WO2024018622A1 - Relay station simulation system, relay station simulation efficiency increasing device, relay station simulation method, and relay station simulation efficiency increasing program - Google Patents

Relay station simulation system, relay station simulation efficiency increasing device, relay station simulation method, and relay station simulation efficiency increasing program Download PDF

Info

Publication number
WO2024018622A1
WO2024018622A1 PCT/JP2022/028502 JP2022028502W WO2024018622A1 WO 2024018622 A1 WO2024018622 A1 WO 2024018622A1 JP 2022028502 W JP2022028502 W JP 2022028502W WO 2024018622 A1 WO2024018622 A1 WO 2024018622A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulation
relay station
parameter
parameters
calculated
Prior art date
Application number
PCT/JP2022/028502
Other languages
French (fr)
Japanese (ja)
Inventor
陸 大宮
匡史 岩渕
智明 小川
泰司 鷹取
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/028502 priority Critical patent/WO2024018622A1/en
Publication of WO2024018622A1 publication Critical patent/WO2024018622A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • This disclosure relates to a relay station simulation system, a relay station simulation efficiency device, a relay station simulation method, and a relay station simulation efficiency program, and in particular, to improve the efficiency of simulation regarding radio wave propagation characteristics of a relay station that reflects wireless signals.
  • the present invention relates to a relay station simulation system, a relay station simulation efficiency improvement device, a relay station simulation method, and a relay station simulation efficiency improvement program.
  • relay stations are sometimes placed between wireless base stations and terminal devices.
  • a relay station for example, in an environment where a direct path from a wireless base station to a terminal device is blocked by an obstacle, it is possible to establish a path connecting the two via reflection. Therefore, dead spots within the service area can be reduced by using relay stations.
  • a dynamic reflector (RIS: Reconfigurable Intelligent Surface) is known as one type of relay station.
  • RIS includes multiple elements arranged in a grid, and by electrically changing the characteristics of each element, it is possible to dynamically change the reflection characteristics of electromagnetic waves.
  • the following non-patent document 1 describes the electromagnetic field analysis of the amount of absorption in all directions other than the normal reflection direction using an existing three-dimensional radio wave propagation simulator and three-dimensional electromagnetic field simulator, and the direction of normal reflection using the ray tracing method.
  • a method has been proposed that considers paths other than For example, according to the simulation method proposed herein, it is possible to calculate, by simulation, the radio wave propagation characteristics that occur in the service target area for a system that uses RIS as a relay station.
  • a simulation of radio wave propagation characteristics is executed after specifying parameters such as the control pattern, installation position, and number of RIS units installed. If parameters such as a control pattern are changed, a new simulation is executed based on the changed parameters.
  • the present disclosure has been made in view of the above problems, and provides a relay station simulation system that can efficiently obtain desired results when parameters related to a wireless signal relay station change. is the primary purpose.
  • a second object of the present disclosure is to provide a relay station simulation efficiency device for efficiently obtaining desired results when parameters related to a wireless signal relay station change.
  • a third object of the present disclosure is to provide a relay station simulation method for efficiently obtaining desired results when parameters related to a wireless signal relay station change.
  • a fourth object of the present disclosure is to provide a relay station simulation efficiency program for efficiently obtaining desired results when parameters related to a wireless signal relay station change.
