WO2024018937A1 - Joining method and joining apparatus - Google Patents

Joining method and joining apparatus Download PDF

Info

Publication number
WO2024018937A1
WO2024018937A1 PCT/JP2023/025386 JP2023025386W WO2024018937A1 WO 2024018937 A1 WO2024018937 A1 WO 2024018937A1 JP 2023025386 W JP2023025386 W JP 2023025386W WO 2024018937 A1 WO2024018937 A1 WO 2024018937A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
chip
substrate
alignment marks
welded
Prior art date
Application number
PCT/JP2023/025386
Other languages
French (fr)
Japanese (ja)
Inventor
朗 山内
Original Assignee
ボンドテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボンドテック株式会社 filed Critical ボンドテック株式会社
Publication of WO2024018937A1 publication Critical patent/WO2024018937A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation

Definitions

  • the present invention relates to a bonding method and a bonding device.
  • the present invention has been made in view of the above reasons, and an object of the present invention is to provide a joining method and a joining apparatus that can join objects to be joined with high positional accuracy.
  • the joining method includes: A joining method for joining a first workpiece and a second workpiece vibrating relative to the first workpiece, the method comprising: a vibration waveform identification step of identifying a vibration waveform of vibration of the second workpiece relative to the first workpiece based on a time course of a positional shift amount of the second workpiece relative to the first workpiece; a timing estimation step of estimating a target timing at which a positional deviation amount of the second workpiece relative to the first workpiece becomes a target amount based on the vibration waveform; and a contacting step of bringing the second object to be joined into contact with the first object to be welded based on the estimated target timing.
  • the joining device seen from another point of view is as follows: A welding device for joining a first object to be welded and a second object to be welded, a first object holding part that holds the first object to be bonded; a second workpiece holding part that vibrates with respect to the first workpiece holding part and holds the second workpiece; At least one of the first workpiece holding part and the second workpiece holding part is moved in the first direction in which the first workpiece holding part and the second workpiece holding part approach each other, or in the first direction.
  • a holding part drive unit that moves the first workpiece holding part and the second workpiece holding part in a second direction where they are separated;
  • the first object to be welded is moved in a direction orthogonal to the first direction and the second direction at a preset time interval.
  • the amount of positional deviation with respect to the second object to be welded is repeatedly measured, the vibration waveform of the vibration of the second object to be welded relative to the first object is determined from the time course of the amount of positional deviation, and the vibration waveform is determined based on the vibration waveform.
  • the target timing at which the amount of positional deviation of the second workpiece with respect to the first workpiece becomes the target amount is estimated, and based on the estimated target timing, the first workpiece holding part and the first workpiece a control unit that controls the holding unit drive unit to move at least one of the second workpiece holding unit in the first direction to bring the second workpiece into contact with the first workpiece; Equipped with.
  • the vibration waveform of the vibration of the second workpiece relative to the first workpiece is specified from the time course of the displacement amount of the second workpiece relative to the first workpiece, and the vibration waveform is applied to the identified vibration waveform. Based on this, a target timing at which the amount of positional deviation of the second object to be welded relative to the first object to be welded reaches the target amount is estimated. Then, the second object to be welded is brought into contact with the first object to be welded based on the estimated target timing. Thereby, even if the second object to be welded vibrates relative to the first object, the second object to be welded can be joined to the first object with high positional accuracy.
  • FIG. 1 is a schematic configuration diagram of a bonding apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic perspective view showing the vicinity of the stage and head according to the first embodiment.
  • FIG. 3 is a diagram illustrating a method of finely adjusting the head according to the first embodiment.
  • 2 is a schematic plan view of a stage and a head according to Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view of a stage and a head according to Embodiment 1.
  • FIG. 3 is a diagram showing two alignment marks provided on one of two substrates to be joined.
  • FIG. 3 is a diagram showing two alignment marks provided on the other of two substrates to be joined.
  • FIG. 3 is a schematic diagram showing a photographed image of an alignment mark.
  • FIG. 3 is a schematic diagram showing a state in which alignment marks are shifted from each other.
  • 1 is a schematic diagram of a part of a joining apparatus according to Embodiment 1.
  • FIG. 3 is a flowchart showing the flow of a joining method executed by the joining apparatus according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing a state in which a substrate is held by a stage and a head according to the first embodiment.
  • FIG. 3 is a diagram showing changes in the amount of positional deviation of the head with respect to the stage according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing a state in which the central portions of the joint surfaces of the substrates held by the stage and head are in contact with each other according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing how substrates held by a stage and a head are brought closer to each other according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing a state in which peripheral portions of joint surfaces of substrates held by a stage and a head are in contact with each other according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing how the head according to the first embodiment is removed from the stage.
  • FIG. 3 is a diagram showing the frequency dependence of the vibration transmissibility of the pedestal according to the first embodiment.
  • FIG. 3 is a schematic diagram of a part of a bonding apparatus according to Comparative Example 1.
  • FIG. 7 is a plan view of a chip holding section according to Embodiment 2;
  • FIG. 3 is a cross-sectional view showing a part of a chip transport device according to a second embodiment.
  • FIG. 2 is a schematic configuration diagram of a bonding apparatus according to a second embodiment.
  • FIG. 3 is a cross-sectional view of a head according to a second embodiment.
  • 7 is a plan view of a head according to Embodiment 2.
  • FIG. FIG. 7 is a diagram showing the positional relationship between the alignment mark of the chip and the hollow part of the head according to the second embodiment.
  • FIG. 3 is a schematic perspective view showing a part of a bonding part according to a second embodiment. 17 is a cross-sectional view taken along line AA in FIG. 16 of the joining device according to Embodiment 2.
  • FIG. FIG. 3 is a diagram showing alignment marks provided on a chip.
  • FIG. 3 is a diagram showing alignment marks provided on a substrate.
  • FIG. 3 is a diagram showing relative positional deviations of alignment marks.
  • FIG. 7 is a diagram showing details of a head according to Embodiment 2.
  • FIG. 3 is a plan view of a stage unit according to a second embodiment.
  • FIG. 3 is a side view of a stage unit according to a second embodiment.
  • FIG. 7 is a schematic side view showing how chips are supplied from a chip supply section in the chip bonding system according to the second embodiment.
  • FIG. 7 is a schematic side view showing how chips are transferred from a chip transport device to a head in a chip bonding system according to a second embodiment.
  • 7 is a flowchart illustrating an example of the flow of chip bonding processing executed by the chip bonding system according to Embodiment 2.
  • FIG. 7 is a diagram for explaining the operation of the chip bonding system according to the second embodiment, and is a diagram showing a state in which the chip is separated from the substrate.
  • FIG. 7 is a diagram for explaining the operation of the chip bonding system according to Embodiment 2, and is a diagram showing a state in which a chip is in contact with a substrate.
  • FIG. 7 is a diagram for explaining the operation of the chip bonding system according to the second embodiment, and is a diagram showing how the chip is separated from the substrate.
  • FIG. 7 is an explanatory diagram of the operation of the chip bonding system according to Comparative Example 2, and is a diagram showing how one set of two sets of alignment marks is imaged.
  • FIG. 7 is an explanatory diagram of the operation of the chip bonding system according to Comparative Example 2, and is a diagram showing how the other group is imaged.
  • FIG. 7 is a cross-sectional view of a head according to a modification.
  • FIG. 7 is a plan view of a head according to a modified example.
  • FIG. 7 is a diagram for explaining the operation of a head according to a modification.
  • FIG. 7 is a cross-sectional view of a head according to a modification.
  • the bonding apparatus 1 bonds the substrates W1 and W2 by bringing the bonding surfaces of the substrates whose bonding surfaces have been activated into contact with each other.
  • the bonding apparatus 1 according to the present embodiment includes a chamber 120, a stage 401, a head 402, a stage drive section 403, a head drive section 404, substrate heating sections 481 and 482, an imaging unit 500, and a vibration isolation device. unit 160.
  • the vibration transmitted through the floor F and the vibration generated in the bonding apparatus are generally transmitted to at least one of the head 402 and the stage 401, the head 402 that holds the substrate W2 and the stage that holds the substrate W1 401 vibrates relatively. Therefore, the substrates held by the head 402 and the stage 401 vibrate relative to each other.
  • the bonding apparatus 1 according to the present embodiment the amount of positional deviation between the substrates W1 and W2 due to the aforementioned vibration when bonding the substrates W1 and W2 held by the head 402 and the stage 401, respectively, is This is to reduce the impact of Examples of the substrates W1 and W2 include a Si substrate, a glass substrate, and a sapphire substrate.
  • the bonding apparatus 1 also includes a distance measuring section 490 that measures the distance between the stage 401 and the head 402. Further, the bonding device 1 is supported by a pedestal 41 placed on the floor F at the location where the bonding device 1 is installed.
  • the pedestal 41 has a vibration isolating function that suppresses the transmission of vibrations transmitted through the floor F to the bonding device 1, and is, for example, an earthquake-resistant pedestal provided with a grating on the vertically upper side.
  • the ⁇ Z direction in FIG. 1 will be described as the vertical direction
  • the XY direction will be described as the horizontal direction.
  • the chamber 120 maintains the area where the substrates W1 and W2 are placed at a degree of vacuum equal to or higher than a preset reference degree of vacuum.
  • the chamber 120 is connected to a vacuum pump 121a via an exhaust pipe 121b and an exhaust valve 121c.
  • the exhaust valve 121c is opened and the vacuum pump 121a is operated, the gas inside the chamber 120 is exhausted to the outside of the chamber 120 through the exhaust pipe 121b, and the inside of the chamber 120 is maintained in a reduced pressure atmosphere.
  • the air pressure (degree of vacuum) in the chamber 120 can be adjusted by varying the opening/closing amount of the exhaust valve 121c to adjust the exhaust amount.
  • a window portion 120a is provided in a part of the chamber 120, which is used by the imaging unit 500 to measure the relative position between the substrates W1 and W2.
  • the atmospheric pressure inside the chamber 120 can be set within a range of 1 Pa or more and 1000 Pa or less.
  • the stage drive unit 403 is a holding unit drive unit that can move the stage 401 in the XY directions and rotate it around the Z axis.
  • the head drive unit 404 includes an elevation drive unit 406 that moves the head 402 vertically upward or downward (see arrow AR1 in FIG. 1), an XY direction drive unit 405 that moves the head 402 in the XY directions, and an XY direction drive unit 405 that moves the head 402 in the It has a rotation drive unit 407 that rotates in the rotation direction around the Z axis (see arrow AR2 in FIG. 3).
  • the XY direction drive unit 405 and the rotation drive unit 407 constitute a holding unit drive unit that moves the head 402 in a direction perpendicular to the vertical direction (XY direction, rotation direction around the Z axis).
  • the head driving unit 404 includes a piezo actuator 411 for adjusting the inclination of the head 402 with respect to the stage 401, and a pressure sensor 412 for measuring the pressure applied to the head 402.
  • the XY direction drive section 405 and the rotation drive section 407 move the head 402 relative to the stage 401 in the X direction, the Y direction, and the rotation direction around the Z axis, thereby moving the substrate W1 held on the stage 401. It becomes possible to align the substrate W2 held by the head 402 with the substrate W2.
  • the elevating drive unit 406 moves the head 402 in the vertical direction to bring the stage 401 and the head 402 closer to each other or to move the head 402 away from the stage 401.
  • the lift drive unit 406 moves the head 402 vertically downward, the substrate W1 held on the stage 401 and the substrate W2 held on the head 402 come into contact.
  • the elevating drive unit 406 applies a driving force to the head 402 in a direction toward the stage 401, the substrate W2 is pressed against the substrate W1.
  • the elevating drive unit 406 is provided with a pressure sensor 408 that measures the driving force that the elevating drive unit 406 exerts on the head 402 in a direction toward the stage 401 . From the measurement value of the pressure sensor 408, the pressure acting on the joint surface of the substrates W1 and W2 when the substrate W2 is pressed against the substrate W1 by the lifting drive unit 406 can be detected.
  • the pressure sensor 408 is composed of, for example, a load cell.
  • the three piezo actuators 411 and the three pressure sensors 412 are arranged between the head 402 and the XY direction drive section 405.
  • the three piezo actuators 411 are arranged at three positions on the upper surface of the head 402 that are not on the same straight line, and at three positions arranged at approximately equal intervals along the circumferential direction of the head 402 on the periphery of the upper surface of the head 402, which is approximately circular in plan view. This is an attitude adjustment unit that is fixed in position.
  • the three pressure sensors 412 each connect the upper end of the piezo actuator 411 and the lower surface of the XY direction drive unit 405.
  • Each of the three piezo actuators 411 can be expanded and contracted in the vertical direction. By expanding and contracting the three piezo actuators 411, the inclination of the head 402 around the X-axis and the Y-axis and the vertical position of the head 402 are finely adjusted. For example, as shown by the broken line in FIG. 2B, when the head 402 is tilted with respect to the stage 401, one of the three piezo actuators 411 is extended (see arrow AR3 in FIG. 2B) to adjust the posture of the head 402. By making fine adjustments, the lower surface of the head 402 and the upper surface of the stage 401 can be brought into a substantially parallel state.
  • the three pressure sensors 412 measure the pressing force at three positions on the lower surface of the head 402. By driving each of the three piezo actuators 411 so that the pressing forces measured by the three pressure sensors 412 are equal, the lower surface of the head 402 and the upper surface of the stage 401 are maintained substantially parallel, and the substrate W1 W2 can be brought into contact with each other.
  • the stage 401 and the head 402 are arranged in the chamber 120 so that they face each other in the vertical direction, and the stage 401 is located vertically below the head 402.
  • the stage 401 is a first object holder that supports the substrate W1 on its upper surface 401a
  • the head 402 is a second object holder that supports the substrate W2 on its lower surface 402a.
  • the stage 401 supports the substrate W1 with its upper surface 401a in surface contact with the entire substrate W1
  • the head 402 supports the substrate W2 with its lower surface 402a in surface contact with the entire substrate W2.
  • the stage 401 and the head 402 are made of a light-transmitting material such as a light-transmitting glass. As shown in FIGS.
  • the stage 401 and the head 402 include electrostatic chucks 441 and 442 that hold the substrates W1 and W2, a pressing mechanism 431 that presses the center of the substrate W1, and a press mechanism 431 that presses the center of the substrate W2.
  • a pressing mechanism 432 for pressing the portion is provided.
  • Electrostatic chucks 441 and 442 hold the peripheral portions of substrates W1 and W2. Further, in the center of the stage 401 and the head 402, through holes 401b and 402b are provided which are circular in plan view.
  • the electrostatic chucks 441 and 442 are provided in a first area A1 facing the circumferences of the substrates W1 and W2 on the stage 401 and the head 402, with the substrates W1 and W2 being supported by the stage 401 and the head 402. .
  • the electrostatic chucks 441 and 442 each have an annular shape, and have terminal electrodes disposed along the circumferential direction on the outside of the second area A2 inside the first area A1 of the stage 401 and the head 402, and the terminal electrodes arranged in a straight line. and a plurality of electrode elements electrically connected to the terminal electrode at the base end.
  • the terminal electrode and the plurality of electrode elements are formed from a transparent conductive film containing a transparent conductive material such as ITO.
  • the electrostatic chucks 441 and 442 attract and hold the substrates W1 and W2 while a voltage is applied by a chuck driver (not shown).
  • the stage 401 and the head 402 are provided with recesses 401c and 402c in the second area A2, respectively.
  • the depths of the recesses 401c and 402c are set to such a depth that the bottoms of the recesses 401c and 402c do not come into contact with the substrates W1 and W2 while holding the substrates W1 and W2, and are set to, for example, 1 ⁇ m or more.
  • the pressing mechanism 431 is provided at the center of the stage 401, and the pressing mechanism 432 is provided at the center of the head 402.
  • the pressing mechanism 431 includes a pressing part 431a that can move in and out toward the head 402 through the through hole 401b of the stage 401, and a pressing driving part 431b that drives the pressing part 431a.
  • the pressing mechanism 431 includes a stopper 431c for restricting the pressing portion 431a from moving beyond a preset amount of retraction.
  • the pressing mechanism 432 includes a pressing part 432a that can move in and out of the stage 401 side through the through hole 402b of the head 402, and a pressing driving part 432b that drives the pressing part 432a.
  • the pressing mechanism 432 includes a stopper 432c for restricting the pressing portion 432a from moving beyond a preset amount of retraction.
  • the press drive unit 431b and the press drive unit 432b include, for example, a voice coil motor.
  • the pressing section 431a and the pressing section 432a perform pressure control to maintain a constant pressure applied to the substrates W1 and W2, and position control to control to maintain a constant contact position of the substrates W1 and W2. , is done. For example, by controlling the position of the pressing part 431a and controlling the pressure of the pressing part 432a, the substrates W1 and W2 are pressed at a certain position with a certain pressure.
  • distance measuring section 490 is, for example, a laser distance meter, and measures the distance between stage 401 and head 402 without contacting stage 401 and head 402.
  • the distance measuring unit 490 detects the reflected light from the upper surface of the stage 401 and the lower surface of the head 402 when a laser beam is irradiated toward the stage 401 from above the head 402 formed of a light-transmitting material.
  • the distance between the stage 401 and the head 402 is measured from the difference between the reflected light and the reflected light. As shown in FIG.
  • the distance measuring unit 490 measures three parts P11, P12, and P13 on the upper surface of the stage 401, and three parts on the lower surface of the head 402 that are opposite to the parts P11, P12, and P13 in the Z direction. Measure the distance between sites P21, P22, and P23.
  • the distance measuring section 490 can be arranged on the opposite side of the head 402 and the stage 401 from the substrates W1 and W2.
  • the imaging unit 500 includes imaging sections 501 and 502 and mirrors 504 and 505.
  • the imaging unit 501 and the imaging unit 502 are arranged on the opposite side of the stage 401 from the side that holds the substrate W1.
  • the imaging unit 501 and the imaging unit 502 each have an imaging element (not shown) and a coaxial illumination system (not shown).
  • a light source of the coaxial illumination system a light source that emits light (for example, infrared light) that passes through the substrates W1 and W2, the stage 401, and the window 120a provided in the chamber 120 is used.
  • the substrate W1 is provided with two alignment marks (first alignment marks) MK1a and MK1b
  • the substrate W2 is provided with two alignment marks (second alignment marks) MK2a, MK2b is provided.
  • the bonding apparatus 1 performs a positioning operation (alignment operation) of both substrates W1 and W2 while recognizing the positions of each alignment mark MK1a, MK1b, MK2a, and MK2b provided on the substrates W1 and W2 imaged by the imaging unit. Execute.
  • the bonding apparatus 1 first roughly aligns the substrates W1, W2 while recognizing the alignment marks MK1a, MK1b, MK2a, MK2b provided on the substrates W1, W2 imaged by the imaging unit 500. (Rough alignment operation) is performed to make the two substrates W1 and W2 face each other. Thereafter, the bonding apparatus 1 performs a more precise alignment operation (fine alignment operation) while simultaneously recognizing the alignment marks MK1a, MK2a, MK1b, and MK2b provided on the two substrates W1 and W2 imaged by the imaging unit 500. Execute.
  • light emitted from the light source of the coaxial illumination system of the imaging unit 501 is reflected by the mirror 504 and travels upward, and passes through the window 120a and the substrate W1, Transmits part or all of W2.
  • the light that has passed through part or all of the substrates W1 and W2 is reflected by the alignment marks MK1a and MK2a of the substrates W1 and W2, travels downward, passes through the window 120a, is reflected by the mirror 504, and is sent to the imaging section 501. incident on the image sensor.
  • the light emitted from the light source of the coaxial illumination system of the imaging unit 502 is reflected by the mirror 505, travels upward, and passes through the window 120a and part or all of the substrates W1 and W2.
  • the light that has passed through part or all of the substrates W1 and W2 is reflected by the alignment marks MK1a and MK2a of the substrates W1 and W2, travels downward, passes through the window 120a, is reflected by the mirror 505, and is sent to the imaging section 502. incident on the image sensor.
  • the imaging units 501 and 502 of the imaging unit 500 take images including the alignment marks MK1a and MK2a of the two substrates W1 and W2, as shown in FIGS.
  • An image GAa and a captured image GAb including alignment marks MK1b and MK2b of the two substrates W1 and W2 are simultaneously captured within one field of view. Furthermore, the photographing operation of the photographed image GAa by the imaging section 501 and the photographing operation of the photographed image GAb by the imaging section 502 are executed simultaneously.
  • the substrate heating units 481 and 482 are, for example, electric heaters, and are provided on the stage 401 and the head 402, respectively, as shown in FIG. 3B.
  • the substrate heating units 481 and 482 heat the substrates W1 and W2 by transmitting heat to the substrates W1 and W2 held by the stage 401 and the head 402. Further, by adjusting the amount of heat generated by the substrate heating units 481 and 482, the temperature of the substrates W1 and W2 and their bonding surfaces can be adjusted.
  • the substrate heating sections 481 and 482 are connected to a heating section driving section (not shown), and the heating section driving section heats the substrate based on a control signal input from the control section 9 shown in FIG. By supplying current to the parts 481 and 482, the substrate heating parts 481 and 482 generate heat.
  • the vibration isolation unit 160 is a so-called active vibration isolation table, and collectively supports the chamber 120, the stage 401, the head 402, the stage drive section 403, the head drive section 404, the substrate heating sections 481 and 482, and the imaging unit 500.
  • the vibration isolation unit 160 includes a top plate 161, a base plate 165 disposed vertically below the top plate 161, that is, on the ⁇ Z direction side, and a vibration isolation mechanism, and is fixed to the base plate 165. and a plate support part 162 that supports the top plate 161 movably in the vertical and horizontal directions on the +Z direction side.
  • the plate support part 162 has a vibration isolation mechanism using, for example, an air spring, a coil spring, etc., and supports the top plate 161 so as to be movable in the vertical direction and the horizontal direction.
  • the vibration isolation unit 160 further includes a vibration detection section 164 that detects vibrations transmitted to the top plate 161, a plate drive section 163 that moves the top plate 161 relative to the plate support section 162, and a top plate and a vibration isolation control unit 169 that controls the plate drive section 163 to reduce vibrations transmitted to the plate drive section 161.
  • the vibration detection unit 164 detects vibrations applied to the top plate 161 in three-dimensional directions, that is, the XYZ directions.
  • the plate drive unit 423 includes a hydraulic actuator, an electromagnetic actuator, a pneumatic actuator, a piezo actuator, a linear actuator, etc., and applies a force acting on the top plate 161 in the Z-axis direction or in the horizontal direction.
  • the vibration isolation control unit 169 controls the plate drive unit 163 based on the vibration detected by the vibration detection unit 164 so that the top plate 161 moves so as to cancel out the vibration.
  • the vibration isolation control unit 169 is specialized for controlling the plate drive section 163 and executes processing independently of the control section 9.
  • This vibration isolation unit 160 removes vibration components with a frequency higher than 10 Hz that are transmitted from the floor or the like on which the bonding apparatus 1 is installed to the stage 401 or the head 402.
  • the vibration isolation unit 160 is preferably one that can isolate vibrations in a lower frequency range, and is preferably one that removes vibration components with frequencies higher than 4 Hz, and removes vibration components with frequencies higher than 2 Hz. It is more preferable to remove vibration components of a frequency higher than 1 Hz.
  • control unit 9 is a control system including, for example, a personal computer, and includes a CPU (Central Processing Unit) and a memory.
  • the memory stores programs executed by the CPU. Further, the memory stores preset positional deviation amount thresholds ⁇ xth, ⁇ yth, and ⁇ th for the relative calculated positional deviation amounts ⁇ x, ⁇ y, and ⁇ of the substrates W1 and W2, which will be described later.
  • the control unit 9 converts measurement signals input from the pressure sensor 412, the pressure sensor 408, and the distance measurement unit 490 into measurement information and acquires the measurement information. Further, the control unit 9 converts captured image signals inputted from the imaging unit 501 and the imaging unit 502 into captured image information and acquires the captured image information. Furthermore, the control unit 9 outputs control signals to the holding unit drive unit, piezo actuator 411, press drive unit 431b, press drive unit 432b, heating unit drive unit, stage drive unit 403, and head drive unit 404, respectively. control the behavior of
  • the control unit 9 determines the positional deviation amounts ⁇ xa and ⁇ ya between the pair of alignment marks MK1a and MK2a provided on the substrates W1 and W2 based on the captured image GAa acquired from the imaging unit 501. Calculate. Note that FIG. 5B shows a state in which a pair of alignment marks MK1a and MK2a are shifted from each other. Similarly, the control unit 9 calculates the positional deviation amounts ⁇ xb and ⁇ yb between the other set of alignment marks MK1b and MK2b provided on the substrates W1 and W2, based on the captured image GAb acquired from the imaging unit 502. do.
  • the control unit 9 controls the rotation in the X direction, Y direction, and around the Z axis based on the positional deviation amounts ⁇ xa, ⁇ ya, ⁇ xb, and ⁇ yb of these two sets of alignment marks and the geometrical relationship between the two sets of marks.
  • the relative positional deviation amounts ⁇ x, ⁇ y, and ⁇ of the two substrates W1 and W2 in the directions are calculated.
  • the control unit 9 moves the head 402 in the X direction and the Y direction or rotates it around the Z axis so that the calculated positional deviation amounts ⁇ x, ⁇ y, and ⁇ are reduced. This reduces the relative positional deviation amounts ⁇ x, ⁇ y, and ⁇ between the two substrates W1 and W2.
  • the bonding apparatus 1 performs an alignment operation that corrects the horizontal positional deviation amounts ⁇ x, ⁇ y, and ⁇ of the two substrates W1 and W2.
  • control unit 9 repeatedly measures the amount of positional deviation of the substrate W2 with respect to the substrate W1 during a preset waveform measurement period with the substrates W1 and W2 separated from each other.
  • the length of the waveform measurement period is set to a period longer than at least the vibration period of the vibration component of the vibration of the substrate W2 relative to the substrate W1. For example, if the positional deviation amount measurement process can be executed at a period of several tens of milliseconds, the control unit 9 can handle even if the vibration of the substrate W2 with respect to the substrate W1 includes a vibration component with a period of 10 Hz.
  • the vibration component included in the vibration of the substrate W2 relative to the substrate W1 is preferably 5 Hz or less, more preferably 2 Hz or less.
  • the vibration component with a period of 2 Hz is a region that cannot be removed by the pedestal 41 having a vibration isolation function
  • the length of the waveform measurement period during which the repeated measurement of the positional deviation amount is continued is set to, for example, 1 sec or more. It is preferable that Then, the control unit 9 repeatedly calculates the relative positional deviation amounts ⁇ x, ⁇ y, and ⁇ of the two substrates W1 and W2 at preset time intervals shorter than the vibration period of the substrate W2 with respect to the substrate W1.
  • control unit 9 identifies the vibration waveform of the vibration of the substrate W2 relative to the substrate W1 from the time course of the positional deviation amounts ⁇ x, ⁇ y, and ⁇ measured during the above-mentioned waveform measurement period.
  • the control unit 9 specifies, for example, a positional deviation amount, a vibration amplitude, and a vibration period corresponding to the vibration center of the vibration waveform.
  • the control unit 9 estimates the target timing at which the displacement amounts ⁇ x, ⁇ y, and ⁇ of the substrate W2 with respect to the substrate W1 become the target amounts.
  • the control unit 9 measures the positional deviation amounts ⁇ x, ⁇ y, and ⁇ multiple times, specifies the vibration waveform of the substrate W2 relative to the substrate W1, and selects an arbitrary timing within one cycle of vibration based on the specified vibration waveform. The time required for the measured positional deviation amounts ⁇ x, ⁇ y, and ⁇ to reach the target amounts is estimated. Further, when specifying the vibration waveform, the control unit 9 does not necessarily need to measure the maximum vibration amplitude of the positional deviation amount, but the positional deviation amounts ⁇ x, ⁇ y, ⁇ measured at arbitrary timing within one cycle of vibration. It is only necessary to be able to estimate the time until the amount reaches the target amount.
  • the target amount is set to, for example, a positional deviation amount corresponding to the amplitude center of the vibration component of the positional deviation amounts ⁇ x, ⁇ y, and ⁇ . Further, the target amount may be set to an amount offset by the positional deviation amount at the time of contact of the substrate W2 with respect to the substrate W1 due to the contact between the substrates W1 and W2. In this case, the relative alignment of the substrates W1 and W2 is performed so that the positional deviation amounts ⁇ x, ⁇ y, and ⁇ become 0 when the substrates W1 and W2 are brought into contact with each other.
  • control unit 9 stores in the memory in advance necessary time information indicating the necessary time required to change the state in which the substrates W1 and W2 are in contact with each other from the state in which the substrates W1 and W2 are separated from each other.
  • This required time is, for example, when the head 402 is placed in a position where the gap G1 between the substrates W1 and W2 is large enough to cause the center portions W1c and W2c to come into contact with each other simply by bending the substrates W1 and W2, and the pressing mechanism This corresponds to the time it takes to bring the central portions W1c and W2c of the substrates W1 and W2 into contact with each other by protruding the pressing portion 431a of 431 and the pressing portion 432a of the pressing mechanism 432.
  • control unit 9 starts an operation for bringing the substrates W1 and W2 into contact with each other at a time point just the above-mentioned necessary time before the estimated target timing. Specifically, the control unit 9 controls the pressing drive unit 431b and the pressing drive unit so that the pressing unit 432a and the pressing unit 432b start the protruding operation at a time point that is the necessary time before the estimated target timing. 432b.
  • control unit 9 controls the distance measurement unit 490 to determine the positions P21, P22, and P23 corresponding to the positions P11, P12, and P13 in the head 402 at the three positions P11, P12, and P13 on the stage 401, respectively. Measure the distance between. Based on the distance measured by the distance measuring unit 490, the control unit 9 controls the above three positions so that the substrate W2 held by the head 402 is parallel to the substrate W1 held by the stage 401. A piezo actuator 411 is controlled.
  • the bonding apparatus 1 uses the distance measuring unit 490 to measure the distance between the upper surface of the stage 401 and the lower surface of the head 402 when the substrates W1 and W2 are not held by the stage 401 and the head 402. It is assumed that the measurement has been completed and the results have been stored in memory. Furthermore, it is assumed that the measurement results of the thicknesses of the substrates W1 and W2 have already been stored in the memory. It is assumed that the substrates W1 and W2 are vibrating in a direction perpendicular to the vertical direction, that is, in the horizontal direction, and the imaging units 501 and 502 are vibrating in the vertical direction. Further, it is assumed that the substrates W1 and W2 are each vibrating with a vibration waveform having a frequency of 10 Hz or less or a vibration amplitude of 1 ⁇ m or less.
  • the bonding apparatus 1 causes the stage 401 to hold only the peripheral portion of the substrate W1, and causes the head 402 to hold only the peripheral portion of the substrate W2 with the bonding surfaces of the substrates W1 and W2 facing each other (step S101).
  • the control unit 9 drives the electrostatic chuck 441 disposed in the first area A1 of the stage 401 to cause the peripheral portion of the substrate W1 to be placed on the stage 401. only be retained.
  • the control unit 9 controls a stationary station disposed in a first area A1 of the head 402 while the head 402 is in contact with a side opposite to the bonding surface side of the substrate W2 disposed vertically below the head 402.
  • the electric chuck 442 is driven to cause the head 402 to hold only the peripheral portion of the substrate W2.
  • the bonding apparatus 1 determines the distance between the upper surface 401a of the stage 401 and the lower surface 402a of the head 402 and the thickness of the substrates W1 and W2 when the substrates W1 and W2 are not held by the stage 401 and the head 402. Based on this, the distance between the bonding surface of the substrate W1 and the bonding surface of the substrate W2 is calculated. Then, the bonding apparatus 1 moves the head 402 vertically downward to bring the substrates W1 and W2 closer to each other (step S102).
  • the bonding apparatus 1 measures the amount of positional deviation of the substrate W1 with respect to the substrate W2 with the substrates W1 and W2 separated from each other (step S103).
  • the control section 9 first captures captured images GAa and GAb (see FIG. 5A) of the two substrates W1 and W2 in a non-contact state from the imaging section 501 and the imaging section 502 of the imaging unit 500. Then, the control unit 9 calculates the positional deviation amounts ⁇ x, ⁇ y, and ⁇ of the two substrates W1 and W2 in the X direction, the Y direction, and the rotational direction around the Z axis, respectively, based on the two captured images GAa and GAb. .
  • the control unit 9 uses a vector correlation method to calculate the positional deviation amounts ⁇ xa and ⁇ ya (see FIG. 5B) based on the captured image GAa obtained by simultaneously reading the alignment marks MK1a and MK2a spaced apart in the Z direction, for example. do. Similarly, based on the photographed image GAb obtained by simultaneously reading the alignment marks MK1b and MK2b spaced apart in the Z direction, the amounts of positional deviation ⁇ xb and ⁇ yb are calculated using the vector correlation method. Then, the control unit 9 calculates the horizontal displacement amounts ⁇ x, ⁇ y, and ⁇ of the two substrates W1 and W2 based on the displacement amounts ⁇ xa, ⁇ ya, ⁇ xb, and ⁇ yb.
  • step S104 the bonding apparatus 1 moves the substrate W2 relative to the substrate W1 so as to correct the calculated positional deviation amounts ⁇ x, ⁇ y, and ⁇ .
  • Positioning is performed (step S104).
  • the bonding apparatus 1 moves the head 402 in the X direction, the Y direction, and the rotation direction around the Z axis so that the positional deviation amounts ⁇ x, ⁇ y, and ⁇ are eliminated while the stage 401 is fixed.
  • the bonding device 1 measures the distances between the three parts P11, P12, and P13 of the stage 401 and the parts P21, P22, and P23 corresponding to the parts P11, P12, and P13 in the head 402, respectively.
  • an attitude adjustment step is executed to adjust the attitude of the substrate W2 held by the head 402 with respect to the substrate W1 held by the stage 401.
  • the bonding apparatus 1 moves the head 402 even closer to the stage 401 (step S105).
  • the bonding apparatus 1 moves the head 402 to such a size that the gap G1 between the substrates W1 and W2 is such that the center portions W1c and W2c come into contact with each other simply by bending the substrates W1 and W2. place in position.
  • the bonding apparatus 1 repeatedly measures the amount of positional deviation of the substrate W2 with respect to the substrate W1 during a preset waveform measurement period with the substrates W1 and W2 separated from each other.
  • a quantity measurement step is executed (step S106).
  • the length of the waveform measurement period is set to be longer than at least the vibration period dT1 of the substrate W2 with respect to the substrate W1 shown in FIG. 8B, and is set to a time of 1 sec or more, for example. Further, the bonding apparatus 1 repeatedly measures the amount of positional deviation of the substrate W2 with respect to the substrate W1 at a preset time interval dT2 that is shorter than the vibration period dT1. In addition, in the bonding device 1, the alignment marks MK1a, MK2a and the alignment marks MK1b, MK2b are spaced apart from each other by a distance that falls within the depth of field of the imaging unit 501, the imaging unit 502, respectively.
  • the bonding apparatus 1 are arranged at positions where the set of alignment marks MK1a and MK2a and the set of alignment marks MK1b and MK2b can be imaged, respectively. Then, in the bonding apparatus 1, the imaging unit 501 and the imaging unit 502 capture a set of corresponding alignment marks MK1a and MK2a and a set of alignment marks MK1b and MK2b in one image at the same timing at each repeated measurement timing. The imaging unit 501 and the imaging unit 502 are controlled so that images are captured simultaneously. Then, the bonding apparatus 1 calculates the amount of positional deviation of the substrate W2 with respect to the substrate W1 based on the captured images captured by the imaging units 501 and 502.
  • the bonding apparatus 1 executes a vibration waveform identification step of identifying the vibration waveform of the vibration of the substrate W2 with respect to the substrate W1 from the time transition of the amount of positional deviation measured during the waveform measurement period (step S107).
  • the bonding apparatus 1 identifies the vibration waveform of the vibration of the substrate W2 in the horizontal direction and the rotational direction with respect to the substrate W1 from the temporal change in the amount of positional deviation in the horizontal direction and the rotational direction.
  • the bonding device 1 specifies the positional deviation amounts ⁇ x, ⁇ y, ⁇ , vibration amplitude, and vibration period corresponding to the vibration center of the vibration waveform described above.
  • the bonding device 1 determines whether all of the positional deviation amounts ⁇ x, ⁇ y, and ⁇ corresponding to the vibration center of the identified vibration waveform are equal to or less than preset positional deviation amount thresholds ⁇ xth, ⁇ yth, and ⁇ th. (Step S108). Here, the bonding device 1 determines that any one of the positional deviation amounts ⁇ x, ⁇ y, and ⁇ corresponding to the vibration center of the specified vibration waveform is larger than the preset positional deviation amount thresholds ⁇ xth, ⁇ yth, and ⁇ th. (Step S108: No).
  • the bonding apparatus 1 performs a correction movement of the substrate W2 with respect to the substrate W1 in order to make the positional deviation amounts ⁇ x, ⁇ y, and ⁇ corresponding to the vibration center of the identified vibration waveform all below the positional deviation amount thresholds ⁇ xth, ⁇ yth, and ⁇ th.
  • the amount is calculated (step S109).
  • the control unit 9 calculates a corrected movement amount that moves the vibration center of the specified vibration waveform by the positional deviation amounts ⁇ x, ⁇ y, and ⁇ in the direction opposite to the positional deviation direction.
  • the bonding apparatus 1 performs alignment so as to correct the relative positional deviation amounts ⁇ x, ⁇ y, and ⁇ of the two substrates W1 and W2 (step S110).
  • the bonding apparatus 1 moves the head 402 in the X direction, the Y direction, and the rotation direction around the Z axis by the corrected movement amount calculated in step S109 while the stage 401 is fixed.
  • the bonding apparatus 1 adjusts the relative position of the substrate W2 with respect to the substrate W1 so that the positional deviation amounts ⁇ x, ⁇ y, and ⁇ become small while the substrates W1 and W2 are separated from each other.
  • the bonding apparatus 1 executes the process of step S106 again.
  • step S108 determines that all of the calculated positional deviation amounts ⁇ x, ⁇ y, and ⁇ are equal to or less than preset positional deviation amount thresholds ⁇ xth, ⁇ yth, and ⁇ th (step S108: Yes).
  • the bonding apparatus 1 estimates the target timing at which the amount of positional deviation of the substrate W2 with respect to the substrate W1 becomes the target amount, that is, the amount of positional deviation corresponding to the vibration center of the vibration waveform, based on the specified vibration waveform.
  • An estimation process is executed (step S111).
  • the bonding apparatus 1 estimates the target timing Ts1c (or Ts2c) at which the positional deviation amount ⁇ of the substrate W2 with respect to the substrate W1 becomes the positional deviation amount ⁇ c corresponding to the vibration center of the vibration waveform. .
  • the bonding apparatus 1 bends the substrates W1 and W2 based on the estimated target timing, and brings the center portion W1c of the substrate W1 into contact with the center portion W2c of the substrate W2.
  • the process is executed (step S112).
  • the bonding apparatus 1 performs an operation to bring the substrates W1 and W2 into contact with each other at a time point that is the above-mentioned required time dT3 before the estimated target timing Ts1c (or Ts2c). start.
  • Ts1c or Ts2c
  • the bonding apparatus 1 bends the substrate W1 so that the central portion W1c protrudes toward the substrate W2 with respect to the peripheral portion W1s of the substrate W1.
  • the bonding apparatus 1 causes the electrostatic chuck 441 to hold the substrate W1 by applying a voltage from the holding part driving part to the electrostatic chuck 441, and the pressing part 431a moves the center part of the substrate W1 to the substrate W2. Press towards.
  • the substrate W1 is bent so that its central portion W1c protrudes toward the substrate W2.
  • the central portions W1c and W2c of the substrates W1 and W2 come into contact with each other.
  • the bonding apparatus 1 bends the substrate W2 so that the central portion W2c protrudes toward the substrate W1 with respect to the peripheral portion W2s of the substrate W2.
  • the bonding apparatus 1 causes the electrostatic chuck 442 to hold the substrate W2 by applying a voltage from the holding part driving part to the electrostatic chuck 442, and the pressing part 432a pushes the center part W2c of the substrate W2 onto the substrate. Press toward W1.
  • the substrate W2 is bent so that its central portion W2c protrudes toward the substrate W1.
  • the bonding apparatus 1 moves the head 402 downward by the elevating drive unit 406, thereby moving the contact portions of the substrates W1, W2 from the center portions W1c, W2c of the substrates W1, W2 toward the peripheral portions W1s, W2s. Expand it.
  • the contact portion of the substrates W1 and W2 is Due to the intermolecular force (van der Waals force) generated between the substrates W1 and W2, it spreads from the central portions W1c and W2c of the substrates W1 and W2 toward the peripheral portions W1s and W2s.
  • the bonding apparatus 1 applies point pressure to the center portions W1c and W2c of the substrates W1 and W2 using the pressing portions 431a and 432a, with the substrates W1 and W2 separated by about 50 ⁇ m.
  • this point pressure acts as a trigger, and a so-called bonding wave is naturally applied to the periphery of the substrates W1 and W2 without applying pressure from the outside in the direction in which the substrates W1 and W2 approach each other. It spreads. Due to the bonding force between the bonding surfaces of the substrates W1 and W2, this bonding wave can be generated around the periphery of the substrates W1 and W2 without applying external pressure to the substrates W1 and W2 in a direction in which the substrates W1 and W2 approach each other. It spreads towards.
  • the bonding apparatus 1 moves the pressing part 431a in the direction of recessing into the stage 401 and moves the pressing part 432a in the direction of recessing into the head 402, as shown by arrow AR12 in FIG. 9B.
  • the bonding apparatus 1 moves the head 402 in a direction approaching the stage 401, as shown by an arrow AR13.
  • the pressing part driving part 431b embeds the tip of the pressing part 431a as the head 402 descends while controlling the position so that the tip part of the pressing part 431a is maintained at a preset position, and the pressing part driving part 432b By controlling the pressure applied to the portion 432a to be constant, the contact portion between the substrates W1 and W2 is maintained at the center position in the direction in which the substrates W1 and W2 face each other. Thereby, it is possible to suppress the occurrence of warpage in the substrates W1 and W2 when the substrates W1 and W2 are bonded.
  • the bonding apparatus 1 shortens the distance between the peripheral portions W1s and W2s of the substrates W1 and W2, with the central portions W1c and W2c of the substrates W1 and W2 butted against each other. Then, as shown by the arrow AR11 in FIG. 9B, the contact portion between the substrates W1 and W2 further expands from the center portions W1c and W2c of the substrates W1 and W2 toward the peripheral portions W1s and W2s.
  • the bonding apparatus 1 further widens the contact portion of the substrates W1, W2 from the central portions W1c, W2c of the substrates W1, W2 toward the peripheral portions W1s, W2s, bringing the substrates W1, W2 into contact with each other over the entire surface.
  • the bonding apparatus 1 moves the pressing part 431a in the direction of recessing into the stage 401, moves the pressing part 432a in the direction of recessing into the head 402, and at the same time moves the head 402 in the direction of approaching the stage 401.
  • the bonding apparatus 1 brings the circumferential portion of the substrate W1 into contact with the circumferential portion of the substrate W2, thereby bringing the bonding surfaces of the substrates W1 and W2 into full contact with each other.
  • the bonding apparatus 1 presses only the circumferential portion W1s of the substrate W1 against the circumferential portion W2s of the substrate W2 with the substrates W1 and W2 in contact with each other over the entire surface, thereby processing the circumferential portions W1s and W2s of the substrates W1 and W2.
  • the substrates W1 and W2 are bonded together by pressing (step S113).
  • the bonding apparatus 1 releases the holding of the substrate W2 by stopping the electrostatic chuck 442 of the head 402 (step S114). Subsequently, the bonding apparatus 1 causes the head 402 to separate from the substrate W2 by raising the head 402, as shown by arrow AR14 in FIG. 10B.
  • f indicates the frequency of vibration transmitted to the floor F
  • f0 indicates a resonance frequency specific to the pedestal 41
  • the vertical axis indicates the vibration transmission rate of vibration transmitted from the floor F to the bonding device 1 via the pedestal 41
  • the horizontal axis indicates the normalized frequency obtained by normalizing the frequency by the resonance frequency f0 of the pedestal 41.
  • f t indicates the lower limit frequency of the frequency range in which the vibration isolation effect can be obtained by the pedestal 41.
  • the vibration transmission rate is reduced. Transmission rate cannot be reduced.
  • the resonant frequency f 0 is about 1.8 Hz in the pedestal 41 having a normal vibration isolation function, and f t is about 2 Hz. In this case, if the vibration transmitted to the floor F includes a vibration component with a frequency of 2 Hz or less, this vibration component cannot be reduced by the pedestal 41 and the vibration isolation unit 160. In fact, as shown in FIG.
  • the frequency spectrum SPE1 when the welding device 1 is placed on the pedestal 41 having a vibration isolation function is different from the frequency spectrum SPE1 when the welding device 1 is not placed on the pedestal 41.
  • the vibration amplitude especially around 6 Hz has been reduced to less than 0.1 ⁇ m, but the vibration amplitude at frequencies below 2 Hz is still 0.1 ⁇ m or more, as shown in the area surrounded by the dashed line. It has become.
  • the broken line is a line indicating a vibration amplitude of 0.1 ⁇ m.
  • the vibration waveform of a relatively low frequency vibration component below the lower limit frequency f t of the frequency range in which the vibration isolation effect can be obtained by the frame 41 is specified, and the specified vibration waveform is Based on this, the target timing at which the amount of positional deviation of the substrates W1 and W2 corresponds to the center of vibration is estimated. Then, the bonding apparatus 1 causes the pressing part 431a of the pressing mechanism 431 and the pressing part 432a of the pressing mechanism 432 to protrude so that the substrates W1 and W2 come into contact with each other at the estimated target timing. This makes it possible to bring the substrates W1 and W2 into contact with each other with high positional accuracy even if the substrate W2 is vibrating with respect to the substrate W1 at a relatively low frequency below the aforementioned lower limit frequency f t .
  • the vibration waveform of the vibration of the substrate W2 with respect to the substrate W1 is specified from the time course of the positional deviation amount of the substrate W2 with respect to the substrate W1, and the specified vibration waveform is Based on this, the target timing at which the amount of positional deviation of the substrate W2 with respect to the substrate W1 becomes the target amount is estimated. Then, the bonding apparatus 1 brings the substrates W1 and W2 into contact with each other based on the estimated target timing. Thereby, even if the substrate W2 is vibrating relative to the substrate W1, the substrate W2 can be bonded to the substrate W1 with high positional accuracy.
  • the vibration waveform of the substrate W2 relative to the substrate W1 is specified, the timing for bringing the substrates W1 and W2 into contact with each other is estimated based on the specified vibration waveform, and the substrates W1 and W2 are brought into contact with each other at the estimated timing. let Therefore, it is possible to reduce the relative positional shift of the substrate W2 with respect to the substrate W1, which is caused by variations in the timing of bringing the substrates W1 and W2 into contact with each other. Therefore, there is an advantage that there is no need to repeatedly bring the substrates W1 and W2 into contact with each other and separate them from each other.
  • the substrates are arranged such that the center portion of the bonding surface of each of the substrates W1 and W2 protrudes toward the side facing each other compared to the peripheral portion.
  • the centers of the bonding surfaces of substrates W1 and W2 are brought into contact with each other.
  • the substrates W1 and W2 are brought into contact with each other instead of being separated from each other, compared to the case where the entire joint surfaces of the substrates W1 and W2 are brought into contact.
  • the required time can be shortened. Therefore, there is an advantage that it is easy to bring the substrates W1 and W2 into contact with each other at the above-mentioned target timing.
  • the bonding apparatus 1 has a structure in which the three parts P11, P12, and P13 of the stage 401 are connected to the parts P21, P22, and P23 corresponding to the parts P11, P12, and P13 in the head 402, respectively.
  • the distance is measured, and based on the measured distance, the three piezo actuators 411 described above are controlled so that the substrate W2 held by the head 402 is parallel to the substrate W1 held by the stage 401.
  • the alignment marks MK1a, MK1b, MK2a, and MK2b provided on the substrates W1 and W2 are simultaneously imaged by the imaging units 501 and 502, so that the alignment marks MK1a, MK1b, MK2a, and MK2b provided on the substrates W1 and W2 are simultaneously imaged by the imaging units 501 and 502. become unaffected.
  • the imaging units 501 and 502 are arranged corresponding to the set of alignment marks MK2a and MK1a and the set of alignment marks MK2b and MK1b, respectively, and in order to image the two sets simultaneously, the imaging unit 501 , 502 can be canceled.
  • the vibration amplitude in the vertical direction is relatively small, and the vibration amplitude in the direction orthogonal to the vertical direction is relatively small.
  • the vibration amplitude tends to be relatively large. In this case, for example, as in Comparative Example 1 shown in FIG.
  • the imaging units 501 and 502 are arranged with their optical axes perpendicular to the vertical direction, that is, along the X-axis direction.
  • the imaging units 501 and 502 receive the light traveling downward from the alignment marks MK1a and MK2a and the alignment marks MK1b and MK2b through the mirror 504 that converts it into a direction perpendicular to the vertical direction.
  • alignment marks MK1a, MK2a and alignment marks MK1b, MK2b are imaged.
  • the vibration in the horizontal direction of the imaging units 501 and 502 which has a relatively large vibration amplitude, mainly affects the shift of the focus position of the imaging units 501 and 502, and the alignment mark MK1a imaged by the imaging units 501 and 502. , MK2a and the alignment marks MK1b, MK2b can be hardly affected. Therefore, it is possible to suppress the horizontal vibration of the imaging units 501 and 502, which has a relatively large vibration amplitude, from affecting the amount of positional deviation between the alignment marks MK1a and MK2a and the alignment marks MK1b and MK2b.
  • the bonding apparatus 1 includes the above-mentioned vibration isolating unit 160.
  • This removes vibration components with frequencies higher than 10 Hz that are transmitted to the stage 401 or the head 402 from the floor or the like on which the bonding apparatus 1 is installed.
  • the vibration components transmitted to the stage 401 and the head 402 have been limited to those that can be removed using the vibration isolation unit 160, which is the above-mentioned active vibration isolation table. Therefore, vibration components of 10 Hz or less remained that could not be removed by the vibration isolation unit 160.
  • the vibration waveform of the vibration of the substrate W2 with respect to the substrate W1 is specified, and based on the specified vibration waveform, the positional deviation amount of the substrate W2 with respect to the substrate W1 is set to the target amount.
  • the vibration speed of the vibration component in a relatively high frequency region higher than 10 Hz is faster than the image processing speed, so it is difficult to estimate the target timing based on the vibration waveform.
  • a vibration isolation unit 160 which is a so-called active vibration isolation table, vibration components in all frequency ranges can be reduced.
  • the chip bonding system is an apparatus for bonding a semiconductor chip (hereinafter simply referred to as a "chip") onto a substrate.
  • Semiconductor chips are supplied, for example, from diced substrates.
  • This chip bonding system bonds the chip to the substrate by bringing the chip into contact with the substrate and applying pressure after activation processing is performed on the surface of the substrate to which the chip is bonded and the bonding surface of the electronic chip.
  • the chip bonding system 2 includes a chip supply device 2010, a bonding device 2030, a chip transport device 2039, and a control section 2009.
  • the chip supply device 2010 cuts out one chip CP from among the plurality of chips CP produced by dicing the substrate, and supplies the chip CP to the bonding device 2030.
  • dicing is a process of cutting a substrate on which a plurality of electronic chips are built into chips in the vertical and horizontal directions.
  • the chip supply device 2010 includes a chip supply section 2011 and a supplied chip imaging section 2015.
  • the chip supply unit 2011 includes a sheet holding frame 2112 that holds a sheet TE to which a plurality of chips CP are attached, a frame holding unit 2119 that holds the sheet holding frame 2112, and a frame holding unit 2119 that holds a sheet TE to which a plurality of chips CP are attached. It has a pickup mechanism 2111 that picks up the image, and a cover 2114.
  • the chip supply unit 2011 also includes a holding frame drive unit 2113 that drives the sheet holding frame 2112 in the XY direction or in the direction of rotation around the Z axis.
  • the frame holding unit 2119 holds the sheet holding frame 2112 in such a position that the surface of the sheet TE to which the plurality of chips CP are attached faces vertically upward (+Z direction).
  • the sheet holding frame 2112 and the frame holding part 2119 hold the sheet TE attached to the side opposite to the bonding surface CPf side of each of the plurality of chips CP in a posture with the bonding surface CPf facing vertically upward. is configured.
  • the pickup mechanism 2111 separates one chip CP from the sheet TE by cutting out one of the chips CP from the opposite side of the sheet TE from the side of the chips CP.
  • the pickup mechanism 2111 cuts out the chip CP by holding a peripheral portion of the chip CP on the side opposite to the bonding surface CPf, which is different from the central portion held by a head 2033H, which will be described later.
  • the pickup mechanism 2111 has a needle 2111a, and is movable in the vertical direction as shown by an arrow AR14.
  • the cover 2114 is arranged to cover vertically above the plurality of chips CP, and a hole 2114a is provided in a portion facing the pickup mechanism 2111. For example, there are four needles 2111a.
  • the number of needles 2111a may be three or five or more.
  • the pickup mechanism 2111 supplies the chips CP by piercing the needle 2111a into the sheet TE from vertically below (-Z direction) and lifting the chips CP vertically upwards (+Z direction).
