WO2024018749A1 - Device - Google Patents

Device Download PDF

Info

Publication number
WO2024018749A1
WO2024018749A1 PCT/JP2023/019341 JP2023019341W WO2024018749A1 WO 2024018749 A1 WO2024018749 A1 WO 2024018749A1 JP 2023019341 W JP2023019341 W JP 2023019341W WO 2024018749 A1 WO2024018749 A1 WO 2024018749A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
electrode
electrodes
voltage
pair
Prior art date
Application number
PCT/JP2023/019341
Other languages
French (fr)
Japanese (ja)
Inventor
勇 孫
Original Assignee
国立大学法人 九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 九州工業大学 filed Critical 国立大学法人 九州工業大学
Publication of WO2024018749A1 publication Critical patent/WO2024018749A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions

Definitions

  • the present invention relates to devices capable of having a negative dielectric constant.
  • a negative dielectric constant means, in terms of a capacitor, that an increase in the voltage between a pair of electrodes causes the accumulated charge to decrease, and a decrease in the voltage between the pair of electrodes causes an increase in the accumulated charge. means.
  • phase angle exists between current and voltage.
  • the phase angle is generally adjusted using a capacitor and a coil.
  • a device that combines a capacitor and a coil appears, it will be possible to reduce the power consumption and make the phase adjustment device more compact.
  • the threshold voltage of diodes is approximately 0.6 to 0.7 V, and diodes and transistors do not function at voltages below the threshold voltage. Therefore, the threshold voltage of the diode has a significant impact on the efficiency of the integrated circuit.
  • the positive parasitic capacitance can be canceled out and the threshold voltage can be lowered.
  • the frequency characteristics of the entire circuit can be improved, and the range of frequencies used, ie, the cutoff frequency, can be improved.
  • JP2017-117988A Japanese Patent Application Publication No. 2012-160748
  • an object of the present invention is to provide a device that can have a negative dielectric constant.
  • a device in accordance with the above object includes a pair of electrodes and a conductor disposed between the pair of electrodes, and the conductor is energized to conduct one of the pair of electrodes.
  • a tunnel current is generated between one or both of the two.
  • the device according to the present invention includes a pair of electrodes and a conductor disposed between the pair of electrodes, and the conductor is energized to connect with one or both of the pair of electrodes. Since a tunnel current is generated between the two, it is possible to make the dielectric constant negative.
  • FIG. 1 is an explanatory diagram of a device according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing the relationship between the current value between electrodes and the frequency of alternating current.
  • FIG. 2 is an explanatory diagram showing the relationship between the voltage between electrodes and the DC bias and AC voltage.
  • FIG. 3 is an explanatory diagram showing the results of measuring the capacitance of a device while changing the magnitude of DC bias.
  • FIG. 2 is an explanatory diagram showing the results of measuring the capacitance of a device by changing the amplitude of the applied alternating current voltage.
  • FIG. 3 is an explanatory diagram showing the results of measuring the capacitance of the device by changing the position of the conductor relative to the electrode.
  • FIG. 1 is an explanatory diagram of a device according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing the relationship between the current value between electrodes and the frequency of alternating current.
  • FIG. 2 is an explanatory diagram showing the relationship between the
  • FIG. 2 is an explanatory diagram of a call-call plot created based on experimentally measured values.
  • (A) to (F) are explanatory diagrams each showing a modified example of the device.
  • (A) to (H) are explanatory diagrams each showing a modified example of the device.
  • (A) to (C) are explanatory diagrams each showing an example of an electric circuit having a terminal unit.
  • FIG. 3 is an explanatory diagram showing an example of mounting a terminal unit.
  • a device 10 according to an embodiment of the present invention includes a pair of electrodes 11 and 12 and a conductor 13 disposed between the pair of electrodes 11 and 12. 13 is energized and a tunnel current is generated between it and the electrode 12.
  • the electrodes 11 and 12 each employ a disk made of gold (Au) as a main material.
  • Au gold
  • the electrodes 11 and 12 may be of any general type, and the main material may not be gold, and the shape may not be disc-shaped. While the electrode 11 is fixed to the conductor 13 (in this example, bonded by crimping), the electrode 12 is partially in contact with the conductor 13 but is not fixed to the conductor 13. It has not been.
  • the electrode 11 having two surfaces only one surface is in full contact with the conductor 13, and in the electrode 12 having two surfaces, only one surface is in partial contact with the conductor 13. .
  • the surface of the electrode 11 that is in close contact with the conductor 13 and the surface of the electrode 12 that is partially in contact with the conductor 13 have flatness at the level of optical polishing. There is.
  • the conductor 13 is formed by pressurizing a nanocarbon material having crystal grains on the order of nanometers. That is, an aggregate of nanocarbon material is used for the conductor 13.
  • the conductor 13 has a cylindrical shape and has two circular bottom surfaces facing each other, one of which is joined to the electrode 11 and the other bottom surface is partially in contact with the electrode 12. It goes without saying that the shape of the conductor 13 is not limited to a cylindrical shape.
  • nanocarbon materials include nanographene oxide and carbon nanotubes.
  • the conductor 13 only needs to be one that generates a tunnel current, and does not need to be formed with carbon (carbon as the main raw material). Furthermore, when the conductor 13 is formed using carbon, the conductor 13 does not need to be an aggregate of nanocarbon materials.
  • a conductor can be formed using metal as a main raw material.
  • metal As the main raw material, a conductor is made of multiple needle-like metals arranged in parallel, one end of each needle-like metal is fixed to one electrode, and some of the needle-like metals are attached to the other end. It is conceivable to have the end contact the other electrode and arrange the other end of the remaining needle-like metal near the other electrode.
  • gold Au
  • Au gold
  • the resistivity of the conductor 13 can be adjusted by changing the proportion of the oxygen functional group. For example, it has been confirmed that the electrical resistivity of the conductor 13 is approximately 5 ⁇ 10 4 ⁇ cm by forming the conductor 13 using nanographene oxide with an oxygen content of 20 atomic %.
  • the reason why the conductor 13 is an aggregate of nanocarbon materials having crystal grains on the order of nanometers is because, as shown in FIG. This is to ensure that a tunnel current It is stably generated between the electrode 12 and the conductor 13. Tunnel current It is likely to occur in protrusions that protrude toward the electrode 12 on the surface of the conductor 13 and are not in contact with the electrode 12 .
  • the protrusions include conical ones with a bottom diameter of 1 nm or more and 5 nm or less and a height of 0.5 nm or more and 3 nm, but the shape and size are not limited thereto.
  • the conduction current Ie generated at the part of the conductor 13 that is in contact with the electrode 12 receives the resistance of the conductor 13 and reaches the electrode 12, whereas the tunnel current It flows through the space without being subjected to the resistance of the conductor 13. Since the tunnel current It reaches the electrode 12 through the conduction current Ie, the time it takes the tunnel current It to reach the electrode 12 is shorter than the time it takes the conduction current Ie to reach the electrode 12. On the other hand, substantially no tunnel current It occurs between the electrode 11 and the conductor 13, and only a conduction current Ie occurs.
  • the device 10 can store charges using the tunnel current It generated between the conductor 13 and the electrode 12, and can function as a capacitor. Therefore, the device 10 can also be said to be an element having a capacitor function.
  • the device 10 further includes a direct current applying means 14 capable of applying a DC voltage with a variable voltage value (hereinafter also referred to as "DC bias") to the electrodes 11 and 12, and is equipped with an AC applying means 15 capable of applying a variable AC voltage.
  • the AC applying means 15 can also adjust the frequency of the AC voltage applied to the electrodes 11 and 12. Therefore, the AC applying means 15 can apply an AC voltage of variable frequency to the electrodes 11 and 12.
  • the voltage value of the DC bias applied to the electrodes 11 and 12 is V0
  • the value of the AC voltage applied to the electrodes 11 and 12 is Asin ⁇ t
  • the voltage V between the electrodes 11 and 12 is expressed by the following equation 1.
  • Equation 1 A means the amplitude of the AC voltage, and ⁇ means the angular frequency of the AC voltage.
  • the integral value of V during the period when V, which contributes to the capacitance (electrical capacitance) of the device 10 is a negative value and the amount of charge stored in the electrodes 11 and 12 are the value of V0, It can be adjusted by changing one or more of the value of A and the frequency ( ⁇ /2 ⁇ ).
  • electric charges can be stored in the electrodes 11 and 12 by applying a DC bias to the electrodes 11 and 12 by the DC applying means 14 .
  • the voltage value of the DC bias applied to the electrodes 11 and 12 by the DC application means 14 of the device 10 the voltage value of the AC voltage applied to the electrodes 11 and 12 by the AC application means 15, and the voltage value of the AC voltage applied to the electrodes 11 and 12,
  • the amount of charge stored in the electrodes 11, 12 and the capacity of the device 10 can be adjusted.
  • a position adjustment mechanism (not shown) that can change the position of the electrode 12 with respect to the conductor 13 is provided.
  • the amount of charge stored in the electrodes 11 and 12 and the capacity of the device 10 can also be adjusted by changing the position of the electrode 12 with respect to the conductor 13.
  • the sample device Since the sample device has a low resistance between the electrodes 11 and 12, for example, 100 ⁇ or less, it can be used for phase adjustment of a power distribution system. Further, by stopping the application of the DC bias to the electrodes 11 and 12, the device 10 enters a state where no charge exists on the electrodes 11 and 12. In other words, the device 10 has a volatile electric signal.
  • One electrode was crimped to the conductor, and the other electrode (hereinafter also referred to as "position variable electrode”) was not bonded to the conductor.
  • position variable electrode A device that can change the position of the variable-position electrode relative to the conductor was provided near the device. Note that in all experiments, the variable position electrode was in contact with the conductor. Therefore, changing the position of the position variable electrode with respect to the conductor means changing the contact area of the position variable electrode with respect to the conductor.
  • Electrode means the paired electrode
  • a DC bias was applied to the electrode.
  • the capacitance of the device was measured.
  • the voltage value of the DC bias applied to the electrode was changed to 0.1 V, 0.5 V, and 1.0 V, and the capacitance of the device was measured in each case.
  • the measurement results are shown in Figure 4.
  • the capacitance of the device changes in the region where the frequency of the AC voltage applied to the electrode is low, and the DC bias voltage value becomes 0.
  • the capacitance of the device changed significantly from a negative value to a positive value.
  • d1 to d4 are the measurement results of the capacitance of devices in which the positions of the variable position electrodes are different relative to the conductor, and the distance from the center of gravity of the variable position electrode to the center of gravity of the conductor is d1>d2>d3>d4. there were.
  • the measurement results confirmed that the capacitor capacity can be adjusted by changing the distance from the variable position electrode to the conductor.
  • ⁇ Cole-Cole Plot> The impedance of the device was measured while changing the frequency of the AC voltage applied to the electrodes, and the measured impedance was plotted on a complex plane to create a Cole-Cole plot. Cole-Cole plots were created by changing the distance of the variable position electrode to the conductor. The created Cole-Cole plot is shown in FIG. In FIG. 7, the larger the value of Pn, the shorter the distance from the center of gravity of the variable position electrode to the center of gravity of the conductor (for example, P1>P2>P3).
  • a device may be designed such that an electrical conductor is energized to create a tunneling current between the electrical conductor and one electrode and between the electrical conductor and the other electrode. Further, the device does not need to include either or both of the direct current applying means and the alternating current applying means. Even without having both a direct current applying means and an alternating current applying means, a negative capacitance device can be manufactured by adjusting the position of the electrode with respect to the conductor.
  • the AC applying means may not be able to adjust either or both of the amplitude of the AC voltage applied to the electrodes and the frequency of the AC voltage applied to the electrodes.
  • the amplitude and frequency of the AC voltage applied to the electrodes may be fixed, and even if the amplitude and frequency of the AC voltage applied to the electrodes are fixed, depending on the magnitude of the amplitude and frequency, a negative Capacity devices can be designed.
  • a direct current applying means it is possible to employ a direct current applying means in which the voltage value applied to the electrode is fixed, and depending on the magnitude of the voltage value, it is possible to make the device a negative capacitor.
  • electrodes 16 and 17 of different sizes may be used, or as shown in FIG. 8(B), electrodes 18 and 19 of different thickness may be used.
  • the difference in thickness between the electrodes 18 and 19 is preferably about 1.1 times or more and 5 times or less of the other. Note that in each modification shown in FIGS. 8A and 8B and each modification described below, the same components as the device 10 are given the same reference numerals, and detailed explanations are omitted.
  • one electrode 20 may be formed so as to partially contact a part of the side surface of the conductor 13 in addition to the bottom surface of the conductor 13.
  • the electrode 20 is in contact with the entire circumference of the bottom and side edges of the conductor 13 on the electrode 20 side.
  • the contact area between the electrode 20 and the conductor 13 becomes large, and it becomes possible to stably attach the electrode 20 to the conductor 13.
  • a pair of electrodes 21 and 22 are formed so as to partially contact the bottom and side surfaces of the conductor 13, so that the electrode 21 is connected to the conductor 13 and the electrode 22 is connected to the conductor 13. They may each be stably attachable to the body 13. Note that the electrode 21 is not in contact with the electrode 22. Further, either one of the electrodes 21 and 22 may be fixed to the conductor 13.
  • a protective member 23 covering the electrode 12 may be provided. It is preferable that the protective member 23 is provided so as to partially or entirely cover the side surface of the conductor 13. Since the electrode 12 is an important member that exhibits the tunnel effect, it is preferable to prevent the electrode 12 from being damaged or deformed by external pressure using the protective member 23.
  • the protective member 23 is formed of a conductor such as a metal (for example, aluminum, silver, tungsten, copper, or an alloy thereof), it can be designed to conduct electricity to the electrode 12 through the protective member 23.
  • the protective member 23 is formed of an insulating material such as resin or glass, a conducting wire or the like may be directly connected to the electrode 12 through a hole provided in the protective member 23.
  • the conductor 13 and the electrodes 11 and 12 may be covered with the protective member 24.
  • the protective member 24 can be formed of an insulating material that has weather resistance and durability, such as resin or glass. With this configuration, the conductor 13 and the electrodes 11 and 12 can be protected.
  • the electrodes 11 and 12 can be electrically connected to the outside. .
  • two terminal portions 25 and two terminal portions 26 are provided, but each of the terminal portions 25 and 26 may be one each, or there may be three or more of both. Good too. Furthermore, the number of terminal portions 25 and 26 may not be the same.
  • a conductor 27 that is not cylindrical may be adopted.
  • the conductor 27 is a truncated cone in which the area of the surface parallel to the bottom (upper surface, cross section) increases from the disk-shaped electrode 28 side to the disk-shaped electrode 29 side, and the electrode 29 is larger than the electrode 28. .
  • the electrode 33 may be smaller than one surface of the rectangular plate-shaped conductor 32, and the shape of the electrode 33 may also be star-shaped.
  • An annular electrode 34 as shown in FIG. 9(E), a striped electrode, or an electrode made of a plurality of metal pieces scattered in a striped pattern may be used.
  • FIGS. 9(F), (G), and (H) it is also possible to configure the conductor with a plurality of conductive pieces made of different materials.
  • a conductor 38 is formed by three conductive pieces 35, 36, and 37 made of different materials and provided in order from the electrode 11 side to the electrode 12 side.
  • a cylindrical conductor 42 is formed by three conductive pieces 39, 40, and 41 of the same shape, which are provided in parallel with the electrodes 11 and 12 and made of different materials.
  • a conductor 43 formed by pressure molding a mixture of different materials may be used.
  • terminal unit the unit consisting of the conductor 13 and the electrodes 11 and 12
  • terminal unit the unit consisting of the conductor 13 and the electrodes 11 and 12
  • terminal unit can be connected in series with other terminal units as shown in FIG. As shown in B), it can be connected in parallel with other terminal units.
  • other devices such as capacitors, inductors, resistors, semiconductor elements, etc. can be connected to the terminal units, and as shown in FIGS. 10(A) and 10(B), one It is possible to connect two AC applying means 15 or to connect direct current applying means 14 to only one terminal unit.
  • a control module 47 can be configured to include a control section 46 into which an input AC signal is input from an input/output section 45 composed of an external device, a circuit, etc.
  • the control section 46 transmits a processed signal corresponding to the input AC signal inputted from the input/output section 45 to the terminal unit.
  • the control section 46 transmits a signal to the bias variable section 48 connected to the terminal unit, and controls the bias variable section 48 so as to apply an appropriate bias to the terminal unit.
  • the input AC signal processed in this manner is outputted to the input/output unit 45 as an output AC signal through the control unit 46.
  • the terminal unit can be mounted on a substrate 49 made of an insulating material such as ceramic, glass epoxy resin, glass, or a composite material.
  • wiring 50 made of a conductive material such as copper or copper alloy and thin film formation technology is provided on the substrate 49, and the terminal unit is arranged so that the electrode 11 is in close contact with the wiring 50. ing.
  • the electrode 11 of the terminal unit is firmly fixed to the conductor 13 by a thin film forming technique such as sputtering or vapor deposition.
  • the electrode 11 is bonded to the wiring 50 using a bonding member such as cream solder or lead-free solder. From the viewpoint of enabling the conductor 13 to exhibit a tunnel effect with respect to the electrode 12, it is not preferable to connect the electrode 12 to the wiring 50. Naturally, it is possible to connect the electrode 12 to the wiring 50 as long as the electrode 12 has been treated so that its characteristics do not change due to shape, pressure, or the like.
  • the electrode 12 and the wiring 50 can be electrically connected to the direct current applying means 14 and the alternating current applying means 15 by wire bonding or the like.
  • the device according to the present invention when the conductor arranged between the pair of electrodes is energized, a tunnel current is generated between one or both of the pair of electrodes and the conductor, and the device Since the dielectric constant of is negative, it can be used as a new negative capacitance device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

