WO2024018733A1 - エージェント制御システム及びエージェント制御方法 - Google Patents
エージェント制御システム及びエージェント制御方法 Download PDFInfo
- Publication number
- WO2024018733A1 WO2024018733A1 PCT/JP2023/017993 JP2023017993W WO2024018733A1 WO 2024018733 A1 WO2024018733 A1 WO 2024018733A1 JP 2023017993 W JP2023017993 W JP 2023017993W WO 2024018733 A1 WO2024018733 A1 WO 2024018733A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- agent
- monitoring
- route
- evaluation index
- task
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 16
- 238000012544 monitoring process Methods 0.000 claims abstract description 279
- 238000011156 evaluation Methods 0.000 claims abstract description 123
- 230000005540 biological transmission Effects 0.000 claims abstract description 15
- 238000004364 calculation method Methods 0.000 claims description 44
- 238000012937 correction Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 4
- 238000012854 evaluation process Methods 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 description 326
- 238000007726 management method Methods 0.000 description 40
- 238000010586 diagram Methods 0.000 description 39
- 238000004891 communication Methods 0.000 description 23
- 230000032258 transport Effects 0.000 description 15
- 102100035888 Caveolin-1 Human genes 0.000 description 13
- 101000715467 Homo sapiens Caveolin-1 Proteins 0.000 description 13
- 101000740981 Homo sapiens Caveolin-2 Proteins 0.000 description 12
- 102100038909 Caveolin-2 Human genes 0.000 description 11
- 102100032212 Caveolin-3 Human genes 0.000 description 9
- 101000869042 Homo sapiens Caveolin-3 Proteins 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000012886 linear function Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/123—Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y10/00—Economic sectors
- G16Y10/40—Transportation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y20/00—Information sensed or collected by the things
- G16Y20/20—Information sensed or collected by the things relating to the thing itself
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y40/00—IoT characterised by the purpose of the information processing
- G16Y40/10—Detection; Monitoring
Definitions
- the present invention relates to an agent control system and the like.
- Automated transport systems are used in various fields to allow agents (transport vehicles such as automobiles) to transport cargo or people from a certain point within a predetermined area to a destination. Even in automated transportation systems, in areas where controlled objects (e.g., self-driving cars) and non-controlled objects (e.g., manually-driven cars and people) coexist, such as in the city, the agent lowers the risk of collision with non-controlled objects. It is desirable to plan the route accordingly.
- controlled objects e.g., self-driving cars
- non-controlled objects e.g., manually-driven cars and people
- Patent Document 1 states, ⁇ The mobile object sorting unit determines the risk potential to be monitored and monitors it so that the search degree and the tracking degree each satisfy a predetermined level. multiple moving objects are assigned to the risk potential determined as the appropriate risk potential.''
- Patent Document 1 only considers monitoring within a predetermined area, and does not particularly consider cases where other tasks (for example, transporting cargo or people) are performed.
- other tasks for example, transporting cargo or people
- Patent Document 1 if a predetermined task other than monitoring is also performed, a dedicated agent corresponding to the task is required, and a large number of agents may be required.
- an object of the present invention to provide an agent control system and the like that allows an agent to perform predetermined tasks while monitoring the agent.
- an agent control system evaluates the quality of the monitoring status for each location within a predetermined area based on monitoring information transmitted from an agent moving within the predetermined area.
- a monitoring state evaluation unit that calculates a monitoring evaluation index indicated by the agent
- a route plan generation unit that generates a route plan for the agent based on the monitoring evaluation index
- business management information including the destination of the agent and the type of task
- a route plan transmission unit that transmits data of the route plan to the agent.
- an agent control system etc. in which an agent can perform predetermined tasks while performing monitoring.
- FIG. 1 is a functional block diagram of an agent control system according to a first embodiment.
- FIG. 2 is a functional block diagram showing a system configuration of an agent in the agent control system according to the first embodiment.
- FIG. 3 is an explanatory diagram regarding the dimensions and orientation of an agent in the agent control system according to the first embodiment.
- FIG. 2 is a functional block diagram showing the system configuration of a base station in the agent control system according to the first embodiment. It is a figure showing an example of map information in an agent control system concerning a 1st embodiment.
- 5A is a partially enlarged view of area K1 in the map information of FIG. 5A used in the agent control system according to the first embodiment.
- FIG. 2 is an explanatory diagram of a coefficient ⁇ oj used for calculating a monitoring evaluation index in the agent control system according to the first embodiment.
- FIG. 2 is an explanatory diagram of a coefficient ⁇ mj used for calculating a monitoring evaluation index in the agent control system according to the first embodiment.
- FIG. 7 is an explanatory diagram showing the route of an agent in a comparative example.
- FIG. 2 is an explanatory diagram showing a global route of an agent in the agent control system according to the first embodiment.
- FIG. 2 is an explanatory diagram showing a relationship between a monitoring evaluation index C mj and a weight W mj in the agent control system according to the first embodiment.
- FIG. 2 is an explanatory diagram showing conditions for avoiding contact with obstacles in the agent control system according to the first embodiment.
- 2 is a flowchart showing the flow of operations of an agent control unit included in the agent control system according to the first embodiment.
- FIG. 2 is a functional block diagram of an agent control system according to a second embodiment.
- FIG. 2 is a functional block diagram showing a system configuration of a base station in an agent control system according to a second embodiment.
- FIG. 7 is an explanatory diagram showing an example of the operation of the monitoring rate calculation unit in the agent control system according to the second embodiment.
- FIG. 7 is an explanatory diagram of a theme park to which an agent control system according to a third embodiment is applied.
- FIG. 7 is an explanatory diagram showing the route of an agent in a comparative example.
- FIG. 7 is an explanatory diagram showing global routes of agents in an agent control system according to a third embodiment.
- FIG. 7 is an explanatory diagram showing a travel route of an agent in an agent control system according to a third embodiment.
- FIG. 1 is a functional block diagram of an agent control system W1 according to the first embodiment.
- the agent control system W1 manages the route planning (coordinates, posture, speed, This is a system that calculates time-series data (e.g., time-series data, etc.) and moves the agents 200-1 to 200-n based on this route plan.
- route planning coordinates, posture, speed, This is a system that calculates time-series data (e.g., time-series data, etc.) and moves the agents 200-1 to 200-n based on this route plan.
- the agents 200-1 to 200-n are mobile bodies that perform automatic operation based on commands from the base station 100 (server). Note that if a predetermined agent plays the role of the base station 100, the base station 100 may be omitted.
- the agent control system W1 includes a base station 100 that calculates routes for agents 200-1 to 200-n within a predetermined area, and an agent 200-1 that moves along the routes calculated by the base station 100. ⁇ 200-n.
- the base station 100 calculates the travel routes of the agents 200-1 to 200-n.
- the base station 100 includes a RAM 101 (Random Access Memory) that is a volatile storage element, a ROM 102 (Read Only Memory) that is a nonvolatile storage element, and a CPU 103 (Central Processing Unit) that includes a processor.
- the base station 100 also includes a bus 104, an input/output interface 105, and a communication device 106. Then, the program stored in the ROM 102 is read out and expanded to the RAM 101, and the CPU 103 executes various processes.
- the bus 104 is a signal line for interconnecting the RAM 101, ROM 102, CPU 103, and input/output interface 105.
- the input/output interface 105 is used for data transmission via the communication device 106.
- the communication device 106 performs predetermined wireless communication with the agents 200-1 to 200-n.
- Communication device 106 is connected to bus 104 via input/output interface 105 .
- FIG. 1 shows an example in which there is one base station 100
- the number of base stations 100 is not limited to this.
- multiple base stations may serve as one server.
- one or more of the agents 200-1 to 200-n may serve as the base station 100.
- the agents 200-1 to 200-n monitor a predetermined area and follow the route based on route information transmitted from the base station 100 via wireless communication.
- the agent 200 will be used not only when referring to individual vehicles of the agents 200-1 to 200-n, but also when referring to the agents collectively.
- the agent 200 includes a RAM 201, a ROM 202, a CPU 203, a bus 204, and an input/output interface 205.
- the agent 200 includes a communication device 206, an external world recognition sensor 207, a position measurement device 208, an attitude measurement device 209, and a control device 210.
- a RAM 201, a ROM 202, and a CPU 203 are connected to an input/output interface 205 via a bus 204. Further, a communication device 206 , an external world recognition sensor 207 , a position measurement device 208 , an attitude measurement device 209 , and a control device 210 are connected to the input/output interface 205 .
- the agent 200 having such a configuration not only moves based on route information transmitted from the base station 100 via wireless communication, but also monitors the driving environment using the external world recognition sensor 207 and sends the results to the base station 100. Send.
- the communication device 206 is, for example, a terminal that enables wireless communication such as Bluetooth, Wi-Fi, or a mobile phone line.
- the external world recognition sensor 207 is a sensor that measures the surrounding environment of the agent 200. As such an external world recognition sensor 207, for example, a LiDAR (Light Detection And Ranging) or a camera is used.
- the position measuring device 208 is a device that measures the position of the agent 200 on the map.
- GNSS Global Navigation Satellite System
- the position and orientation of the agent 200 on the map may be calculated based on SLAM (Simultaneous Localization and Mapping) technology using LiDAR or a camera.
- the posture measuring device 209 is a device that measures the direction and posture of the agent 200.
- an attitude measurement device 209 for example, an IMU (Inertia Measurement Unit) or an encoder is used.
- the control device 210 is a device that converts speed commands and direction commands of the agent 200 into actuator outputs of the agent 200. As such a control device 210, a control microcomputer or the like is used.
- FIG. 2 is a functional block diagram showing the system configuration of the agent 200.
- the CPU 203 of the agent 200 includes a state detection section 211, a follow-up control section 212, and a risk monitoring section 213 as functional components.
- the state detection unit 211 calculates the state (position/direction) of the agent 200 based on the output value of the position measurement device 208 in addition to the output value of the attitude measurement device 209 .
- FIG. 3 is an explanatory diagram regarding the dimensions and orientation of the agent 200.
- the agent 200 is configured as a vehicle and includes front wheels 221, 221 and rear wheels 222, 222.
- the orientation ⁇ (t) shown in FIG. 3 indicates the orientation of the agent 200 with respect to a predetermined direction.
- the steering angle ⁇ (t) is an angle indicating the turning direction of the agent 200 with respect to the azimuth ⁇ (t).
- the length L shown in FIG. 3 is the distance between the front wheel 221 and the rear wheel 222 in the front-rear direction.
- the azimuth ⁇ (t), the steering angle ⁇ (t), and the length L are used for processing by the tracking control unit 212 and the like (see FIG. 2).
- the follow-up control unit 212 outputs control values such as the steering amount and acceleration/deceleration (acceleration amount, brake amount) to the control device 210.
- the control device 210 controls the tires of the agent 200 to have a predetermined rotation speed and the steering wheel to a predetermined rotation angle based on the control value calculated by the follow-up control unit 212.
- the risk monitoring unit 213 detects other vehicles (vehicles to which the agent 200 does not belong) and pedestrians around the agent 200 based on the sensor information acquired from the external world recognition sensor 207, and sends the detection results to the agent 200. It is transmitted along with the position information to the base station 100 (see FIG. 1) via the communication device 206.
- FIG. 4 is a functional block diagram showing the system configuration of base station 100.
- the base station 100 includes an agent information management section 301, a monitoring information management section 302, a map information management section 303, and a business management section 304, as well as an agent control section 300.
- the agent control unit 300 has a function of calculating the movement route of the agent 200 (see FIG. 1).
- the agent control unit 300 is connected to an agent information management unit 301, a monitoring information management unit 302, a map information management unit 303, and a business management unit 304.
- the processing of the agent control unit 300 is executed by the CPU 103 (see FIG. 1) of the base station 100.
- the agent information management unit 301 manages individual information (referred to as agent individual information) of the agent 200 running within a predetermined area.
- agent individual information includes the dimensions of the agent 200 and numerical values indicating the performance of the external world recognition sensor 207 (see FIG. 2), as well as the cruising range of the agent 200.
- the individual agent information managed by the agent information management unit 301 is not limited to this, and may include, for example, the number of people who can board the agent 200 and the mass of luggage that can be loaded.
- agent individual information for example, information collected in advance and stored in the ROM 102 of the base station 100 (see FIG. 1) may be used, or information managed in a server building (not shown) other than the base station 100 may be used.
- the base station 100 may periodically acquire and update agent individual information.
- the agent individual information is output from the agent information management section 301 to the monitoring state evaluation section 305 and also to the route modification section 308.
- the monitoring information management unit 302 collects, in addition to the position of the agent 200 (see FIG. 1) within a predetermined area, the position information of running vehicles and pedestrians other than the agent 200 in a time series. Such monitoring information includes, for example, the position information of surrounding vehicles and pedestrians extracted from the measured values of the position measuring device 208 (see FIG. 1) of the agent 200 and the sensor information of the external world recognition sensor 207 (see FIG. 1). is transmitted to the base station 100 via the communication device 206 and collected. The monitoring information collected in this way is output from the monitoring information management section 302 to the monitoring state evaluation section 305. Note that the monitoring information collection method is not limited to this.
- fixed sensors may be attached to intersections in the city, and information on surrounding pedestrians and vehicles obtained from the fixed sensors may be transmitted to the base station 100. You may also do so.
- a camera or LiDAR is used as such a fixed sensor.
- the map information management unit 303 manages map information of a predetermined area 500 (see FIG. 5A).
- the map information is output from the map information management section 303 to the global route generation section 306.
- FIG. 5A is an explanatory diagram showing an example of map information.
- map information of a predetermined area 500 (area indicated by dots) shown in FIG. 5A is stored in advance in the map information management unit 303 (see FIG. 4).
- FIG. 5B is a partially enlarged view of area K1 in the map information of FIG. 5A.
- the E j -th edge at a point on the map and the road corresponding to the map is defined as the section E j
- the V j -th node is defined as the node V j .
- the map information may be, for example, a map of the predetermined area 500 created in advance and stored in the ROM 102 of the base station 100 (see FIG. 1), or a predetermined map management server outside the base station 100 (see FIG. 1). Maps updated periodically (not shown) may be received via wireless communication.
- the business management unit 304 shown in FIG. 4 manages the destination and main task set for each agent 200 (see FIG. 1).
- the destination information of the agent 200 is managed based on the node Vj included in the map information.
- the destination information may be position information based on a predetermined coordinate system, or may be latitude/longitude information.
- the main task (task) is a task related to services such as transportation of people and cargo by the agent 200. Examples of such main tasks include, but are not limited to, transportation, forwarding, vehicle allocation, and power supply (refueling).
- a server (not shown) that accepts requests for ride allocation etc. from customers may assign destination information and main tasks to the agent 200 and periodically transmit this information to the base station 100 via wireless communication. good.
- the agent control unit 300 includes a monitoring state evaluation unit 305, a global route generation unit 306 (route plan generation unit), a speed limit calculation unit 307, a route correction unit 308, and a route plan transmission unit. 309. Then, the agent control unit 300 calculates a route for each agent 200 based on the agent individual information, monitoring information, map information, and work information (destination/main task), and sends the calculation result to each agent 200. It looks like this.
- the monitoring status evaluation unit 305 evaluates agent individual information obtained from the agent information management unit 301, monitoring information obtained from the monitoring information management unit 302, and the destination and main task of the agent 200 obtained from the business management unit 304. Based on this information, a risk map showing monitoring evaluation indicators for each location is generated. Note that the monitoring evaluation index is a numerical value indicating the quality of the monitoring state for each location within the predetermined area 500 (see FIG. 5A).
- the risk map described above is a map in which each location within the predetermined area 500 is associated with a value of a monitoring evaluation index.
- the risk map does not particularly need to be a graph including edges Ej and nodes Vj (see FIG. 5B), and may be, for example, grid data in which the predetermined area 500 (see FIG. 5A) is divided into grids. .
- the higher the value of the monitoring evaluation index the higher the risk (risk of contact with other vehicles or people, etc.) at that location, and the higher the possibility that monitoring is required.
- the lower the value of the surveillance evaluation index the more likely the location is well-monitored and the risk is low.
- the greater the number of pedestrians and vehicles that passed through section E j within the predetermined time ⁇ T the higher the value of the monitoring evaluation index.
- the greater the number of vehicles (that is, agents 200) responsible for the monitoring task that passed through the section E j within the predetermined time ⁇ T the lower the value of the monitoring evaluation index.
- the predetermined time period ⁇ T is, for example, a cycle at which the calculation of the monitoring evaluation index is repeated.
- the monitoring state evaluation unit 305 evaluates the monitoring state of each section Ej linked to map information.