  • Each chip CP attached to the sheet TE is then pushed out one by one above the cover 2114 through the hole 2114a of the cover 2114 by the needle 2111a, and delivered to the chip transport device 2039.
  • the holding frame driving unit 2113 changes the position of the chip CP located vertically below the needle 2111a by driving the sheet holding frame 2112 in the XY direction or in the direction of rotation around the Z axis.
  • the supplied chip imaging unit 2015 is arranged above the chip supplying unit 2011 (in the +Z direction) in the chip supplying device 2010.
  • the supplied chip imaging unit 2015 photographs the chip CP pushed upward from the cover 2114 by the pickup mechanism 2111.
  • the chip transport device 2039 transports the chip CP supplied from the chip supply section 2011 to the transfer position Pos1 where the chip CP is transferred to the head 2033H of the bonding section 2033 of the bonding device 2030.
  • the chip transport device 2039 includes a long plate 2391, an arm 2394, a chip holding section 2393 provided at the tip of the arm 2394, and a plate driving section 2392 that rotationally drives the plate 2391.
  • the plate 2391 has an elongated cylindrical shape and rotates around a rotation axis AX with one end extending in the vertical direction with the other end located between the chip supply section 2011 and the head 2033H as a base point. Note that the number of plates 2391 may be plural or one.
  • the chip holding section 2393 is provided at the tip of the arm 2394 and has two leg pieces 2393a that hold the chip CP.
  • the plate 2391 is capable of accommodating a long arm 2394 inside.
  • An arm driving section 2395 that drives the arm 2394 along the longitudinal direction of the plate 2391 is provided inside the plate 2391.
  • the chip transport device 2039 can cause the tip of the arm 2394 to protrude to the outside of the plate 2391 or to make the tip of the arm 2394 retract inside the plate 2391 by the arm drive unit 2395. can do.
  • the arm 2394 is retracted into the plate 2391 to store the chip holding section 2393 inside the plate 2391, as shown by an arrow AR15.
  • suction grooves may be provided in the two leg pieces 2393a.
  • a protrusion may be provided at the tip of the leg piece 2393a.
  • the bonding apparatus 2030 includes a stage unit 2031, a bonding section 2033 having a head 2033H, a head driving section 2036 that drives the head 2033H, imaging sections 2035a and 2035b, and an imaging section 2041. , a camera F direction drive section 2365, and a camera Z direction drive section 2363.
  • the bonding section 2033 includes a Z-axis moving member 2331, a first disc member 2332, a piezo actuator 2333, a second disc member 2334, a mirror fixing member 2336, a mirror 2337, and a head 2033H.
  • a first disk member 2332 is fixed to the upper end of the Z-axis moving member 2331. Further, a second disk member 2334 is arranged above the first disk member 2332. The first disk member 2332 and the second disk member 2334 are connected via a piezo actuator 2333. Furthermore, a head 2033H is fixed to the upper surface side of the second disc member 2334. The head 2033H attracts and holds the chip CP.
  • the head 2033H holds the chip CP from vertically below (-Z direction).
  • the head 2033H includes a tip tool 2411, a head main body portion 2413, a tip support portion 2432a, and a support portion drive portion 2432b.
  • the tip tool 2411 is made of a material (for example, silicon (Si)) that transmits photographing light (infrared light, etc.).
  • the head main body portion 2413 includes a ceramic heater, a coil heater, and the like. Further, the head main body portion 2413 is provided with hollow portions 2415 and 2416 for transmitting (passing) photographing light.
  • Each of the hollow portions 2415 and 2416 is a transparent portion that transmits photographing light, and is provided so as to penetrate the head main body portion 2413 in the vertical direction (Z-axis direction). Moreover, each hollow part 2415, 2416 has an elliptical shape when viewed from above, as shown in FIG. The two hollow portions 2415 and 2416 are arranged point-symmetrically about the axis BX in the diagonal portions of the head main body portion 2413 having a substantially square shape when viewed from above. Note that, as shown in FIG. 16, holes 2334a and 2334b are also provided in the second disc member 2334 at portions corresponding to the hollow portions 2415 and 2416 to transmit the photographing light. Returning to FIGS.
  • the head main body portion 2413 includes a holding mechanism 2440 having a suction portion for holding the chip CP on the chip tool 2411 by suction.
  • the head main body 2413 also has a suction portion (not shown) for fixing the tip tool 2411 to the head main body 2413 by vacuum suction.
  • the tip tool 2411 has a through hole 2411a formed at a position corresponding to the holding mechanism 2440 of the head body portion 2413, and a through hole 2411b into which the tip support portion 2432a is inserted.
  • the chip support part 2432a is, for example, a cylindrical suction post, and is provided at the tip of the head 2033H and is movable in the vertical direction.
  • the chip support portion 2432a supports the side of the chip CP opposite to the bonding surface CPf side. For example, one chip support portion 2432a is provided at the center.
  • the support part driving part 2432b drives the chip support part 2432a in the vertical direction, and also removes the chip CP by reducing the pressure inside the chip support part 2432a with the chip CP placed on the tip of the chip support part 2432a. It is adsorbed to the tip of the chip support section 2432a.
  • the support part drive part 2432b is located at the transfer position (see Pos1 in FIG. 14) to the head 2033H with the chip holding part 2393 of the chip transport device 2039 holding the chip CP, and the support part driving part 2432b is positioned at the tip of the chip support part 2432a.
  • the chip supporting section 2432a is moved vertically upward relative to the chip holding section 2393 while supporting the central portion of the chip CP. Thereby, the chip CP is transferred from the chip holding section 2393 of the chip transport device 2039 to the head 33H.
  • the piezo actuator 2333 is an attitude adjustment unit that adjusts at least one of the distance between the bonding surface WTf of the substrate WT and the bonding surface CPf of the chip CP, and the inclination of the chip CP with respect to the bonding surface WTf of the substrate WT.
  • three piezo actuators 2333 exist between the first disk member 2332 and the second disk member 2334, and can expand and contract in the respective Z directions. By controlling the degree of expansion and contraction of each of the three piezo actuators 2333, the inclination angle of the second disk member 2334 and, by extension, the head 2033H with respect to the horizontal plane is adjusted.
  • the three piezo actuators 2333 are arranged at positions (planar positions) where they do not block illumination light (including reflected light) regarding the imaging units 2035a and 2035b.
  • the mirror 2337 is fixed to the first disc member 2332 via a mirror fixing member 2336, and is arranged in the gap between the first disc member 2332 and the second disc member 2334.
  • the mirror 2337 has inclined surfaces 2337a and 2337b having an inclined downward angle of 45 degrees. Photographing light incident on the inclined surfaces 2337a, 2337b of the mirror 2337 from the imaging units 2035a, 2035b is reflected upward.
  • the head driving unit 2036 moves the head 2033H holding the chip CP vertically upward (+Z direction) to bring the head 2033H closer to the stage 2031 and joins the chip CP to the joining surface WTf of the substrate WT. More specifically, the head driving unit 2036 moves the head 2033H holding the chip CP vertically upward (+Z direction) to bring the head 2033H closer to the stage 2031 and brings the chip CP into contact with the bonding surface WTf of the substrate WT. surface bonding to the substrate WT.
  • the bonding surface WTf of the substrate WT and the bonding surface CPf of the chip CP that is bonded to the substrate WT have been previously subjected to activation treatment such as being exposed to plasma or irradiated with a particle beam.
  • the bonding surface CPf of the chip CP may be, for example, a surface in which at least a portion of a flat metal portion is exposed.
  • the head drive section 2036 includes a Z direction drive section 2034, a rotating member 2361, and a ⁇ direction drive section 2037.
  • the Z direction drive unit 2034 includes a servo motor, a ball screw, and the like.
  • the Z-direction drive section 2034 is provided on the lower end side of a rotating member 2361, which will be described later, and drives the Z-axis moving member 2331 of the bonding section 2033 in the Z-axis direction, as shown by an arrow AR211 in FIG.
  • the Z-direction driving section 2034 moves the Z-axis moving member 2331 in the Z direction
  • the head 2033H provided at the upper end of the bonding section 2033 moves in the Z direction. That is, the head 2033H is driven in the Z direction by the Z direction drive section 2034.
  • the rotating member 2361 has a cylindrical shape, and the inner hollow portion has an octagonal cross-sectional shape as shown in FIG. 19B.
  • the Z-axis direction moving member 2331 has a rod-shaped portion having an octagonal cross-sectional shape, and is inserted inside the rotating member 2361. Furthermore, between four of the eight side surfaces of the Z-axis moving member 2331 and the inner surface of the rotating member 2361, the Z-axis moving member 2331 slides in the Z-axis direction with respect to the rotating member 2361.
  • a linear guide 2038 is provided which is arranged in a movable manner.
  • the Z-axis direction moving member 2331 rotates in conjunction with the rotating member 2361 when the rotating member 2361 rotates around the axis BX. That is, the bonding portion 2033 and the rotating member 2361 rotate in conjunction with each other around the axis BX, as shown by the arrow AR212 in FIG. 14.
  • the ⁇ -direction drive unit 2037 includes a servo motor, a speed reducer, and the like, and is fixed to a fixing member 2301 provided within the welding device 2030, as shown in FIG.
  • the ⁇ direction drive unit 2037 supports the rotating member 2361 so as to be rotatable around the axis BX. Then, the ⁇ -direction drive unit 2037 rotates the rotating member 2361 around the axis BX in accordance with a control signal input from the control unit 2009.
  • the imaging units 2035a and 2035b image the alignment mark of the chip CP from vertically below the chip CP (in the -Z direction) with the chip CP disposed at a position on the substrate WT where the chip CP is bonded.
  • the imaging section 2035a is fixed to the rotating member 2361 via a camera Z direction drive section 2363 and a camera F direction drive section 2365.
  • the imaging section 2035b is also fixed to the rotating member 2361 via a camera Z direction drive section 2363 and a camera F direction drive section 2365. Thereby, the imaging units 2035a and 2035b rotate together with the rotating member 2361.
  • the mirror 2337 is fixed to the Z-axis moving member 2331, and the rotating member 2361 and the Z-axis moving member 2331 rotate in conjunction with each other. Therefore, since the relative positional relationship between the imaging units 2035a, 2035b and the mirror 2337 remains unchanged, the imaging light reflected by the mirror 2337 is guided to the imaging units 2035a, 2035b regardless of the rotational movement of the rotating member 2361. It will be destroyed. Further, the hollow portions 2415 and 2416 of the head 2033H rotate around the axis BX in conjunction with the rotation of the rotating member 2361. For example, as shown in FIG.
  • alignment marks MC2a and MC2b are provided at each corner of a square-shaped chip CP that faces each other across the center thereof.
  • the imaging units 2035a and 2035b are located on the diagonal line connecting the two corners where the alignment marks MC2a and MC2b of the chip CP are provided, the imaging units 35a and 35b pass through the hollow parts 415 and 416 to mark the alignment mark MC2a. , MC2b can be captured.
  • the imaging units 2035a and 2035b each include image sensors 2351a and 2351b, optical systems 2352a and 2352b, and a coaxial illumination system (not shown).
  • the imaging units 2035a and 2035b each take an image using reflected light of illumination light (for example, infrared light) emitted from a light source (not shown) of a coaxial illumination system. Note that the illumination light emitted in the horizontal direction from the coaxial illumination systems of the imaging units 2035a and 2035b is reflected by the inclined surfaces 2337a and 2337b of the mirror 2337, and its traveling direction is changed to vertically upward.
  • illumination light for example, infrared light
  • the light reflected by the mirror 2337 travels toward the photographing target portion including the chip CP held by the head 2033H and the substrate WT disposed opposite to the chip CP, and is reflected at each photographing target portion.
  • the reflected light from the photographing target portions of the chip CP and the substrate WT travels vertically downward, it is reflected again by the inclined surfaces 2337a and 2337b of the mirror 2337, and the direction of travel is changed to the horizontal direction, and the light is transmitted to the imaging section 2035a, It reaches 2035b.
  • the imaging units 2035a and 2035b then use the reflected light that has reached the imaging units 2035a and 2035b to image the target portions of the chip CP and the substrate WT, respectively.
  • the imaging units 2035a and 2035b respectively acquire photographed images including an image of an alignment mark provided on the chip CP and an image of an alignment mark provided on the substrate WT
  • the image signal is output to the control unit 2009.
  • the substrate WT is provided with two alignment marks MC1a and MC1b
  • the chip CP is also provided with two alignment marks MC2a and MC2b.
  • the control unit 2009 controls, based on the captured images including the images of the alignment marks MC1a, MC1b, MC2a, and MC2b captured by the imaging units 2035a and 2035b, The relative position of each chip CP with respect to the substrate WT is recognized.
  • a part of the light that is emitted from the imaging section 2035a, reflected by the mirror 2337, and passed through the hollow part 2415 of the head 2033H is transmitted through the tip tool 2411 and the tip CP.
  • a part of the light that has passed through the chip CP is reflected at a portion of the substrate WT where the alignment mark MC1a is provided.
  • the remaining part of the light that has passed through the hollow portion 2415 of the head 2033H is reflected at the portion of the chip CP where the alignment mark MC2a is provided.
  • the light reflected from the portion of the substrate WT where the alignment mark MC1a is provided or the portion of the chip CP where the alignment mark MC2a is provided is transmitted through the chip tool 2411 and passes through the hollow portion 2415 of the head 2033H. These lights that have passed through the hollow portion 2415 of the head 2033H are reflected by the mirror 2337 and enter the image sensor of the image capturing section 2035a.
  • the imaging unit 2035a uses the light incident on the imaging element to obtain a photographed image Ga including an image of the alignment mark MC2a provided on the chip CP and an image of the alignment mark MC1a provided on the substrate WT.
  • the bonding apparatus 2030 simultaneously recognizes the set of the alignment mark MC1a of the chip CP and the alignment mark MC2a of the substrate WT by one image capture without moving the focus axis using the same imaging unit 2035a.
  • a part of the light that is emitted from the imaging section 2035b, reflected by the mirror 2337, and passed through the hollow part 2416 of the head 2033H also passes through the tip tool 2411 and the tip CP.
  • a part of the light that has passed through the chip CP is reflected at a portion of the substrate WT where the alignment mark MC2b is provided.
  • the remaining part of the light that has passed through the hollow portion 2416 of the head 2033H is reflected at the portion of the chip CP where the alignment mark MC2b is provided.
  • the light reflected by the portion of the substrate WT where the alignment mark MC1b is provided or the portion of the chip CP where the alignment mark MC2b is provided is transmitted through the chip tool 2411 and passes through the hollow portion 2416 of the head 2033H. These lights that have passed through the hollow section 2416 of the head 2033H are reflected by the mirror 2337 and enter the image sensor of the imaging section 2035b. Then, the imaging unit 2035b uses the light incident on the imaging element to capture a captured image including an image of the alignment mark MC2b provided on the chip CP and an image of the alignment mark MC1b provided on the substrate WT.
  • the bonding apparatus 2030 simultaneously recognizes the set of the alignment mark MC1b of the chip CP and the alignment mark MC2b of the substrate WT by one image capture without moving the focus axis using the same imaging unit 2035b.
  • the camera F direction driving unit 2365 adjusts the focal position of the imaging units 2035a, 2035b by driving the imaging units 2035a, 2035b in the focus direction as shown by arrow AR221.
  • the camera Z-direction driving section 2363 drives the imaging sections 2035a and 2035b in the Z-axis direction, as shown by an arrow AR222.
  • the camera Z-direction drive unit 2363 normally moves the imaging unit so that the amount of movement of the Z-axis movement member 2331 in the Z-axis direction is the same as the amount of movement of the imaging units 2035a and 2035b in the Z-axis direction. 2035a and 2035b are moved.
  • the portions to be photographed by the imaging units 2035a and 2035b do not change before and after the movement.
  • the camera Z-direction driving unit 2363 moves the imaging units 2035a and 2035b such that the amount of movement of the imaging units 2035a and 2035b in the Z-axis direction is different from the amount of movement of the Z-axis direction moving member 2331 in the Z-axis direction. There is. In this case, since the relative positions of the imaging units 2035a, 2035b and the mirror 2337 in the Z direction change, the portions of the chip CP and the substrate WT to be imaged by the imaging units 2035a, 2035b are changed.
  • the stage unit 2031 includes a stage 2315 that holds the substrate WT in a posture in which the bonding surface WTf of the substrate WT to which the chip CP is bonded faces vertically downward (-Z direction), and a stage drive section 2320 that drives the stage 2315.
  • the stage 2315 is a substrate holder that can move in the X direction, Y direction, and rotational direction. Thereby, the relative positional relationship between the bonding part 2033 and the stage 2315 can be changed, and the bonding position of each chip CP on the substrate WT can be adjusted.
  • the stage drive unit 2320 is a substrate holder drive unit that includes an X-direction moving unit 2311, a Y-direction moving unit 2313, an X-direction drive unit 2321, and a Y-direction drive unit 2323, as shown in FIGS. 22A and 22B.
  • the X-direction moving section 2311 is fixed to the base member 2302 of the bonding device 2030 via two X-direction driving sections 2321.
  • the two X-direction drive units 2321 each extend in the X-direction and are spaced apart from each other in the Y-direction.
  • the X-direction drive section 2321 has a linear motor and a slide rail, and moves the X-direction moving section 2311 in the X direction relative to the fixed member 2301.
  • the Y-direction moving section 2313 is arranged below the X-direction moving section 2311 (-Z direction) via two Y-direction driving sections 2323.
  • the two Y-direction drive units 2323 each extend in the Y-direction and are spaced apart from each other in the X-direction.
  • the Y-direction drive section 2323 has a linear motor and a slide rail, and moves the Y-direction moving section 2313 in the Y direction relative to the X-direction moving section 2311.
  • the stage 2315 is fixed to the Y-direction moving section 2313.
  • the stage 2315 moves in the X direction and the Y direction in accordance with the movements of the X direction drive section 2321 and the Y direction drive section 2323. Further, an opening 2312 having a rectangular shape in plan view is provided at the center of the X-direction moving section 2311, and an opening 2314 having a rectangular shape in plan view is also provided at the center of the Y-direction moving section 2313. An opening 2316 that is circular in plan view is provided in the center of the stage 2315. Then, the marks on the substrate WT are recognized by the imaging unit 2041 through these openings 2312, 2314, and 2316. Note that an infrared ray irradiation unit (not shown) may be arranged to irradiate the substrate WT with infrared rays to heat the substrate WT.
  • the imaging unit 2041 is, for example, an infrared camera, and is arranged above the stage 2315, as shown in FIGS. 14 and 16. The imaging unit 2041 then detects the alignment marks (MC1a, MC1b in FIG. ). Further, the imaging unit 2041 generates a photographed image signal indicating a photographed image including an image of the alignment mark of the substrate WT, and outputs it to the control unit 2009. Based on the captured image captured by the imaging unit 2041, the control unit 2009 recognizes the relative position of the bonding position of the chip CP with respect to the head 2033H in a direction parallel to the surface of the substrate WT to which the chip CP is bonded.
  • the imaging unit 2041 includes an image sensor 2418, an optical system 2419, and a coaxial illumination system (not shown).
  • the imaging unit 2041 captures an image using reflected light of illumination light (for example, infrared light) emitted from a light source (not shown) of a coaxial illumination system.
  • illumination light for example, infrared light
  • the control unit 2009 is a control system including, for example, a personal computer, and includes a CPU and memory.
  • the memory stores programs executed by the CPU.
  • the memory also stores information indicating a first distance and a second distance, which will be described later.
  • the control unit 2009 includes a supply chip imaging unit 2015, imaging units 2035a and 2035b, an imaging unit 2041, a Z direction drive unit 2034, a ⁇ direction drive unit 2037, a piezo actuator 2333, a support unit drive unit 2432b, an X direction drive unit 2321, and a Y direction drive unit 2037. It is connected to the direction drive section 2323, the plate drive section 2392, the arm drive section 2395, the pickup mechanism 2111, and the holding frame drive section 2113.
  • the control unit 2009 converts captured image signals input from the supplied chip imaging unit 2015, imaging units 2035a, 2035b, and imaging unit 2041 into captured image information and acquires the captured image information. Furthermore, by executing the program stored in the memory, the control unit 2009 controls the Z-direction drive unit 2034, the ⁇ -direction drive unit 2037, the piezo actuator 2333, the support unit drive unit 2432b, the X-direction drive unit 2321, and the Y-direction drive unit. 2323, plate drive section 2392, arm drive section 2395, pickup mechanism 2111, and holding frame drive section 2113 by outputting control signals to each of these operations.
  • the control unit 2009 calculates the relative position error between the substrate WT and the chip CP from the photographed images of the alignment marks MC1a, MC1b, MC2a, and MC2b while the substrate WT and the chip CP are in contact with each other. For example, as shown in FIG. 20C, the control unit 2009 recognizes the positions of a pair of alignment marks MC1a and MC2a provided on the chip CP and the substrate WT based on the photographed image Ga, and uses the vector correlation method to identify the positions of the alignment marks MC1a and MC2a. , MC2a are calculated.
  • the control unit 2009 controls the chip CP and the substrate WT based on the captured image including the image of the alignment mark MC2b provided on the chip CP and the image of the alignment mark MC1b provided on the substrate WT.
  • the positions of the provided set of alignment marks MC1b and MC2b are recognized, and the amounts of positional deviation ⁇ xb and ⁇ yb between the alignment marks MC1b and MC2b are calculated by the vector correlation method.
  • the control unit 90 calculates the horizontal displacement amounts ⁇ x, ⁇ y, and ⁇ of the chip CP with respect to the substrate WT based on the displacement amounts ⁇ xa, ⁇ ya, ⁇ xb, and ⁇ yb.
  • control unit 2009 causes the Z-direction drive unit 2034 and the ⁇ -direction drive unit 2037 of the head drive unit 2036 and the X-direction drive unit 2321 and Y-direction drive unit 2323 of the stage 2031 to move the substrate.
  • the position and orientation of the chip CP with respect to the WT are corrected.
  • control unit 2009 causes the holding frame driving unit 2113 to correct the position and tilt of the sheet holding frame 2112 around the Z-axis according to the position and orientation of the chip CP cut out by the pickup mechanism 2111.
  • the control unit 2009 recognizes the position and orientation of the chip CP based on the captured image captured by the supplied chip imaging unit 2015.
  • This chip bonding system 2 is one that successively bonds a plurality of chips CP to one substrate WT, for example, and the plurality of chips CP are sequentially supplied from a chip supply device 2010 to a bonding device 2030.
  • the chip transport device 2039 directs the plate 2391 toward the chip supply section 2011 side.
  • the chip supply device 2010 moves the pickup mechanism 2111 vertically upward to cut out one chip CP from the side opposite to the plurality of chips CP in the sheet TE, and removes the one chip CP from the sheet TE. state.
  • the chip transport device 2039 causes the arm 2394 to protrude from the plate 2391.
  • the needle 2111a of the pickup mechanism 2111 is placed between the two leg pieces 2393a of the chip holding part 2393, and the cut out chip CP is placed vertically above the chip holding part 2393, as shown in FIG. 23A.
  • the chip supply device 2010 transfers the chip CP from the pickup mechanism 2111 to the chip holding section 2393 by moving the pickup mechanism 2111 vertically downward.
  • the chip transport device 2039 rotates the plate 2391 to place the chip holding section 2393 at the tip of the arm 2394 of the plate 2391 at the transfer position Pos1 vertically above the head 2033H of the bonding section 2033. That is, the chip transport device 2039 transports the chip CP received from the chip supply device 2010 to the transfer position Pos1 where the chip CP is transferred to the head 2033H. Then, the head driving section 2036 of the bonding device 2030 moves the bonding section 2033 vertically upward to bring the head 2033H closer to the chip holding section 2393 of the chip transporting device 2039. Next, the support part driving part 2432b moves the chip support part 2432a vertically upward.
  • the chip CP held by the chip holding part 2393 is placed vertically above the chip holding part 2393 while being supported by the upper end of the chip supporting part 2432a, as shown in FIG. 23B.
  • the chip transfer device 2039 causes the arm 2394 to sink into the plate 2391.
  • the support part driving part 2432b moves the chip support part 2432a vertically downward.
  • the chip CP is held at the tip of the head 2033H.
  • the distance between the alignment marks MC2a, MC2b of the chip CP and the alignment marks MC1a, MC1b of the substrate WT is longer than a preset first distance that falls within the depth of field of the imaging units 2035a, 2035b. are also spaced apart by a long second distance.
  • the chip supply device 2010 and the chip transport device 2039 repeat the above-described operations, a plurality of chips CP are sequentially supplied to the bonding device 2030.
  • the bonding device 2030 bonds the chip CP to the substrate WT.
  • a bonding method in which the bonding apparatus 2030 bonds the chip CP to the substrate WT will be described with reference to FIGS. 24 and 25.
  • the substrate WT and the chip CP are respectively indicated by arrows AR2011 in FIG.
  • the imaging units 2035a and 2035b vibrate in the vertical direction and in the direction perpendicular to the vertical direction, but this does not affect the measurement of the amount of positional deviation. is vibration in the vertical direction shown by arrow AR2013.
  • the substrate WT and the chip CP each vibrate with a vibration waveform having a frequency of 10 Hz or less or a vibration amplitude of 1 ⁇ m or less.
  • the bonding apparatus 2030 measures the amount of relative positional deviation between the substrate WT and the chip CP (step S201).
  • the bonding device 2030 transfers the chip CP from the chip transport device 39 to the head 33H, and in a state where the chip CP and the substrate WT are separated by the aforementioned second distance, the bonding device 2030 aligns the alignment marks MC2a and MC2b of the chip CP. Alignment marks MC1a and MC1b on the substrate WT are imaged.
  • the imaging units 2035a and 2035b image the alignment marks MC2a and MC2b on the chip CP
  • the imaging unit 2041 images the alignment marks MC1a and MC1b on the substrate WT.
  • the imaging units 2035a, 2035b and the imaging unit 2041 image the alignment marks MC2a, MC2b of the chip CP and the alignment marks MC1a, MC1b of the substrate WT, respectively.
  • the bonding device 2030 determines the relative relationship between the substrate WT and the chip CP based on the photographed images of the alignment marks MC1a and MC1b and the photographed images of the alignment marks MC2a and MC2b respectively taken by the imaging sections 2035a and 2035b and the imaging section 2041.
  • the amount of positional deviation is measured (step S201).
  • the bonding apparatus 2030 aligns the chip CP with respect to the substrate WT by moving the stage 2315 in the horizontal direction with respect to the head 2033H so as to eliminate the measured positional deviation amount (step S202).
  • the bonding device 2030 moves the stage 2315 in the X direction, the Y direction, and the rotation direction around the Z axis so that the positional deviation amounts ⁇ x, ⁇ y, and ⁇ are eliminated while the head 2033H is fixed. That is, the bonding device 2030 moves the chip CP relatively to the substrate WT in a horizontal direction, that is, in a direction parallel to the bonding surface WTf, based on the calculated positional shift amount.
  • the bonding device 2030 moves the head 2033H holding the chip CP vertically upward to bring the chip CP even closer to the substrate WT (step S203).
  • the bonding apparatus 2030 determines that the distance between the alignment marks MC2a, MC2b of the chip CP and the alignment marks MC1a, MC1b of the substrate WT is equal to the depth of field of the imaging units 2035a, 2035b.
  • the chip CP is brought close to the substrate WT until the chip CP is separated by a preset first distance G2 that falls within the range.
  • the first distance G2 is set, for example, to a distance in the range of 10 ⁇ m to 100 ⁇ m.
  • the bonding device 2030 repeatedly measures the amount of positional deviation of the chip CP with respect to the substrate WT during a preset waveform measurement period while the chip CP and the substrate WT are separated from each other by the first distance G2.
  • a measurement process is executed (step S204).
  • the length of the waveform measurement period is set to be longer than at least the vibration period of the chip CP with respect to the substrate WT, and is set to be, for example, 1 sec or more.
  • the bonding device 2030 repeatedly measures the amount of positional deviation at preset time intervals shorter than the vibration period of the chip CP with respect to the substrate WT.
  • the alignment marks MC1a, MC2a and the alignment marks MC1b, MC2b are spaced apart by a distance G2 that falls within the depth of field of the imaging units 2035a, 2035b, and the imaging units 2035a, 2035b
  • the alignment marks MC1a and MC2a and the alignment marks MC1b and MC2b are respectively placed at positions where they can be imaged.
  • the imaging units 2035a and 2035b capture images of the corresponding set of alignment marks MC1a and MC2a and the set of alignment marks MC1b and MC2b at the same timing at each repeated measurement timing.
  • the imaging units 2035a and 2035b are controlled to capture images at the same time. Then, the bonding apparatus 2030 calculates the amount of positional deviation of the substrate W2 with respect to the substrate W1 based on the captured images captured by the imaging units 2035a and 2035b. Here, the bonding device 2030 calculates a positional deviation amount WD1 of the alignment mark MC1a with respect to the alignment mark MC2a or a positional deviation amount WD2 of the alignment mark MC1b with respect to the alignment mark MC2b, as shown in FIG. 25B, for example.
  • the bonding apparatus 2030 executes a vibration waveform identification step of identifying the vibration waveform of the vibration of the chip CP relative to the substrate WT from the time transition of the amount of positional deviation measured during the waveform measurement period (Ste S205).
  • the bonding device 2030 identifies the vibration waveforms of the vibrations of the chip CP in the horizontal direction and the rotational direction relative to the substrate WT from the temporal change in the amount of positional deviation in the horizontal direction and the rotational direction.
  • the bonding device 2030 specifies the positional deviation amounts ⁇ x, ⁇ y, ⁇ , vibration amplitude, and vibration period corresponding to the vibration center of the vibration waveform described above.
  • the bonding device 2030 determines whether all of the positional deviation amounts ⁇ x, ⁇ y, and ⁇ corresponding to the vibration center of the identified vibration waveform are equal to or less than preset positional deviation amount thresholds ⁇ xth, ⁇ yth, and ⁇ th. (Step S206). Here, the bonding device 2030 determines that any one of the positional deviation amounts ⁇ x, ⁇ y, and ⁇ corresponding to the vibration center of the specified vibration waveform is larger than the preset positional deviation amount thresholds ⁇ xth, ⁇ yth, and ⁇ th. (Step S206: No).
  • the bonding device 2030 performs a correction movement of the chip P with respect to the substrate WT in order to make the positional deviation amounts ⁇ x, ⁇ y, and ⁇ corresponding to the vibration center of the identified vibration waveform all below the positional deviation amount thresholds ⁇ xth, ⁇ yth, and ⁇ th.
  • the amount is calculated (step S207).
  • the control unit 2009 calculates a corrected movement amount that moves the vibration center of the identified vibration waveform by the positional deviation amounts ⁇ x, ⁇ y, and ⁇ in the direction opposite to the positional deviation direction.
  • the bonding apparatus 2030 performs alignment so as to correct the relative positional deviation amounts ⁇ x, ⁇ y, and ⁇ of the chip CP with respect to the substrate WT (step S208).
  • the bonding apparatus 2030 moves the head 2033H in the X direction, the Y direction, and the rotational direction around the Z axis by the corrected movement amount calculated in step S207 while the position of the substrate WT is fixed.
  • the bonding device 2030 adjusts the relative position of the chip CP with respect to the substrate WT so that the positional deviation amounts ⁇ x, ⁇ y, and ⁇ become small while the chip CP and the substrate WT are separated from each other.
  • the bonding device 2030 executes the process of step S204 again.
  • step S206 determines in step S206 that all of the calculated positional deviation amounts ⁇ x, ⁇ y, and ⁇ are equal to or less than preset positional deviation amount thresholds ⁇ xth, ⁇ yth, and ⁇ th (step S206: Yes).
  • the bonding device 2030 estimates the target timing at which the amount of positional deviation of the chip CP with respect to the substrate WT becomes the target amount, that is, the amount of positional deviation corresponding to the vibration center of the vibration waveform, based on the specified vibration waveform.
  • An estimation process is executed (step S209).
  • the bonding device 2030 estimates the target timing at which the amount of positional deviation of the chip CP with respect to the substrate WT corresponds to the vibration center of the vibration waveform.
  • the bonding apparatus 2030 executes a contact process of bringing the chip CP into contact with the substrate WT based on the estimated target timing (step S210).
  • the bonding device 2030 executes a bonding process of bonding the chip CP to the substrate WT by pressing the chip CP directly onto the substrate WT (step S211).
  • the chip bonding system 2 captures an image including at least the alignment marks MC2a and MC2b using the imaging unit 2041, thereby determining whether the chip CP is bonded to the substrate WT.
  • the bonding device 2030 determines that the chip CP is bonded to the substrate WT when the captured image captured by the imaging unit 2041 includes alignment marks MC1a and MC1b as well as alignment marks MC2a and MC2b. On the other hand, if the alignment marks MC1a and MC1b are not included in the captured image captured by the imaging unit 2041, the bonding device 2030 determines that the chip CP is not bonded to the substrate WT.
  • the bonding apparatus 2030 determines that the chip CP is bonded to the substrate WT (step S212: Yes)
  • the bonding apparatus 2030 directly proceeds to the process of bonding the next chip CP to the substrate WT.
  • the bonding apparatus 2030 determines that the chip CP is not bonded to the substrate WT (step S212: No). In this case, the bonding device 2030 determines the holding state of the chip CP by the head 2033H based on whether the alignment marks MC2a, MC2b are included in the captured images captured by the imaging units 2035a, 2035b (step S213). Here, the bonding device 2030 determines that the chip CP is held by the head 2033H when the alignment marks MC2a and MC2b are included in the captured images captured by the imaging units 2035a and 2035b.
  • the bonding device 2030 determines that the chip CP is not held by the head 2033H. After determining the state in which the chip CP is held by the head 33H, the bonding apparatus 2030 moves to a process of bonding the next chip CP to the substrate WT.
  • the bonding device 2030 determines that the chip CP is not bonded to the substrate WT and the chip CP is held by the head 2033H
  • the chip bonding system 2 re-bonds the chip CP held by the head 2033H.
  • the chip is transferred to the chip holding section 2393 of the chip transport device 2039.
  • the chip bonding system 2 rotates the plate 2391 to place the chip holding section 2393 vertically above the chip collecting section (not shown).
  • the chip bonding system 2 causes the chip collecting section to collect the chip CP held by the chip holding section 2393.
  • a series of operations from steps S201 to S213 are repeatedly executed every time a new chip CP is transferred from the chip transport device 2039 to the bonding device 2030.
  • the bonding device 2030 causes particles generated when bonding the chip CP to the substrate WT to fall vertically downward, and also moves the stage 2315 holding the substrate WT to the stage 2315 on which each of the plurality of chips CP on the substrate WT is mounted.
  • a plurality of chips CP are successively joined by sequentially moving the parts so that they are arranged vertically above the chip CP held by the head 2033H.
  • the vibration waveform of the vibration of the chip CP with respect to the substrate WT is specified from the time transition of the amount of positional deviation of the chip CP with respect to the substrate WT, and the specified vibration Based on the waveform, a target timing at which the amount of positional deviation of the chip CP with respect to the substrate WT reaches the target amount is estimated. Then, the chip bonding system 2 brings the chip CP into contact with the substrate WT based on the estimated target timing. Thereby, even if the chip CP vibrates at a relatively low frequency relative to the substrate WT, the chip CP can be bonded to the substrate WT with high positional accuracy.
  • the alignment marks MC1a, MC1b and the alignment marks MC2a, MC2b are separated by the first distance G1 that falls within the depth of field of the imaging units 2035a, 2035b.
  • the alignment marks MC1a, MC1b, MC2a, and MC2b are simultaneously imaged by the imaging units 2035a and 2035b.
  • the chip bonding system 2 calculates the relative positional shift amount between the substrate WT and the chip CP from the captured images of the alignment marks MC1a, MC1b, MC2a, and MC2b captured by the imaging units 2035a and 2035b.
  • the chip CP can be bonded to the substrate WT with high positional accuracy.
  • an imaging unit 9035b for imaging alignment marks MC1a and MC1b provided on the substrate WT arranged vertically downward, and a mirror 9337 is moved in the horizontal direction between the chip CP and the substrate WT.
  • the mirror 9337 is placed at the position shown in FIG.
  • the operating state may become unstable and the positions of the imaging units 9035a and 9035b may change.
  • the set of alignment marks MC2a, MC1a and the set of alignment marks MC2b, MC1b are sequentially imaged while moving the mirror 9337, the set of alignment marks MC2a, MC1a and the set of alignment marks MC2a, MC1a are imaged in order.
  • a time difference occurs in the timing of imaging the set of marks MC2b and MC1b, and vibrations of the imaging units 9035a and 9035b affect the calculated positional shift amount.
  • a set of alignment mark MC2a (MC2b) provided on the chip CP and alignment mark MC1a (MC1b) provided on the substrate WT is integrated into one imaging unit. 35a (35b) simultaneously, it is not affected by the positional shift of the imaging section 35a (35b).
  • the imaging units 35a and 35b are arranged corresponding to the set of alignment marks MC2a and MC1a and the set of alignment marks MC2b and MC1b, respectively, and the imaging units The influence of vibrations of 35a and 35b can be canceled.
  • the chip CP and the substrate WT are heated using infrared rays to a temperature at which the chip CP and the substrate WT are bonded, and the chip CP and the substrate WT are thermally expanded. Since it is possible to calculate the amount of positional deviation between the chip CP and the substrate WT, it is possible to always accurately calculate the amount of positional deviation and correct the positional deviation of the chip CP with respect to the substrate WT, regardless of the states of the chip CP and the substrate WT.
  • the bonding apparatus 2030 according to the present embodiment, particles generated during bonding of the chips CP fall vertically downward from the chips CP and do not adhere to the bonding surface of the substrate WT. For this reason, when a plurality of chips CP are successively bonded around each other as described above, a clean area to which particles are not attached around the chip CP bonded to the substrate WT on the bonding surface of the substrate WT is chips CP can be joined. Therefore, it is possible to suppress the generation of voids between the chip CP and the substrate WT, and to bond the chip CP to the substrate WT well.
  • the stage 2315 of the bonding apparatus 2030 holds the substrate WT in a posture such that the bonding surface WTf of the substrate WT faces vertically downward.
  • the chip CP separates from the substrate WT as the head 2033H moves vertically downward. Therefore, the chip CP remaining on the bonding surface WTf of the substrate WT without being bonded is blown to a location where another chip CP is bonded, and interferes with the other chip CP when bonding the other chip CP to the substrate WT. You can prevent it from happening.
  • the captured image captured by the imaging unit 2041 includes alignment marks MC2a and MC2b as well as alignment marks MC1a and MC1b.
  • the chip bonding system 2 determines whether or not the alignment marks MC2a and MC2b are included in the captured images captured by the imaging units 2035a and 2035b. It is determined whether the CP is held by the head 2033H. Thereby, when it is determined that the chip CP that could not be bonded to the substrate WT is held by the head 2033H, the chip CP can be collected.
  • the present invention is not limited to the configuration of the above-described embodiments.
  • the head 402 holding the substrate W2 is brought close to the stage 401 holding the substrate W1, and the substrates W1 and W2 are moved as they are at the target timing described above.
  • the entire joint surfaces of the two may be brought into surface contact with each other.
  • the bonding apparatus can stop the vibration of the substrate W2 relative to the substrate W1 when the bonding surfaces of the substrates W1 and W2 are brought into surface contact with each other at the above-mentioned target timing.
  • the influence of vibration on the amount of displacement of the substrate W2 with respect to the substrate W1 can be reduced.
  • the bonding wave naturally spreads to the peripheral portions of the substrates W1 and W2. It is preferable to take a long time to contact and bond the entire surface.
  • a chip CP having a relatively small area is brought into surface contact with the substrate WT, the entire bonding surface of the chip CP comes into contact with the substrate WT at approximately the same time, and the area is also relatively small, so that the distortion is small. Therefore, a configuration may be adopted in which the chip CP is brought into surface contact with the substrate WT.
  • the bonding apparatus 1 images at least one set of alignment marks MK1a, MK2a provided on the substrate W1 and alignment marks MK1b, MK2b provided on the substrate W2, and detects the vibration waveforms thereof.
  • the positional deviation amounts ⁇ x, ⁇ y, and ⁇ corresponding to the center of vibration are specified, and when these become target values, the substrates W1 and W2 are brought into contact with each other.
  • a vibration waveform identification step in which the bonding apparatus 1 identifies the positional deviation amount ⁇ x, ⁇ y, ⁇ , vibration amplitude, and vibration period corresponding to the vibration center of the vibration waveform of the vibration of the substrate W2 in the horizontal direction and the rotational direction with respect to the substrate W1.
  • the bonding apparatus 1 may generate an intermediate positional deviation amount corresponding to the intermediate value of each of the plurality of positional deviation amounts ⁇ x, ⁇ y, and ⁇ measured in the positional deviation amount measuring process instead of the vibration waveform identification process. It may be determined whether or not all of the calculated positional deviation amount intermediate values are equal to or less than the positional deviation amount thresholds ⁇ xth, ⁇ yth, and ⁇ th.
  • the welding apparatus 1 executes the vibration waveform identification step described above to identify the vibration waveform. After that, the timing estimation step described above may be executed.
  • the bonding apparatus 2030 also includes positional deviation amounts ⁇ x, ⁇ y, ⁇ corresponding to the vibration center of the vibration waveform of the horizontal and rotational vibrations of the chip CP relative to the substrate WT, vibration amplitude, and An example of specifying the vibration period has been explained.
  • the present invention is not limited to this, and the bonding device 2030 calculates an intermediate value of the positional deviation amount corresponding to the intermediate value of each of the plurality of positional deviation amounts ⁇ x, ⁇ y, and ⁇ measured in the positional deviation amount measuring step, and calculates the calculated positional deviation. It may be determined whether all of the intermediate values are equal to or less than the positional deviation amount thresholds ⁇ xth, ⁇ yth, and ⁇ th.
  • the bonding apparatus 1 measures the alignment marks MK1a, MK2a and the alignment marks MK1b, MK2b during a preset waveform measurement period with the substrates W1 and W2 spaced apart from each other in the positional deviation measurement step.
  • the intermediate value of the position coordinates obtained by repeatedly measuring the position coordinates of each of the positions may be calculated.
  • the bonding device 1 calculates the positional deviation amounts ⁇ x, ⁇ y, and ⁇ from the difference between the intermediate value of the position coordinates of the alignment marks MK1a and MK2a and the intermediate value of the position coordinates of the alignment marks MK1b and MK2b. It may be something that does.
  • the bonding apparatus 1 repeatedly determines the position coordinates of the alignment marks MK1a, MK2a and the alignment marks MK1b, MK2b during a preset waveform measurement period with the substrates W1 and W2 separated from each other.
  • the vibration waveforms of the vibrations of the alignment marks MK1a, MK2a and the vibration waveforms of the vibrations of the alignment marks MK1b, MK2b may be specified from the time transition of the position coordinates obtained by measurement.
  • the bonding device 1 specifies the position coordinates corresponding to the vibration centers of the vibration waveforms of the alignment marks MK1a, MK2a and the position coordinates corresponding to the vibration centers of the vibration waveforms of the alignment marks MK1b, MK2b, and
  • the positional deviation amounts ⁇ x, ⁇ y, and ⁇ may be calculated based on the position coordinates of the marks MK1a, MK2a and the alignment marks MK1b, MK2b, respectively.
  • the positional deviation amounts ⁇ x, ⁇ y, and ⁇ are calculated from the intermediate values of the respective position coordinates of the alignment marks MK1a, MK2a and the alignment marks MK1b, MK2b, the positional deviation amounts ⁇ x, ⁇ y, and ⁇ are Calculation accuracy can be improved.
  • the distance measuring section 490 measures the distance between the stage 401 and the head 402.
  • the present invention is not limited to this, and the distance measurement section may measure the distance between the substrate W1 held on the stage 401 and the head 402, or the distance between the stage 401 and the substrate W2 held on the head 402. It may be something. Alternatively, the distance measuring section may measure the distance between the substrate W1 held on the stage 401 and the substrate W2 held on the head 402.
  • Embodiment 1 an example has been described in which the bonding apparatus 1 executes the above-mentioned attitude adjustment process every time the positioning process is performed.
  • the present invention is not limited to this.
  • the posture adjustment process may be executed only once every time the substrates W1 and W2 are joined a preset number of times, or every time a preset period elapses. You can.
  • the present invention is not limited to this, and the substrates W1 and W2 may be bonded together under atmospheric pressure. .
  • the distance by which the head 2033H measures the distance between a plurality of portions on the bonding surface CPf of the chip CP and a portion opposing the aforementioned plurality of portions on the bonding surface WTf of the substrate WT. It may also include a measuring section.
  • the distance measuring section is, for example, a laser distance meter, and measures the distance between the head 2033H and the lower surface of the substrate WT without contacting the head 2033H and the stage 2315.
  • the distance measuring unit is configured to detect the reflected light from the lower surface of the substrate WT when a laser beam is irradiated from below the transparent tip tool 2411 toward the substrate WT held on the stage 2315, and the tip surface of the tip tool 2411, for example.
  • the distance between the head 2033H and the lower surface of the substrate WT is measured from the difference between the reflected light and the reflected light.
  • the control section 2009 controls the above-mentioned three steps so that the bonding surface CPf of the chip CP held by the head 2033H is parallel to the bonding surface WTf of the substrate WT.
  • one piezo actuator 2333 may be controlled.
  • a configuration includes a bonding device having a head 3033H provided with a pressing mechanism 3431 that presses the center part of the chip CP vertically upward while holding the peripheral part of the chip CP. It may be. Note that in FIGS. 27A and 27B, the same components as in the embodiment are given the same reference numerals as in FIGS. 17A and 17B.
  • the head 3033H includes a tip tool 3411, a head main body portion 3413, a tip support portion 3432a, and a support portion drive portion 3432b.
  • the tip tool 3411 is made of a material (for example, silicon (Si)) that transmits photographing light (infrared light, etc.).
  • the head main body portion 3413 includes a holding mechanism 2440 and a pressing mechanism 3431 that presses the center portion of the chip CP.
  • the pressing mechanism 3431 includes a pressing part 3431a that is movable in the vertical direction at the center of the distal end surface of the head main body part 3413, and a pressing driving part 3431b that drives the pressing part 3431a.
  • the head body portion 3413 also has a suction portion (not shown) for fixing the tip tool 3411 to the head body portion 3413 by vacuum suction.
  • the tip tool 3411 has a through hole 2411a formed in a position corresponding to the holding mechanism 2440 of the head body portion 3413, a through hole 3411b into which the pressing portion 3431a is inserted, and a tip support portion 3432a into which the tip support portion 3432a is inserted. It has a through hole 3411c.
  • the chip support portion 3432a has, for example, a pin-like shape, is provided at the tip of the head 3033H, and is movable in the vertical direction.
  • the chip support portion 3432a supports the side of the chip CP opposite to the bonding surface CPf side.
  • four chip supporting parts 3432a are provided so as to surround the pressing part 3431a.
  • the support part driving part 2432b drives the chip support part 3432a in the vertical direction.
  • the support unit driving unit 3432b moves the chip support unit 3432a while the chip holding unit 2393 of the chip transport device 2039 is located at the transfer position Pos1 with the chip CP held, and the chip support unit 2432a supports the chip CP. It is moved vertically above the chip holding section 2393. Thereby, the chip CP is transferred from the chip holding section 2393 of the chip transport device 2039 to the head 3033H.
  • the bonding device 2 drives the pressing part 3431a in the vertical direction by the pressing driving part 3431b while the peripheral part of the chip CP is held by the chip tool 3411 (see arrow AR301 in FIG. 28). (See arrow AR302 in FIG. 28). As a result, the chip CP is bent such that its central portion protrudes more toward the substrate WT than its peripheral portion. Then, as shown by an arrow AR303, the head 3033H approaches the substrate WT with the chip CP bent, so that the center portion of the chip CP comes into contact with the bonding surface WTf of the substrate WT.
  • the bonding apparatus moves the head 3033H in the vertical direction to bring it close to the substrate WT to a preset distance, and then bends the chip CP to bring the center part of the chip CP into contact with the bonding surface WTf of the substrate WT. You can. Thereafter, the bonding device bonds the chip CP to the substrate WT by moving the head 3033H further closer to the substrate WT while recessing the pressing portion 3431a vertically downward.
  • the chip bonding system 2 in which the chip CP is bonded to the substrate WT by bringing the bonding surface CPf of the activated chip CP into contact with the bonding surface WTf of the substrate WT.
  • the present invention is not limited to this, and the chip CP may be bonded to a composite substrate in which a resin layer is formed on one surface of the substrate WT, for example.
  • the chip bonding system 2 may include a bonding device having a head 4033H in which a recess 4411c is provided in the portion of the chip tool 4411 that holds the chip CP, as shown in FIG. 29, for example. good.
  • the recessed portion 4411c is provided in a portion of the chip CP that corresponds to a region where the tip of the needle 2111a of the pickup mechanism 2111 of the chip supply section 2011 comes into contact.
  • the chip CP can be bonded well to the substrate WT.
  • the imaging unit 2041 captures alignment marks MC1a and MC1b on the substrate WT with the chip CP and the substrate WT separated by a second distance.
  • An example of imaging has been explained.
  • the present invention is not limited to this, and for example, the chip bonding system may image the alignment marks MC1a and MC1b on the substrate WT using the imaging units 2035a and 2035b before holding the chip CP in the head 2033H.
  • the control unit 2009 stores the captured images of the alignment marks MC1a and MC1b on the substrate WT in the main storage unit or the auxiliary storage unit.
  • control unit 2009 uses the imaging units 2035a and 2035b to image the alignment marks MC1a and MC1b of the substrate WT, and then uses the imaging units 2035a and 2035b to image the alignment marks MC1a and MC1b of the chip CP while holding the chip CP in the head 2033H. Image the MC2b. Then, the control unit 2009 uses the captured images of the alignment marks MC1a, MC1b of the substrate WT obtained by imaging by the imaging units 2035a, 2035b and the captured images of the alignment marks MC2a, MC2b of the chip CP to determine the relative position. Calculate the amount of deviation.
  • the alignment marks MC1a, MC1b of the substrate WT are applied only once when the substrate WT is transferred to the stage 2315. is imaged and stored in the memory of the control unit 2009, and when the stage 2315 moves, the positions of the alignment marks MC1a and MC1b are predicted from the information on the alignment marks MC1a and MC1b of the substrate WT stored in the memory.
  • the imaging units 2035a and 2035b respectively use reflected light of illumination light (for example, infrared light) emitted from a light source of a coaxial illumination system to mark alignment marks MC1a and MC1b of the chip CP.
  • illumination light for example, infrared light
  • An example of acquiring an image including the alignment marks MC2a and MC2b of the substrate WT has been described.
  • the present invention is not limited to this, and for example, the alignment marks MC1a and MC1b of the chip CP and the alignment marks MC1b of the substrate WT can be aligned using transmitted light that passes through the chip CP from a light source provided on the side opposite to the imaging units 2035a and 2035b.
  • the configuration may be such that an image including alignment marks MC2a and MC2b is acquired.
  • the imaging unit 2041 disposed vertically above the substrate WT captures an image including the alignment marks MC1a, MC1b, MC2a, and MC2b using coaxial light from the imaging units 2035a and 2035b that enters the lower side of the chip CP.
  • the configuration may be such that the information is acquired.
  • the imaging units 2035a and 2035b may be configured to acquire images including the alignment marks MC1a, MC1b, MC2a, and MC2b using coaxial light emitted from the imaging unit 2041 arranged vertically above the substrate WT. You can. Further, when the substrate WT is transparent to visible light, the coaxial light emitted from the imaging units 2035a, 2035b or the imaging unit 2041 may be visible light.
  • the imaging unit 2041 may be configured to acquire an image including the alignment marks MC1a, MC1b of the chip CP and the alignment marks MC2a, MC2b of the substrate WT.
  • the alignment marks MC1a, MC1b of the chip CP and the alignment marks MC2a, MC2b of the substrate WT are placed in the same imaging section using infrared light.
  • the alignment marks MC1a, MC1b of the chip CP and the alignment marks MC2a, MC2b of the substrate WT are simultaneously recognized using the imaging units 2035a, 2035b on the chip CP side.
  • the bonding device 2030 measures the distance between the bonding surface WTf of the substrate WT and the bonding surface CPf of the chip CP at three or more locations on the bonding surface (flat surface) CPf of the chip CP. It may also include a distance measuring section (not shown).
  • the distance measuring section includes, for example, laser light sources (not shown) disposed at a plurality of locations on the side of the head 33H, and a light receiving section (not shown) that receives laser light emitted from each of the plurality of laser light sources and reflected by the substrate WT. ).
  • the head driving section 2036 may move the head 2033H holding the chip CP closer to the stage unit 2031 holding the substrate WT based on the distance measured by the distance measuring section. Furthermore, the three piezo actuators 2333 operate between the bonding surface WTf of the substrate WT and the chip CP based on the distance between the bonding surface WTf of the substrate WT and the bonding surface CPf of the chip CP measured by the distance measuring section. At least one of the distance and the inclination of the chip CP with respect to the bonding surface WTf of the substrate WT may be adjusted.
  • the alignment marks MC1a and MC1b of the chip CP are provided on the bonding surface CPf side, but the invention is not limited to this. may be provided on the opposite surface.
  • the stage 2315 is moved in a direction perpendicular to the vertical direction without moving the head 2033H in a direction perpendicular to the vertical direction, but the present invention is not limited to this.
  • the stage 2315 may be moved in a direction orthogonal to the vertical direction, but the stage 2315 may not be moved in a direction orthogonal to the vertical direction.
  • each of the head 2033H and the stage 2315 may be configured to move in a direction perpendicular to the vertical direction.
  • the alignment marks MC2a and MC2b of the substrate WT have a circular shape
  • the shape of the alignment marks MC2a and MC2b of the substrate WT is not limited to a circular shape, and may be, for example, a rectangular shape, Other shapes such as a triangular shape may also be used.
  • the shapes of the alignment marks MC2a, MC2b on the substrate WT are not circular, components in the XY direction and the rotational direction can be recognized with one alignment mark MC2a, MC2b.
  • the amount of positional deviation may be calculated by simultaneously capturing images of one alignment mark on the substrate WT and one alignment mark on the chip CP.
  • the present invention is suitable for manufacturing, for example, CMOS image sensors, memories, arithmetic elements, and MEMS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