  • a first aspect is a relay station simulation system that calculates radio wave characteristics of a relay station that reflects a radio signal from a transmitter toward a receiver by simulation, a simulation result storage unit that stores calculated parameters and simulation calculation results based on the calculated parameters; a simulator that executes a simulation of the radio wave characteristics based on parameters including information related to the arrangement of the transmitter, the receiver, and the relay station; a simulation efficiency improvement device capable of communicating with both the simulation result storage unit and the simulator;
  • the simulation efficiency device includes: a process of receiving simulation parameters including information related to the arrangement; a diversion determination process that determines whether a calculated parameter that can be diverted as the simulation parameter is stored in the simulation result storage unit; a result output process of reading out the calculation result based on the calculated parameter from the simulation result storage unit and outputting it as a calculation result for the simulation parameter when the existence of the calculated parameter that can be used is recognized; If the existence of the reusable calculated parameters is not recognized, providing the simulation parameters as the parameters to the simulator, and outputting the
  • a second aspect is a relay station simulation efficiency improvement device that streamlines simulation regarding radio wave characteristics of a relay station that reflects a radio signal from a transmitter toward a receiver, receiving simulation parameters including information related to the arrangement of the transmitter, the receiver, and the relay station; a process of determining whether or not a calculated parameter that can be used as the simulation parameter is stored in a simulation result storage unit that stores calculated parameters and calculation results of a simulation based on the calculated parameters; When the existence of the reusable calculated parameter is recognized, a process of reading the calculation result based on the calculated parameter from the simulation result storage unit and outputting it as a calculation result for the simulation parameter; a process of providing the simulation parameters to a simulator and outputting calculation results by the simulator as calculation results for the simulation parameters when the existence of the reusable calculated parameters is not recognized; It is preferable that the system be configured to run .
  • a third aspect is a relay station simulation method for calculating, by simulation, the radio wave characteristics of a relay station that reflects a radio signal from a transmitter toward a receiver, storing the calculated parameters and the calculation results of the simulation based on the calculated parameters in a simulation result storage unit; receiving simulation parameters including information regarding placement of the transmitter, the receiver and the relay station; determining whether a calculated parameter that can be used as the simulation parameter is stored in the simulation result storage unit; If the existence of the reusable calculated parameter is recognized, reading the calculation result based on the calculated parameter from the simulation result storage unit and outputting it as a calculation result for the simulation parameter; If the existence of the reusable calculated parameters is not recognized, providing the simulation parameters to a simulator and outputting the calculation results by the simulator as calculation results for the simulation parameters; It is desirable to include.
  • a fourth aspect is a relay station simulation efficiency improvement program that is caused to be executed by a relay station simulation efficiency device in order to streamline simulation regarding radio wave characteristics of a relay station that reflects a radio signal from a transmitter toward a receiver.
  • a processor unit included in the relay station simulation efficiency improvement device receiving simulation parameters including information related to the arrangement of the transmitter, the receiver, and the relay station; a process of determining whether or not a calculated parameter that can be used as the simulation parameter is stored in a simulation result storage unit that stores calculated parameters and calculation results of a simulation based on the calculated parameters; When the existence of the reusable calculated parameter is recognized, a process of reading the calculation result based on the calculated parameter from the simulation result storage unit and outputting it as a calculation result for the simulation parameter; a process of providing the simulation parameters to a simulator and outputting calculation results by the simulator as calculation results for the simulation parameters when the existence of the calculated parameters that can be used is not recognized; It is desirable to include a program that executes.
  • the simulation regarding the radio wave characteristics of the relay station is made more efficient so that the desired result can be efficiently obtained when the parameters related to the wireless signal relay station change. can do.
  • FIG. 2 is a diagram for explaining a simulation target executed in Embodiment 1 of the present disclosure.
  • FIG. 1 is a diagram for explaining an overview of a relay station simulation system according to Embodiment 1 of the present disclosure.
  • 2 is a functional block diagram of the relay station simulation system shown in FIG. 1.
  • FIG. 2 is a flowchart for explaining the flow of processing executed by the simulation efficiency improvement device shown in FIG. 1.
  • FIG. FIG. 2 is a diagram for explaining an overview of a first example of a method for improving the efficiency of simulation using the relay station simulation system shown in FIG. 1.
  • FIG. FIG. 2 is a diagram for explaining features of a first example of a method for making simulation more efficient.
  • FIG. 2 is a diagram for explaining an overview of a second embodiment of a method for increasing the efficiency of simulation using the relay station simulation system shown in FIG. 1.
  • FIG. FIG. 7 is a diagram for explaining the features of a second example of a method for making simulation more efficient.
  • FIG. 2 is a diagram for explaining an overview of a third embodiment of a method for improving the efficiency of simulation using the relay station simulation system shown in FIG. 1;
  • FIG. 7 is a diagram for explaining the features of a third example of a method for making simulation more efficient.
  • FIG. 1 shows an example of a service area 10 assumed as a simulation target in the first embodiment of the present disclosure.
  • a wireless base station 12 is located at the upper left of a service area 10.