- the monitoring evaluation index C mj (T+ ⁇ T) at the edge E j at time (T+ ⁇ T) is determined by, for example, a predetermined coefficient ⁇ oj , coefficient ⁇ mj , coefficient ⁇ envj , coefficient ⁇ esp as shown in the following equation (1). It is calculated by multiplying the monitoring evaluation index C mj (T) at time T by the product of C mj (T). Note that the coefficient ⁇ oj is a value determined by the number of vehicles and pedestrians that passed through the section E j within a predetermined time ⁇ T.
- the coefficient ⁇ mj is a value determined by the number of agents 200 responsible for the monitoring task that passed through the interval E j within a predetermined time ⁇ T.
- the coefficient ⁇ envj is a value that reflects the road surface environment, accident occurrence rate, etc. of the section E j .
- the coefficient ⁇ esp is a coefficient (forgetting coefficient) that reflects the passage of time. Note that the subscript "m" attached to the monitoring evaluation index C mj (T) and the coefficient ⁇ mj means monitoring.
- FIG. 6A is an explanatory diagram of the coefficient ⁇ oj used for calculating the monitoring evaluation index.
- the horizontal axis in FIG. 6A is the number of pedestrians/vehicles that passed through the section Ej within a predetermined time
- the vertical axis is the value of the coefficient ⁇ oj .
- the coefficient ⁇ oj is represented by, for example, a linear function with an intercept of 1 and a positive slope a o .
- the larger the number of pedestrians/vehicles that have passed through the section Ej the larger the value set as the coefficient ⁇ oj .
- FIG. 6B is an explanatory diagram of the coefficient ⁇ mj used for calculating the monitoring evaluation index.
- the horizontal axis in FIG. 6B is the number of monitoring vehicles (that is, the agent 200 responsible for the monitoring task) that passed through the section E j within a predetermined time
- the vertical axis is the value of the coefficient ⁇ mj .
- the coefficient ⁇ mj is represented by, for example, a linear function with an intercept of 1 and a negative slope am .
- the coefficient ⁇ oj see FIG. 6A
- the coefficient ⁇ mj see FIG. 6B
- the coefficient ⁇ envj included in the above-mentioned equation (1) is set in consideration of the accident incidence rate and the quality of the outlook based on a prior investigation. For example, for places such as intersections where many accidents occur according to preliminary surveys, the coefficient ⁇ envj is set to a value larger than 1, and the monitoring evaluation index is set to increase as time passes. In addition, for highly safe sections such as roads with good visibility or fences on the border between sidewalks and roads, the coefficient ⁇ envj is set low (for example, 1 or less), and furthermore, as time passes, The monitoring evaluation index is set to be small. By including a coefficient ⁇ envj that depends on the location in the monitoring evaluation index, it is possible to reflect the necessity of monitoring not only according to the number of people and traffic volume but also the situation at the site.
- the coefficient ⁇ esp that takes into account the passage of time is set using a positive constant so that the monitoring evaluation index increases with the passage of time.
- the global route generation unit 306 (route plan generation unit) shown in FIG. ) is generated. Specifically, the global route generation unit 306 generates a global route for each agent 200 (see FIG. 1) based on a graph-based search method such as Dijkstra's algorithm. Note that the "global route” refers to a rough route that the agent 200 takes to reach a predetermined destination.
- FIG. 7A is an explanatory diagram showing an agent route in a comparative example.
- symbols CAV1 and CAV2 shown in FIG. 7A indicate vehicles that are examples of the agent 200 (see FIG. 1).
- the term "agent” will be used for these symbols CAV1 and CAV2 as well.
- FIG. 7A shows a comparative example of route planning in which only the conventional route length is considered. That is, the shortest route Gp1 for agent CAV1 to travel to destination Tg2 after traveling to destination Tg1 and picking up a person is generated. Furthermore, the shortest route Gp2 for another agent CAV2 to travel to the destination Tg3 has been generated.
- FIG. 7B is an explanatory diagram showing global routes of agents in the agent control system according to the first embodiment.
- agents CAV1 and CAV2 existing within the predetermined area 500 perform tasks such as transportation, forwarding, and charging while patrolling (that is, monitoring).
- the above-mentioned "tour” specifically means that the agents CAV1 and CAV2 move within the predetermined area 500 while recognizing the outside world based on the route plan transmitted from the agent control unit 300 (see FIG. 4).
- the sensor 207 see FIG. 1 detects surrounding people, other vehicles, etc., and the detection results are sent as monitoring information to the monitoring information management unit 302 (see FIG. 4).
- Agent CAV1 performs a vehicle dispatch task to destination Tg1, then carries passengers and performs a transport task to destination Tg2. At this time, it is assumed that the monitoring evaluation index of section E1 shown in FIG. 7B is relatively high. Agent CAV1, which carries passengers and moves, performs a transportation task, but if the shortest route is selected, route Gp1 that passes through section E1 will be selected.
- the agent CAV1 takes a detour and selects the route Gp3 toward the destination Tg2 so as to reduce the risk. This increases the reliability when agent CAV1 performs the transport task. Incidentally, while performing the transport task, the agent CAV1 also monitors its own travel route.
- agent CAV2 shown in FIG. 7B is not carrying passengers and travels to destination Tg3 in order to supply power. Further, it is assumed that the monitoring evaluation index of the intermediate section E2 is relatively high.
- agent CAV2 is assigned a monitoring task to improve the monitoring situation in the section with a high monitoring evaluation index within the predetermined area 500. Specifically, agent CAV2 selects a route Gp4 that passes through a different section E2 from the shortest route Gp2 shown in FIG. 7A. Then, the agent CAV2 recognizes the surroundings of the section E2 using the external world recognition sensor 207 (see FIG. 2), improves the monitoring evaluation index of the section E2 based on the above formula (1), and then moves to the destination Tg3. Head to.
- the agents CAV1 and CAV2 perform both monitoring and main tasks (transportation, vehicle allocation, forwarding, power supply, etc.). This eliminates the need to provide a dedicated monitoring agent (not shown) or a fixed sensor (not shown) in a predetermined area 500 (see FIG. 5A), thereby increasing the efficiency of the entire system and reducing costs. You can also do that.
- ⁇ Monitoring task ratio ⁇ i > In order to realize the route planning described above, in the first embodiment, in addition to the type of main task, the capabilities (sensing range, resolution, environmental resistance, etc.) of the external world recognition sensor 207 (see FIG. 2) installed in the agent 200 are ), the global route generation unit 306 (see FIG. 4) gives the agent 200 a monitoring task. Note that the ratio of the importance of monitoring to the main task (task) is referred to as the monitoring task ratio ⁇ i (i is the identification number of the agent 200).
- the monitoring evaluation index is calculated for each section E j (see FIG. 5B) of the predetermined region 500 (see FIG. 5A).
- the monitoring task ratio ⁇ i is individually set so as to correspond to a plurality of agents 200 on a one-to-one basis.
- the monitoring task ratio ⁇ i is determined based on the type of the main task of the agent 200 and the sensor capability (sensing range, resolution, environmental resistance, etc.) of the external world recognition sensor 207 (see FIG. 2) installed in the agent 200. Ru. Note that the monitoring task ratio ⁇ i may be determined based on factors other than these. For example, the cruising distance of the agent 200 may be taken into consideration, or environmental factors such as weather and time of day may be added. To give a specific example, the longer the cruising distance of the agent 200, the higher the monitoring task ratio ⁇ i may be set.
- the monitoring task ratio ⁇ i may be set to be higher than in the case of sunny or cloudy weather.
- the monitoring task ratio ⁇ i may be set to be higher during the night time period than in other time periods.
- Data specifying the main task assigned to the agent 200 is output from the business management unit 304 (see FIG. 4) to the global route generation unit 306.
- the main task types of the agent 200 include transportation, forwarding, vehicle dispatch, power supply, and warehousing.
- the global route generation unit 306 increases the monitoring task ratio ⁇ i and assigns the monitoring task ratio to the agent 200. Make it bigger.
- the global route generation unit 306 (route plan generation unit) is more efficient when the main task is forwarding, dispatching vehicles, or moving for power supply than when the main task is transporting people or cargo. sets the monitoring task ratio ⁇ i to a high value.
- the global route generation unit 306 lowers the monitoring task ratio ⁇ i and reduces the ratio of monitoring tasks imposed on the agent 200.
- the main task of the agent 200 may be switched midway through, such as from "vehicle allocation" to "transportation.”
- the monitoring task ratio ⁇ i also changes with changes in the cruising range of the agent 200, the weather, and the time of day.
- the monitoring task ratio ⁇ i is set to a predetermined value for each main task, for example. Furthermore, if the external world recognition sensor 207 (see FIG. 2) installed in each agent 200 is different, the global route generation unit 306 (route plan generation unit) determines the performance (sensing range, resolution, , durability, etc.), the monitoring task ratio ⁇ i is set to a higher value. Specifically, an additional value of the monitoring task ratio ⁇ i that takes into account the external world recognition sensor 207 (see FIG. 2) is set in advance for each agent 200, and the additional value is added to a predetermined monitoring task ratio based on the type of the main task. The monitoring task ratio ⁇ i of the agent 200 may be calculated by
- the weight w j of the section E j used for calculating the route of the agent 200 is determined using, for example, a weight w dj related to the route length of the section E j and a weight w mj related to the size of the monitoring evaluation index of the section E j . It is calculated based on the following equation (2).
- the global route generation unit 306 sets the global route for the agent 200 so that, for example, the sum of weights w j when the agent 200 moves to a predetermined destination is minimized.
- the weight w dj related to the route length included in equation (2) is set by measuring the route length of the section E j in advance from the map information. Note that the longer the distance of the section E j is, the larger the value of the weight w dj is. Further, the weight w mj regarding the magnitude of the monitoring evaluation index is calculated based on the monitoring task ratio ⁇ i and the monitoring evaluation index C mj , for example.
- FIG. 8 is an explanatory diagram showing the relationship between the monitoring evaluation index C mj and the weight w mj .
- the horizontal axis in FIG. 8 is the monitoring evaluation index C mj in the section E j .
- the vertical axis of FIG. 8 is the weight w mj regarding the monitoring evaluation index C mj .
- the weight w mj is set to be smaller as the monitoring evaluation index C mj is larger (see the solid straight line M1 in FIG. 8). .
- the global route generation unit 306 (route plan generation unit) generates a route plan such that the higher the monitoring task ratio ⁇ i , the higher the monitoring evaluation index C mj is for the agent 200 to travel on a route.
- routes with poor monitoring status are preferentially monitored by the agent 200 with a relatively high monitoring task ratio ⁇ i.
- the predetermined value ⁇ th is the weight w mj set by the global route generation unit 306. This is a threshold value of the monitoring task ratio ⁇ i that is a criterion for determining which of the straight lines M1 and M2 shown in FIG. 8 should be used, and is set in advance.
- the weight w mj is set to be larger as the monitoring evaluation index C mj is larger (see the broken line M2 in FIG. 8). .
- the global route generation unit 306 increases the weight w mj of a route with a large monitoring evaluation index C mj and a high risk. As a result, for example, the agent 200 transporting people or cargo can be prevented from traveling along a route that is poorly monitored.
- the method for calculating the weight w mj is not limited to the example shown in FIG. 8 .
- the slope of the straight line indicating the monitoring evaluation index C mj and the weight w mj may be a function of the monitoring task ratio ⁇ i .
- the weight w mj may change exponentially with respect to the monitoring evaluation index C mj .
- the formula for calculating the weight w j is not limited to formula (2); for example, in order to increase the influence of the monitoring task ratio ⁇ i , the global route generation unit 306 may use the following formula (3). Good too.
- the range of the monitoring task ratio ⁇ i included in equation (3) is 0 ⁇ i ⁇ 1.
- the global route generation unit 306 calculates the global route of each agent 200 by a graph-based search method such as Dijkstra's method, using the weight w j of the interval E j calculated by the above procedure. .
- ⁇ Speed limit calculation unit 307 calculates the monitoring evaluation index C mj calculated by the monitoring state evaluation unit 305 (see FIG. 4), the monitoring task ratio ⁇ i calculated by the global route generation unit 306 (see FIG. 4), and The speed limit for the agent 200 is calculated based on . The method for calculating the speed limit will be described later.
- the route modification unit 308 shown in FIG. 4 modifies the route of the agent 200. That is, the route modification unit 308 refers to the global route calculated by the global route generation unit 306 (see FIG. 4), and further causes the agent 200 to follow the route using the speed limit calculated by the speed limit calculation unit 307 as a constraint. Generate a target route for. Note that for route correction, for example, by using a model predictive control framework, it is possible to formulate a route that explicitly incorporates speed constraints.
- the agent CAV4 is equipped with the external world recognition sensor 207 (see FIG. 2) with a wide sensing range (see the dotted triangle).
- the time-series positions of agents CAV3 and CAV4 for each calculation step are indicated by black triangle marks.
- agent CAV3 performs a transport task, and the other agent CAV4 performs a forwarding task. It is also assumed that agents CAV3 and CAV4 are both passing through intersection CR13 and moving toward node V5. Note that it is assumed that agents CAV3 and CAV4 share the same value as the monitoring evaluation index for section E j within intersection CR13.
- the speed limit calculation unit 307 Solve the speed constraints imposed on .
- the speed limit calculation unit 307 (see FIG. 4) imposes constraints on agent CAV4 to avoid collisions with obstacles. You can. This allows the agent CAV4 to generate a route that avoids pedestrians and vehicles, or a route that decelerates or stops just before pedestrians and vehicles.
- a vector including the position and orientation of the i-th agent 200 is p i
- a node on the global route Gpi of the i-th agent 200 calculated by the global route generation unit 306 (see FIG. 4) is V i
- a virtual If the target position is r i , it is expressed as the following equations (4a) and (4b).
- the deviation between the vector p i and the virtual target position r i is defined as e i , as shown in the following equation (4c).
- k means a calculation step (time).
- the motion model of the agent 200 is formulated as shown in equation (5), for example. Note that the speed v i and the steering angle ⁇ i included in equation (5) correspond to the control command of the agent 200. Further, L is the distance in the front-rear direction between the front wheel 221 and the rear wheel 222 of the agent 200 (see FIG. 3).
- a control command vector u i that summarizes the speed v i and steering angle ⁇ i of the i-th agent 200 is defined by equation (6).
- the route correction unit 308 calculates the deviation e i (k) between the position p i (k) of the agent 200 at each time k and the virtual target position r i (k) on the global route Gpi.
- the command vector u i (k) is calculated so that the command vector u i (k) becomes small.
- Equation (8) is used to optimize the route from a predetermined time k0 to time (Np+k0-1).
- the optimal control input u i (k) is calculated at each time k so as to minimize the evaluation function J expressed by equation (8).
- the optimal control input u i (k) obtained in this way is calculated.
- time series data (data from time k0 to Np steps ahead) specified by the position (x(k), y(k)) and orientation ⁇ (k) is generated.
- the speed limit calculation unit 307 shown in FIG. 4 calculates, for example, a speed restriction expressed by the following equation (9) based on the monitoring evaluation index C mj of the section E j in addition to the monitoring task ratio ⁇ i .
- a constraint condition is given to the predetermined evaluation function J, and a predetermined constraint is imposed on the speed of the agent 200.
- the speed v i of the agent 200 is suppressed to the predetermined speed limit v slow or less. It will be done. In other cases, the speed v i of the agent 200 is suppressed to a predetermined speed upper limit value v max or less. Note that the value of the speed limit v slow is lower than the speed upper limit value v max . In this way, when the monitoring task ratio ⁇ i is less than the predetermined value ⁇ th , the speed limit calculation unit 307 (see FIG.
- the speed limit v slow is set lower than the speed limit (speed upper limit v max ) when the monitoring task ratio ⁇ i is equal to or greater than the predetermined value ⁇ th .
- the route correction unit 308 Based on the predetermined speed limit and the monitoring information, the route correction unit 308 suppresses the traveling speed of the agent 200 below the speed limit while avoiding contact between the agent 200 and surrounding objects. The travel route of the agent 200 is corrected.
- the speed limit calculation unit applies a speed restriction based on the monitoring evaluation index C mj of the next section in which the agent 200 is traveling.
- 307 may give speed constraints to each agent 200.
- the speed limit v slow at this time is preferably a speed that can sufficiently cope with sudden jumps and the like.
- the speed upper limit value v max for example, the lower value of the maximum speed of the agent 200 or the legal speed is used.
- FIG. 10 is an explanatory diagram showing conditions for avoiding contact with obstacles.