A joining method for joining a substrate (W1) and a substrate (W2) that is vibrating relative to the substrate (W1), the method comprising: a vibration waveform identification step for identifying, from a time course of a displacement amount, a vibration waveform of the vibration of the substrate (W2) relative to the substrate (W1); a timing estimation step for estimating a target timing at which the displacement amount of the substrate (W2) relative to the substrate (W1) becomes a target amount, on the basis of the vibration waveform; and a contact step for bringing the substrate (W2) into contact with the substrate (W1), on the basis of the estimated target timing.

Description

接合方法および接合装置Bonding method and device
 本発明は、接合方法および接合装置に関する。 The present invention relates to a bonding method and a bonding device.
 2つの被接合物の一方をステージに保持し他方をヘッドに保持した状態で、両被接合物の位置ずれ量を測定し、その位置ずれ量に基づいて被接合物の位置合わせを行った後、被接合物同士を接合する接合装置が提案されている(例えば特許文献1参照)。 After measuring the amount of misalignment of both objects with one of them held on the stage and the other on the head, and aligning the objects based on the amount of misalignment. , a joining device for joining objects to be joined has been proposed (see, for example, Patent Document 1).
特開2011-066287号公報Japanese Patent Application Publication No. 2011-066287
 ところで、接合装置の設置場所によっては接合装置に振動が生じる場合がある。この場合、特許文献1に記載された接合装置では、ヘッドがステージに対して相対的に振動してしまい、両被接合物の相対的な位置ずれ量を精度良く測定できない虞がある。そして、両被接合物の位置ずれ量の測定精度が低いと、両被接合物を高い位置精度で接合することが困難になる。 By the way, depending on the installation location of the bonding device, vibration may occur in the bonding device. In this case, in the bonding apparatus described in Patent Document 1, the head vibrates relative to the stage, and there is a possibility that the relative displacement amount of the two objects to be bonded cannot be accurately measured. If the measurement accuracy of the amount of positional deviation of both objects to be welded is low, it becomes difficult to join both objects to be welded with high positional accuracy.
 本発明は、上記事由に鑑みてなされたものであり、被接合物同士を高い位置精度で接合することができる接合方法および接合装置を提供することを目的とする。 The present invention has been made in view of the above reasons, and an object of the present invention is to provide a joining method and a joining apparatus that can join objects to be joined with high positional accuracy.
 上記目的を達成するため、本発明に係る接合方法は、
 第1被接合物と前記第1被接合物に対して相対的に振動している第2被接合物とを接合する接合方法であって、
 前記第2被接合物の前記第1被接合物に対する位置ずれ量の時間推移から前記第2被接合物の前記第1被接合物に対する振動の振動波形を特定する振動波形特定工程と、
 前記振動波形に基づいて、前記第2被接合物の前記第1被接合物に対する位置ずれ量が目標量となる目標タイミングを推定するタイミング推定工程と、
 推定された前記目標タイミングに基づいて、前記第2被接合物を前記第1被接合物に接触させる接触工程と、を含む。
In order to achieve the above object, the joining method according to the present invention includes:
A joining method for joining a first workpiece and a second workpiece vibrating relative to the first workpiece, the method comprising:
a vibration waveform identification step of identifying a vibration waveform of vibration of the second workpiece relative to the first workpiece based on a time course of a positional shift amount of the second workpiece relative to the first workpiece;
a timing estimation step of estimating a target timing at which a positional deviation amount of the second workpiece relative to the first workpiece becomes a target amount based on the vibration waveform;
and a contacting step of bringing the second object to be joined into contact with the first object to be welded based on the estimated target timing.
 他の観点から見た本発明に係る接合装置は、
 第1被接合物と第2被接合物とを接合する接合装置であって、
 前記第1被接合物を保持する第1被接合物保持部と、
 前記第1被接合物保持部に対して振動しており且つ前記第2被接合物を保持する第2被接合物保持部と、
 前記第1被接合物保持部と前記第2被接合物保持部との少なくとも一方を、前記第1被接合物保持部と前記第2被接合物保持部とが互いに近づく第1方向または前記第1被接合物保持部と前記第2被接合物保持部とが離れる第2方向へ移動させる保持部駆動部と、
 前記第1被接合物と前記第2被接合物とが離間した状態で、予め設定された時間間隔で、前記第1方向および前記第2方向に直交する方向における、前記第1被接合物の前記第2被接合物に対する位置ずれ量を繰り返し計測し、前記位置ずれ量の時間推移から前記第2被接合物の前記第1被接合物に対する振動の振動波形を特定し、前記振動波形に基づいて、前記第2被接合物の前記第1被接合物に対する位置ずれ量が目標量となる目標タイミングを推定し、推定した前記目標タイミングに基づいて、前記第1被接合物保持部と前記第2被接合物保持部との少なくとも一方を、前記第1方向へ移動させて前記第2被接合物を前記第1被接合物に接触させるように前記保持部駆動部を制御する制御部と、を備える。
The joining device according to the present invention seen from another point of view is as follows:
A welding device for joining a first object to be welded and a second object to be welded,
a first object holding part that holds the first object to be bonded;
a second workpiece holding part that vibrates with respect to the first workpiece holding part and holds the second workpiece;
At least one of the first workpiece holding part and the second workpiece holding part is moved in the first direction in which the first workpiece holding part and the second workpiece holding part approach each other, or in the first direction. a holding part drive unit that moves the first workpiece holding part and the second workpiece holding part in a second direction where they are separated;
In a state where the first object to be welded and the second object to be welded are separated, the first object to be welded is moved in a direction orthogonal to the first direction and the second direction at a preset time interval. The amount of positional deviation with respect to the second object to be welded is repeatedly measured, the vibration waveform of the vibration of the second object to be welded relative to the first object is determined from the time course of the amount of positional deviation, and the vibration waveform is determined based on the vibration waveform. Then, the target timing at which the amount of positional deviation of the second workpiece with respect to the first workpiece becomes the target amount is estimated, and based on the estimated target timing, the first workpiece holding part and the first workpiece a control unit that controls the holding unit drive unit to move at least one of the second workpiece holding unit in the first direction to bring the second workpiece into contact with the first workpiece; Equipped with.
 本発明によれば、第2被接合物の第1被接合物に対する位置ずれ量の時間推移から第2被接合物の第1被接合物に対する振動の振動波形を特定し、特定した振動波形に基づいて、第2被接合物の第1被接合物に対する位置ずれ量が目標量となる目標タイミングを推定する。そして、推定された目標タイミングに基づいて、第2被接合物を第1被接合物に接触させる。これにより、第2被接合物が第1被接合物に対して相対的に振動している場合でも、第2被接合物を第1被接合物に高い位置精度で接合できる。 According to the present invention, the vibration waveform of the vibration of the second workpiece relative to the first workpiece is specified from the time course of the displacement amount of the second workpiece relative to the first workpiece, and the vibration waveform is applied to the identified vibration waveform. Based on this, a target timing at which the amount of positional deviation of the second object to be welded relative to the first object to be welded reaches the target amount is estimated. Then, the second object to be welded is brought into contact with the first object to be welded based on the estimated target timing. Thereby, even if the second object to be welded vibrates relative to the first object, the second object to be welded can be joined to the first object with high positional accuracy.
本発明の実施の形態1に係る接合装置の概略構成図である。1 is a schematic configuration diagram of a bonding apparatus according to Embodiment 1 of the present invention. 実施の形態1に係るステージおよびヘッド付近を示す概略斜視図である。FIG. 2 is a schematic perspective view showing the vicinity of the stage and head according to the first embodiment. 実施の形態1に係るヘッドを微調整する方法を説明する図である。FIG. 3 is a diagram illustrating a method of finely adjusting the head according to the first embodiment. 実施の形態1に係るステージおよびヘッドの概略平面図である。2 is a schematic plan view of a stage and a head according to Embodiment 1. FIG. 実施の形態1に係るステージおよびヘッドの概略断面図である。1 is a schematic cross-sectional view of a stage and a head according to Embodiment 1. FIG. 接合する2つの基板の一方に設けられた2つのアライメントマークを示す図である。FIG. 3 is a diagram showing two alignment marks provided on one of two substrates to be joined. 接合する2つの基板の他方に設けられた2つのアライメントマークを示す図である。FIG. 3 is a diagram showing two alignment marks provided on the other of two substrates to be joined. アライメントマークの撮影画像を示す概略図である。FIG. 3 is a schematic diagram showing a photographed image of an alignment mark. アライメントマークが互いにずれている状態を示す概略図である。FIG. 3 is a schematic diagram showing a state in which alignment marks are shifted from each other. 実施の形態1に係る接合装置の一部の概略図である。1 is a schematic diagram of a part of a joining apparatus according to Embodiment 1. FIG. 実施の形態1に係る接合装置が実行する接合方法の流れを示すフローチャートである。3 is a flowchart showing the flow of a joining method executed by the joining apparatus according to the first embodiment. 実施の形態1に係るステージおよびヘッドに基板が保持された状態を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a state in which a substrate is held by a stage and a head according to the first embodiment. 実施の形態1に係るヘッドのステージに対する位置ずれ量の推移を示す図である。FIG. 3 is a diagram showing changes in the amount of positional deviation of the head with respect to the stage according to the first embodiment. 実施の形態1に係るステージおよびヘッドに保持された基板の接合面の中央部同士を接触させた状態を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a state in which the central portions of the joint surfaces of the substrates held by the stage and head are in contact with each other according to the first embodiment. 実施の形態1に係るステージおよびヘッドに保持された基板同士を近づける様子を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing how substrates held by a stage and a head are brought closer to each other according to the first embodiment. 実施の形態1に係るステージおよびヘッドに保持された基板の接合面の周部同士を接触させた状態を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a state in which peripheral portions of joint surfaces of substrates held by a stage and a head are in contact with each other according to the first embodiment. 実施の形態1に係るヘッドをステージから離脱させる様子を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing how the head according to the first embodiment is removed from the stage. 実施の形態1に係る架台の振動伝達率の周波数依存性を示す図である。FIG. 3 is a diagram showing the frequency dependence of the vibration transmissibility of the pedestal according to the first embodiment. 実施の形態1に係る接合装置に伝達する振動について、除振機能を有する架台に接合装置を載置した場合と、接合装置を床に載置した場合とのそれぞれにおける振動振幅の周波数スペクトルの一例を示す図である。Regarding the vibration transmitted to the bonding device according to Embodiment 1, an example of the frequency spectrum of the vibration amplitude when the bonding device is placed on a stand having a vibration isolation function and when the bonding device is placed on the floor. FIG. 比較例1に係る接合装置の一部の模式図である。3 is a schematic diagram of a part of a bonding apparatus according to Comparative Example 1. FIG. 本発明の実施の形態2に係るチップ接合システムの概略構成図である。It is a schematic block diagram of the chip bonding system based on Embodiment 2 of this invention. 実施の形態2に係るチップ保持部の平面図である。FIG. 7 is a plan view of a chip holding section according to Embodiment 2; 実施の形態2に係るチップ搬送装置の一部を示す断面図である。FIG. 3 is a cross-sectional view showing a part of a chip transport device according to a second embodiment. 実施の形態2に係る接合装置の概略構成図である。FIG. 2 is a schematic configuration diagram of a bonding apparatus according to a second embodiment. 実施の形態2に係るヘッドの断面図である。FIG. 3 is a cross-sectional view of a head according to a second embodiment. 実施の形態2に係るヘッドの平面図である。7 is a plan view of a head according to Embodiment 2. FIG. 実施の形態2に係るチップのアライメントマークとヘッドの中空部との位置関係を示す図である。FIG. 7 is a diagram showing the positional relationship between the alignment mark of the chip and the hollow part of the head according to the second embodiment. 実施の形態2に係るボンディング部の一部を示す概略斜視図である。FIG. 3 is a schematic perspective view showing a part of a bonding part according to a second embodiment. 実施の形態2に係る接合装置の図16のA-A線における断面矢視図である。17 is a cross-sectional view taken along line AA in FIG. 16 of the joining device according to Embodiment 2. FIG. チップに設けられたアライメントマークを示す図である。FIG. 3 is a diagram showing alignment marks provided on a chip. 基板に設けられたアライメントマークを示す図である。FIG. 3 is a diagram showing alignment marks provided on a substrate. アライメントマークの相対的な位置ずれを示す図である。FIG. 3 is a diagram showing relative positional deviations of alignment marks. 実施の形態2に係るヘッドの詳細を示す図である。7 is a diagram showing details of a head according to Embodiment 2. FIG. 実施の形態2に係るステージユニットの平面図である。FIG. 3 is a plan view of a stage unit according to a second embodiment. 実施の形態2に係るステージユニットの側面図である。FIG. 3 is a side view of a stage unit according to a second embodiment. 実施の形態2に係るチップ接合システムにおいてチップ供給部からチップが供給される様子を示す概略側面図である。FIG. 7 is a schematic side view showing how chips are supplied from a chip supply section in the chip bonding system according to the second embodiment. 実施の形態2に係るチップ接合システムにおいてチップ搬送装置からヘッドへチップが受け渡される様子を示す概略側面図である。FIG. 7 is a schematic side view showing how chips are transferred from a chip transport device to a head in a chip bonding system according to a second embodiment. 実施の形態2に係るチップ接合システムが実行するチップ接合処理の流れの一例を示すフローチャートである。7 is a flowchart illustrating an example of the flow of chip bonding processing executed by the chip bonding system according to Embodiment 2. FIG. 実施の形態2に係るチップ接合システムの動作を説明するための図であり、チップが基板から離間した状態を示す図である。FIG. 7 is a diagram for explaining the operation of the chip bonding system according to the second embodiment, and is a diagram showing a state in which the chip is separated from the substrate. 実施の形態2に係るチップ接合システムの動作を説明するための図であり、チップを基板に接触させた状態を示す図である。FIG. 7 is a diagram for explaining the operation of the chip bonding system according to Embodiment 2, and is a diagram showing a state in which a chip is in contact with a substrate. 実施の形態2に係るチップ接合システムの動作を説明するための図であり、チップを基板から離脱させる様子を示す図である。FIG. 7 is a diagram for explaining the operation of the chip bonding system according to the second embodiment, and is a diagram showing how the chip is separated from the substrate. 比較例2に係るチップ接合システムの動作説明図であり、2組のアライメントマークのうちの一方の組を撮像する様子を示す図である。FIG. 7 is an explanatory diagram of the operation of the chip bonding system according to Comparative Example 2, and is a diagram showing how one set of two sets of alignment marks is imaged. 比較例2に係るチップ接合システムの動作説明図であり、他方の組を撮像する様子を示す図である。FIG. 7 is an explanatory diagram of the operation of the chip bonding system according to Comparative Example 2, and is a diagram showing how the other group is imaged. 変形例に係るヘッドの断面図である。FIG. 7 is a cross-sectional view of a head according to a modification. 変形例に係るヘッドの平面図である。FIG. 7 is a plan view of a head according to a modified example. 変形例に係るヘッドの動作を説明するための図である。FIG. 7 is a diagram for explaining the operation of a head according to a modification. 変形例に係るヘッドの断面図である。FIG. 7 is a cross-sectional view of a head according to a modification.
(実施の形態1)
 以下、本発明の実施の形態に係る接合装置について、図を参照しながら説明する。本実施の形態に係る接合装置は、接合面が活性化された基板の接合面同士を接触させることにより基板W1、W2同士を接合する。図1に示すように、本実施の形態に係る接合装置1は、チャンバ120とステージ401とヘッド402とステージ駆動部403とヘッド駆動部404と基板加熱部481、482と撮像ユニット500と除振ユニット160とを備える。ここで、床Fを伝達する振動、接合装置で発生する振動は、一般的に、ヘッド402とステージ401との少なくとも一方に伝達するため、基板W2を保持するヘッド402と基板W1を保持するステージ401とが相対的に振動する。このため、ヘッド402、ステージ401それぞれに保持された基板が相対的に振動することになる。これに対して、本実施の形態に係る接合装置1は、ヘッド402、ステージ401それぞれに保持された基板W1、W2同士を接合する際の前述の振動の基板W1、W2同士の位置ずれ量への影響を低減するものである。基板W1、W2としては、Si基板、ガラス基板、サファイヤ基板等が挙げられる。また、接合装置1は、ステージ401とヘッド402との間の距離を測定する距離測定部490を備える。更に、接合装置1は、接合装置1が設置される場所の床F上に載置された架台41により支持されている。架台41は、床Fを伝達する振動の接合装置1への伝達を抑制する除振機能を有するものであり、例えば鉛直上側にグレーチングが設けられた耐震架台である。なお、以下の説明において、適宜図1の±Z方向を上下方向、XY方向を水平方向として説明する。
(Embodiment 1)
Hereinafter, a bonding apparatus according to an embodiment of the present invention will be described with reference to the drawings. The bonding apparatus according to this embodiment bonds the substrates W1 and W2 by bringing the bonding surfaces of the substrates whose bonding surfaces have been activated into contact with each other. As shown in FIG. 1, the bonding apparatus 1 according to the present embodiment includes a chamber 120, a stage 401, a head 402, a stage drive section 403, a head drive section 404, substrate heating sections 481 and 482, an imaging unit 500, and a vibration isolation device. unit 160. Here, since the vibration transmitted through the floor F and the vibration generated in the bonding apparatus are generally transmitted to at least one of the head 402 and the stage 401, the head 402 that holds the substrate W2 and the stage that holds the substrate W1 401 vibrates relatively. Therefore, the substrates held by the head 402 and the stage 401 vibrate relative to each other. On the other hand, in the bonding apparatus 1 according to the present embodiment, the amount of positional deviation between the substrates W1 and W2 due to the aforementioned vibration when bonding the substrates W1 and W2 held by the head 402 and the stage 401, respectively, is This is to reduce the impact of Examples of the substrates W1 and W2 include a Si substrate, a glass substrate, and a sapphire substrate. The bonding apparatus 1 also includes a distance measuring section 490 that measures the distance between the stage 401 and the head 402. Further, the bonding device 1 is supported by a pedestal 41 placed on the floor F at the location where the bonding device 1 is installed. The pedestal 41 has a vibration isolating function that suppresses the transmission of vibrations transmitted through the floor F to the bonding device 1, and is, for example, an earthquake-resistant pedestal provided with a grating on the vertically upper side. In the following description, the ±Z direction in FIG. 1 will be described as the vertical direction, and the XY direction will be described as the horizontal direction.
 チャンバ120は、基板W1、W2が配置される領域を予め設定された基準真空度以上の真空度で維持する。チャンバ120は、排気管121bと排気弁121cとを介して真空ポンプ121aに接続されている。排気弁121cを開状態にして真空ポンプ121aを作動させると、チャンバ120内の気体が、排気管121bを通してチャンバ120外へ排出され、チャンバ120内が減圧雰囲気で維持される。また、排気弁121cの開閉量を変動させて排気量を調節することにより、チャンバ120内の気圧(真空度)を調節することができる。また、チャンバ120の一部には、撮像ユニット500により基板W1、W2間における相対位置を測定するために使用される窓部120aが設けられている。なお、チャンバ120内の気圧は、1Pa以上1000Pa以下の範囲内に設定することができる。 The chamber 120 maintains the area where the substrates W1 and W2 are placed at a degree of vacuum equal to or higher than a preset reference degree of vacuum. The chamber 120 is connected to a vacuum pump 121a via an exhaust pipe 121b and an exhaust valve 121c. When the exhaust valve 121c is opened and the vacuum pump 121a is operated, the gas inside the chamber 120 is exhausted to the outside of the chamber 120 through the exhaust pipe 121b, and the inside of the chamber 120 is maintained in a reduced pressure atmosphere. Moreover, the air pressure (degree of vacuum) in the chamber 120 can be adjusted by varying the opening/closing amount of the exhaust valve 121c to adjust the exhaust amount. Further, a window portion 120a is provided in a part of the chamber 120, which is used by the imaging unit 500 to measure the relative position between the substrates W1 and W2. Note that the atmospheric pressure inside the chamber 120 can be set within a range of 1 Pa or more and 1000 Pa or less.
 ステージ駆動部403は、ステージ401をXY方向へ移動させたり、Z軸周りに回転させたりすることができる保持部駆動部である。ヘッド駆動部404は、ヘッド402を鉛直上方または鉛直下向(図1の矢印AR1参照)へ昇降させる昇降駆動部406と、ヘッド402をXY方向へ移動させるXY方向駆動部405と、ヘッド402をZ軸周りの回転方向(図3の矢印AR2参照)に回転させる回転駆動部407と、を有する。XY方向駆動部405と回転駆動部407とから、ヘッド402を鉛直方向に直交する方向(XY方向、Z軸周りの回転方向)へ移動させる保持部駆動部を構成する。また、ヘッド駆動部404は、ヘッド402のステージ401に対する傾きを調整するためのピエゾアクチュエータ411と、ヘッド402に加わる圧力を測定するための圧力センサ412と、を有する。XY方向駆動部405および回転駆動部407が、X方向、Y方向、Z軸周りの回転方向において、ヘッド402をステージ401に対して相対的に移動させることにより、ステージ401に保持された基板W1とヘッド402に保持された基板W2とのアライメントが可能となる。 The stage drive unit 403 is a holding unit drive unit that can move the stage 401 in the XY directions and rotate it around the Z axis. The head drive unit 404 includes an elevation drive unit 406 that moves the head 402 vertically upward or downward (see arrow AR1 in FIG. 1), an XY direction drive unit 405 that moves the head 402 in the XY directions, and an XY direction drive unit 405 that moves the head 402 in the It has a rotation drive unit 407 that rotates in the rotation direction around the Z axis (see arrow AR2 in FIG. 3). The XY direction drive unit 405 and the rotation drive unit 407 constitute a holding unit drive unit that moves the head 402 in a direction perpendicular to the vertical direction (XY direction, rotation direction around the Z axis). Further, the head driving unit 404 includes a piezo actuator 411 for adjusting the inclination of the head 402 with respect to the stage 401, and a pressure sensor 412 for measuring the pressure applied to the head 402. The XY direction drive section 405 and the rotation drive section 407 move the head 402 relative to the stage 401 in the X direction, the Y direction, and the rotation direction around the Z axis, thereby moving the substrate W1 held on the stage 401. It becomes possible to align the substrate W2 held by the head 402 with the substrate W2.
 昇降駆動部406は、ヘッド402を鉛直方向へ移動させることにより、ステージ401とヘッド402とを互いに近づけたり、ヘッド402をステージ401から遠ざけたりする。昇降駆動部406がヘッド402を鉛直下方へ移動させることにより、ステージ401に保持された基板W1とヘッド402に保持された基板W2とが接触する。そして、基板W1、W2同士が接触した状態において昇降駆動部406がヘッド402に対してステージ401に近づく方向への駆動力を作用させると、基板W2が基板W1に押し付けられる。また、昇降駆動部406には、昇降駆動部406がヘッド402に対してステージ401に近づく方向へ作用させる駆動力を測定する圧力センサ408が設けられている。圧力センサ408の測定値から、昇降駆動部406により基板W2が基板W1に押し付けられたときに基板W1、W2の接合面に作用する圧力が検出できる。圧力センサ408は、例えばロードセルから構成される。 The elevating drive unit 406 moves the head 402 in the vertical direction to bring the stage 401 and the head 402 closer to each other or to move the head 402 away from the stage 401. As the lift drive unit 406 moves the head 402 vertically downward, the substrate W1 held on the stage 401 and the substrate W2 held on the head 402 come into contact. Then, in a state where the substrates W1 and W2 are in contact with each other, when the elevating drive unit 406 applies a driving force to the head 402 in a direction toward the stage 401, the substrate W2 is pressed against the substrate W1. Further, the elevating drive unit 406 is provided with a pressure sensor 408 that measures the driving force that the elevating drive unit 406 exerts on the head 402 in a direction toward the stage 401 . From the measurement value of the pressure sensor 408, the pressure acting on the joint surface of the substrates W1 and W2 when the substrate W2 is pressed against the substrate W1 by the lifting drive unit 406 can be detected. The pressure sensor 408 is composed of, for example, a load cell.
 ピエゾアクチュエータ411、圧力センサ412は、それぞれ図2Aに示すように、3つずつ存在する。3つのピエゾアクチュエータ411と3つの圧力センサ412とは、ヘッド402とXY方向駆動部405との間に配置されている。3つのピエゾアクチュエータ411は、ヘッド402の上面における同一直線上ではない3つの位置、平面視略円形のヘッド402の上面の周部においてヘッド402の周方向に沿って略等間隔に並んだ3つの位置に固定された姿勢調整部である。3つの圧力センサ412は、それぞれピエゾアクチュエータ411の上端部とXY方向駆動部405の下面とを接続している。3つのピエゾアクチュエータ411は、各別に上下方向に伸縮可能である。そして、3つのピエゾアクチュエータ411が伸縮することにより、ヘッド402のX軸周りおよびY軸周りの傾きとヘッド402の上下方向の位置とが微調整される。例えば図2Bの破線で示すように、ヘッド402がステージ401に対して傾いている場合、3つのピエゾアクチュエータ411のうちの1つを伸長させて(図2Bの矢印AR3参照)ヘッド402の姿勢を微調整することにより、ヘッド402の下面とステージ401の上面とが略平行な状態にすることができる。また、3つの圧力センサ412は、ヘッド402の下面における3つの位置での加圧力を測定する。そして、3つの圧力センサ412で測定された加圧力が等しくなるように3つのピエゾアクチュエータ411それぞれを駆動することにより、ヘッド402の下面とステージ401の上面とを略平行に維持しつつ基板W1、W2同士を接触させることができる。 There are three piezo actuators 411 and three pressure sensors 412, as shown in FIG. 2A. The three piezo actuators 411 and the three pressure sensors 412 are arranged between the head 402 and the XY direction drive section 405. The three piezo actuators 411 are arranged at three positions on the upper surface of the head 402 that are not on the same straight line, and at three positions arranged at approximately equal intervals along the circumferential direction of the head 402 on the periphery of the upper surface of the head 402, which is approximately circular in plan view. This is an attitude adjustment unit that is fixed in position. The three pressure sensors 412 each connect the upper end of the piezo actuator 411 and the lower surface of the XY direction drive unit 405. Each of the three piezo actuators 411 can be expanded and contracted in the vertical direction. By expanding and contracting the three piezo actuators 411, the inclination of the head 402 around the X-axis and the Y-axis and the vertical position of the head 402 are finely adjusted. For example, as shown by the broken line in FIG. 2B, when the head 402 is tilted with respect to the stage 401, one of the three piezo actuators 411 is extended (see arrow AR3 in FIG. 2B) to adjust the posture of the head 402. By making fine adjustments, the lower surface of the head 402 and the upper surface of the stage 401 can be brought into a substantially parallel state. Further, the three pressure sensors 412 measure the pressing force at three positions on the lower surface of the head 402. By driving each of the three piezo actuators 411 so that the pressing forces measured by the three pressure sensors 412 are equal, the lower surface of the head 402 and the upper surface of the stage 401 are maintained substantially parallel, and the substrate W1 W2 can be brought into contact with each other.
 ステージ401とヘッド402とは、チャンバ120内において、鉛直方向で互いに対向し且つステージ401がヘッド402よりも鉛直下方に位置するように配置されている。ステージ401は、その上面401aで基板W1を支持する第1被接合物保持部であり、ヘッド402は、その下面402aで基板W2を支持する第2被接合物保持部である。ここで、ステージ401は、その上面401aが基板W1全体に面接触した状態で基板W1を支持し、ヘッド402は、その下面402aが基板W2全体に面接触した状態で基板W2を支持する。ステージ401とヘッド402とは、例えば透光性を有するガラスのような透光性材料から形成されている。ステージ401およびヘッド402には、図3Aおよび図3Bに示すように、基板W1、W2を保持する静電チャック441、442と、基板W1の中央部を押圧する押圧機構431と、基板W2の中央部を押圧する押圧機構432と、が設けられている。静電チャック441、442は、基板W1、W2の周部を保持する。また、ステージ401、ヘッド402の中央部には、平面視円形の貫通孔401b、402bが設けられている。 The stage 401 and the head 402 are arranged in the chamber 120 so that they face each other in the vertical direction, and the stage 401 is located vertically below the head 402. The stage 401 is a first object holder that supports the substrate W1 on its upper surface 401a, and the head 402 is a second object holder that supports the substrate W2 on its lower surface 402a. Here, the stage 401 supports the substrate W1 with its upper surface 401a in surface contact with the entire substrate W1, and the head 402 supports the substrate W2 with its lower surface 402a in surface contact with the entire substrate W2. The stage 401 and the head 402 are made of a light-transmitting material such as a light-transmitting glass. As shown in FIGS. 3A and 3B, the stage 401 and the head 402 include electrostatic chucks 441 and 442 that hold the substrates W1 and W2, a pressing mechanism 431 that presses the center of the substrate W1, and a press mechanism 431 that presses the center of the substrate W2. A pressing mechanism 432 for pressing the portion is provided. Electrostatic chucks 441 and 442 hold the peripheral portions of substrates W1 and W2. Further, in the center of the stage 401 and the head 402, through holes 401b and 402b are provided which are circular in plan view.
 静電チャック441、442は、ステージ401、ヘッド402に基板W1、W2が支持された状態で、ステージ401、ヘッド402における基板W1、W2の周部に対向する第1領域A1に設けられている。静電チャック441、442は、それぞれ、円環状であり、ステージ401、ヘッド402における第1領域A1の内側の第2領域A2の外側において周方向に沿って配設された端子電極と、直線状であり基端部において端子電極に電気的に接続された複数の電極子と、を有する。端子電極および複数の電極子は、例えばITOのような透明な導電性材料を含む透明導電膜から形成されている。静電チャック441、442は、チャック駆動部(図示せず)により電圧が印加された状態で、基板W1、W2を吸着保持する。 The electrostatic chucks 441 and 442 are provided in a first area A1 facing the circumferences of the substrates W1 and W2 on the stage 401 and the head 402, with the substrates W1 and W2 being supported by the stage 401 and the head 402. . The electrostatic chucks 441 and 442 each have an annular shape, and have terminal electrodes disposed along the circumferential direction on the outside of the second area A2 inside the first area A1 of the stage 401 and the head 402, and the terminal electrodes arranged in a straight line. and a plurality of electrode elements electrically connected to the terminal electrode at the base end. The terminal electrode and the plurality of electrode elements are formed from a transparent conductive film containing a transparent conductive material such as ITO. The electrostatic chucks 441 and 442 attract and hold the substrates W1 and W2 while a voltage is applied by a chuck driver (not shown).
 また、ステージ401、ヘッド402は、それぞれ、第2領域A2に凹部401c、402cが設けられている。凹部401c、402cの深さは、基板W1、W2を保持した状態で凹部401c、402cの底が基板W1、W2に接触しない程度の深さに設定され、例えば1μm以上に設定される。 Further, the stage 401 and the head 402 are provided with recesses 401c and 402c in the second area A2, respectively. The depths of the recesses 401c and 402c are set to such a depth that the bottoms of the recesses 401c and 402c do not come into contact with the substrates W1 and W2 while holding the substrates W1 and W2, and are set to, for example, 1 μm or more.
 図3Bに示すように、押圧機構431は、ステージ401の中央部に設けられ、押圧機構432は、ヘッド402の中央部に設けられている。押圧機構431は、ステージ401の貫通孔401bを通じてヘッド402側へ出没可能な押圧部431aと、押圧部431aを駆動する押圧駆動部431bと、を有する。また、押圧機構431は、押圧部431aが予め設定された没入量以上に移動するのを規制するためのストッパ431cを有する。押圧機構432は、ヘッド402の貫通孔402bを通じてステージ401側へ出没可能な押圧部432aと、押圧部432aを駆動する押圧駆動部432bと、を有する。また、押圧機構432は、押圧部432aが予め設定された没入量以上に移動するのを規制するためのストッパ432cを有する。押圧駆動部431bおよび押圧駆動部432bは、例えばボイスコイルモータを有する。また、押圧部431aおよび押圧部432aは、基板W1、W2に印加する圧力を一定に維持するよう制御する圧力制御と、基板W1、W2の接触位置を一定に維持するように制御する位置制御と、のいずれかがなされる。例えば、押圧部431aが位置制御され、押圧部432aが圧力制御されることにより、基板W1、W2が一定の位置で一定の圧力で押圧される。 As shown in FIG. 3B, the pressing mechanism 431 is provided at the center of the stage 401, and the pressing mechanism 432 is provided at the center of the head 402. The pressing mechanism 431 includes a pressing part 431a that can move in and out toward the head 402 through the through hole 401b of the stage 401, and a pressing driving part 431b that drives the pressing part 431a. Further, the pressing mechanism 431 includes a stopper 431c for restricting the pressing portion 431a from moving beyond a preset amount of retraction. The pressing mechanism 432 includes a pressing part 432a that can move in and out of the stage 401 side through the through hole 402b of the head 402, and a pressing driving part 432b that drives the pressing part 432a. Further, the pressing mechanism 432 includes a stopper 432c for restricting the pressing portion 432a from moving beyond a preset amount of retraction. The press drive unit 431b and the press drive unit 432b include, for example, a voice coil motor. Furthermore, the pressing section 431a and the pressing section 432a perform pressure control to maintain a constant pressure applied to the substrates W1 and W2, and position control to control to maintain a constant contact position of the substrates W1 and W2. , is done. For example, by controlling the position of the pressing part 431a and controlling the pressure of the pressing part 432a, the substrates W1 and W2 are pressed at a certain position with a certain pressure.
 図1に戻って、距離測定部490は、例えばレーザ距離計であり、ステージ401およびヘッド402に接触せずにステージ401とヘッド402との間の距離を測定する。距離測定部490は、透光性を有する透光性材料から形成されたヘッド402の上方からステージ401に向かってレーザ光を照射したときのステージ401の上面での反射光とヘッド402の下面での反射光との差分からステージ401とヘッド402との間の距離を測定する。距離測定部490は、図2Aに示すように、ステージ401の上面における3箇所の部位P11、P12、P13と、ヘッド402の下面における、Z方向において部位P11、P12、P13に対向する3箇所の部位P21、P22、P23との間の距離を測定する。前述のようにヘッド402またはステージ401が、透光性材料から形成されていることにより、レーザをヘッド402またはステージ401を透過させて距離を測定することができる。従って、距離測定部490が、ヘッド402、ステージ401における基板W1、W2側とは反対側に配置された構成とすることができるという利点がある。 Returning to FIG. 1, distance measuring section 490 is, for example, a laser distance meter, and measures the distance between stage 401 and head 402 without contacting stage 401 and head 402. The distance measuring unit 490 detects the reflected light from the upper surface of the stage 401 and the lower surface of the head 402 when a laser beam is irradiated toward the stage 401 from above the head 402 formed of a light-transmitting material. The distance between the stage 401 and the head 402 is measured from the difference between the reflected light and the reflected light. As shown in FIG. 2A, the distance measuring unit 490 measures three parts P11, P12, and P13 on the upper surface of the stage 401, and three parts on the lower surface of the head 402 that are opposite to the parts P11, P12, and P13 in the Z direction. Measure the distance between sites P21, P22, and P23. As described above, since the head 402 or the stage 401 is made of a transparent material, the distance can be measured by transmitting the laser through the head 402 or the stage 401. Therefore, there is an advantage that the distance measuring section 490 can be arranged on the opposite side of the head 402 and the stage 401 from the substrates W1 and W2.
 図1に戻って、撮像ユニット500は、撮像部501、502と、ミラー504、505と、を有する。撮像部501と撮像部502とは、ステージ401における基板W1を保持する側とは反対側に配置されている。撮像部501および撮像部502は、それぞれ、撮像素子(図示せず)と同軸照明系(図示せず)とを有している。同軸照明系の光源としては、基板W1、W2およびステージ401、チャンバ120に設けられた窓部120aを透過する光(例えば赤外光)を出射する光源が用いられる。 Returning to FIG. 1, the imaging unit 500 includes imaging sections 501 and 502 and mirrors 504 and 505. The imaging unit 501 and the imaging unit 502 are arranged on the opposite side of the stage 401 from the side that holds the substrate W1. The imaging unit 501 and the imaging unit 502 each have an imaging element (not shown) and a coaxial illumination system (not shown). As the light source of the coaxial illumination system, a light source that emits light (for example, infrared light) that passes through the substrates W1 and W2, the stage 401, and the window 120a provided in the chamber 120 is used.
 例えば図4Aおよび図4Bに示すように、基板W1には、2つのアライメントマーク(第1アライメントマーク)MK1a、MK1bが設けられ、基板W2には、2つのアライメントマーク(第2アライメントマーク)MK2a、MK2bが設けられている。接合装置1は、撮像ユニットにより撮像された基板W1、W2に設けられた各アライメントマークMK1a、MK1b、MK2a、MK2bの位置を認識しながら、両基板W1、W2の位置合わせ動作(アライメント動作)を実行する。より詳細には、接合装置1は、まず、撮像ユニット500により撮像された基板W1、W2に設けられたアライメントマークMK1a、MK1b、MK2a、MK2bを認識しながら、基板W1、W2の大まかなアライメント動作(ラフアライメント動作)を実行して、2つの基板W1、W2を対向させる。その後、接合装置1は、撮像ユニット500により撮像された2つの基板W1、W2に設けられたアライメントマークMK1a、MK2a、MK1b、MK2bを同時に認識しながら、更に精緻なアライメント動作(ファインアライメント動作)を実行する。 For example, as shown in FIGS. 4A and 4B, the substrate W1 is provided with two alignment marks (first alignment marks) MK1a and MK1b, and the substrate W2 is provided with two alignment marks (second alignment marks) MK2a, MK2b is provided. The bonding apparatus 1 performs a positioning operation (alignment operation) of both substrates W1 and W2 while recognizing the positions of each alignment mark MK1a, MK1b, MK2a, and MK2b provided on the substrates W1 and W2 imaged by the imaging unit. Execute. More specifically, the bonding apparatus 1 first roughly aligns the substrates W1, W2 while recognizing the alignment marks MK1a, MK1b, MK2a, MK2b provided on the substrates W1, W2 imaged by the imaging unit 500. (Rough alignment operation) is performed to make the two substrates W1 and W2 face each other. Thereafter, the bonding apparatus 1 performs a more precise alignment operation (fine alignment operation) while simultaneously recognizing the alignment marks MK1a, MK2a, MK1b, and MK2b provided on the two substrates W1 and W2 imaged by the imaging unit 500. Execute.
 ここで、図1の破線矢印SC1、SC2に示すように、撮像部501の同軸照明系の光源から出射された光は、ミラー504で反射されて上方に進行し、窓部120aおよび基板W1、W2の一部あるいは全部を透過する。基板W1、W2の一部あるいは全部を透過した光は、基板W1、W2のアライメントマークMK1a,MK2aで反射され、下向きに進行し、窓部120aを透過してミラー504で反射されて撮像部501の撮像素子に入射する。また、撮像部502の同軸照明系の光源から出射された光は、ミラー505で反射されて上方に進行し、窓部120aおよび基板W1、W2の一部あるいは全部を透過する。基板W1、W2の一部あるいは全部を透過した光は、基板W1、W2のアライメントマークMK1a,MK2aで反射され、下向きに進行し、窓部120aを透過してミラー505で反射されて撮像部502の撮像素子に入射する。そして、撮像ユニット500の撮像部501、502は、それぞれ、撮像素子に入射する光を用いて、図5Aおよび図5Bに示すように、2つの基板W1、W2のアライメントマークMK1a,MK2aを含む撮影画像GAaと、2つの基板W1、W2のアライメントマークMK1b,MK2bを含む撮影画像GAbと、を1つの視野内で同時に撮像する。また、撮像部501による撮影画像GAaの撮影動作と撮像部502による撮影画像GAbの撮影動作とは、同時に実行される。 Here, as shown by broken line arrows SC1 and SC2 in FIG. 1, light emitted from the light source of the coaxial illumination system of the imaging unit 501 is reflected by the mirror 504 and travels upward, and passes through the window 120a and the substrate W1, Transmits part or all of W2. The light that has passed through part or all of the substrates W1 and W2 is reflected by the alignment marks MK1a and MK2a of the substrates W1 and W2, travels downward, passes through the window 120a, is reflected by the mirror 504, and is sent to the imaging section 501. incident on the image sensor. Further, the light emitted from the light source of the coaxial illumination system of the imaging unit 502 is reflected by the mirror 505, travels upward, and passes through the window 120a and part or all of the substrates W1 and W2. The light that has passed through part or all of the substrates W1 and W2 is reflected by the alignment marks MK1a and MK2a of the substrates W1 and W2, travels downward, passes through the window 120a, is reflected by the mirror 505, and is sent to the imaging section 502. incident on the image sensor. Then, the imaging units 501 and 502 of the imaging unit 500 take images including the alignment marks MK1a and MK2a of the two substrates W1 and W2, as shown in FIGS. 5A and 5B, using the light incident on the image sensor, respectively. An image GAa and a captured image GAb including alignment marks MK1b and MK2b of the two substrates W1 and W2 are simultaneously captured within one field of view. Furthermore, the photographing operation of the photographed image GAa by the imaging section 501 and the photographing operation of the photographed image GAb by the imaging section 502 are executed simultaneously.
 図1に戻って、基板加熱部481、482は、例えば電熱ヒータであり、図3Bに示すように、それぞれステージ401、ヘッド402に設けられている。基板加熱部481、482は、ステージ401およびヘッド402に保持されている基板W1,W2に熱を伝達することにより基板W1、W2を加熱する。また、基板加熱部481、482の発熱量を調節することにより、基板W1,W2やそれらの接合面の温度を調節できる。また、基板加熱部481、482は、加熱部駆動部(図示せず)に接続されており、加熱部駆動部は、図1に示す制御部9から入力される制御信号に基づいて、基板加熱部481、482へ電流を供給することにより基板加熱部481、482を発熱させる。 Returning to FIG. 1, the substrate heating units 481 and 482 are, for example, electric heaters, and are provided on the stage 401 and the head 402, respectively, as shown in FIG. 3B. The substrate heating units 481 and 482 heat the substrates W1 and W2 by transmitting heat to the substrates W1 and W2 held by the stage 401 and the head 402. Further, by adjusting the amount of heat generated by the substrate heating units 481 and 482, the temperature of the substrates W1 and W2 and their bonding surfaces can be adjusted. Further, the substrate heating sections 481 and 482 are connected to a heating section driving section (not shown), and the heating section driving section heats the substrate based on a control signal input from the control section 9 shown in FIG. By supplying current to the parts 481 and 482, the substrate heating parts 481 and 482 generate heat.
 除振ユニット160は、いわゆるアクティブ除振台であり、チャンバ120、ステージ401、ヘッド402、ステージ駆動部403、ヘッド駆動部404、基板加熱部481、482および撮像ユニット500を纏めて支持する。除振ユニット160は、図6に示すうように、トッププレート161と、トッププレート161の鉛直下方、即ち、-Z方向側に配置されるベースプレート165と、防振機構を有しベースプレート165に固定されるとともに、+Z方向側においてトッププレート161を鉛直方向および水平方向へ移動自在に支持するプレート支持部162と、を有する。ここで、チャンバ120、ステージ401、ヘッド402、ステージ駆動部403、ヘッド駆動部404、基板加熱部481、482および撮像ユニット500は、トッププレート161の鉛直上方側、即ち、+Z方向側に設置される。プレート支持部162は、例えば空気バネ、コイルバネ等を用いた防振機構を有し、トッププレート161を鉛直方向および水平方向に沿って移動自在に支持する。また、除振ユニット160は、更に、トッププレート161に伝達する振動を検出する振動検出部164と、トッププレート161をプレート支持部162に対して相対的に移動させるプレート駆動部163と、トッププレート161に伝達する振動を低減するようにプレート駆動部163を制御する除振制御ユニット169と、を有する。振動検出部164は、トッププレート161に加わる3次元方向、即ち、XYZ方向における振動を検出する。プレート駆動部423は、油圧式アクチュエータ、電磁式アクチュエータ、空気圧式アクチュエータ、ピエゾアクチュエータ、リニア式アクチュエータ等からなり、トッププレート161に対してZ軸方向または水平方向へ作用する力を印加する。除振制御ユニット169は、振動検出部164により検出される振動に基づいて、トッププレート161がその振動を相殺するように移動するようにプレート駆動部163を制御する。除振制御ユニット169は、プレート駆動部163の制御に特化されたものであり、制御部9とは独立して処理を実行する。この除振ユニット160は、接合装置1が設置された床等からステージ401またはヘッド402に伝達する10Hzよりも高い周波数の振動成分を除去する。なお、除振ユニット160は、除振できる振動の周波数帯域がより低周波領域まで存在するものほど好ましく、4Hzよりも高い周波数の振動成分を除去するものが好ましく、2Hzよりも高い周波数の振動成分を除去するものがより好ましく、1Hzよりも高い周波数の振動成分を除去するものが更に好ましい。 The vibration isolation unit 160 is a so-called active vibration isolation table, and collectively supports the chamber 120, the stage 401, the head 402, the stage drive section 403, the head drive section 404, the substrate heating sections 481 and 482, and the imaging unit 500. As shown in FIG. 6, the vibration isolation unit 160 includes a top plate 161, a base plate 165 disposed vertically below the top plate 161, that is, on the −Z direction side, and a vibration isolation mechanism, and is fixed to the base plate 165. and a plate support part 162 that supports the top plate 161 movably in the vertical and horizontal directions on the +Z direction side. Here, the chamber 120, the stage 401, the head 402, the stage drive section 403, the head drive section 404, the substrate heating sections 481 and 482, and the imaging unit 500 are installed vertically above the top plate 161, that is, on the +Z direction side. Ru. The plate support part 162 has a vibration isolation mechanism using, for example, an air spring, a coil spring, etc., and supports the top plate 161 so as to be movable in the vertical direction and the horizontal direction. The vibration isolation unit 160 further includes a vibration detection section 164 that detects vibrations transmitted to the top plate 161, a plate drive section 163 that moves the top plate 161 relative to the plate support section 162, and a top plate and a vibration isolation control unit 169 that controls the plate drive section 163 to reduce vibrations transmitted to the plate drive section 161. The vibration detection unit 164 detects vibrations applied to the top plate 161 in three-dimensional directions, that is, the XYZ directions. The plate drive unit 423 includes a hydraulic actuator, an electromagnetic actuator, a pneumatic actuator, a piezo actuator, a linear actuator, etc., and applies a force acting on the top plate 161 in the Z-axis direction or in the horizontal direction. The vibration isolation control unit 169 controls the plate drive unit 163 based on the vibration detected by the vibration detection unit 164 so that the top plate 161 moves so as to cancel out the vibration. The vibration isolation control unit 169 is specialized for controlling the plate drive section 163 and executes processing independently of the control section 9. This vibration isolation unit 160 removes vibration components with a frequency higher than 10 Hz that are transmitted from the floor or the like on which the bonding apparatus 1 is installed to the stage 401 or the head 402. The vibration isolation unit 160 is preferably one that can isolate vibrations in a lower frequency range, and is preferably one that removes vibration components with frequencies higher than 4 Hz, and removes vibration components with frequencies higher than 2 Hz. It is more preferable to remove vibration components of a frequency higher than 1 Hz.
 図1に戻って、制御部9は、例えばパーソナルコンピュータを有する制御システムであり、CPU(Central Processing Unit)とメモリとを有する。メモリは、CPUが実行するプログラムを記憶する。また、メモリには、後述する基板W1、W2の相対的な算出した位置ずれ量Δx、Δy、Δθに対して予め設定された位置ずれ量閾値Δxth、Δyth、Δθthが記憶されている。制御部9は、圧力センサ412、圧力センサ408および距離測定部490から入力される計測信号を計測情報に変換して取得する。また、制御部9は、撮像部501および撮像部502から入力される撮影画像信号を撮影画像情報に変換して取得する。更に、制御部9は、保持部駆動部、ピエゾアクチュエータ411、押圧駆動部431b、押圧駆動部432b、加熱部駆動部、ステージ駆動部403およびヘッド駆動部404それぞれへ制御信号を出力することによりこれらの動作を制御する。 Returning to FIG. 1, the control unit 9 is a control system including, for example, a personal computer, and includes a CPU (Central Processing Unit) and a memory. The memory stores programs executed by the CPU. Further, the memory stores preset positional deviation amount thresholds Δxth, Δyth, and Δθth for the relative calculated positional deviation amounts Δx, Δy, and Δθ of the substrates W1 and W2, which will be described later. The control unit 9 converts measurement signals input from the pressure sensor 412, the pressure sensor 408, and the distance measurement unit 490 into measurement information and acquires the measurement information. Further, the control unit 9 converts captured image signals inputted from the imaging unit 501 and the imaging unit 502 into captured image information and acquires the captured image information. Furthermore, the control unit 9 outputs control signals to the holding unit drive unit, piezo actuator 411, press drive unit 431b, press drive unit 432b, heating unit drive unit, stage drive unit 403, and head drive unit 404, respectively. control the behavior of
 制御部9は、図5Bに示すように、撮像部501から取得した撮影画像GAaに基づいて、基板W1、W2に設けられた1組のアライメントマークMK1a,MK2a相互間の位置ずれ量Δxa、Δyaを算出する。なお、図5Bは、1組のアライメントマークMK1a,MK2aが互いにずれている状態を示している。同様に、制御部9は、撮像部502から取得した撮影画像GAbに基づいて、基板W1、W2に設けられた他の1組のアライメントマークMK1b,MK2b相互間の位置ずれ量Δxb、Δybを算出する。その後、制御部9は、これら2組のアライメントマークの位置ずれ量Δxa、Δya、Δxb、Δybと2組のマークの幾何学的関係とに基づいて、X方向、Y方向およびZ軸周りの回転方向における2つの基板W1、W2の相対的な位置ずれ量Δx、Δy、Δθを算出する。そして、制御部9は、算出した位置ずれ量Δx、Δy、Δθが低減されるように、ヘッド402をX方向およびY方向へ移動させたり、Z軸周りに回転させたりする。これにより、2つの基板W1、W2の相対的な位置ずれ量Δx、Δy、Δθが低減される。このようにして、接合装置1は、2つの基板W1、W2の水平方向における位置ずれ量Δx、Δy、Δθを補正するアライメント動作を実行する。 As shown in FIG. 5B, the control unit 9 determines the positional deviation amounts Δxa and Δya between the pair of alignment marks MK1a and MK2a provided on the substrates W1 and W2 based on the captured image GAa acquired from the imaging unit 501. Calculate. Note that FIG. 5B shows a state in which a pair of alignment marks MK1a and MK2a are shifted from each other. Similarly, the control unit 9 calculates the positional deviation amounts Δxb and Δyb between the other set of alignment marks MK1b and MK2b provided on the substrates W1 and W2, based on the captured image GAb acquired from the imaging unit 502. do. Thereafter, the control unit 9 controls the rotation in the X direction, Y direction, and around the Z axis based on the positional deviation amounts Δxa, Δya, Δxb, and Δyb of these two sets of alignment marks and the geometrical relationship between the two sets of marks. The relative positional deviation amounts Δx, Δy, and Δθ of the two substrates W1 and W2 in the directions are calculated. Then, the control unit 9 moves the head 402 in the X direction and the Y direction or rotates it around the Z axis so that the calculated positional deviation amounts Δx, Δy, and Δθ are reduced. This reduces the relative positional deviation amounts Δx, Δy, and Δθ between the two substrates W1 and W2. In this way, the bonding apparatus 1 performs an alignment operation that corrects the horizontal positional deviation amounts Δx, Δy, and Δθ of the two substrates W1 and W2.
 また、制御部9は、基板W1、W2同士が離間した状態で、予め設定された波形計測期間中における基板W2の基板W1に対する位置ずれ量を繰り返し測定する。波形計測期間の長さは、少なくとも基板W2の基板W1に対する振動の振動成分の振動周期よりも長い周期に設定される。制御部9は、例えば位置ずれ量計測処理を数十msecの周期で実行できる場合、基板W2の基板W1に対する振動に10Hz周期の振動成分が含まれていても対応可能である。但し、1周期当たりのサンプリング数が大きいほど精度が高くなることから、基板W2の基板W1に対する振動に含まれる振動成分は、5Hz以下であることが好ましく、2Hz以下であることがより好ましい。ここで、周期2Hzの振動成分は除振機能を有する架台41で除くことができない領域であるため、位置ずれ量の繰り返し計測を継続する波形計測期間の長さは、例えば1sec以上の時間に設定されることが好ましい。そして、制御部9は、基板W2の基板W1に対する振動周期よりも短い予め設定された時間間隔で、2つの基板W1、W2の相対的な位置ずれ量Δx、Δy、Δθを繰り返し算出する。また、制御部9は、前述の波形計測期間中において計測された位置ずれ量Δx、Δy、Δθの時間推移から基板W2の基板W1に対する振動の振動波形を特定する。ここでは、制御部9は、例えば振動波形の振動中心に相当する位置ずれ量、振動振幅および振動周期を特定する。そして、制御部9は、特定した振動波形に基づいて、基板W2の基板W1に対する位置ずれ量Δx、Δy、Δθが目標量となる目標タイミングを推定する。例えば、制御部9は、複数回位置ずれ量Δx、Δy、Δθを計測し、基板W2の基板W1に対する振動波形を特定し、特定した振動波形に基づいて、振動の1周期内における任意のタイミングで計測された位置ずれ量Δx、Δy、Δθが目標量となるまでの時間を推定する。また、制御部9は、振動波形を特定する際、必ずしも位置ずれ量の最大振動振幅を計測する必要はなく、振動の1周期内における任意のタイミングで計測された位置ずれ量Δx、Δy、Δθが目標量になるまでの時間が推定できればよい。ここで、目標量は、例えば位置ずれ量Δx、Δy、Δθの振動成分の振幅中心に相当する位置ずれ量に設定される。また、目標量は、基板W1,W2同士が接触したことに起因した基板W2の基板W1に対する接触時位置ずれ量だけオフセットされた量に設定されてもよい。この場合、基板W1、W2同士を接触させたときの位置ずれ量Δx、Δy、Δθが0となるように基板W1,W2の相対的なアライメントが実行されることになる。 Further, the control unit 9 repeatedly measures the amount of positional deviation of the substrate W2 with respect to the substrate W1 during a preset waveform measurement period with the substrates W1 and W2 separated from each other. The length of the waveform measurement period is set to a period longer than at least the vibration period of the vibration component of the vibration of the substrate W2 relative to the substrate W1. For example, if the positional deviation amount measurement process can be executed at a period of several tens of milliseconds, the control unit 9 can handle even if the vibration of the substrate W2 with respect to the substrate W1 includes a vibration component with a period of 10 Hz. However, since the accuracy increases as the number of samplings per period increases, the vibration component included in the vibration of the substrate W2 relative to the substrate W1 is preferably 5 Hz or less, more preferably 2 Hz or less. Here, since the vibration component with a period of 2 Hz is a region that cannot be removed by the pedestal 41 having a vibration isolation function, the length of the waveform measurement period during which the repeated measurement of the positional deviation amount is continued is set to, for example, 1 sec or more. It is preferable that Then, the control unit 9 repeatedly calculates the relative positional deviation amounts Δx, Δy, and Δθ of the two substrates W1 and W2 at preset time intervals shorter than the vibration period of the substrate W2 with respect to the substrate W1. Further, the control unit 9 identifies the vibration waveform of the vibration of the substrate W2 relative to the substrate W1 from the time course of the positional deviation amounts Δx, Δy, and Δθ measured during the above-mentioned waveform measurement period. Here, the control unit 9 specifies, for example, a positional deviation amount, a vibration amplitude, and a vibration period corresponding to the vibration center of the vibration waveform. Based on the identified vibration waveform, the control unit 9 estimates the target timing at which the displacement amounts Δx, Δy, and Δθ of the substrate W2 with respect to the substrate W1 become the target amounts. For example, the control unit 9 measures the positional deviation amounts Δx, Δy, and Δθ multiple times, specifies the vibration waveform of the substrate W2 relative to the substrate W1, and selects an arbitrary timing within one cycle of vibration based on the specified vibration waveform. The time required for the measured positional deviation amounts Δx, Δy, and Δθ to reach the target amounts is estimated. Further, when specifying the vibration waveform, the control unit 9 does not necessarily need to measure the maximum vibration amplitude of the positional deviation amount, but the positional deviation amounts Δx, Δy, Δθ measured at arbitrary timing within one cycle of vibration. It is only necessary to be able to estimate the time until the amount reaches the target amount. Here, the target amount is set to, for example, a positional deviation amount corresponding to the amplitude center of the vibration component of the positional deviation amounts Δx, Δy, and Δθ. Further, the target amount may be set to an amount offset by the positional deviation amount at the time of contact of the substrate W2 with respect to the substrate W1 due to the contact between the substrates W1 and W2. In this case, the relative alignment of the substrates W1 and W2 is performed so that the positional deviation amounts Δx, Δy, and Δθ become 0 when the substrates W1 and W2 are brought into contact with each other.
