous irradiation), the drawing mode shown in FIG. 7(B) (continuous irradiation), the drawing mode shown in FIG. 8(B) (blinking irradiation), etc. transitions.
 図9(A)~図9(B)は、輝線の描画態様の一例を説明するための図である。上記した各描画態様では、歩行者100の位置に応じて比較的短い輝線113又は輝線114を描画していたが、図9(A)に例示するように、歩行者100と自車両との相対距離が一定以上離れている場合には、自車両位置から歩行者100の位置まで延びる長い輝線(第2輝線)113aを白線111に重ねて描画してもよい。 FIGS. 9(A) to 9(B) are diagrams for explaining an example of how bright lines are drawn. In each of the drawing modes described above, a relatively short bright line 113 or bright line 114 is drawn depending on the position of the pedestrian 100, but as illustrated in FIG. If the distance is a certain distance or more, a long bright line (second bright line) 113a extending from the vehicle position to the pedestrian 100 position may be drawn overlapping the white line 111.
 一例として、歩行者100と自車両との相対距離が100mより大きい場合には相対的に長い輝線113aを照射し、相対距離が100m以下となった場合には上記した描画態様と同様にして相対的に短い輝線113(図5(B)等参照)を照射することができる。この場合、図13に示すように、上記した図4に示したフローチャートにおけるステップS14以降の処理を以下のように変更する。つまり、ステップS13の後に、ステップS14で歩行者との相対距離が100m以上かを認知し、ステップS15の歩行者の位置が白線外であれば、ステップS31で相対的に長い輝線113aを照射し、その後、ステップS14にて相対距離が100m以内であり、ステップS33にて歩行者が白線外であれば、ステップS34にて短い輝線113を照射することとなる。なお、相対的に長い輝線とは、短い輝線と比べて前後方向の長さだけが異なり、短い輝線よりも十分長ければよい。一例としては、3倍以上の9m~100mの間の長さがあればよい。 As an example, when the relative distance between the pedestrian 100 and the own vehicle is greater than 100 m, a relatively long bright line 113a is irradiated, and when the relative distance is less than 100 m, the relative distance is A relatively short bright line 113 (see FIG. 5(B), etc.) can be irradiated. In this case, as shown in FIG. 13, the processing after step S14 in the flowchart shown in FIG. 4 described above is changed as follows. That is, after step S13, it is recognized in step S14 whether the relative distance to the pedestrian is 100 m or more, and if the pedestrian's position is outside the white line in step S15, a relatively long bright line 113a is irradiated in step S31. Then, if the relative distance is within 100 m in step S14 and the pedestrian is outside the white line in step S33, a short bright line 113 is irradiated in step S34. Note that the relatively long bright line differs from the short bright line only in length in the front-back direction, and it is sufficient that it is sufficiently longer than the short bright line. For example, the length may be between 9 m and 100 m, which is three times or more.
 また、図9(B)に例示するように、歩行者100が白線111の内側に侵入した際には、長い輝線113aを点滅させるように照射することができる。この場合も、歩行者100と自車両との相対距離が100m以下となった場合には上記した描画態様と同様にして相対的に短い輝線113(図5(B)等参照)を点滅させるように照射する。図13に示すように、上記した図4に示したフローチャートにおけるステップS14以降の処理を以下のように変更する。つまり、ステップS13の後に、ステップS14で歩行者との相対距離に関する閾値が100m以上かを認知し、ステップS31の歩行者の位置が白線外でなければ(つまり白線内または道路内であれば)、ステップS32で相対的に長い輝線113aを点滅させるように照射し、その後、ステップS14にて相対距離が100m以上でなく(つまり100m未満であり)、ステップS33にて歩行者が白線外でなければ(つまり白線内または道路内あれば)、ステップS35にて短い輝線113を点滅させるように照射することとなる。 Further, as illustrated in FIG. 9(B), when the pedestrian 100 enters the inside of the white line 111, the long bright line 113a can be illuminated in a blinking manner. In this case as well, when the relative distance between the pedestrian 100 and the host vehicle becomes 100 m or less, a relatively short bright line 113 (see FIG. 5(B) etc.) is blinked in the same way as the above-mentioned drawing mode. irradiate. As shown in FIG. 13, the processing after step S14 in the flowchart shown in FIG. 4 described above is changed as follows. That is, after step S13, it is recognized in step S14 whether the threshold value regarding the relative distance to the pedestrian is 100 m or more, and if the pedestrian's position in step S31 is not outside the white line (that is, if it is within the white line or on the road) , in step S32, the relatively long bright line 113a is irradiated in a blinking manner, and then in step S14, the relative distance is not 100 m or more (that is, less than 100 m), and in step S33, it is determined that the pedestrian is outside the white line. If it is within the white line or on the road, the short bright line 113 is irradiated in step S35 so as to blink.