- the agent 200 In order for the agent 200 to avoid contact with vehicles (including other agents 200) and pedestrians, for example, constraints regarding the relative distance between the agent 200 and other objects may be imposed on the evaluation function J described above. You can also do this.
- the agent 200 when the width of the i-th agent 200 is w i and the length is L i , the agent 200 can be surrounded by a circle with a radius ra i in equation (10).
- the distance between the agent 200 and the obstacle Q1 that may come into contact with the i-th agent 200 is expressed by the following equation (11).
- r obj represents the size of the obstacle Q1 such as a pedestrian or another vehicle.
- a value calculated by the external world recognition sensor 207 may be used, or a preset value may be used regardless of the type of obstacle Q1. good.
- the route plan transmission unit 309 shown in FIG. 4 transmits route plan data to each agent 200. That is, the route plan transmission unit 309 transmits the route calculated by the route modification unit 308 (see FIG. 4) to each agent 200 by wireless communication. Each agent 200 performs follow-up control in a predetermined manner based on the route transmitted by the route plan transmission unit 309.
- FIG. 11 is a flowchart showing the flow of operations of the agent control unit (see also FIG. 4 as appropriate).
- the agent control unit 300 acquires individual information (agent individual information) of the agent 200 to be controlled from the agent information management unit 301.
- the agent control unit 300 acquires the destination information and task information of the agent 200 from the business management unit 304.
- the agent control unit 300 acquires monitoring information including the position of the agent 200 and the current position of pedestrians and running vehicles within the predetermined area 500 from the monitoring state evaluation unit 305.
- step S604 the agent control unit 300 uses the monitoring state evaluation unit 305 to calculate a monitoring evaluation index for each section within the predetermined area 500 (monitoring state evaluation process). That is, the agent control unit 300 calculates the monitoring evaluation index for each section based on the position of the agent 200 obtained from the monitoring state evaluation unit 305 and the current position of pedestrians and running vehicles within the predetermined area 500.
- step S605 the agent control unit 300 uses the global route generation unit 306 to calculate the global route of the agent 200, and also calculates the monitoring task ratio ⁇ i (route plan generation process). That is, the agent control unit 300 uses the monitoring evaluation index for each section calculated in step S604, the map information acquired by the map information management unit 303, and the destination information/main information of the agent 200 acquired by the business management unit 304. Based on the task information, the global route Gpi and monitoring task ratio ⁇ i of each agent 200 are calculated. Note that for the agent 200 whose global route has already been calculated, the previous global route calculation result may be used as is in order to shorten the calculation time.
- step S606 the agent control unit 300 uses the speed limit calculation unit 307 to calculate the speed limit of the agent 200. That is, the agent control unit 300 determines the agent 200 based on the risk map indicating the monitoring evaluation index of each point calculated by the monitoring status evaluation unit 305 and the monitoring task ratio ⁇ i calculated by the global route generation unit 306. Calculate speed limit.
- step S607 the agent control unit 300 uses the route modification unit 308 to modify the route of the agent 200. That is, the agent control unit 300 calculates a route between nodes based on the speed limit of the agent 200 calculated by the speed limit calculation unit 307 and obstacle information around the agent 200.
- step S608 the agent control unit 300 causes the route plan transmission unit 309 to transmit information on the route calculated in step S607 to each agent 200 by wireless communication (route plan transmission processing). Note that each agent 200 that has received route information from the base station 100 (see FIG. 1) performs follow-up control within the predetermined area 500 based on the route information. By repeating the above process, each agent 200 within the predetermined area 500 is controlled by the agent control unit 300.
- the agents 200 in the predetermined area 500 are responsible for monitoring tasks depending on their respective abilities and the type of main task. This eliminates the need to provide an agent (not shown) that performs only monitoring or a fixed sensor (not shown), so that monitoring and transport can be performed with a smaller number of agents 200 overall. As a result, the efficiency of the entire system can be improved and operational costs can be reduced. Further, by the agent control unit 300 calculating the route of the agent 200 based on the monitoring evaluation index, it is possible to create an efficient route plan while maintaining the reliability of each agent 200. As described above, according to the first embodiment, it is possible to provide the agent control system W1 in which the agent 200 can perform monitoring and also perform predetermined tasks.
- an agent control unit 300A includes a monitoring rate calculation unit 310 (see FIG. 12), and corresponds to a monitoring evaluation index based on the detection result of a fixed sensor 400 etc. (see FIG. 12).
- This embodiment differs from the first embodiment in that a predetermined monitoring rate is set. Note that other aspects are the same as those in the first embodiment. Therefore, the parts that are different from the first embodiment will be explained, and the explanation of the overlapping parts will be omitted.
- FIG. 12 is a functional block diagram of the agent control system W2 according to the second embodiment.
- the agent control system W2 includes a base station 100A, agents 200-1 to 200-n, and fixed sensors 400-1 to 400-m.
- the fixed sensors 400-1 to 400-m are, for example, cameras, and are installed at intersections and the like within the predetermined area 500 (see FIG. 5A). Then, the detection results of the fixed sensors 400-1 to 400-m are transmitted every moment to the base station 100A. Note that the fixed sensors 400-1 to 400-m are collectively referred to as the fixed sensor 400.
- a predetermined area 500 (see FIG. 5A) is monitored by a fixed sensor 400 installed at a place with a high traffic volume of people and vehicles, such as an intersection, and an agent 200 responsible for the monitoring task.
- Providing a plurality of fixed sensors 400 improves the sensing capability of the entire system, but at the same time increases the communication amount of the entire system. Therefore, in the second embodiment, the monitoring rate of the agent 200 and the fixed sensor 400 is increased in places where the monitoring status is poor or where there is a lot of foot traffic, based on the monitoring evaluation index of each place. I try to set the monitoring rate low in places where there is little traffic. Thereby, the amount of communication can be reduced while appropriately monitoring the predetermined area 500.
- FIG. 13 is a functional block diagram showing the system configuration of the base station 100A.
- the agent control unit 300A includes a monitoring state evaluation unit 305, a global route generation unit 306, a speed limit calculation unit 307, a route modification unit 308, a route plan transmission unit 309, and the like. , a monitoring rate calculation section 310.
- the monitoring rates of the agent 200 and the fixed sensor 400 are calculated, and the calculation results are sent to the agent 200 and the fixed sensor 400.
- the agent information management unit 301 shown in FIG. 13 holds individual information of the fixed sensor 400 (see FIG. 12) in addition to individual information of the agent 200 (see FIG. 12).
- the individual information of the fixed sensor 400 includes the installation position of the fixed sensor 400 and sensor information (sensing range, resolution, environmental resistance, etc.).
- FIG. 14 is an explanatory diagram showing an example of the operation of the monitoring rate calculation section (see also FIG. 13 as appropriate).
- sensor acquisition indicates an operation in which the fixed sensor 400 (see FIG. 12) or the external world recognition sensor 207 of the agent 200 (see FIG. 12) generates monitoring information.
- monitoring processing indicates processing in which the fixed sensor 400 or agent 200 transmits monitoring information to the base station 100A (see FIG. 12).
- the horizontal axis of the graph on the left side of the paper in FIG. 14 is time, and the vertical axis is the monitoring evaluation index C mj .
- the solid line graph in FIG. 14 shows the transition of the monitoring evaluation index C mj at a predetermined location, and the broken line graph shows the transition of the monitoring evaluation index C mj at another location.
- the monitoring rate calculation section 310 calculates the rate of the agent 200 and the fixed sensor based on the individual information of the agent 200 and the fixed sensor 400 obtained from the agent information management section 301 as well as the monitoring information obtained from the monitoring state evaluation section 305.
- the communication rate (that is, the monitoring rate) of the monitoring information of the sensor 400 is calculated.
- the monitoring rate calculated in this manner is transmitted to the agent 200 and the fixed sensor 400 via the route plan transmission unit 309.
- the monitoring rate is the number of times (that is, the frequency) that the agent 200 or the fixed sensor 400 provides monitoring information to the base station 100A (monitoring status evaluation unit 305, etc.) per unit time, and is set for each
- the monitoring rate calculation unit 310 calculates the monitoring rate based on the monitoring evaluation index C mj . That is, the monitoring rate calculation unit 310 calculates the monitoring rate by comparing the monitoring evaluation index C mj and the predetermined threshold C th . For example, if the traffic volume or foot traffic in a certain section E mj increases and the monitoring evaluation index C mj becomes equal to or higher than the threshold value C th , the monitoring rate calculation unit 310 monitors the agent 200 and fixed sensor 400 in that area. increase the rate. In other words, the higher the monitoring evaluation index C mj is, the higher the monitoring rate calculation unit 310 increases the monitoring rate of the location corresponding to this monitoring evaluation index C mj .
- the monitoring rate calculation unit 310 lowers the monitoring rate of the agent 200 and the fixed sensor 400 .
- the method for calculating the monitoring rate is not limited to this, and for example, the monitoring rate may be varied in inverse proportion to the value of the monitoring evaluation index C mj .
- the monitoring rate calculation unit 310 changes the monitoring rates of the agent 200 and the fixed sensor 400 based on monitoring information.
- the amount of communication is adjusted according to the monitoring situation within the predetermined area 500, so that an increase in the amount of communication of the entire system can be suppressed.
- the fixed sensor 400 at a place with a lot of foot traffic, such as an intersection, the sensing ability of the entire system can be increased.
- the third embodiment differs from the first embodiment in that the agent control system W1 (see FIG. 1) is used to transport and monitor people at the theme park 700 (see FIG. 15). .
- the agent control system W1 see FIG. 1
- FIGS. 1, 2, and 4 are the same as those in the first embodiment. Therefore, the parts that are different from the first embodiment will be explained, and the explanation of the overlapping parts will be omitted.
- FIG. 15 is an explanatory diagram of a theme park 700 to which the agent control system according to the third embodiment is applied.
- the theme park 700 is provided with an entrance area and a central area, as well as areas A to D surrounding the central area.
- agents CAV5, CAV6, CAV7, and CAV8 each transport passengers from a certain location to a predetermined destination.
- agent CAV5 shown in FIG. 15 picks up a passenger in area A and transports the passenger to destination Tg5 in area C.
- FIG. 16A is an explanatory diagram showing an agent route in a comparative example.
- map information of a graph G (E j , V j ) including a node V j set in front of a major attraction and a section E j connecting each node V j is shall be used.
- section E10 which is a passageway from the central area to area C, is crowded with pedestrians, and the monitoring evaluation index of section E10 is in a relatively high state (that is, a high risk state).
- agent CAV5 carries a passenger and travels along the shortest route, a predetermined route Gp5 that passes through section E10 as shown in the comparative example of FIG. 16A is calculated.
- FIG. 16B is an explanatory diagram showing global routes of agents in the agent control system according to the third embodiment.
- a route is set such that the agent CAV5, which transports people, passes through places with low monitoring evaluation indexes.
- a route Gp6 is calculated that passes through the section E11, which has a lower risk than the section E10 described above.
- a route Gp5 is calculated such that the agent CAV6 patrols the section E10 where the monitoring evaluation index is relatively large.
- FIG. 17 is an explanatory diagram showing a running route of an agent in the agent control system according to the third embodiment.
- agents CAV5 and CAV6 ultimately travel along a route (trajectory) as shown in FIG. 17.
- the agent control system W1 (see FIG. 1) creates a route plan that imposes a monitoring task on each of the agents CAV5 and CAV6, depending on the content of the main task.
- the monitoring situation of the theme park 700 can be improved by having the agent CAV 6 that is being forwarded monitor high-risk areas.
- the agent control systems W1, W2, etc. according to the present invention have been described above in each embodiment, the present invention is not limited to these descriptions, and various changes can be made.
- a monitoring evaluation index is calculated based on individual agent information, monitoring information, and information on the destination/main task of the agent 200, but the present invention is not limited to this. That is, when calculating the monitoring evaluation index, some of the above information (for example, agent individual information and destination/main task information) may be omitted. That is, the monitoring status evaluation unit 305 calculates a monitoring evaluation index indicating the quality of the monitoring status for each location within the predetermined area based on the monitoring information transmitted from the agent 200 moving within the predetermined area. Good too. Even with such a configuration, the same effects as in each embodiment can be achieved.
- the agent control unit 300 includes the speed limit calculation unit 307 and the route correction unit 308, but the invention is not limited to this. That is, one or both of the speed limit calculation section 307 and the route modification section 308 may be omitted from the configuration of the agent control section 300. Note that the same can be said of the second embodiment and the third embodiment.
- the present invention is not limited to this. That is, a part of each of the configurations described above may be provided in another server or a predetermined agent 200.
- the monitoring evaluation index C mj the number of vehicles and pedestrians that passed through the section E j within the predetermined time ⁇ T, the number of agents 200 responsible for monitoring tasks, the road surface environment of the section E j , the accident incidence rate, etc. , the case where the monitoring evaluation index C mj is calculated has been described, but the present invention is not limited to this. That is, based on at least one of the traffic volume of pedestrians and general vehicles (vehicles different from the agent 200 and not specifically monitored), the traffic volume of monitored vehicles including the agent 200, and road conditions. Then, the monitoring status evaluation unit 305 may calculate the monitoring evaluation index C mj .
- the monitoring task ratio ⁇ i is set based on the type of the main task (task) of the agent 200 and the performance of the external world recognition sensor 207, but the present invention is not limited to this. That is, even if the global route generation unit 306 (route plan generation unit) sets the monitoring task ratio ⁇ i in association with the agent 200 based on the type of main task (task) included in the business management information. good.
- the agent control system W2 includes a plurality of fixed sensors 400, but the present invention is not limited to this.
- the monitoring rate calculation unit 310 may calculate the monitoring rate based on the monitoring evaluation index and transmit this monitoring rate to the agent 200. Even with such a configuration, the same effects as in the second embodiment can be achieved.
- the moment-by-moment risk map showing the monitoring evaluation index for each point described in the first embodiment may be displayed on a display (display device) of the administrator or the like.
- the momentary monitoring rate described in the second embodiment may be displayed on a display (display device) of an administrator or the like in association with the identification number of the fixed sensor 400 or agent 200. This makes it easier for the administrator and the like to understand the monitoring evaluation index and monitoring rate in the predetermined area 500.
- an automatic transport system for a predetermined area 500 see FIG. 5A
- a mobile system for a theme park 700 see FIG. 15
- the present invention is not limited to these applications. isn't it.
- it can be applied to factories, ports, and distribution warehouses where people and moving objects coexist, and it can also be applied to other areas such as agriculture (farms) and tourism.
- each embodiment can be combined as appropriate.
- the system configuration of the second embodiment (see FIGS. 12 and 13) is applied to the theme park 700 (see FIG. 15) described in the third embodiment.
- the processing in the agent control system W1 and the like may be executed as a predetermined program of a computer.
- the above program can be provided via a communication line, or can be written on a recording medium such as a CD-ROM and distributed.