This device 10, for which the dielectric constant can be negative, comprises a pair of electrodes 11 and 12, and a conductor 13 arranged between the pair of electrodes 11 and 12, wherein, when energized, the conductor 13 generates a tunnel current with one or both of the pair of electrodes 11 and 12. The conductor 13 preferably is formed so as to have carbon, and for example is an assembly of nanocarbon materials. Furthermore, the device 10 can comprise a direct current application means 14 for applying direct-current voltage to the pair of electrodes 11 and 12, or an alternating-current application means 15 for applying alternating-current voltage to the pair of electrodes 11 and 12.

Description

デバイスdevice
本発明は、負の誘電率を有することが可能なデバイスに関する。 The present invention relates to devices capable of having a negative dielectric constant.
現在、半導体シリコンを材料とする集積回路は、演算速度も集積度も限界に近付いていること等から電気回路の素子として機能できる次世代のデバイスが求められ、その具体例が、例えば、特許文献1、2に記載されている。特許文献1、2に記載されたコンデンサは正の誘電率を有する。これに対し、酸化ハフニウム強誘電体は負の誘電率を有する材料であり、負性容量のデバイスを実現可能にするものとして注目されている。なお、負の誘電率とは、コンデンサで説明すると、対となる電極間の電圧の増加により蓄積さる電荷が減少し、対となる電極間の電圧の減少により蓄積される電荷が増加することを意味する。 Currently, integrated circuits made of semiconductor silicon are nearing their limits in terms of calculation speed and degree of integration, and there is a need for next-generation devices that can function as elements of electric circuits. 1 and 2. The capacitors described in Patent Documents 1 and 2 have a positive dielectric constant. On the other hand, hafnium oxide ferroelectric material is a material having a negative dielectric constant, and is attracting attention as a material that makes it possible to realize devices with negative capacitance. In addition, a negative dielectric constant means, in terms of a capacitor, that an increase in the voltage between a pair of electrodes causes the accumulated charge to decrease, and a decrease in the voltage between the pair of electrodes causes an increase in the accumulated charge. means.
また、交流電流を送電する送配電網では、電流と電圧の間に位相角が存在する。当該位相角を所定の範囲に収めて有効な電力を送るようにするため、一般的に、コンデンサ及びコイルを用いて位相角が調整されている。この点、コンデンサ及びコイルを融合させたデバイスが登場すれば、位相調整のための装置の消費電力の軽減やコンパクト化が可能となる。 Furthermore, in power transmission and distribution networks that transmit alternating current, a phase angle exists between current and voltage. In order to transmit effective power while keeping the phase angle within a predetermined range, the phase angle is generally adjusted using a capacitor and a coil. In this regard, if a device that combines a capacitor and a coil appears, it will be possible to reduce the power consumption and make the phase adjustment device more compact.
現行のシリコン集積回路ではダイオードの閾電圧が0.6~0.7V程度であり、閾電圧以下の電圧では、ダイオードやトランジスタは機能しない。従って、ダイオードの閾電圧は集積回路の効率に大きな影響を与える。この点、負の誘電率を有するデバイスをゲート電極に用いれば、正の寄生容量と消し合って閾電圧を低下させることができる。
更に、集積回路の適切な箇所に負性容量を設ければ、回路全体の周波数特性を向上させることができ、使用周波数の範囲、即ち、カットオフ周波数を改善できる。
In current silicon integrated circuits, the threshold voltage of diodes is approximately 0.6 to 0.7 V, and diodes and transistors do not function at voltages below the threshold voltage. Therefore, the threshold voltage of the diode has a significant impact on the efficiency of the integrated circuit. In this regard, if a device with a negative dielectric constant is used for the gate electrode, the positive parasitic capacitance can be canceled out and the threshold voltage can be lowered.
Furthermore, by providing negative capacitance at appropriate locations in the integrated circuit, the frequency characteristics of the entire circuit can be improved, and the range of frequencies used, ie, the cutoff frequency, can be improved.
特開2017-117988号公報JP2017-117988A 特開2012-160748号公報Japanese Patent Application Publication No. 2012-160748
上述したように、負の誘電率を有する材料は存在するものの、様々な要求や条件に適用したデバイスを得るために、新たなタイプの負性容量のデバイス開発が求められている。
本発明は、かかる事情に鑑みてなされたもので、誘電率を負とすることが可能なデバイスを提供することを目的とする。
As described above, although there are materials with negative dielectric constants, there is a need to develop new types of negative capacitance devices in order to obtain devices that meet various requirements and conditions.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a device that can have a negative dielectric constant.
前記目的に沿う本発明に係るデバイスは、対となる電極と、前記対となる電極の間に配された導電体を備え、該導電体は、通電されて、前記対となる電極のいずれか一方又は双方との間でトンネル電流を生じさせることを備える。 A device according to the present invention in accordance with the above object includes a pair of electrodes and a conductor disposed between the pair of electrodes, and the conductor is energized to conduct one of the pair of electrodes. A tunnel current is generated between one or both of the two.
対となる電極の間に配された導電体と一方の電極との間又は当該導電体とそれぞれの電極との間でトンネル電流が生じるデバイスは、誘電率が負となることを種々の検証により確認した。従って、本発明に係るデバイスは、対となる電極と、対となる電極の間に配された導電体を備え、導電体が、通電されて、対となる電極のいずれか一方又は双方との間でトンネル電流を生じさせるので、誘電率を負とすることが可能である。 Various verifications have shown that devices in which a tunnel current occurs between a conductor placed between a pair of electrodes and one electrode, or between the conductor and each electrode, have a negative dielectric constant. confirmed. Therefore, the device according to the present invention includes a pair of electrodes and a conductor disposed between the pair of electrodes, and the conductor is energized to connect with one or both of the pair of electrodes. Since a tunnel current is generated between the two, it is possible to make the dielectric constant negative.
本発明の一実施例に係るデバイスの説明図である。FIG. 1 is an explanatory diagram of a device according to an embodiment of the present invention. 電極間の電流値と交流電流の周波数の関係を示す説明図である。FIG. 2 is an explanatory diagram showing the relationship between the current value between electrodes and the frequency of alternating current. 電極間の電圧の直流バイアス及び交流電圧に対する関係を示す説明図である。FIG. 2 is an explanatory diagram showing the relationship between the voltage between electrodes and the DC bias and AC voltage. 直流バイアスの大きさを変えてデバイスの容量を計測した結果を示す説明図である。FIG. 3 is an explanatory diagram showing the results of measuring the capacitance of a device while changing the magnitude of DC bias. 印加する交流電圧の振幅を変えてデバイスの容量を計測した結果を示す説明図である。FIG. 2 is an explanatory diagram showing the results of measuring the capacitance of a device by changing the amplitude of the applied alternating current voltage. 電極に対する導電体の位置を変えてデバイスの容量を計測した結果を示す説明図である。FIG. 3 is an explanatory diagram showing the results of measuring the capacitance of the device by changing the position of the conductor relative to the electrode. 実験による計測値を基に作成したコールコールプロットの説明図である。FIG. 2 is an explanatory diagram of a call-call plot created based on experimentally measured values. (A)~(F)はそれぞれデバイスの変形例を示す説明図である。(A) to (F) are explanatory diagrams each showing a modified example of the device. (A)~(H)はそれぞれデバイスの変形例を示す説明図である。(A) to (H) are explanatory diagrams each showing a modified example of the device. (A)~(C)はそれぞれ端子ユニットを有する電気回路の例を示す説明図である。(A) to (C) are explanatory diagrams each showing an example of an electric circuit having a terminal unit. 端子ユニットの実装例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of mounting a terminal unit.
続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
図1に示すように、本発明の一実施例に係るデバイス10は、対となる電極11、12と、対となる電極11、12の間に配された導電体13とを備え、導電体13は通電されて電極12との間でトンネル電流が生じる。
Next, embodiments embodying the present invention will be described with reference to the attached drawings to provide an understanding of the present invention.
As shown in FIG. 1, a device 10 according to an embodiment of the present invention includes a pair of electrodes 11 and 12 and a conductor 13 disposed between the pair of electrodes 11 and 12. 13 is energized and a tunnel current is generated between it and the electrode 12.
本実施例では、電極11、12にそれぞれ、金(Au)を主原料として形成された円板を採用している。なお、電極11、12は、一般的なものであればよく、主原料が金でなくてもよいし、形状が円板状でなくてもよいことは言うまでもない。電極11が導電体13に固定された状態(本実施例では、圧着による接合状態)であるのに対し、電極12は導電体13に部分的に接触しているが、導電体13には固定されていない。 In this embodiment, the electrodes 11 and 12 each employ a disk made of gold (Au) as a main material. It goes without saying that the electrodes 11 and 12 may be of any general type, and the main material may not be gold, and the shape may not be disc-shaped. While the electrode 11 is fixed to the conductor 13 (in this example, bonded by crimping), the electrode 12 is partially in contact with the conductor 13 but is not fixed to the conductor 13. It has not been.