 図10(A)~図10(C)は、輝線の描画態様の一例を説明するための図である。上記した各描画態様では、自車両の進行方向の両側に白線が存在することを前提としていたが、白線が存在しない場合や天候等により検出不能な場合には、図10(A)に例示するように、白線に相当する長い輝線113bを描画することもできる。具体的には、画像処理部20によって検出される路面中央の白線110や、路面両側の端部輪郭121、122に基づいて、境界線演算部25により、自車両と歩行者110が安全に通れると考えられる境界を示す仮想線である境界線を演算する。境界線は、道路の延在方向に延びる仮想線であり、道路の幅ないし形状に基づいて求めることができる。 FIGS. 10(A) to 10(C) are diagrams for explaining an example of how bright lines are drawn. Each of the drawing modes described above assumes that there are white lines on both sides of the vehicle's direction of travel, but if the white line does not exist or cannot be detected due to weather, etc., the drawing mode is exemplified in FIG. It is also possible to draw a long bright line 113b corresponding to a white line. Specifically, based on the white line 110 at the center of the road surface detected by the image processing section 20 and the edge contours 121 and 122 on both sides of the road surface, the boundary line calculation section 25 determines whether the own vehicle and the pedestrian 110 can safely pass through. A boundary line, which is an imaginary line indicating the boundary that is considered to be, is calculated. The boundary line is a virtual line extending in the direction in which the road extends, and can be determined based on the width or shape of the road.
 例えば、白線110と端部輪郭121との間の距離である道路幅を検出し、この道路幅に基づいて端部輪郭121から一定距離離れた位置に境界線を設定することができる。そして、この求められた境界線に沿って長い輝線113bを描画することができる。この長い輝線113bは、白線に代替するものとして用いることができるものであり、本実施形態のその長さは例えば自車位置からハイビームが届く100mとしたが、100m以内とすることができるし、ロービームが届く範囲の40mとしてもよいし、直線距離が短い場合はその距離に応じてもっと短くしてもよい。 For example, it is possible to detect the road width, which is the distance between the white line 110 and the end contour 121, and set the boundary line at a position a certain distance away from the end contour 121 based on this road width. Then, a long bright line 113b can be drawn along this determined boundary line. This long bright line 113b can be used as a substitute for the white line, and the length in this embodiment is, for example, 100 m that the high beam can reach from the own vehicle position, but it can be within 100 m, It may be set to 40m, which is the range within which the low beam can reach, or if the straight-line distance is short, it may be made shorter depending on the distance.
 図10(A)に示すように、歩行者100が第1の相対距離(一例、100m)以下に存在した場合、白線の代替となる長い輝線113bの描画を行う。この描画により、運転手に遠方に歩行者が存在することを直感的に視認することができる。 As shown in FIG. 10(A), when the pedestrian 100 is present below the first relative distance (for example, 100 m), a long bright line 113b is drawn as a substitute for the white line. This drawing allows the driver to intuitively and visually recognize the presence of a pedestrian in the distance.
 また、図10(B)に示すように、歩行者100と自車両との相対距離がもっと短くなった場合(第2の相対距離、一例として40m)には、相対的に長い輝線113bに重ねて、歩行者100の位置に対応した相対的に短い輝線113cを照射することができる。この短い輝線113cは、長い輝線113b上に光って見えるため、歩行者の正確な位置を運転手は認識することができる。このとき、短い輝線113cは、長い輝線113bよりも照度が高くなるようにするか、あるいは長い輝線113bとは異なる色調にて照射されることが好ましい。短い輝線113cの視認性をより向上できるからである。なお、長い輝線113bと短い輝線113cの照度が同程度であったとしても、輝線113cの部分では照度がより高くなるので視認可能である。さらに、図10(C)に示すように、歩行者100の位置が白線に代替する輝線113b内に入った場合には、短い輝線113cを点滅させるようにして照射する。この点滅により、歩行者状況が変わり、歩行者が道路内に侵入したことを運転手が直感的に認識し、歩行者の行動に注意しつつ運転することができる。 Moreover, as shown in FIG. 10(B), when the relative distance between the pedestrian 100 and the own vehicle becomes shorter (the second relative distance, for example, 40 m), the bright line 113b overlaps with the relatively long bright line 113b. Therefore, a relatively short bright line 113c corresponding to the position of the pedestrian 100 can be irradiated. Since this short bright line 113c appears to shine above the long bright line 113b, the driver can recognize the exact position of the pedestrian. At this time, it is preferable that the short bright line 113c has a higher illumination intensity than the long bright line 113b, or is irradiated with a different color tone than the long bright line 113b. This is because the visibility of the short bright line 113c can be further improved. Note that even if the long bright line 113b and the short bright line 113c have approximately the same illuminance, the bright line 113c is visible because the bright line 113c has a higher illuminance. Furthermore, as shown in FIG. 10C, when the position of the pedestrian 100 is within the bright line 113b that replaces the white line, the short bright line 113c is illuminated in a blinking manner. This flashing allows the driver to intuitively recognize that the pedestrian situation changes, that a pedestrian has entered the road, and drive while paying attention to the pedestrian's actions.