- Agent control system 100,100A base station 200,200-1,200-2,...,200n agent 207 external world recognition sensor 300,300A agent control section 301 agent information management section 302 monitoring information management section 303 map information management section 304 business management section 305 Monitoring status evaluation unit 306 Global route generation unit (route plan generation unit) 307 Speed limit calculation section 308 Route correction section 309 Route plan transmission section 310 Monitoring rate calculation section 400, 400-1,400-2,..., 400-m Fixed sensor 500 Predetermined area 700 Theme park (predetermined area) CAV1, CAV2, CAV3, CAV4, CAV5, CAV6, CAV7, CAV8 Agent W1, W2 Agent control system
Landscapes
- Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Accounting & Taxation (AREA)
- Economics (AREA)
- General Business, Economics & Management (AREA)
- Development Economics (AREA)
- Business, Economics & Management (AREA)
- Operations Research (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Traffic Control Systems (AREA)
Abstract
エージェントが監視を行いつつ、所定のタスクも行うことが可能なエージェント制御システム等を提供する。エージェント制御システムは、所定領域内で移動するエージェントから送信される監視情報に基づいて、所定領域内の場所ごとの監視状態の良し悪しを示す監視評価指標を算出する監視状態評価部(305)と、エージェントの移動先及びタスクの種別を含む業務管理情報と、監視評価指標と、に基づいて、エージェントの経路計画を生成する大域経路生成部(306)と、経路計画のデータをエージェントに送信する経路計画伝達部(309)と、を備える。
Description
本発明は、エージェント制御システム等に関する。
所定領域内のある地点から目的地までエージェント(自動車等の搬送車両)に貨物や人を運ばせるための自動搬送システムが様々な分野で用いられている。自動搬送システムの中でも街中のように、制御対象(例えば、自動運転車)と非制御対象(例えば、手動運転車や人)が混在するエリアでは、エージェントが非制御対象との衝突リスクを低くするような経路計画を行うことが望ましい。
このような技術に関して、例えば、特許文献1には、「移動体振分け部では、探索度及び追従度の各々が、予め定めた水準を満足するように、監視すべきリスクポテンシャルを判定し、監視すべきリスクポテンシャルとして判定されたリスクポテンシャルに、複数の移動体を割り当てる。」と記載されている。
しかしながら、特許文献1に記載の技術では、所定エリア内の監視のみが考慮されており、他のタスク(例えば、貨物や人の搬送)を行う場合については特に考慮されていない。特許文献1に記載の技術において、仮に、監視以外の所定のタスクも行う場合には、当該タスクに対応する専用のエージェントが必要となり、多くのエージェントを要する可能性がある。
そこで、本発明は、エージェントが監視を行いつつ、所定のタスクも行うことが可能なエージェント制御システム等を提供することを課題とする。
このような課題を解決するために、本発明に係るエージェント制御システムは、所定領域内で移動するエージェントから送信される監視情報に基づいて、前記所定領域内の場所ごとの監視状態の良し悪しを示す監視評価指標を算出する監視状態評価部と、前記エージェントの移動先及びタスクの種別を含む業務管理情報と、前記監視評価指標と、に基づいて、前記エージェントの経路計画を生成する経路計画生成部と、前記経路計画のデータを前記エージェントに送信する経路計画伝達部と、を備えることとした。
本発明によれば、エージェントが監視を行いつつ、所定のタスクも行うことが可能なエージェント制御システム等を提供できる。
≪第1実施形態≫
図1は、第1実施形態に係るエージェント制御システムW1の機能ブロック図である。
エージェント制御システムW1は、所定領域内(例えば、特定の地域やテーマパーク)の各エージェント200-1~200-n(ロボットや車両等の制御可能な移動体)の経路計画(座標、姿勢、速度等の時系列データ)を算出し、この経路計画に基づいてエージェント200-1~200-nを移動させるシステムである。
図1は、第1実施形態に係るエージェント制御システムW1の機能ブロック図である。
エージェント制御システムW1は、所定領域内(例えば、特定の地域やテーマパーク)の各エージェント200-1~200-n(ロボットや車両等の制御可能な移動体)の経路計画(座標、姿勢、速度等の時系列データ)を算出し、この経路計画に基づいてエージェント200-1~200-nを移動させるシステムである。
第1実施形態では、一例として、所定領域で自動運転車が人や物資の配送を行うシステムについて説明する。なお、第1実施形態の適用先は、所定領域内の自動運転車に限定されるものではなく、後記するように、港湾やテーマパーク等のエリア内の搬送車両等に対しても適用可能である。また、エージェント200-1~200-nとは、基地局100(サーバ)からの指令に基づいて自動運転を行う移動体である。なお、所定のエージェントが基地局100の役割を担う場合には、基地局100を省略することも可能である。
図1に示すように、エージェント制御システムW1は、所定領域内のエージェント200-1~200-nの経路を算出する基地局100と、基地局100が算出した経路通りに移動するエージェント200-1~200-nと、を含んで構成されている。
<基地局>
基地局100は、エージェント200-1~200-nの走行経路を算出する。基地局100は、揮発性の記憶素子であるRAM101(Random Access Memory)と、不揮発性の記憶素子であるROM102(Read Only Memory)と、プロセッサを含むCPU103(Central Processing Unit)と、を備えている。また、基地局100は、前記した構成の他、バス104と、入出力インタフェース105と、通信装置106と、を備えている。そして、ROM102に記憶されたプログラムを読み出してRAM101に展開し、CPU103が各種処理を実行するようになっている。
基地局100は、エージェント200-1~200-nの走行経路を算出する。基地局100は、揮発性の記憶素子であるRAM101(Random Access Memory)と、不揮発性の記憶素子であるROM102(Read Only Memory)と、プロセッサを含むCPU103(Central Processing Unit)と、を備えている。また、基地局100は、前記した構成の他、バス104と、入出力インタフェース105と、通信装置106と、を備えている。そして、ROM102に記憶されたプログラムを読み出してRAM101に展開し、CPU103が各種処理を実行するようになっている。
バス104は、RAM101、ROM102、CPU103、及び入出力インタフェース105を相互に接続するための信号線である。入出力インタフェース105は、通信装置106を介したデータ伝送に用いられる。通信装置106は、エージェント200-1~200-nとの間で無線通信を所定に行う。通信装置106は、入出力インタフェース105を介して、バス104に接続されている。
なお、図1には、基地局100が一台である例を示しているが、基地局100の数はこれに限定されるものではない。例えば、複数の基地局が一つのサーバの役割を果たすようにしてもよい。また、エージェント200-1~200-nのうちの一台又は数台が基地局100の役割を果たすようにしてもよい。
<エージェント200>
エージェント200-1~200-nは、基地局100から無線通信で送信される経路情報に基づいて、所定領域内の監視を行うとともに、経路追従走行を行う。以下では、エージェント200-1~200-nの個々の車両を示す場合の他、エージェントを総称する場合も、エージェント200と称することとする。図1に示すように、エージェント200は、RAM201と、ROM202と、CPU203と、バス204と、入出力インタフェース205と、を備えている。また、エージェント200は、前記した構成の他に、通信装置206と、外界認識センサ207と、位置計測装置208と、姿勢計測装置209と、制御装置210と、を備えている。
エージェント200-1~200-nは、基地局100から無線通信で送信される経路情報に基づいて、所定領域内の監視を行うとともに、経路追従走行を行う。以下では、エージェント200-1~200-nの個々の車両を示す場合の他、エージェントを総称する場合も、エージェント200と称することとする。図1に示すように、エージェント200は、RAM201と、ROM202と、CPU203と、バス204と、入出力インタフェース205と、を備えている。また、エージェント200は、前記した構成の他に、通信装置206と、外界認識センサ207と、位置計測装置208と、姿勢計測装置209と、制御装置210と、を備えている。
図1の例では、RAM201、ROM202、及びCPU203が、バス204を介して、入出力インタフェース205に接続されている。また、通信装置206、外界認識センサ207、位置計測装置208、姿勢計測装置209、及び制御装置210が、入出力インタフェース205に接続されている。このような構成を備えるエージェント200は、基地局100から無線通信で送信された経路情報に基づいて移動する他、外界認識センサ207を用いて走行環境の監視を行い、その結果を基地局100に送信する。
通信装置206は、例えば、BluetoothやWi-Fi、携帯電話回線等の無線通信を可能とする端末である。外界認識センサ207は、エージェント200の周囲環境を計測するセンサである。このような外界認識センサ207として、例えば、LiDAR(Light Detection And Ranging)やカメラが用いられる。
位置計測装置208は、エージェント200の地図上の位置を計測する装置である。位置計測装置208の処理には、例えば、GNSS(Global Navigation Satellite System)が用いられる。なお、位置計測装置208の代わりに、LiDARやカメラを用いたSLAM(Simultaneous Localization and Mapping)技術に基づいて、エージェント200の地図上の位置及び方位を算出するようにしてもよい。姿勢計測装置209は、エージェント200の方位や姿勢を計測する装置である。このような姿勢計測装置209として、例えば、IMU(Inertia Measurement Unit)やエンコーダが用いられる。制御装置210は、エージェント200の速度指令及び方位指令をエージェント200のアクチュエータ出力に変換する装置である。このような制御装置210として、制御マイコン等が用いられる。
<エージェント200の説明>
図2は、エージェント200のシステム構成を示す機能ブロック図である。
図2に示すように、エージェント200のCPU203は、機能的な構成として、状態検出部211と、追従制御部212と、リスク監視部213と、を備えている。状態検出部211は、姿勢計測装置209の出力値の他、位置計測装置208の出力値に基づいて、エージェント200の状態(位置・方位)を算出する。
図2は、エージェント200のシステム構成を示す機能ブロック図である。
図2に示すように、エージェント200のCPU203は、機能的な構成として、状態検出部211と、追従制御部212と、リスク監視部213と、を備えている。状態検出部211は、姿勢計測装置209の出力値の他、位置計測装置208の出力値に基づいて、エージェント200の状態(位置・方位)を算出する。
図3は、エージェント200の寸法や方位に関する説明図である。
図3の例では、エージェント200は、車両として構成され、前輪221,221と、後輪222,222と、を備えている。なお、エージェント200の位置及び方位を状態p(t)=[x(t),y(t),θ(t)](tは時刻)で表すものとする。図3に示す方位θ(t)は、所定方向を基準とした場合のエージェント200の向きを示している。ステアリング角φ(t)は、方位θ(t)を基準とした場合のエージェント200の旋回方向を示す角度である。また、図3に示す長さLは、前輪221と後輪222との間の前後方向の距離である。方位θ(t)やステアリング角φ(t)や長さLは、追従制御部212等(図2参照)の処理に用いられる。
図3の例では、エージェント200は、車両として構成され、前輪221,221と、後輪222,222と、を備えている。なお、エージェント200の位置及び方位を状態p(t)=[x(t),y(t),θ(t)](tは時刻)で表すものとする。図3に示す方位θ(t)は、所定方向を基準とした場合のエージェント200の向きを示している。ステアリング角φ(t)は、方位θ(t)を基準とした場合のエージェント200の旋回方向を示す角度である。また、図3に示す長さLは、前輪221と後輪222との間の前後方向の距離である。方位θ(t)やステアリング角φ(t)や長さLは、追従制御部212等(図2参照)の処理に用いられる。
図2に示す追従制御部212は、基地局100(図1参照)から通信装置206を介して取得したエージェント200の目標経路r(t)=[xr(t),yr(t),θr(t)]と、状態検出部211から取得したエージェント200の状態p(t)=[x(t),y(t),θ(t)]と、に基づいて、目標経路r(t)と状態p(t)との差を小さくするようにフィードバック制御を行う。そして、追従制御部212は、ステアリング量と加減速(アクセル量、ブレーキ量)等の制御値を制御装置210に出力する。
制御装置210は、追従制御部212が算出した制御値に基づいて、エージェント200のタイヤが所定の回転速度になるように、また、ステアリングが所定の回転角になるように制御を行う。
リスク監視部213は、外界認識センサ207から取得されるセンサ情報に基づいて、エージェント200の周囲の他車両(エージェント200の属していない車両)及び歩行者を検出し、その検出結果をエージェント200の位置情報とともに、通信装置206を介して、基地局100(図1参照)に送信する。
リスク監視部213は、外界認識センサ207から取得されるセンサ情報に基づいて、エージェント200の周囲の他車両(エージェント200の属していない車両)及び歩行者を検出し、その検出結果をエージェント200の位置情報とともに、通信装置206を介して、基地局100(図1参照)に送信する。
<基地局100の説明>
図4は、基地局100のシステム構成を示す機能ブロック図である。
図4に示すように、基地局100は、エージェント情報管理部301と、監視情報管理部302と、地図情報管理部303と、業務管理部304と、を備える他、エージェント制御部300を備えている。エージェント制御部300は、エージェント200(図1参照)の移動経路を算出する機能を有している。図4に示すように、エージェント制御部300は、エージェント情報管理部301と、監視情報管理部302と、地図情報管理部303と、業務管理部304と、に接続されている。エージェント制御部300の処理は、基地局100のCPU103(図1参照)において実行される。
図4は、基地局100のシステム構成を示す機能ブロック図である。
図4に示すように、基地局100は、エージェント情報管理部301と、監視情報管理部302と、地図情報管理部303と、業務管理部304と、を備える他、エージェント制御部300を備えている。エージェント制御部300は、エージェント200(図1参照)の移動経路を算出する機能を有している。図4に示すように、エージェント制御部300は、エージェント情報管理部301と、監視情報管理部302と、地図情報管理部303と、業務管理部304と、に接続されている。エージェント制御部300の処理は、基地局100のCPU103(図1参照)において実行される。
<エージェント情報管理部301>
エージェント情報管理部301は、所定領域内を走行するエージェント200の個体情報(エージェント個体情報という。)を管理する。このようなエージェント個体情報には、エージェント200の寸法や外界認識センサ207(図2参照)の性能を示す数値の他、エージェント200の航続可能距離が含まれる。なお、エージェント情報管理部301で管理されるエージェント個体情報は、これに限らず、例えば、エージェント200の搭乗可能人数や荷物積載可能質量を含むようにしてもよい。
エージェント情報管理部301は、所定領域内を走行するエージェント200の個体情報(エージェント個体情報という。)を管理する。このようなエージェント個体情報には、エージェント200の寸法や外界認識センサ207(図2参照)の性能を示す数値の他、エージェント200の航続可能距離が含まれる。なお、エージェント情報管理部301で管理されるエージェント個体情報は、これに限らず、例えば、エージェント200の搭乗可能人数や荷物積載可能質量を含むようにしてもよい。
エージェント個体情報として、例えば、予め収集した情報を基地局100(図1参照)のROM102に格納したものを用いてもよいし、また、基地局100以外のサーバ棟(図示せず)で管理しているエージェント個体情報を基地局100が定期的に取得・更新するようにしてもよい。エージェント個体情報は、エージェント情報管理部301から監視状態評価部305に出力される他、経路修正部308にも出力される。
<監視情報管理部302>
監視情報管理部302は、所定領域内のエージェント200(図1参照)の位置の他、エージェント200以外の走行車両や歩行者の位置情報を時系列的に収集する。このような監視情報は、例えば、エージェント200の位置計測装置208(図1参照)の計測値、及び外界認識センサ207(図1参照)のセンサ情報から抽出した周囲の車両や歩行者の位置情報が、通信装置206を介して基地局100に送信されることで収集される。このようにして収集された監視情報は、監視情報管理部302から監視状態評価部305に出力される。なお、監視情報の収集方法はこれに限らず、例えば、街中の交差点等に固定センサ(図示せず)を取り付けて、固定センサから取得した周囲の歩行者や車両の情報を基地局100に送信するようにしてもよい。このような固定センサとして、例えば、カメラやLiDARが用いられる。
