WO2024018710A1 - Power supply control circuit - Google Patents

Power supply control circuit Download PDF

Info

Publication number
WO2024018710A1
WO2024018710A1 PCT/JP2023/015544 JP2023015544W WO2024018710A1 WO 2024018710 A1 WO2024018710 A1 WO 2024018710A1 JP 2023015544 W JP2023015544 W JP 2023015544W WO 2024018710 A1 WO2024018710 A1 WO 2024018710A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
coil
capacitor
control circuit
Prior art date
Application number
PCT/JP2023/015544
Other languages
French (fr)
Japanese (ja)
Inventor
智行 河野
賢佑 伊藤
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2024018710A1 publication Critical patent/WO2024018710A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/10Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current additionally responsive to some other abnormal electrical conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion

Definitions

  • the present invention relates to a power supply control circuit.
  • the electronic control unit mounted on a vehicle is known (for example, Patent Document 1).
  • the electronic control unit may include circuitry that controls the supply of power.
  • noise may be superimposed on the power supply voltage supplied to various parts. It is desirable to maintain normal vehicle operation even when noise is superimposed on the power supply voltage. However, even if the operation of the vehicle can be maintained normally, it is not preferable that the device becomes large.
  • the present disclosure has been made in view of the above, and the purpose is to provide a power supply that can maintain normal operation of a vehicle even when noise is superimposed on the power supply voltage, and that can suppress the increase in size of the device.
  • the object of the present invention is to provide a control circuit.
  • a power supply control circuit includes an input terminal to which a DC power supply can be connected, and a power supply line that supplies power from the input terminal to a subsequent circuit. , a coil provided on the power supply line, a first capacitor connected between the input terminal side of the coil and a ground line for the power supply line, and a first capacitor connected between the circuit side of the latter stage of the coil and the ground line.
  • a second capacitor connected between the power supply line and the switch element connected in series with the power supply line to turn on or off the supply of power to the subsequent circuit; a monitoring circuit that turns off the switch element when the voltage is exceeded, and a diode connected in parallel with the coil such that the cathode faces the front side of the coil and the anode faces the rear side of the coil.
  • FIG. 1 is a diagram showing the configuration of a power supply control circuit according to a comparative example.
  • FIG. 2 is a waveform diagram illustrating the operation of the power supply control circuit of the comparative example.
  • FIG. 3 is a diagram showing the configuration of the power supply control circuit of the first embodiment.
  • FIG. 4 is a waveform diagram illustrating the operation of the power supply control circuit of the first embodiment.
  • FIG. 5 is a diagram showing the configuration of a power supply control circuit according to the second embodiment.
  • each embodiment includes those that can be easily replaced by those skilled in the art, or those that are substantially the same.
  • Each embodiment is an illustrative example, and configurations shown in different embodiments can be partially replaced or combined.
  • the same or equivalent components as in other embodiments will be denoted by the same reference numerals, and the description thereof will be simplified or omitted.
  • the configurations described below can be combined as appropriate. Further, the configuration can be omitted, replaced, or changed without departing from the gist of the present disclosure.
  • FIG. 1 is a diagram showing the configuration of a power supply control circuit 1 according to a comparative example.
  • power supply control circuit 1 includes units U100, U200, U300, and U400.
  • the left side in the figure may be referred to as the front stage, and the right side in the figure may be referred to as the rear stage.
  • Unit U100 includes a battery VBATT, which is a DC power source, and a coil L100.
  • the battery VBATT is, for example, a 12 [V] or 24 [V] storage battery for a vehicle. That is, the normal voltage value output from the battery VBATT is 12 [V] or 24 [V].
  • Unit U200 in FIG. 1 and each unit on the right side thereof correspond to an ECU (Electronic Control Unit).
  • An ECU is an electronic control unit installed in a vehicle or the like. In the following description, unit U200 and the units on the right side thereof may be collectively referred to as "ECU.”
  • the unit U200 is provided after the unit U100 and before the unit U300. Unit U200 is provided to prevent failure of subsequent circuits even if the polarity of battery VBATT of unit U100 is accidentally reversed.
  • Unit U200 has capacitors C200 and C201, diodes D200 and D201, and terminals T21, T22, T23 and T24.
  • Terminals T21 and T22 are connected to terminals T11 and T12 of the preceding unit U100. Thereby, unit U100 and unit U200 are electrically connected. Terminals T21 and T22 are input terminals to which battery VBATT in unit U100 can be connected.
  • Capacitors C200 and C201 are charged by battery VBATT of unit U100. Current flows from unit U100 to unit U200 by battery VBATT and coil L100, and charges are accumulated in capacitor C200 and capacitor C201.
  • the diode D200 is provided to prevent reverse current flow. Diode D200 prevents current from flowing from unit U200 to unit U100.
  • the diode D201 will be turned off. If the polarity of battery VBATT of unit U100 is accidentally reversed, diode D201 will turn on. This can prevent the subsequent unit U300 and the like from being broken.
  • Terminals T23 and T24 are connected to terminals T31 and T32 of the subsequent unit U300.
  • Unit U300 includes a current/voltage monitoring circuit U310, a switch element Q303, a resistor R320, and terminals T31, T32, T33, and T34.
  • Resistor R320 is connected to the power line from unit U200 to unit U400.
  • Resistor R320 is provided to detect the current and voltage of the power supply line.
  • Switch element Q303 is connected to the above-mentioned power supply line. Switch element Q303 turns on or off the supply of power to the subsequent circuit.
  • the current and voltage monitoring circuit U310 is a circuit that monitors current and voltage.
  • Current/voltage monitoring circuit U310 turns off switch element Q303 when detecting that the current flowing through resistor R320 exceeds a predetermined threshold. Furthermore, when detecting that the voltage across the resistor R320 exceeds a predetermined threshold, the current/voltage monitoring circuit U310 turns off the switch element Q303. That is, current/voltage monitoring circuit U310 turns off switch element Q303 when the voltage or current of the power supply line exceeds a threshold value.
  • "Off" here includes not only completely turning off, but also limiting the current. For example, when an overcurrent is detected, the current is limited without turning off the switch element Q303 while keeping it conductive.
  • the switch element Q303 is a semiconductor switch such as an FET (Field Effect Transistor). Switch element Q303 is turned on or off depending on the voltage applied to the gate terminal of switch element Q303.
  • Current/voltage monitoring circuit U310 turns on or off switch element Q303 by applying a voltage to the gate terminal of switch element Q303.
  • Unit U400 includes a diode D400, capacitors C400 and C401, a coil L400, and terminals T41, T42, T43, and T44.
  • Unit U400 is provided for EMC (Electro Magnetic Compatibility) countermeasures.
  • Capacitor C400, coil L400, and capacitor C401 function as a ⁇ -type filter for noise countermeasures. Since it functions as a ⁇ -type filter, it prevents noise from units preceding unit U400 from being input to the subsequent stage, and prevents noise from units following unit U400 from inputting to the previous stage.
  • Diode D400 functions as a freewheeling diode.
  • the free circulation path IC1 is a path from the cathode of the diode D400, passing through the coil L400, the capacitor C401, and the ground line GND, and returning to the anode of the diode D400. If the diode D400 is not provided, and the voltage on the cathode side of the diode D400 drops to the negative side, the preceding switch element Q303 may be broken. Due to the diode D400, the voltage drop on the cathode side of the diode D400 stops at the forward voltage of the diode D400. Therefore, destruction of the switching element Q303 can be prevented. Note that the forward voltage is, for example, 0.7 [V].
  • a device that operates in response to power supply is provided at the subsequent stage of the unit U400 (on the right side in the figure).
  • Terminals T43 and T44 are electrically connected to a device provided downstream of unit U400.
  • the power supply control circuit 1 is mounted on a vehicle, it is conceivable that the electrical contact between the respective terminals may deteriorate due to vibrations during driving. Even in such a case, since the capacitor C401 is provided, the power supplied to each part can be stabilized. In other words, the capacitor C401 also has a function as a vibration countermeasure.
  • the path from terminal T21 via terminals T23, T31, T33, T41, and T43 is a power supply line that supplies power from terminal T21 to subsequent circuits.
  • Coil L400 is connected to this power line.
  • the capacitor C400 is connected to the input terminal side of the coil L400, that is, the terminal T41 side, and between the ground line GND and the power supply line.
  • the capacitor C401 is connected on the circuit side after the coil L400, that is, on the terminal T43 side, between the power supply line and the ground line GND.
  • the terminal T41 side is the upstream side of power supply through the power line when viewed from the coil L400.
  • the terminal T43 side is on the downstream side of power supply through the power line when viewed from the coil L400.
  • the ground line GND is a path from the terminal T22 via the terminals T24, T32, T34, T42, and T44.
  • the power supply control circuit 1 of the comparative example having the above configuration supplies power to each part of the device (not shown) on the right side of the unit U400, that is, at the subsequent stage.
  • a device that receives power supply may be provided with a solenoid or a relay (not shown). Noise may be generated when turning solenoids or relays on or off. Furthermore, noise may occur due to load dump surge due to the relationship with a generator (not shown) for charging the battery VBATT, which is a DC power source. For convenience of explanation, these noises are expressed as noise VNOISE in the unit U100 in FIG.
  • FIG. 2 is a waveform diagram illustrating the operation of the power supply control circuit 1 of the comparative example.
  • the horizontal axis is time and the vertical axis is voltage.
  • FIG. 2 shows the voltage of battery VBATT, that is, the voltage "+B" between terminals T21 and T22, the voltage "VL_IN” stored in capacitor C400, and the voltage "VL_OUT” stored in capacitor C401.
  • Voltage VL_IN is the voltage on the input side of coil L400
  • voltage VL_OUT is the voltage accumulated in capacitor C401 on the output side of coil L400.
  • the voltage VL_IN and the voltage VL_OUT have a relationship of VL_IN>VL_OUT.
  • the battery VBATT, the voltage VL_IN of the capacitor C400, and the voltage VL_OUT of the capacitor C401 are all, for example, 12 [V] in normal times.
  • VNOISE pulse-like noise
  • the voltage value of the battery VBATT rapidly increases to the voltage value V11. Due to this voltage increase, the voltage VL_IN stored in capacitor C400 also increases.
  • the current/voltage monitoring circuit U310 monitors the rise in voltage VL_IN by comparing it with a predetermined threshold value. Current/voltage monitoring circuit U310 turns off switch element Q303 when voltage VL_IN exceeds a threshold value.
  • the current/voltage monitoring circuit U310 detects the voltage increase before the voltage VL_IN rises to the voltage value V12 indicated by the broken line, and turns off the switch element Q303. That is, when the voltage rises and exceeds the threshold (for example, 18 [V]) detected by the current-voltage monitoring circuit U310, the current-voltage monitoring circuit U310 turns off the switch element Q303. In this example, current/voltage monitoring circuit U310 turns off switch element Q303 at time t1.
  • the threshold for example, 18 [V]
  • the capacitance of the capacitor C401 which is part of the ⁇ -type filter, may not be able to be increased from the viewpoint of realizing a predetermined cutoff frequency.
  • the voltage value V13 is a large value (for example, about 30 [V]) that significantly exceeds the threshold detected by the current/voltage monitoring circuit U310. If the capacitance of the capacitor C401 is small, there is a possibility that the withstand voltage of the circuit will be exceeded. It is necessary to avoid situations where the voltage exceeds the withstand voltage of the ECU's internal circuits. Even if the capacitance of the capacitor C401 is small, such a problem can be solved by the power supply control circuit of the embodiment described below.
  • FIG. 3 is a diagram showing the configuration of the power supply control circuit of the first embodiment.
  • the power supply control circuit 1a shown in FIG. 3 differs from the power supply control circuit 1 of the comparative example shown in FIG. 1 in that diodes D410 and D411 are added. Diodes D410 and D411 are connected such that the cathodes face the front side of the coil L400 and the anodes face the rear side of the coil L400.
  • a free circulation is formed by coil L400 and diodes D410 and D411.
  • a bypass circuit is formed in which the current flowing from the coil L400 is returned to the input side.
  • a return current path IC2 flowing through the bypass circuit is a path from one end side (node N1 side) of the coil L400, passing through a diode D410 and a diode D411, and returning to the other end side (node N2 side) of the coil L400. If voltage VL_IN ⁇ voltage VL_0UT, the electric energy stored in coil L400 can be released by circulation through path IC2.
  • two diodes D410 and D411 connected in series are used.
  • diodes D410 and D411 do not operate because the voltage on the cathode side of diodes D410 and D411 is high.
  • noise VNOISE occurs, freewheeling flows through path IC2 when the difference between the voltage of capacitor C400 and the voltage of capacitor C401 exceeds the sum of the forward voltages of diodes D410 and D411.
  • the electric energy stored in coil L400 can be released by this return flow through path IC2.
  • the two diodes D410 and D411 are provided, normal operation is not affected, and when noise VNOISE occurs, it is possible to avoid a situation where the withstand voltage of the circuit is exceeded.
  • two stages of forward voltage are provided by two diodes D410 and D411. If the forward voltage of one diode is Vf, the forward voltage of the two stages will be twice (that is, Vf ⁇ 2).
  • the number of diodes connected is not limited to two stages. The number of connected diodes may be increased to three stages (that is, Vf x 3), or the number of connected diodes may be reduced to one stage (that is, Vf x 1). In this way, when the diodes are connected in series, the sum of the forward voltages Vf becomes the above offset voltage V0FFSET.
  • the offset voltage V0FFSET is a multiple of the forward voltage Vf corresponding to the number of connections.
  • diode instead of the diode, it is also possible to provide a semiconductor element including a diode, such as an FET or an IGBT (Insulated Gate Bipolar Transistor). Even when FETs and IGBTs are used, the same effect as when using diodes can be obtained. However, it is preferable to use a diode as shown in FIG. 3 because the structure is inexpensive and simple.
  • a diode such as an FET or an IGBT (Insulated Gate Bipolar Transistor).
  • FIG. 4 is a waveform diagram illustrating the operation of the power supply control circuit 1a of the first embodiment.
  • the horizontal axis is time and the vertical axis is voltage.
  • the current/voltage monitoring circuit U310 detects a rise in voltage before the voltage VL_IN rises to the voltage value V22 shown by the broken line, and turns off the switch element Q303. In this example, current/voltage monitoring circuit U310 turns off switch element Q303 at time t1'.
  • FIG. 5 is a diagram showing the configuration of the power supply control circuit 1b of the second embodiment.
  • the power supply control circuit 1b shown in FIG. 5 differs from the power supply control circuit 1a shown in FIG. 3 in the configuration of the unit U400a.
  • common mode choke coil L401 is used instead of coil L400 of unit U400.
  • unit U400a includes diodes D401 and D402.
  • Common mode choke coil L401 includes two windings. Winding L4 on one side of common mode choke coil L401 acts as coil L400 in FIG. 3.
  • the diode D401 and the diode D402 are connected in opposite directions. That is, the cathode of the diode D401 and the anode of the diode D402 are connected, and the anode of the diode D401 and the cathode of the diode D402 are connected. Therefore, when the potential of the ground line GND1 on the previous stage side of these diodes D401 and D402, that is, on the side closer to the unit U100, becomes high and exceeds the forward voltage Vf of the diode D401, the diode D401 is turned on.
  • the diode D402 turns on. Therefore, the potential difference between the ground lines between the front side and the rear side of these diodes D401 and D402 can be kept below the forward voltage Vf.
  • the forward voltage Vf is, for example, 0.4 [V].