従って、2つの面を有する電極11は一方の面のみ全体が導電体13に密着し、2つの面を有する電極12は一方の面のみが導電体13に部分的に接触していることとなる。本実施例では、電極11の導電体13に密着している側の面及び電極12の導電体13に部分的に接触している側の面が光学研磨されたレベルの平坦性を有している。 Therefore, in the electrode 11 having two surfaces, only one surface is in full contact with the conductor 13, and in the electrode 12 having two surfaces, only one surface is in partial contact with the conductor 13. . In this embodiment, the surface of the electrode 11 that is in close contact with the conductor 13 and the surface of the electrode 12 that is partially in contact with the conductor 13 have flatness at the level of optical polishing. There is.
本実施例では、導電体13はナノメートルオーダの結晶粒を持つナノカーボン材料を加圧して成形したものである。即ち、導電体13にナノカーボン材料の集合体を採用している。導電体13は円柱状であり、対向する2つの円形の底面を有し、一方の底面が電極11に接合され、他方の底面が電極12に部分的に接触している。なお、導電体13の形状が円柱状に限定されないのは言うまでもない。 In this embodiment, the conductor 13 is formed by pressurizing a nanocarbon material having crystal grains on the order of nanometers. That is, an aggregate of nanocarbon material is used for the conductor 13. The conductor 13 has a cylindrical shape and has two circular bottom surfaces facing each other, one of which is joined to the electrode 11 and the other bottom surface is partially in contact with the electrode 12. It goes without saying that the shape of the conductor 13 is not limited to a cylindrical shape.
ナノカーボン材料の具体例として、ナノ酸化グラフェンやカーボンナノチューブが挙げられる。導電体13は、トンネル電流が生じるものであればよく、カーボンを有して(カーボンを主原料として)形成される必要はない。また、カーボンを有して導電体13を形成する場合、導電体13はナノカーボン材料の集合体でなくてもよい。 Specific examples of nanocarbon materials include nanographene oxide and carbon nanotubes. The conductor 13 only needs to be one that generates a tunnel current, and does not need to be formed with carbon (carbon as the main raw material). Furthermore, when the conductor 13 is formed using carbon, the conductor 13 does not need to be an aggregate of nanocarbon materials.
例えば、金属を主原料として導電体を形成可能である。主原料を金属にする場合、複数の針状金属を平行に配したものを導電体とし、各針状金属の一側端部を一方の電極に固定し、一部の針状金属の他側端部を他方の電極に接触させ、残りの針状金属の他側端部を他方の電極の近傍に配置することが考えられる。但し、金属を導電体の主原料として採用する場合、金属の酸化に注意する必要がある。この点、金(Au)は酸化が生じ難く、導電体の主原料としての金属として金は好適と言える。 For example, a conductor can be formed using metal as a main raw material. When using metal as the main raw material, a conductor is made of multiple needle-like metals arranged in parallel, one end of each needle-like metal is fixed to one electrode, and some of the needle-like metals are attached to the other end. It is conceivable to have the end contact the other electrode and arrange the other end of the remaining needle-like metal near the other electrode. However, when using metal as the main raw material for the conductor, it is necessary to be careful about oxidation of the metal. In this respect, gold (Au) is difficult to oxidize, and thus gold is suitable as a metal as the main raw material of the conductor.
ここで、酸素官能基を有する材料であるナノ酸化グラフェン等で導電体13を形成する場合、酸素官能基の割合を変えることにより導電体13の抵抗率を調整できる。例えば、酸素の含有量が20原子%のナノ酸化グラフェンを用いて導電体13を形成することによって、導電体13の電気抵抗率が5×104Ωcm程度となることを確認している。 Here, when the conductor 13 is formed of nano-graphene oxide or the like, which is a material having an oxygen functional group, the resistivity of the conductor 13 can be adjusted by changing the proportion of the oxygen functional group. For example, it has been confirmed that the electrical resistivity of the conductor 13 is approximately 5×10 4 Ωcm by forming the conductor 13 using nanographene oxide with an oxygen content of 20 atomic %.
本実施例において、導電体13をナノメートルオーダの結晶粒を持つナノカーボン材料の集合体としているのは、図1に示すように、導電体13の表面(他方の底面)に突起(凹凸)を設けて電極12及び導電体13間で安定的にトンネル電流Itが生じるようにするためである。トンネル電流Itは、導電体13の表面において電極12に向けて突出している、電極12に非接触な突起で発生し易い。当該突起として、底面直径が1nm以上5nm以下で高さが0.5nm以上3nmの円錐状のものが挙げられるが、形状及び大きさはこれに限定されない。 In this example, the reason why the conductor 13 is an aggregate of nanocarbon materials having crystal grains on the order of nanometers is because, as shown in FIG. This is to ensure that a tunnel current It is stably generated between the electrode 12 and the conductor 13. Tunnel current It is likely to occur in protrusions that protrude toward the electrode 12 on the surface of the conductor 13 and are not in contact with the electrode 12 . The protrusions include conical ones with a bottom diameter of 1 nm or more and 5 nm or less and a height of 0.5 nm or more and 3 nm, but the shape and size are not limited thereto.
導電体13の電極12に接触している部分で生じる電導電流Ieが、導電体13の抵抗を受けて電極12に到達するのに対し、トンネル電流Itは導電体13の抵抗を受けることなく空間を通って電極に達することから、トンネル電流Itの電極12への到達時間は、電導電流Ieの電極12への到達時間より短い。一方、電極11と導電体13の間では実質的にトンネル電流Itは生じず、電導電流Ieのみが生じる。 The conduction current Ie generated at the part of the conductor 13 that is in contact with the electrode 12 receives the resistance of the conductor 13 and reaches the electrode 12, whereas the tunnel current It flows through the space without being subjected to the resistance of the conductor 13. Since the tunnel current It reaches the electrode 12 through the conduction current Ie, the time it takes the tunnel current It to reach the electrode 12 is shorter than the time it takes the conduction current Ie to reach the electrode 12. On the other hand, substantially no tunnel current It occurs between the electrode 11 and the conductor 13, and only a conduction current Ie occurs.
そのため、電極11、12に交流電流を通電した場合、電極11、12間の電流値は電極11、12間の交流電流の周波数に対し図2に示すようになる。つまり、交流電流の周波数が低いと、導電体13及び電極12の間で電導電流Ie及びトンネル電流Itが共に生じて電極11、12間の電流値は大きくなり、交流電流の周波数が上昇すると、導電体13及び電極12の間の電導電流Ieが減少して電極11、12間の電流値は小さくなり、交流電流の周波数が一定以上になると、導電体13及び電極12の間に生じるのは実質的にトンネル電流Itのみとなる。 Therefore, when an alternating current is applied to the electrodes 11 and 12, the current value between the electrodes 11 and 12 becomes as shown in FIG. 2 with respect to the frequency of the alternating current between the electrodes 11 and 12. In other words, when the frequency of the alternating current is low, both the conduction current Ie and the tunneling current It occur between the conductor 13 and the electrode 12, and the current value between the electrodes 11 and 12 increases, and when the frequency of the alternating current increases, When the conduction current Ie between the conductor 13 and the electrode 12 decreases and the current value between the electrodes 11 and 12 becomes smaller, and the frequency of the alternating current exceeds a certain level, the following occurs between the conductor 13 and the electrode 12. Substantially only the tunnel current It is generated.
そして、交流電流の周波数を更に増加させることにより、最終的に、導電体13及び電極12の間でトンネル電流Itも生じなくなり、電極11、12間の電流値は導電体13の変位電流Ipのみが寄与した値となる。
このことから、デバイス10は、導電体13及び電極12の間で生じるトンネル電流Itを利用して電荷を蓄積でき、コンデンサとして機能可能なことが分かる。よって、デバイス10はコンデンサ機能を有する素子とも言える。
By further increasing the frequency of the alternating current, eventually the tunnel current It no longer occurs between the conductor 13 and the electrode 12, and the current value between the electrodes 11 and 12 is only the displacement current Ip of the conductor 13. is the contributed value.
From this, it can be seen that the device 10 can store charges using the tunnel current It generated between the conductor 13 and the electrode 12, and can function as a capacitor. Therefore, the device 10 can also be said to be an element having a capacitor function.
また、本実施例では、デバイス10が、更に、電極11、12に電圧値が可変の直流電圧(以下、「直流バイアス」とも言う)を印加できる直流付与手段14と、電極11、12に振幅が可変の交流電圧を印加できる交流付与手段15とを備えている。交流付与手段15は電極11、12に印加する交流電圧の周波数も調整可能である。よって、交流付与手段15は電極11、12に周波数が可変の交流電圧を印加できる。 Further, in this embodiment, the device 10 further includes a direct current applying means 14 capable of applying a DC voltage with a variable voltage value (hereinafter also referred to as "DC bias") to the electrodes 11 and 12, and is equipped with an AC applying means 15 capable of applying a variable AC voltage. The AC applying means 15 can also adjust the frequency of the AC voltage applied to the electrodes 11 and 12. Therefore, the AC applying means 15 can apply an AC voltage of variable frequency to the electrodes 11 and 12.