監視情報管理部302は、所定領域内のエージェント200(図1参照)の位置の他、エージェント200以外の走行車両や歩行者の位置情報を時系列的に収集する。このような監視情報は、例えば、エージェント200の位置計測装置208(図1参照)の計測値、及び外界認識センサ207(図1参照)のセンサ情報から抽出した周囲の車両や歩行者の位置情報が、通信装置206を介して基地局100に送信されることで収集される。このようにして収集された監視情報は、監視情報管理部302から監視状態評価部305に出力される。なお、監視情報の収集方法はこれに限らず、例えば、街中の交差点等に固定センサ(図示せず)を取り付けて、固定センサから取得した周囲の歩行者や車両の情報を基地局100に送信するようにしてもよい。このような固定センサとして、例えば、カメラやLiDARが用いられる。
<地図情報管理部303>
地図情報管理部303は、所定領域500(図5A参照)の地図情報を管理する。地図情報は、地図情報管理部303から大域経路生成部306に出力される。
地図情報管理部303は、所定領域500(図5A参照)の地図情報を管理する。地図情報は、地図情報管理部303から大域経路生成部306に出力される。
図5Aは、地図情報の一例を示す説明図である。
例えば、図5Aに示す所定領域500(ドットで示した領域)の地図情報が、地図情報管理部303(図4参照)に予め記憶されている。
例えば、図5Aに示す所定領域500(ドットで示した領域)の地図情報が、地図情報管理部303(図4参照)に予め記憶されている。
図5Bは、図5Aの地図情報における領域K1の部分拡大図である。
地図情報は、例えば、車道の中央を通るように所定距離で区切った枝(エッジ/ブランチ)Ej(j=0,1,2,・・・N)と、各エッジEjの始点及び終点に節点(ノード)Vjを設けたグラフG(Vj,Ej)で表される。第1実施形態では、地図上及び地図に対応する道路上の地点におけるEj番目のエッジを区間Ejとし、Vj番目のノードをノードVjとする。
地図情報は、例えば、車道の中央を通るように所定距離で区切った枝(エッジ/ブランチ)Ej(j=0,1,2,・・・N)と、各エッジEjの始点及び終点に節点(ノード)Vjを設けたグラフG(Vj,Ej)で表される。第1実施形態では、地図上及び地図に対応する道路上の地点におけるEj番目のエッジを区間Ejとし、Vj番目のノードをノードVjとする。
地図情報は、例えば、予め所定領域500内の地図を作成したものが基地局100(図1参照)のROM102に保存されていてもよいし、また、基地局100外の所定の地図管理サーバ(図示せず)で定期的に更新された地図を無線通信で受信するようにしてもよい。
<業務管理部304>
図4に示す業務管理部304は、エージェント200毎(図1参照)に設定される目的地及びメインタスクを管理する。エージェント200の目的地情報は、地図情報に含まれるノードVjに基づいて管理される。なお、目的地情報は、所定の座標系に基づいた位置情報であってもよいし、また、緯度・経度の情報であってもよい。また、メインタスク(タスク)とは、エージェント200による人や貨物の搬送等のサービスに関わるタスクである。このようなメインタスクとして、例えば、搬送、回送、配車、給電(給油)が挙げられるが、これに限定されるものではない。
図4に示す業務管理部304は、エージェント200毎(図1参照)に設定される目的地及びメインタスクを管理する。エージェント200の目的地情報は、地図情報に含まれるノードVjに基づいて管理される。なお、目的地情報は、所定の座標系に基づいた位置情報であってもよいし、また、緯度・経度の情報であってもよい。また、メインタスク(タスク)とは、エージェント200による人や貨物の搬送等のサービスに関わるタスクである。このようなメインタスクとして、例えば、搬送、回送、配車、給電(給油)が挙げられるが、これに限定されるものではない。
例えば、顧客による配車等のリクエストを受け付けるサーバ(図示せず)が、エージェント200に目的地情報及びメインタスクを割り当て、これらの情報を無線通信で基地局100に定期的に送信するようにしてもよい。
<エージェント制御部300>
図4に示すように、エージェント制御部300は、監視状態評価部305と、大域経路生成部306(経路計画生成部)と、制限速度演算部307と、経路修正部308と、経路計画伝達部309と、を備えている。そして、エージェント個体情報、監視情報、地図情報、及び業務情報(目的地・メインタスク)に基づいて、エージェント制御部300が各エージェント200の経路を算出し、その算出結果を各エージェント200に送信するようになっている。
図4に示すように、エージェント制御部300は、監視状態評価部305と、大域経路生成部306(経路計画生成部)と、制限速度演算部307と、経路修正部308と、経路計画伝達部309と、を備えている。そして、エージェント個体情報、監視情報、地図情報、及び業務情報(目的地・メインタスク)に基づいて、エージェント制御部300が各エージェント200の経路を算出し、その算出結果を各エージェント200に送信するようになっている。
<監視状態評価部305>
監視状態評価部305は、エージェント情報管理部301から取得されるエージェント個体情報と、監視情報管理部302から取得される監視情報と、業務管理部304から取得されるエージェント200の目的地及びメインタスクの情報と、に基づいて、各地点の監視評価指標を示すリスクマップを生成する。なお、監視評価指標とは、所定領域500内(図5A参照)の場所ごとの監視状態の良し悪しを示す数値である。
監視状態評価部305は、エージェント情報管理部301から取得されるエージェント個体情報と、監視情報管理部302から取得される監視情報と、業務管理部304から取得されるエージェント200の目的地及びメインタスクの情報と、に基づいて、各地点の監視評価指標を示すリスクマップを生成する。なお、監視評価指標とは、所定領域500内(図5A参照)の場所ごとの監視状態の良し悪しを示す数値である。
また、前記したリスクマップとは、所定領域500内の各場所に監視評価指標の値が対応付けられたマップである。なお、リスクマップは、エッジEj及びノードVjを含むグラフ(図5B参照)である必要は特になく、例えば、所定領域500内(図5A参照)を格子状に分割したグリッドデータであってもよい。
例えば、監視評価指標の値が高いほど、その場所はリスク(他の車両や人との接触等のリスク)が高く、監視を必要とする可能性が高い。一方、監視評価指標の値が低いほど、その場所は監視が行き届いており、リスクが低い可能性が高い。なお、所定時間ΔT内に区間Ejを通過した歩行者・車両の数が多いほど、監視評価指標の値が高くなる。また、所定時間ΔT内に区間Ejを通過した監視タスクを担う車両(つまり、エージェント200)の台数が多いほど、監視評価指標の値が低くなる。なお、所定時間ΔTは、例えば、監視評価指標の演算が繰り返される際の周期である。
第1実施形態では、監視状態評価部305が、地図情報に紐付いている各区間Ejの監視状態を評価するようにしている。時刻(T+ΔT)におけるエッジEjでの監視評価指標Cmj(T+ΔT)は、例えば、以下の式(1)に示すように、所定の係数αojや係数αmj、係数αenvj、係数αespの積を時刻Tでの監視評価指標Cmj(T)に乗算することで算出される。なお、係数αojは、区間Ejを所定時間ΔT内に通過した車両及び歩行者の数によって定められる値である。係数αmjは、区間Ejを所定時間ΔT内に通過した監視タスクを担うエージェント200の台数によって定められる値である。係数αenvjは、区間Ejの路面環境や事故発生率等が反映された値である。係数αespは、時間の経過を反映した係数(忘却係数)である。なお、監視評価指標Cmj(T)や係数αmjに付した下付きの「m」は、モニタリング(monitoring)を意味している。
<監視評価指標の説明>
図6Aは、監視評価指標の算出に用いられる係数αojの説明図である。
なお、図6Aの横軸は、所定時間内に区間Ejを通過した歩行者・車両の数であり、縦軸は、係数αojの値である。図6Aに示すように、係数αojは、例えば、切片が1で傾きaoが正の一次関数で表される。つまり、区間Ejを通過した歩行者・車両の数が多いほど、係数αojとして大きな値が設定される。
図6Aは、監視評価指標の算出に用いられる係数αojの説明図である。
なお、図6Aの横軸は、所定時間内に区間Ejを通過した歩行者・車両の数であり、縦軸は、係数αojの値である。図6Aに示すように、係数αojは、例えば、切片が1で傾きaoが正の一次関数で表される。つまり、区間Ejを通過した歩行者・車両の数が多いほど、係数αojとして大きな値が設定される。
図6Bは、監視評価指標の算出に用いられる係数αmjの説明図である。
なお、図6Bの横軸は、所定時間内に区間Ejを通過した監視車両(つまり、監視タスクを担うエージェント200)の台数であり、縦軸は、係数αmjの値である。図6Bに示すように、係数αmjは、例えば、切片が1で傾きamが負の一次関数で表される。つまり、区間Ejを通過した監視車両の台数が多いほど、係数αmjとして小さな値が設定される。なお、係数αoj(図6A参照)や係数αmj(図6B参照)が一次関数である必要は特になく、例えば、これらを指数関数的に変化させてもよいし、また、交通量や事故件数に関する統計データに基づき予め作成されたテーブルデータを用いるようにしてもよい。
なお、図6Bの横軸は、所定時間内に区間Ejを通過した監視車両(つまり、監視タスクを担うエージェント200)の台数であり、縦軸は、係数αmjの値である。図6Bに示すように、係数αmjは、例えば、切片が1で傾きamが負の一次関数で表される。つまり、区間Ejを通過した監視車両の台数が多いほど、係数αmjとして小さな値が設定される。なお、係数αoj(図6A参照)や係数αmj(図6B参照)が一次関数である必要は特になく、例えば、これらを指数関数的に変化させてもよいし、また、交通量や事故件数に関する統計データに基づき予め作成されたテーブルデータを用いるようにしてもよい。
前記した式(1)に含まれる係数αenvjは、事前の調査等での事故発生率や見通しの良し悪しを考慮して設定される。例えば、交差点など事前の調査で事故が多い場所に関しては、係数αenvjが1よりも大きな値に設定され、時間の経過とともに監視評価指標が大きくなるように設定される。また、見通しが良い道路や、歩道と車道の境にフェンスが設けられているといった安全性の高い区間に関しては、係数αenvjが低く(例えば、1以下に)設定され、さらに、時間の経過とともに監視評価指標が小さくなるように設定される。監視評価指標に場所に依存した係数αenvjを入れることで、人通りや交通量だけでなく、現場の状況に応じた監視の必要性を反映させることができる。
また、時間の経過を考慮した係数αespは、正の定数を用いて、時間経過とともに監視評価指標が大きくなるように設定される。このように監視評価指標を定めることで、人通りや通行量の多い区間や、事故発生件数の多い区間の他、監視車両の通行が少ない区間では監視評価指標が高くなるようなリスクマップを作成できる。なお、リスクマップにおける各区間の監視評価指標の値は、時々刻々と変化する。
<大域経路生成部306>
図4に示す大域経路生成部306(経路計画生成部)は、エージェント200の移動先及びタスクの種別を含む業務管理情報と、監視評価指標と、に基づいて、エージェント200の大域経路(経路計画)を生成する。具体的には、大域経路生成部306は、ダイクストラ法等のグラフベースの探索手法に基づいて、各エージェント200(図1参照)の大域経路を生成する。なお、「大域経路」とは、エージェント200が所定の目的地に到達するまでの大まかな経路のことを意味している。
図4に示す大域経路生成部306(経路計画生成部)は、エージェント200の移動先及びタスクの種別を含む業務管理情報と、監視評価指標と、に基づいて、エージェント200の大域経路(経路計画)を生成する。具体的には、大域経路生成部306は、ダイクストラ法等のグラフベースの探索手法に基づいて、各エージェント200(図1参照)の大域経路を生成する。なお、「大域経路」とは、エージェント200が所定の目的地に到達するまでの大まかな経路のことを意味している。
図7Aは、比較例におけるエージェントの経路を示す説明図である。
なお、図7Aに示す符号CAV1,CAV2は、エージェント200(図1参照)の一例である車両を示している。以下では、これらの符号CAV1,CAV2についても「エージェント」という文言を用いるものとする。図7Aでは、従来の経路長のみを考慮した比較例の経路計画を示している。すなわち、エージェントCAV1が目的地Tg1まで移動して人を乗車させた後、目的地Tg2まで移動する際の最短の経路Gp1が生成されている。また、別のエージェントCAV2が目的地Tg3まで移動する際の最短の経路Gp2が生成されている。
なお、図7Aに示す符号CAV1,CAV2は、エージェント200(図1参照)の一例である車両を示している。以下では、これらの符号CAV1,CAV2についても「エージェント」という文言を用いるものとする。図7Aでは、従来の経路長のみを考慮した比較例の経路計画を示している。すなわち、エージェントCAV1が目的地Tg1まで移動して人を乗車させた後、目的地Tg2まで移動する際の最短の経路Gp1が生成されている。また、別のエージェントCAV2が目的地Tg3まで移動する際の最短の経路Gp2が生成されている。
<大域経路生成部306の動作説明>
図7Bは、第1実施形態に係るエージェント制御システムにおけるエージェントの大域経路を示す説明図である。
例えば、所定領域500内に存在するエージェントCAV1,CAV2が巡回(つまり、監視)しつつ、運搬・回送・充電等のタスクを行うとする。なお、前記した「巡回」とは、具体的には、エージェント制御部300(図4参照)から送信される経路計画に基づいて、エージェントCAV1,CAV2が所定領域500内を移動しつつ、外界認識センサ207(図1参照)で周囲の人や他車両等を検出し、その検出結果を監視情報として監視情報管理部302(図4参照)に送信することを意味している。エージェントCAV1は、目的地Tg1まで配車タスクを行った後、乗客を乗せて目的地Tg2まで搬送タスクを行う。このとき、図7Bに示す区間E1の監視評価指標が比較的高いとする。乗客を乗せて移動するエージェントCAV1は搬送タスクを行うが、仮に最短経路を選択した場合、区間E1を通過するような経路Gp1が選択されることになる。
図7Bは、第1実施形態に係るエージェント制御システムにおけるエージェントの大域経路を示す説明図である。
例えば、所定領域500内に存在するエージェントCAV1,CAV2が巡回(つまり、監視)しつつ、運搬・回送・充電等のタスクを行うとする。なお、前記した「巡回」とは、具体的には、エージェント制御部300(図4参照)から送信される経路計画に基づいて、エージェントCAV1,CAV2が所定領域500内を移動しつつ、外界認識センサ207(図1参照)で周囲の人や他車両等を検出し、その検出結果を監視情報として監視情報管理部302(図4参照)に送信することを意味している。エージェントCAV1は、目的地Tg1まで配車タスクを行った後、乗客を乗せて目的地Tg2まで搬送タスクを行う。このとき、図7Bに示す区間E1の監視評価指標が比較的高いとする。乗客を乗せて移動するエージェントCAV1は搬送タスクを行うが、仮に最短経路を選択した場合、区間E1を通過するような経路Gp1が選択されることになる。
これに対して、第1実施形態では、リスクが低くなるようにエージェントCAV1が迂回して、目的地Tg2に向かう経路Gp3を選択するようにしている。これによって、エージェントCAV1が搬送タスクを行う際の信頼性が高められる。ちなみに、エージェントCAV1は、搬送タスクを行いつつ、自身の走行経路の監視も併せて行っている。
また、図7Bに示すエージェントCAV2は、乗客を乗せておらず、給電を行うために目的地Tg3へ走行するものとする。また、途中の区間E2の監視評価指標が比較的高いものとする。このような場合、第1実施形態ではエージェントCAV2に監視タスクを課すことで、所定領域500内の監視評価指標の高い区間の監視状況を改善するようにしている。具体的には、エージェントCAV2は、図7Aに示す最短の経路Gp2とは異なる区間E2を通るような経路Gp4を選択する。そして、エージェントCAV2は、外界認識センサ207(図2参照)を用いて区間E2の周辺認識を行い、前記した式(1)に基づいて、区間E2の監視評価指標を改善した後、目的地Tg3へ向かう。
このように、第1実施形態では、エージェントCAV1,CAV2が監視及びメインタスク(搬送、配車、回送、給電等)の双方を行うようにしている。これによって、監視専用のエージェント(図示せず)や固定センサ(図示せず)を所定領域500(図5A参照)に設ける必要がなくなるため、システム全体の効率が高められる他、コストの削減を図ることもできる。
<監視タスク比率βi>
前記した経路計画を実現するために、第1実施形態では、メインタスクの種別の他、エージェント200に搭載された外界認識センサ207(図2参照)の能力(センシング範囲、分解能、耐環境性等)に応じて、大域経路生成部306(図4参照)がエージェント200に監視タスクを与えるようにしている。なお、メインタスク(タスク)に対して監視の重要度が占める比率を、監視タスク比率βi(iはエージェント200の識別番号)という。
前記した経路計画を実現するために、第1実施形態では、メインタスクの種別の他、エージェント200に搭載された外界認識センサ207(図2参照)の能力(センシング範囲、分解能、耐環境性等)に応じて、大域経路生成部306(図4参照)がエージェント200に監視タスクを与えるようにしている。なお、メインタスク(タスク)に対して監視の重要度が占める比率を、監視タスク比率βi(iはエージェント200の識別番号)という。
例えば、監視タスク比率βiが高いほど、そのエージェント200が周囲環境の監視評価指標が相対的に高い経路を通過するような経路選択が行われる。また、監視タスク比率βiが低いほど、監視評価指標が低く安全性の高い経路が選択される。前記したように、監視評価指標は、所定領域500(図5A参照)のそれぞれの区間Ej(図5B参照)について算出される。一方、監視タスク比率βiは、複数のエージェント200に一対一で対応するように、個別に設定される。
<監視タスク比率βiの設定方法>
監視タスク比率βiは、エージェント200のメインタスクの種類、及びエージェント200に搭載される外界認識センサ207(図2参照)のセンサ能力(センシング範囲、分解能、耐環境性等)に基づいて決定される。なお、監視タスク比率βiは、これら以外の因子に基づいて定められてもよい。例えば、エージェント200の航続可能距離が考慮されてもよいし、また、天候や時間帯といった環境の因子が加えられてもよい。具体例を挙げると、エージェント200の航続可能距離が長いほど、監視タスク比率βiが高くなるように設定されてもよい。また、雨や雪といった悪天候の場合には、晴れや曇りの場合に比べて、監視タスク比率βiが高くなるように設定されてもよい。その他、夜間の時間帯には、他の時間帯に比べて、監視タスク比率βiが高くなるように設定されてもよい。