  • an RIS 14 functioning as a relay station is placed at the center on the right side of the service area.
  • the RIS 14 is a reflection plate that includes a plurality of elements arranged in a grid pattern and can dynamically change the reflection characteristics of electromagnetic waves by electrically changing the characteristics of each element.
  • FIG. 1 shows a terminal device 18 located in a dead space where a signal from a wireless base station 12 is difficult to reach directly due to an obstruction wall 16. Even under such an environment, if the RIS 14 appropriately reflects the radio signal from the radio base station 12 toward the terminal device 18, a path can be formed between the radio base station 12 and the terminal device 18. Good communication quality can be obtained.
  • the relay station simulation system of this embodiment is used to calculate the above-mentioned radio wave propagation characteristics instead of an actual survey. More specifically, the system of this embodiment uses the control pattern, installation position and number of RIS 14, installation position of the wireless base station 12, etc. as parameters to calculate the radio field strength in each part within the service area 10 by simulation. used for.
  • FIG. 2 is a diagram for explaining an overview of the relay station simulation system according to Embodiment 1 of the present disclosure.
  • the system of this embodiment includes a simulation efficiency improvement device 20.
  • the simulation efficiency improvement device 20 includes a processor unit and a memory device (not shown).
  • a simulation efficiency improvement program executed by the processor unit is stored in the memory device.
  • the functions of the simulation efficiency improvement device 20 are realized by the processor unit executing the above program.
  • the simulation efficiency improvement device 20 also includes an input interface and an output interface (not shown).
  • the simulation efficiency device 20 is provided with simulation parameters set by an operator via an input interface.
  • the simulation parameters include information such as: ⁇ The installation position of the wireless base station 12 in the service area 10 ⁇ The number of RISs 14 arranged in the service area 10 ⁇ The installation position of each RIS 14 ⁇ The control pattern applied to each RIS 14
  • the simulation efficiency improvement device 20 can access the simulation result storage unit 30 to read and write data.
  • the simulation result storage unit 30 is a database for storing simulation results regarding radio wave propagation characteristics and simulation parameters (hereinafter referred to as "calculated parameters") used when obtaining the results.
  • the simulation efficiency improvement device 20 When the simulation efficiency improvement device 20 receives a new simulation parameter, it first accesses the simulation result storage unit 30 to check whether there is a calculated parameter that can be equated with the new parameter. If a calculated parameter that can be equated is found, a simulation result corresponding to the calculated parameter is read out, and the result is output as a calculation result corresponding to a new simulation parameter.
  • the simulator 40 has a function of calculating the radio wave propagation characteristics of the reflected waves by the RIS by performing electromagnetic field analysis based on the path and incidence angle of the radio signal analyzed using the ray tracing method.
  • the simulator 40 can be realized by, for example, a three-dimensional radio wave propagation simulator RapLab and a three-dimensional electromagnetic field simulator XFdtd provided by Kozo Keikaku Institute.
  • the simulation efficiency improvement device 20 provides the simulator 40 with a parameter only when there is no calculated parameter that can be equated with a new simulation parameter. Therefore, the simulator 40 executes simulation only when existing calculation results cannot be used.
  • the results of the simulation by the simulator 40 are provided to the simulation efficiency improvement device 20 as calculation results.
  • the simulation efficiency improvement device 20 receives the calculation result from the simulator 40 in this manner, it writes the calculation result into the simulation result storage unit 30 together with the simulation parameters that are the basis of the current simulation. Furthermore, the calculation results received from the simulator 40 are output as calculation results corresponding to new simulation parameters.
  • FIG. 3 is a functional block diagram functionally decomposing the configuration of the relay station simulation system shown in FIG. 1. Note that in FIG. 3, the functions included in the simulation efficiency improvement device 20 are indicated by a reference numeral with a suffix "-n" added to the reference numeral "20". Further, the simulator 40 and the simulation result storage section 30 are given the same reference numerals as in FIG. 1.
  • the simulation parameter reading unit 20-1 is an input interface of the simulation efficiency improvement device 20. Various parameters set by the operator are taken in by the simulation parameter reading section 20-1.