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Power Conversion In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The present invention maintains the normal operation of a vehicle even if noise is superimposed on a power supply voltage and suppresses the increase in the size of a device. A power supply control circuit 1a includes: input terminals T21, T22 to which a DC power supply can be connected; a power supply line that supplies power from the input terminals to a next-stage circuit; a coil L400 provided in the power supply line; a first capacitor C400 connected between the input terminal side of the coil L400 and the ground line for the power supply line; a second capacitor C401 connected between the next-stage circuit side of the coil L400 and the ground line; a switch element Q303 that is connected in series with the power supply line and turns on or off the supply of power to the next-stage circuit; a monitoring circuit U310 that turns off the switch element Q303 when the voltage or current of the power supply line exceeds a threshold value; and a semiconductor element including a diode connected in parallel with the coil such that the cathode faces the previous-stage side of the coil L400 and the anode faces the next-stage side of the coil.

Description

電源制御回路power control circuit
 本発明は、電源制御回路に関する。 The present invention relates to a power supply control circuit.
 車両に搭載される電子制御ユニットが知られている(例えば、特許文献1)。電子制御ユニットは、電源の供給を制御する回路を含むことがある。 An electronic control unit mounted on a vehicle is known (for example, Patent Document 1). The electronic control unit may include circuitry that controls the supply of power.
特開2013-206802号公報Japanese Patent Application Publication No. 2013-206802
 車両に搭載される電子制御ユニットにおいては、各部に供給する電源電圧にノイズが重畳されることがある。電源電圧にノイズが重畳された場合においても、車両の動作を正常に維持することが望ましい。ただし、車両の動作を正常に維持できても、装置が大型になることは好ましくない。 In electronic control units mounted on vehicles, noise may be superimposed on the power supply voltage supplied to various parts. It is desirable to maintain normal vehicle operation even when noise is superimposed on the power supply voltage. However, even if the operation of the vehicle can be maintained normally, it is not preferable that the device becomes large.
 本開示は、上記に鑑みてなされたものであって、その目的は、電源電圧にノイズが重畳されても、車両の動作を正常に維持でき、かつ、装置が大型になることを抑制できる電源制御回路を提供することである。 The present disclosure has been made in view of the above, and the purpose is to provide a power supply that can maintain normal operation of a vehicle even when noise is superimposed on the power supply voltage, and that can suppress the increase in size of the device. The object of the present invention is to provide a control circuit.
 上述した課題を解決し、目的を達成するために、本開示のある態様による電源制御回路は、直流電源を接続可能な入力端子と、前記入力端子から後段の回路へ電力を供給する電源線路と、前記電源線路に設けられるコイルと、前記コイルの前記入力端子側と前記電源線路に対するグランド線との間に接続される第1のコンデンサと、前記コイルの前記後段の回路側と前記グランド線との間に接続される第2のコンデンサと、前記電源線路に対して直列に接続されて後段の回路への電力の供給をオンまたはオフにするスイッチ素子と、前記電源線路の電圧または電流が閾値を超えたときに前記スイッチ素子をオフにする監視回路と、カソードが前記コイルの前段側を向き、かつ、アノードが前記コイルの後段側を向くように前記コイルと並列に接続されたダイオードを含む半導体素子と、を含む。 In order to solve the above-mentioned problems and achieve the objects, a power supply control circuit according to an aspect of the present disclosure includes an input terminal to which a DC power supply can be connected, and a power supply line that supplies power from the input terminal to a subsequent circuit. , a coil provided on the power supply line, a first capacitor connected between the input terminal side of the coil and a ground line for the power supply line, and a first capacitor connected between the circuit side of the latter stage of the coil and the ground line. a second capacitor connected between the power supply line and the switch element connected in series with the power supply line to turn on or off the supply of power to the subsequent circuit; a monitoring circuit that turns off the switch element when the voltage is exceeded, and a diode connected in parallel with the coil such that the cathode faces the front side of the coil and the anode faces the rear side of the coil. A semiconductor element.
図1は、比較例による電源制御回路の構成を示す図である。FIG. 1 is a diagram showing the configuration of a power supply control circuit according to a comparative example. 図2は、比較例の電源制御回路の動作を説明する波形図である。FIG. 2 is a waveform diagram illustrating the operation of the power supply control circuit of the comparative example. 図3は、第1実施形態の電源制御回路の構成を示す図である。FIG. 3 is a diagram showing the configuration of the power supply control circuit of the first embodiment. 図4は、第1実施形態の電源制御回路の動作を説明する波形図である。FIG. 4 is a waveform diagram illustrating the operation of the power supply control circuit of the first embodiment. 図5は、第2実施形態の電源制御回路の構成を示す図である。FIG. 5 is a diagram showing the configuration of a power supply control circuit according to the second embodiment.
 以下に、本開示の電源制御回路の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。また、各実施形態の構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。各実施形態は例示であり、異なる実施の形態で示した構成の部分的な置換又は組み合わせが可能である。以下の各実施形態の説明において、他の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略又は省略する。以下に記載した構成は適宜組み合わせることが可能である。また、本開示の要旨を逸脱しない範囲で構成の省略、置換又は変更を行うことができる。 Hereinafter, embodiments of the power supply control circuit of the present disclosure will be described in detail based on the drawings. Note that the present invention is not limited to this embodiment. Furthermore, the constituent elements of each embodiment include those that can be easily replaced by those skilled in the art, or those that are substantially the same. Each embodiment is an illustrative example, and configurations shown in different embodiments can be partially replaced or combined. In the following description of each embodiment, the same or equivalent components as in other embodiments will be denoted by the same reference numerals, and the description thereof will be simplified or omitted. The configurations described below can be combined as appropriate. Further, the configuration can be omitted, replaced, or changed without departing from the gist of the present disclosure.
 (比較例)
 本開示の電源制御回路の理解を容易にするために、比較例について先に説明する。
(Comparative example)
In order to facilitate understanding of the power supply control circuit of the present disclosure, a comparative example will be described first.
 最初に、比較例による電源制御回路の構成について説明する。図1は、比較例による電源制御回路1の構成を示す図である。図1において、電源制御回路1は、ユニットU100、U200、U300、および、U400を含む。以下の説明では、あるユニットに着目したときに、図中の左側を前段と呼び、図中の右側を後段と呼ぶことがある。 First, the configuration of a power supply control circuit according to a comparative example will be described. FIG. 1 is a diagram showing the configuration of a power supply control circuit 1 according to a comparative example. In FIG. 1, power supply control circuit 1 includes units U100, U200, U300, and U400. In the following explanation, when focusing on a certain unit, the left side in the figure may be referred to as the front stage, and the right side in the figure may be referred to as the rear stage.