監視タスク比率βiは、エージェント200のメインタスクの種類、及びエージェント200に搭載される外界認識センサ207(図2参照)のセンサ能力(センシング範囲、分解能、耐環境性等)に基づいて決定される。なお、監視タスク比率βiは、これら以外の因子に基づいて定められてもよい。例えば、エージェント200の航続可能距離が考慮されてもよいし、また、天候や時間帯といった環境の因子が加えられてもよい。具体例を挙げると、エージェント200の航続可能距離が長いほど、監視タスク比率βiが高くなるように設定されてもよい。また、雨や雪といった悪天候の場合には、晴れや曇りの場合に比べて、監視タスク比率βiが高くなるように設定されてもよい。その他、夜間の時間帯には、他の時間帯に比べて、監視タスク比率βiが高くなるように設定されてもよい。
エージェント200に割り当てられるメインタスクを特定するデータは、業務管理部304(図4参照)から大域経路生成部306に出力される。エージェント200のメインタスクの種別として、例えば、搬送、回送、配車、給電、入庫が挙げられる。これらのうち、乗客や貨物を乗せることが特にないもの(回送、配車、給電、入庫)の場合、大域経路生成部306は、監視タスク比率βiを高くし、エージェント200に課す監視タスクの割合を大きくする。すなわち、大域経路生成部306(経路計画生成部)は、メインタスク(タスク)が人又は荷物の搬送である場合よりも、メインタスクが回送、配車、又は給電のための移動である場合の方が、監視タスク比率βiを高い値に設定する。
一方、メインタスクとして搬送タスクが割り当てられたエージェント200については、大域経路生成部306は、監視タスク比率βiを低くし、エージェント200に課す監視タスクの割合を小さくする。なお、エージェント200のメインタスクが、「配車」から「搬送」といったように、途中で切り換えられることもある。このようなメインタスクの切替りのタイミングの他、エージェント200の航続可能距離や天候、時間帯の変化に伴って、監視タスク比率βiも変動する。
監視タスク比率βiは、例えば、メインタスク毎にあらかじめ定められた値に設定される。また、エージェント200毎に搭載される外界認識センサ207(図2参照)が異なっている場合には、大域経路生成部306(経路計画生成部)は、外界認識センサ207の性能(センシング範囲、分解能、耐久性等)が高いほど、監視タスク比率βiを高い値に設定する。具体的には、外界認識センサ207(図2参照)を加味した監視タスク比率βiの加算値がエージェント200毎に予め設定され、メインタスクの種別に基づく所定の監視タスク比率に加算値が加えられることで、エージェント200の監視タスク比率βiが算出されるようにしてもよい。
<経路算出における区間Ejの重み算出方法>
エージェント200の経路の算出に用いられる区間Ejの重みwjは、例えば、区間Ejの経路長に関する重みwdjと、区間Ejの監視評価指標の大きさに関する重みwmjと、を用いて、以下の式(2)に基づいて算出される。
エージェント200の経路の算出に用いられる区間Ejの重みwjは、例えば、区間Ejの経路長に関する重みwdjと、区間Ejの監視評価指標の大きさに関する重みwmjと、を用いて、以下の式(2)に基づいて算出される。
大域経路生成部306(図4参照)は、例えば、エージェント200が所定の目的地まで移動する場合の重みwjの総和が最小になるように、エージェント200の大域経路を設定する。式(2)に含まれる経路長に関する重みwdjは、地図情報から区間Ejの経路長を予め計測することで設定される。なお、区間Ejの距離が長いほど、重みwdjの値も大きくなる。また、監視評価指標の大きさに関する重みwmjは、例えば、監視タスク比率βi及び監視評価指標Cmjに基づいて算出される。
図8は、監視評価指標Cmjと重みwmjとの関係を示す説明図である。
なお、図8の横軸は、区間Ejにおける監視評価指標Cmjである。また、図8の縦軸は、監視評価指標Cmjに関する重みwmjである。例えば、監視タスク比率βiが所定値βth以上である場合には、監視評価指標Cmjが大きいほど、重みwmjが小さくなるように設定される(図8の実線の直線M1を参照)。すなわち、大域経路生成部306(経路計画生成部は、監視タスク比率βiが高いほど、監視評価指標Cmjが相対的に高い経路をエージェント200に走行させるように経路計画を生成する。これによって、監視タスク比率βiが比較的高いエージェント200によって、監視状況が悪い経路が優先的に監視されるようになる。なお、所定値βthは、大域経路生成部306が重みwmjを設定する際、図8に示す直線M1,M2のいずれを用いるかを決定する際の判定基準となる監視タスク比率βiの閾値であり、予め設定されている。
なお、図8の横軸は、区間Ejにおける監視評価指標Cmjである。また、図8の縦軸は、監視評価指標Cmjに関する重みwmjである。例えば、監視タスク比率βiが所定値βth以上である場合には、監視評価指標Cmjが大きいほど、重みwmjが小さくなるように設定される(図8の実線の直線M1を参照)。すなわち、大域経路生成部306(経路計画生成部は、監視タスク比率βiが高いほど、監視評価指標Cmjが相対的に高い経路をエージェント200に走行させるように経路計画を生成する。これによって、監視タスク比率βiが比較的高いエージェント200によって、監視状況が悪い経路が優先的に監視されるようになる。なお、所定値βthは、大域経路生成部306が重みwmjを設定する際、図8に示す直線M1,M2のいずれを用いるかを決定する際の判定基準となる監視タスク比率βiの閾値であり、予め設定されている。
また、監視タスク比率βiが所定値βthよりも小さい場合には、監視評価指標Cmjが大きいほど、重みwmjが大きくなるように設定される(図8の破線の直線M2を参照)。つまり、大域経路生成部306(図4参照)は、監視評価指標Cmjが大きくリスクの高い経路の重みwmjが大きくなるようにする。これによって、例えば、人や貨物の搬送を行っているエージェント200が、監視状況の悪い経路を走行するといったことを抑制できる。
なお、重みwmjの算出方法は、図8の例に限定されるものではない。例えば、監視評価指標Cmjと重みwmjを示す直線の傾きとが監視タスク比率βiの関数になるようにしてもよい。また、重みwmjが監視評価指標Cmjに対して指数関数的に変化するようにしてもよい。また、重みwjの算出式は式(2)に限らず、例えば、監視タスク比率βiの影響を大きくするために、大域経路生成部306が、以下の式(3)を用いるようにしてもよい。なお、式(3)に含まれる監視タスク比率βiの範囲は、0≦βi≦1となる。
大域経路生成部306(図4参照)は、このような手順で算出した区間Ejの重みwjを用いて、ダイクストラ法等のグラフベースの探索手法によって、各エージェント200の大域経路を算出する。
<制限速度演算部307>
図4に示す制限速度演算部307は、監視状態評価部305(図4参照)が算出した監視評価指標Cmjと、大域経路生成部306(図4参照)が算出した監視タスク比率βiと、に基づいて、エージェント200の制限速度を算出する。なお、制限速度の算出方法については後記する。
図4に示す制限速度演算部307は、監視状態評価部305(図4参照)が算出した監視評価指標Cmjと、大域経路生成部306(図4参照)が算出した監視タスク比率βiと、に基づいて、エージェント200の制限速度を算出する。なお、制限速度の算出方法については後記する。
<経路修正部308>
図4に示す経路修正部308は、エージェント200の経路を修正する。すなわち、経路修正部308は、大域経路生成部306(図4参照)で算出された大域経路を参照し、さらに、制限速度演算部307で算出された制限速度を制約として、エージェント200を追従させるための目標経路を生成する。なお、経路の修正には、例えば、モデル予測制御の枠組みを用いることで、速度制約を陽に組み込んだ定式化が可能である。
図4に示す経路修正部308は、エージェント200の経路を修正する。すなわち、経路修正部308は、大域経路生成部306(図4参照)で算出された大域経路を参照し、さらに、制限速度演算部307で算出された制限速度を制約として、エージェント200を追従させるための目標経路を生成する。なお、経路の修正には、例えば、モデル予測制御の枠組みを用いることで、速度制約を陽に組み込んだ定式化が可能である。
図9Aは、所定領域内のエリアの時刻t=kにおける交通状況を示す説明図である。
なお、図9Aの例では、エージェントCAV4にセンシング範囲の広い外界認識センサ207(図2参照)が搭載されているものとする(ドット入りの三角形を参照)。また、図9Aでは、エージェントCAV3,CAV4の計算ステップごとの時系列的な位置を黒塗りの三角印で示している。
なお、図9Aの例では、エージェントCAV4にセンシング範囲の広い外界認識センサ207(図2参照)が搭載されているものとする(ドット入りの三角形を参照)。また、図9Aでは、エージェントCAV3,CAV4の計算ステップごとの時系列的な位置を黒塗りの三角印で示している。
時刻t=k(kは計算ステップ)では、図9Aに示すように、エージェントCAV3が搬送タスクを行い、また、他方のエージェントCAV4は回送タスクを行っている。また、エージェントCAV3,CAV4は、いずれも交差点CR13を通過して、ノードV5に向かうように移動中であるものとする。なお、交差点CR13内の区間Ejの監視評価指標として、エージェントCAV3,CAV4で同じ値が共有されているものとする。
<経路修正部308の動作説明>
図9Aに示す状態で交差点CR13の監視評価指標が比較的大きいとすると、人や貨物を乗せた搬送タスク中のエージェントCAV3が通過するにはリスクが高い。そこで、第1実施形態では、エージェントCAV3に速度制約を課すことで、交差点CR13までの到達時刻を遅くしたり、交差点CR13での通過速度を低くしたりして、リスクを低減するようにしている。一方、センシング能力の高い外界認識センサ207を搭載し、かつ、回送中のエージェントCAV4が交差点CR13を通過する際には、エージェントCAV3と比較すると荷物の破損等の心配がなくリスクが低いため、制限速度演算部307(図4参照)が速度制約を行う必要は特にない。
図9Aに示す状態で交差点CR13の監視評価指標が比較的大きいとすると、人や貨物を乗せた搬送タスク中のエージェントCAV3が通過するにはリスクが高い。そこで、第1実施形態では、エージェントCAV3に速度制約を課すことで、交差点CR13までの到達時刻を遅くしたり、交差点CR13での通過速度を低くしたりして、リスクを低減するようにしている。一方、センシング能力の高い外界認識センサ207を搭載し、かつ、回送中のエージェントCAV4が交差点CR13を通過する際には、エージェントCAV3と比較すると荷物の破損等の心配がなくリスクが低いため、制限速度演算部307(図4参照)が速度制約を行う必要は特にない。
図9Bは、所定領域内のエリアの時刻t=k+1における交通状況を示す説明図である。
例えば、図9A(時刻t=k)の状況で、仮にエージェントCAV4の外界認識センサ207によって交差点CR13の状況がセンシングされ、交差点CR13の監視評価指標Cm13が改善した場合、交差点CR13のリスクが低減される。このように監視評価指標Cm13の値が改善された場合には、エージェントCAV3が交差点CR13を通過する際のリスクが低減されているため、制限速度演算部307(図4参照)は、エージェントCAV3に課した速度制約を解く。
例えば、図9A(時刻t=k)の状況で、仮にエージェントCAV4の外界認識センサ207によって交差点CR13の状況がセンシングされ、交差点CR13の監視評価指標Cm13が改善した場合、交差点CR13のリスクが低減される。このように監視評価指標Cm13の値が改善された場合には、エージェントCAV3が交差点CR13を通過する際のリスクが低減されているため、制限速度演算部307(図4参照)は、エージェントCAV3に課した速度制約を解く。
また、交差点CR13に歩行者や別車両(エージェント200には属さない車両)がいた場合、制限速度演算部307(図4参照)が、エージェントCAV4に障害物との衝突回避の制約をかけるようにしてもよい。これによって、エージェントCAV4が歩行者や車両を回避する経路を生成したり、歩行者や車両の直前で減速又は停止するような経路を生成したりすることができる。
<モデル予測制御を用いたシステムの定式化>
i番目のエージェント200の位置及び方位を含むベクトルをpiとし、大域経路生成部306(図4参照)で算出されたi番目のエージェント200の大域経路Gpi上のノードをViとし、さらに仮想目標位置をriとすると、以下の式(4a)、(4b)のように表される。また、ベクトルpiと仮想目標位置riとの間の偏差をeiとし、以下の式(4c)のように定義する。なお、kは、計算ステップ(時刻)を意味している。
i番目のエージェント200の位置及び方位を含むベクトルをpiとし、大域経路生成部306(図4参照)で算出されたi番目のエージェント200の大域経路Gpi上のノードをViとし、さらに仮想目標位置をriとすると、以下の式(4a)、(4b)のように表される。また、ベクトルpiと仮想目標位置riとの間の偏差をeiとし、以下の式(4c)のように定義する。なお、kは、計算ステップ(時刻)を意味している。
エージェント200の運動モデルは、例えば、式(5)のように定式化される。なお、式(5)に含まれる速度vi及びステア角φiは、エージェント200の制御指令に相当する。また、Lは、エージェント200(図3参照)の前輪221と後輪222との間の前後方向の距離である。
また、i番目のエージェント200の速度vi及びステア角φiをまとめた制御指令ベクトルuiを式(6)で定義する。
さらに、式(5)を所定のサンプリング周期Δtで離散化することで、以下の式(7)が得られる。
経路修正部308(図4参照)は、各時刻kにおけるエージェント200の位置pi(k)と、大域経路Gpi上の仮想目標位置ri(k)と、の間の偏差ei(k)が小さくなるように、指令ベクトルui(k)を計算する。
また、モデル予測制御を用いた定式化により、Qi,Riを重み行列とし、Npを予測ステップとして、評価関数Jに関する以下の式(8)が得られる。式(8)は、所定の時刻k0から時刻(Np+k0-1)までの経路の最適化に用いられる。
モデル予測制御では、各時刻kにおいて、式(8)で表される評価関数Jを最小化するように最適制御入力ui(k)が算出される。このようにして得られた最適制御入力ui(k)を式(7)に代入することで、各時刻kにおけるエージェント200の位置(x(k),y(k))及び方位θ(k)が算出される。そして、位置(x(k),y(k))及び方位θ(k)で特定される時系列データ(時刻k0からNpステップ先までのデータ)が生成される。
<監視タスク比率βiに応じた速度制約条件>
図4に示す制限速度演算部307は、監視タスク比率βiの他、区間Ejの監視評価指標Cmjに基づいて、例えば、以下の式(9)で表される速度制約を算出する。これによって、所定の評価関数Jに拘束条件が与えられ、エージェント200の速度に所定の制約が課される。
図4に示す制限速度演算部307は、監視タスク比率βiの他、区間Ejの監視評価指標Cmjに基づいて、例えば、以下の式(9)で表される速度制約を算出する。これによって、所定の評価関数Jに拘束条件が与えられ、エージェント200の速度に所定の制約が課される。
つまり、監視評価指標Cmjが所定の閾値Cthよりも高く、かつ、監視タスク比率βiが所定値βth未満である場合、エージェント200の速度viが所定の制限速度vslow以下に抑えられる。また、それ以外の場合には、エージェント200の速度viが所定の速度上限値vmax以下に抑えられる。なお、制限速度vslowの値は、速度上限値vmaxよりも低いものとする。このように、制限速度演算部307(図4参照)は、監視タスク比率βiが所定値βth未満である場合において、監視評価指標Cmjが相対的に高い領域をエージェント200に走行させる際の制限速度vslowを、監視タスク比率βiが所定値βth以上の場合の制限速度(速度上限値vmax)よりも低くする。前記した式(9)を用いることで、監視タスク比率βiが低いエージェント200が、監視評価指標Cmjの高いエリアを低速で走行するように設定できる。
そして、経路修正部308は、所定の制限速度と、監視情報と、に基づいて、エージェント200の走行速度を制限速度以下に抑えつつ、エージェント200と周囲の物体との接触を回避するように、エージェント200の走行経路を修正する。
なお、速度制約の与え方は、前記した条件だけに限らない。例えば、搬送タスク中のエージェント200が監視評価指標Cmjの高いエリアに入る前から速度制約を課すために、エージェント200が走行する次の区間の監視評価指標Cmjに基づいて、制限速度演算部307(図4参照)が各エージェント200に速度制約を与えるようにしてもよい。このときの制限速度vslowは、急な飛び出し等に十分対処できる速度であることが望ましい。また、速度上限値vmaxには、例えば、エージェント200の最高速度又は法定速度のうち低い方の値が用いられる。
<障害物回避に関する制約条件>
図10は、障害物との接触を回避するための条件を示す説明図である。
エージェント200が、車両(他のエージェント200を含む)や歩行者との接触を回避するために、例えば、前記した評価関数Jに対して、エージェント200と他の物体の相対距離に関する制約を与えるようにしてもよい。図10に示すように、i番目のエージェント200の幅をwiとし、長さをLiとすると、エージェント200を式(10)の半径raiの円で囲むことができる。
図10は、障害物との接触を回避するための条件を示す説明図である。
エージェント200が、車両(他のエージェント200を含む)や歩行者との接触を回避するために、例えば、前記した評価関数Jに対して、エージェント200と他の物体の相対距離に関する制約を与えるようにしてもよい。図10に示すように、i番目のエージェント200の幅をwiとし、長さをLiとすると、エージェント200を式(10)の半径raiの円で囲むことができる。
また、i番目のエージェント200と接触のおそれのある障害物Q1と、エージェント200と、の間の距離は、以下の式(11)で表される。
したがって、以下の式(12)の拘束条件が成り立てば、i番目のエージェント200と障害物Q1との接触を回避できる。ここで、robjは、歩行者や他車両といった障害物Q1の大きさを表している。robjの値は、例えば、外界認識センサ207(図2参照)で算出された値を用いてもよいし、また、障害物Q1の種類におらず予め設定された値を用いるようにしてもよい。
経路修正部308(図4参照)が、式(12)の拘束条件のもとで式(8)の評価関数Jを最小化するような制御入力列U(k)=[U1(k)・・・UN(k)]を算出する。これによって、各エージェント200が他の車両や歩行者と衝突することを回避しつつ、効率的な移動経路を算出できる。
<経路計画伝達部309>
図4に示す経路計画伝達部309は、経路計画のデータを各エージェント200に送信する。すなわち、経路計画伝達部309は、経路修正部308(図4参照)が算出した経路を無線通信で各エージェント200に送信する。各エージェント200は、経路計画伝達部309が送信した経路に基づいて追従制御を所定に行う。
図4に示す経路計画伝達部309は、経路計画のデータを各エージェント200に送信する。すなわち、経路計画伝達部309は、経路修正部308(図4参照)が算出した経路を無線通信で各エージェント200に送信する。各エージェント200は、経路計画伝達部309が送信した経路に基づいて追従制御を所定に行う。