ここで、電極11、12に印加する直流バイアスの電圧値をV0とし、電極11、12に印加する交流電圧の値をAsinωtとして、電極11、12間の電圧Vは、以下の式1で表され、式1を図示化すると図3に示すようになる。 Here, the voltage value of the DC bias applied to the electrodes 11 and 12 is V0, and the value of the AC voltage applied to the electrodes 11 and 12 is Asinωt, and the voltage V between the electrodes 11 and 12 is expressed by the following equation 1. When formula 1 is illustrated, it becomes as shown in FIG.
V=V0+Asinωt (式1) V=V0+A sin ωt (Formula 1)
なお、式1において、Aは交流電圧の振幅を意味し、ωは交流電圧の角周波数を意味する。
デバイス10の容量(電気容量)に寄与するVが負の値となっている期間のVの積分値及び、電極11、12に蓄えられる電荷量は、図3に示すように、V0の値、Aの値及び周波数(ω/2π)のいずれか一つ又は複数を変えることによって調整できる。
Note that in Equation 1, A means the amplitude of the AC voltage, and ω means the angular frequency of the AC voltage.
As shown in FIG. 3, the integral value of V during the period when V, which contributes to the capacitance (electrical capacitance) of the device 10, is a negative value and the amount of charge stored in the electrodes 11 and 12 are the value of V0, It can be adjusted by changing one or more of the value of A and the frequency (ω/2π).
本実施例では、直流付与手段14が電極11、12に直流バイアスを印加した状態にすることによって、電極11、12に電荷を蓄えることができる。また、デバイス10の直流付与手段14が電極11、12に対して印加する直流バイアスの電圧値、交流付与手段15が電極11、12に対して印加する交流電圧の電圧値、及び、同交流電圧の周波数のいずれか1つ又は複数を調整することによって、電極11、12に蓄えられる電荷量及びデバイス10の容量を調節可能である。 In this embodiment, electric charges can be stored in the electrodes 11 and 12 by applying a DC bias to the electrodes 11 and 12 by the DC applying means 14 . Further, the voltage value of the DC bias applied to the electrodes 11 and 12 by the DC application means 14 of the device 10, the voltage value of the AC voltage applied to the electrodes 11 and 12 by the AC application means 15, and the voltage value of the AC voltage applied to the electrodes 11 and 12, By adjusting one or more of the frequencies, the amount of charge stored in the electrodes 11, 12 and the capacity of the device 10 can be adjusted.
ここで、上述した調整によって、デバイス10の容量を負とすること、即ち、デバイス10を負性容量のデバイス10とすることが可能なことを実験的検証により確認した。
また、本実施例では、導電体13に対する電極12の位置を変えることができる図示しない位置調整機構が設けられている。導電体13に対する電極12の位置を変えることによっても、電極11、12に蓄えられる電荷量及びデバイス10の容量を調整可能である。
Here, it was confirmed through experimental verification that by the above-described adjustment, it is possible to make the capacitance of the device 10 negative, that is, it is possible to make the device 10 a negative capacitance device 10.
Further, in this embodiment, a position adjustment mechanism (not shown) that can change the position of the electrode 12 with respect to the conductor 13 is provided. The amount of charge stored in the electrodes 11 and 12 and the capacity of the device 10 can also be adjusted by changing the position of the electrode 12 with respect to the conductor 13.
電極11、12に直径5mm厚み0.002mmの金(Au)の板材を採用し、導電体13にナノ酸化グラフェンにより形成された直径5mm高さ0.5mmの円柱状物を採用したデバイス10(以下、「サンプルデバイス」とも言う)では、電極11、12に印加する直流バイアスの電圧値、電極11、12に印加する交流電圧の電圧値、同交流電圧の周波数及び導電体13に対する電極12の位置調整により、デバイス10がマイナス数ファラドからプラス数ファラドの容量となることを実験的検証によって確認した。 A device 10 in which gold (Au) plates with a diameter of 5 mm and a thickness of 0.002 mm are used for the electrodes 11 and 12, and a cylindrical object with a diameter of 5 mm and a height of 0.5 mm formed of nano graphene oxide is used as the conductor 13 ( (hereinafter also referred to as "sample device"), the voltage value of the DC bias applied to the electrodes 11 and 12, the voltage value of the AC voltage applied to the electrodes 11 and 12, the frequency of the AC voltage, and the relationship between the electrode 12 and the conductor 13. It has been confirmed through experimental verification that the capacity of the device 10 changes from a minus number of farads to a plus number of farads by adjusting the position.
サンプルデバイスは、電極11、12間の抵抗が小さく、例えば、100Ω以下とあることから、配送電システムの位相調整に利用することができる。
また、電極11、12への直流バイアスの印加を停止することによって、デバイス10は電極11、12に電荷が存在しない状態となる。つまり、デバイス10は電気信号の揮発性を有している。
Since the sample device has a low resistance between the electrodes 11 and 12, for example, 100Ω or less, it can be used for phase adjustment of a power distribution system.
Further, by stopping the application of the DC bias to the electrodes 11 and 12, the device 10 enters a state where no charge exists on the electrodes 11 and 12. In other words, the device 10 has a volatile electric signal.
実験例Experimental example
次に、本発明の作用効果を確認するために行った実験について説明する。 Next, an experiment conducted to confirm the effects of the present invention will be described.
以下に説明する全ての実験では、直径5mm厚み0.002mmの金(Au)の円板を2個用意してこれを対となる電極とし、Graphene Supermarket社製のナノ酸化グラフェン(Graphene Oxido Small Flakes:Dry Platelet)を加圧により直径5mm高さ0.5mの円柱体に固めたものを導電体とするデバイスを用いた。 In all experiments described below, two gold (Au) disks with a diameter of 5 mm and a thickness of 0.002 mm were prepared and used as a pair of electrodes. A device was used in which a cylindrical body with a diameter of 5 mm and a height of 0.5 m was made by pressurizing Dry Platelet) as a conductor.
一方の電極は導電体に圧着し、他方の電極(以下、「位置可変電極」とも言う)は導電体に接合されていなかった。デバイス近傍に、位置可変電極の導電体に対する位置を変えられる器具を設けた。なお、全ての実験において位置可変電極は導電体に接触していた。従って、位置可変電極の導電体に対する位置を変えるとは、位置可変電極の導電体に対する接触面積が変わることを意味する。 One electrode was crimped to the conductor, and the other electrode (hereinafter also referred to as "position variable electrode") was not bonded to the conductor. A device that can change the position of the variable-position electrode relative to the conductor was provided near the device. Note that in all experiments, the variable position electrode was in contact with the conductor. Therefore, changing the position of the position variable electrode with respect to the conductor means changing the contact area of the position variable electrode with respect to the conductor.
<デバイスの容量の直流バイアス依存性>
電極及び導電体を固定し、対となる電極(以下、単に「電極」と言うときは対となる電極を意味する)に振幅0.5Vの交流電圧を印加した状態で、電極に直流バイアスを印加し、デバイスの容量を計測した。電極に印加する直流バイアスの電圧値を0.1V、0.5V、1.0Vと変化させ、それぞれの場合でデバイスの容量を計測した。計測結果を図4に示す。直流バイアスの電圧値を0.1V、0.5V、1.0Vとした全ての場合において、電極に印加する交流電圧の周波数が低い領域でデバイスの容量が変化し、直流バイアスの電圧値が0.5Vではデバイスの容量がマイナスの値からプラスの値まで大きく変化した。
<DC bias dependence of device capacitance>
With the electrode and conductor fixed, and an AC voltage with an amplitude of 0.5 V applied to the paired electrode (hereinafter simply referred to as "electrode" means the paired electrode), a DC bias was applied to the electrode. The capacitance of the device was measured. The voltage value of the DC bias applied to the electrode was changed to 0.1 V, 0.5 V, and 1.0 V, and the capacitance of the device was measured in each case. The measurement results are shown in Figure 4. In all cases where the DC bias voltage value is 0.1V, 0.5V, and 1.0V, the capacitance of the device changes in the region where the frequency of the AC voltage applied to the electrode is low, and the DC bias voltage value becomes 0. At .5V, the capacitance of the device changed significantly from a negative value to a positive value.
<デバイスの容量の交流電圧振幅依存性>
電極及び導電体を固定し、電極に0.5Vの直流バイアスを印加した状態で、電極に交流電圧を印加し、電極に印加する交流電圧の振幅を0.3V、0.5V、1.0Vと変化させ、それぞれの場合でデバイスの容量を計測した。計測結果を図5に示す。計測結果より、交流電圧の振幅が0.3V、0.5V、1.0Vとした全ての場合において、電極に印加する交流電圧の周波数が低い領域でデバイスの容量が大きく変化しマイナスの値となることが確認できた。
<Dependency of device capacity on AC voltage amplitude>
With the electrode and conductor fixed and a DC bias of 0.5V applied to the electrode, an AC voltage is applied to the electrode, and the amplitude of the AC voltage applied to the electrode is set to 0.3V, 0.5V, and 1.0V. The capacitance of the device was measured in each case. The measurement results are shown in Figure 5. From the measurement results, in all cases where the amplitude of the AC voltage was 0.3V, 0.5V, and 1.0V, the capacitance of the device changed significantly in the region where the frequency of the AC voltage applied to the electrodes was low, resulting in a negative value. I was able to confirm that this was the case.
<デバイスの容量の電極-導電体距離依存性>
次に、位置可変電極を移動させ固定した導電体に対する位置可変電極の距離を変えてデバイスの容量を計測した。直流バイアスの電圧値及び交流電圧の振幅はいずれも0.5Vとした。計測結果は図6に示すようになった。図6において、d1~d4は導電体に対する位置可変電極の位置が異なるデバイスの容量の計測結果であり、位置可変電極の重心から導電体の重心までの距離は、d1>d2>d3>d4であった。本計測結果から位置可変電極から導電体までの距離を変化させることによって、コンデンサ容量を調整可能なことが確認できた。