 ユニットU100は、直流電源であるバッテリVBATTと、コイルL100とを含む。バッテリVBATTは、例えば、車両用の12[V]または24[V]の蓄電池である。つまり、バッテリVBATTから出力される通常時の電圧値は、12[V]または24[V]である。図1中のユニットU200およびそれより右側の各ユニットは、ECU(Electronic Control Unit)に相当する。ECUは、車両などに搭載される、電子制御装置である。以下の説明では、ユニットU200およびそれより右側のユニットを総称して「ECU」と呼ぶことがある。 Unit U100 includes a battery VBATT, which is a DC power source, and a coil L100. The battery VBATT is, for example, a 12 [V] or 24 [V] storage battery for a vehicle. That is, the normal voltage value output from the battery VBATT is 12 [V] or 24 [V]. Unit U200 in FIG. 1 and each unit on the right side thereof correspond to an ECU (Electronic Control Unit). An ECU is an electronic control unit installed in a vehicle or the like. In the following description, unit U200 and the units on the right side thereof may be collectively referred to as "ECU."
 ユニットU200は、ユニットU100の後段かつユニットU300の前段に設けられている。ユニットU200は、ユニットU100のバッテリVBATTの極性が誤って逆に接続された場合でも後段の回路の故障を防止するために設けられている。 The unit U200 is provided after the unit U100 and before the unit U300. Unit U200 is provided to prevent failure of subsequent circuits even if the polarity of battery VBATT of unit U100 is accidentally reversed.
 ユニットU200は、コンデンサC200およびC201と、ダイオードD200およびD201と、端子T21、T22、T23およびT24と、を有する。 Unit U200 has capacitors C200 and C201, diodes D200 and D201, and terminals T21, T22, T23 and T24.
 端子T21、T22は、前段のユニットU100の端子T11、T12と接続される。これにより、ユニットU100とユニットU200とが電気的に接続される。端子T21、T22は、ユニットU100内のバッテリVBATTを接続可能な入力端子である。 Terminals T21 and T22 are connected to terminals T11 and T12 of the preceding unit U100. Thereby, unit U100 and unit U200 are electrically connected. Terminals T21 and T22 are input terminals to which battery VBATT in unit U100 can be connected.
 コンデンサC200およびC201は、ユニットU100のバッテリVBATTによって充電される。バッテリVBATTおよびコイルL100によってユニットU100からユニットU200に電流が流れ、コンデンサC200、コンデンサC201に電荷が蓄積される。 Capacitors C200 and C201 are charged by battery VBATT of unit U100. Current flows from unit U100 to unit U200 by battery VBATT and coil L100, and charges are accumulated in capacitor C200 and capacitor C201.
 ダイオードD200は、電流の逆流を防止するために設けられている。ダイオードD200により、ユニットU200からユニットU100へ電流が流れることを防止する。 The diode D200 is provided to prevent reverse current flow. Diode D200 prevents current from flowing from unit U200 to unit U100.
 ユニットU100のバッテリVBATTの極性が正しく接続されていれば、ダイオードD201はオフになる。ユニットU100のバッテリVBATTの極性が誤って逆に接続された場合、ダイオードD201がオンになる。これにより、後段のユニットU300などが壊れることを防止できる。 If the polarity of the battery VBATT of the unit U100 is connected correctly, the diode D201 will be turned off. If the polarity of battery VBATT of unit U100 is accidentally reversed, diode D201 will turn on. This can prevent the subsequent unit U300 and the like from being broken.
 端子T23、T24は後段のユニットU300の端子T31、T32に接続される。 Terminals T23 and T24 are connected to terminals T31 and T32 of the subsequent unit U300.
 ユニットU300は、電流電圧監視回路U310と、スイッチ素子Q303と、抵抗R320と、端子T31、T32、T33およびT34と、を含む。抵抗R320は、ユニットU200からユニットU400への電源線路に接続されている。抵抗R320は、電源線路の電流および電圧を検出するために設けられている。スイッチ素子Q303は、上述した電源線路に接続されている。スイッチ素子Q303は、後段の回路への電力の供給をオンまたはオフにする。 Unit U300 includes a current/voltage monitoring circuit U310, a switch element Q303, a resistor R320, and terminals T31, T32, T33, and T34. Resistor R320 is connected to the power line from unit U200 to unit U400. Resistor R320 is provided to detect the current and voltage of the power supply line. Switch element Q303 is connected to the above-mentioned power supply line. Switch element Q303 turns on or off the supply of power to the subsequent circuit.
 電流電圧監視回路U310は、電流および電圧を監視する回路である。電流電圧監視回路U310は、抵抗R320を流れる電流が予め定められた閾値を超えたことを検出すると、スイッチ素子Q303をオフにする。また、電流電圧監視回路U310は、抵抗R320の両端間の電圧が予め定められた閾値を超えたことを検出すると、スイッチ素子Q303をオフにする。すなわち、電流電圧監視回路U310は、電源線路の電圧または電流が閾値を超えたときに、スイッチ素子Q303をオフにする。ここでいう「オフ」は、完全にオフさせること以外にも、電流を制限する場合も含む。例えば、過電流を検出した場合にはオフさせずに、スイッチ素子Q303を導通させた状態で電流を制限する。 The current and voltage monitoring circuit U310 is a circuit that monitors current and voltage. Current/voltage monitoring circuit U310 turns off switch element Q303 when detecting that the current flowing through resistor R320 exceeds a predetermined threshold. Furthermore, when detecting that the voltage across the resistor R320 exceeds a predetermined threshold, the current/voltage monitoring circuit U310 turns off the switch element Q303. That is, current/voltage monitoring circuit U310 turns off switch element Q303 when the voltage or current of the power supply line exceeds a threshold value. "Off" here includes not only completely turning off, but also limiting the current. For example, when an overcurrent is detected, the current is limited without turning off the switch element Q303 while keeping it conductive.
 スイッチ素子Q303は、FET(Field Effect Transistor)などの半導体スイッチである。スイッチ素子Q303のゲート端子に与えられる電圧によってスイッチ素子Q303はオンまたはオフになる。電流電圧監視回路U310は、スイッチ素子Q303のゲート端子に電圧を与えることにより、スイッチ素子Q303をオンまたはオフにする。 The switch element Q303 is a semiconductor switch such as an FET (Field Effect Transistor). Switch element Q303 is turned on or off depending on the voltage applied to the gate terminal of switch element Q303. Current/voltage monitoring circuit U310 turns on or off switch element Q303 by applying a voltage to the gate terminal of switch element Q303.
 ユニットU400は、ダイオードD400と、コンデンサC400およびC401と、コイルL400と、端子T41、T42、T43およびT44と、を有する。ユニットU400は、EMC(Electro Magnetic Compatibility)対策のために設けられている。コンデンサC400、コイルL400およびコンデンサC401は、ノイズ対策のためのπ型フィルタとして機能する。π型フィルタとして機能するため、ユニットU400より前段のユニットによるノイズを後段に入力させず、かつ、ユニットU400より後段のユニットによるノイズを前段に入力させないようにする。 Unit U400 includes a diode D400, capacitors C400 and C401, a coil L400, and terminals T41, T42, T43, and T44. Unit U400 is provided for EMC (Electro Magnetic Compatibility) countermeasures. Capacitor C400, coil L400, and capacitor C401 function as a π-type filter for noise countermeasures. Since it functions as a π-type filter, it prevents noise from units preceding unit U400 from being input to the subsequent stage, and prevents noise from units following unit U400 from inputting to the previous stage.
 ダイオードD400は、還流ダイオードとして機能する。還流の経路IC1は、ダイオードD400のカソードから、コイルL400、コンデンサC401、グランド線GNDを通ってダイオードD400のアノードに戻る経路である。ダイオードD400が設けられていない場合、ダイオードD400のカソード側の電圧がマイナス側に落ち込むと、前段のスイッチ素子Q303が壊れることがある。ダイオードD400により、ダイオードD400のカソード側の電圧の低下は、ダイオードD400の順方向電圧で止まる。このため、スイッチ素子Q303の破壊を防止できる。なお、順方向電圧は、例えば、0.7[V]である。 Diode D400 functions as a freewheeling diode. The free circulation path IC1 is a path from the cathode of the diode D400, passing through the coil L400, the capacitor C401, and the ground line GND, and returning to the anode of the diode D400. If the diode D400 is not provided, and the voltage on the cathode side of the diode D400 drops to the negative side, the preceding switch element Q303 may be broken. Due to the diode D400, the voltage drop on the cathode side of the diode D400 stops at the forward voltage of the diode D400. Therefore, destruction of the switching element Q303 can be prevented. Note that the forward voltage is, for example, 0.7 [V].