 更に、制御部9は、基板W1、W2が互いに離間した状態から基板W1、W2同士が接触した状態にするために必要な必要時間を示す必要時間情報を予めメモリに記憶させている。この必要時間は、例えばヘッド402が基板W1、W2の間の隙間G1が基板W1、W2を撓ませるだけで中央部W1c、W2c同士が接触する大きさとなる位置に配置された状態で、押圧機構431の押圧部431aと、押圧機構432の押圧部432aと、を突出させることにより、基板W1、W2の中央部W1c、W2c同士を接触させた状態にするまでの時間に相当する。そして、制御部9は、推定された目標タイミングよりも、前述の必要時間だけ前の時点において、基板W1、W2同士を接触させるための動作を開始させる。具体的には、制御部9は、推定された目標タイミングよりも、前述の必要時間だけ前の時点において、押圧部432a、押圧部432bの突出動作を開始するように押圧駆動部431b、押圧駆動部432bを制御する。 Further, the control unit 9 stores in the memory in advance necessary time information indicating the necessary time required to change the state in which the substrates W1 and W2 are in contact with each other from the state in which the substrates W1 and W2 are separated from each other. This required time is, for example, when the head 402 is placed in a position where the gap G1 between the substrates W1 and W2 is large enough to cause the center portions W1c and W2c to come into contact with each other simply by bending the substrates W1 and W2, and the pressing mechanism This corresponds to the time it takes to bring the central portions W1c and W2c of the substrates W1 and W2 into contact with each other by protruding the pressing portion 431a of 431 and the pressing portion 432a of the pressing mechanism 432. Then, the control unit 9 starts an operation for bringing the substrates W1 and W2 into contact with each other at a time point just the above-mentioned necessary time before the estimated target timing. Specifically, the control unit 9 controls the pressing drive unit 431b and the pressing drive unit so that the pressing unit 432a and the pressing unit 432b start the protruding operation at a time point that is the necessary time before the estimated target timing. 432b.
 また、制御部9は、距離測定部490を制御して、ステージ401の3箇所の部位P11、P12、P13における、ヘッド402における部位P11、P12、P13それぞれに対応する部位P21、P22、P23との間の距離を測定する。そして、制御部9は、距離測定部490により測定された距離に基づいて、ヘッド402に保持された基板W2のステージ401に保持された基板W1に対して平行となるように、前述の3つのピエゾアクチュエータ411を制御する。 Further, the control unit 9 controls the distance measurement unit 490 to determine the positions P21, P22, and P23 corresponding to the positions P11, P12, and P13 in the head 402 at the three positions P11, P12, and P13 on the stage 401, respectively. Measure the distance between. Based on the distance measured by the distance measuring unit 490, the control unit 9 controls the above three positions so that the substrate W2 held by the head 402 is parallel to the substrate W1 held by the stage 401. A piezo actuator 411 is controlled.
 次に、本実施の形態に係る接合装置1が実行する接合方法について図7から図9を参照しながら説明する。なお、図7において、接合装置1は、距離測定部490により、ステージ401およびヘッド402に基板W1、W2が保持されていない状態で、ステージ401の上面とヘッド402の下面との間の距離の測定を完了しその結果をメモリに記憶しているものとする。更に、基板W1、W2の厚さの測定結果が既にメモリに記憶されているものとする。なお、基板W1、W2は、それぞれ、鉛直方向と直交する方向、即ち、水平方向へ振動しており、撮像部501、502は、鉛直方向へ振動しているものとする。また、基板W1、W2は、それぞれ、周波数10Hz以下または振動振幅1μm以下の振動波形で振動しているものとする。 Next, a joining method performed by the joining apparatus 1 according to the present embodiment will be described with reference to FIGS. 7 to 9. In FIG. 7, the bonding apparatus 1 uses the distance measuring unit 490 to measure the distance between the upper surface of the stage 401 and the lower surface of the head 402 when the substrates W1 and W2 are not held by the stage 401 and the head 402. It is assumed that the measurement has been completed and the results have been stored in memory. Furthermore, it is assumed that the measurement results of the thicknesses of the substrates W1 and W2 have already been stored in the memory. It is assumed that the substrates W1 and W2 are vibrating in a direction perpendicular to the vertical direction, that is, in the horizontal direction, and the imaging units 501 and 502 are vibrating in the vertical direction. Further, it is assumed that the substrates W1 and W2 are each vibrating with a vibration waveform having a frequency of 10 Hz or less or a vibration amplitude of 1 μm or less.
 まず、接合装置1は、ステージ401に基板W1の周部のみを保持させるとともに、ヘッド402に基板W1、W2の接合面が互いに対向した状態で基板W2の周部のみを保持させる(ステップS101)。ここで、制御部9は、例えば基板W1がステージ401に載置された状態で、ステージ401の第1領域A1に配設された静電チャック441を駆動してステージ401に基板W1の周部のみを保持させる。また、制御部9は、例えばヘッド402の鉛直下方に配置された基板W2の接合面側とは反対側にヘッド402を接触させた状態で、ヘッド402の第1領域A1に配設された静電チャック442を駆動してヘッド402に基板W2の周部のみを保持させる。 First, the bonding apparatus 1 causes the stage 401 to hold only the peripheral portion of the substrate W1, and causes the head 402 to hold only the peripheral portion of the substrate W2 with the bonding surfaces of the substrates W1 and W2 facing each other (step S101). . Here, for example, with the substrate W1 placed on the stage 401, the control unit 9 drives the electrostatic chuck 441 disposed in the first area A1 of the stage 401 to cause the peripheral portion of the substrate W1 to be placed on the stage 401. only be retained. Further, the control unit 9 controls a stationary station disposed in a first area A1 of the head 402 while the head 402 is in contact with a side opposite to the bonding surface side of the substrate W2 disposed vertically below the head 402. The electric chuck 442 is driven to cause the head 402 to hold only the peripheral portion of the substrate W2.
 次に、接合装置1は、ステージ401およびヘッド402に基板W1、W2が保持されていない状態でのステージ401の上面401aとヘッド402の下面402aとの間の距離と基板W1、W2の厚さとに基づいて、基板W1の接合面と基板W2の接合面との間の距離を算出する。そして、接合装置1は、算出した距離に基づいて、ヘッド402を鉛直下方へ移動させて基板W1、W2同士を近づける(ステップS102)。 Next, the bonding apparatus 1 determines the distance between the upper surface 401a of the stage 401 and the lower surface 402a of the head 402 and the thickness of the substrates W1 and W2 when the substrates W1 and W2 are not held by the stage 401 and the head 402. Based on this, the distance between the bonding surface of the substrate W1 and the bonding surface of the substrate W2 is calculated. Then, the bonding apparatus 1 moves the head 402 vertically downward to bring the substrates W1 and W2 closer to each other (step S102).
 続いて、接合装置1は、基板W1、W2同士が離間した状態で、基板W1の基板W2に対する位置ずれ量を計測する(ステップS103)。ここにおいて、制御部9は、まず、撮像ユニット500の撮像部501および撮像部502から、非接触状態における2つの基板W1、W2の撮影画像GAa,GAb(図5A参照)を撮像する。そして、制御部9は、2つの撮影画像GAa,GAbに基づいて、2つの基板W1、W2のX方向、Y方向およびZ軸周りの回転方向の位置ずれ量Δx、Δy、Δθそれぞれを算出する。具体的には、制御部9は、例えばZ方向に離間したアライメントマークMK1a,MK2aを同時に読み取った撮影画像GAaに基づき、ベクトル相関法を用いて位置ずれ量Δxa、Δya(図5B参照)を算出する。同様に、Z方向に離間したアライメントマークMK1b,MK2bを同時に読み取った撮影画像GAbに基づき、ベクトル相関法を用いて位置ずれ量Δxb、Δybを算出する。そして、制御部9は、位置ずれ量Δxa、Δya、Δxb、Δybに基づいて、2つの基板W1、W2の水平方向における位置ずれ量Δx、Δy、Δθを算出する。 Subsequently, the bonding apparatus 1 measures the amount of positional deviation of the substrate W1 with respect to the substrate W2 with the substrates W1 and W2 separated from each other (step S103). Here, the control section 9 first captures captured images GAa and GAb (see FIG. 5A) of the two substrates W1 and W2 in a non-contact state from the imaging section 501 and the imaging section 502 of the imaging unit 500. Then, the control unit 9 calculates the positional deviation amounts Δx, Δy, and Δθ of the two substrates W1 and W2 in the X direction, the Y direction, and the rotational direction around the Z axis, respectively, based on the two captured images GAa and GAb. . Specifically, the control unit 9 uses a vector correlation method to calculate the positional deviation amounts Δxa and Δya (see FIG. 5B) based on the captured image GAa obtained by simultaneously reading the alignment marks MK1a and MK2a spaced apart in the Z direction, for example. do. Similarly, based on the photographed image GAb obtained by simultaneously reading the alignment marks MK1b and MK2b spaced apart in the Z direction, the amounts of positional deviation Δxb and Δyb are calculated using the vector correlation method. Then, the control unit 9 calculates the horizontal displacement amounts Δx, Δy, and Δθ of the two substrates W1 and W2 based on the displacement amounts Δxa, Δya, Δxb, and Δyb.
 図7に戻って、その後、接合装置1は、算出した位置ずれ量Δx、Δy、Δθを補正するように基板W2を基板W1に対して相対的に移動させることにより、基板W1、W2同士の位置合わせを実行する(ステップS104)。ここにおいて、接合装置1は、ステージ401を固定した状態で、位置ずれ量Δx、Δy、Δθが解消するように、ヘッド402をX方向、Y方向およびZ軸周りの回転方向へ移動させる。また、このとき、接合装置1は、ステージ401の3箇所の部位P11、P12、P13における、ヘッド402における部位P11、P12、P13それぞれに対応する部位P21、P22、P23との間の距離を測定し、測定した距離に基づいて、ヘッド402に保持された基板W2のステージ401に保持された基板W1に対する姿勢を調整する姿勢調整工程を実行する。 Returning to FIG. 7, after that, the bonding apparatus 1 moves the substrate W2 relative to the substrate W1 so as to correct the calculated positional deviation amounts Δx, Δy, and Δθ. Positioning is performed (step S104). Here, the bonding apparatus 1 moves the head 402 in the X direction, the Y direction, and the rotation direction around the Z axis so that the positional deviation amounts Δx, Δy, and Δθ are eliminated while the stage 401 is fixed. Also, at this time, the bonding device 1 measures the distances between the three parts P11, P12, and P13 of the stage 401 and the parts P21, P22, and P23 corresponding to the parts P11, P12, and P13 in the head 402, respectively. Then, based on the measured distance, an attitude adjustment step is executed to adjust the attitude of the substrate W2 held by the head 402 with respect to the substrate W1 held by the stage 401.
 次に、接合装置1は、ヘッド402をステージ401に更に近づける(ステップS105)。ここで、接合装置1は、図8Aに示すように、ヘッド402を、基板W1、W2の間の隙間G1が基板W1、W2を撓ませるだけで中央部W1c、W2c同士が接触する大きさとなる位置に配置する。続いて、接合装置1は、図7に示すように、基板W1、W2が互いに離間した状態で、予め設定された波形計測期間中における基板W2の基板W1に対する位置ずれ量を繰り返し計測する位置ずれ量計測工程を実行する(ステップS106)。波形計測期間の長さは、少なくとも図8Bに示す基板W2の基板W1に対する振動周期dT1よりも長くなるように設定され、例えば1sec以上の時間に設定される。また、接合装置1は、基板W2の基板W1に対する振動周期dT1よりも短い予め設定された時間間隔dT2で位置ずれ量を繰り返し計測する。また、接合装置1において、アライメントマークMK1a,MK2aとアライメントマークMK1b,MK2bとのそれぞれが撮像部501、撮像部502の被写界深度の範囲内に収まる距離だけ離間し、撮像部501、撮像部502が、それぞれ、アライメントマークMK1a,MK2aの組とアライメントマークMK1b,MK2bの組を撮像できる位置それぞれに配置された状態となっている。そして、接合装置1は、撮像部501、撮像部502が、繰り返される各計測タイミングにおいて、それぞれ同じタイミングで、対応するアライメントマークMK1a,MK2aの組とアライメントマークMK1b,MK2bの組を1回の画像取り込みで同時に撮像するように撮像部501、撮像部502を制御する。そして、接合装置1は、撮像部501、502により撮像された撮影画像に基づいて、基板W2の基板W1に対する位置ずれ量を算出する。 Next, the bonding apparatus 1 moves the head 402 even closer to the stage 401 (step S105). Here, as shown in FIG. 8A, the bonding apparatus 1 moves the head 402 to such a size that the gap G1 between the substrates W1 and W2 is such that the center portions W1c and W2c come into contact with each other simply by bending the substrates W1 and W2. place in position. Next, as shown in FIG. 7, the bonding apparatus 1 repeatedly measures the amount of positional deviation of the substrate W2 with respect to the substrate W1 during a preset waveform measurement period with the substrates W1 and W2 separated from each other. A quantity measurement step is executed (step S106). The length of the waveform measurement period is set to be longer than at least the vibration period dT1 of the substrate W2 with respect to the substrate W1 shown in FIG. 8B, and is set to a time of 1 sec or more, for example. Further, the bonding apparatus 1 repeatedly measures the amount of positional deviation of the substrate W2 with respect to the substrate W1 at a preset time interval dT2 that is shorter than the vibration period dT1. In addition, in the bonding device 1, the alignment marks MK1a, MK2a and the alignment marks MK1b, MK2b are spaced apart from each other by a distance that falls within the depth of field of the imaging unit 501, the imaging unit 502, respectively. 502 are arranged at positions where the set of alignment marks MK1a and MK2a and the set of alignment marks MK1b and MK2b can be imaged, respectively. Then, in the bonding apparatus 1, the imaging unit 501 and the imaging unit 502 capture a set of corresponding alignment marks MK1a and MK2a and a set of alignment marks MK1b and MK2b in one image at the same timing at each repeated measurement timing. The imaging unit 501 and the imaging unit 502 are controlled so that images are captured simultaneously. Then, the bonding apparatus 1 calculates the amount of positional deviation of the substrate W2 with respect to the substrate W1 based on the captured images captured by the imaging units 501 and 502.
 図7に戻って、その後、接合装置1は、波形計測期間中において計測された位置ずれ量の時間推移から基板W2の基板W1に対する振動の振動波形を特定する振動波形特定工程を実行する(ステップS107)。ここで、接合装置1は、水平方向および回転方向の位置ずれ量の時間推移から基板W2の基板W1に対する水平方向並びに回転方向の振動の振動波形を特定する。そして、接合装置1は、前述の振動波形の振動中心に相当する位置ずれ量Δx、Δy、Δθ、振動振幅および振動周期を特定する。 Returning to FIG. 7, after that, the bonding apparatus 1 executes a vibration waveform identification step of identifying the vibration waveform of the vibration of the substrate W2 with respect to the substrate W1 from the time transition of the amount of positional deviation measured during the waveform measurement period (step S107). Here, the bonding apparatus 1 identifies the vibration waveform of the vibration of the substrate W2 in the horizontal direction and the rotational direction with respect to the substrate W1 from the temporal change in the amount of positional deviation in the horizontal direction and the rotational direction. Then, the bonding device 1 specifies the positional deviation amounts Δx, Δy, Δθ, vibration amplitude, and vibration period corresponding to the vibration center of the vibration waveform described above.
 次に、接合装置1は、特定した振動波形の振動中心に相当する位置ずれ量Δx、Δy、Δθの全てが予め設定された位置ずれ量閾値Δxth、Δyth、Δθth以下であるか否かを判定する(ステップS108)。ここで、接合装置1により、特定した振動波形の振動中心に相当する位置ずれ量Δx、Δy、Δθのいずれかが、予め設定された位置ずれ量閾値Δxth、Δyth、Δθthよりも大きいと判定されたとする(ステップS108:No)。この場合、接合装置1は、特定した振動波形の振動中心に相当する位置ずれ量Δx、Δy、Δθを全て位置ずれ量閾値Δxth、Δyth、Δθth以下にするための基板W2の基板W1に対する補正移動量を算出する(ステップS109)。ここにおいて、制御部9は、特定した振動波形の振動中心に相当する位置ずれ量Δx、Δy、Δθだけ位置ずれ方向とは反対方向へ移動させるような補正移動量を算出する。 Next, the bonding device 1 determines whether all of the positional deviation amounts Δx, Δy, and Δθ corresponding to the vibration center of the identified vibration waveform are equal to or less than preset positional deviation amount thresholds Δxth, Δyth, and Δθth. (Step S108). Here, the bonding device 1 determines that any one of the positional deviation amounts Δx, Δy, and Δθ corresponding to the vibration center of the specified vibration waveform is larger than the preset positional deviation amount thresholds Δxth, Δyth, and Δθth. (Step S108: No). In this case, the bonding apparatus 1 performs a correction movement of the substrate W2 with respect to the substrate W1 in order to make the positional deviation amounts Δx, Δy, and Δθ corresponding to the vibration center of the identified vibration waveform all below the positional deviation amount thresholds Δxth, Δyth, and Δθth. The amount is calculated (step S109). Here, the control unit 9 calculates a corrected movement amount that moves the vibration center of the specified vibration waveform by the positional deviation amounts Δx, Δy, and Δθ in the direction opposite to the positional deviation direction.
 続いて、接合装置1は、2つの基板W1、W2の相対的な位置ずれ量Δx、Δy、Δθを補正するように、位置合わせを実行する(ステップS110)。ここにおいて、接合装置1は、ステージ401が固定された状態で、ヘッド402をステップS109で算出された補正移動量だけX方向、Y方向およびZ軸周りの回転方向に移動させる。このようにして、接合装置1は、基板W1、W2が互いに離間した状態で、位置ずれ量Δx、Δy、Δθが小さくなるように基板W2の基板W1に対する相対位置を調整する。そして、接合装置1は、再びステップS106の処理を実行する。 Subsequently, the bonding apparatus 1 performs alignment so as to correct the relative positional deviation amounts Δx, Δy, and Δθ of the two substrates W1 and W2 (step S110). Here, the bonding apparatus 1 moves the head 402 in the X direction, the Y direction, and the rotation direction around the Z axis by the corrected movement amount calculated in step S109 while the stage 401 is fixed. In this way, the bonding apparatus 1 adjusts the relative position of the substrate W2 with respect to the substrate W1 so that the positional deviation amounts Δx, Δy, and Δθ become small while the substrates W1 and W2 are separated from each other. Then, the bonding apparatus 1 executes the process of step S106 again.
 一方、接合装置1が、算出した位置ずれ量Δx、Δy、Δθの全てが、予め設定された位置ずれ量閾値Δxth、Δyth、Δθth以下であると判定されたとする(ステップS108:Yes)。この場合、接合装置1は、特定した振動波形に基づいて、基板W2の基板W1に対する位置ずれ量が目標量、即ち、振動波形の振動中心に相当する位置ずれ量となる目標タイミングを推定するタイミング推定工程を実行する(ステップS111)。ここでは、接合装置1は、図8Bに示すように、基板W2の基板W1に対する位置ずれ量Δが振動波形の振動中心に相当する位置ずれ量Δcとなる目標タイミングTs1c(またはTs2c)を推定する。 On the other hand, assume that the bonding apparatus 1 determines that all of the calculated positional deviation amounts Δx, Δy, and Δθ are equal to or less than preset positional deviation amount thresholds Δxth, Δyth, and Δθth (step S108: Yes). In this case, the bonding apparatus 1 estimates the target timing at which the amount of positional deviation of the substrate W2 with respect to the substrate W1 becomes the target amount, that is, the amount of positional deviation corresponding to the vibration center of the vibration waveform, based on the specified vibration waveform. An estimation process is executed (step S111). Here, as shown in FIG. 8B, the bonding apparatus 1 estimates the target timing Ts1c (or Ts2c) at which the positional deviation amount Δ of the substrate W2 with respect to the substrate W1 becomes the positional deviation amount Δc corresponding to the vibration center of the vibration waveform. .
 図7に戻って、続いて、接合装置1は、推定された目標タイミングに基づいて、基板W1、W2を撓ませて、基板W1の中央部W1cと基板W2の中央部W2cとを接触させる接触工程を実行する(ステップS112)。ここで、接合装置1は、図8Bに示すように、推定された目標タイミングTs1c(またはTs2c)よりも、前述の必要時間dT3だけ前の時点において、基板W1、W2同士を接触させるための動作を開始させる。ここにおいて、接合装置1は、例えば図9Aに示すように、基板W1の周部W1sに対して中央部W1cが基板W2に向かって突出するように基板W1を撓ませる。このとき、接合装置1は、保持部駆動部から静電チャック441へ電圧を印加させることにより静電チャック441に基板W1を保持させた状態で、押圧部431aにより基板W1の中央部を基板W2に向けて押圧する。これにより、基板W1は、その中央部W1cが基板W2に向かって突出するように撓む。そして、基板W1、W2の中央部W1c、W2c同士が接触する。また、接合装置1は、基板W2の周部W2sに対して中央部W2cが基板W1に向かって突出するように基板W2を撓ませる。このとき、接合装置1は、保持部駆動部から静電チャック442へ電圧を印加させることにより静電チャック442に基板W2を保持させた状態で、押圧部432aにより基板W2の中央部W2cを基板W1に向けて押圧する。これにより、基板W2は、その中央部W2cが基板W1に向かって突出するように撓む。 Returning to FIG. 7, next, the bonding apparatus 1 bends the substrates W1 and W2 based on the estimated target timing, and brings the center portion W1c of the substrate W1 into contact with the center portion W2c of the substrate W2. The process is executed (step S112). Here, as shown in FIG. 8B, the bonding apparatus 1 performs an operation to bring the substrates W1 and W2 into contact with each other at a time point that is the above-mentioned required time dT3 before the estimated target timing Ts1c (or Ts2c). start. Here, as shown in FIG. 9A, for example, the bonding apparatus 1 bends the substrate W1 so that the central portion W1c protrudes toward the substrate W2 with respect to the peripheral portion W1s of the substrate W1. At this time, the bonding apparatus 1 causes the electrostatic chuck 441 to hold the substrate W1 by applying a voltage from the holding part driving part to the electrostatic chuck 441, and the pressing part 431a moves the center part of the substrate W1 to the substrate W2. Press towards. As a result, the substrate W1 is bent so that its central portion W1c protrudes toward the substrate W2. Then, the central portions W1c and W2c of the substrates W1 and W2 come into contact with each other. Further, the bonding apparatus 1 bends the substrate W2 so that the central portion W2c protrudes toward the substrate W1 with respect to the peripheral portion W2s of the substrate W2. At this time, the bonding apparatus 1 causes the electrostatic chuck 442 to hold the substrate W2 by applying a voltage from the holding part driving part to the electrostatic chuck 442, and the pressing part 432a pushes the center part W2c of the substrate W2 onto the substrate. Press toward W1. As a result, the substrate W2 is bent so that its central portion W2c protrudes toward the substrate W1.
 そして、接合装置1は、昇降駆動部406によりヘッド402を下方向へ移動させることにより、基板W1、W2の中央部W1c、W2cから周部W1s、W2sに向かって基板W1、W2の接触部分を広げていく。ここで、基板W1、W2の中央部W1c、W2c同士を突き合わるとともに基板W1、W2の周部W1s、W2sの間の距離を一定に維持した状態で、基板W1、W2の接触部分が、基板W1、W2の間に生じる分子間力(ファンデルワールス力)により基板W1、W2の中央部W1c、W2cから周部W1s、W2sに向かって広がっていく。ここでは、接合装置1が、基板W1、W2を50μm程度離間させた状態で、基板W1、W2の中央部W1c、W2cを押圧部431a、押圧部432aにより点加圧する。そして、この点加圧がトリガとなって、外部から基板W1、W2に対して基板W1、W2同士が互いに近づく方向へ加圧することなく、自然にいわゆるボンディングウェーブが基板W1、W2の周部へ広がっていく。このボンディングウェーブは、基板W1、W2の接合面間での接合力により、外部から基板W1、W2に対して基板W1、W2同士が互いに近づく方向へ加圧しなくても基板W1、W2の周部に向かって広がっていく。ここで、接合装置1は、図9Bの矢印AR12に示すように、押圧部431aをステージ401に没入させる方向へ移動させ且つ押圧部432aをヘッド402に没入させる方向へ移動させる。同時に、接合装置1は、矢印AR13に示すように、ヘッド402をステージ401に近づく方向へ移動させる。ここで、押圧部駆動部431bは、押圧部431aの先端部が予め設定された位置で維持されるように位置制御しながらヘッド402の下降に伴って埋没させ、押圧部駆動部432bが、押圧部432aに加わる圧力が一定となるように加圧制御することにより、基板W1、W2の接触部分が基板W1、W2の対向方向における中央の位置で維持されるようにする。これにより、基板W1、W2が接合されたときに基板W1、W2に反りが発生することを抑制できる。そして、接合装置1は、基板W1、W2の中央部W1c、W2c同士を突き合わせた状態で、基板W1、W2の周部W1s、W2sの間の距離を縮める。そうすると、図9Bの矢印AR11に示すように、基板W1、W2の接触部分が、基板W1、W2の中央部W1c、W2cから周部W1s、W2sに向かって更に広がっていく。そして、接合装置1は、基板W1、W2の中央部W1c、W2cから周部W1s、W2sに向かって基板W1、W2の接触部分を更に広げていき基板W1、W2同士を全面で接触させる。ここでは、接合装置1は、押圧部431aをステージ401に没入させる方向へ移動させ且つ押圧部432aをヘッド402に没入させる方向へ移動させると同時に、ヘッド402をステージ401に近づく方向へ移動させることにより基板W1、W2の周部同士の距離を縮める。このようにして、接合装置1は、図10Aに示すように、基板W1の周部を基板W2の周部に接触させて基板W1、W2の接合面同士を全面で接触させる。 Then, the bonding apparatus 1 moves the head 402 downward by the elevating drive unit 406, thereby moving the contact portions of the substrates W1, W2 from the center portions W1c, W2c of the substrates W1, W2 toward the peripheral portions W1s, W2s. Expand it. Here, with the central portions W1c and W2c of the substrates W1 and W2 facing each other and the distance between the peripheral portions W1s and W2s of the substrates W1 and W2 being maintained constant, the contact portion of the substrates W1 and W2 is Due to the intermolecular force (van der Waals force) generated between the substrates W1 and W2, it spreads from the central portions W1c and W2c of the substrates W1 and W2 toward the peripheral portions W1s and W2s. Here, the bonding apparatus 1 applies point pressure to the center portions W1c and W2c of the substrates W1 and W2 using the pressing portions 431a and 432a, with the substrates W1 and W2 separated by about 50 μm. Then, this point pressure acts as a trigger, and a so-called bonding wave is naturally applied to the periphery of the substrates W1 and W2 without applying pressure from the outside in the direction in which the substrates W1 and W2 approach each other. It spreads. Due to the bonding force between the bonding surfaces of the substrates W1 and W2, this bonding wave can be generated around the periphery of the substrates W1 and W2 without applying external pressure to the substrates W1 and W2 in a direction in which the substrates W1 and W2 approach each other. It spreads towards. Here, the bonding apparatus 1 moves the pressing part 431a in the direction of recessing into the stage 401 and moves the pressing part 432a in the direction of recessing into the head 402, as shown by arrow AR12 in FIG. 9B. At the same time, the bonding apparatus 1 moves the head 402 in a direction approaching the stage 401, as shown by an arrow AR13. Here, the pressing part driving part 431b embeds the tip of the pressing part 431a as the head 402 descends while controlling the position so that the tip part of the pressing part 431a is maintained at a preset position, and the pressing part driving part 432b By controlling the pressure applied to the portion 432a to be constant, the contact portion between the substrates W1 and W2 is maintained at the center position in the direction in which the substrates W1 and W2 face each other. Thereby, it is possible to suppress the occurrence of warpage in the substrates W1 and W2 when the substrates W1 and W2 are bonded. Then, the bonding apparatus 1 shortens the distance between the peripheral portions W1s and W2s of the substrates W1 and W2, with the central portions W1c and W2c of the substrates W1 and W2 butted against each other. Then, as shown by the arrow AR11 in FIG. 9B, the contact portion between the substrates W1 and W2 further expands from the center portions W1c and W2c of the substrates W1 and W2 toward the peripheral portions W1s and W2s. Then, the bonding apparatus 1 further widens the contact portion of the substrates W1, W2 from the central portions W1c, W2c of the substrates W1, W2 toward the peripheral portions W1s, W2s, bringing the substrates W1, W2 into contact with each other over the entire surface. Here, the bonding apparatus 1 moves the pressing part 431a in the direction of recessing into the stage 401, moves the pressing part 432a in the direction of recessing into the head 402, and at the same time moves the head 402 in the direction of approaching the stage 401. By this, the distance between the peripheral parts of the substrates W1 and W2 is reduced. In this way, as shown in FIG. 10A, the bonding apparatus 1 brings the circumferential portion of the substrate W1 into contact with the circumferential portion of the substrate W2, thereby bringing the bonding surfaces of the substrates W1 and W2 into full contact with each other.
 その後、接合装置1は、基板W1、W2が全面で接触した状態で、基板W1の周部W1sのみを基板W2の周部W2sに押し付けることにより基板W1、W2の周部W1s、W2s同士を加圧することにより基板W1、W2同士を接合する(ステップS113)。次に、接合装置1は、ヘッド402の静電チャック442を停止させることにより基板W2の保持を解除する(ステップS114)。続いて、接合装置1は、図10Bの矢印AR14に示すように、ヘッド402を上昇させることによりヘッド402を基板W2から離脱させる。 Thereafter, the bonding apparatus 1 presses only the circumferential portion W1s of the substrate W1 against the circumferential portion W2s of the substrate W2 with the substrates W1 and W2 in contact with each other over the entire surface, thereby processing the circumferential portions W1s and W2s of the substrates W1 and W2. The substrates W1 and W2 are bonded together by pressing (step S113). Next, the bonding apparatus 1 releases the holding of the substrate W2 by stopping the electrostatic chuck 442 of the head 402 (step S114). Subsequently, the bonding apparatus 1 causes the head 402 to separate from the substrate W2 by raising the head 402, as shown by arrow AR14 in FIG. 10B.
 ところで、接合装置1は、除振機能を有する架台41上に載置されていることにより、例えば図11に示すように、床Fに伝達する各振動成分のうちの一部について接合装置1へ伝達する振動が低減されている。なお、図11において、fは、床Fに伝達する振動の周波数を示し、fは、架台41に固有の共振周波数を示す。また、縦軸は床Fから架台41を介して接合装置1へ伝達する振動の振動伝達率を示し、横軸は、周波数を架台41の共振周波数fで規格化した規格化周波数を示す。更に、fは、架台41により除振効果が得られる周波数領域の下限周波数を示す。但し、図11に示すように、床Fに伝達する振動のうち周波数がfよりも高い振動成分のみ振動伝達率が低減されているが、周波数が下限周波数f以下の振動成分については振動伝達率を低減できない。ここで、共振周波数fは、通常の除振機能を有する架台41では1.8Hz程度であり、fは2Hz程度である。この場合、床Fに伝達する振動に周波数が2Hz以下の振動成分が含まれる場合、この振動成分を架台41および除振ユニット160により低減することができない。実際、図12に示すように、接合装置1が除振機能を有する架台41上に載置されておいる場合の周波数スペクトルSPE1は、接合装置1が架台41上に載置されていない場合の周波数スペクトルSPE2に比べて、特に6Hz付近の振動振幅が0.1μm未満に低減されているが、周波数2Hz以下の振動振幅は、一点鎖線で囲んだ部分に示すように、依然として0.1μm以上となっている。なお、図12において、破線は、0.1μmの振動振幅を示すラインである。そこで、本実施の形態に係る接合装置1では、架台41により除振効果が得られる周波数領域の下限周波数f以下の比較的低い周波数の振動成分についてその振動波形を特定し、特定した振動波形に基づいて、基板W1、W2の位置ずれ量が振動中心に相当する位置ずれ量となる目標タイミングを推定する。そして、接合装置1は、推定した目標タイミングで基板W1、W2同士が接触するように、押圧機構431の押圧部431aと押圧機構432の押圧部432aとを突出させる。これにより、基板W2が基板W1に対して前述の下限周波数f以下の比較的低い周波数で振動していても基板W1、W2同士を高い位置精度で接触させることが可能となる。 By the way, since the bonding device 1 is placed on a pedestal 41 having a vibration isolation function, for example, as shown in FIG. 11, some of the vibration components transmitted to the floor F are transmitted to the bonding device 1. Transmitted vibrations are reduced. In addition, in FIG. 11, f indicates the frequency of vibration transmitted to the floor F, and f0 indicates a resonance frequency specific to the pedestal 41. Further, the vertical axis indicates the vibration transmission rate of vibration transmitted from the floor F to the bonding device 1 via the pedestal 41, and the horizontal axis indicates the normalized frequency obtained by normalizing the frequency by the resonance frequency f0 of the pedestal 41. Furthermore, f t indicates the lower limit frequency of the frequency range in which the vibration isolation effect can be obtained by the pedestal 41. However, as shown in Fig. 11, among the vibrations transmitted to the floor F, only the vibration component whose frequency is higher than f t has a reduced vibration transmission rate, but for vibration components whose frequency is below the lower limit frequency f t , the vibration transmission rate is reduced. Transmission rate cannot be reduced. Here, the resonant frequency f 0 is about 1.8 Hz in the pedestal 41 having a normal vibration isolation function, and f t is about 2 Hz. In this case, if the vibration transmitted to the floor F includes a vibration component with a frequency of 2 Hz or less, this vibration component cannot be reduced by the pedestal 41 and the vibration isolation unit 160. In fact, as shown in FIG. 12, the frequency spectrum SPE1 when the welding device 1 is placed on the pedestal 41 having a vibration isolation function is different from the frequency spectrum SPE1 when the welding device 1 is not placed on the pedestal 41. Compared to the frequency spectrum SPE2, the vibration amplitude especially around 6 Hz has been reduced to less than 0.1 μm, but the vibration amplitude at frequencies below 2 Hz is still 0.1 μm or more, as shown in the area surrounded by the dashed line. It has become. Note that in FIG. 12, the broken line is a line indicating a vibration amplitude of 0.1 μm. Therefore, in the bonding apparatus 1 according to the present embodiment, the vibration waveform of a relatively low frequency vibration component below the lower limit frequency f t of the frequency range in which the vibration isolation effect can be obtained by the frame 41 is specified, and the specified vibration waveform is Based on this, the target timing at which the amount of positional deviation of the substrates W1 and W2 corresponds to the center of vibration is estimated. Then, the bonding apparatus 1 causes the pressing part 431a of the pressing mechanism 431 and the pressing part 432a of the pressing mechanism 432 to protrude so that the substrates W1 and W2 come into contact with each other at the estimated target timing. This makes it possible to bring the substrates W1 and W2 into contact with each other with high positional accuracy even if the substrate W2 is vibrating with respect to the substrate W1 at a relatively low frequency below the aforementioned lower limit frequency f t .
 以上説明したように、本実施の形態に係る接合装置1によれば、基板W2の基板W1に対する位置ずれ量の時間推移から基板W2の基板W1に対する振動の振動波形を特定し、特定した振動波形に基づいて、基板W2の基板W1に対する位置ずれ量が目標量となる目標タイミングを推定する。そして、接合装置1は、推定された目標タイミングに基づいて、基板W1、W2同士を接触させる。これにより、基板W2が基板W1に対して相対的に振動している場合でも、基板W2を基板W1に高い位置精度で接合できる。 As described above, according to the bonding apparatus 1 according to the present embodiment, the vibration waveform of the vibration of the substrate W2 with respect to the substrate W1 is specified from the time course of the positional deviation amount of the substrate W2 with respect to the substrate W1, and the specified vibration waveform is Based on this, the target timing at which the amount of positional deviation of the substrate W2 with respect to the substrate W1 becomes the target amount is estimated. Then, the bonding apparatus 1 brings the substrates W1 and W2 into contact with each other based on the estimated target timing. Thereby, even if the substrate W2 is vibrating relative to the substrate W1, the substrate W2 can be bonded to the substrate W1 with high positional accuracy.
 ところで、従来、基板W1、W2同士の接触、離脱および位置合わせを繰り返すことにより基板W1、W2同士の位置合わせを行う接合方法が提供されていたが、この接合方法の場合、基板W2が基板W1に対して相対的に振動している場合、基板W1、W2同士を接触させるタイミングに応じて、基板W1、W2同士の接触位置が変動してしまう、これに対して、本実施の形態に係る接合方法では、基板W2の基板W1に対する相対的な振動波形を特定し、特定した振動波形に基づいて基板W1、W2同士を接触させるタイミングを推定し、推定したタイミングで基板W1、W2同士を接触させる。このため、基板W1、W2同士を接触させるタイミングのばらつきに起因した基板W2の基板W1に対する相対的な位置ずれを低減できる。このため、基板W1、W2同士の接触、離脱を繰り返す必要が無くなるという利点がある。 By the way, conventionally, a bonding method has been provided in which the substrates W1 and W2 are aligned by repeatedly contacting, separating and aligning the substrates W1 and W2, but in this bonding method, the substrate W2 is connected to the substrate W1. In contrast, when the substrates W1 and W2 vibrate relative to each other, the contact position between the substrates W1 and W2 changes depending on the timing at which the substrates W1 and W2 are brought into contact with each other. In the bonding method, the vibration waveform of the substrate W2 relative to the substrate W1 is specified, the timing for bringing the substrates W1 and W2 into contact with each other is estimated based on the specified vibration waveform, and the substrates W1 and W2 are brought into contact with each other at the estimated timing. let Therefore, it is possible to reduce the relative positional shift of the substrate W2 with respect to the substrate W1, which is caused by variations in the timing of bringing the substrates W1 and W2 into contact with each other. Therefore, there is an advantage that there is no need to repeatedly bring the substrates W1 and W2 into contact with each other and separate them from each other.
 また、本実施の形態に係る接合装置1によれば、前述の第1接触工程において、基板W1、W2それぞれの接合面の中央部が周部に比べて互いに対向する側に突出するように基板W1、W2を撓ませた状態で、基板W1、W2の接合面の中央部同士を接触させる。このため、例えばヘッド402をステージ402に近づけることにより、基板W1、W2の接合面全体を接触させる場合に比べて、基板W1、W2が離間した状態から基板W1、W2同士が接触した状態にするまでの必要時間を短縮することができる。従って、前述の目標タイミングで基板W1、W2同士を接触させ易いという利点がある。 Further, according to the bonding apparatus 1 according to the present embodiment, in the first contact step described above, the substrates are arranged such that the center portion of the bonding surface of each of the substrates W1 and W2 protrudes toward the side facing each other compared to the peripheral portion. With W1 and W2 bent, the centers of the bonding surfaces of substrates W1 and W2 are brought into contact with each other. For this reason, for example, by moving the head 402 closer to the stage 402, the substrates W1 and W2 are brought into contact with each other instead of being separated from each other, compared to the case where the entire joint surfaces of the substrates W1 and W2 are brought into contact. The required time can be shortened. Therefore, there is an advantage that it is easy to bring the substrates W1 and W2 into contact with each other at the above-mentioned target timing.
 更に、本実施の形態に係る接合装置1は、ステージ401の3箇所の部位P11、P12、P13における、ヘッド402における部位P11、P12、P13それぞれに対応する部位P21、P22、P23との間の距離を測定し、測定された距離に基づいて、ヘッド402に保持された基板W2のステージ401に保持された基板W1に対して平行となるように、前述の3つのピエゾアクチュエータ411を制御する。これにより、基板W1、W2同士が離間した状態で位置合わせした後、基板W1、W2を接合した場合でも、基板W1、W2同士の相対的な位置精度を高めることができる。 Furthermore, the bonding apparatus 1 according to the present embodiment has a structure in which the three parts P11, P12, and P13 of the stage 401 are connected to the parts P21, P22, and P23 corresponding to the parts P11, P12, and P13 in the head 402, respectively. The distance is measured, and based on the measured distance, the three piezo actuators 411 described above are controlled so that the substrate W2 held by the head 402 is parallel to the substrate W1 held by the stage 401. Thereby, even if the substrates W1 and W2 are aligned after being spaced apart from each other and then bonded together, the relative positional accuracy of the substrates W1 and W2 can be improved.
 また、本実施の形態に係る接合装置1では、基板W1、W2に設けられたアライメントマークMK1a、MK1b、MK2a、MK2bを撮像部501、502で同時に撮像するので撮像部501、502の位置ずれに影響されなくなる。また、接合装置1では、アライメントマークMK2a,MK1aの組とアライメントマークMK2b,MK1bの組とのそれぞれに対応して撮像部501、502を配置し、2組をそれぞれ同時に撮像するため、撮像部501、502の振動による影響をキャンセルすることができる。 Furthermore, in the bonding apparatus 1 according to the present embodiment, the alignment marks MK1a, MK1b, MK2a, and MK2b provided on the substrates W1 and W2 are simultaneously imaged by the imaging units 501 and 502, so that the alignment marks MK1a, MK1b, MK2a, and MK2b provided on the substrates W1 and W2 are simultaneously imaged by the imaging units 501 and 502. become unaffected. In addition, in the bonding apparatus 1, the imaging units 501 and 502 are arranged corresponding to the set of alignment marks MK2a and MK1a and the set of alignment marks MK2b and MK1b, respectively, and in order to image the two sets simultaneously, the imaging unit 501 , 502 can be canceled.
 ところで、本実施の形態に係る接合装置では、ヘッド402とステージ401の水平方向における相対的な位置をアライメントするという構造上、鉛直方向への振動振幅が比較的小さく、鉛直方向と直交する方向への振動振幅が比較的大きくなる傾向にある。この場合、例えば図13に示す比較例1のように、撮像部501、502は、光軸が鉛直方向と直交する姿勢、即ち、X軸方向に沿った姿勢で配置されている場合、矢印AR23、AR24に示す比較的振動振幅が大きい撮像部501、502の水平方向への振動が、アライメントマークMK1a,MK2aとアライメントマークMK1b,MK2bとの位置ずれ量の計測に影響する。このため、この比較例に係る構成では、矢印AR21、AR22に示すヘッド402とステージ401とのそれぞれの水平方向の振動とともに、撮像部501、502の水平方向の振動が、基板W1、W2同士のアライメントに影響してしまうことになる。これに対して、本実施の形態に係る撮像部501、502は、光軸が鉛直方向と直交する姿勢、即ち、X軸方向に沿った姿勢で配置されている。そして、この状態で、撮像部501、502にアライメントマークMK1a,MK2aとアライメントマークMK1b,MK2bから下向きへ進行する光を鉛直方向と直交する方向へ変換するミラー504を介して受光させることにより撮像部501、502でアライメントマークMK1a,MK2aとアライメントマークMK1b,MK2bとを撮像する。これにより、比較的振動振幅が大きくなる撮像部501、502の水平方向への振動が、主として撮像部501、502のフォーカス位置のずれに影響し、撮像部501、502で撮像されたアライメントマークMK1a,MK2aとアライメントマークMK1b,MK2bとの位置ずれにほとんど影響しないようにすることができる。従って、比較的振動振幅が大きい撮像部501、502の水平方向への振動が、アライメントマークMK1a,MK2aとアライメントマークMK1b,MK2bとの位置ずれ量に影響してしまうことを抑制できる。 By the way, in the bonding apparatus according to the present embodiment, due to the structure in which the relative positions of the head 402 and the stage 401 are aligned in the horizontal direction, the vibration amplitude in the vertical direction is relatively small, and the vibration amplitude in the direction orthogonal to the vertical direction is relatively small. The vibration amplitude tends to be relatively large. In this case, for example, as in Comparative Example 1 shown in FIG. 13, when the imaging units 501 and 502 are arranged with their optical axes perpendicular to the vertical direction, that is, along the X-axis direction, the arrow AR2 , AR24, the horizontal vibrations of the imaging units 501, 502 with relatively large vibration amplitudes affect the measurement of the amount of positional deviation between the alignment marks MK1a, MK2a and the alignment marks MK1b, MK2b. Therefore, in the configuration according to this comparative example, in addition to the horizontal vibrations of the head 402 and the stage 401 shown by arrows AR21 and AR22, the horizontal vibrations of the imaging units 501 and 502 are caused by the vibrations between the substrates W1 and W2. This will affect alignment. In contrast, the imaging units 501 and 502 according to the present embodiment are arranged with their optical axes perpendicular to the vertical direction, that is, along the X-axis direction. In this state, the imaging units 501 and 502 receive the light traveling downward from the alignment marks MK1a and MK2a and the alignment marks MK1b and MK2b through the mirror 504 that converts it into a direction perpendicular to the vertical direction. In steps 501 and 502, alignment marks MK1a, MK2a and alignment marks MK1b, MK2b are imaged. As a result, the vibration in the horizontal direction of the imaging units 501 and 502, which has a relatively large vibration amplitude, mainly affects the shift of the focus position of the imaging units 501 and 502, and the alignment mark MK1a imaged by the imaging units 501 and 502. , MK2a and the alignment marks MK1b, MK2b can be hardly affected. Therefore, it is possible to suppress the horizontal vibration of the imaging units 501 and 502, which has a relatively large vibration amplitude, from affecting the amount of positional deviation between the alignment marks MK1a and MK2a and the alignment marks MK1b and MK2b.
 また、本実施の形態に係る接合装置1は、前述の除振ユニット160を備える。これにより、接合装置1が設置された床等からステージ401またはヘッド402に伝達する10Hzよりも高い周波数の振動成分を除去する。ところで、従来は、ステージ401、ヘッド402に伝達する振動成分は、前述のアクティブ除振台である除振ユニット160を用いて除去できる成分に限定されていた。このため、除振ユニット160で除去できない10Hz以下の振動成分が残留していた。これに対して、本実施の形態に係る接合装置1では、基板W2の基板W1に対する振動の振動波形を特定し、特定した振動波形に基づいて、基板W2の基板W1に対する位置ずれ量が目標量となる目標タイミングを推定することで、10Hz以下の振動成分が互いに接合された基板W1,W2の位置ずれへの影響を低減することができ、実質的に10Hz以下の振動成分を除去する効果が得られる。また、本実施の形態に係る接合装置1では、10Hzよりも高い比較的高周波の領域の振動成分の振動速度は、画像処理速度に比べて速いため振動波形に基づく目標タイミングの推定が困難である。しかしながら、いわゆるアクティブ除振台である除振ユニット160を併用することにより全周波数領域の振動成分を低減できる。 Furthermore, the bonding apparatus 1 according to the present embodiment includes the above-mentioned vibration isolating unit 160. This removes vibration components with frequencies higher than 10 Hz that are transmitted to the stage 401 or the head 402 from the floor or the like on which the bonding apparatus 1 is installed. Incidentally, conventionally, the vibration components transmitted to the stage 401 and the head 402 have been limited to those that can be removed using the vibration isolation unit 160, which is the above-mentioned active vibration isolation table. Therefore, vibration components of 10 Hz or less remained that could not be removed by the vibration isolation unit 160. On the other hand, in the bonding apparatus 1 according to the present embodiment, the vibration waveform of the vibration of the substrate W2 with respect to the substrate W1 is specified, and based on the specified vibration waveform, the positional deviation amount of the substrate W2 with respect to the substrate W1 is set to the target amount. By estimating the target timing at which can get. Furthermore, in the bonding apparatus 1 according to the present embodiment, the vibration speed of the vibration component in a relatively high frequency region higher than 10 Hz is faster than the image processing speed, so it is difficult to estimate the target timing based on the vibration waveform. . However, by using a vibration isolation unit 160, which is a so-called active vibration isolation table, vibration components in all frequency ranges can be reduced.
(実施の形態2)
 本実施の形態に係るチップ接合システムは、基板上に半導体チップ(以下、単に「チップ」と称する。)を接合する装置である。半導体チップは、例えばダイシングされた基板から供給される。このチップ接合システムは、基板におけるチップが接合される面と電子チップの接合面について活性化処理が行われた後において、チップを基板に接触させて加圧することにより、チップを基板に接合する。
(Embodiment 2)
The chip bonding system according to this embodiment is an apparatus for bonding a semiconductor chip (hereinafter simply referred to as a "chip") onto a substrate. Semiconductor chips are supplied, for example, from diced substrates. This chip bonding system bonds the chip to the substrate by bringing the chip into contact with the substrate and applying pressure after activation processing is performed on the surface of the substrate to which the chip is bonded and the bonding surface of the electronic chip.
 図14に示すように、本実施の形態に係るチップ接合システム2は、チップ供給装置2010と、接合装置2030と、チップ搬送装置2039と、制御部2009と、を備える。チップ供給装置2010は、基板をダイシングすることにより作製された複数のチップCPの中から1つのチップCPを切り出し、接合装置2030へチップCPを供給する。ここで、ダイシングとは、複数の電子チップが作り込まれた基板を縦方向および横方向に切削しチップ化する処理である。チップ供給装置2010は、チップ供給部2011と供給チップ撮像部2015とを有する。 As shown in FIG. 14, the chip bonding system 2 according to this embodiment includes a chip supply device 2010, a bonding device 2030, a chip transport device 2039, and a control section 2009. The chip supply device 2010 cuts out one chip CP from among the plurality of chips CP produced by dicing the substrate, and supplies the chip CP to the bonding device 2030. Here, dicing is a process of cutting a substrate on which a plurality of electronic chips are built into chips in the vertical and horizontal directions. The chip supply device 2010 includes a chip supply section 2011 and a supplied chip imaging section 2015.
 チップ供給部2011は、複数のチップCPが貼着されたシートTEを保持するシート保持枠2112と、シート保持枠2112を保持する枠保持部2119と、複数のチップCPの中から1つのチップCPをピックアップするピックアップ機構2111と、カバー2114と、を有する。また、チップ供給部2011は、シート保持枠2112をXY方向またはZ軸周りに回転する方向へ駆動する保持枠駆動部2113を有する。枠保持部2119は、シートTEにおける複数のチップCPが貼着された面が鉛直上方(+Z方向)側となる姿勢でシート保持枠2112を保持する。シート保持枠2112と枠保持部2119とで、複数のチップCPそれぞれの接合面CPf側とは反対側に貼着されたシートTEを接合面CPfが鉛直上方側を向く姿勢で保持するシート保持部が構成されている。 The chip supply unit 2011 includes a sheet holding frame 2112 that holds a sheet TE to which a plurality of chips CP are attached, a frame holding unit 2119 that holds the sheet holding frame 2112, and a frame holding unit 2119 that holds a sheet TE to which a plurality of chips CP are attached. It has a pickup mechanism 2111 that picks up the image, and a cover 2114. The chip supply unit 2011 also includes a holding frame drive unit 2113 that drives the sheet holding frame 2112 in the XY direction or in the direction of rotation around the Z axis. The frame holding unit 2119 holds the sheet holding frame 2112 in such a position that the surface of the sheet TE to which the plurality of chips CP are attached faces vertically upward (+Z direction). The sheet holding frame 2112 and the frame holding part 2119 hold the sheet TE attached to the side opposite to the bonding surface CPf side of each of the plurality of chips CP in a posture with the bonding surface CPf facing vertically upward. is configured.
 ピックアップ機構2111は、複数のチップCPのうちの1つのチップCPを、シートTEにおける複数のチップCP側とは反対側から切り出すことにより1つのチップCPをシートTEから離脱した状態にする。ここで、ピックアップ機構2111は、チップCPの接合面CPf側とは反対側における後述のヘッド2033Hにより保持される中央部とは異なる周部を保持して、チップCPを切り出す。ピックアップ機構2111は、ニードル2111aを有し、矢印AR14に示すように鉛直方向へ移動可能となっている。カバー2114は、複数のチップCPの鉛直上方を覆うように配置され、ピックアップ機構2111に対向する部分に孔2114aが設けられている。ニードル2111aは、例えば4つ存在する。但し、ニードル2111aの数は、3つであってもよいし、5つ以上であってもよい。ピックアップ機構2111は、シートTEにおける鉛直下方(-Z方向)からニードル2111aをシートTEに突き刺してチップCPを鉛直上方(+Z方向)へ持ち上げることによりチップCPを供給する。そして、シートTEに貼着された各チップCPは、ニードル2111aによりカバー2114の孔2114aを通じて1個ずつカバー2114の上方へ突き出され、チップ搬送装置2039に受け渡される。保持枠駆動部2113は、シート保持枠2112をXY方向またはZ軸周りに回転する方向へ駆動することにより、ニードル2111aの鉛直下方に位置するチップCPの位置を変化させる。 The pickup mechanism 2111 separates one chip CP from the sheet TE by cutting out one of the chips CP from the opposite side of the sheet TE from the side of the chips CP. Here, the pickup mechanism 2111 cuts out the chip CP by holding a peripheral portion of the chip CP on the side opposite to the bonding surface CPf, which is different from the central portion held by a head 2033H, which will be described later. The pickup mechanism 2111 has a needle 2111a, and is movable in the vertical direction as shown by an arrow AR14. The cover 2114 is arranged to cover vertically above the plurality of chips CP, and a hole 2114a is provided in a portion facing the pickup mechanism 2111. For example, there are four needles 2111a. However, the number of needles 2111a may be three or five or more. The pickup mechanism 2111 supplies the chips CP by piercing the needle 2111a into the sheet TE from vertically below (-Z direction) and lifting the chips CP vertically upwards (+Z direction). Each chip CP attached to the sheet TE is then pushed out one by one above the cover 2114 through the hole 2114a of the cover 2114 by the needle 2111a, and delivered to the chip transport device 2039. The holding frame driving unit 2113 changes the position of the chip CP located vertically below the needle 2111a by driving the sheet holding frame 2112 in the XY direction or in the direction of rotation around the Z axis.
 供給チップ撮像部2015は、チップ供給装置2010におけるチップ供給部2011の上方(+Z方向)に配置されている。供給チップ撮像部2015は、ピックアップ機構2111によりカバー2114の上方へ突き出されたチップCPを撮影する。 The supplied chip imaging unit 2015 is arranged above the chip supplying unit 2011 (in the +Z direction) in the chip supplying device 2010. The supplied chip imaging unit 2015 photographs the chip CP pushed upward from the cover 2114 by the pickup mechanism 2111.
 チップ搬送装置2039は、チップ供給部2011から供給されるチップCPを、接合装置2030のボンディング部2033のヘッド2033HにチップCPを移載する移載位置Pos1まで搬送する。チップ搬送装置2039は、長尺のプレート2391と、アーム2394と、アーム2394の先端部に設けられたチップ保持部2393と、プレート2391を回転駆動するプレート駆動部2392と、を有する。プレート2391は、長尺筒状でありチップ供給部2011とヘッド2033Hとの間に位置する他端部を基点として一端部が鉛直方向に延在する回転軸AX回りに旋回する。なお、プレート2391の数は、複数であってもよいし、1つであってもよい。 The chip transport device 2039 transports the chip CP supplied from the chip supply section 2011 to the transfer position Pos1 where the chip CP is transferred to the head 2033H of the bonding section 2033 of the bonding device 2030. The chip transport device 2039 includes a long plate 2391, an arm 2394, a chip holding section 2393 provided at the tip of the arm 2394, and a plate driving section 2392 that rotationally drives the plate 2391. The plate 2391 has an elongated cylindrical shape and rotates around a rotation axis AX with one end extending in the vertical direction with the other end located between the chip supply section 2011 and the head 2033H as a base point. Note that the number of plates 2391 may be plural or one.
 チップ保持部2393は、図15Aに示すように、アーム2394の先端部に設けられ、チップCPを保持する2つの脚片2393aを有する。プレート2391は、図15Bに示すように、内側に長尺のアーム2394を収容することが可能となっている。そして、プレート2391の内側には、アーム2394をプレート2391の長手方向に沿って駆動するアーム駆動部2395が設けられている。これにより、チップ搬送装置2039は、アーム駆動部2395により、アーム2394の先端部をプレート2391の外側に突出させた状態にしたり、アーム2394の先端部をプレート2391の内側に没入させた状態にしたりすることができる。そして、チップ搬送装置2039は、プレート2391を旋回させる際、矢印AR15に示すように、アーム2394をプレート2391内へ没入させてチップ保持部2393をプレート2391の内側に収納する。これにより、搬送時におけるチップCPへのパーティクルの付着が抑制される。なお、2つの脚片2393aには、吸着溝(図示せず)が設けられていてもよい。この場合、チップCPが脚片2392aに吸着保持されるので、チップCPを位置ずれなく搬送することができる。また、プレート2391が旋回する際に生じる遠心力によるチップCPの飛び出しを防止するために、脚片2393aの先端部に突起(図示せず)を設けてもよい。チップ搬送装置2039は、ピックアップ機構2111からチップCPを受け取ると、プレート2391を軸AX周りに旋回させることによりチップCPを鉛直方向においてヘッド2033Hと重なる移載位置Pos1まで搬送する。 As shown in FIG. 15A, the chip holding section 2393 is provided at the tip of the arm 2394 and has two leg pieces 2393a that hold the chip CP. As shown in FIG. 15B, the plate 2391 is capable of accommodating a long arm 2394 inside. An arm driving section 2395 that drives the arm 2394 along the longitudinal direction of the plate 2391 is provided inside the plate 2391. As a result, the chip transport device 2039 can cause the tip of the arm 2394 to protrude to the outside of the plate 2391 or to make the tip of the arm 2394 retract inside the plate 2391 by the arm drive unit 2395. can do. Then, when the chip transport device 2039 rotates the plate 2391, the arm 2394 is retracted into the plate 2391 to store the chip holding section 2393 inside the plate 2391, as shown by an arrow AR15. Thereby, adhesion of particles to the chip CP during transportation is suppressed. Note that suction grooves (not shown) may be provided in the two leg pieces 2393a. In this case, since the chip CP is suctioned and held by the leg piece 2392a, the chip CP can be transported without being misaligned. Furthermore, in order to prevent the chip CP from flying out due to the centrifugal force generated when the plate 2391 rotates, a protrusion (not shown) may be provided at the tip of the leg piece 2393a. When the chip transport device 2039 receives the chip CP from the pickup mechanism 2111, it transports the chip CP in the vertical direction to a transfer position Pos1 overlapping the head 2033H by rotating the plate 2391 around the axis AX.
 また、接合装置2030は、図16に示すように、ステージユニット2031と、ヘッド2033Hを有するボンディング部2033と、ヘッド2033Hを駆動するヘッド駆動部2036と、撮像部2035a、2035bと、撮像部2041と、カメラF方向駆動部2365と、カメラZ方向駆動部2363と、を有する。ボンディング部2033は、Z軸方向移動部材2331と、第1円盤部材2332と、ピエゾアクチュエータ2333と、第2円盤部材2334と、ミラー固定用部材2336と、ミラー2337と、ヘッド2033Hと、を有する。 Further, as shown in FIG. 16, the bonding apparatus 2030 includes a stage unit 2031, a bonding section 2033 having a head 2033H, a head driving section 2036 that drives the head 2033H, imaging sections 2035a and 2035b, and an imaging section 2041. , a camera F direction drive section 2365, and a camera Z direction drive section 2363. The bonding section 2033 includes a Z-axis moving member 2331, a first disc member 2332, a piezo actuator 2333, a second disc member 2334, a mirror fixing member 2336, a mirror 2337, and a head 2033H.
 Z軸方向移動部材2331の上端部には、第1円盤部材2332が固定されている。また、第1円盤部材2332の上側には、第2円盤部材2334が配置されている。第1円盤部材2332と第2円盤部材2334とは、ピエゾアクチュエータ2333を介して接続されている。さらに、第2円盤部材2334の上面側には、ヘッド2033Hが固定されている。ヘッド2033Hは、チップCPを吸着して保持する。 A first disk member 2332 is fixed to the upper end of the Z-axis moving member 2331. Further, a second disk member 2334 is arranged above the first disk member 2332. The first disk member 2332 and the second disk member 2334 are connected via a piezo actuator 2333. Furthermore, a head 2033H is fixed to the upper surface side of the second disc member 2334. The head 2033H attracts and holds the chip CP.