<エージェント制御部のフローチャート>
図11は、エージェント制御部の動作の流れを示すフローチャートである(適宜、図4も参照)。
まず、ステップS601においてエージェント制御部300は、制御対象であるエージェント200の個体情報(エージェント個体情報)をエージェント情報管理部301から取得する。
次に、ステップS602においてエージェント制御部300は、エージェント200の目的地情報及びタスク情報を業務管理部304から取得する。
ステップS603においてエージェント制御部300は、エージェント200の位置及び所定領域500内の歩行者・走行車両の現在位置を含む監視情報を監視状態評価部305から取得する。
図11は、エージェント制御部の動作の流れを示すフローチャートである(適宜、図4も参照)。
まず、ステップS601においてエージェント制御部300は、制御対象であるエージェント200の個体情報(エージェント個体情報)をエージェント情報管理部301から取得する。
次に、ステップS602においてエージェント制御部300は、エージェント200の目的地情報及びタスク情報を業務管理部304から取得する。
ステップS603においてエージェント制御部300は、エージェント200の位置及び所定領域500内の歩行者・走行車両の現在位置を含む監視情報を監視状態評価部305から取得する。
ステップS604においてエージェント制御部300は、監視状態評価部305によって、所定領域500内の各区間の監視評価指標を算出する(監視状態評価処理)。すなわち、エージェント制御部300は、監視状態評価部305から取得したエージェント200の位置及び所定領域500内の歩行者・走行車両の現在位置に基づいて、各区間の監視評価指標を算出する。
ステップS605においてエージェント制御部300は、大域経路生成部306によって、エージェント200の大域経路を算出するとともに、監視タスク比率βiを算出する(経路計画生成処理)。すなわち、エージェント制御部300は、ステップS604で算出した各区間の監視評価指標の他、地図情報管理部303が取得した地図情報、及び、業務管理部304が取得したエージェント200の目的地情報・メインタスク情報に基づいて、各エージェント200の大域経路Gpi及び監視タスク比率βiを算出する。なお、すでに大域経路の算出が行われたエージェント200に関しては、計算時間を短縮するために、前回の大域経路の算出結果をそのまま用いるようにしてもよい。
次に、ステップS606においてエージェント制御部300は、制限速度演算部307によって、エージェント200の制限速度を算出する。すなわち、エージェント制御部300は、監視状態評価部305が算出した各地点の監視評価指標を示すリスクマップと、大域経路生成部306が算出した監視タスク比率βiと、に基づいて、エージェント200の制限速度を算出する。
ステップS607においてエージェント制御部300は、経路修正部308によって、エージェント200の経路を修正する。すなわち、エージェント制御部300は、制限速度演算部307で算出されたエージェント200の制限速度と、エージェント200の周囲の障害物情報と、に基づいて、ノード間の経路を算出する。
ステップS608においてエージェント制御部300は、経路計画伝達部309によって、ステップS607で算出した経路の情報を無線通信で各エージェント200に送信する(経路計画伝達処理)。なお、基地局100(図1参照)から経路の情報を受信した各エージェント200は、経路の情報に基づいて、所定領域500内で追従制御を行う。
以上の処理を繰り返されることで、エージェント制御部300によって、所定領域500内の各エージェント200が制御される。
ステップS608においてエージェント制御部300は、経路計画伝達部309によって、ステップS607で算出した経路の情報を無線通信で各エージェント200に送信する(経路計画伝達処理)。なお、基地局100(図1参照)から経路の情報を受信した各エージェント200は、経路の情報に基づいて、所定領域500内で追従制御を行う。
以上の処理を繰り返されることで、エージェント制御部300によって、所定領域500内の各エージェント200が制御される。
<効果>
第1実施形態によれば、所定領域500内のエージェント200のそれぞれの能力やメインタスクの種別に応じて、エージェント200が監視タスクを担うようにしている。これによって、監視のみを行うエージェント(図示せず)や固定センサ(図示せず)を設ける必要がなくなるため、全体として少ない台数のエージェント200で監視や搬送を行うことができる。その結果、システム全体の効率が高められる他、運用コストを削減できる。また、エージェント制御部300が、監視評価指標に基づいてエージェント200の経路を算出することで、各エージェント200の信頼性を保ちつつ、効率的な経路計画を立てることができる。このように、第1実施形態によれば、エージェント200が監視を行いつつ、所定のタスクも行うことが可能なエージェント制御システムW1を提供できる。
第1実施形態によれば、所定領域500内のエージェント200のそれぞれの能力やメインタスクの種別に応じて、エージェント200が監視タスクを担うようにしている。これによって、監視のみを行うエージェント(図示せず)や固定センサ(図示せず)を設ける必要がなくなるため、全体として少ない台数のエージェント200で監視や搬送を行うことができる。その結果、システム全体の効率が高められる他、運用コストを削減できる。また、エージェント制御部300が、監視評価指標に基づいてエージェント200の経路を算出することで、各エージェント200の信頼性を保ちつつ、効率的な経路計画を立てることができる。このように、第1実施形態によれば、エージェント200が監視を行いつつ、所定のタスクも行うことが可能なエージェント制御システムW1を提供できる。
≪第2実施形態≫
第2実施形態は、エージェント制御部300A(図12参照)が監視レート演算部310(図12参照)を備え、固定センサ400等(図12参照)の検出結果に基づく監視評価指標に対応して所定の監視レートを設定する点が、第1実施形態とは異なっている。なお、その他については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
第2実施形態は、エージェント制御部300A(図12参照)が監視レート演算部310(図12参照)を備え、固定センサ400等(図12参照)の検出結果に基づく監視評価指標に対応して所定の監視レートを設定する点が、第1実施形態とは異なっている。なお、その他については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
図12は、第2実施形態に係るエージェント制御システムW2の機能ブロック図である。
図12に示すように、エージェント制御システムW2は、基地局100Aと、エージェント200-1~200-nと、固定センサ400-1~400-mと、を含んで構成されている。固定センサ400-1~400-mは、例えば、カメラであり、所定領域500内(図5A参照)の交差点等に設置されている。そして、固定センサ400-1~400-mの時々刻々の検出結果が基地局100Aに送信されるようになっている。なお、固定センサ400-1~400-mを総称して、固定センサ400という。
図12に示すように、エージェント制御システムW2は、基地局100Aと、エージェント200-1~200-nと、固定センサ400-1~400-mと、を含んで構成されている。固定センサ400-1~400-mは、例えば、カメラであり、所定領域500内(図5A参照)の交差点等に設置されている。そして、固定センサ400-1~400-mの時々刻々の検出結果が基地局100Aに送信されるようになっている。なお、固定センサ400-1~400-mを総称して、固定センサ400という。
第2実施形態では、交差点など人や車両の通行量が多い場所に設けられる固定センサ400と、監視タスクを担うエージェント200とによって、所定領域500内(図5A参照)の監視が行われる例について説明する。複数の固定センサ400を設けることで、システム全体のセンシング能力が向上するが、その一方でシステム全体の通信量も増大する。そこで、第2実施形態では、各場所のそれぞれの監視評価指標に基づいて、監視状況が悪い場所や人通りが多い場所のエージェント200及び固定センサ400の監視レートを高くし、人通りや交通量が少ない場所の監視レートを低く設定するようにしている。これによって、所定領域500における監視を適切に行いつつ、通信量を低減できる。
<固定センサがある場合の監視レート制御>
図13は、基地局100Aのシステム構成を示す機能ブロック図である。
図13に示すように、エージェント制御部300Aは、監視状態評価部305と、大域経路生成部306と、制限速度演算部307と、経路修正部308と、経路計画伝達部309と、を備える他、監視レート演算部310を備えている。そして、エージェント200(図12参照)の移動経路の他、エージェント200及び固定センサ400の監視レートが算出され、その算出結果がエージェント200及び固定センサ400に送信されるようになっている。
図13は、基地局100Aのシステム構成を示す機能ブロック図である。
図13に示すように、エージェント制御部300Aは、監視状態評価部305と、大域経路生成部306と、制限速度演算部307と、経路修正部308と、経路計画伝達部309と、を備える他、監視レート演算部310を備えている。そして、エージェント200(図12参照)の移動経路の他、エージェント200及び固定センサ400の監視レートが算出され、その算出結果がエージェント200及び固定センサ400に送信されるようになっている。
<エージェント情報管理部301>
図13に示すエージェント情報管理部301は、エージェント200(図12参照)の個体情報に加えて、固定センサ400(図12参照)の個体情報を保持している。固定センサ400の個体情報には、固定センサ400の設置位置と、センサ情報(センシング範囲、分解能、耐環境性等)と、が含まれている。
図13に示すエージェント情報管理部301は、エージェント200(図12参照)の個体情報に加えて、固定センサ400(図12参照)の個体情報を保持している。固定センサ400の個体情報には、固定センサ400の設置位置と、センサ情報(センシング範囲、分解能、耐環境性等)と、が含まれている。
<監視レート演算部310>
図14は、監視レート演算部の動作例を示す説明図である(適宜、図13も参照)。
なお、図14における「センサ取得」とは、固定センサ400(図12参照)やエージェント200(図12参照)の外界認識センサ207が監視情報を生成する動作を示している。また、図14における「監視処理」とは、固定センサ400やエージェント200が基地局100A(図12参照)に監視情報を送信する処理を示している。また、図14の紙面左側のグラフの横軸は時刻であり、縦軸は監視評価指標Cmjである。図14における実線のグラフは、所定の場所における監視評価指標Cmjの推移を示し、破線のグラフは、別の場所における監視評価指標Cmjの推移を示している。
図14は、監視レート演算部の動作例を示す説明図である(適宜、図13も参照)。
なお、図14における「センサ取得」とは、固定センサ400(図12参照)やエージェント200(図12参照)の外界認識センサ207が監視情報を生成する動作を示している。また、図14における「監視処理」とは、固定センサ400やエージェント200が基地局100A(図12参照)に監視情報を送信する処理を示している。また、図14の紙面左側のグラフの横軸は時刻であり、縦軸は監視評価指標Cmjである。図14における実線のグラフは、所定の場所における監視評価指標Cmjの推移を示し、破線のグラフは、別の場所における監視評価指標Cmjの推移を示している。
監視レート演算部310は、エージェント情報管理部301から取得されるエージェント200の個体情報や固定センサ400の個体情報の他、監視状態評価部305から取得される監視情報に基づいて、エージェント200及び固定センサ400の監視情報の通信レート(つまり、監視レート)を算出する。このようにして算出された監視レートは、経路計画伝達部309を介して、エージェント200及び固定センサ400に送信される。
なお、監視レートとは、単位時間当たりにエージェント200又は固定センサ400が基地局100A(監視状態評価部305等)に監視情報を提供する回数(つまり、頻度)であり、所定領域500内の場所ごとに設定される。
監視レート演算部310は、監視評価指標Cmjに基づいて、監視レートを算出する。すなわち、監視レート演算部310は、監視評価指標Cmjと所定の閾値Cthとの大小を比較することで、監視レートを算出する。例えば、ある区間Emjにおける交通量や人通りが増加して、監視評価指標Cmjが閾値Cth以上になった場合、監視レート演算部310は、そのエリアのエージェント200及び固定センサ400の監視レートを高くする。つまり、監視レート演算部310は、監視評価指標Cmjが高いほど、この監視評価指標Cmjに対応する場所の監視レートを高くする。
一方、夜間等に交通量が減少して、監視評価指標Cmjが閾値Cth未満になった場合、監視レート演算部310は、エージェント200及び固定センサ400の監視レートを低くする。なお、監視レートの算出方法は、これに限定されず、例えば、監視評価指標Cmjの値に反比例するように監視レートを変動させてもよい。
<効果>
第2実施形態によれば、監視レート演算部310が、監視情報に基づいて、エージェント200及び固定センサ400の監視レートを変化させるようにしている。これによって、所定領域500内の監視状況に応じて通信量が調整されるため、システム全体の通信量の増加を抑えることができる。また、交差点など人通りの多い場所に固定センサ400を設置することで、システム全体のセンシング能力を高めることができる。
第2実施形態によれば、監視レート演算部310が、監視情報に基づいて、エージェント200及び固定センサ400の監視レートを変化させるようにしている。これによって、所定領域500内の監視状況に応じて通信量が調整されるため、システム全体の通信量の増加を抑えることができる。また、交差点など人通りの多い場所に固定センサ400を設置することで、システム全体のセンシング能力を高めることができる。
≪第3実施形態≫
第3実施形態は、エージェント制御システムW1(図1参照)を用いて、テーマパーク700(図15参照)での人等の搬送や監視が行われる点が、第1実施形態とは異なっている。なお、その他(エージェント制御システムW1の構成等:図1、図2、図4参照)については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
第3実施形態は、エージェント制御システムW1(図1参照)を用いて、テーマパーク700(図15参照)での人等の搬送や監視が行われる点が、第1実施形態とは異なっている。なお、その他(エージェント制御システムW1の構成等:図1、図2、図4参照)については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<テーマパーク内の移動車に適用した場合の例>
図15は、第3実施形態に係るエージェント制御システムが適用されるテーマパーク700の説明図である。
図15の例では、テーマパーク700には、入場エリアと、中央エリアと、が設けられている他、中央エリアを囲むようにエリアA~Dが設けられている。そして、テーマパーク700内で、エージェントCAV5,CAV6,CAV7,CAV8が、それぞれ、ある場所から所定の目的地まで乗客を搬送するようになっている。以下では、図15に示すエージェントCAV5がエリアAで乗客を乗せて、エリアCの目的地Tg5まで搬送する場合について説明する。
図15は、第3実施形態に係るエージェント制御システムが適用されるテーマパーク700の説明図である。
図15の例では、テーマパーク700には、入場エリアと、中央エリアと、が設けられている他、中央エリアを囲むようにエリアA~Dが設けられている。そして、テーマパーク700内で、エージェントCAV5,CAV6,CAV7,CAV8が、それぞれ、ある場所から所定の目的地まで乗客を搬送するようになっている。以下では、図15に示すエージェントCAV5がエリアAで乗客を乗せて、エリアCの目的地Tg5まで搬送する場合について説明する。
図16Aは、比較例におけるエージェントの経路を示す説明図である。
なお、テーマパーク700の地図として、主要なアトラクションの前に設定されたノードVjと、それぞれのノードVjをつなぐ区間Ejと、を含むグラフG(Ej,Vj)の地図情報が用いられるものとする。今、中央エリアからエリアCに向かう通路である区間E10が歩行者で混んでおり、区間E10の監視評価指標が比較的高い状態(つまり、リスクが高い状態)であるとする。仮に、エージェントCAV5が乗客を乗せて最短経路で進む場合、図16Aの比較例に示すような区間E10を通るような所定の経路Gp5が算出される。
なお、テーマパーク700の地図として、主要なアトラクションの前に設定されたノードVjと、それぞれのノードVjをつなぐ区間Ejと、を含むグラフG(Ej,Vj)の地図情報が用いられるものとする。今、中央エリアからエリアCに向かう通路である区間E10が歩行者で混んでおり、区間E10の監視評価指標が比較的高い状態(つまり、リスクが高い状態)であるとする。仮に、エージェントCAV5が乗客を乗せて最短経路で進む場合、図16Aの比較例に示すような区間E10を通るような所定の経路Gp5が算出される。
図16Bは、第3実施形態に係るエージェント制御システムにおけるエージェントの大域経路を示す説明図である。
第3実施形態では、人等の搬送を行うエージェントCAV5が監視評価指標の低い場所を通行するような経路が設定される。例えば、前記した区間E10よりもリスクが低い区間E11を通過するような経路Gp6が算出される。ちなみに、エージェントCAV6が中央エリアにおいて回送中である場合には、監視評価指標の比較的大きい区間E10をエージェントCAV6が巡回するような経路Gp5が算出される。
第3実施形態では、人等の搬送を行うエージェントCAV5が監視評価指標の低い場所を通行するような経路が設定される。例えば、前記した区間E10よりもリスクが低い区間E11を通過するような経路Gp6が算出される。ちなみに、エージェントCAV6が中央エリアにおいて回送中である場合には、監視評価指標の比較的大きい区間E10をエージェントCAV6が巡回するような経路Gp5が算出される。
図17は、第3実施形態に係るエージェント制御システムにおけるエージェントの走行経路を示す説明図である。
前記した算出結果に基づいて、エージェントCAV5,CAV6は、最終的に図17のような経路(軌跡)で走行する。このように、エージェント制御システムW1(図1参照)が、エージェントCAV5,CAV6のメインタスクの内容に応じて、それぞれに監視タスクを課すような経路計画を作成する。これによって、乗客を搬送中は、エージェントCAV5等がリスクの低い経路を進むことで、安全性を確保できる。また、回送中のエージェントCAV6にはリスクの高いエリアを監視させることで、テーマパーク700の監視状況を改善できる。