 ユニットU400の後段(図中の右側)には、電源の供給を受けて動作する装置(図示せず)が設けられている。端子T43、T44は、ユニットU400の後段に設けられている装置と電気的に接続される。電源制御回路1が車両に搭載された場合に、走行中の振動によって各端子同士の電気的接触が低下することも考えられる。そのような場合であっても、コンデンサC401が設けられているため、各部に供給する電源を安定させることができる。つまり、コンデンサC401は振動対策としての機能も有する。 A device (not shown) that operates in response to power supply is provided at the subsequent stage of the unit U400 (on the right side in the figure). Terminals T43 and T44 are electrically connected to a device provided downstream of unit U400. When the power supply control circuit 1 is mounted on a vehicle, it is conceivable that the electrical contact between the respective terminals may deteriorate due to vibrations during driving. Even in such a case, since the capacitor C401 is provided, the power supplied to each part can be stabilized. In other words, the capacitor C401 also has a function as a vibration countermeasure.
 端子T21から端子T23、T31、T33、T41およびT43を経由する経路は、端子T21から後段の回路へ電力を供給する電源線路である。コイルL400は、この電源線路に接続されている。コンデンサC400は、コイルL400の入力端子側、すなわち端子T41側であって、上記電源線路に対するグランド線GNDとの間に接続されている。コンデンサC401は、コイルL400の後段の回路側、すなわち端子T43側であって、上記電源線路とグランド線GNDとの間に接続されている。端子T41側は、コイルL400からみて、電源線路による電力供給の上流側である。端子T43側は、コイルL400からみて、電源線路による電力供給の下流側である。なお、グランド線GNDは、端子T22から端子T24、T32、T34、T42およびT44を経由する経路である。 The path from terminal T21 via terminals T23, T31, T33, T41, and T43 is a power supply line that supplies power from terminal T21 to subsequent circuits. Coil L400 is connected to this power line. The capacitor C400 is connected to the input terminal side of the coil L400, that is, the terminal T41 side, and between the ground line GND and the power supply line. The capacitor C401 is connected on the circuit side after the coil L400, that is, on the terminal T43 side, between the power supply line and the ground line GND. The terminal T41 side is the upstream side of power supply through the power line when viewed from the coil L400. The terminal T43 side is on the downstream side of power supply through the power line when viewed from the coil L400. Note that the ground line GND is a path from the terminal T22 via the terminals T24, T32, T34, T42, and T44.
 次に、動作について説明する。上記の構成からなる比較例の電源制御回路1は、ユニットU400より右側すなわち後段の装置(図示せず)の各部に電力を供給する。電力の供給を受ける装置には、図示しないソレノイドやリレーが設けられていることがある。ソレノイドやリレーをオンまたはオフさせるとノイズが発生することがある。また、直流電源であるバッテリVBATTを充電するための発電機(図示せず)との関係からロードダンプサージによるノイズが発生することがある。これらのノイズについて、説明の便宜上、図1中のユニットU100内にノイズVNOISEとして表記している。 Next, the operation will be explained. The power supply control circuit 1 of the comparative example having the above configuration supplies power to each part of the device (not shown) on the right side of the unit U400, that is, at the subsequent stage. A device that receives power supply may be provided with a solenoid or a relay (not shown). Noise may be generated when turning solenoids or relays on or off. Furthermore, noise may occur due to load dump surge due to the relationship with a generator (not shown) for charging the battery VBATT, which is a DC power source. For convenience of explanation, these noises are expressed as noise VNOISE in the unit U100 in FIG.
 ノイズが発生することにより、バッテリVBATTの電圧すなわち端子T21とT22との間の電圧「+B」が変化する。端子T21とT22との間の電圧が変化した場合の動作について、図2を参照して説明する。 Due to the occurrence of noise, the voltage of battery VBATT, that is, the voltage "+B" between terminals T21 and T22 changes. The operation when the voltage between terminals T21 and T22 changes will be described with reference to FIG. 2.
 図2は、比較例の電源制御回路1の動作を説明する波形図である。図2において、横軸は時間、縦軸は電圧、である。図2は、バッテリVBATTの電圧すなわち端子T21とT22との間の電圧「+B」と、コンデンサC400に蓄積される電圧「VL_IN」と、コンデンサC401に蓄積される電圧「VL_OUT」とを示す。電圧VL_INはコイルL400の入力側の電圧であり、電圧VL_OUTはコイルL400の出力側のコンデンサC401に蓄積される電圧である。電圧VL_INと電圧VL_OUTとは、VL_IN>VL_OUTの関係にある。 FIG. 2 is a waveform diagram illustrating the operation of the power supply control circuit 1 of the comparative example. In FIG. 2, the horizontal axis is time and the vertical axis is voltage. FIG. 2 shows the voltage of battery VBATT, that is, the voltage "+B" between terminals T21 and T22, the voltage "VL_IN" stored in capacitor C400, and the voltage "VL_OUT" stored in capacitor C401. Voltage VL_IN is the voltage on the input side of coil L400, and voltage VL_OUT is the voltage accumulated in capacitor C401 on the output side of coil L400. The voltage VL_IN and the voltage VL_OUT have a relationship of VL_IN>VL_OUT.
 図2において、バッテリVBATT、コンデンサC400の電圧VL_IN、コンデンサC401の電圧VL_OUTは、いずれも通常時において、例えば、12[V]である。ここで、バッテリVBATTの通常時の電圧値に対し、パルス状のノイズVNOISEが重畳される場合を考える。ノイズVNOISEにより、バッテリVBATTの電圧値は、電圧値V11まで急激に上昇する。この電圧の上昇により、コンデンサC400に蓄積される電圧VL_INも上昇する。電流電圧監視回路U310は、予め定められた閾値と比較することによって電圧VL_INの上昇を監視している。電流電圧監視回路U310は、電圧VL_INが閾値を超えると、スイッチ素子Q303をオフにする。 In FIG. 2, the battery VBATT, the voltage VL_IN of the capacitor C400, and the voltage VL_OUT of the capacitor C401 are all, for example, 12 [V] in normal times. Here, consider a case where pulse-like noise VNOISE is superimposed on the normal voltage value of battery VBATT. Due to the noise VNOISE, the voltage value of the battery VBATT rapidly increases to the voltage value V11. Due to this voltage increase, the voltage VL_IN stored in capacitor C400 also increases. The current/voltage monitoring circuit U310 monitors the rise in voltage VL_IN by comparing it with a predetermined threshold value. Current/voltage monitoring circuit U310 turns off switch element Q303 when voltage VL_IN exceeds a threshold value.
 本例では、破線で示す電圧値V12まで電圧VL_INが上昇する前に電流電圧監視回路U310が電圧の上昇を検出し、スイッチ素子Q303をオフにする。つまり、電圧が上昇して電流電圧監視回路U310が検出する閾値(例えば、18[V])を超えると、電流電圧監視回路U310はスイッチ素子Q303をオフにする。本例では、電流電圧監視回路U310は、時刻t1においてスイッチ素子Q303をオフにする。 In this example, the current/voltage monitoring circuit U310 detects the voltage increase before the voltage VL_IN rises to the voltage value V12 indicated by the broken line, and turns off the switch element Q303. That is, when the voltage rises and exceeds the threshold (for example, 18 [V]) detected by the current-voltage monitoring circuit U310, the current-voltage monitoring circuit U310 turns off the switch element Q303. In this example, current/voltage monitoring circuit U310 turns off switch element Q303 at time t1.
 スイッチ素子Q303がオフになると、電圧VL_INは下降し始める。スイッチ素子Q303をオフにした場合でも、コイルL400によって電流の流れが維持される。つまり、コイルL400に蓄積されている電気エネルギーが放出され、コンデンサC401および図示しない後段の回路に向かって電流が流れる。コイルL400から放出される電気エネルギーによる電流によって、コンデンサC401が充電される。これにより、コンデンサC401に蓄積される電圧VL_OUTが上昇する。このため、電圧VL_OUTは、電圧値V13まで上昇する。その後、電圧VL_OUTは、後段の装置へのリークにより下降する。時刻t2においてスイッチ素子Q303がオンになると電圧VL_OUTは上昇し、その後下降して通常時の電圧値(例えば、12[V])に戻る。なお、スイッチ素子Q303のオフ時に、後段の装置とユニットU400との接続は、前述のリレーなどにより遮断される。これにより、コンデンサC401が充電される。 When switch element Q303 is turned off, voltage VL_IN begins to fall. Even when switch element Q303 is turned off, current flow is maintained by coil L400. That is, the electrical energy stored in the coil L400 is released, and a current flows toward the capacitor C401 and a subsequent circuit (not shown). Capacitor C401 is charged by a current due to electrical energy released from coil L400. As a result, the voltage VL_OUT stored in the capacitor C401 increases. Therefore, the voltage VL_OUT rises to the voltage value V13. Thereafter, the voltage VL_OUT drops due to leakage to subsequent devices. When the switch element Q303 is turned on at time t2, the voltage VL_OUT rises, then falls and returns to the normal voltage value (for example, 12 [V]). Note that when the switch element Q303 is turned off, the connection between the subsequent device and the unit U400 is cut off by the aforementioned relay or the like. This charges the capacitor C401.