 ヘッド2033Hは、鉛直下方(-Z方向)からチップCPを保持する。ヘッド2033Hは、図17Aおよび図17Bに示すように、チップツール2411と、ヘッド本体部2413と、チップ支持部2432aと、支持部駆動部2432bと、を有する。チップツール2411は、撮影光(赤外光等)を透過する材料(例えばシリコン(Si))から形成されている。また、ヘッド本体部2413には、セラミックヒータやコイルヒータ等が内蔵されている。また、ヘッド本体部2413には、撮影光を透過(通過)させるための中空部2415、2416が設けられている。各中空部2415、2416は、撮影光を透過する透過部分であり、ヘッド本体部2413を鉛直方向(Z軸方向)に貫通するように設けられている。また、各中空部2415,2416は、図18に示すように、上面視において楕円形状を有している。2つの中空部2415,2416は、上面視略正方形形状を有するヘッド本体部2413の対角部分において、軸BXを中心に点対称に配置されている。なお、図16に示すように、撮影光を透過させるため、第2円盤部材2334における中空部2415、2416に対応する部分にも孔部2334a、2334bが設けられている。図17Aおよび図17Bに戻って、ヘッド本体部2413は、チップCPをチップツール2411に吸着保持させるための吸着部を有する保持機構2440を有する。また、ヘッド本体部2413は、チップツール2411を真空吸着によりヘッド本体部2413に固定するための吸着部(図示せず)も有する。チップツール2411は、ヘッド本体部2413の保持機構2440に対応する位置に形成された貫通孔2411aと、チップ支持部2432aが内側に挿通される貫通孔2411bと、を有する。 The head 2033H holds the chip CP from vertically below (-Z direction). As shown in FIGS. 17A and 17B, the head 2033H includes a tip tool 2411, a head main body portion 2413, a tip support portion 2432a, and a support portion drive portion 2432b. The tip tool 2411 is made of a material (for example, silicon (Si)) that transmits photographing light (infrared light, etc.). Further, the head main body portion 2413 includes a ceramic heater, a coil heater, and the like. Further, the head main body portion 2413 is provided with hollow portions 2415 and 2416 for transmitting (passing) photographing light. Each of the hollow portions 2415 and 2416 is a transparent portion that transmits photographing light, and is provided so as to penetrate the head main body portion 2413 in the vertical direction (Z-axis direction). Moreover, each hollow part 2415, 2416 has an elliptical shape when viewed from above, as shown in FIG. The two hollow portions 2415 and 2416 are arranged point-symmetrically about the axis BX in the diagonal portions of the head main body portion 2413 having a substantially square shape when viewed from above. Note that, as shown in FIG. 16, holes 2334a and 2334b are also provided in the second disc member 2334 at portions corresponding to the hollow portions 2415 and 2416 to transmit the photographing light. Returning to FIGS. 17A and 17B, the head main body portion 2413 includes a holding mechanism 2440 having a suction portion for holding the chip CP on the chip tool 2411 by suction. The head main body 2413 also has a suction portion (not shown) for fixing the tip tool 2411 to the head main body 2413 by vacuum suction. The tip tool 2411 has a through hole 2411a formed at a position corresponding to the holding mechanism 2440 of the head body portion 2413, and a through hole 2411b into which the tip support portion 2432a is inserted.
 チップ支持部2432aは、例えば筒状の吸着ポストであり、ヘッド2033Hの先端部に設けられ鉛直方向へ移動自在となっている。チップ支持部2432aは、チップCPの接合面CPf側とは反対側を支持する。チップ支持部2432aは、例えば中央部に1つ設けられている。 The chip support part 2432a is, for example, a cylindrical suction post, and is provided at the tip of the head 2033H and is movable in the vertical direction. The chip support portion 2432a supports the side of the chip CP opposite to the bonding surface CPf side. For example, one chip support portion 2432a is provided at the center.
 支持部駆動部2432bは、チップ支持部2432aを鉛直方向へ駆動するとともに、チップ支持部2432aの先端部にチップCPが載置された状態でチップ支持部2432aの内側を減圧することによりチップCPをチップ支持部2432aの先端部に吸着させる。支持部駆動部2432bは、チップ搬送装置2039のチップ保持部2393がチップCPを保持した状態でヘッド2033Hへの移載位置(図14のPos1参照)に位置し、チップ支持部2432aの先端部でチップCPの中央部を支持した状態で、チップ支持部2432aをチップ保持部2393よりも鉛直上方側へ移動させる。これにより、チップCPが、チップ搬送装置2039のチップ保持部2393からヘッド33Hへ移載される。 The support part driving part 2432b drives the chip support part 2432a in the vertical direction, and also removes the chip CP by reducing the pressure inside the chip support part 2432a with the chip CP placed on the tip of the chip support part 2432a. It is adsorbed to the tip of the chip support section 2432a. The support part drive part 2432b is located at the transfer position (see Pos1 in FIG. 14) to the head 2033H with the chip holding part 2393 of the chip transport device 2039 holding the chip CP, and the support part driving part 2432b is positioned at the tip of the chip support part 2432a. The chip supporting section 2432a is moved vertically upward relative to the chip holding section 2393 while supporting the central portion of the chip CP. Thereby, the chip CP is transferred from the chip holding section 2393 of the chip transport device 2039 to the head 33H.
 ピエゾアクチュエータ2333は、基板WTの接合面WTfとチップCPの接合面CPfとの間の距離とチップCPの基板WTの接合面WTfに対する傾きとの少なくとも一方を調整する姿勢調整部である。ピエゾアクチュエータ2333は、図19Aに示すように、第1円盤部材2332と第2円盤部材2334との間に3つ存在し、それぞれのZ方向に伸縮可能となっている。そして、3つのピエゾアクチュエータ2333それぞれの伸縮の程度を制御することにより、水平面に対する第2円盤部材2334、ひいてはヘッド2033Hの傾き角度が調整される。そして、ヘッド2033Hに保持されたチップCPの接合面CPfの基板WTの接合面WTfとの間の距離と、ヘッド2033Hに保持されたチップCPの接合面CPfの基板WTの接合面WTfに対する傾きと、の少なくとも一方が調整される。なお、3本のピエゾアクチュエータ2333は、撮像部2035a、2035bに関する照明光(反射光を含む)を遮らない位置(平面位置)に配置されている。 The piezo actuator 2333 is an attitude adjustment unit that adjusts at least one of the distance between the bonding surface WTf of the substrate WT and the bonding surface CPf of the chip CP, and the inclination of the chip CP with respect to the bonding surface WTf of the substrate WT. As shown in FIG. 19A, three piezo actuators 2333 exist between the first disk member 2332 and the second disk member 2334, and can expand and contract in the respective Z directions. By controlling the degree of expansion and contraction of each of the three piezo actuators 2333, the inclination angle of the second disk member 2334 and, by extension, the head 2033H with respect to the horizontal plane is adjusted. The distance between the bonding surface CPf of the chip CP held by the head 2033H and the bonding surface WTf of the substrate WT, and the inclination of the bonding surface CPf of the chip CP held by the head 2033H with respect to the bonding surface WTf of the substrate WT. , is adjusted. Note that the three piezo actuators 2333 are arranged at positions (planar positions) where they do not block illumination light (including reflected light) regarding the imaging units 2035a and 2035b.
 図16に戻って、ミラー2337は、ミラー固定用部材2336を介して第1円盤部材2332に固定され、第1円盤部材2332と第2円盤部材2334との間の空隙に配置されている。ミラー2337は、斜め下方向き45度の傾斜角度を有する傾斜面2337a、2337bを有する。撮像部2035a、2035bからミラー2337の傾斜面2337a、2337bへ入射した撮影光は、上方へ反射される。 Returning to FIG. 16, the mirror 2337 is fixed to the first disc member 2332 via a mirror fixing member 2336, and is arranged in the gap between the first disc member 2332 and the second disc member 2334. The mirror 2337 has inclined surfaces 2337a and 2337b having an inclined downward angle of 45 degrees. Photographing light incident on the inclined surfaces 2337a, 2337b of the mirror 2337 from the imaging units 2035a, 2035b is reflected upward.
 ヘッド駆動部2036は、チップCPを保持するヘッド2033Hを鉛直上方(+Z方向)へ移動させることによりヘッド2033Hをステージ2031に近づけて基板WTの接合面WTfにチップCPを接合する。より詳細には、ヘッド駆動部2036は、チップCPを保持するヘッド2033Hを鉛直上方(+Z方向)へ移動させることによりヘッド2033Hをステージ2031に近づけて基板WTの接合面WTfにチップCPを接触させて基板WTに面接合させる。ここにおいて、基板WTの接合面WTfとチップCPにおける基板WTに接合される接合面CPfとは、事前にプラズマに暴露されたり粒子ビームを照射されたりする活性化処理が施されている。従って、基板WTの接合面WTfにチップCPの接合面CPfを接触させることにより、基板WTにチップCPが接合される。なお、チップCPの接合面CPfは、例えば少なくとも一部に平坦な金属部分が露出した面であってもよい。 The head driving unit 2036 moves the head 2033H holding the chip CP vertically upward (+Z direction) to bring the head 2033H closer to the stage 2031 and joins the chip CP to the joining surface WTf of the substrate WT. More specifically, the head driving unit 2036 moves the head 2033H holding the chip CP vertically upward (+Z direction) to bring the head 2033H closer to the stage 2031 and brings the chip CP into contact with the bonding surface WTf of the substrate WT. surface bonding to the substrate WT. Here, the bonding surface WTf of the substrate WT and the bonding surface CPf of the chip CP that is bonded to the substrate WT have been previously subjected to activation treatment such as being exposed to plasma or irradiated with a particle beam. Therefore, by bringing the bonding surface CPf of the chip CP into contact with the bonding surface WTf of the substrate WT, the chip CP is bonded to the substrate WT. Note that the bonding surface CPf of the chip CP may be, for example, a surface in which at least a portion of a flat metal portion is exposed.
 ヘッド駆動部2036は、Z方向駆動部2034と、回動部材2361と、θ方向駆動部2037と、を有する。Z方向駆動部2034は、サーボモータおよびボールネジ等を有している。Z方向駆動部2034は、後述の回動部材2361の下端側に設けられ、図14の矢印AR211に示すように、ボンディング部2033のZ軸方向移動部材2331をZ軸方向へ駆動する。Z方向駆動部2034が、Z軸方向移動部材2331をZ方向に移動させると、それに伴い、ボンディング部2033の上端部に設けられたヘッド2033HがZ方向に移動する。即ち、ヘッド2033Hは、Z方向駆動部2034によりZ方向に駆動される。 The head drive section 2036 includes a Z direction drive section 2034, a rotating member 2361, and a θ direction drive section 2037. The Z direction drive unit 2034 includes a servo motor, a ball screw, and the like. The Z-direction drive section 2034 is provided on the lower end side of a rotating member 2361, which will be described later, and drives the Z-axis moving member 2331 of the bonding section 2033 in the Z-axis direction, as shown by an arrow AR211 in FIG. When the Z-direction driving section 2034 moves the Z-axis moving member 2331 in the Z direction, the head 2033H provided at the upper end of the bonding section 2033 moves in the Z direction. That is, the head 2033H is driven in the Z direction by the Z direction drive section 2034.
 回動部材2361は、円筒形状であり、図19Bに示すように内側の中空部の断面形状が八角形である。一方、Z軸方向移動部材2331は、断面形状が八角形である棒状部分を有し、回動部材2361の内側に挿入されている。また、Z軸方向移動部材2331の8つの側面のうちの4つの側面と回動部材2361の内面との間には、Z軸方向移動部材2331が回動部材2361に対してZ軸方向へ摺動するかたちで配置されたリニアガイド2038が設けられている。Z軸方向移動部材2331は、回動部材2361が軸BX周りに回転すると、回動部材2361と連動して回転する。即ち、ボンディング部2033と回動部材2361とは、図14の矢印AR212に示すように、軸BX周りに連動して回転する。 The rotating member 2361 has a cylindrical shape, and the inner hollow portion has an octagonal cross-sectional shape as shown in FIG. 19B. On the other hand, the Z-axis direction moving member 2331 has a rod-shaped portion having an octagonal cross-sectional shape, and is inserted inside the rotating member 2361. Furthermore, between four of the eight side surfaces of the Z-axis moving member 2331 and the inner surface of the rotating member 2361, the Z-axis moving member 2331 slides in the Z-axis direction with respect to the rotating member 2361. A linear guide 2038 is provided which is arranged in a movable manner. The Z-axis direction moving member 2331 rotates in conjunction with the rotating member 2361 when the rotating member 2361 rotates around the axis BX. That is, the bonding portion 2033 and the rotating member 2361 rotate in conjunction with each other around the axis BX, as shown by the arrow AR212 in FIG. 14.
 θ方向駆動部2037は、サーボモータおよび減速機等を有し、図16に示すように、接合装置2030内に設けられた固定部材2301に固定されている。θ方向駆動部2037は、回動部材2361を軸BX周りに回転可能に支持している。そして、θ方向駆動部2037は、制御部2009から入力される制御信号に応じて、回動部材2361を軸BX周りに回転させる。 The θ-direction drive unit 2037 includes a servo motor, a speed reducer, and the like, and is fixed to a fixing member 2301 provided within the welding device 2030, as shown in FIG. The θ direction drive unit 2037 supports the rotating member 2361 so as to be rotatable around the axis BX. Then, the θ-direction drive unit 2037 rotates the rotating member 2361 around the axis BX in accordance with a control signal input from the control unit 2009.
 撮像部2035a、2035bは、チップCPが基板WTにおけるチップCPが接合される位置に配置された状態で、チップCPの鉛直下方(-Z方向)から、チップCPのアライメントマークを撮像する。撮像部2035aは、カメラZ方向駆動部2363およびカメラF方向駆動部2365を介して回動部材2361に固定されている。撮像部2035bも、カメラZ方向駆動部2363およびカメラF方向駆動部2365を介して回動部材2361に固定されている。これにより、撮像部2035a、2035bは、回動部材2361と共に回転する。ここで、前述のように、ミラー2337は、Z軸方向移動部材2331に固定され、回動部材2361とZ軸方向移動部材2331とは連動して回転する。従って、撮像部2035a,2035bとミラー2337との相対的な位置関係は不変であるので、回動部材2361の回転動作に関わらず、ミラー2337により反射される撮影光が撮像部2035a、2035bに導かれる。また、ヘッド2033Hの中空部2415、2416は、回動部材2361の回転に連動して軸BX周りに回転する。例えば、図18に示すように、正方形形状を有するチップCPの中心を挟んで対向する角部それぞれにアライメントマークMC2a、MC2bが設けられているとする。この場合、撮像部2035a、2035bがチップCPのアライメントマークMC2a、MC2bが設けられた2つの角部を結ぶ対角線上に位置するときに、撮像部35a、35bが中空部415、416を通じてアライメントマークMC2a、MC2bの撮影画像を取得することができる。 The imaging units 2035a and 2035b image the alignment mark of the chip CP from vertically below the chip CP (in the -Z direction) with the chip CP disposed at a position on the substrate WT where the chip CP is bonded. The imaging section 2035a is fixed to the rotating member 2361 via a camera Z direction drive section 2363 and a camera F direction drive section 2365. The imaging section 2035b is also fixed to the rotating member 2361 via a camera Z direction drive section 2363 and a camera F direction drive section 2365. Thereby, the imaging units 2035a and 2035b rotate together with the rotating member 2361. Here, as described above, the mirror 2337 is fixed to the Z-axis moving member 2331, and the rotating member 2361 and the Z-axis moving member 2331 rotate in conjunction with each other. Therefore, since the relative positional relationship between the imaging units 2035a, 2035b and the mirror 2337 remains unchanged, the imaging light reflected by the mirror 2337 is guided to the imaging units 2035a, 2035b regardless of the rotational movement of the rotating member 2361. It will be destroyed. Further, the hollow portions 2415 and 2416 of the head 2033H rotate around the axis BX in conjunction with the rotation of the rotating member 2361. For example, as shown in FIG. 18, it is assumed that alignment marks MC2a and MC2b are provided at each corner of a square-shaped chip CP that faces each other across the center thereof. In this case, when the imaging units 2035a and 2035b are located on the diagonal line connecting the two corners where the alignment marks MC2a and MC2b of the chip CP are provided, the imaging units 35a and 35b pass through the hollow parts 415 and 416 to mark the alignment mark MC2a. , MC2b can be captured.
 図16に戻って、撮像部2035a,2035bは、それぞれ、イメージセンサ2351a、2351bと、光学系2352a、2352bと、同軸照明系(図示せず)と、を有する。撮像部2035a、2035bは、それぞれ、同軸照明系の光源(図示せず)から出射される照明光(例えば赤外光)の反射光を用いて撮影する。なお、撮像部2035a、2035bの同軸照明系から水平方向に出射された照明光は、ミラー2337の傾斜面2337a、2337bで反射されその進行方向が鉛直上方に変更される。そして、ミラー2337で反射された光は、ヘッド2033Hに保持されたチップCPとチップCPに対向配置された基板WTとを含む撮影対象部分に向けて進行し各撮影対象部分で反射される。チップCPおよび基板WTそれぞれの撮影対象部分からの反射光は、鉛直下方へ進行した後、ミラー2337の傾斜面2337a、2337bで再び反射されその進行方向が水平方向に変更されて、撮像部2035a、2035bへと到達する。そして、撮像部2035a、2035bは、撮像部2035a、2035bに到達した反射光を用いて、チップCPおよび基板WTそれぞれの撮影対象部分を撮影する。また、撮像部2035a、2035bは、それぞれ、チップCPに設けられたアライメントマークの画像と、基板WTに設けられたアライメントマークの画像と、を含む撮影画像を取得すると、取得した撮影画像を示す撮影画像信号を制御部2009へ出力する。例えば図20Aおよび図20Bに示すように、基板WTには、2つのアライメントマークMC1a、MC1bが設けられ、チップCPにも、2つのアライメントマークMC2a、MC2bが設けられている。そして、制御部2009は、撮像部2035a、2035bにより撮影されたアライメントマークMC1a、MC1b、MC2a、MC2bの画像を含む撮影画像に基づいて、基板WTにおけるチップCPが接合される面に平行な方向における各チップCPの基板WTに対する相対位置を認識する。 Returning to FIG. 16, the imaging units 2035a and 2035b each include image sensors 2351a and 2351b, optical systems 2352a and 2352b, and a coaxial illumination system (not shown). The imaging units 2035a and 2035b each take an image using reflected light of illumination light (for example, infrared light) emitted from a light source (not shown) of a coaxial illumination system. Note that the illumination light emitted in the horizontal direction from the coaxial illumination systems of the imaging units 2035a and 2035b is reflected by the inclined surfaces 2337a and 2337b of the mirror 2337, and its traveling direction is changed to vertically upward. Then, the light reflected by the mirror 2337 travels toward the photographing target portion including the chip CP held by the head 2033H and the substrate WT disposed opposite to the chip CP, and is reflected at each photographing target portion. After the reflected light from the photographing target portions of the chip CP and the substrate WT travels vertically downward, it is reflected again by the inclined surfaces 2337a and 2337b of the mirror 2337, and the direction of travel is changed to the horizontal direction, and the light is transmitted to the imaging section 2035a, It reaches 2035b. The imaging units 2035a and 2035b then use the reflected light that has reached the imaging units 2035a and 2035b to image the target portions of the chip CP and the substrate WT, respectively. In addition, when the imaging units 2035a and 2035b respectively acquire photographed images including an image of an alignment mark provided on the chip CP and an image of an alignment mark provided on the substrate WT, The image signal is output to the control unit 2009. For example, as shown in FIGS. 20A and 20B, the substrate WT is provided with two alignment marks MC1a and MC1b, and the chip CP is also provided with two alignment marks MC2a and MC2b. Then, the control unit 2009 controls, based on the captured images including the images of the alignment marks MC1a, MC1b, MC2a, and MC2b captured by the imaging units 2035a and 2035b, The relative position of each chip CP with respect to the substrate WT is recognized.
 ここで、図21に示すように、撮像部2035aから出射されミラー2337で反射されてヘッド2033Hの中空部2415を通過した光の一部は、チップツール2411とチップCPとを透過する。チップCPを透過した光の一部は、基板WTのアライメントマークMC1aが設けられた部分で反射される。また、ヘッド2033Hの中空部2415を通過した光の残りの一部は、チップCPにおけるアライメントマークMC2aが設けられた部分で反射される。基板WTのアライメントマークMC1aが設けられた部分またはチップCPにおけるアライメントマークMC2aが設けられた部分で反射された光は、チップツール2411を透過してヘッド2033Hの中空部2415を通過する。そして、ヘッド2033Hの中空部2415を通過したこれらの光は、ミラー2337で反射されて撮像部2035aの撮像素子へ入射する。そして、撮像部2035aは、撮像素子へ入射する光を用いて、チップCPに設けられたアライメントマークMC2aの画像と基板WTに設けられたアライメントマークMC1aの画像とを含む撮影画像Gaを取得する。そして、接合装置2030は、同一の撮像部2035aにより、チップCPのアライメントマークMC1aと基板WTのアライメントマークMC2aとの組を、フォーカス軸を動かさずに1回の画像取り込みで同時認識する。 Here, as shown in FIG. 21, a part of the light that is emitted from the imaging section 2035a, reflected by the mirror 2337, and passed through the hollow part 2415 of the head 2033H is transmitted through the tip tool 2411 and the tip CP. A part of the light that has passed through the chip CP is reflected at a portion of the substrate WT where the alignment mark MC1a is provided. Further, the remaining part of the light that has passed through the hollow portion 2415 of the head 2033H is reflected at the portion of the chip CP where the alignment mark MC2a is provided. The light reflected from the portion of the substrate WT where the alignment mark MC1a is provided or the portion of the chip CP where the alignment mark MC2a is provided is transmitted through the chip tool 2411 and passes through the hollow portion 2415 of the head 2033H. These lights that have passed through the hollow portion 2415 of the head 2033H are reflected by the mirror 2337 and enter the image sensor of the image capturing section 2035a. The imaging unit 2035a then uses the light incident on the imaging element to obtain a photographed image Ga including an image of the alignment mark MC2a provided on the chip CP and an image of the alignment mark MC1a provided on the substrate WT. Then, the bonding apparatus 2030 simultaneously recognizes the set of the alignment mark MC1a of the chip CP and the alignment mark MC2a of the substrate WT by one image capture without moving the focus axis using the same imaging unit 2035a.
 また、撮像部2035bから出射されミラー2337で反射されてヘッド2033Hの中空部2416を通過した光の一部も、チップツール2411とチップCPとを透過する。チップCPを透過した光の一部は、基板WTのアライメントマークMC2bが設けられた部分で反射される。また、ヘッド2033Hの中空部2416を通過した光の残りの一部は、チップCPにおけるアライメントマークMC2bが設けられた部分で反射される。基板WTのアライメントマークMC1bが設けられた部分またはチップCPにおけるアライメントマークMC2bが設けられた部分で反射された光は、チップツール2411を透過してヘッド2033Hの中空部2416を通過する。そして、ヘッド2033Hの中空部2416を通過したこれらの光は、ミラー2337で反射されて撮像部2035bの撮像素子へ入射する。そして、撮像部2035bは、撮像素子へ入射する光を用いて、チップCPに設けられたアライメントマークMC2bの画像と基板WTに設けられたアライメントマークMC1bの画像とを含む撮影画像を撮像する。ここで、接合装置2030は、同一の撮像部2035bにより、チップCPのアライメントマークMC1bと基板WTのアライメントマークMC2bとの組を、フォーカス軸を動かさずに1回の画像取り込みで同時認識する。 Furthermore, a part of the light that is emitted from the imaging section 2035b, reflected by the mirror 2337, and passed through the hollow part 2416 of the head 2033H also passes through the tip tool 2411 and the tip CP. A part of the light that has passed through the chip CP is reflected at a portion of the substrate WT where the alignment mark MC2b is provided. Further, the remaining part of the light that has passed through the hollow portion 2416 of the head 2033H is reflected at the portion of the chip CP where the alignment mark MC2b is provided. The light reflected by the portion of the substrate WT where the alignment mark MC1b is provided or the portion of the chip CP where the alignment mark MC2b is provided is transmitted through the chip tool 2411 and passes through the hollow portion 2416 of the head 2033H. These lights that have passed through the hollow section 2416 of the head 2033H are reflected by the mirror 2337 and enter the image sensor of the imaging section 2035b. Then, the imaging unit 2035b uses the light incident on the imaging element to capture a captured image including an image of the alignment mark MC2b provided on the chip CP and an image of the alignment mark MC1b provided on the substrate WT. Here, the bonding apparatus 2030 simultaneously recognizes the set of the alignment mark MC1b of the chip CP and the alignment mark MC2b of the substrate WT by one image capture without moving the focus axis using the same imaging unit 2035b.
 図16に戻って、カメラF方向駆動部2365は、矢印AR221に示すように、撮像部2035a、2035bをフォーカス方向に駆動することにより、撮像部2035a、2035bの焦点位置を調整する。カメラZ方向駆動部2363は、矢印AR222に示すように、撮像部2035a、2035bをZ軸方向に駆動する。ここで、カメラZ方向駆動部2363は、通常、Z軸方向移動部材2331のZ軸方向の移動量と、撮像部2035a、2035bのZ軸方向の移動量とが同一となるように、撮像部2035a、2035bを移動させる。このようにして、ヘッド2033HのZ軸方向への移動時において、撮像部2035a、2035bの撮影対象部分が移動前後で変わらないようにしている。但し、カメラZ方向駆動部2363は、撮像部2035a、2035bのZ軸方向の移動量がZ軸方向移動部材2331のZ軸方向の移動量と異なるように、撮像部2035a、2035bを移動させる場合がある。この場合、撮像部2035a、2035bとミラー2337とのZ方向における相対位置がそれぞれ変化するため、撮像部2035a、2035bによるチップCPおよび基板WTにおける撮影対象部分が変更される。 Returning to FIG. 16, the camera F direction driving unit 2365 adjusts the focal position of the imaging units 2035a, 2035b by driving the imaging units 2035a, 2035b in the focus direction as shown by arrow AR221. The camera Z-direction driving section 2363 drives the imaging sections 2035a and 2035b in the Z-axis direction, as shown by an arrow AR222. Here, the camera Z-direction drive unit 2363 normally moves the imaging unit so that the amount of movement of the Z-axis movement member 2331 in the Z-axis direction is the same as the amount of movement of the imaging units 2035a and 2035b in the Z-axis direction. 2035a and 2035b are moved. In this way, when the head 2033H moves in the Z-axis direction, the portions to be photographed by the imaging units 2035a and 2035b do not change before and after the movement. However, when the camera Z-direction driving unit 2363 moves the imaging units 2035a and 2035b such that the amount of movement of the imaging units 2035a and 2035b in the Z-axis direction is different from the amount of movement of the Z-axis direction moving member 2331 in the Z-axis direction. There is. In this case, since the relative positions of the imaging units 2035a, 2035b and the mirror 2337 in the Z direction change, the portions of the chip CP and the substrate WT to be imaged by the imaging units 2035a, 2035b are changed.
 ステージユニット2031は、基板WTにおけるチップCPが接合される接合面WTfが鉛直下方(-Z方向)を向く姿勢で基板WTを保持するステージ2315と、ステージ2315を駆動するステージ駆動部2320と、を有する。ステージ2315は、X方向、Y方向および回転方向に移動できる基板保持部である。これにより、ボンディング部2033とステージ2315との相対位置関係を変更することができ、基板WT上における各チップCPの接合位置を調整することができる。 The stage unit 2031 includes a stage 2315 that holds the substrate WT in a posture in which the bonding surface WTf of the substrate WT to which the chip CP is bonded faces vertically downward (-Z direction), and a stage drive section 2320 that drives the stage 2315. have The stage 2315 is a substrate holder that can move in the X direction, Y direction, and rotational direction. Thereby, the relative positional relationship between the bonding part 2033 and the stage 2315 can be changed, and the bonding position of each chip CP on the substrate WT can be adjusted.
 ステージ駆動部2320は、図22Aおよび図22Bに示すように、X方向移動部2311とY方向移動部2313とX方向駆動部2321とY方向駆動部2323とを有する基板保持部駆動部である。X方向移動部2311は、2つのX方向駆動部2321を介して接合装置2030のベース部材2302に固定されている。2つのX方向駆動部2321は、それぞれX方向に延在しY方向に離間して配置されている。X方向駆動部2321は、リニアモータおよびスライドレールを有し、X方向移動部2311を固定部材2301に対してX方向に移動させる。Y方向移動部2313は、X方向移動部2311の下方(-Z方向)に、2つのY方向駆動部2323を介して配置されている。2つのY方向駆動部2323は、それぞれY方向に延在しX方向に離間して配置されている。Y方向駆動部2323は、リニアモータおよびスライドレールを有し、Y方向移動部2313をX方向移動部2311に対してY方向に移動させる。ステージ2315は、Y方向移動部2313に固定されている。 The stage drive unit 2320 is a substrate holder drive unit that includes an X-direction moving unit 2311, a Y-direction moving unit 2313, an X-direction drive unit 2321, and a Y-direction drive unit 2323, as shown in FIGS. 22A and 22B. The X-direction moving section 2311 is fixed to the base member 2302 of the bonding device 2030 via two X-direction driving sections 2321. The two X-direction drive units 2321 each extend in the X-direction and are spaced apart from each other in the Y-direction. The X-direction drive section 2321 has a linear motor and a slide rail, and moves the X-direction moving section 2311 in the X direction relative to the fixed member 2301. The Y-direction moving section 2313 is arranged below the X-direction moving section 2311 (-Z direction) via two Y-direction driving sections 2323. The two Y-direction drive units 2323 each extend in the Y-direction and are spaced apart from each other in the X-direction. The Y-direction drive section 2323 has a linear motor and a slide rail, and moves the Y-direction moving section 2313 in the Y direction relative to the X-direction moving section 2311. The stage 2315 is fixed to the Y-direction moving section 2313.
 ステージ2315は、X方向駆動部2321およびY方向駆動部2323の移動に応じて、X方向およびY方向に移動する。また、X方向移動部2311の中央部には、平面視矩形状の開口部2312が設けられ、Y方向移動部2313の中央部にも、平面視矩形状の開口部2314が設けられている。ステージ2315の中央部には、平面視円形の開口部2316が設けられている。そして、これらの開口部2312、2314、2316を通じて基板WT上のマークを撮像部2041により認識する。なお、赤外線照射部(図示せず)を配置することにより基板WTに赤外線を照射して基板WTを加熱するようにしてもよい。 The stage 2315 moves in the X direction and the Y direction in accordance with the movements of the X direction drive section 2321 and the Y direction drive section 2323. Further, an opening 2312 having a rectangular shape in plan view is provided at the center of the X-direction moving section 2311, and an opening 2314 having a rectangular shape in plan view is also provided at the center of the Y-direction moving section 2313. An opening 2316 that is circular in plan view is provided in the center of the stage 2315. Then, the marks on the substrate WT are recognized by the imaging unit 2041 through these openings 2312, 2314, and 2316. Note that an infrared ray irradiation unit (not shown) may be arranged to irradiate the substrate WT with infrared rays to heat the substrate WT.
 撮像部2041は、例えば赤外線カメラであり、図14および図16に示すように、ステージ2315の上方に配置されている。そして、撮像部2041は、チップCPが基板WTにおけるチップCPが接合される位置に配置された状態で、基板WTの鉛直上方(+Z方向)から、基板WTのアライメントマーク(図20BのMC1a、MC1b)を撮像する。また、撮像部2041は、基板WTのアライメントマークの画像を含む撮影画像を示す撮影画像信号を生成して制御部2009へ出力する。制御部2009は、撮像部2041により撮影された撮影画像に基づいて、基板WTにおけるチップCPが接合される面に平行な方向におけるチップCPの接合位置のヘッド2033Hに対する相対位置を認識する。撮像部2041は、イメージセンサ2418と、光学系2419と、同軸照明系(図示せず)と、を有する。撮像部2041は、同軸照明系の光源(図示せず)から出射される照明光(例えば赤外光)の反射光を用いて撮像する。 The imaging unit 2041 is, for example, an infrared camera, and is arranged above the stage 2315, as shown in FIGS. 14 and 16. The imaging unit 2041 then detects the alignment marks (MC1a, MC1b in FIG. ). Further, the imaging unit 2041 generates a photographed image signal indicating a photographed image including an image of the alignment mark of the substrate WT, and outputs it to the control unit 2009. Based on the captured image captured by the imaging unit 2041, the control unit 2009 recognizes the relative position of the bonding position of the chip CP with respect to the head 2033H in a direction parallel to the surface of the substrate WT to which the chip CP is bonded. The imaging unit 2041 includes an image sensor 2418, an optical system 2419, and a coaxial illumination system (not shown). The imaging unit 2041 captures an image using reflected light of illumination light (for example, infrared light) emitted from a light source (not shown) of a coaxial illumination system.
 制御部2009は、例えばパーソナルコンピュータを有する制御システムであり、CPUとメモリとを有する。メモリは、CPUが実行するプログラムを記憶する。また、メモリは、後述する第1距離、第2距離を示す情報も記憶する。制御部2009は、供給チップ撮像部2015、撮像部2035a、2035b、撮像部2041、Z方向駆動部2034、θ方向駆動部2037、ピエゾアクチュエータ2333、支持部駆動部2432b、X方向駆動部2321、Y方向駆動部2323、プレート駆動部2392、アーム駆動部2395、ピックアップ機構2111、保持枠駆動部2113に接続されている。制御部2009は、供給チップ撮像部2015、撮像部2035a、2035bおよび撮像部2041から入力される撮影画像信号を撮影画像情報に変換して取得する。また、制御部2009は、メモリが記憶するプログラムを実行することにより、Z方向駆動部2034、θ方向駆動部2037、ピエゾアクチュエータ2333、支持部駆動部2432b、X方向駆動部2321、Y方向駆動部2323、プレート駆動部2392、アーム駆動部2395、ピックアップ機構2111、保持枠駆動部2113それぞれへ制御信号を出力することによりこれらの動作を制御する。 The control unit 2009 is a control system including, for example, a personal computer, and includes a CPU and memory. The memory stores programs executed by the CPU. The memory also stores information indicating a first distance and a second distance, which will be described later. The control unit 2009 includes a supply chip imaging unit 2015, imaging units 2035a and 2035b, an imaging unit 2041, a Z direction drive unit 2034, a θ direction drive unit 2037, a piezo actuator 2333, a support unit drive unit 2432b, an X direction drive unit 2321, and a Y direction drive unit 2037. It is connected to the direction drive section 2323, the plate drive section 2392, the arm drive section 2395, the pickup mechanism 2111, and the holding frame drive section 2113. The control unit 2009 converts captured image signals input from the supplied chip imaging unit 2015, imaging units 2035a, 2035b, and imaging unit 2041 into captured image information and acquires the captured image information. Furthermore, by executing the program stored in the memory, the control unit 2009 controls the Z-direction drive unit 2034, the θ-direction drive unit 2037, the piezo actuator 2333, the support unit drive unit 2432b, the X-direction drive unit 2321, and the Y-direction drive unit. 2323, plate drive section 2392, arm drive section 2395, pickup mechanism 2111, and holding frame drive section 2113 by outputting control signals to each of these operations.
 制御部2009は、基板WTとチップCPとが接触した状態で、アライメントマークMC1a、MC1b、MC2a、MC2bの撮影画像から、基板WTとチップCPとの相対位置誤差を算出する。制御部2009は、例えば図20Cに示すように、撮影画像Gaに基づいてチップCPと基板WTとに設けられた1組のアライメントマークMC1a、MC2aの位置を認識し、ベクトル相関法によりアライメントマークMC1a,MC2aの相互間の位置ずれ量Δxa、Δyaを算出する。また、制御部2009は、前述と同様に、チップCPに設けられたアライメントマークMC2bの画像と基板WTに設けられたアライメントマークMC1bの画像とを含む撮影画像に基づいてチップCPと基板WTとに設けられた1組のアライメントマークMC1b、MC2bの位置を認識し、ベクトル相関法によりアライメントマークMC1b,MC2bの相互間の位置ずれ量Δxb、Δybを算出する。そして、制御部90は、位置ずれ量Δxa、Δya、Δxb、Δybに基づいて、チップCPの基板WTに対する水平方向における位置ずれ量Δx、Δy、Δθを算出する。そして、制御部2009は、算出した位置ずれ量に応じて、ヘッド駆動部2036のZ方向駆動部2034、θ方向駆動部2037並びにステージ2031のX方向駆動部2321、Y方向駆動部2323に、基板WTに対するチップCPの位置および姿勢を補正させる。また、制御部2009は、ピックアップ機構2111により切り出すチップCPの位置および姿勢に応じて、保持枠駆動部2113に、シート保持枠2112の位置およびZ軸周りの傾きを補正させる。ここで、制御部2009は、供給チップ撮像部2015により撮影された撮影画像に基づいて、チップCPの位置および姿勢を認識する。 The control unit 2009 calculates the relative position error between the substrate WT and the chip CP from the photographed images of the alignment marks MC1a, MC1b, MC2a, and MC2b while the substrate WT and the chip CP are in contact with each other. For example, as shown in FIG. 20C, the control unit 2009 recognizes the positions of a pair of alignment marks MC1a and MC2a provided on the chip CP and the substrate WT based on the photographed image Ga, and uses the vector correlation method to identify the positions of the alignment marks MC1a and MC2a. , MC2a are calculated. Further, as described above, the control unit 2009 controls the chip CP and the substrate WT based on the captured image including the image of the alignment mark MC2b provided on the chip CP and the image of the alignment mark MC1b provided on the substrate WT. The positions of the provided set of alignment marks MC1b and MC2b are recognized, and the amounts of positional deviation Δxb and Δyb between the alignment marks MC1b and MC2b are calculated by the vector correlation method. Then, the control unit 90 calculates the horizontal displacement amounts Δx, Δy, and Δθ of the chip CP with respect to the substrate WT based on the displacement amounts Δxa, Δya, Δxb, and Δyb. Then, the control unit 2009 causes the Z-direction drive unit 2034 and the θ-direction drive unit 2037 of the head drive unit 2036 and the X-direction drive unit 2321 and Y-direction drive unit 2323 of the stage 2031 to move the substrate. The position and orientation of the chip CP with respect to the WT are corrected. Further, the control unit 2009 causes the holding frame driving unit 2113 to correct the position and tilt of the sheet holding frame 2112 around the Z-axis according to the position and orientation of the chip CP cut out by the pickup mechanism 2111. Here, the control unit 2009 recognizes the position and orientation of the chip CP based on the captured image captured by the supplied chip imaging unit 2015.
 次に、本実施の形態に係るチップ接合システム2の動作について図23乃至図25を参照しながら説明する。このチップ接合システム2は、例えば1つの基板WTに複数のチップCPを連続して接合するものであり、チップ供給装置2010から接合装置2030へ複数のチップCPが順次供給される。まず、チップ接合システム2では、チップ搬送装置2039が、プレート2391をチップ供給部2011側へ向ける。次に、チップ供給装置2010が、ピックアップ機構2111を鉛直上方へ移動させることにより、1つのチップCPをシートTEにおける複数のチップCP側とは反対側から切り出し、1つのチップCPをシートTEから離脱した状態にする。この状態で、チップ搬送装置2039が、プレート2391からアーム2394を突出させる。このとき、チップ保持部2393の2つの脚片2393aの間にピックアップ機構2111のニードル2111aが配置されるとともに、図23Aに示すように、切り出したチップCPがチップ保持部2393の鉛直上方に配置された状態となる。そして、チップ供給装置2010が、ピックアップ機構2111を鉛直下方へ移動させることにより、チップCPをピックアップ機構2111からチップ保持部2393へ移載する。 Next, the operation of the chip bonding system 2 according to this embodiment will be explained with reference to FIGS. 23 to 25. This chip bonding system 2 is one that successively bonds a plurality of chips CP to one substrate WT, for example, and the plurality of chips CP are sequentially supplied from a chip supply device 2010 to a bonding device 2030. First, in the chip bonding system 2, the chip transport device 2039 directs the plate 2391 toward the chip supply section 2011 side. Next, the chip supply device 2010 moves the pickup mechanism 2111 vertically upward to cut out one chip CP from the side opposite to the plurality of chips CP in the sheet TE, and removes the one chip CP from the sheet TE. state. In this state, the chip transport device 2039 causes the arm 2394 to protrude from the plate 2391. At this time, the needle 2111a of the pickup mechanism 2111 is placed between the two leg pieces 2393a of the chip holding part 2393, and the cut out chip CP is placed vertically above the chip holding part 2393, as shown in FIG. 23A. The state will be as follows. Then, the chip supply device 2010 transfers the chip CP from the pickup mechanism 2111 to the chip holding section 2393 by moving the pickup mechanism 2111 vertically downward.
 続いて、チップ搬送装置2039が、プレート2391を旋回させることにより、プレート2391のアーム2394の先端部のチップ保持部2393をボンディング部2033のヘッド2033Hの鉛直上方の移載位置Pos1に配置する。即ち、チップ搬送装置2039は、チップ供給装置2010から受け取ったチップCPをヘッド2033HにチップCPを移載する移載位置Pos1まで搬送する。そして、接合装置2030のヘッド駆動部2036は、ボンディング部2033を鉛直上方へ移動させてヘッド2033Hをチップ搬送装置2039のチップ保持部2393へ近づける。次に、支持部駆動部2432bは、チップ支持部2432aを鉛直上方へ移動させる。これにより、チップ保持部2393に保持されたチップCPは、図23Bに示すように、チップ支持部2432aの上端部で支持された状態で、チップ保持部2393よりも鉛直上方側に配置される。続いて、チップ搬送装置2039は、アーム2394をプレート2391内へ没入させる。その後、支持部駆動部2432bは、チップ支持部2432aを鉛直下方へ移動させる。これにより、ヘッド2033Hの先端部にチップCPが保持された状態となる。このとき、チップCPのアライメントマークMC2a、MC2bと基板WTのアライメントマークMC1a、MC1bとの間の距離が、撮像部2035a、2035bの被写界深度の範囲内に収まる予め設定された第1距離よりも長い第2距離だけ離間した状態になっている。そして、チップ供給装置2010およびチップ搬送装置2039が前述の動作を繰り返すことにより、複数のチップCPが順次接合装置2030へ供給されていく。 Subsequently, the chip transport device 2039 rotates the plate 2391 to place the chip holding section 2393 at the tip of the arm 2394 of the plate 2391 at the transfer position Pos1 vertically above the head 2033H of the bonding section 2033. That is, the chip transport device 2039 transports the chip CP received from the chip supply device 2010 to the transfer position Pos1 where the chip CP is transferred to the head 2033H. Then, the head driving section 2036 of the bonding device 2030 moves the bonding section 2033 vertically upward to bring the head 2033H closer to the chip holding section 2393 of the chip transporting device 2039. Next, the support part driving part 2432b moves the chip support part 2432a vertically upward. As a result, the chip CP held by the chip holding part 2393 is placed vertically above the chip holding part 2393 while being supported by the upper end of the chip supporting part 2432a, as shown in FIG. 23B. Subsequently, the chip transfer device 2039 causes the arm 2394 to sink into the plate 2391. After that, the support part driving part 2432b moves the chip support part 2432a vertically downward. As a result, the chip CP is held at the tip of the head 2033H. At this time, the distance between the alignment marks MC2a, MC2b of the chip CP and the alignment marks MC1a, MC1b of the substrate WT is longer than a preset first distance that falls within the depth of field of the imaging units 2035a, 2035b. are also spaced apart by a long second distance. Then, as the chip supply device 2010 and the chip transport device 2039 repeat the above-described operations, a plurality of chips CP are sequentially supplied to the bonding device 2030.
 次に、接合装置2030が、チップCPを基板WTに接合する。ここで、接合装置2030が、チップCPを基板WTに接合する接合方法について、図24および図25を参照しながら説明する。なお、基板WTとチップCPとは、それぞれ、図21の矢印AR2011。AR2012に示すように鉛直方向と直交する方向へ振動しており、撮像部2035a、2035bは、鉛直方向と鉛直方向と直交する方向とへ振動しているが、位置ずれ量の計測に影響するのは矢印AR2013に示す鉛直方向の振動である。また、基板WT、チップCPは、それぞれ、周波数10Hz以下または振動振幅1μm以下の振動波形で振動しているものとする。まず、図24に示すように、接合装置2030は、基板WTとチップCPとの相対的な位置ずれ量を計測する(ステップS201)。ここでは、接合装置2030は、チップ搬送装置39からヘッド33HへチップCPが移載され、チップCPと基板WTとが前述の第2距離だけ離間した状態で、チップCPのアライメントマークMC2a、MC2bと基板WTのアライメントマークMC1a、MC1bとを撮像する。ここにおいて、撮像部2035a、2035bが、チップCPのアライメントマークMC2a、MC2bを撮像し、撮像部2041が、基板WTのアライメントマークMC1a、MC1bを撮像する。即ち、撮像部2035a、2035bおよび撮像部2041により、チップCPのアライメントマークMC2a、MC2bと基板WTのアライメントマークMC1a、MC1bとが各別に撮像される。そして、接合装置2030は、撮像部2035a、2035bおよび撮像部2041により各別に撮像されたアライメントマークMC1a、MC1bの撮影画像とアライメントマークMC2a、MC2bの撮影画像とから基板WTとチップCPとの相対的な位置ずれ量を計測する(ステップS201)。 Next, the bonding device 2030 bonds the chip CP to the substrate WT. Here, a bonding method in which the bonding apparatus 2030 bonds the chip CP to the substrate WT will be described with reference to FIGS. 24 and 25. Note that the substrate WT and the chip CP are respectively indicated by arrows AR2011 in FIG. As shown in AR2012, the imaging units 2035a and 2035b vibrate in the vertical direction and in the direction perpendicular to the vertical direction, but this does not affect the measurement of the amount of positional deviation. is vibration in the vertical direction shown by arrow AR2013. Further, it is assumed that the substrate WT and the chip CP each vibrate with a vibration waveform having a frequency of 10 Hz or less or a vibration amplitude of 1 μm or less. First, as shown in FIG. 24, the bonding apparatus 2030 measures the amount of relative positional deviation between the substrate WT and the chip CP (step S201). Here, the bonding device 2030 transfers the chip CP from the chip transport device 39 to the head 33H, and in a state where the chip CP and the substrate WT are separated by the aforementioned second distance, the bonding device 2030 aligns the alignment marks MC2a and MC2b of the chip CP. Alignment marks MC1a and MC1b on the substrate WT are imaged. Here, the imaging units 2035a and 2035b image the alignment marks MC2a and MC2b on the chip CP, and the imaging unit 2041 images the alignment marks MC1a and MC1b on the substrate WT. That is, the imaging units 2035a, 2035b and the imaging unit 2041 image the alignment marks MC2a, MC2b of the chip CP and the alignment marks MC1a, MC1b of the substrate WT, respectively. Then, the bonding device 2030 determines the relative relationship between the substrate WT and the chip CP based on the photographed images of the alignment marks MC1a and MC1b and the photographed images of the alignment marks MC2a and MC2b respectively taken by the imaging sections 2035a and 2035b and the imaging section 2041. The amount of positional deviation is measured (step S201).
 次に、接合装置2030は、計測した位置ずれ量を解消するように、ステージ2315をヘッド2033Hに対して水平方向へ移動させることにより、チップCPの基板WTに対する位置合わせを実行する(ステップS202)。ここで、接合装置2030は、ヘッド2033Hを固定した状態で、位置ずれ量Δx、Δy、Δθが解消するように、ステージ2315をX方向、Y方向およびZ軸周りの回転方向へ移動させる。即ち、接合装置2030は、算出した位置ずれ量に基づいて、チップCPを基板WTに対して水平方向、即ち、その接合面WTfに平行な方向へ相対的に移動させる。 Next, the bonding apparatus 2030 aligns the chip CP with respect to the substrate WT by moving the stage 2315 in the horizontal direction with respect to the head 2033H so as to eliminate the measured positional deviation amount (step S202). . Here, the bonding device 2030 moves the stage 2315 in the X direction, the Y direction, and the rotation direction around the Z axis so that the positional deviation amounts Δx, Δy, and Δθ are eliminated while the head 2033H is fixed. That is, the bonding device 2030 moves the chip CP relatively to the substrate WT in a horizontal direction, that is, in a direction parallel to the bonding surface WTf, based on the calculated positional shift amount.
 続いて、接合装置2030は、チップCPを保持するヘッド2033Hを鉛直上方へ移動させることにより、チップCPを基板WTに更に近づける(ステップS203)。このとき、図25Aに示すように、接合装置2030は、チップCPのアライメントマークMC2a、MC2bと基板WTのアライメントマークMC1a、MC1bとの間の距離が、撮像部2035a、2035bの被写界深度の範囲内に収まる予め設定された第1距離G2だけ離間した状態になるまで、チップCPを基板WTに近づける。ここで、第1距離G2は、例えば10μm乃至100μmの範囲の距離に設定される。 Subsequently, the bonding device 2030 moves the head 2033H holding the chip CP vertically upward to bring the chip CP even closer to the substrate WT (step S203). At this time, as shown in FIG. 25A, the bonding apparatus 2030 determines that the distance between the alignment marks MC2a, MC2b of the chip CP and the alignment marks MC1a, MC1b of the substrate WT is equal to the depth of field of the imaging units 2035a, 2035b. The chip CP is brought close to the substrate WT until the chip CP is separated by a preset first distance G2 that falls within the range. Here, the first distance G2 is set, for example, to a distance in the range of 10 μm to 100 μm.
 その後、接合装置2030は、チップCPと基板WTとが第1距離G2だけ互いに離間した状態で、予め設定された波形計測期間中におけるチップCPの基板WTに対する位置ずれ量を繰り返し計測する位置ずれ量計測工程を実行する(ステップS204)。波形計測期間の長さは、少なくともチップCPの基板WTに対する振動周期よりも長くなるように設定され、例えば1sec以上の時間に設定される。また、接合装置2030は、チップCPの基板WTに対する振動周期よりも短い予め設定された時間間隔で位置ずれ量を繰り返し計測する。また、接合装置2030において、アライメントマークMC1a,MC2aとアライメントマークMC1b,MC2bとのそれぞれが撮像部2035a、2035bの被写界深度の範囲内に収まる距離G2だけ離間し、撮像部2035a、2035bが、それぞれ、アライメントマークMC1a,MC2aの組とアライメントマークMC1b,MC2bの組を撮像できる位置それぞれに配置された状態となっている。そして、接合装置1は、撮像部2035a、2035bが、繰り返される各計測タイミングにおいて、それぞれ同じタイミングで、対応するアライメントマークMC1a,MC2aの組とアライメントマークMC1b,MC2bの組を1回の画像取り込みで同時に撮像するように撮像部2035a、2035bを制御する。そして、接合装置2030は、撮像部2035a、2035bにより撮像された撮影画像に基づいて、基板W2の基板W1に対する位置ずれ量を算出する。ここで、接合装置2030は、例えば図25Bに示すような、アライメントマークMC1aのアライメントマークMC2aに対する位置ずれ量WD1或いはアライメントマークMC1bのアライメントマークMC2bに対する位置ずれ量WD2を算出する。 Thereafter, the bonding device 2030 repeatedly measures the amount of positional deviation of the chip CP with respect to the substrate WT during a preset waveform measurement period while the chip CP and the substrate WT are separated from each other by the first distance G2. A measurement process is executed (step S204). The length of the waveform measurement period is set to be longer than at least the vibration period of the chip CP with respect to the substrate WT, and is set to be, for example, 1 sec or more. Furthermore, the bonding device 2030 repeatedly measures the amount of positional deviation at preset time intervals shorter than the vibration period of the chip CP with respect to the substrate WT. In addition, in the bonding device 2030, the alignment marks MC1a, MC2a and the alignment marks MC1b, MC2b are spaced apart by a distance G2 that falls within the depth of field of the imaging units 2035a, 2035b, and the imaging units 2035a, 2035b The alignment marks MC1a and MC2a and the alignment marks MC1b and MC2b are respectively placed at positions where they can be imaged. Then, in the bonding apparatus 1, the imaging units 2035a and 2035b capture images of the corresponding set of alignment marks MC1a and MC2a and the set of alignment marks MC1b and MC2b at the same timing at each repeated measurement timing. The imaging units 2035a and 2035b are controlled to capture images at the same time. Then, the bonding apparatus 2030 calculates the amount of positional deviation of the substrate W2 with respect to the substrate W1 based on the captured images captured by the imaging units 2035a and 2035b. Here, the bonding device 2030 calculates a positional deviation amount WD1 of the alignment mark MC1a with respect to the alignment mark MC2a or a positional deviation amount WD2 of the alignment mark MC1b with respect to the alignment mark MC2b, as shown in FIG. 25B, for example.
 図24に戻って、次に、接合装置2030は、波形計測期間中において計測された位置ずれ量の時間推移からチップCPの基板WTに対する振動の振動波形を特定する振動波形特定工程を実行する(ステップS205)。ここで、接合装置2030は、水平方向および回転方向の位置ずれ量の時間推移からチップCPの基板WTに対する水平方向並びに回転方向の振動の振動波形を特定する。そして、接合装置2030は、前述の振動波形の振動中心に相当する位置ずれ量Δx、Δy、Δθ、振動振幅および振動周期を特定する。 Returning to FIG. 24, next, the bonding apparatus 2030 executes a vibration waveform identification step of identifying the vibration waveform of the vibration of the chip CP relative to the substrate WT from the time transition of the amount of positional deviation measured during the waveform measurement period ( Step S205). Here, the bonding device 2030 identifies the vibration waveforms of the vibrations of the chip CP in the horizontal direction and the rotational direction relative to the substrate WT from the temporal change in the amount of positional deviation in the horizontal direction and the rotational direction. Then, the bonding device 2030 specifies the positional deviation amounts Δx, Δy, Δθ, vibration amplitude, and vibration period corresponding to the vibration center of the vibration waveform described above.
 次に、接合装置2030は、特定した振動波形の振動中心に相当する位置ずれ量Δx、Δy、Δθの全てが予め設定された位置ずれ量閾値Δxth、Δyth、Δθth以下であるか否かを判定する(ステップS206)。ここで、接合装置2030により、特定した振動波形の振動中心に相当する位置ずれ量Δx、Δy、Δθのいずれかが、予め設定された位置ずれ量閾値Δxth、Δyth、Δθthよりも大きいと判定されたとする(ステップS206:No)。この場合、接合装置2030は、特定した振動波形の振動中心に相当する位置ずれ量Δx、Δy、Δθを全て位置ずれ量閾値Δxth、Δyth、Δθth以下にするためのチップPの基板WTに対する補正移動量を算出する(ステップS207)。ここにおいて、制御部2009は、特定した振動波形の振動中心に相当する位置ずれ量Δx、Δy、Δθだけ位置ずれ方向とは反対方向へ移動させるような補正移動量を算出する。 Next, the bonding device 2030 determines whether all of the positional deviation amounts Δx, Δy, and Δθ corresponding to the vibration center of the identified vibration waveform are equal to or less than preset positional deviation amount thresholds Δxth, Δyth, and Δθth. (Step S206). Here, the bonding device 2030 determines that any one of the positional deviation amounts Δx, Δy, and Δθ corresponding to the vibration center of the specified vibration waveform is larger than the preset positional deviation amount thresholds Δxth, Δyth, and Δθth. (Step S206: No). In this case, the bonding device 2030 performs a correction movement of the chip P with respect to the substrate WT in order to make the positional deviation amounts Δx, Δy, and Δθ corresponding to the vibration center of the identified vibration waveform all below the positional deviation amount thresholds Δxth, Δyth, and Δθth. The amount is calculated (step S207). Here, the control unit 2009 calculates a corrected movement amount that moves the vibration center of the identified vibration waveform by the positional deviation amounts Δx, Δy, and Δθ in the direction opposite to the positional deviation direction.
 続いて、接合装置2030は、チップCPの基板WTに対する相対的な位置ずれ量Δx、Δy、Δθを補正するように、位置合わせを実行する(ステップS208)。ここにおいて、接合装置2030は、基板WTの位置が固定された状態で、ヘッド2033HをステップS207で算出された補正移動量だけX方向、Y方向およびZ軸周りの回転方向に移動させる。このようにして、接合装置2030は、チップCPと基板WTとが互いに離間した状態で、位置ずれ量Δx、Δy、Δθが小さくなるようにチップCPの基板WTに対する相対位置を調整する。そして、接合装置2030は、再びステップS204の処理を実行する。 Subsequently, the bonding apparatus 2030 performs alignment so as to correct the relative positional deviation amounts Δx, Δy, and Δθ of the chip CP with respect to the substrate WT (step S208). Here, the bonding apparatus 2030 moves the head 2033H in the X direction, the Y direction, and the rotational direction around the Z axis by the corrected movement amount calculated in step S207 while the position of the substrate WT is fixed. In this way, the bonding device 2030 adjusts the relative position of the chip CP with respect to the substrate WT so that the positional deviation amounts Δx, Δy, and Δθ become small while the chip CP and the substrate WT are separated from each other. Then, the bonding device 2030 executes the process of step S204 again.
 一方、接合装置2030が、ステップS206において、算出した位置ずれ量Δx、Δy、Δθの全てが、予め設定された位置ずれ量閾値Δxth、Δyth、Δθth以下であると判定されたとする(ステップS206:Yes)。この場合、接合装置2030は、特定した振動波形に基づいて、チップCPの基板WTに対する位置ずれ量が目標量、即ち、振動波形の振動中心に相当する位置ずれ量となる目標タイミングを推定するタイミング推定工程を実行する(ステップS209)。ここでは、接合装置2030は、チップCPの基板WTに対する位置ずれ量が振動波形の振動中心に相当する位置ずれ量となる目標タイミングを推定する。 On the other hand, assume that the bonding apparatus 2030 determines in step S206 that all of the calculated positional deviation amounts Δx, Δy, and Δθ are equal to or less than preset positional deviation amount thresholds Δxth, Δyth, and Δθth (step S206: Yes). In this case, the bonding device 2030 estimates the target timing at which the amount of positional deviation of the chip CP with respect to the substrate WT becomes the target amount, that is, the amount of positional deviation corresponding to the vibration center of the vibration waveform, based on the specified vibration waveform. An estimation process is executed (step S209). Here, the bonding device 2030 estimates the target timing at which the amount of positional deviation of the chip CP with respect to the substrate WT corresponds to the vibration center of the vibration waveform.
 その後、接合装置2030は、推定された目標タイミングに基づいて、チップCPを基板WTに接触させる接触工程を実行する(ステップS210)。次に、接合装置2030は、チップCPをそのまま基板WTに押し付けることによりチップCPを基板WTへ接合する接合工程を実行する(ステップS211)。 After that, the bonding apparatus 2030 executes a contact process of bringing the chip CP into contact with the substrate WT based on the estimated target timing (step S210). Next, the bonding device 2030 executes a bonding process of bonding the chip CP to the substrate WT by pressing the chip CP directly onto the substrate WT (step S211).
 次に、チップ接合システム2は、ヘッド33Hを鉛直下方へ移動させた後、撮像部2041により少なくともアライメントマークMC2a、MC2bを含む画像を撮像することにより、チップCPが基板WTに接合されているか否かを判定する(ステップS212)。ここで、接合装置2030は、撮像部2041により撮像された撮影画像にアライメントマークMC2a、MC2bとともにアライメントマークMC1a、MC1bが含まれる場合、チップCPが基板WTに接合されていると判定する。一方、接合装置2030は、撮像部2041により撮像された撮影画像にアライメントマークMC1a、MC1bが含まれていない場合、チップCPが基板WTに接合されていないと判定する。接合装置2030は、チップCPが基板WTに接合されていると判定すると(ステップS212:Yes)、そのまま次のチップCPを基板WTに接合する処理へ移行する。 Next, after moving the head 33H vertically downward, the chip bonding system 2 captures an image including at least the alignment marks MC2a and MC2b using the imaging unit 2041, thereby determining whether the chip CP is bonded to the substrate WT. (Step S212). Here, the bonding device 2030 determines that the chip CP is bonded to the substrate WT when the captured image captured by the imaging unit 2041 includes alignment marks MC1a and MC1b as well as alignment marks MC2a and MC2b. On the other hand, if the alignment marks MC1a and MC1b are not included in the captured image captured by the imaging unit 2041, the bonding device 2030 determines that the chip CP is not bonded to the substrate WT. When the bonding apparatus 2030 determines that the chip CP is bonded to the substrate WT (step S212: Yes), the bonding apparatus 2030 directly proceeds to the process of bonding the next chip CP to the substrate WT.
 一方、接合装置2030は、チップCPが基板WTに接合されていないと判定したとする(ステップS212:No)。この場合、接合装置2030は、撮像部2035a、2035bにより撮像された撮影画像にアライメントマークMC2a、MC2bが含まれるか否かによりヘッド2033HによるチップCPの保持状態を判定する(ステップS213)。ここで、接合装置2030は、撮像部2035a、2035bにより撮像された撮影画像にアライメントマークMC2a、MC2bが含まれる場合、ヘッド2033HによりチップCPが保持されていると判定する。一方、接合装置2030は、撮像部2035a、2035bにより撮像された撮影画像にアライメントマークMC2a、MC2bが含まれない場合、ヘッド2033HによりチップCPが保持されていないと判定する。そして、接合装置2030は、ヘッド33HによるチップCPの保持状態を判定した後、次のチップCPを基板WTに接合する処理へ移行する。 On the other hand, assume that the bonding apparatus 2030 determines that the chip CP is not bonded to the substrate WT (step S212: No). In this case, the bonding device 2030 determines the holding state of the chip CP by the head 2033H based on whether the alignment marks MC2a, MC2b are included in the captured images captured by the imaging units 2035a, 2035b (step S213). Here, the bonding device 2030 determines that the chip CP is held by the head 2033H when the alignment marks MC2a and MC2b are included in the captured images captured by the imaging units 2035a and 2035b. On the other hand, if the alignment marks MC2a and MC2b are not included in the captured images captured by the imaging units 2035a and 2035b, the bonding device 2030 determines that the chip CP is not held by the head 2033H. After determining the state in which the chip CP is held by the head 33H, the bonding apparatus 2030 moves to a process of bonding the next chip CP to the substrate WT.