<Dependency of device capacitance on electrode-conductor distance>
Next, the capacitance of the device was measured by moving the variable position electrode and changing the distance between the variable position electrode and the fixed conductor. The voltage value of the DC bias and the amplitude of the AC voltage were both 0.5V. The measurement results are shown in FIG. In FIG. 6, d1 to d4 are the measurement results of the capacitance of devices in which the positions of the variable position electrodes are different relative to the conductor, and the distance from the center of gravity of the variable position electrode to the center of gravity of the conductor is d1>d2>d3>d4. there were. The measurement results confirmed that the capacitor capacity can be adjusted by changing the distance from the variable position electrode to the conductor.
<コールコールプロット>
電極に印加する交流電圧の周波数を変えながらデバイスのインピーダンスを計測し、計測したインピーダンスを複素平面にプロットしコールコールプロットを作成した。コールコールプロットは導電体に対する位置可変電極の距離を変えてそれぞれ作成した。作成されたコールコールプロットを図7に示す。図7において、Pnのnの値が大きいほど位置可変電極の重心から導電体の重心までの距離は短かった(例えば、P1>P2>P3)。
<Cole-Cole Plot>
The impedance of the device was measured while changing the frequency of the AC voltage applied to the electrodes, and the measured impedance was plotted on a complex plane to create a Cole-Cole plot. Cole-Cole plots were created by changing the distance of the variable position electrode to the conductor. The created Cole-Cole plot is shown in FIG. In FIG. 7, the larger the value of Pn, the shorter the distance from the center of gravity of the variable position electrode to the center of gravity of the conductor (for example, P1>P2>P3).
図7に示すコールコールプロットより、デバイスが容量及び抵抗を有すること、及び、導電体に対する位置可変電極の距離が短くなるのに伴い容量が増加し抵抗が減少する傾向があることが確認できた。なお、容量及び抵抗は各コールコールプロットにおいてそれぞれ右側の円弧状領域及び左側の円弧状領域であり、例えば、P3のコールコールプロットでは1/ωC及び抵抗がほぼ同じ大きさで表されている。 From the Cole-Cole plot shown in Figure 7, it was confirmed that the device has capacitance and resistance, and that as the distance of the variable position electrode to the conductor becomes shorter, the capacitance tends to increase and the resistance tends to decrease. . Note that in each Cole-Cole plot, the capacitance and resistance are the right-hand arcuate region and the left-hand arcuate region, respectively; for example, in the Cole-Cole plot of P3, 1/ωC and resistance are expressed with approximately the same magnitude.
以上、本発明の実施例を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、導電体が通電されて、導電体と一方の電極との間及び導電体と他方の電極との間でトンネル電流が生じるようにデバイスを設計してもよい。
また、デバイスは直流付与手段及び交流付与手段のいずれか一方又は双方を備えなくともよい。直流付与手段及び交流付与手段の双方を備えなくとも、導電体に対する電極の位置の調整により、負性容量のデバイスを作製可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and any changes in conditions that do not depart from the gist are within the scope of the present invention.
For example, a device may be designed such that an electrical conductor is energized to create a tunneling current between the electrical conductor and one electrode and between the electrical conductor and the other electrode.
Further, the device does not need to include either or both of the direct current applying means and the alternating current applying means. Even without having both a direct current applying means and an alternating current applying means, a negative capacitance device can be manufactured by adjusting the position of the electrode with respect to the conductor.
そして、交流付与手段を設ける場合、交流付与手段は電極に印加する交流電圧の振幅の調整及び電極に印加する交流電圧の周波数の調整のいずれか一方又は双方を調整できないものであってもよい。例えば、電極に印加する交流電圧の振幅及び周波数が固定のものであってもよく、電極に印加する交流電圧の振幅及び周波数が固定であっても、その振幅及び周波数の大きさによっては、負性容量のデバイスを設計できる。
直流付与手段を設ける場合、電極に印加する電圧値が固定された直流付与手段を採用することができ、その電圧値の大きさによってはデバイスを負性容量のものとすることが可能である。
When the AC applying means is provided, the AC applying means may not be able to adjust either or both of the amplitude of the AC voltage applied to the electrodes and the frequency of the AC voltage applied to the electrodes. For example, the amplitude and frequency of the AC voltage applied to the electrodes may be fixed, and even if the amplitude and frequency of the AC voltage applied to the electrodes are fixed, depending on the magnitude of the amplitude and frequency, a negative Capacity devices can be designed.
When a direct current applying means is provided, it is possible to employ a direct current applying means in which the voltage value applied to the electrode is fixed, and depending on the magnitude of the voltage value, it is possible to make the device a negative capacitor.
また、図8(A)に示すように、大きさが異なる電極16、17を採用することや、図8(B)に示すように、厚みの異なる電極18、19を採用してもよい(電極18、19の厚みの差は、一方が他方に対して1.1倍以上5倍以下程度にすることが好ましい)。なお、図8(A)、(B)に示す各変形例及び後述する各変形例において、デバイス10と同様の構成については同じ符号を付して詳細な説明は省略している。 Furthermore, as shown in FIG. 8(A), electrodes 16 and 17 of different sizes may be used, or as shown in FIG. 8(B), electrodes 18 and 19 of different thickness may be used. The difference in thickness between the electrodes 18 and 19 is preferably about 1.1 times or more and 5 times or less of the other. Note that in each modification shown in FIGS. 8A and 8B and each modification described below, the same components as the device 10 are given the same reference numerals, and detailed explanations are omitted.
更に、図8(C)に示すように、導電体13の底面に加えて導電体13の側面の一部にも部分的に接触するように一方の電極20を形成してもよい。図8(C)に示す変形例では、電極20が導電体13の底面及び側面の電極20側の端部の全周に接触している。このように設計することにより、電極20及び導電体13の接触面積が大きくなり、電極20を導電体13に安定的に取付けることが可能となる。
図8(D)に示すように、対となる電極21、22をそれぞれ導電体13の底面及び側面に部分的に接触するように形成して、電極21を導電体13に、電極22を導電体13に、それぞれ安定的に取付け可能としてもよい。なお、電極21は電極22に非接触である。また、電極21、22のいずれか一方が、導電体13に固定されていてもよい。
Furthermore, as shown in FIG. 8C, one electrode 20 may be formed so as to partially contact a part of the side surface of the conductor 13 in addition to the bottom surface of the conductor 13. In the modification shown in FIG. 8C, the electrode 20 is in contact with the entire circumference of the bottom and side edges of the conductor 13 on the electrode 20 side. By designing in this way, the contact area between the electrode 20 and the conductor 13 becomes large, and it becomes possible to stably attach the electrode 20 to the conductor 13.
As shown in FIG. 8(D), a pair of electrodes 21 and 22 are formed so as to partially contact the bottom and side surfaces of the conductor 13, so that the electrode 21 is connected to the conductor 13 and the electrode 22 is connected to the conductor 13. They may each be stably attachable to the body 13. Note that the electrode 21 is not in contact with the electrode 22. Further, either one of the electrodes 21 and 22 may be fixed to the conductor 13.
また、図8(E)に示すように、電極12を覆う保護部材23を設けてもよい。保護部材23は導電体13の側面を部分的に又は側面全体を覆うように設けることが好ましい。電極12はトンネル効果を発現する重要な部材であるため、電極12の欠損や外部圧力による変形等を保護部材23によって防止することが好適である。保護部材23を金属(例えば、アルミニウム、銀、タングステン、銅やそれらの合金)等の導電体で形成した場合、保護部材23を介して電極12に通電するように設計できる。一方、保護部材23を樹脂やガラス等の絶縁材料により形成した場合、保護部材23に設けた孔を通して導線等を電極12に直接接続すればよい。 Further, as shown in FIG. 8(E), a protective member 23 covering the electrode 12 may be provided. It is preferable that the protective member 23 is provided so as to partially or entirely cover the side surface of the conductor 13. Since the electrode 12 is an important member that exhibits the tunnel effect, it is preferable to prevent the electrode 12 from being damaged or deformed by external pressure using the protective member 23. When the protective member 23 is formed of a conductor such as a metal (for example, aluminum, silver, tungsten, copper, or an alloy thereof), it can be designed to conduct electricity to the electrode 12 through the protective member 23. On the other hand, when the protective member 23 is formed of an insulating material such as resin or glass, a conducting wire or the like may be directly connected to the electrode 12 through a hole provided in the protective member 23.