 ここで、π型フィルタの一部であるコンデンサC401については、所定の遮断周波数を実現する観点から、その容量を大きくすることができない場合がある。電圧値V13は電流電圧監視回路U310が検出する閾値を大幅に超える大きな値(例えば、約30[V])である。コンデンサC401の容量が小さい場合には、回路の耐圧を超える可能性がある。ECUの内部回路の耐圧を超えるような状況は避ける必要がある。コンデンサC401の容量が小さい場合であっても、次に説明する実施形態の電源制御回路によれば、このような問題を解決できる。 Here, the capacitance of the capacitor C401, which is part of the π-type filter, may not be able to be increased from the viewpoint of realizing a predetermined cutoff frequency. The voltage value V13 is a large value (for example, about 30 [V]) that significantly exceeds the threshold detected by the current/voltage monitoring circuit U310. If the capacitance of the capacitor C401 is small, there is a possibility that the withstand voltage of the circuit will be exceeded. It is necessary to avoid situations where the voltage exceeds the withstand voltage of the ECU's internal circuits. Even if the capacitance of the capacitor C401 is small, such a problem can be solved by the power supply control circuit of the embodiment described below.
 (第1実施形態)
 最初に、第1実施形態による電源制御回路の構成について説明する。図3は、第1実施形態の電源制御回路の構成を示す図である。図3に示す電源制御回路1aが、図1に示す比較例の電源制御回路1と異なる点は、ダイオードD410およびD411が追加された点である。ダイオードD410およびD411は、カソードがコイルL400の前段側を向きかつアノードがコイルL400の後段側を向くように接続される。
(First embodiment)
First, the configuration of the power supply control circuit according to the first embodiment will be described. FIG. 3 is a diagram showing the configuration of the power supply control circuit of the first embodiment. The power supply control circuit 1a shown in FIG. 3 differs from the power supply control circuit 1 of the comparative example shown in FIG. 1 in that diodes D410 and D411 are added. Diodes D410 and D411 are connected such that the cathodes face the front side of the coil L400 and the anodes face the rear side of the coil L400.
 ノイズVNOISEによる過電流または過電圧を電流電圧監視回路U310が検出し、スイッチ素子Q303がオフになった場合に、コイルL400、ダイオードD410およびD411による還流を形成する。つまり、コイルL400から出る電流を入力側に戻すパイパス回路を形成する。パイパス回路を流れる還流の経路IC2は、コイルL400の一端側(ノードN1側)から、ダイオードD410、ダイオードD411を通って、コイルL400の他端側(ノードN2側)に戻る経路である。電圧VL_IN<電圧VL_0UTであれば、この経路IC2の還流によって、コイルL400に蓄積された電気エネルギーを放出することができる。コイルL400に蓄積された電気エネルギーを放出することにより、コンデンサC401の電圧上昇を抑えることができる。つまり、本実施形態では、ECUの内部回路の耐圧を超えないようにするために、コイルL400の入力側の電圧と、コイルL400の出力側の電圧とを比較して、出力電圧の方が大きい場合には、上記の還流によって入力側に電荷を逃がすことができる。 When current/voltage monitoring circuit U310 detects overcurrent or overvoltage due to noise VNOISE and switch element Q303 is turned off, a free circulation is formed by coil L400 and diodes D410 and D411. In other words, a bypass circuit is formed in which the current flowing from the coil L400 is returned to the input side. A return current path IC2 flowing through the bypass circuit is a path from one end side (node N1 side) of the coil L400, passing through a diode D410 and a diode D411, and returning to the other end side (node N2 side) of the coil L400. If voltage VL_IN<voltage VL_0UT, the electric energy stored in coil L400 can be released by circulation through path IC2. By discharging the electrical energy stored in the coil L400, it is possible to suppress the voltage increase in the capacitor C401. That is, in this embodiment, in order to avoid exceeding the withstand voltage of the internal circuit of the ECU, the voltage on the input side of the coil L400 and the voltage on the output side of the coil L400 are compared, and the output voltage is higher. In this case, the charge can be released to the input side by the above-mentioned reflux.
 ところで、ダイオードD410およびD411にはそれぞれ順方向電圧が存在する。これらのダイオードD410およびD411は直列に接続されており、順方向電圧の合計をオフセット電圧V0FFSETとする。このオフセット電圧V0FFSETを加味し、
電圧VL_IN+オフセット電圧V0FFSET<電圧VL_0UT
である場合に、上記の経路IC2の還流が生じる。これにより、コイルL400の出力側のコンデンサC401の容量が小さい場合であっても、比較例の場合と同様にノイズVNOISEが発生した場合でも回路の耐圧を超えるような状況を避けることができる。
By the way, forward voltage exists in each of the diodes D410 and D411. These diodes D410 and D411 are connected in series, and the sum of their forward voltages is the offset voltage V0FFSET. Considering this offset voltage V0FFSET,
Voltage VL_IN + offset voltage V0FFSET < voltage VL_0UT
When , the above-mentioned reflux of route IC2 occurs. As a result, even if the capacitance of the capacitor C401 on the output side of the coil L400 is small, it is possible to avoid a situation in which the withstand voltage of the circuit is exceeded even when noise VNOISE occurs, as in the case of the comparative example.
 本実施形態では、直列に接続された2つのダイオードD410およびD411を用いている。ノイズが印加されていない通常動作時には、ダイオードD410およびD411のカソード側の電圧が高いのでダイオードD410およびD411は動作しない。ノイズVNOISEが発生した場合には、コンデンサC400の電圧とコンデンサC401の電圧との差が、ダイオードD410およびD411の順方向電圧の和を超える場合に、経路IC2の還流が流れる。この経路IC2の還流によって、コイルL400に蓄積された電気エネルギーを放出することができる。つまり、2つのダイオードD410およびD411を設けていても通常動作に影響を与えることはなく、ノイズVNOISEが発生した場合には、回路の耐圧を超えるような状況を避けることができる。 In this embodiment, two diodes D410 and D411 connected in series are used. During normal operation when no noise is applied, diodes D410 and D411 do not operate because the voltage on the cathode side of diodes D410 and D411 is high. When noise VNOISE occurs, freewheeling flows through path IC2 when the difference between the voltage of capacitor C400 and the voltage of capacitor C401 exceeds the sum of the forward voltages of diodes D410 and D411. The electric energy stored in coil L400 can be released by this return flow through path IC2. In other words, even if the two diodes D410 and D411 are provided, normal operation is not affected, and when noise VNOISE occurs, it is possible to avoid a situation where the withstand voltage of the circuit is exceeded.
 本例では、2つのダイオードD410およびD411による2段の順方向電圧としている。1つのダイオードの順方向電圧をVfとすると、2段の順方向電圧は2倍(すなわち、Vf×2)となる。複数のダイオードを設けることにより、多少の電圧変動があった場合にダイオードがオンすることを防止できる。ダイオードの接続数は2段に限らない。ダイオードの接続数を増やして3段(すなわちVf×3)としてもよいし、接続数を減らして1段(すなわちVf×1)としてもよい。このように、ダイオードを直列に接続する場合、順方向電圧Vfの和が上記のオフセット電圧V0FFSETとなる。順方向電圧が同じダイオードを複数接続する場合、接続数に対応する順方向電圧Vfの倍数が上記のオフセット電圧V0FFSETとなる。コンデンサC400の電圧とコンデンサC401の電圧との差が、ダイオードD410およびD411の順方向電圧の和を超える場合に、経路IC2の還流が流れる。 In this example, two stages of forward voltage are provided by two diodes D410 and D411. If the forward voltage of one diode is Vf, the forward voltage of the two stages will be twice (that is, Vf×2). By providing a plurality of diodes, it is possible to prevent the diodes from turning on when there is some voltage fluctuation. The number of diodes connected is not limited to two stages. The number of connected diodes may be increased to three stages (that is, Vf x 3), or the number of connected diodes may be reduced to one stage (that is, Vf x 1). In this way, when the diodes are connected in series, the sum of the forward voltages Vf becomes the above offset voltage V0FFSET. When a plurality of diodes with the same forward voltage are connected, the offset voltage V0FFSET is a multiple of the forward voltage Vf corresponding to the number of connections. When the difference between the voltage of capacitor C400 and the voltage of capacitor C401 exceeds the sum of the forward voltages of diodes D410 and D411, freewheeling in path IC2 flows.