  • the calculation result diversion determination unit 20-2 determines whether the simulation result storage unit 30 stores a calculated parameter that can be equated with the newly read simulation parameter. As a result, if no reusable calculated parameters are found, new simulation parameters are set in the simulator 40 by the simulation parameter setting unit 20-3.
  • the simulation result storage unit 30 may store simulation results of simple regular reflections analyzed using a ray tracing method in combination with calculated parameters that are determined to be reusable.
  • RIS as a relay station
  • the simulation result rewriting unit 20-4 rewrites the data stored in the simulation result storage unit 30 from the results of regular reflection to the results of electromagnetic field analysis.
  • the simulation result output unit 20-5 is an output interface of the simulation efficiency improvement device 20.
  • the simulation results returned from the simulator 40 to the simulation efficiency improvement device 20 and the simulation results read out from the simulation result storage unit 30 as reusable ones are sent from the simulation result output unit 20-5 to, for example, an operator. Output.
  • FIG. 4 is a flowchart for explaining the flow of processing that proceeds when the processor unit of the simulation efficiency improvement device 20 executes the simulation efficiency improvement program.
  • the routine shown in FIG. 4 is activated when new simulation parameters are provided to the simulation efficiency improvement device 20.
  • step 100 newly provided simulation parameters are read (step 100).
  • step 102 it is determined whether there are any calculated parameters that can be used. Note that the conditions under which it is determined whether or not "appropriation" is possible will be explained in detail later with reference to the first to third embodiments.
  • new simulation parameters are set in the simulator 40 (step 104).
  • the simulator 40 is instructed to execute the simulation. Thereafter, when the simulator 40 finishes the simulation, the results of the execution are taken into the simulation efficiency improvement device 20 (step 106).
  • step 108 the existing simulation result corresponding to the calculated parameter is read from the simulation result storage unit 30 (step 108).
  • step 110 the existing simulation results that have been read are rewritten. Specifically, if the read result is the result of regular reflection by the ray tracing method, processing is performed to rewrite the result to the result of electromagnetic field analysis. Note that if the read result is the result of electromagnetic field analysis, it is determined that there is no need to rewrite, and the rewriting process is skipped.
  • the simulation parameters processed in the current routine and the simulation results corresponding to the parameters are stored in the simulation result storage unit 30. Further, the simulation results obtained in this routine are outputted, for example, to the operator (step 112).
  • FIG. 5 is a diagram for explaining the outline of the first embodiment, and more specifically, a diagram for explaining the elements that the first embodiment focuses on in order to improve the efficiency of simulation.
  • the physical configuration of the service area 10 is determined. Specifically, the positions of the wireless base station 12 functioning as a transmitter, the RIS 14 functioning as a relay station, and the terminal device 18 functioning as a receiver are determined (step 120).
  • the path from the transmitter to the receiver via the relay station is analyzed using the ray tracing method (step 122). Furthermore, for each path obtained through analysis, the angle at which the wireless signal enters the relay station is specified as the angle of incidence to be analyzed (step 124). Once these specifications are completed, it becomes possible to perform simulations using electromagnetic field analysis.
  • the calculation result diversion determination unit 20-2 shown in FIG. Determine whether it is “appropriable” or not.
  • FIG. 6 is a diagram for explaining the features of the first embodiment described above.
  • the upper left column of FIG. 6 shows the layout of the service area 10 indicated by one of the calculated parameters.
  • three RISs 14-1 to 14-3 are arranged between the radio base station 12 that functions as a transmitter and the terminal device 18 that functions as a receiver.
  • the upper right column in FIG. 6 shows the layout of the analysis target indicated by the new simulation parameters.
  • two RISs 14-1 and 14-3 are arranged between the radio base station 12 and the terminal device 18. Their positions are the same as those corresponding to the calculated parameters.
  • the path passing through the RIS 14-1 and the path passing through the RIS 14-3 can be estimated to be the same as the paths passing through them in the already calculated layout. Therefore, in this case, if you delete the results related to the path via RIS14-2 that does not exist in the analysis target from the simulation results stored in combination with the calculated parameters, you can use them as simulation results for new simulation parameters. (See lower right column in FIG. 6).