 また、チップ接合システム2は、接合装置2030により、チップCPが基板WTに接合されず且つヘッド2033HによりチップCPが保持されていると判定した場合、ヘッド2033Hに保持された状態のチップCPを再びチップ搬送装置2039のチップ保持部2393に移載する。その後、チップ接合システム2は、プレート2391を旋回させて、チップ保持部2393をチップ回収部(図示せず)の鉛直上方に配置する。そして、チップ接合システム2は、チップ保持部2393に保持されたチップCPを、チップ回収部に回収させる。以後、チップ搬送装置2039から接合装置2030に新たにチップCPが受け渡される毎にステップS201乃至S213までの一連の動作が繰り返し実行される。 Further, when the bonding device 2030 determines that the chip CP is not bonded to the substrate WT and the chip CP is held by the head 2033H, the chip bonding system 2 re-bonds the chip CP held by the head 2033H. The chip is transferred to the chip holding section 2393 of the chip transport device 2039. Thereafter, the chip bonding system 2 rotates the plate 2391 to place the chip holding section 2393 vertically above the chip collecting section (not shown). Then, the chip bonding system 2 causes the chip collecting section to collect the chip CP held by the chip holding section 2393. Thereafter, a series of operations from steps S201 to S213 are repeatedly executed every time a new chip CP is transferred from the chip transport device 2039 to the bonding device 2030.
 ここで、接合装置2030は、チップCPを基板WTに接合する際に発生したパーティクルを鉛直下方に落下させるとともに、基板WTを保持したステージ2315を、基板WTにおける複数のチップCPそれぞれが実装される部分が順次、ヘッド2033Hに保持されたチップCPの鉛直上方に配置されるように移動することにより、複数のチップCPを連続して接合する。 Here, the bonding device 2030 causes particles generated when bonding the chip CP to the substrate WT to fall vertically downward, and also moves the stage 2315 holding the substrate WT to the stage 2315 on which each of the plurality of chips CP on the substrate WT is mounted. A plurality of chips CP are successively joined by sequentially moving the parts so that they are arranged vertically above the chip CP held by the head 2033H.
 以上説明したように、本実施の形態に係るチップ接合システム2によれば、チップCPの基板WTに対する位置ずれ量の時間推移からチップCPの基板WTに対する振動の振動波形を特定し、特定した振動波形に基づいて、チップCPの基板WTに対する位置ずれ量が目標量となる目標タイミングを推定する。そして、チップ接合システム2は、推定された目標タイミングに基づいて、チップCPを基板WTに接触させる。これにより、チップCPが基板WTに対して相対的に比較的低い周波数で振動している場合でも、チップCPを基板WTに高い位置精度で接合できる。 As explained above, according to the chip bonding system 2 according to the present embodiment, the vibration waveform of the vibration of the chip CP with respect to the substrate WT is specified from the time transition of the amount of positional deviation of the chip CP with respect to the substrate WT, and the specified vibration Based on the waveform, a target timing at which the amount of positional deviation of the chip CP with respect to the substrate WT reaches the target amount is estimated. Then, the chip bonding system 2 brings the chip CP into contact with the substrate WT based on the estimated target timing. Thereby, even if the chip CP vibrates at a relatively low frequency relative to the substrate WT, the chip CP can be bonded to the substrate WT with high positional accuracy.
 また、本実施の形態に係るチップ接合システム2によれば、アライメントマークMC1a、MC1bとアライメントマークMC2a、MC2bとが撮像部2035a、2035bの被写界深度の範囲内に収まる第1距離G1だけ離間した状態で、撮像部2035a、2035bによりアライメントマークMC1a、MC1b、MC2a、MC2bを同時に撮像する。そして、チップ接合システム2は、撮像部2035a、2035bにより撮像されたアライメントマークMC1a、MC1b、MC2a、MC2bの撮影画像から基板WTとチップCPとの相対的な位置ずれ量を算出する。これにより、撮像部2035a、2035bの振動および経時的な位置変化、或いは基板WT、チップCPの熱膨張によるアライメントマークMC1a、MC1b、MC2a、MC2bの位置の経時変化の、算出される位置ずれ量への影響が低減される。従って、チップCPを高い位置精度で基板WTに接合できる。 Further, according to the chip bonding system 2 according to the present embodiment, the alignment marks MC1a, MC1b and the alignment marks MC2a, MC2b are separated by the first distance G1 that falls within the depth of field of the imaging units 2035a, 2035b. In this state, the alignment marks MC1a, MC1b, MC2a, and MC2b are simultaneously imaged by the imaging units 2035a and 2035b. Then, the chip bonding system 2 calculates the relative positional shift amount between the substrate WT and the chip CP from the captured images of the alignment marks MC1a, MC1b, MC2a, and MC2b captured by the imaging units 2035a and 2035b. As a result, the calculated amount of positional deviation of the position of the alignment marks MC1a, MC1b, MC2a, MC2b due to vibration of the imaging units 2035a, 2035b and changes in position over time, or changes over time in the positions of alignment marks MC1a, MC1b, MC2a, MC2b due to thermal expansion of the substrate WT and chip CP. The impact of Therefore, the chip CP can be bonded to the substrate WT with high positional accuracy.
 ところで、従来は、図26Aおよび図26Bに示す比較例2に係るチップ接合システムのように、鉛直上方に配置されたチップCPに設けられたアライメントマークMC2a、MC2bを撮像するための撮像部9035aと、鉛直下方に配置された基板WTに設けられたアライメントマークMC1a、MC1bを撮像するための撮像部9035bと、が別々であり、チップCPと基板WTとの間でミラー9337を水平方向へ移動させながら、アライメントマークMC2a,MC1aの組とアライメントマークMC2b,MC1bの組とを順番に撮像するのが一般的であった。まず、ミラー9337を図26Aに示す位置に配置してアライメントマークMC2a,MC1aの組を撮像した後、図26Bの矢印AR900に示すようにミラー9337を移動させてから、アライメントマークMC2b,MC1bの組を撮像する。しかしながら、この比較例に係るチップ接合システムの場合、2つの撮像部9035a、9035b間の相対的な位置が熱膨張または経時的な変化でずれてしまう場合がある。この場合、チップCPと基板WTとのアライメント精度が低下してしまい、撮像部9035a、9035bの位置のキャリブレーション等が必要となる。また、日々のチップ接合システムの稼働において動作状態が安定せずに撮像部9035a、9035bの位置が変化してしまう虞もある。また、比較例に係るチップ接合システムでは、ミラー9337を移動させながら、アライメントマークMC2a,MC1aの組とアライメントマークMC2b,MC1bの組とを順番に撮像するため、アライメントマークMC2a,MC1aの組とアライメントマークMC2b,MC1bの組とを撮像するタイミングに時間差が生じ、撮像部9035a、9035bの振動が算出される位置ずれ量に影響してしまう。 By the way, conventionally, as in the chip bonding system according to Comparative Example 2 shown in FIGS. 26A and 26B, an imaging unit 9035a and an imaging unit 9035a for imaging the alignment marks MC2a and MC2b provided on the chip CP disposed vertically upward. , and an imaging unit 9035b for imaging alignment marks MC1a and MC1b provided on the substrate WT arranged vertically downward, and a mirror 9337 is moved in the horizontal direction between the chip CP and the substrate WT. However, it has been common to sequentially image the set of alignment marks MC2a and MC1a and the set of alignment marks MC2b and MC1b. First, the mirror 9337 is placed at the position shown in FIG. 26A to image the set of alignment marks MC2a and MC1a, and then the mirror 9337 is moved as shown by arrow AR900 in FIG. 26B, and then the set of alignment marks MC2b and MC1b is imaged. Take an image. However, in the case of the chip bonding system according to this comparative example, the relative positions between the two imaging units 9035a and 9035b may shift due to thermal expansion or changes over time. In this case, the alignment accuracy between the chip CP and the substrate WT deteriorates, and it becomes necessary to calibrate the positions of the imaging units 9035a and 9035b. Furthermore, during the daily operation of the chip bonding system, there is a possibility that the operating state may become unstable and the positions of the imaging units 9035a and 9035b may change. In addition, in the chip bonding system according to the comparative example, since the set of alignment marks MC2a, MC1a and the set of alignment marks MC2b, MC1b are sequentially imaged while moving the mirror 9337, the set of alignment marks MC2a, MC1a and the set of alignment marks MC2a, MC1a are imaged in order. A time difference occurs in the timing of imaging the set of marks MC2b and MC1b, and vibrations of the imaging units 9035a and 9035b affect the calculated positional shift amount.
 これに対して、本実施の形態に係るチップ接合システム2では、チップCPに設けられたアライメントマークMC2a(MC2b)と基板WTに設けられたアライメントマークMC1a(MC1b)との組を1つの撮像部35a(35b)で同時に撮像するので撮像部35a(35b)の位置ずれに影響されなくなる。また、チップ接合システム2では、アライメントマークMC2a,MC1aの組とアライメントマークMC2b,MC1bの組とのそれぞれに対応して撮像部35a、35bを配置し、2組をそれぞれ同時に撮像するため、撮像部35a、35bの振動による影響をキャンセルすることができる。 In contrast, in the chip bonding system 2 according to the present embodiment, a set of alignment mark MC2a (MC2b) provided on the chip CP and alignment mark MC1a (MC1b) provided on the substrate WT is integrated into one imaging unit. 35a (35b) simultaneously, it is not affected by the positional shift of the imaging section 35a (35b). In addition, in the chip bonding system 2, the imaging units 35a and 35b are arranged corresponding to the set of alignment marks MC2a and MC1a and the set of alignment marks MC2b and MC1b, respectively, and the imaging units The influence of vibrations of 35a and 35b can be canceled.
 また、比較例に係るチップ接合システムの場合、アライメントマークMC2a,MC1aの組とアライメントマークMC2b,MC1bの組とを異なるタイミングで撮像するため、チップCPと基板WTとが振動している場合、撮像するタイミングのずれによる誤差が発生してしまう。これに対して、チップ接合システム2では、アライメントマークMC2a,MC1aの組とアライメントマークMC2b,MC1bの組とを2つの撮像部35a、35bで同時に撮像する。このため、比較例に係るチップ接合システムのような撮像するタイミングのずれによる誤差が生じないという利点がある。 In addition, in the case of the chip bonding system according to the comparative example, since the set of alignment marks MC2a and MC1a and the set of alignment marks MC2b and MC1b are imaged at different timings, when the chip CP and the substrate WT are vibrating, An error occurs due to a timing shift. In contrast, in the chip bonding system 2, the two imaging units 35a and 35b simultaneously image the set of alignment marks MC2a and MC1a and the set of alignment marks MC2b and MC1b. For this reason, there is an advantage that errors due to deviations in timing of imaging unlike the chip bonding system according to the comparative example do not occur.
 また、前述の構成では、チップCPを基板WTに接合する際のチップCPの基板WTに対する位置ずれを補正することができない。これに対して、本実施の形態に係るチップ実装システムでは、赤外線を用いてチップCPおよび基板WTを接合する温度にまで加熱してチップCPおよび基板WTが熱膨張した状態でチップCPと基板WTとの位置ずれ量を算出することができるので、チップCPおよび基板WTの状態に関わらず、常に位置ずれ量を精度良く算出してチップCPの基板WTに対する位置ずれを補正することができる。 Further, with the above-described configuration, it is not possible to correct the positional deviation of the chip CP with respect to the substrate WT when the chip CP is bonded to the substrate WT. On the other hand, in the chip mounting system according to the present embodiment, the chip CP and the substrate WT are heated using infrared rays to a temperature at which the chip CP and the substrate WT are bonded, and the chip CP and the substrate WT are thermally expanded. Since it is possible to calculate the amount of positional deviation between the chip CP and the substrate WT, it is possible to always accurately calculate the amount of positional deviation and correct the positional deviation of the chip CP with respect to the substrate WT, regardless of the states of the chip CP and the substrate WT.
 ところで、チップCPを保持したヘッド2033Hを基板WTの鉛直上方から近づけてチップCPを基板WTに接合する構成である場合、接合時にチップCPから発生したパーティクルが基板WTにおける接合対象のチップCPの周囲に落下してしまう。そうすると、前述のように複数のチップCPを互いの周囲に連続して接合する場合、パーティクルが落下した領域へ次以降のチップCPを接合することとなり、チップCPと基板WTとの間にパーティクルを噛みこんでしまい、ボイドまたは接合不良が発生する虞がある。これに対して、本実施の形態に係る接合装置2030では、チップCPの接合時に発生したパーティクルがチップCPから鉛直下方へ落下して、基板WTの接合面に付着しない。このため、前述のように複数のチップCPを互いの周囲に連続して接合する場合、基板WTの接合面における基板WTに接合したチップCPの周囲のパーティクルの付着していない清浄な領域へ次のチップCPを接合することができる。このため、チップCPと基板WTとの間でのボイドの発生を抑制し且つチップCPを良好に基板WTに接合することができる。 By the way, in the case where the head 2033H holding the chip CP approaches the substrate WT from vertically above to join the chip CP to the substrate WT, particles generated from the chip CP at the time of joining may be scattered around the chip CP to be joined on the substrate WT. I end up falling. In this case, when a plurality of chips CP are successively bonded around each other as described above, the next and subsequent chips CP are bonded to the area where the particles have fallen, and particles are formed between the chip CP and the substrate WT. There is a risk that they will get stuck and cause voids or poor bonding. In contrast, in the bonding apparatus 2030 according to the present embodiment, particles generated during bonding of the chips CP fall vertically downward from the chips CP and do not adhere to the bonding surface of the substrate WT. For this reason, when a plurality of chips CP are successively bonded around each other as described above, a clean area to which particles are not attached around the chip CP bonded to the substrate WT on the bonding surface of the substrate WT is chips CP can be joined. Therefore, it is possible to suppress the generation of voids between the chip CP and the substrate WT, and to bond the chip CP to the substrate WT well.
 また、チップCPが、本来の接合位置から次に接合するチップCPの接合位置までずれてしまうと、次のチップCPを加圧する前の位置まで高速移動させる途中でずれたチップCPに干渉してしまう場合がある。この場合、基板が割れてしまうことがある。そうすると、それまでに基板WTに接合されたチップCPが全て無駄になってしまうため大きな問題である。これに対して、本実施の形態に係るチップ接合システム2では、接合装置2030のステージ2315が、基板WTにおける接合面WTfが鉛直下方を向く姿勢で基板WTを保持する。これにより、例えばチップCPの基板WTへの接合を試みたがチップCPが基板WTに接合されなかった場合、ヘッド2033Hの鉛直下方への移動に伴いチップCPが基板WTから離脱する。従って、接合されずに基板WTの接合面WTfに残ったチップCPが、他のチップCPが接合される場所に飛ばされ、他のチップCPの基板WTへの接合時において他のチップCPと干渉してしまうことを防止できる。 In addition, if the chip CP shifts from its original bonding position to the bonding position of the next chip CP to be bonded, it may interfere with the shifted chip CP while moving the next chip CP at high speed to the position before applying pressure. It may be stored away. In this case, the substrate may break. If this happens, all the chips CP bonded to the substrate WT up to that point will be wasted, which is a big problem. In contrast, in the chip bonding system 2 according to the present embodiment, the stage 2315 of the bonding apparatus 2030 holds the substrate WT in a posture such that the bonding surface WTf of the substrate WT faces vertically downward. As a result, if, for example, an attempt is made to bond the chip CP to the substrate WT, but the chip CP is not bonded to the substrate WT, the chip CP separates from the substrate WT as the head 2033H moves vertically downward. Therefore, the chip CP remaining on the bonding surface WTf of the substrate WT without being bonded is blown to a location where another chip CP is bonded, and interferes with the other chip CP when bonding the other chip CP to the substrate WT. You can prevent it from happening.
 また、本実施の形態に係るチップ接合システム2は、チップCPを基板へ接合する処理が完了した後、撮像部2041により撮像された撮影画像にアライメントマークMC1a、MC1bとともにアライメントマークMC2a、MC2bが含まれるか否かに応じて、チップCPが基板WTへ接合されているか否かを判定する。また、チップ接合システム2は、チップCPを基板WTへ接合する処理が完了した後、撮像部2035a、2035bにより撮像された撮影画像にアライメントマークMC2a、MC2bが含まれるか否かに応じて、チップCPがヘッド2033Hに保持されているか否かを判定する。これにより、基板WTに接合できなかったチップCPがヘッド2033Hに保持されていると判定された場合、そのチップCPを回収することができる。 Further, in the chip bonding system 2 according to the present embodiment, after the process of bonding the chip CP to the substrate is completed, the captured image captured by the imaging unit 2041 includes alignment marks MC2a and MC2b as well as alignment marks MC1a and MC1b. Depending on whether or not the chip CP is bonded to the substrate WT, it is determined whether or not the chip CP is bonded to the substrate WT. Furthermore, after the process of bonding the chip CP to the substrate WT is completed, the chip bonding system 2 determines whether or not the alignment marks MC2a and MC2b are included in the captured images captured by the imaging units 2035a and 2035b. It is determined whether the CP is held by the head 2033H. Thereby, when it is determined that the chip CP that could not be bonded to the substrate WT is held by the head 2033H, the chip CP can be collected.
 以上、本発明の各実施の形態について説明したが、本発明は前述の実施の形態の構成に限定されるものではない。例えば、ステージ401、ヘッド402が押圧機構431、432を有しておらず、基板W2を保持したヘッド402を、基板W1を保持したステージ401に近づけて、前述の目標タイミングでそのまま基板W1、W2の接合面全面同士を面接触させてもよい。 Although each embodiment of the present invention has been described above, the present invention is not limited to the configuration of the above-described embodiments. For example, if the stage 401 and the head 402 do not have the pressing mechanisms 431 and 432, the head 402 holding the substrate W2 is brought close to the stage 401 holding the substrate W1, and the substrates W1 and W2 are moved as they are at the target timing described above. The entire joint surfaces of the two may be brought into surface contact with each other.
 ところで、実施の形態1では、基板W1、W2の中央部同士を接触させる第1接触工程の後、第2接触工程において、ボンディングウェーブが基板W1、W2の周部に向かって広がって基板W1、W2の接合面同士が全面で面接触した状態になるまでの間、基板W2が基板W1に対する振動が若干残ってしまう場合がある。これに対して、本変形例によれば、接合装置が、前述の目標タイミングで基板W1、W2の接合面同士を面接触させたときに基板W2の基板W1に対する振動を停止させることができる。従って、基板W1、W2の接合面同士が離間した状態から振動が停止する面接触した状態になるまでの時間を適当に調整することにより、基板W2の基板W1に対する位置ずれ量への振動の影響をより低減できる場合がある。なお、比較的面積の大きい基板W1、W2の接合面同士を全面で面接触させる際、基板W1、W2同士を比較的短時間で接触および加圧することになるため互いに接合された基板W1、W2の接合部分において歪みが生じる場合がある。従って、実施の形態1で説明したように基板W1,W2の中央部同士を接触させて基板W2の基板W1に対する振動を停止させた後、ボンディングウェーブが基板W1、W2の周部まで自然に広がる時間をかけて全面で接触して接合するのが好ましい。これに対して、比較的面積の小さいチップCPを基板WTに面接触させる場合、チップCPの接合面全体が略同時に基板WTに接触し、また面積も比較的小さいため歪みが小さい。このため、チップCPを基板WTに面接触させる構成でもよい。 By the way, in the first embodiment, after the first contact step of bringing the central portions of the substrates W1 and W2 into contact with each other, the bonding wave spreads toward the peripheral portions of the substrates W1 and W2 in the second contact step, and the bonding waves spread toward the peripheral portions of the substrates W1 and W2. Until the bonding surfaces of W2 come into full surface contact with each other, some vibration of the substrate W2 with respect to the substrate W1 may remain. In contrast, according to this modification, the bonding apparatus can stop the vibration of the substrate W2 relative to the substrate W1 when the bonding surfaces of the substrates W1 and W2 are brought into surface contact with each other at the above-mentioned target timing. Therefore, by appropriately adjusting the time from when the joint surfaces of the substrates W1 and W2 are separated to when they are in surface contact at which vibration stops, the influence of vibration on the amount of displacement of the substrate W2 with respect to the substrate W1 can be reduced. In some cases, it may be possible to further reduce Note that when the bonding surfaces of the substrates W1 and W2, which have a relatively large area, are brought into surface contact with each other over the entire surface, the substrates W1 and W2 are brought into contact and pressurized in a relatively short period of time. Distortion may occur at the joints. Therefore, as described in Embodiment 1, after the central portions of the substrates W1 and W2 are brought into contact with each other to stop the vibration of the substrate W2 relative to the substrate W1, the bonding wave naturally spreads to the peripheral portions of the substrates W1 and W2. It is preferable to take a long time to contact and bond the entire surface. On the other hand, when a chip CP having a relatively small area is brought into surface contact with the substrate WT, the entire bonding surface of the chip CP comes into contact with the substrate WT at approximately the same time, and the area is also relatively small, so that the distortion is small. Therefore, a configuration may be adopted in which the chip CP is brought into surface contact with the substrate WT.
 実施の形態1では、接合装置1が、基板W1に設けられたアライメントマークMK1a,MK2aと基板W2に設けられたアライメントマークMK1b、MK2bとの少なくとも1つの組を撮像して、それらの振動波形の振動中心に相当する位置ずれ量Δx、Δy、Δθを特定し、それらが目標値となれば基板W1、W2同士を接触させる。また、接合装置1が、基板W2の基板W1に対する水平方向並びに回転方向の振動の振動波形の振動中心に相当する位置ずれ量Δx、Δy、Δθ、振動振幅および振動周期を特定する振動波形特定工程を実行する例について説明した。但し、これに限らず、接合装置1が、振動波形特定工程の代わりに、位置ずれ量計測工程において計測した複数の位置ずれ量Δx、Δy、Δθそれぞれの中間値に相当する位置ずれ量中間値を算出し、算出した位置ずれ量中間値の全てが位置ずれ量閾値Δxth、Δyth、Δθth以下であるか否かを判定するものであってもよい。この場合、接合装置1は、算出した位置ずれ量中間値の全てが位置ずれ量閾値Δxth、Δyth、Δθth以下であると判定した場合に、前述の振動波形特定工程を実行して振動波形を特定してから前述のタイミング推定工程を実行するようにすればよい。 In the first embodiment, the bonding apparatus 1 images at least one set of alignment marks MK1a, MK2a provided on the substrate W1 and alignment marks MK1b, MK2b provided on the substrate W2, and detects the vibration waveforms thereof. The positional deviation amounts Δx, Δy, and Δθ corresponding to the center of vibration are specified, and when these become target values, the substrates W1 and W2 are brought into contact with each other. Further, a vibration waveform identification step in which the bonding apparatus 1 identifies the positional deviation amount Δx, Δy, Δθ, vibration amplitude, and vibration period corresponding to the vibration center of the vibration waveform of the vibration of the substrate W2 in the horizontal direction and the rotational direction with respect to the substrate W1. We have explained an example of executing . However, the present invention is not limited to this, and instead of the vibration waveform identification process, the bonding apparatus 1 may generate an intermediate positional deviation amount corresponding to the intermediate value of each of the plurality of positional deviation amounts Δx, Δy, and Δθ measured in the positional deviation amount measuring process instead of the vibration waveform identification process. It may be determined whether or not all of the calculated positional deviation amount intermediate values are equal to or less than the positional deviation amount thresholds Δxth, Δyth, and Δθth. In this case, when the bonding device 1 determines that all of the calculated positional deviation amount intermediate values are equal to or less than the positional deviation amount thresholds Δxth, Δyth, and Δθth, the welding apparatus 1 executes the vibration waveform identification step described above to identify the vibration waveform. After that, the timing estimation step described above may be executed.
 また、実施の形態2では、接合装置2030が、チップCPの基板WTに対する水平方向並びに回転方向の振動の振動波形の振動波形の振動中心に相当する位置ずれ量Δx、Δy、Δθ、振動振幅および振動周期を特定する例について説明した。但し、これに限らず、接合装置2030が、位置ずれ量計測工程において計測した複数の位置ずれ量Δx、Δy、Δθそれぞれの中間値に相当する位置ずれ量中間値を算出し、算出した位置ずれ量中間値の全てが位置ずれ量閾値Δxth、Δyth、Δθth以下であるか否かを判定するものであってもよい。 In the second embodiment, the bonding apparatus 2030 also includes positional deviation amounts Δx, Δy, Δθ corresponding to the vibration center of the vibration waveform of the horizontal and rotational vibrations of the chip CP relative to the substrate WT, vibration amplitude, and An example of specifying the vibration period has been explained. However, the present invention is not limited to this, and the bonding device 2030 calculates an intermediate value of the positional deviation amount corresponding to the intermediate value of each of the plurality of positional deviation amounts Δx, Δy, and Δθ measured in the positional deviation amount measuring step, and calculates the calculated positional deviation. It may be determined whether all of the intermediate values are equal to or less than the positional deviation amount thresholds Δxth, Δyth, and Δθth.
 実施の形態1において、接合装置1が、位置ずれ量計測工程において、基板W1、W2が互いに離間した状態で、予め設定された波形計測期間中におけるアライメントマークMK1a,MK2aとアライメントマークMK1b,MK2bとのそれぞれの位置座標を繰り返し計測して得られた位置座標の中間値を算出するものであってもよい。この場合、接合装置1は、アライメントマークMK1a,MK2aの位置座標の中間値と、アライメントマークMK1b,MK2bとのそれぞれの位置座標の中間値と、の差分から位置ずれ量Δx、Δy、Δθを算出するものであってもよい。 In the first embodiment, the bonding apparatus 1 measures the alignment marks MK1a, MK2a and the alignment marks MK1b, MK2b during a preset waveform measurement period with the substrates W1 and W2 spaced apart from each other in the positional deviation measurement step. Alternatively, the intermediate value of the position coordinates obtained by repeatedly measuring the position coordinates of each of the positions may be calculated. In this case, the bonding device 1 calculates the positional deviation amounts Δx, Δy, and Δθ from the difference between the intermediate value of the position coordinates of the alignment marks MK1a and MK2a and the intermediate value of the position coordinates of the alignment marks MK1b and MK2b. It may be something that does.
 実施の形態1において、接合装置1が、基板W1、W2が互いに離間した状態で、予め設定された波形計測期間中におけるアライメントマークMK1a,MK2aとアライメントマークMK1b,MK2bとのそれぞれの位置座標を繰り返し計測して得られた位置座標の時間推移からアライメントマークMK1a,MK2aの振動の振動波形と、アライメントマークMK1b,MK2bの振動の振動波形と、を特定するものであってもよい。そして、接合装置1は、アライメントマークMK1a,MK2aの振動波形の振動中心に相当する位置座標と、アライメントマークMK1b,MK2bの振動波形の振動中心に相当する位置座標と、を特定し、特定したアライメントマークMK1a,MK2aとアライメントマークMK1b,MK2bそれぞれの位置座標に基づいて、位置ずれ量Δx、Δy、Δθを算出するものであってもよい。この場合、前述のアライメントマークMK1a,MK2aとアライメントマークMK1b,MK2bとのそれぞれの位置座標の中間値から位置ずれ量Δx、Δy、Δθを算出する場合に比べて位置ずれ量Δx、Δy、Δθの算出精度を高めることができる。 In the first embodiment, the bonding apparatus 1 repeatedly determines the position coordinates of the alignment marks MK1a, MK2a and the alignment marks MK1b, MK2b during a preset waveform measurement period with the substrates W1 and W2 separated from each other. The vibration waveforms of the vibrations of the alignment marks MK1a, MK2a and the vibration waveforms of the vibrations of the alignment marks MK1b, MK2b may be specified from the time transition of the position coordinates obtained by measurement. Then, the bonding device 1 specifies the position coordinates corresponding to the vibration centers of the vibration waveforms of the alignment marks MK1a, MK2a and the position coordinates corresponding to the vibration centers of the vibration waveforms of the alignment marks MK1b, MK2b, and The positional deviation amounts Δx, Δy, and Δθ may be calculated based on the position coordinates of the marks MK1a, MK2a and the alignment marks MK1b, MK2b, respectively. In this case, compared to the case where the positional deviation amounts Δx, Δy, and Δθ are calculated from the intermediate values of the respective position coordinates of the alignment marks MK1a, MK2a and the alignment marks MK1b, MK2b, the positional deviation amounts Δx, Δy, and Δθ are Calculation accuracy can be improved.
 実施の形態1では、距離測定部490が、ステージ401とヘッド402との間の距離を測定する例について説明した。但し、これに限らず、距離測定部が、ステージ401に保持された基板W1とヘッド402との間の距離、或いは、ステージ401とヘッド402の保持された基板W2との間の距離を測定するものであってもよい。或いは、距離測定部が、ステージ401に保持された基板W1と、ヘッド402に保持された基板W2と、の間の距離を測定するものであってもよい。 In the first embodiment, an example was described in which the distance measuring section 490 measures the distance between the stage 401 and the head 402. However, the present invention is not limited to this, and the distance measurement section may measure the distance between the substrate W1 held on the stage 401 and the head 402, or the distance between the stage 401 and the substrate W2 held on the head 402. It may be something. Alternatively, the distance measuring section may measure the distance between the substrate W1 held on the stage 401 and the substrate W2 held on the head 402.
 実施の形態1では、接合装置1が、位置合わせ工程を行う毎に前述の姿勢調整工程を実行する例について説明した。但しこれに限らず、例えば基板W1、W2同士の接合を予め設定された回数だけ行われる毎、或いは、予め設定された期間が経過する毎に1回だけ姿勢調整工程が実行されるものであってもよい。 In Embodiment 1, an example has been described in which the bonding apparatus 1 executes the above-mentioned attitude adjustment process every time the positioning process is performed. However, the present invention is not limited to this. For example, the posture adjustment process may be executed only once every time the substrates W1 and W2 are joined a preset number of times, or every time a preset period elapses. You can.
 実施の形態1では、基板W1、W2同士を減圧下で接合する例について説明したが、これに限定されるものではなく、基板W1、W2同士を大気圧下で接合するものであってもよい。 In the first embodiment, an example in which the substrates W1 and W2 are bonded together under reduced pressure has been described, but the present invention is not limited to this, and the substrates W1 and W2 may be bonded together under atmospheric pressure. .
 実施の形態2において、ヘッド2033Hが、チップCPの接合面CPfの複数箇所の部位と、基板WTの接合面WTfにおける前述の複数箇所の部位と対向する部位と、の間の距離を測定する距離測定部を有するものであってもよい。ここで、距離測定部は、例えばレーザ距離計であり、ヘッド2033Hおよびステージ2315に接触せずにヘッド2033Hと基板WTの下面との間の距離を測定する。また、距離測定部は、例えば透明なチップツール2411の下方からステージ2315に保持された基板WTに向かってレーザ光を照射したときの基板WTの下面での反射光とチップツール2411の先端面での反射光との差分からヘッド2033Hと基板WTの下面との間の距離を測定する。そして、制御部2009は、距離測定部により測定された距離に基づいて、ヘッド2033Hに保持されたチップCPの接合面CPfが基板WTの接合面WTfに対して平行となるように、前述の3つのピエゾアクチュエータ2333を制御するものであってもよい。 In Embodiment 2, the distance by which the head 2033H measures the distance between a plurality of portions on the bonding surface CPf of the chip CP and a portion opposing the aforementioned plurality of portions on the bonding surface WTf of the substrate WT. It may also include a measuring section. Here, the distance measuring section is, for example, a laser distance meter, and measures the distance between the head 2033H and the lower surface of the substrate WT without contacting the head 2033H and the stage 2315. In addition, the distance measuring unit is configured to detect the reflected light from the lower surface of the substrate WT when a laser beam is irradiated from below the transparent tip tool 2411 toward the substrate WT held on the stage 2315, and the tip surface of the tip tool 2411, for example. The distance between the head 2033H and the lower surface of the substrate WT is measured from the difference between the reflected light and the reflected light. Then, based on the distance measured by the distance measuring section, the control section 2009 controls the above-mentioned three steps so that the bonding surface CPf of the chip CP held by the head 2033H is parallel to the bonding surface WTf of the substrate WT. Alternatively, one piezo actuator 2333 may be controlled.
 実施の形態2において、図27Aに示すように、チップCPの周部を保持した状態でチップCPの中央部を鉛直上方へ押圧する押圧機構3431が設けられたヘッド3033Hを有する接合装置を備える構成であってもよい。なお、図27Aおよび図27Bにおいて、実施の形態と同様の構成については図17Aおよび図17Bと同一の符号を付している。ヘッド3033Hは、チップツール3411と、ヘッド本体部3413と、チップ支持部3432aと、支持部駆動部3432bと、を有する。チップツール3411は、実施の形態2に係るチップツール2411と同様に撮影光(赤外光等)を透過する材料(例えばシリコン(Si))から形成されている。ヘッド本体部3413は、保持機構2440と、チップCPの中央部を押圧する押圧機構3431と、を有する。押圧機構3431は、ヘッド本体部3413の先端面の中央部において鉛直方向に移動可能な押圧部3431aと、押圧部3431aを駆動する押圧駆動部3431bと、を有する。また、ヘッド本体部3413は、チップツール3411を真空吸着によりヘッド本体部3413に固定するための吸着部(図示せず)も有する。チップツール3411は、ヘッド本体部3413の保持機構2440に対応する位置に形成された貫通孔2411aと、押圧部3431aが内側に挿入される貫通孔3411bと、チップ支持部3432aが内側に挿通される貫通孔3411cと、を有する。 In Embodiment 2, as shown in FIG. 27A, a configuration includes a bonding device having a head 3033H provided with a pressing mechanism 3431 that presses the center part of the chip CP vertically upward while holding the peripheral part of the chip CP. It may be. Note that in FIGS. 27A and 27B, the same components as in the embodiment are given the same reference numerals as in FIGS. 17A and 17B. The head 3033H includes a tip tool 3411, a head main body portion 3413, a tip support portion 3432a, and a support portion drive portion 3432b. The tip tool 3411, like the tip tool 2411 according to the second embodiment, is made of a material (for example, silicon (Si)) that transmits photographing light (infrared light, etc.). The head main body portion 3413 includes a holding mechanism 2440 and a pressing mechanism 3431 that presses the center portion of the chip CP. The pressing mechanism 3431 includes a pressing part 3431a that is movable in the vertical direction at the center of the distal end surface of the head main body part 3413, and a pressing driving part 3431b that drives the pressing part 3431a. Further, the head body portion 3413 also has a suction portion (not shown) for fixing the tip tool 3411 to the head body portion 3413 by vacuum suction. The tip tool 3411 has a through hole 2411a formed in a position corresponding to the holding mechanism 2440 of the head body portion 3413, a through hole 3411b into which the pressing portion 3431a is inserted, and a tip support portion 3432a into which the tip support portion 3432a is inserted. It has a through hole 3411c.
 チップ支持部3432aは、例えばピン状の形状を有し、ヘッド3033Hの先端部に設けられ鉛直方向へ移動自在である。チップ支持部3432aは、チップCPの接合面CPf側とは反対側を支持する。チップ支持部3432aは、例えば図27Bに示すように、押圧部3431aを囲繞するように4つ設けられている。支持部駆動部2432bは、チップ支持部3432aを鉛直方向へ駆動する。支持部駆動部3432bは、チップ搬送装置2039のチップ保持部2393がチップCPを保持した状態で移載位置Pos1に位置し、チップ支持部2432aによりチップCPを支持した状態で、チップ支持部3432aをチップ保持部2393よりも鉛直上方側へ移動させる。これにより、チップCPが、チップ搬送装置2039のチップ保持部2393からヘッド3033Hへ移載される。 The chip support portion 3432a has, for example, a pin-like shape, is provided at the tip of the head 3033H, and is movable in the vertical direction. The chip support portion 3432a supports the side of the chip CP opposite to the bonding surface CPf side. For example, as shown in FIG. 27B, four chip supporting parts 3432a are provided so as to surround the pressing part 3431a. The support part driving part 2432b drives the chip support part 3432a in the vertical direction. The support unit driving unit 3432b moves the chip support unit 3432a while the chip holding unit 2393 of the chip transport device 2039 is located at the transfer position Pos1 with the chip CP held, and the chip support unit 2432a supports the chip CP. It is moved vertically above the chip holding section 2393. Thereby, the chip CP is transferred from the chip holding section 2393 of the chip transport device 2039 to the head 3033H.
 押圧駆動部3431bは、図28に示すように、チップツール3411にチップCPの周部が保持された状態で、押圧部3431aを鉛直上方へ移動させると、チップCPの中央部が鉛直上方(+Z方向)へ押圧され、チップCPの中央部がその周部に比べて鉛直上方へ撓んだ状態となる。 As shown in FIG. 28, when the pressing part 3431b moves the pressing part 3431a vertically upward while the peripheral part of the chip CP is held by the chip tool 3411, the central part of the chip CP moves vertically upward (+Z direction), and the central portion of the chip CP is bent vertically upward compared to its circumferential portion.
 本変形例に係る接合装置2は、チップCPの周部をチップツール3411に吸着保持させた状態で(図28の矢印AR301参照)、押圧駆動部3431bにより押圧部3431aを鉛直方向へ駆動する(図28の矢印AR302参照)。これにより、チップCPは、その中央部がその周部よりも基板WT側に突出するように撓んだ状態となる。そして、矢印AR303に示すように、チップCPを撓ませた状態でヘッド3033Hが、基板WTに近づくことにより、チップCPの中央部が基板WTの接合面WTfに接触する。なお、接合装置は、ヘッド3033Hを鉛直方向へ移動させて基板WTに予め設定された距離まで近づけた後、チップCPを撓ませることによりチップCPの中央部を基板WTの接合面WTfに接触させてもよい。その後、接合装置は、押圧部3431aを鉛直下方へ没入させつつ、ヘッド3033Hを更に基板WTへ近づけることにより、チップCPを基板WTに接合する。 The bonding device 2 according to this modification drives the pressing part 3431a in the vertical direction by the pressing driving part 3431b while the peripheral part of the chip CP is held by the chip tool 3411 (see arrow AR301 in FIG. 28). (See arrow AR302 in FIG. 28). As a result, the chip CP is bent such that its central portion protrudes more toward the substrate WT than its peripheral portion. Then, as shown by an arrow AR303, the head 3033H approaches the substrate WT with the chip CP bent, so that the center portion of the chip CP comes into contact with the bonding surface WTf of the substrate WT. Note that the bonding apparatus moves the head 3033H in the vertical direction to bring it close to the substrate WT to a preset distance, and then bends the chip CP to bring the center part of the chip CP into contact with the bonding surface WTf of the substrate WT. You can. Thereafter, the bonding device bonds the chip CP to the substrate WT by moving the head 3033H further closer to the substrate WT while recessing the pressing portion 3431a vertically downward.
 本構成によれば、チップCPを基板WTに接合する際の基板WTとチップCPとの間への空気の巻き込みが抑制されるので、チップCPを基板WTにボイド無く良好に接合することが可能となる。 According to this configuration, since air is prevented from being drawn into the space between the substrate WT and the chip CP when the chip CP is bonded to the substrate WT, it is possible to bond the chip CP to the substrate WT well without voids. becomes.
 実施の形態2では、活性化処理されたチップCPの接合面CPfを基板WTの接合面WTfに接触させることによりチップCPを基板WTに接合するチップ接合システム2の例について説明した。但し、これに限らず、例えば基板WTの一面に樹脂層が形成された複合基板にチップCPを接合するものであってもよい。 In the second embodiment, an example of the chip bonding system 2 was described in which the chip CP is bonded to the substrate WT by bringing the bonding surface CPf of the activated chip CP into contact with the bonding surface WTf of the substrate WT. However, the present invention is not limited to this, and the chip CP may be bonded to a composite substrate in which a resin layer is formed on one surface of the substrate WT, for example.
 実施の形態2に係るチップ接合システム2において、例えば図29に示すように、チップツール4411におけるチップCPを保持する部分に凹部4411cが設けられたヘッド4033Hを有する接合装置を備えるものであってもよい。ここで、凹部4411cは、チップCPにおける、チップ供給部2011のピックアップ機構2111のニードル2111aの先端部が接触する領域に対応する部分に設けられている。 The chip bonding system 2 according to the second embodiment may include a bonding device having a head 4033H in which a recess 4411c is provided in the portion of the chip tool 4411 that holds the chip CP, as shown in FIG. 29, for example. good. Here, the recessed portion 4411c is provided in a portion of the chip CP that corresponds to a region where the tip of the needle 2111a of the pickup mechanism 2111 of the chip supply section 2011 comes into contact.
 本構成によれば、チップCPにおけるニードル2111aの接触部分に付着したパーティクルに起因してチップCPの姿勢が傾くことを抑制できる。従って、チップCPを基板WTへ良好に接合することができる。 According to this configuration, it is possible to suppress the posture of the chip CP from tilting due to particles attached to the contact portion of the needle 2111a on the chip CP. Therefore, the chip CP can be bonded well to the substrate WT.
 実施の形態2に係るチップ接合システム2は、チップCPをヘッド2033Hに近づける前に、チップCPと基板WTとが第2距離だけ離間した状態で、撮像部2041により基板WTのアライメントマークMC1a、MC1bを撮像する例について説明した。但し、これに限らず、例えば、チップ接合システムが、ヘッド2033HにチップCPを保持する前に、撮像部2035a、2035bにより基板WTのアライメントマークMC1a、MC1bを撮像するものであってもよい。この場合、制御部2009は、基板WTのアライメントマークMC1a、MC1bの撮像画像を主記憶部または補助記憶部に記憶する。次に、制御部2009は、撮像部2035a、2035bにより基板WTのアライメントマークMC1a、MC1bを撮像した後、ヘッド2033HにチップCPを保持した状態で撮像部2035a、2035bによりチップCPのアライメントマークMC2a、MC2bを撮像する。そして、制御部2009は、撮像部2035a、2035bにより撮像して得られた基板WTのアライメントマークMC1a、MC1bの撮像画像とチップCPのアライメントマークMC2a、MC2bの撮像画像とを用いて相対的な位置ずれ量を算出する。また、複数のチップCPを基板WTに接合する場合、基板WTはステージ2315に保持された状態を維持するため、基板WTのステージ2315への移載時に1回だけ基板WTのアライメントマークMC1a、MC1bを撮像して制御部2009のメモリに記憶しておき、ステージ2315が移動した際には、メモリに記憶された基板WTのアライメントマークMC1a、MC1bの情報からアライメントマークMC1a、MC1bの位置を予測すればよい。この場合、チップCPを基板WTに接合する際、基板WTのアライメントマークMC1a、MC1bを撮像する必要がなく、チップCPのアライメントマークMC2a、MC2bのみを撮像すればよい。 In the chip bonding system 2 according to the second embodiment, before bringing the chip CP close to the head 2033H, the imaging unit 2041 captures alignment marks MC1a and MC1b on the substrate WT with the chip CP and the substrate WT separated by a second distance. An example of imaging has been explained. However, the present invention is not limited to this, and for example, the chip bonding system may image the alignment marks MC1a and MC1b on the substrate WT using the imaging units 2035a and 2035b before holding the chip CP in the head 2033H. In this case, the control unit 2009 stores the captured images of the alignment marks MC1a and MC1b on the substrate WT in the main storage unit or the auxiliary storage unit. Next, the control unit 2009 uses the imaging units 2035a and 2035b to image the alignment marks MC1a and MC1b of the substrate WT, and then uses the imaging units 2035a and 2035b to image the alignment marks MC1a and MC1b of the chip CP while holding the chip CP in the head 2033H. Image the MC2b. Then, the control unit 2009 uses the captured images of the alignment marks MC1a, MC1b of the substrate WT obtained by imaging by the imaging units 2035a, 2035b and the captured images of the alignment marks MC2a, MC2b of the chip CP to determine the relative position. Calculate the amount of deviation. In addition, when a plurality of chips CP are bonded to the substrate WT, in order to maintain the state in which the substrate WT is held on the stage 2315, the alignment marks MC1a, MC1b of the substrate WT are applied only once when the substrate WT is transferred to the stage 2315. is imaged and stored in the memory of the control unit 2009, and when the stage 2315 moves, the positions of the alignment marks MC1a and MC1b are predicted from the information on the alignment marks MC1a and MC1b of the substrate WT stored in the memory. Bye. In this case, when bonding the chip CP to the substrate WT, it is not necessary to image the alignment marks MC1a and MC1b of the substrate WT, and it is sufficient to image only the alignment marks MC2a and MC2b of the chip CP.
 本構成によれば、基板WTが不透明であっても基板WTとチップCPとの相対的な位置ずれ量を算出することが可能となる。 According to this configuration, even if the substrate WT is opaque, it is possible to calculate the relative positional shift amount between the substrate WT and the chip CP.
 実施の形態2では、撮像部2035a、2035bが、それぞれ、同軸照明系の光源から出射される照明光(例えば赤外光)の反射光を利用して、チップCPのアライメントマークMC1a、MC1bと、基板WTのアライメントマークMC2a、MC2bとを含む画像を取得する例について記載した。但し、これに限らず、例えば、撮像部2035a、2035b側とは反対側に設けられた光源からチップCPを透過する透過光を利用して、チップCPのアライメントマークMC1a、MC1bと、基板WTのアライメントマークMC2a、MC2bとを含む画像を取得する構成であってもよい。例えば、基板WTの鉛直上方に配置された撮像部2041が、チップCPの下側に入射する撮像部2035a、2035bの同軸光を利用して、アライメントマークMC1a、MC1b、MC2a、MC2bを含む画像を取得する構成であってもよい。或いは、撮像部2035a、2035bが、基板WTの鉛直上方に配置された撮像部2041から出射される同軸光を利用して、アライメントマークMC1a、MC1b、MC2a、MC2bを含む画像を取得する構成であってもよい。また、基板WTが可視光に対して透明の場合、撮像部2035a、2035bまたは撮像部2041から出射される同軸光が、可視光であってもよい。 In the second embodiment, the imaging units 2035a and 2035b respectively use reflected light of illumination light (for example, infrared light) emitted from a light source of a coaxial illumination system to mark alignment marks MC1a and MC1b of the chip CP. An example of acquiring an image including the alignment marks MC2a and MC2b of the substrate WT has been described. However, the present invention is not limited to this, and for example, the alignment marks MC1a and MC1b of the chip CP and the alignment marks MC1b of the substrate WT can be aligned using transmitted light that passes through the chip CP from a light source provided on the side opposite to the imaging units 2035a and 2035b. The configuration may be such that an image including alignment marks MC2a and MC2b is acquired. For example, the imaging unit 2041 disposed vertically above the substrate WT captures an image including the alignment marks MC1a, MC1b, MC2a, and MC2b using coaxial light from the imaging units 2035a and 2035b that enters the lower side of the chip CP. The configuration may be such that the information is acquired. Alternatively, the imaging units 2035a and 2035b may be configured to acquire images including the alignment marks MC1a, MC1b, MC2a, and MC2b using coaxial light emitted from the imaging unit 2041 arranged vertically above the substrate WT. You can. Further, when the substrate WT is transparent to visible light, the coaxial light emitted from the imaging units 2035a, 2035b or the imaging unit 2041 may be visible light.
 また、撮像部2041が、チップCPのアライメントマークMC1a、MC1bと基板WTのアライメントマークMC2a、MC2bとを含む画像を取得する構成であってもよい。このように、チップCPを基板WTの接合面WTfに接触させた状態で、赤外光を利用してチップCPのアライメントマークMC1a、MC1bと基板WTのアライメントマークMC2a、MC2bとを同一の撮像部2041で、アライメントマークMC1a、MC2a、アライメントマークMC1b、MC2bの組を、フォーカス軸を動かさずに1回の取り込みで同時認識することにより、チップCPと基板WTとの位置ずれを高精度に認識できる。また、チップCP側の撮像部2035a、2035bを用いてチップCPのアライメントマークMC1a、MC1bと基板WTのアライメントマークMC2a、MC2bを同時に認識する構成でも同様である。 Alternatively, the imaging unit 2041 may be configured to acquire an image including the alignment marks MC1a, MC1b of the chip CP and the alignment marks MC2a, MC2b of the substrate WT. In this way, with the chip CP in contact with the bonding surface WTf of the substrate WT, the alignment marks MC1a, MC1b of the chip CP and the alignment marks MC2a, MC2b of the substrate WT are placed in the same imaging section using infrared light. 2041, by simultaneously recognizing the set of alignment marks MC1a, MC2a, and alignment marks MC1b, MC2b in one capture without moving the focus axis, it is possible to recognize the positional deviation between the chip CP and the substrate WT with high precision. . Further, the same applies to a configuration in which the alignment marks MC1a, MC1b of the chip CP and the alignment marks MC2a, MC2b of the substrate WT are simultaneously recognized using the imaging units 2035a, 2035b on the chip CP side.
 実施の形態2において、接合装置2030が、チップCPの接合面(平坦面)CPfにおける3つ以上の箇所において、基板WTの接合面WTfとチップCPの接合面CPfとの間の距離を測定する距離測定部(図示せず)を備えるものであってもよい。距離測定部は、例えばヘッド33Hの側方の複数箇所に配置されたレーザ光源(図示せず)と、複数のレーザ光源それぞれから出射し基板WTで反射したレーザ光を受光する受光部(図示せず)と、を有するものであってもよい。そして、ヘッド駆動部2036が、距離測定部により測定された距離に基づいて、チップCPを保持するヘッド2033Hを、基板WTを保持するステージユニット2031に近づけてもよい。また、3つのピエゾアクチュエータ2333が、距離測定部により測定された基板WTの接合面WTfとチップCPの接合面CPfとの間の距離に基づいて、基板WTの接合面WTfとチップCPとの間の距離とチップCPの基板WTの接合面WTfに対する傾きとの少なくとも一方を調整してもよい。 In the second embodiment, the bonding device 2030 measures the distance between the bonding surface WTf of the substrate WT and the bonding surface CPf of the chip CP at three or more locations on the bonding surface (flat surface) CPf of the chip CP. It may also include a distance measuring section (not shown). The distance measuring section includes, for example, laser light sources (not shown) disposed at a plurality of locations on the side of the head 33H, and a light receiving section (not shown) that receives laser light emitted from each of the plurality of laser light sources and reflected by the substrate WT. ). Then, the head driving section 2036 may move the head 2033H holding the chip CP closer to the stage unit 2031 holding the substrate WT based on the distance measured by the distance measuring section. Furthermore, the three piezo actuators 2333 operate between the bonding surface WTf of the substrate WT and the chip CP based on the distance between the bonding surface WTf of the substrate WT and the bonding surface CPf of the chip CP measured by the distance measuring section. At least one of the distance and the inclination of the chip CP with respect to the bonding surface WTf of the substrate WT may be adjusted.
 実施の形態2では、チップCPのアライメントマークMC1a、MC1bが接合面CPf側に設けられている例について説明したが、これに限らず、例えばアライメントマークMC1a、MC1bがチップCPにおける接合面CPf側とは反対側の面に設けられていてもよい。 In the second embodiment, an example has been described in which the alignment marks MC1a and MC1b of the chip CP are provided on the bonding surface CPf side, but the invention is not limited to this. may be provided on the opposite surface.
 実施の形態2では、ヘッド2033Hを鉛直方向に直交する方向へ移動させずに、ステージ2315を鉛直方向に直交する方向へ移動させる例について説明したが、これに限定されるものではなく、ヘッド2033Hを鉛直方向に直交する方向へ移動させ、ステージ2315を鉛直方向に直交する方向へ移動させない構成であってもよい。或いは、ヘッド2033Hおよびステージ2315のそれぞれが、鉛直方向に直交する方向へ移動する構成であってもよい。 In the second embodiment, an example has been described in which the stage 2315 is moved in a direction perpendicular to the vertical direction without moving the head 2033H in a direction perpendicular to the vertical direction, but the present invention is not limited to this. The stage 2315 may be moved in a direction orthogonal to the vertical direction, but the stage 2315 may not be moved in a direction orthogonal to the vertical direction. Alternatively, each of the head 2033H and the stage 2315 may be configured to move in a direction perpendicular to the vertical direction.
 実施の形態2では、基板WTのアライメントマークMC2a、MC2bの形状が円形である場合について説明したが、基板WTのアライメントマークMC2a、MC2bの形状は円形に限定されるものではなく、例えば矩形状、三角形状等の他の形状であってもよい。基板WTのアライメントマークMC2a、MC2bの形状が、円形でない場合、1つのアライメントマークMC2a、MC2bでXY方向と回転方向の成分を認識することができる。この場合、例えば基板WTの1つのアライメントマークとチップCPの1つのアライメントマークとを同時に撮像することにより位置ずれ量を算出するようにしてもよい。 In the second embodiment, a case has been described in which the alignment marks MC2a and MC2b of the substrate WT have a circular shape, but the shape of the alignment marks MC2a and MC2b of the substrate WT is not limited to a circular shape, and may be, for example, a rectangular shape, Other shapes such as a triangular shape may also be used. When the shapes of the alignment marks MC2a, MC2b on the substrate WT are not circular, components in the XY direction and the rotational direction can be recognized with one alignment mark MC2a, MC2b. In this case, for example, the amount of positional deviation may be calculated by simultaneously capturing images of one alignment mark on the substrate WT and one alignment mark on the chip CP.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the embodiments described above are for explaining the present invention, and do not limit the scope of the present invention. In other words, the scope of the present invention is indicated by the claims rather than the embodiments. Various modifications made within the scope of the claims and the meaning of the invention equivalent thereto are considered to be within the scope of the present invention.
 本出願は、2022年7月21日に出願された日本国特許出願特願2022-116044号に基づく。本明細書中に日本国特許出願特願2022-116044号の明細書、特許請求の範囲および図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2022-116044 filed on July 21, 2022. The entire specification, claims, and drawings of Japanese Patent Application No. 2022-116044 are incorporated herein by reference.
 本発明は、例えばCMOSイメージセンサやメモリ、演算素子、MEMSの製造に好適である。 The present invention is suitable for manufacturing, for example, CMOS image sensors, memories, arithmetic elements, and MEMS.
1,2030:接合装置、2:チップ接合システム、9、2009:制御部、41,2041,2042:架台、120:チャンバ、120a:窓部、121a:真空ポンプ、121b:排気管、121c:排気弁、401,2315:ステージ、401a:上面、401b,402b,2411a,2411b,3411b,3411c,2114a:貫通孔、402,2033H,3033H,4033H:ヘッド、402a:下面、403,2320:ステージ駆動部、404、2036:ヘッド駆動部、405:XY方向駆動部、406:昇降駆動部、407:回転駆動部、408,412:圧力センサ、411,2333:ピエゾアクチュエータ、431,432,3431:押圧機構、431a,432a,3431a:押圧部、431b,432b,3431b:押圧駆動部、431c,432c:ストッパ、441,442:静電チャック、481,482:基板加熱部、490:距離測定部、500:撮像ユニット、501,502,2035a、2035b:撮像部、504,505,2337:ミラー、2010:チップ供給装置、2011:チップ供給部、2015:供給チップ撮像部、2031:ステージユニット、2033:ボンディング部、2034:Z方向駆動部、2037:θ方向駆動部、2038:リニアガイド、2039:チップ搬送装置、2041:撮像部、2111:ピックアップ機構、2111a:ニードル、2112:シート保持枠、2113:保持枠駆動部、2114:カバー、2119:枠保持部、2301:固定部材、2302:ベース部材、2311:X方向移動部、2312,2314,2316:開口部、2313:Y方向移動部、2321:X方向駆動部、2323:Y方向駆動部、2331:Z軸方向移動部材、2332:第1円盤部材、2334:第2円盤部材、2334a、2334b:孔部、2336:ミラー固定用部材、2337a,2337b:傾斜面、2351a,2351b,2418:イメージセンサ、2352a,2352b,2419:光学系、2361:回動部材、2363:カメラZ方向駆動部、2365:カメラF方向駆動部、2391:プレート、2392:プレート駆動部、2393:チップ保持部、2394:アーム、2395:アーム駆動部、2411,3411,4411:チップツール、2413,3413:ヘッド本体部、2415,2416:中空部、2432a,3432a:チップ支持部、2432b,2512,3432b:支持部駆動部、CP:チップ、CPf:接合面、Ga,Gb:撮影画像、TE:シート、MC1a,MC1b,MC2a,MC2b,MK1a,MK1b,MK2a,MK2b:アライメントマーク、W1,W2,WT:基板、W1c,W2c:中央部、W1s,W2s:周部、WTf:接合面 1,2030: Bonding device, 2: Chip bonding system, 9, 2009: Control unit, 41, 2041, 2042: Frame, 120: Chamber, 120a: Window section, 121a: Vacuum pump, 121b: Exhaust pipe, 121c: Exhaust Valve, 401, 2315: Stage, 401a: Top surface, 401b, 402b, 2411a, 2411b, 3411b, 3411c, 2114a: Through hole, 402, 2033H, 3033H, 4033H: Head, 402a: Bottom surface, 403, 2320: Stage drive unit , 404, 2036: Head drive unit, 405: XY direction drive unit, 406: Lifting drive unit, 407: Rotation drive unit, 408, 412: Pressure sensor, 411, 2333: Piezo actuator, 431, 432, 3431: Pressing mechanism , 431a, 432a, 3431a: Pressing section, 431b, 432b, 3431b: Pressing drive section, 431c, 432c: Stopper, 441, 442: Electrostatic chuck, 481, 482: Substrate heating section, 490: Distance measuring section, 500: Imaging unit, 501, 502, 2035a, 2035b: Imaging section, 504, 505, 2337: Mirror, 2010: Chip supply device, 2011: Chip supply section, 2015: Supply chip imaging section, 2031: Stage unit, 2033: Bonding section , 2034: Z direction drive section, 2037: θ direction drive section, 2038: Linear guide, 2039: Chip transport device, 2041: Image pickup section, 2111: Pick up mechanism, 2111a: Needle, 2112: Sheet holding frame, 2113: Holding frame Drive section, 2114: Cover, 2119: Frame holding section, 2301: Fixed member, 2302: Base member, 2311: X direction moving section, 2312, 2314, 2316: Opening section, 2313: Y direction moving section, 2321: X direction Drive unit, 2323: Y direction drive unit, 2331: Z-axis direction moving member, 2332: First disc member, 2334: Second disc member, 2334a, 2334b: Hole, 2336: Mirror fixing member, 2337a, 2337b: Inclined surface, 2351a, 2351b, 2418: Image sensor, 2352a, 2352b, 2419: Optical system, 2361: Rotating member, 2363: Camera Z direction drive section, 2365: Camera F direction drive section, 2391: Plate, 2392: Plate Drive part, 2393: Chip holding part, 2394: Arm, 2395: Arm driving part, 2411, 3411, 4411: Chip tool, 2413, 3413: Head body part, 2415, 2416: Hollow part, 2432a, 3432a: Chip support part , 2432b, 2512, 3432b: Support drive unit, CP: Chip, CPf: Joint surface, Ga, Gb: Photographed image, TE: Sheet, MC1a, MC1b, MC2a, MC2b, MK1a, MK1b, MK2a, MK2b: Alignment mark , W1, W2, WT: substrate, W1c, W2c: central part, W1s, W2s: peripheral part, WTf: bonding surface