 図11(A)~図11(B)は、輝線の描画態様の一例を説明するための図である。自車両の走行する場所にて雨天が発生している場合には路面に照射される輝線の視認性が低下する可能性があるので、上記した白線が存在しない場合と同様の描画態様を実施することが好ましい。雨天の発生については雨滴センサ12の出力に基づいて天候検出部22により検出される。例えば、所定値を超える雨量が検出されている場合には天候検出部22からその旨が路面描画制御部26へ出力される。 FIGS. 11(A) to 11(B) are diagrams for explaining an example of how bright lines are drawn. If it is raining where the vehicle is driving, the visibility of the bright line illuminated on the road surface may be reduced, so the same drawing mode as described above is applied when the white line does not exist. It is preferable. The occurrence of rainy weather is detected by the weather detection section 22 based on the output of the raindrop sensor 12. For example, if the amount of rain exceeding a predetermined value is detected, the weather detection section 22 outputs a notification to that effect to the road surface drawing control section 26.
 具体的には、図11(A)に例示するように、歩行者100が第1の相対距離(一例、100m)以下に存在し、白線外に存在した場合、白線111に重ねて長い輝線113bを照射したうえで、歩行者110の位置に対応した短い輝線113cを照射することができる。雨で中央白線110が見えにくい道路状況で、短い輝線114aを中央白線110に重ねて照射しても、運転手は短い輝線114aしか見えないため、短い輝線114aの相対的な位置が不明確になり、運転手は歩行者の位置を正確に認識することが難しくなる。本実施形態では、見えにくい中央白線110の代わりに長い輝線113aを照射しているため、短い輝線114aが長い輝線113a上で光って見えるため、短い輝線114aの相対的な位置が明確になり、運転手は歩行者の正確な位置を認識することが可能になる。さらに、図11(B)に示すように、歩行者100の位置が長い輝線113b内(車線111内)に入った場合には、短い輝線113cを点滅させるようにして照射する。短い輝線114aを点滅に切り替えれば、歩行者状況が変わり歩行者が道路内に侵入したことを運転手が直感的に認識し、歩行者の行動に注意しつつ運転することができる。このとき、短い輝線113cは、長い輝線113bよりも照度が高くなるようにするか、あるいは長い輝線113bとは異なる色調にて照射されることが好ましい。これにより、短い輝線113cの視認性をより向上できる。 Specifically, as illustrated in FIG. 11A, when the pedestrian 100 is present at a first relative distance (for example, 100 m) or less and is outside the white line, a long bright line 113b overlaps the white line 111. , and then a short bright line 113c corresponding to the position of the pedestrian 110 can be irradiated. In road conditions where the central white line 110 is difficult to see due to rain, even if the short bright line 114a is irradiated over the central white line 110, the driver can only see the short bright line 114a, making the relative position of the short bright line 114a unclear. This makes it difficult for drivers to accurately recognize the location of pedestrians. In this embodiment, since the long bright line 113a is irradiated instead of the hard-to-see central white line 110, the short bright line 114a appears to shine on the long bright line 113a, so the relative position of the short bright line 114a becomes clear. Drivers will be able to recognize the exact location of pedestrians. Furthermore, as shown in FIG. 11(B), when the pedestrian 100 enters the long bright line 113b (inside the lane 111), the short bright line 113c is illuminated in a blinking manner. By switching the short bright line 114a to blinking, the driver can intuitively recognize that the pedestrian situation has changed and a pedestrian has entered the road, and can drive while paying attention to the pedestrian's actions. At this time, it is preferable that the short bright line 113c has a higher illumination intensity than the long bright line 113b, or is irradiated with a different color tone than the long bright line 113b. Thereby, the visibility of the short bright line 113c can be further improved.
 図12(A)~図12(C)は、輝線の描画態様の一例を説明するための図である。歩行者が複数存在する場合には、それぞれの歩行者の位置に対応して短い輝線を照射することができる。具体的には、図12(A)に例示するように、複数の歩行者100a、100bがそれぞれ白線111の外側に存在する場合には、歩行者100a、100bの各位置に対応した短い輝線113d、113eが照射される。これにより、複数の歩行者の正確な位置を運転手は認識することができる。 FIGS. 12(A) to 12(C) are diagrams for explaining an example of how bright lines are drawn. When there are multiple pedestrians, a short bright line can be irradiated corresponding to the position of each pedestrian. Specifically, as illustrated in FIG. 12(A), when a plurality of pedestrians 100a and 100b are present outside the white line 111, a short bright line 113d corresponding to each position of the pedestrians 100a and 100b is displayed. , 113e are irradiated. This allows the driver to recognize the exact locations of multiple pedestrians.