前記した算出結果に基づいて、エージェントCAV5,CAV6は、最終的に図17のような経路(軌跡)で走行する。このように、エージェント制御システムW1(図1参照)が、エージェントCAV5,CAV6のメインタスクの内容に応じて、それぞれに監視タスクを課すような経路計画を作成する。これによって、乗客を搬送中は、エージェントCAV5等がリスクの低い経路を進むことで、安全性を確保できる。また、回送中のエージェントCAV6にはリスクの高いエリアを監視させることで、テーマパーク700の監視状況を改善できる。
≪変形例≫
以上、本発明に係るエージェント制御システムW1,W2等について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
例えば、各実施形態では、エージェント個体情報と、監視情報と、エージェント200の目的地・メインタスクの情報と、に基づいて、監視評価指標が算出される場合について説明したが、これに限らない。すなわち、監視評価指標の算出の際、前記した情報の一部(例えば、エージェント個体情報や目的地・メインタスクの情報)が省略されてもよい。すなわち、監視状態評価部305が、所定領域内で移動するエージェント200から送信される監視情報に基づいて、所定領域内の場所ごとの監視状態の良し悪しを示す監視評価指標を算出するようにしてもよい。このような構成でも、各実施形態と同様の効果が奏される。
以上、本発明に係るエージェント制御システムW1,W2等について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
例えば、各実施形態では、エージェント個体情報と、監視情報と、エージェント200の目的地・メインタスクの情報と、に基づいて、監視評価指標が算出される場合について説明したが、これに限らない。すなわち、監視評価指標の算出の際、前記した情報の一部(例えば、エージェント個体情報や目的地・メインタスクの情報)が省略されてもよい。すなわち、監視状態評価部305が、所定領域内で移動するエージェント200から送信される監視情報に基づいて、所定領域内の場所ごとの監視状態の良し悪しを示す監視評価指標を算出するようにしてもよい。このような構成でも、各実施形態と同様の効果が奏される。
また、第1実施形態では、エージェント制御部300(図4参照)が制限速度演算部307や経路修正部308を備える場合について説明したが、これに限らない。すなわち、エージェント制御部300の構成から制限速度演算部307及び経路修正部308の一方又は両方を省略してもよい。なお、第2実施形態や第3実施形態についても同様のことがいえる。
また、第1実施形態では、図4に示すように、エージェント情報管理部301と、監視情報管理部302と、地図情報管理部303と、業務管理部304と、エージェント制御部300と、が1つの基地局100に設けられる場合について説明したが、これに限らない。すなわち、前記した各構成の一部が他のサーバや所定のエージェント200に設けられるようにしてもよい。
また、第1実施形態では、図4に示すように、エージェント情報管理部301と、監視情報管理部302と、地図情報管理部303と、業務管理部304と、エージェント制御部300と、が1つの基地局100に設けられる場合について説明したが、これに限らない。すなわち、前記した各構成の一部が他のサーバや所定のエージェント200に設けられるようにしてもよい。
また、第1実施形態では、所定時間ΔT内に区間Ejを通過した車両及び歩行者の数や、監視タスクを担うエージェント200の台数、区間Ejの路面環境や事故発生率等に基づいて、監視評価指標Cmjが算出される場合について説明したが、これに限らない。すなわち、歩行者及び一般車両(エージェント200とは異なる他車両であって、監視を特に行わないもの)の通行量、エージェント200を含む監視車両の通行量、及び道路状況のうち少なくとも1つに基づいて、監視状態評価部305が監視評価指標Cmjを算出するようにしてもよい。
また、第1実施形態では、エージェント200のメインタスク(タスク)の種別、及び外界認識センサ207の性能に基づいて、監視タスク比率βiが設定される場合について説明したが、これに限らない。すなわち、大域経路生成部306(経路計画生成部)が、業務管理情報に含まれるメインタスク(タスク)の種別に基づいて、監視タスク比率βiをエージェント200に対応付けて設定するようにしてもよい。
また、第2実施形態では、エージェント制御システムW2(図12参照)が複数の固定センサ400を備える場合について説明したが、これに限らない。すなわち、固定センサ400が省略された構成において、監視レート演算部310(図13参照)が監視評価指標に基づいて監視レートを算出し、この監視レートをエージェント200に送信するようにしてもよい。このような構成でも、第2実施形態と同様の効果が奏される。
また、第2実施形態では、エージェント制御システムW2(図12参照)が複数の固定センサ400を備える場合について説明したが、これに限らない。すなわち、固定センサ400が省略された構成において、監視レート演算部310(図13参照)が監視評価指標に基づいて監視レートを算出し、この監視レートをエージェント200に送信するようにしてもよい。このような構成でも、第2実施形態と同様の効果が奏される。
また、第1実施形態で説明した各地点の監視評価指標を示す時々刻々のリスクマップが、管理者等のディスプレイ(表示装置)に表示されるようにしてもよい。また、第2実施形態で説明した時々刻々の監視レートが、固定センサ400やエージェント200の識別番号に対応付けて、管理者等のディスプレイ(表示装置)に表示されるようにしてもよい。これによって、所定領域500における監視評価指標や監視レートを管理者等が把握しやすくなる。
また、各実施形態では、所定領域500(図5A参照)の自動搬送システムや、テーマパーク700(図15参照)の移動体システムについて説明したが、本発明の適用先はこれらに限定されるものではない。例えば、人と移動体が混在する工場内や港湾や、物流倉庫内に適用することも可能であり、また、農業(農園)や観光等の他の領域に適用することも可能である。
また、各実施形態は、適宜に組み合わせることが可能である。例えば、第2実施形態と第3実施形態とを組み合わせ、第2実施形態のシステム構成(図12、図13参照)を、第3実施形態で説明したテーマパーク700(図15参照)に適用してもよい。
また、エージェント制御システムW1等における処理が、コンピュータの所定のプログラムとして実行されるようにしてもよい。前記したプログラムは、通信線を介して提供することもできる他、CD-ROM等の記録媒体に書き込んで配布することも可能である。
また、エージェント制御システムW1等における処理が、コンピュータの所定のプログラムとして実行されるようにしてもよい。前記したプログラムは、通信線を介して提供することもできる他、CD-ROM等の記録媒体に書き込んで配布することも可能である。
また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
100,100A 基地局
200,200-1,200-2,・・・,200n エージェント
207 外界認識センサ
300,300A エージェント制御部
301 エージェント情報管理部
302 監視情報管理部
303 地図情報管理部
304 業務管理部
305 監視状態評価部
306 大域経路生成部(経路計画生成部)
307 制限速度演算部
308 経路修正部
309 経路計画伝達部
310 監視レート演算部
400,400-1,400-2,・・・,400-m 固定センサ
500 所定領域
700 テーマパーク(所定領域)
CAV1,CAV2,CAV3,CAV4,CAV5,CAV6,CAV7,CAV8 エージェント
W1,W2 エージェント制御システム
200,200-1,200-2,・・・,200n エージェント
207 外界認識センサ
300,300A エージェント制御部
301 エージェント情報管理部
302 監視情報管理部
303 地図情報管理部
304 業務管理部
305 監視状態評価部
306 大域経路生成部(経路計画生成部)
307 制限速度演算部
308 経路修正部
309 経路計画伝達部
310 監視レート演算部
400,400-1,400-2,・・・,400-m 固定センサ
500 所定領域
700 テーマパーク(所定領域)
CAV1,CAV2,CAV3,CAV4,CAV5,CAV6,CAV7,CAV8 エージェント
W1,W2 エージェント制御システム
Claims (9)
- 所定領域内で移動するエージェントから送信される監視情報に基づいて、前記所定領域内の場所ごとの監視状態の良し悪しを示す監視評価指標を算出する監視状態評価部と、
前記エージェントの移動先及びタスクの種別を含む業務管理情報と、前記監視評価指標と、に基づいて、前記エージェントの経路計画を生成する経路計画生成部と、
前記経路計画のデータを前記エージェントに送信する経路計画伝達部と、を備えるエージェント制御システム。 - 前記経路計画生成部は、前記業務管理情報に含まれる前記タスクの種別に基づいて、前記タスクに対して監視の重要度が占める比率を示す監視タスク比率を前記エージェントに対応付けて設定し、前記監視タスク比率が高いほど、前記監視評価指標が相対的に高い経路を前記エージェントに走行させるように前記経路計画を生成すること
を特徴とする請求項1に記載のエージェント制御システム。 - 前記経路計画生成部は、前記タスクが人又は荷物の搬送である場合よりも、前記タスクが回送、配車、又は給電のための移動である場合の方が、前記監視タスク比率を高い値に設定すること
を特徴とする請求項2に記載のエージェント制御システム。 - 前記経路計画生成部は、前記エージェントに搭載される外界認識センサの性能が高いほど、前記監視タスク比率を高い値に設定すること
を特徴とする請求項2に記載のエージェント制御システム。 - 前記監視評価指標と、前記監視タスク比率と、に基づいて、前記エージェントの制限速度を算出する制限速度演算部を備え、
前記制限速度演算部は、前記監視タスク比率が所定値未満である場合において、前記監視評価指標が相対的に高い領域を前記エージェントに走行させる際の制限速度を、前記監視タスク比率が前記所定値以上の場合の制限速度よりも低くすること
を特徴とする請求項2に記載のエージェント制御システム。 - 前記エージェントの経路を修正する経路修正部を備え、
前記経路修正部は、前記制限速度と、前記監視情報と、に基づいて、前記エージェントの走行速度を前記制限速度以下に抑えつつ、前記エージェントと周囲の物体との接触を回避するように、前記エージェントの走行経路を修正すること
を特徴とする請求項5に記載のエージェント制御システム。 - 前記監視状態評価部は、歩行者及び一般車両の通行量、前記エージェントを含む監視車両の通行量、及び道路状況のうち少なくとも1つに基づいて、前記監視評価指標を算出すること
を特徴とする請求項1に記載のエージェント制御システム。 - 前記監視評価指標に基づいて、単位時間当たりに前記エージェントが前記監視状態評価部に監視情報を提供する回数である監視レートを前記所定領域内の場所ごとに設定する監視レート演算部を備え、
前記監視レート演算部は、前記監視評価指標が高いほど、当該監視評価指標に対応する場所の前記監視レートを高くすること
を特徴とする請求項1に記載のエージェント制御システム。 - 所定領域内で移動するエージェントから送信される監視情報に基づいて、前記所定領域内の場所ごとの監視状態の良し悪しを示す監視評価指標を算出する監視状態評価処理と、
前記エージェントの移動先及びタスクの種別を含む業務管理情報と、前記監視評価指標と、に基づいて、前記エージェントの経路計画を生成する経路計画生成処理と、
前記経路計画のデータを前記エージェントに送信する経路計画伝達処理と、含むエージェント制御方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-117021 | 2022-07-22 | ||
JP2022117021A JP2024014302A (ja) | 2022-07-22 | 2022-07-22 | エージェント制御システム及びエージェント制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024018733A1 true WO2024018733A1 (ja) | 2024-01-25 |
Family
ID=89617339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/017993 WO2024018733A1 (ja) | 2022-07-22 | 2023-05-12 | エージェント制御システム及びエージェント制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024014302A (ja) |
WO (1) | WO2024018733A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015179333A (ja) * | 2014-03-18 | 2015-10-08 | 株式会社日本総合研究所 | 自動運転交通システムを利用した地域見守システム及び地域見守方法 |
JP2019117574A (ja) * | 2017-12-27 | 2019-07-18 | トヨタ自動車株式会社 | 自動運転システム及び自動運転方法 |
JP2020144009A (ja) * | 2019-03-06 | 2020-09-10 | 株式会社Jvcケンウッド | データ取得装置、データ取得システム、データ取得方法およびプログラム |
-
2022
- 2022-07-22 JP JP2022117021A patent/JP2024014302A/ja active Pending
-
2023
- 2023-05-12 WO PCT/JP2023/017993 patent/WO2024018733A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015179333A (ja) * | 2014-03-18 | 2015-10-08 | 株式会社日本総合研究所 | 自動運転交通システムを利用した地域見守システム及び地域見守方法 |
JP2019117574A (ja) * | 2017-12-27 | 2019-07-18 | トヨタ自動車株式会社 | 自動運転システム及び自動運転方法 |
JP2020144009A (ja) * | 2019-03-06 | 2020-09-10 | 株式会社Jvcケンウッド | データ取得装置、データ取得システム、データ取得方法およびプログラム |
Also Published As
Publication number | Publication date |
---|---|
JP2024014302A (ja) | 2024-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112368662B (zh) | 用于自主运载工具操作管理的定向调整动作 | |
US11495126B2 (en) | Systems and methods for driving intelligence allocation between vehicles and highways | |
JP6726363B2 (ja) | 生成されたインターフェースを使用する自律走行車の監視 | |
EP3371795B1 (en) | Coordination of dispatching and maintaining fleet of autonomous vehicles | |
CN113119966B (zh) | 自主驾驶卡车路由的运动模型 | |
US11859990B2 (en) | Routing autonomous vehicles using temporal data | |
US11804136B1 (en) | Managing and tracking scouting tasks using autonomous vehicles | |
JP2019537159A5 (ja) | ||
US11656093B2 (en) | Method and system for navigating vehicle to pickup / drop-off zone | |
CN113692373B (zh) | 自动驾驶车辆服务的滞留和范围分析 | |
US11774259B2 (en) | Mapping off-road entries for autonomous vehicles | |
US11947356B2 (en) | Evaluating pullovers for autonomous vehicles | |
US20240125619A1 (en) | Generating scouting objectives | |
US20240035832A1 (en) | Methodology for establishing time of response to map discrepancy detection event | |
US20240317265A1 (en) | Collision evaluation using a hierarchy of grids | |
JP2024517167A (ja) | 系統的最適化を伴う車両案内 | |
WO2024018733A1 (ja) | エージェント制御システム及びエージェント制御方法 | |
US20230242158A1 (en) | Incorporating position estimation degradation into trajectory planning for autonomous vehicles in certain situations | |
US20230137111A1 (en) | Methodology for establishing cadence-based review frequency for map segments | |
US20220413510A1 (en) | Targeted driving for autonomous vehicles | |
CN115577314A (zh) | 一种基于多传感器信息融合的智能汽车协作控制系统 | |
CN115214625A (zh) | 识别自主车辆的可停车区域 | |
US20230015880A1 (en) | Using distributions for characteristics of hypothetical occluded objects for autonomous vehicles | |
US12123728B2 (en) | Service disruption prevention through dynamic geofences | |
US20230044015A1 (en) | Systems and methods for improving accuracy of passenger pick-up location for autonomous vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23842665 Country of ref document: EP Kind code of ref document: A1 |