Claims (16)

  1.  第1被接合物と前記第1被接合物に対して相対的に振動している第2被接合物とを接合する接合方法であって、
     前記第2被接合物の前記第1被接合物に対する位置ずれ量の時間推移から前記第2被接合物の前記第1被接合物に対する振動の振動波形を特定する振動波形特定工程と、
     前記振動波形に基づいて、前記第2被接合物の前記第1被接合物に対する位置ずれ量が目標量となる目標タイミングを推定するタイミング推定工程と、
     推定された前記目標タイミングに基づいて、前記第2被接合物を前記第1被接合物に接触させる接触工程と、を含む、
     接合方法。
    A joining method for joining a first workpiece and a second workpiece vibrating relative to the first workpiece, the method comprising:
    a vibration waveform identification step of identifying a vibration waveform of vibration of the second workpiece relative to the first workpiece based on a time course of a positional shift amount of the second workpiece relative to the first workpiece;
    a timing estimation step of estimating a target timing at which a positional deviation amount of the second workpiece relative to the first workpiece becomes a target amount based on the vibration waveform;
    a contacting step of bringing the second workpiece into contact with the first workpiece based on the estimated target timing;
    Joining method.
  2.  前記第2被接合物の前記第1被接合物に対する位置ずれ量を繰り返し測定する位置ずれ量計測工程と、
     前記位置ずれ量に基づいて、前記第2被接合物の前記第1被接合物に対する位置を補正するために前記第2被接合物を前記第1被接合物に対して相対的に移動させる補正移動工程と、を更に含む、
     請求項1に記載の接合方法。
    a positional deviation amount measuring step of repeatedly measuring the positional deviation amount of the second object to be welded with respect to the first object to be welded;
    Correction of moving the second workpiece relative to the first workpiece to correct the position of the second workpiece relative to the first workpiece based on the positional deviation amount. further comprising a moving step;
    The joining method according to claim 1.
  3.  前記第2被接合物の前記第1被接合物に対する位置ずれ量を繰り返し測定する位置ずれ量計測工程および/または前記振動波形特定工程では、前記第2被接合物の前記第1被接合物に対する振動周期よりも短い時間間隔で前記位置ずれ量を繰り返し計測する、
     請求項1または2に記載の接合方法。
    In the positional deviation measurement step and/or the vibration waveform identification step of repeatedly measuring the amount of positional deviation of the second workpiece relative to the first workpiece, repeatedly measuring the amount of positional deviation at time intervals shorter than the vibration period;
    The joining method according to claim 1 or 2.
  4.  前記接触工程において、前記位置ずれ量が前記目標量となるタイミングよりも、前記第1被接合物と前記第2被接合物とが離間した状態から前記第1被接合物を前記第2被接合物に接触した状態にするために必要な必要時間だけ前の時点において、前記第1被接合物と前記第2被接合物とを接触させるための動作を開始する、
     請求項1または2に記載の接合方法。
    In the contact step, the first object to be welded is moved from the second object to be welded from a state where the first object to be welded and the second object to be welded are separated from each other at a timing when the amount of positional deviation reaches the target amount. Starting an operation for bringing the first object to be welded and the second object into contact at a time point necessary for bringing the object into contact with the object,
    The joining method according to claim 1 or 2.
  5.  前記第1被接合物は、基板であり、
     前記接触工程において、前記第1被接合物の前記第2被接合物との接合面の中央部が周部に比べて前記第2被接合物側に突出するように前記第1被接合物を撓ませた状態で、前記第1被接合物の接合面の中央部を前記第2被接合物の前記第1被接合物との接合面に接触させる、
     請求項1または2に記載の接合方法。
    The first object to be bonded is a substrate,
    In the contacting step, the first object to be welded is moved such that the center portion of the joint surface of the first object to be welded with the second object protrudes toward the second object compared to the peripheral portion. Bringing the center part of the joint surface of the first object to be joined to the joint surface of the second object to be joined with the first object to be joined in a bent state;
    The joining method according to claim 1 or 2.
  6.  前記第1被接合物は、少なくとも1つの第1アライメントマークを有し、
     前記第2被接合物は、少なくとも1つの第2アライメントマークを有し、
     前記第2被接合物の前記第1被接合物に対する位置ずれ量を繰り返し測定する位置ずれ量計測工程において、撮像部により1つの視野内で同時に撮像された前記第1アライメントマークの画像と前記第2アライメントマークの画像とから、前記第1アライメントマークの前記第2アライメントマークに対する位置ずれ量を測定することを繰り返す、
     請求項1または2に記載の接合方法。
    The first object to be bonded has at least one first alignment mark,
    The second object to be joined has at least one second alignment mark,
    In the positional deviation amount measuring step of repeatedly measuring the amount of positional deviation of the second object to be bonded relative to the first object, an image of the first alignment mark and the first alignment mark, which are simultaneously imaged within one field of view by an imaging unit, are repeating measuring the amount of positional deviation of the first alignment mark with respect to the second alignment mark from the images of the second alignment mark;
    The joining method according to claim 1 or 2.
  7.  前記位置ずれ量計測工程、前記振動波形特定工程、前記タイミング推定工程および前記接触工程において、
     前記第1被接合物を保持する第1被接合物保持部および前記第2被接合物を保持する第2被接合物保持部が鉛直上方に配置されるトッププレートと、防振機構を有し前記トッププレートを鉛直上方において移動自在に支持するプレート支持部と、を用いて、前記トッププレートに伝達する振動を検出し、検出した前記振動に基づいて、前記トッププレートを前記プレート支持部に対して相対的に移動させる、
     請求項6に記載の接合方法。
    In the positional deviation amount measurement step, the vibration waveform identification step, the timing estimation step, and the contact step,
    A first workpiece holding part that holds the first workpiece and a second workpiece holding part that holds the second workpiece have a top plate disposed vertically above, and a vibration isolation mechanism. a plate supporter that movably supports the top plate vertically upward; detects vibrations transmitted to the top plate; and based on the detected vibrations, moves the top plate relative to the plate supporter; to move relatively,
    The joining method according to claim 6.
  8.  前記第1被接合物または前記第1被接合物を保持する第1被接合物保持部の複数部位における、前記第2被接合物または前記第2被接合物を保持する第2被接合物保持部における前記複数部位それぞれに対応する部位との間の距離を測定し、測定した距離に基づいて、前記第2被接合物の前記第1被接合物に対する姿勢を調整する姿勢調整工程を更に含む、
     請求項1または2に記載の接合方法。
    a second workpiece holding part that holds the second workpiece or the second workpiece at a plurality of parts of the first workpiece holding section that holds the first workpiece or the first workpiece; further comprising a posture adjustment step of measuring a distance between each of the plurality of portions in the part and a portion corresponding to each of the plurality of portions, and adjusting the posture of the second workpiece with respect to the first workpiece based on the measured distance. ,
    The joining method according to claim 1 or 2.
  9.  複数の第1アライメントマークが設けられた第1被接合物に、前記複数の第1アライメントマークに対応する複数の第2アライメントマークが設けられた第2被接合物を接合する接合方法であって、
     前記第2被接合物と、前記複数の第1アライメントマークと前記複数の第2アライメントマークとを撮像する撮像部と、の少なくとも一方は、前記第1被接合物に対して振動しており、
     前記第1被接合物を相対的に前記第2被接合物に近づけることにより、前記複数の第1アライメントマークと前記複数の第2アライメントマークとが前記撮像部の被写界深度の範囲内に収まる予め設定された第1距離だけ離間した状態で、前記第2被接合物における前記第1被接合物側とは反対側と前記第1被接合物における前記第2被接合物側とは反対側との少なくとも一方から撮像部により前記複数の第1アライメントマークと前記複数の第2アライメントマークとを同時に撮像し、撮像された前記複数の第1アライメントマークおよび前記複数の第2アライメントマークの撮影画像から前記第1被接合物と前記第2被接合物との相対的な位置ずれ量を計測する位置ずれ量計測工程と、
     前記位置ずれ量に基づいて、前記第2被接合物を前記第1被接合物に対して前記位置ずれ量が目標値となる方向へ相対的に移動させることにより前記第2被接合物の前記第1被接合物に対する相対的な位置を補正してから前記第2被接合物を前記第1被接合物に接触させて接合する接合工程と、を含む、
     接合方法。
    A joining method of joining a second workpiece provided with a plurality of second alignment marks corresponding to the plurality of first alignment marks to a first workpiece provided with a plurality of first alignment marks, the method comprising: ,
    At least one of the second object to be welded and an imaging unit that images the plurality of first alignment marks and the plurality of second alignment marks is vibrating with respect to the first object to be welded,
    By bringing the first object relatively close to the second object, the plurality of first alignment marks and the plurality of second alignment marks are within the depth of field of the imaging unit. a side of the second object to be welded opposite to the first object and a side of the first object to be welded opposite to the side of the second object; simultaneously capturing images of the plurality of first alignment marks and the plurality of second alignment marks from at least one side thereof, and photographing the plurality of imaged first alignment marks and the plurality of second alignment marks; a positional deviation amount measuring step of measuring a relative positional deviation amount between the first object to be welded and the second object to be welded from the image;
    Based on the positional deviation amount, the second workpiece is moved relative to the first workpiece in a direction in which the positional deviation amount reaches a target value. a welding step of correcting the relative position with respect to the first object and then bringing the second object into contact with the first object and joining the second object,
    Joining method.
  10.  前記第1被接合物は、前記第2被接合物に対して、10Hz以下または振幅が10μm以下の振動成分を含む振動波形で振動している、
     請求項1、2、9のいずれか1項に記載の接合方法。
    The first object to be welded vibrates with a vibration waveform including a vibration component having a frequency of 10 Hz or less or an amplitude of 10 μm or less with respect to the second object to be welded.
    The joining method according to any one of claims 1, 2, and 9.
  11.  複数の第1アライメントマークが設けられた第1被接合物に、前記複数の第1アライメントマークに対応する複数の第2アライメントマークが設けられた第2被接合物を接合する接合方法であって、
     前記第2被接合物と、前記複数の第1アライメントマークと前記複数の第2アライメントマークとを撮像する撮像部と、の少なくとも一方は、前記第1被接合物に対して振動しており、
     前記複数の第1アライメントマークと前記複数の第2アライメントマークとを撮像する撮像部を、光軸が鉛直方向と直交する姿勢で配置した状態で、前記撮像部に前記複数の第1アライメントマークと前記複数の第2アライメントマークから鉛直方向へ進行する光を鉛直方向と直交する方向へ変換する光路変換部材を介して受光させることにより前記撮像部で前記複数の第1アライメントマークと前記複数の第2アライメントマークとを撮像し、撮像された前記複数の第1アライメントマークおよび前記複数の第2アライメントマークの撮影画像から前記第1被接合物と前記第2被接合物との相対的な位置ずれ量を計測する位置ずれ量計測工程と、
     前記位置ずれ量に基づいて、前記第2被接合物を前記第1被接合物に対して前記位置ずれ量が小さくなる方向へ相対的に移動させることにより前記第2被接合物の前記第1被接合物に対する相対的な位置を補正する位置ずれ量を補正してから前記第2被接合物を前記第1被接合物に接触させて接合する接合工程と、を含む、
     接合方法。
    A joining method of joining a second workpiece provided with a plurality of second alignment marks corresponding to the plurality of first alignment marks to a first workpiece provided with a plurality of first alignment marks, the method comprising: ,
    At least one of the second object to be welded and an imaging unit that images the plurality of first alignment marks and the plurality of second alignment marks is vibrating with respect to the first object to be welded,
    An imaging unit that captures images of the plurality of first alignment marks and the plurality of second alignment marks is placed in a posture in which the optical axis is perpendicular to the vertical direction, and the plurality of first alignment marks and the plurality of second alignment marks are arranged on the imaging unit. The imaging unit detects the plurality of first alignment marks and the plurality of first alignment marks by receiving the light traveling in the vertical direction from the plurality of second alignment marks through an optical path conversion member that converts the light into a direction perpendicular to the vertical direction. 2 alignment marks, and from the photographed images of the plurality of first alignment marks and the plurality of second alignment marks, a relative positional shift between the first object to be welded and the second object to be welded. a positional deviation measurement step for measuring the amount;
    Based on the amount of positional deviation, the second object to be joined is moved relative to the first object in a direction in which the amount of positional deviation becomes smaller. a bonding step of correcting a positional deviation amount for correcting a relative position with respect to the object to be bonded, and then bringing the second object to be bonded into contact with the first object to be bonded;
    Joining method.
  12.  第1被接合物と第2被接合物とを接合する接合装置であって、
     前記第1被接合物を保持する第1被接合物保持部と、
     前記第1被接合物保持部に対して振動しており且つ前記第2被接合物を保持する第2被接合物保持部と、
     前記第1被接合物保持部と前記第2被接合物保持部との少なくとも一方を、前記第1被接合物保持部と前記第2被接合物保持部とが互いに近づく第1方向または前記第1被接合物保持部と前記第2被接合物保持部とが離れる第2方向へ移動させる保持部駆動部と、
     前記第1被接合物と前記第2被接合物とが離間した状態で、予め設定された時間間隔で、前記第1方向および前記第2方向に直交する方向における、前記第1被接合物の前記第2被接合物に対する位置ずれ量を繰り返し計測し、前記位置ずれ量の時間推移から前記第2被接合物の前記第1被接合物に対する振動の振動波形を特定し、前記振動波形に基づいて、前記第2被接合物の前記第1被接合物に対する位置ずれ量が目標量となる目標タイミングを推定し、推定した前記目標タイミングに基づいて、前記第1被接合物保持部と前記第2被接合物保持部との少なくとも一方を、前記第1方向へ移動させて前記第2被接合物を前記第1被接合物に接触させるように前記保持部駆動部を制御する制御部と、を備える、
     接合装置。
    A welding device for joining a first object to be welded and a second object to be welded,
    a first object holding part that holds the first object to be bonded;
    a second workpiece holding part that vibrates with respect to the first workpiece holding part and holds the second workpiece;
    At least one of the first workpiece holding part and the second workpiece holding part is moved in the first direction in which the first workpiece holding part and the second workpiece holding part approach each other, or in the first direction. a holding part drive unit that moves the first workpiece holding part and the second workpiece holding part in a second direction where they are separated;
    In a state where the first object to be welded and the second object to be welded are separated, the first object to be welded is moved in a direction orthogonal to the first direction and the second direction at a preset time interval. The amount of positional deviation with respect to the second object to be welded is repeatedly measured, the vibration waveform of the vibration of the second object to be welded relative to the first object is determined from the time course of the amount of positional deviation, and the vibration waveform is determined based on the vibration waveform. Then, the target timing at which the amount of positional deviation of the second workpiece with respect to the first workpiece becomes the target amount is estimated, and based on the estimated target timing, the first workpiece holding part and the first workpiece a control unit that controls the holding unit drive unit to move at least one of the second workpiece holding unit in the first direction to bring the second workpiece into contact with the first workpiece; Equipped with
    Bonding equipment.
  13.  前記第1被接合物を保持する第1被接合物保持部および前記第2被接合物を保持する第2被接合物保持部が鉛直上方に配置されるトッププレートと、
     防振機構を有し、鉛直上方において前記トッププレートを移動自在に支持するプレート支持部と、
     前記トッププレートに伝達する振動を検出する振動検出部と、
     前記トッププレートを前記プレート支持部に対して相対的に移動させるプレート駆動部と、
     前記振動検出部により検出される前記振動に基づいて、前記振動を相殺するように前記トッププレートを移動させるよう前記プレート駆動部を制御する除振制御ユニットと、を有する、
     請求項12に記載の接合装置。
    a top plate in which a first workpiece holding part that holds the first workpiece and a second workpiece holding part that holds the second workpiece are arranged vertically above;
    a plate support part having a vibration isolation mechanism and movably supporting the top plate vertically upward;
    a vibration detection unit that detects vibrations transmitted to the top plate;
    a plate drive unit that moves the top plate relative to the plate support unit;
    a vibration isolation control unit that controls the plate drive unit to move the top plate so as to cancel out the vibration based on the vibration detected by the vibration detection unit;
    The joining device according to claim 12.
  14.  前記第1被接合物を保持する第1被接合物保持部の複数部位における、前記第2被接合物を保持する第2被接合物保持部における前記複数部位それぞれに対応する部位との間の距離を測定する距離測定部と、
     前記距離測定部により測定された距離に基づいて、前記第2被接合物の前記第1被接合物に対する姿勢を調整する姿勢調整部と、を更に備える、
     請求項12または13に記載の接合装置。
    between the plurality of parts of the first workpiece holding part that holds the first workpiece and the parts corresponding to each of the plurality of parts of the second workpiece holding part that holds the second workpiece; a distance measuring section that measures distance;
    further comprising: an attitude adjustment unit that adjusts the attitude of the second object to be welded relative to the first object based on the distance measured by the distance measurement unit;
    The joining device according to claim 12 or 13.
  15.  複数の第1アライメントマークが設けられた第1被接合物に、前記複数の第1アライメントマークに対応する複数の第2アライメントマークが設けられた第2被接合物を接合する接合装置であって、
     前記第1被接合物を保持する第1被接合物保持部と、
     前記第1被接合物保持部に対して振動しており且つ前記第2被接合物を保持する第2被接合物保持部と、
     前記第1被接合物保持部と前記第2被接合物保持部との少なくとも一方を、前記第1被接合物保持部と前記第2被接合物保持部とが互いに近づく第1方向または前記第1被接合物保持部と前記第2被接合物保持部とが離れる第2方向へ移動させる保持部駆動部と、
     1つの第1アライメントマークと1つの第2アライメントマークとからなる複数の組それぞれについて1つずつ設けられ、それぞれ、1つの第1アライメントマークと1つの第2アライメントマークからなる組を撮像する複数の撮像部と、
     前記複数の第1アライメントマークと前記複数の第2アライメントマークとが前記撮像部の被写界深度の範囲内に収まる予め設定された第1距離だけ離間し且つ複数の前記撮像部が、それぞれ、1つの第1アライメントマークと1つの第2アライメントマークとからなる組を撮像できる位置それぞれに配置された状態で、複数の前記撮像部それぞれが、同じタイミングで、対応する前記1つの第1アライメントマークと1つの第2アライメントマークとからなる組を1回の画像取り込みで同時に撮像し、複数の前記撮像部により撮像された前記複数の第1アライメントマークおよび前記複数の第2アライメントマークの撮影画像から前記第1被接合物と前記第2被接合物との相対的な位置ずれ量を計測し、前記位置ずれ量に基づいて、前記第2被接合物を前記第1被接合物に対して前記位置ずれ量が目標値となる方向へ相対的に移動させることにより前記第2被接合物の前記第1被接合物に対する相対的な位置を補正する位置ずれ量を補正してから、前記第1被接合物保持部と前記第2被接合物保持部との少なくとも一方を前記第1方向へ移動させることにより、前記第2被接合物を前記第1被接合物に接触させて接合するように前記保持部駆動部を制御する制御部と、を備える、
     接合装置。
    A bonding device for bonding a second object having a plurality of second alignment marks corresponding to the plurality of first alignment marks to a first object having a plurality of first alignment marks. ,
    a first object holding part that holds the first object to be bonded;
    a second workpiece holding part that vibrates with respect to the first workpiece holding part and holds the second workpiece;
    At least one of the first workpiece holding part and the second workpiece holding part is moved in the first direction in which the first workpiece holding part and the second workpiece holding part approach each other, or in the first direction. a holding part drive unit that moves the first workpiece holding part and the second workpiece holding part in a second direction where they are separated;
    One for each of a plurality of sets each consisting of one first alignment mark and one second alignment mark, each of which images a plurality of sets each consisting of one first alignment mark and one second alignment mark. an imaging unit;
    The plurality of first alignment marks and the plurality of second alignment marks are spaced apart by a preset first distance that falls within the depth of field of the imaging unit, and the plurality of imaging units each include: Each of the plurality of imaging units is arranged at a position where a set of one first alignment mark and one second alignment mark can be imaged, and each of the plurality of imaging units captures the corresponding one first alignment mark at the same timing. and one second alignment mark are simultaneously imaged in one image capture, and from the captured images of the plurality of first alignment marks and the plurality of second alignment marks imaged by the plurality of imaging units. A relative displacement amount between the first object to be welded and the second object to be welded is measured, and based on the amount of positional deviation, the second object to be welded is adjusted to the first object to be welded. After correcting the relative position of the second object to be welded with respect to the first object by relatively moving it in a direction in which the amount of positional deviation becomes the target value, By moving at least one of the object holding part and the second object holding part in the first direction, the second object to be joined is brought into contact with the first object to be joined. a control unit that controls the holding unit drive unit;
    Bonding equipment.
  16.  前記第1被接合物は、前記第2被接合物に対して、10Hz以下または振幅が10μm以下の振動成分を含む振動波形で振動している、
     請求項12、13または15に記載の接合装置。
    The first object to be welded vibrates with a vibration waveform including a vibration component having a frequency of 10 Hz or less or an amplitude of 10 μm or less with respect to the second object to be welded.
    The joining device according to claim 12, 13 or 15.
PCT/JP2023/025386 2022-07-21 2023-07-10 Joining method and joining apparatus WO2024018937A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-116044 2022-07-21
JP2022116044 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024018937A1 true WO2024018937A1 (en) 2024-01-25