 また、図12(B)に例示するように、一方の歩行者100aが白線111の内側へ入った場合には、この歩行者100aに対応する輝線113dを点滅させるようにして照射する。同様に、図12(C)に例示するように、他方の歩行者100bが白線111の内側へ入った場合には、この歩行者100bに対応する輝線113eを点滅させるようにして照射する。図示を省略するが各歩行者100a、100bのいずれも白線111の内側に入った場合には各輝線113d、113eが点滅照射される。これにより、中央白線100上で光る短い輝線114b、114cが複数になることにより、複数人の歩行者が前方の対向車線側の白線外(歩道など)に存在していることを運転手は認識できる。さらに、一部の短い輝線114bまたは輝線114cが点滅に切り替わった場合、運転手は歩行者が道路内に侵入したことを直感的に認識できるため、複数の歩行者全員から点滅する短い輝線に対応した歩行者の方に注意を集中しながら運転すればよいため、歩行者と自車両が接近した時の運転対応もしやすくなる。 Further, as illustrated in FIG. 12(B), when one pedestrian 100a enters inside the white line 111, the bright line 113d corresponding to this pedestrian 100a is illuminated in a blinking manner. Similarly, as illustrated in FIG. 12C, when the other pedestrian 100b enters inside the white line 111, the bright line 113e corresponding to this pedestrian 100b is illuminated in a blinking manner. Although not shown, when each of the pedestrians 100a and 100b enters inside the white line 111, each of the bright lines 113d and 113e is flashed. As a result, there are multiple short bright lines 114b and 114c that shine on the center white line 100, and the driver recognizes that multiple pedestrians are outside the white line (on the sidewalk, etc.) on the opposite lane ahead. can. Furthermore, if some of the short bright lines 114b or 114c switch to flashing, the driver can intuitively recognize that a pedestrian has entered the road, so the driver can respond to the short bright lines flashing from all the pedestrians. This makes it easier for drivers to respond when a pedestrian approaches their vehicle.
 なお、詳細な説明を省略するがいずれの描画態様についても対向車線側に歩行者100が存在する場合であっても同様にして実施することができる。 Note that, although a detailed explanation will be omitted, any drawing mode can be implemented in the same manner even when the pedestrian 100 is present on the oncoming lane side.
 以上のような実施形態によれば、中央白線上、または長い輝線上に、短い輝線を重ねて照射することにより、短い輝線の相対的な位置が明確に運転手は認識できるため、歩行者の状況(正確な位置や距離感や道路内への侵入有無)を視認性よく把握することができる路面描画システムが得られる。具体的には、道路脇の白線に沿った直線状の輝線によって歩行者の存在やその正確な位置が運転者へ伝えられるので、T字等の複雑な光を照射する場合よりも運転者の注目すべき範囲がより絞り込まれ、歩行者の位置が明確に分かりやすくなる。また、運転者の注目すべき範囲がより絞り込まれることで運転者の視線移動も少なくなる。これは歩行者が遠方に存在する場合に特に顕著となる。これらにより、歩行者の状況を視認性よく把握することが可能となる。 According to the embodiments described above, by irradiating the short bright lines overlappingly on the central white line or the long bright lines, the driver can clearly recognize the relative positions of the short bright lines. It is possible to obtain a road surface drawing system that can grasp the situation (accurate position, sense of distance, presence or absence of intrusion into the road) with good visibility. Specifically, the linear bright line along the white line on the side of the road conveys the presence of pedestrians and their exact location to the driver, so it is easier for drivers to understand than when irradiating complex lights such as T-shaped lights. The area to be focused on is further narrowed down, and the location of the pedestrian becomes clearer and easier to understand. Furthermore, by narrowing down the range to which the driver should pay attention, the driver's line of sight movement is also reduced. This is particularly noticeable when pedestrians are far away. These make it possible to grasp the situation of pedestrians with good visibility.
 また、本実施形態では白線に対する歩行者の位置(白線内/白線外)に応じて輝線の描画態様を連続照射から点滅照射に切り替えているので、歩行者の状況変化をより把握しやすい。さらに、天候の悪い場合や白線が存在しない場合(検出不能の場合を含む)においても輝線の描画態様を切り替えているので、歩行者の状況変化をより把握しやすい。また、歩行者の足下に輝線が描画されることになるので、例えばスマートフォンを操作するために下を向いている歩行者などに対しても注意喚起を図りやすいという利点もある。 Furthermore, in this embodiment, the bright line drawing mode is switched from continuous irradiation to flashing irradiation according to the pedestrian's position with respect to the white line (inside the white line/outside the white line), making it easier to understand changes in the pedestrian's situation. Furthermore, since the bright line drawing mode is switched even when the weather is bad or when there are no white lines (including when they are undetectable), it is easier to understand changes in the pedestrian's situation. Furthermore, since bright lines are drawn under the feet of pedestrians, there is also the advantage that it is easy to alert pedestrians who are looking down to operate a smartphone, for example.