 なお、ダイオードの代わりに、ダイオードを含むFET、IGBT(Insulated Gate Bipolar Transistor)などの半導体素子を設けることも考えられる。FET、IGBTを用いた場合でもダイオードを用いた場合と同様の効果が得られる。ただし、図3のようにダイオードを用いれば、安価かつ単純な構成で済むため好ましい。 Note that instead of the diode, it is also possible to provide a semiconductor element including a diode, such as an FET or an IGBT (Insulated Gate Bipolar Transistor). Even when FETs and IGBTs are used, the same effect as when using diodes can be obtained. However, it is preferable to use a diode as shown in FIG. 3 because the structure is inexpensive and simple.
 次に、動作について説明する。図4は、第1実施形態の電源制御回路1aの動作を説明する波形図である。図4において、横軸は時間、縦軸は電圧、である。 Next, the operation will be explained. FIG. 4 is a waveform diagram illustrating the operation of the power supply control circuit 1a of the first embodiment. In FIG. 4, the horizontal axis is time and the vertical axis is voltage.
 図4において、図2の場合と同様にバッテリVBATTの通常時の電圧値に対し、パルス状のノイズVNOISEが重畳される場合を考える。ノイズVNOISEにより、バッテリVBATTの電圧値は、電圧値V21まで急激に上昇する。この電圧の上昇により、コンデンサC400に蓄積される電圧VL_INも上昇する。電流電圧監視回路U310は、予め定められた閾値と比較することによって電圧VL_INの上昇を監視している。電流電圧監視回路U310は、電圧VL_INが閾値を超えると、スイッチ素子Q303をオフにする。 In FIG. 4, consider the case where pulse-like noise VNOISE is superimposed on the normal voltage value of battery VBATT, as in the case of FIG. Due to the noise VNOISE, the voltage value of the battery VBATT rapidly increases to the voltage value V21. Due to this voltage increase, the voltage VL_IN stored in capacitor C400 also increases. The current/voltage monitoring circuit U310 monitors the rise in voltage VL_IN by comparing it with a predetermined threshold value. Current/voltage monitoring circuit U310 turns off switch element Q303 when voltage VL_IN exceeds a threshold value.
 本例では、破線で示す電圧値V22まで電圧VL_INが上昇する前に電流電圧監視回路U310が電圧の上昇を検出し、スイッチ素子Q303をオフにする。本例では、電流電圧監視回路U310は、時刻t1’においてスイッチ素子Q303をオフにする。 In this example, the current/voltage monitoring circuit U310 detects a rise in voltage before the voltage VL_IN rises to the voltage value V22 shown by the broken line, and turns off the switch element Q303. In this example, current/voltage monitoring circuit U310 turns off switch element Q303 at time t1'.
 スイッチ素子Q303をオフにすると、コイルL400に蓄積されている電気エネルギーが放出される。このとき、上記の経路IC2の還流が生じることにより、コイルL400に蓄積された電気エネルギーを放出することができる。コイルL400に蓄積された電気エネルギーを放出することにより、コンデンサC401の電圧上昇を抑えることができる。本例では、電圧VL_OUTは電圧値V23まで上昇する。電圧値V23は、電流電圧監視回路U310の閾値(例えば、18[V])をわずかに超える程度である。その後、電圧VL_OUTは、下降する。時刻t2’においてスイッチ素子Q303がオンになると電圧VL_OUTは上昇し、その後下降して通常時の電圧値(例えば、12[V])に戻る。つまり、コイルL400に蓄積された電気エネルギーが全て放出されると、一連の動作が止まり、電圧VL_IN、電圧VL_OUTは通常時の電圧値に戻る。 When switching element Q303 is turned off, the electrical energy stored in coil L400 is released. At this time, the electric energy accumulated in the coil L400 can be released by generating the above-mentioned reflux in the path IC2. By discharging the electrical energy stored in the coil L400, it is possible to suppress the voltage increase in the capacitor C401. In this example, voltage VL_OUT rises to voltage value V23. The voltage value V23 slightly exceeds the threshold value (for example, 18 [V]) of the current/voltage monitoring circuit U310. After that, voltage VL_OUT falls. When the switch element Q303 is turned on at time t2', the voltage VL_OUT rises, then falls and returns to the normal voltage value (for example, 12 [V]). That is, when all the electrical energy stored in the coil L400 is released, the series of operations stops, and the voltage VL_IN and the voltage VL_OUT return to their normal voltage values.
 以上のように、還流によって電気エネルギーを放出できるので、コンデンサの容量を大きくすることなく、強度の強いノイズが印加された場合でも、ECUの内部回路の耐圧を超えないように制御できる。このため、小容量のコンデンサを使用することができるため、振動対策、装置の大型化の抑制および軽量化、低燃費化、コストダウンを実現できる。 As described above, since electric energy can be released through reflux, even if strong noise is applied, it can be controlled so that the withstand voltage of the ECU's internal circuit is not exceeded, without increasing the capacitance of the capacitor. Therefore, it is possible to use a capacitor with a small capacity, so it is possible to take measures against vibration, suppress the increase in size of the device, reduce weight, improve fuel efficiency, and reduce costs.
 (第2実施形態)
 図5は、第2実施形態の電源制御回路1bの構成を示す図である。図5に示す電源制御回路1bが図3の電源制御回路1aと異なる点は、ユニットU400aの構成である。ユニットU400aにおいては、ユニットU400のコイルL400の代わりに、コモンモードチョークコイルL401を用いている。さらに、ユニットU400aは、ダイオードD401およびD402を有する。コモンモードチョークコイルL401は2つの巻線を含む。コモンモードチョークコイルL401の片側の巻線L4は図3のコイルL400として作用する。
(Second embodiment)
FIG. 5 is a diagram showing the configuration of the power supply control circuit 1b of the second embodiment. The power supply control circuit 1b shown in FIG. 5 differs from the power supply control circuit 1a shown in FIG. 3 in the configuration of the unit U400a. In unit U400a, common mode choke coil L401 is used instead of coil L400 of unit U400. Furthermore, unit U400a includes diodes D401 and D402. Common mode choke coil L401 includes two windings. Winding L4 on one side of common mode choke coil L401 acts as coil L400 in FIG. 3.
 ダイオードD401とダイオードD402とは互いに逆向きに接続されている。すなわち、ダイオードD401のカソードとダイオードD402のアノードとが接続され、かつ、ダイオードD401のアノードとダイオードD402のカソードとが接続されている。したがって、これらのダイオードD401およびD402より前段側すなわちユニットU100に近い側のグランド線GND1の電位が高くなり、ダイオードD401の順方向電圧Vfを超えると、ダイオードD401がオンする。 The diode D401 and the diode D402 are connected in opposite directions. That is, the cathode of the diode D401 and the anode of the diode D402 are connected, and the anode of the diode D401 and the cathode of the diode D402 are connected. Therefore, when the potential of the ground line GND1 on the previous stage side of these diodes D401 and D402, that is, on the side closer to the unit U100, becomes high and exceeds the forward voltage Vf of the diode D401, the diode D401 is turned on.
 反対に、これらのダイオードD401およびD402より後段側のグランド線GND2の電位が高くなり、ダイオードD402の順方向電圧Vfを超えると、ダイオードD402がオンする。このため、これらのダイオードD401およびD402の前段側と後段側とでグランド線の電位差を順方向電圧Vf以下に保つことができる。なお、順方向電圧Vfは、例えば、0.4[V]である。 On the contrary, when the potential of the ground line GND2 downstream of these diodes D401 and D402 becomes higher and exceeds the forward voltage Vf of the diode D402, the diode D402 turns on. Therefore, the potential difference between the ground lines between the front side and the rear side of these diodes D401 and D402 can be kept below the forward voltage Vf. Note that the forward voltage Vf is, for example, 0.4 [V].
 図5に示す第2実施形態の電源制御回路によれば、コモンモードチョークコイルL401の片側の巻線L4によって、第1実施形態と同様に、ノイズが発生してスイッチ素子Q303をオフした場合であっても、ECUの内部回路の耐圧を超えないように制御できる。それとともに、コモンモードチョークコイルL401によってコモンモードノイズを削減できる。 According to the power supply control circuit of the second embodiment shown in FIG. 5, when noise is generated by the winding L4 on one side of the common mode choke coil L401 and turns off the switch element Q303, as in the first embodiment, Even if there is, it can be controlled so that the withstand voltage of the ECU's internal circuit is not exceeded. At the same time, common mode noise can be reduced by the common mode choke coil L401.
1、1a、1b 電源制御回路
C200、C201、C400、C401 コンデンサ
D200、D201、D400、
D401、D402、D410、D411 ダイオード
GND、GND1、GND2 グランド線
L100、L400 コイル
L401 コモンモードチョークコイル
Q303 スイッチ素子
R320 抵抗
U100、U200、U300、U400、U400a ユニット
U310 電流電圧監視回路
1, 1a, 1b Power supply control circuit C200, C201, C400, C401 Capacitor D200, D201, D400,
D401, D402, D410, D411 Diode GND, GND1, GND2 Ground wire L100, L400 Coil L401 Common mode choke coil Q303 Switch element R320 Resistor U100, U200, U300, U400, U400a Unit U310 Current voltage monitoring circuit