Family

ID=89617912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025386 WO2024018937A1 (en) 2022-07-21 2023-07-10 Joining method and joining apparatus

Country Status (1)

Country Link
WO (1) WO2024018937A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059765A (en) * 2010-09-06 2012-03-22 Hitachi High-Tech Instruments Co Ltd Die bonder and die bonding method
JP2013074030A (en) * 2011-09-27 2013-04-22 Sony Corp Mounting apparatus, electronic component mounting method, substrate production method, and program
JP2013206906A (en) * 2012-03-27 2013-10-07 Sony Corp Recognition device, recognition method, program, and manufacturing method of substrate
WO2014064944A1 (en) * 2012-10-26 2014-05-01 株式会社ニコン Substrate bonding apparatus, aligning apparatus, substrate bonding method, aligning method, and laminated semiconductor device manufacturing method
JP2017162919A (en) * 2016-03-08 2017-09-14 ボンドテック株式会社 Alignment device
JP2017168693A (en) * 2016-03-17 2017-09-21 ファスフォードテクノロジ株式会社 Die bonder and bonding method
JP2017224781A (en) * 2016-06-17 2017-12-21 ヤマハ発動機株式会社 Substrate work device
JP2018056507A (en) * 2016-09-30 2018-04-05 ボンドテック株式会社 Substrate joining method and substrate joining device
JP2018056481A (en) * 2016-09-30 2018-04-05 ボンドテック株式会社 Alignment device and alignment method
WO2020044580A1 (en) * 2018-08-31 2020-03-05 ボンドテック株式会社 Component mounting system and component mounting method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059765A (en) * 2010-09-06 2012-03-22 Hitachi High-Tech Instruments Co Ltd Die bonder and die bonding method
JP2013074030A (en) * 2011-09-27 2013-04-22 Sony Corp Mounting apparatus, electronic component mounting method, substrate production method, and program
JP2013206906A (en) * 2012-03-27 2013-10-07 Sony Corp Recognition device, recognition method, program, and manufacturing method of substrate
WO2014064944A1 (en) * 2012-10-26 2014-05-01 株式会社ニコン Substrate bonding apparatus, aligning apparatus, substrate bonding method, aligning method, and laminated semiconductor device manufacturing method
JP2017162919A (en) * 2016-03-08 2017-09-14 ボンドテック株式会社 Alignment device
JP2017168693A (en) * 2016-03-17 2017-09-21 ファスフォードテクノロジ株式会社 Die bonder and bonding method
JP2017224781A (en) * 2016-06-17 2017-12-21 ヤマハ発動機株式会社 Substrate work device
JP2018056507A (en) * 2016-09-30 2018-04-05 ボンドテック株式会社 Substrate joining method and substrate joining device
JP2018056481A (en) * 2016-09-30 2018-04-05 ボンドテック株式会社 Alignment device and alignment method
WO2020044580A1 (en) * 2018-08-31 2020-03-05 ボンドテック株式会社 Component mounting system and component mounting method

Similar Documents

Publication Publication Date Title
JP7420185B2 (en) Board bonding equipment and board bonding method
JP6991614B2 (en) Component mounting system and component mounting method
JP7066559B2 (en) Joining device and joining method
JP3790995B2 (en) JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, AND JOINING DEVICE
US20160084638A1 (en) Pressure application apparatus and pressure application method
JP4686377B2 (en) Joining method and joining apparatus
WO2021131080A1 (en) Joining method, item to be joined, and joining device
JP2018056507A (en) Substrate joining method and substrate joining device
KR102478503B1 (en) Bonding method and bonding device
EP3062333B1 (en) Normal temperature bonding device
JP6120286B2 (en) Joining apparatus and joining method
JP5943030B2 (en) Substrate overlay apparatus, substrate overlay method, and device manufacturing method
WO2024018937A1 (en) Joining method and joining apparatus
JP2005142537A (en) Longitudinal vibration bonding method and device
JP5531508B2 (en) Substrate overlay apparatus, substrate overlay method, and device manufacturing method
JP4681241B2 (en) Alignment method, joining method and joining apparatus using this method
TW202422641A (en) Bonding method and bonding device
TWI844618B (en) Joining method, joined object, and joining device
JP7495151B2 (en) Alignment apparatus and alignment method
JP2011170297A (en) Microscope, substrate sticking device, method for manufacturing laminated semiconductor device, and the laminated semiconductor device
JP2013102222A (en) Substrate bonding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842862

Country of ref document: EP

Kind code of ref document: A1