図8(F)に示すように、保護部材24によって、導電体13及び電極11、12を覆ってもよい。保護部材24は、樹脂やガラス等の、耐候性及び耐久性を持ち合わせた絶縁材料により形成できる。この構成により、導電体13及び電極11、12の保護が可能となる。保護部材24の外側に、電極11に電気的に接続された端子部25及び電極12に電気的に接続された端子部26を設けることによって、電極11、12と外部とを電気的に接続できる。なお、図8(F)に示す変形例では、2つの端子部25及び2つの端子部26を設けているが、端子部25、26が共に1つずつでもよいし、共に3個以上あってもよい。更に、端子部25、26は同数でなくてもよい。 As shown in FIG. 8(F), the conductor 13 and the electrodes 11 and 12 may be covered with the protective member 24. The protective member 24 can be formed of an insulating material that has weather resistance and durability, such as resin or glass. With this configuration, the conductor 13 and the electrodes 11 and 12 can be protected. By providing a terminal portion 25 electrically connected to the electrode 11 and a terminal portion 26 electrically connected to the electrode 12 on the outside of the protective member 24, the electrodes 11 and 12 can be electrically connected to the outside. . Note that in the modified example shown in FIG. 8(F), two terminal portions 25 and two terminal portions 26 are provided, but each of the terminal portions 25 and 26 may be one each, or there may be three or more of both. Good too. Furthermore, the number of terminal portions 25 and 26 may not be the same.
また、使用環境に応じた形状の導電体を採用可能であり、例えば、図9(A)に示すように、円柱状ではない導電体27を採用してもよい。導電体27は円板状の電極28側から円板状の電極29側に向けて、底面に平行な面(上面、断面)の面積が大きくなる円錐台であり、電極29は電極28より大きい。量産性等を考慮すると、図9(B)、(C)に示すように、矩形(正方形を含む)の板状の導電体30や、円板状の導電体31を採用するのが好ましい。
図9(D)に示すように、矩形の板状の導電体32の一の面より小さい電極33を採用してもよく、電極33の形状も星形であってもよい。図9(E)に示すような環状の電極34やストライプ状の電極や縞模様状に点在する複数の金属片からなる電極を採用してもよい。
Further, it is possible to adopt a conductor having a shape depending on the usage environment, and for example, as shown in FIG. 9(A), a conductor 27 that is not cylindrical may be adopted. The conductor 27 is a truncated cone in which the area of the surface parallel to the bottom (upper surface, cross section) increases from the disk-shaped electrode 28 side to the disk-shaped electrode 29 side, and the electrode 29 is larger than the electrode 28. . In consideration of mass productivity, it is preferable to use a rectangular (including square) plate-shaped conductor 30 or a disc-shaped conductor 31, as shown in FIGS. 9(B) and 9(C).
As shown in FIG. 9(D), the electrode 33 may be smaller than one surface of the rectangular plate-shaped conductor 32, and the shape of the electrode 33 may also be star-shaped. An annular electrode 34 as shown in FIG. 9(E), a striped electrode, or an electrode made of a plurality of metal pieces scattered in a striped pattern may be used.
図9(F)、(G)、(H)に示すように、異なる材料からなる複数の導電片により導電体を構成することも可能である。図9(F)に示す変形例では、電極11側から電極12側に向けて順に設けられた、それぞれ材料が異なる3つの導電片35、36、37により導電体38が形成されている。図9(G)に示す変形例は、電極11、12に対し並列に設けられ、それぞれ材料が異なる3つの同一形状の導電片39、40、41により、円柱状の導電体42が形成されている。図9(H)に示すように、異なる材料を混合した混合物を加圧成形した導電体43を採用してもよい。 As shown in FIGS. 9(F), (G), and (H), it is also possible to configure the conductor with a plurality of conductive pieces made of different materials. In the modification shown in FIG. 9(F), a conductor 38 is formed by three conductive pieces 35, 36, and 37 made of different materials and provided in order from the electrode 11 side to the electrode 12 side. In the modification shown in FIG. 9(G), a cylindrical conductor 42 is formed by three conductive pieces 39, 40, and 41 of the same shape, which are provided in parallel with the electrodes 11 and 12 and made of different materials. There is. As shown in FIG. 9(H), a conductor 43 formed by pressure molding a mixture of different materials may be used.
また、導電体13及び電極11、12からなるユニット(以下、「端子ユニット」と言う)は、図10(A)に示すように、他の端子ユニットと直列に接続することや、図10(B)に示すように、他の端子ユニットと並列接続することができる。なお、端子ユニットには、他のデバイス、例えば、コンデンサ、インダクター、抵抗、半導体素子等を接続可能であり、図10(A)、(B)に示すように、2つの端子ユニットの双方に1つの交流付与手段15を接続することや、1つの端子ユニットのみに直流付与手段14を接続することができる。 Furthermore, the unit consisting of the conductor 13 and the electrodes 11 and 12 (hereinafter referred to as "terminal unit") can be connected in series with other terminal units as shown in FIG. As shown in B), it can be connected in parallel with other terminal units. Note that other devices such as capacitors, inductors, resistors, semiconductor elements, etc. can be connected to the terminal units, and as shown in FIGS. 10(A) and 10(B), one It is possible to connect two AC applying means 15 or to connect direct current applying means 14 to only one terminal unit.
端子ユニットを用いて制御モジュールを構成することも可能である。図10(C)に示すように、外部装置や回路等から構成された入出力部45から入力交流信号が入力される制御部46を有して制御モジュール47を構成可能である。制御部46には、入出力部45から入力される入力交流信号に応じた処理信号を端子ユニットに送信する。制御部46は、端子ユニットに接続されたバイアス可変部48に信号を発信し、同端子ユニットに対して、適切なバイアスを付与するようにバイアス可変部48を制御する。この様に処理された入力交流信号は、制御部46を通して出力交流信号として入出力部45に出力される。 It is also possible to configure the control module using terminal units. As shown in FIG. 10(C), a control module 47 can be configured to include a control section 46 into which an input AC signal is input from an input/output section 45 composed of an external device, a circuit, etc. The control section 46 transmits a processed signal corresponding to the input AC signal inputted from the input/output section 45 to the terminal unit. The control section 46 transmits a signal to the bias variable section 48 connected to the terminal unit, and controls the bias variable section 48 so as to apply an appropriate bias to the terminal unit. The input AC signal processed in this manner is outputted to the input/output unit 45 as an output AC signal through the control unit 46.
また、端子ユニットは、図11に示すように、セラミック、ガラスエポキシ樹脂、ガラス等の絶縁性を示す材料又は複合材料で形成された基板49に実装することができる。基板49上には、図11に示すように、銅や銅合金などの導電性材料及び薄膜形成技術等からなる配線50が設けられ、端子ユニットは配線50に電極11が密着するように配されている。この例では、端子ユニットの電極11がスパッタや蒸着等の薄膜形成技術等により導電体13に強固に固着されている。 Further, as shown in FIG. 11, the terminal unit can be mounted on a substrate 49 made of an insulating material such as ceramic, glass epoxy resin, glass, or a composite material. As shown in FIG. 11, wiring 50 made of a conductive material such as copper or copper alloy and thin film formation technology is provided on the substrate 49, and the terminal unit is arranged so that the electrode 11 is in close contact with the wiring 50. ing. In this example, the electrode 11 of the terminal unit is firmly fixed to the conductor 13 by a thin film forming technique such as sputtering or vapor deposition.
電極11は、クリーム半田や、鉛レス半田などの接合部材で配線50に接合されている。導電体13が電極12に対してトンネル効果を発現可能にするという観点では、電極12を配線50に接続するのは好ましくない。当然、形状や圧力等で、特性が変化しないように、処理を施した電極12であれば、配線50に接続することも可能である。電極12及び配線50には、ワイヤボンディング等で直流付与手段14及び交流付与手段15を電気的に接続することができる。 The electrode 11 is bonded to the wiring 50 using a bonding member such as cream solder or lead-free solder. From the viewpoint of enabling the conductor 13 to exhibit a tunnel effect with respect to the electrode 12, it is not preferable to connect the electrode 12 to the wiring 50. Naturally, it is possible to connect the electrode 12 to the wiring 50 as long as the electrode 12 has been treated so that its characteristics do not change due to shape, pressure, or the like. The electrode 12 and the wiring 50 can be electrically connected to the direct current applying means 14 and the alternating current applying means 15 by wire bonding or the like.
本発明に係るデバイスにおいては、対となる電極の間に配された導電体が通電されることによって、対となる電極のいずれか一方又は双方と導電体との間でトンネル電流が生じ、デバイスの誘電率が負となるので、新たな負性容量のデバイスとして採用可能である。 In the device according to the present invention, when the conductor arranged between the pair of electrodes is energized, a tunnel current is generated between one or both of the pair of electrodes and the conductor, and the device Since the dielectric constant of is negative, it can be used as a new negative capacitance device.
10:デバイス、11、12:電極、13:導電体、14:直流付与手段、15:交流付与手段、16~22:電極、23、24:保護部材、25、26:端子部、27:導電体、28、29:電極、30、31、32:導電体、33、34:電極、35、36、37:導電片、38:導電体、39、40、41:導電片、42、43:導電体、45:入出力部、46:制御部、47:制御モジュール、48:バイアス可変部、49:基板、50:配線、It:トンネル電流、Ie:電導電流、Ip:変位電流  10: device, 11, 12: electrode, 13: conductor, 14: direct current applying means, 15: alternating current applying means, 16 to 22: electrode, 23, 24: protective member, 25, 26: terminal part, 27: conductive body, 28, 29: electrode, 30, 31, 32: conductor, 33, 34: electrode, 35, 36, 37: conductive piece, 38: conductor, 39, 40, 41: conductive piece, 42, 43: conductor, 45: input/output section, 46: control section, 47: control module, 48: bias variable section, 49: substrate, 50: wiring, It: tunnel current, Ie: conduction current, Ip: displacement current