Claims (3)

  1.  直流電源を接続可能な入力端子と、
     前記入力端子から後段の回路へ電力を供給する電源線路と、
     前記電源線路に設けられるコイルと、
     前記コイルの前記入力端子側と前記電源線路に対するグランド線との間に接続される第1のコンデンサと、
     前記コイルの前記後段の回路側と前記グランド線との間に接続される第2のコンデンサと、
     前記電源線路に対して直列に接続されて後段の回路への電力の供給をオンまたはオフにするスイッチ素子と、
     前記電源線路の電圧または電流が閾値を超えたときに前記スイッチ素子をオフにする監視回路と、
     カソードが前記コイルの前段側を向き、かつ、アノードが前記コイルの後段側を向くように前記コイルと並列に接続されたダイオードを含む半導体素子と、
    を含む電源制御回路。
    An input terminal to which a DC power supply can be connected,
    a power supply line that supplies power from the input terminal to a subsequent circuit;
    a coil provided on the power line;
    a first capacitor connected between the input terminal side of the coil and a ground line for the power line;
    a second capacitor connected between the circuit side of the latter stage of the coil and the ground line;
    a switch element connected in series to the power supply line to turn on or off power supply to a subsequent circuit;
    a monitoring circuit that turns off the switch element when the voltage or current of the power supply line exceeds a threshold;
    a semiconductor element including a diode connected in parallel with the coil such that the cathode faces the front side of the coil and the anode faces the rear side of the coil;
    Power control circuit including.
  2.  前記第1のコンデンサの電圧と前記第2のコンデンサの電圧との差が、前記ダイオードの順方向電圧を超える場合に、前記半導体素子がオンする
    請求項1に記載の電源制御回路。
    2. The power supply control circuit according to claim 1, wherein the semiconductor element is turned on when a difference between the voltage of the first capacitor and the voltage of the second capacitor exceeds a forward voltage of the diode.
  3.  複数の前記ダイオードを含み、
     前記複数の前記ダイオードは、直列に接続されており、
     前記差が、直列に接続された前記ダイオードの順方向電圧の和を超える場合に、前記半導体素子がオンする
    請求項2に記載の電源制御回路。
    including a plurality of the diodes,
    the plurality of diodes are connected in series,
    3. The power supply control circuit according to claim 2, wherein the semiconductor element is turned on when the difference exceeds a sum of forward voltages of the diodes connected in series.
PCT/JP2023/015544 2022-07-20 2023-04-19 Power supply control circuit WO2024018710A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-115783 2022-07-20
JP2022115783A JP2024013588A (en) 2022-07-20 2022-07-20 power control circuit