 なお、本開示は上記した実施形態の内容に限定されるものではなく、本開示の要旨の範囲内において種々に変形して実施をすることが可能である。 Note that the present disclosure is not limited to the content of the embodiments described above, and can be implemented with various modifications within the scope of the gist of the present disclosure.
 本開示は、以下に付記する特徴を有する。 The present disclosure has the features described below.
(付記1)
 車両の前方空間を撮影するカメラと、
 前記カメラによって得られる画像データに基づいて前記前方空間に存在する歩行者を検出するとともに前記車両の前方の道路の白線を検出し、当該各検出結果に基づいて前記道路に光を照射するための制御を行うコントローラと、
 前記コントローラによる制御を受けて前記道路に光を照射するランプユニットと、
を含み、
 前記コントローラは、前記歩行者が存在し、かつ当該歩行者と前記車両との相対距離が閾値以下の場合に、前記歩行者の位置に対応する前記道路上の位置に第1輝線が照射されるように前記ランプユニットを制御するものであり、
 前記第1輝線は、前記道路における前記車両の走行車線又は対向車線の端部に設けられている前記白線の延在方向に沿った直線状の光であって当該白線に重ねて照射される、
 路面描画システム。
(付記2)
 前記コントローラは、前記歩行者の位置が前記白線よりも前記道路の外側にある場合には前記第1輝線が連続照射され、前記歩行者の位置が前記白線よりも前記道路の内側にある場合には前記第1輝線が点滅照射されるように前記ランプユニットを制御する、
 付記1に記載の路面描画システム。
(付記3)
 前記コントローラは、前記前方空間に前記歩行者が存在し、かつ前記歩行者と前記車両との前記相対距離が前記閾値より大きい場合に、前記第1輝線よりも長い直線状の光である第2輝線を前記白線に重ねて照射させるように前記ランプユニットを制御する、
 付記1又は2に記載の路面描画システム。
(付記4)
 前記コントローラは、前記歩行者の位置が前記白線よりも前記道路の外側にある場合には前記第2輝線が連続照射され、前記歩行者の位置が前記白線よりも前記道路の内側にある場合には前記第2輝線が点滅照射されるように前記ランプユニットを制御する、
 付記3に記載の路面描画システム。
(付記5)
 前記第1輝線は、前記歩行者の位置の移動に伴って照射位置が変更される、
 付記1~4の何れかに記載の路面描画システム。
(付記6)
 雨滴センサを更に備え、
 前記コントローラは、前記雨滴センサの出力に基づき前記前方空間が雨天であることを検出した場合には、前記歩行者と前記車両との前記相対距離が前記閾値以下であっても前記第2輝線の照射を継続させるとともに、当該第2輝線に重ねて前記第1輝線を照射させるように前記ランプユニットを制御する、
 付記3又は4に記載の路面描画システム。
(付記7)
 前記第1輝線は、前記第2輝線よりも高い照度で照射され、及び/又は前記第2輝線とは異なる色調で照射される、
 付記6に記載の路面描画システム。
(付記8)
 前記コントローラは、前記白線を検出できない場合には、前記道路の幅ないし形状に基づいて、前記道路の延在方向に沿って延びる仮想線であって前記車両の走行車線又は対向車線の端部側に配置されるものである境界線を演算し、前記歩行者と前記車両との前記相対距離に関わらずに当該境界線に沿って前記第2輝線を照射させるとともに、当該第2輝線に重ねて前記第1輝線を照射させるように前記ランプユニットを制御する、
 付記3~7の何れかに記載の路面描画システム。
(付記9)
 前記第1輝線は、前記第2輝線よりも高い照度で照射され、及び/又は前記第2輝線とは異なる色調で照射される、
 付記8に記載の路面描画システム。
(付記10)
 前記コントローラは、複数の前記歩行者が存在する場合には、各前記歩行者と前記車両との相対距離に関わらず、各前記歩行者の位置に対応する前記道路上の位置のそれぞれに前記第1輝線が照射されるように前記ランプユニットを制御する、
 付記1~9の何れかに記載の路面描画システム。
(付記11)
 複数の前記第1輝線に対応する歩行者のうち、少なくとも1つの歩行者の位置が前記白線よりも前記道路の内側にある場合には、前記道路の内側にいる前記歩行者に対応した前記第1輝線が点滅照射されるように前記ランプユニットを制御する、
 請求項10に記載の路面描画システム。
(Additional note 1)
A camera that photographs the space in front of the vehicle,
Detecting pedestrians existing in the space ahead based on image data obtained by the camera, detecting white lines on the road in front of the vehicle, and irradiating light on the road based on the respective detection results. A controller that performs control;
a lamp unit that irradiates the road with light under the control of the controller;
including;
The controller is configured to irradiate a first bright line to a position on the road corresponding to a position of the pedestrian when the pedestrian is present and a relative distance between the pedestrian and the vehicle is less than or equal to a threshold value. The lamp unit is controlled as follows.