Claims (8)

  1. 対となる電極と、前記対となる電極の間に配された導電体を備え、該導電体は、通電されて、前記対となる電極のいずれか一方又は双方との間でトンネル電流を生じさせることを備えることを特徴とするデバイス。 A pair of electrodes and a conductor disposed between the pair of electrodes, the conductor being energized to generate a tunnel current between one or both of the pair of electrodes. A device characterized in that it comprises:
  2. 請求項1記載のデバイスにおいて、前記導電体は、カーボンを有して形成されていることを特徴とするデバイス。 2. The device according to claim 1, wherein the conductor is formed of carbon.
  3. 請求項2記載のデバイスにおいて、前記導電体は、ナノカーボン材料の集合体であることを特徴とするデバイス。 3. The device according to claim 2, wherein the conductor is an aggregate of nanocarbon materials.
  4. 請求項1又は2記載のデバイスにおいて、前記対となる電極に直流電圧を印加する直流付与手段を、更に備えることを特徴とするデバイス。 3. The device according to claim 1, further comprising direct current applying means for applying a direct current voltage to the pair of electrodes.
  5. 請求項4記載のデバイスにおいて、前記直流付与手段は、電圧値が可変であることを特徴とするデバイス。 5. The device according to claim 4, wherein the direct current applying means has a variable voltage value.
  6. 請求項1又は2記載のデバイスにおいて、前記対となる電極に交流電圧を印加する交流付与手段を、更に備えることを特徴とするデバイス。 3. The device according to claim 1, further comprising AC applying means for applying an AC voltage to the pair of electrodes.
  7. 請求項6記載のデバイスにおいて、前記交流付与手段は、交流電圧の振幅が可変であることを特徴とするデバイス。 7. The device according to claim 6, wherein the alternating current applying means has a variable amplitude of the alternating current voltage.
  8. 請求項6記載のデバイスにおいて、前記交流付与手段は、交流電圧の周波数が可変であることを特徴とするデバイス。 7. The device according to claim 6, wherein the alternating current applying means has a variable frequency of the alternating current voltage.
PCT/JP2023/019341 2022-07-19 2023-05-24 Device WO2024018749A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-114620 2022-07-19
JP2022114620A JP2024012855A (en) 2022-07-19 2022-07-19 device