Publications (1)

Publication Number Publication Date
WO2024018710A1 true WO2024018710A1 (en) 2024-01-25

Family

ID=89617594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015544 WO2024018710A1 (en) 2022-07-20 2023-04-19 Power supply control circuit

Country Status (2)

Country Link
JP (1) JP2024013588A (en)
WO (1) WO2024018710A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08275383A (en) * 1995-03-28 1996-10-18 Fukushima Nippon Denki Kk Rush current preventive circuitry
JP2007317512A (en) * 2006-05-26 2007-12-06 Matsushita Electric Works Ltd Lighting device, lamp and vehicle
JP2019071754A (en) * 2017-10-11 2019-05-09 日立オートモティブシステムズ株式会社 Motor drive control device and abnormality detection method of motor power supply line
WO2022018831A1 (en) * 2020-07-21 2022-01-27 三菱電機株式会社 Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08275383A (en) * 1995-03-28 1996-10-18 Fukushima Nippon Denki Kk Rush current preventive circuitry
JP2007317512A (en) * 2006-05-26 2007-12-06 Matsushita Electric Works Ltd Lighting device, lamp and vehicle
JP2019071754A (en) * 2017-10-11 2019-05-09 日立オートモティブシステムズ株式会社 Motor drive control device and abnormality detection method of motor power supply line
WO2022018831A1 (en) * 2020-07-21 2022-01-27 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2024013588A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
US8031450B2 (en) Power supply control circuit
EP3046240B1 (en) Integrated circuit charge pump with failure protection
US10181732B2 (en) Circuit for balancing capacitor voltages at capacitors in a DC circuit
US7145758B2 (en) Arc suppression circuit for electrical contacts
EP2854295A1 (en) Electrical power converter
JP3133166B2 (en) Gate power supply circuit
US11990828B2 (en) Switching power supply circuit, control circuit and control method thereof
US10903644B2 (en) Control device
WO2024018710A1 (en) Power supply control circuit
US6369533B1 (en) Piloting circuit for an inductive load in particular for a DC electric motor
US20240339997A1 (en) Power switch with normally on transistor
JP2017147887A (en) Power source system
JP4455090B2 (en) Capacitor discharge circuit
US10523114B1 (en) Decoupling circuits for converters
JP4380846B2 (en) Booster
JP5226474B2 (en) Semiconductor output circuit
CN111725795B (en) Battery protection circuit
JP2002034167A (en) Power circuit
US20230134710A1 (en) Electronic control device and power supply input circuit
JP6370524B1 (en) Gate drive circuit
JP2024055468A (en) Power supply device
JPH10136637A (en) Snubber circuit of semiconductor switching device
JP2022036577A (en) Load drive circuit
JP3698937B2 (en) High pressure switch device
CN117526912A (en) Driving circuit, driving method and driving system of high-side switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842644

Country of ref document: EP

Kind code of ref document: A1