The first bright line is linear light along the extending direction of the white line provided at the end of the lane in which the vehicle is traveling or the oncoming lane on the road, and is irradiated to overlap the white line.
Road drawing system.
(Additional note 2)
The controller continuously irradiates the first bright line when the pedestrian's position is on the outside of the road rather than the white line, and when the pedestrian's position is on the inner side of the road than the white line. controls the lamp unit so that the first bright line is illuminated in a blinking manner;
The road surface drawing system described in Appendix 1.
(Additional note 3)
When the pedestrian is present in the forward space and the relative distance between the pedestrian and the vehicle is greater than the threshold, the controller controls the controller to generate a second line of light that is a straight line of light that is longer than the first bright line. controlling the lamp unit so as to irradiate a bright line overlapping the white line;
The road surface drawing system according to appendix 1 or 2.
(Additional note 4)
The controller is configured to continuously irradiate the second bright line when the pedestrian's position is on the outside of the road rather than the white line, and to continuously irradiate the second bright line when the pedestrian's position is on the inner side of the road than the white line. controls the lamp unit so that the second bright line is illuminated in a blinking manner;
The road surface drawing system described in Appendix 3.
(Appendix 5)
The irradiation position of the first bright line is changed as the position of the pedestrian moves;
The road surface drawing system described in any one of Supplementary Notes 1 to 4.
(Appendix 6)
Also equipped with a raindrop sensor,
When the controller detects that the space in front is rainy based on the output of the raindrop sensor, the controller controls the second bright line even if the relative distance between the pedestrian and the vehicle is less than or equal to the threshold value. controlling the lamp unit to continue irradiation and to irradiate the first bright line overlapping the second bright line;
The road surface drawing system according to appendix 3 or 4.
(Appendix 7)
The first bright line is irradiated with a higher illuminance than the second bright line, and/or is irradiated with a different color tone than the second bright line.
The road surface drawing system described in Appendix 6.
(Appendix 8)
If the white line cannot be detected, the controller detects a virtual line extending along the direction of extension of the road, based on the width or shape of the road, on the edge side of the lane in which the vehicle is traveling or the oncoming lane. calculates a boundary line to be placed in the vehicle, and irradiates the second bright line along the boundary line regardless of the relative distance between the pedestrian and the vehicle, and superimposes the second bright line on the second bright line. controlling the lamp unit to irradiate the first bright line;
The road surface drawing system described in any one of Supplementary Notes 3 to 7.
(Appendix 9)
The first bright line is irradiated with a higher illuminance than the second bright line, and/or is irradiated with a different color tone than the second bright line.
The road surface drawing system described in Appendix 8.
(Appendix 10)
When there is a plurality of pedestrians, the controller is configured to control the controller to apply the first signal to each position on the road corresponding to the position of each pedestrian, regardless of the relative distance between each pedestrian and the vehicle. controlling the lamp unit so that one bright line is irradiated;
The road surface drawing system according to any one of Supplementary Notes 1 to 9.
(Appendix 11)
When the position of at least one pedestrian among the plurality of pedestrians corresponding to the first bright line is inside the road from the white line, the first bright line corresponding to the pedestrian who is inside the road controlling the lamp unit so that one bright line is flashed;
The road surface drawing system according to claim 10.
 1:路面描画システム、10:コントローラ、11:カメラ、12:雨滴センサ、13:車速センサ、14:自車位置データ、20:画像処理部、21:自車位置検出部、22:天候検出部、23:相対位置演算部、24:相対距離演算部、25:境界線演算部、26:路面描画制御部、30L、30R:ランプユニット、31:ドライバ、32:LEDアレイ、100:歩行者、110、111、112:白線、113、114:輝線 1: Road drawing system, 10: Controller, 11: Camera, 12: Raindrop sensor, 13: Vehicle speed sensor, 14: Own vehicle position data, 20: Image processing unit, 21: Own vehicle position detection unit, 22: Weather detection unit , 23: relative position calculation section, 24: relative distance calculation section, 25: boundary line calculation section, 26: road surface drawing control section, 30L, 30R: lamp unit, 31: driver, 32: LED array, 100: pedestrian, 110, 111, 112: White line, 113, 114: Bright line

Claims (11)

  1.  車両の前方空間を撮影するカメラと、
     前記カメラによって得られる画像データに基づいて前記前方空間に存在する歩行者を検出するとともに前記車両の前方の道路の白線を検出し、当該各検出結果に基づいて前記道路に光を照射するための制御を行うコントローラと、
     前記コントローラによる制御を受けて前記道路に光を照射するランプユニットと、
    を含み、
     前記コントローラは、前記歩行者が存在し、かつ当該歩行者と前記車両との相対距離が閾値以下の場合に、前記歩行者の位置に対応する前記道路上の位置に第1輝線が照射されるように前記ランプユニットを制御するものであり、
     前記第1輝線は、前記道路における前記車両の走行車線又は対向車線の端部に設けられている前記白線の延在方向に沿った直線状の光であって当該白線に重ねて照射される、
     路面描画システム。
    A camera that photographs the space in front of the vehicle,
    Detecting pedestrians existing in the space ahead based on image data obtained by the camera, detecting white lines on the road in front of the vehicle, and irradiating light on the road based on the respective detection results. A controller that performs control;
    a lamp unit that irradiates the road with light under the control of the controller;
    including;
    The controller is configured to irradiate a first bright line to a position on the road corresponding to a position of the pedestrian when the pedestrian is present and a relative distance between the pedestrian and the vehicle is less than or equal to a threshold value. The lamp unit is controlled as follows.