Publications (1)

Publication Number Publication Date
WO2024018749A1 true WO2024018749A1 (en) 2024-01-25

Family

ID=89617397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019341 WO2024018749A1 (en) 2022-07-19 2023-05-24 Device

Country Status (2)

Country Link
JP (1) JP2024012855A (en)
WO (1) WO2024018749A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016076542A (en) * 2014-10-03 2016-05-12 富士通株式会社 Electronic device, and manufacturing method of electronic device
US20180330897A1 (en) * 2015-11-09 2018-11-15 Massachusetts Institute Of Technology Tunneling nanomechanical switches and tunable plasmonic nanogaps

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016076542A (en) * 2014-10-03 2016-05-12 富士通株式会社 Electronic device, and manufacturing method of electronic device
US20180330897A1 (en) * 2015-11-09 2018-11-15 Massachusetts Institute Of Technology Tunneling nanomechanical switches and tunable plasmonic nanogaps

Also Published As

Publication number Publication date
JP2024012855A (en) 2024-01-31

Similar Documents

Publication Publication Date Title
US7411776B2 (en) Multilayer capacitor array
US9814167B2 (en) Coil component
US7943956B2 (en) Semiconductor device comprising a housing containing a triggering unit
US8378455B2 (en) Electronic component arrangement comprising a varistor and a semiconductor component
CN109545789A (en) Storage device
RU2009127361A (en) ELECTRIC RESISTANCE SELF-ADJUSTABLE HEATING ELEMENT
US11303201B2 (en) CR snubber element
US11875948B2 (en) Multilayer capacitor and substrate including the same mounted thereon
US10332680B2 (en) Composite electronic component
TW202109566A (en) Micro-osilator
KR20210056224A (en) Thermo electric element
WO2024018749A1 (en) Device
JP2017535048A (en) Variable power capacitors for RF power applications
KR20140133003A (en) Multilayer ceramic capacitor
US7948737B2 (en) Multilayer capacitor array
US10559509B2 (en) Insulating substrate and semiconductor device using same
US9935187B1 (en) Ambipolar transistor and leakage current cutoff device using the same
US10573711B2 (en) Semiconductor device resistor including vias and multiple metal layers
JPWO2010079662A1 (en) Piezoresistive pressure sensor
JP5418604B2 (en) Variable capacity device
TWI785760B (en) variable capacitor
WO2023038109A1 (en) Power generation function-equipped secondary battery
US20240032185A1 (en) Heat Sink Component Terminations
JP6910599B2 (en) Semiconductor device
US20200105444A1 (en) Varistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842681

Country of ref document: EP

Kind code of ref document: A1