    The first bright line is linear light along the extending direction of the white line provided at the end of the lane in which the vehicle is traveling or the oncoming lane on the road, and is irradiated to overlap the white line.
    Road drawing system.
  2.  前記コントローラは、前記歩行者の位置が前記白線よりも前記道路の外側にある場合には前記第1輝線が連続照射され、前記歩行者の位置が前記白線よりも前記道路の内側にある場合には前記第1輝線が点滅照射されるように前記ランプユニットを制御する、
     請求項1に記載の路面描画システム。
    The controller continuously irradiates the first bright line when the pedestrian's position is on the outside of the road rather than the white line, and when the pedestrian's position is on the inner side of the road than the white line. controls the lamp unit so that the first bright line is illuminated in a blinking manner;
    The road surface drawing system according to claim 1.
  3.  前記コントローラは、前記前方空間に前記歩行者が存在し、かつ前記歩行者と前記車両との前記相対距離が前記閾値より大きい場合に、前記第1輝線よりも長い直線状の光である第2輝線を前記白線に重ねて照射させるように前記ランプユニットを制御する、
     請求項1に記載の路面描画システム。
    When the pedestrian is present in the forward space and the relative distance between the pedestrian and the vehicle is greater than the threshold, the controller controls the controller to generate a second line of light that is a straight line of light that is longer than the first bright line. controlling the lamp unit so as to irradiate a bright line overlapping the white line;
    The road surface drawing system according to claim 1.
  4.  前記コントローラは、前記歩行者の位置が前記白線よりも前記道路の外側にある場合には前記第2輝線が連続照射され、前記歩行者の位置が前記白線よりも前記道路の内側にある場合には前記第2輝線が点滅照射されるように前記ランプユニットを制御する、
     請求項3に記載の路面描画システム。
    The controller is configured to continuously irradiate the second bright line when the pedestrian's position is on the outside of the road rather than the white line, and to continuously irradiate the second bright line when the pedestrian's position is on the inner side of the road than the white line. controls the lamp unit so that the second bright line is illuminated in a blinking manner;
    The road surface drawing system according to claim 3.
  5.  前記第1輝線は、前記歩行者の位置の移動に伴って照射位置が変更される、
     請求項1に記載の路面描画システム。
    The irradiation position of the first bright line is changed as the position of the pedestrian moves;
    The road surface drawing system according to claim 1.
  6.  雨滴センサを更に備え、
     前記コントローラは、前記雨滴センサの出力に基づき前記前方空間が雨天であることを検出した場合には、前記歩行者と前記車両との前記相対距離が前記閾値以下であっても前記第2輝線の照射を継続させるとともに、当該第2輝線に重ねて前記第1輝線を照射させるように前記ランプユニットを制御する、
     請求項3に記載の路面描画システム。
    Also equipped with a raindrop sensor,
    When the controller detects that the space in front is rainy based on the output of the raindrop sensor, the controller controls the second bright line even if the relative distance between the pedestrian and the vehicle is less than or equal to the threshold value. controlling the lamp unit to continue irradiation and to irradiate the first bright line overlapping the second bright line;
    The road surface drawing system according to claim 3.
  7.  前記第1輝線は、前記第2輝線よりも高い照度で照射され、及び/又は前記第2輝線とは異なる色調で照射される、
     請求項6に記載の路面描画システム。
    The first bright line is irradiated with a higher illuminance than the second bright line, and/or is irradiated with a different color tone than the second bright line.
    The road surface drawing system according to claim 6.
  8.  前記コントローラは、前記白線を検出できない場合には、前記道路の幅ないし形状に基づいて、前記道路の延在方向に沿って延びる仮想線であって前記車両の走行車線又は対向車線の端部側に配置されるものである境界線を演算し、前記歩行者と前記車両との前記相対距離に関わらずに当該境界線に沿って前記第2輝線を照射させるとともに、当該第2輝線に重ねて前記第1輝線を照射させるように前記ランプユニットを制御する、
     請求項3に記載の路面描画システム。
    If the white line cannot be detected, the controller detects a virtual line extending along the direction of extension of the road, based on the width or shape of the road, on the edge side of the lane in which the vehicle is traveling or the oncoming lane. calculates a boundary line to be placed in the vehicle, and irradiates the second bright line along the boundary line regardless of the relative distance between the pedestrian and the vehicle, and superimposes the second bright line on the second bright line. controlling the lamp unit to irradiate the first bright line;
    The road surface drawing system according to claim 3.
  9.  前記第1輝線は、前記第2輝線よりも高い照度で照射され、及び/又は前記第2輝線とは異なる色調で照射される、
     請求項8に記載の路面描画システム。
    The first bright line is irradiated with a higher illuminance than the second bright line, and/or is irradiated with a different color tone than the second bright line.
    The road surface drawing system according to claim 8.
  10.  前記コントローラは、複数の前記歩行者が存在する場合には、各前記歩行者と前記車両との相対距離に関わらず、各前記歩行者の位置に対応する前記道路上の位置のそれぞれに前記第1輝線が照射されるように前記ランプユニットを制御する、
     請求項1に記載の路面描画システム。
    When there is a plurality of pedestrians, the controller is configured to control the controller to apply the first signal to each position on the road corresponding to the position of each pedestrian, regardless of the relative distance between each pedestrian and the vehicle. controlling the lamp unit so that one bright line is irradiated;
    The road surface drawing system according to claim 1.
  11.  複数の前記第1輝線に対応する歩行者のうち、少なくとも1つの歩行者の位置が前記白線よりも前記道路の内側にある場合には、前記道路の内側にいる前記歩行者に対応した前記第1輝線が点滅照射されるように前記ランプユニットを制御する、
     請求項10に記載の路面描画システム。 
    When the position of at least one pedestrian among the plurality of pedestrians corresponding to the first bright line is inside the road from the white line, the first bright line corresponding to the pedestrian who is inside the road controlling the lamp unit so that one bright line is flashed;
    The road surface drawing system according to claim 10.
PCT/JP2023/025606 2022-07-22 2023-07-11 Road drawing system WO2024018953A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022116975A JP2024014273A (en) 2022-07-22 2022-07-22 Road drawing system
JP2022-116975 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024018953A1 true WO2024018953A1 (en) 2024-01-25

Family

ID=89617919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025606 WO2024018953A1 (en) 2022-07-22 2023-07-11 Road drawing system

Country Status (2)

Country Link
JP (1) JP2024014273A (en)
WO (1) WO2024018953A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206684A (en) * 2011-03-30 2012-10-25 Koito Mfg Co Ltd Vehicular illuminating lamp device
JP2015003628A (en) * 2013-06-21 2015-01-08 株式会社小糸製作所 Lamp system for vehicle
JP2018058412A (en) * 2016-10-03 2018-04-12 株式会社小糸製作所 Vehicle lamp
WO2020067113A1 (en) * 2018-09-25 2020-04-02 株式会社小糸製作所 Lamp fitting system and vehicle lamp fitting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206684A (en) * 2011-03-30 2012-10-25 Koito Mfg Co Ltd Vehicular illuminating lamp device
JP2015003628A (en) * 2013-06-21 2015-01-08 株式会社小糸製作所 Lamp system for vehicle
JP2018058412A (en) * 2016-10-03 2018-04-12 株式会社小糸製作所 Vehicle lamp
WO2020067113A1 (en) * 2018-09-25 2020-04-02 株式会社小糸製作所 Lamp fitting system and vehicle lamp fitting

Also Published As

Publication number Publication date
JP2024014273A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
US6960005B2 (en) Vehicle headlamp apparatus
US10618458B2 (en) Vehicle headlight control device
JP5356746B2 (en) Visibility disturbance detection process, detection apparatus, and computer program therefor
CN112770939A (en) Lamp system and vehicle lamp
CN108604410B (en) Information display device and information display method
CN105593061B (en) System and method for controlling exterior vehicle lights on fast traffic lane
US20100235040A1 (en) Illumination apparatus for vehicle
US9821704B2 (en) Device and method for controlling a headlamp of a motor vehicle
JP4999652B2 (en) Vehicle lamp control system
CN110869940B (en) Method for controlling a pixel headlight of a motor vehicle located on a roadway
JP7352341B2 (en) automotive lighting
JP2008195335A (en) Lamp lighting control system and lamp lighting control method
JP4534871B2 (en) Vehicle lighting device
JP7348819B2 (en) Vehicle driving support system
JP4999653B2 (en) Vehicle lamp control system
WO2024018953A1 (en) Road drawing system
US11794636B2 (en) Headlamp and headlamp control system
WO2013137324A1 (en) Vehicle-mounted illumination device
KR20130136107A (en) An automobile
JP2015232846A (en) Front situation determination device
JP2024014291A (en) Road drawing system
JPH05109305A (en) Light color variable lighting equipment
WO2022153754A1 (en) Headlight control device, headlight control method, and headlight system
WO2024004498A1 (en) Vehicle lighting system
US20240051455A1 (en) Method for adjusting vehicle lighting when driving through a building site, and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842878

Country of ref document: EP

Kind code of ref document: A1