  • the relay station simulation system of the present embodiment if the positions of the radio base station 12, terminal device 18, and RIS 14 included in the analysis target are the same as their positions in the calculated layout, the relay station simulation system of the first embodiment By using this method, simulation can be made more efficient.
  • FIG. 7 is a diagram for explaining the outline of the second embodiment, and more specifically, a diagram for explaining the elements that the second embodiment focuses on in order to improve the efficiency of simulation.
  • elements that are the same as those shown in FIG. 5 are given the same reference numerals and redundant explanations will be omitted or simplified.
  • the RIS 14 changes the direction of reflection of radio waves according to the control angle. Therefore, simulation of radio wave propagation characteristics targeting the service area 10 including the RIS 14 needs to be executed for each control angle of the RIS 14 (step 126).
  • the direction in which the radio waves are reflected by the RIS 14 is determined by electrically changing the characteristics of each of the plurality of elements that the RIS 14 has in a grid pattern.
  • the characteristic pattern given to each element to achieve the control angle that is, the RIS pattern, can be specified by numerical calculation (step 128).
  • a simulation using electromagnetic field analysis may be performed for the purpose of analyzing what kind of reflection characteristics the RIS 14 exhibits with respect to various incident angles under a specific RIS pattern ⁇ (step 130).
  • the calculation result diversion determination unit 20-2 shown in FIG. 3 uses the process of step 102 shown in FIG. Determine whether it is “appropriable” or not.
  • FIG. 8 is a diagram for explaining the features of the second embodiment described above.
  • the column on the left side of FIG. 8 shows that the "reflection characteristics" for the "incident angle” of 30 degrees and 45 degrees have been calculated as X and Y, respectively, for the specific RIS pattern ⁇ .
  • the column on the right side of FIG. 8 indicates that the new simulation parameters target the following incident angles for analysis. 15 degrees (uncalculated) 30 degrees (with calculation results of reflection characteristics X) 45 degrees (with calculation results of reflection characteristics Y) 60 degrees (uncalculated)
  • the method of the second embodiment it is determined whether or not it can be reused based on the identity of the incident angles.
  • the same incident angles as 30 degrees and 45 degrees are included in the calculated parameters. Therefore, in the method of the second embodiment, existing results X and Y are used for 30 degrees and 45 degrees among the analysis targets, and new simulations are performed only for 15 degrees and 60 degrees for which there are no results to be used. is executed.
  • the simulation can be made more efficient by using the method of the second embodiment. can.
  • the calculated simulation results for the incident angles of 30 degrees and 45 degrees are used for the RIS pattern ⁇ .
  • FIG. 9 is a diagram for explaining the outline of the third embodiment, and more specifically, a diagram for explaining the elements that the third embodiment focuses on in order to improve the efficiency of simulation.
  • elements that are the same as those shown in FIG. 5 or 7 are given the same reference numerals and redundant explanations will be omitted or simplified.
  • a simulation targeting the service area 10 including the RIS 14 is executed after determining the control angle of the RIS 14 (step 126). Then, a RIS pattern ⁇ that realizes the control angle of the RIS 14 is determined (step 128), and reflection characteristics for each incident angle are calculated by simulation (step 130).
  • the control angle of the RIS 14 is determined such that the signal reflected by the RIS 14 travels toward the terminal device 18 located at a specific location within the service area 10.
  • the direction in which the signal is reflected by the RIS 14 changes stepwise as the RIS pattern changes. Therefore, if the difference between two control angles is small, the corresponding RIS patterns may be the same.
  • the calculation result diversion determination unit 20-2 shown in FIG. Determine whether it is possible.
  • FIG. 10 is a diagram for explaining the features of the third embodiment described above.
  • the column on the left side of FIG. 10 shows that the cases where the "control angle" of the RIS 14 is 30 degrees and 45 degrees have been calculated.
  • the RIS 14 includes nine elements arranged in a 3 ⁇ 3 grid.
  • the 3 ⁇ 3 “1” or “0” shown in the RIS pattern column for the control angle “30 degrees” represents the state of each of the nine elements arranged in a grid. For example, "1" represents a phase change state, and "0" represents a phase unchanged state.
  • the column on the left side of FIG. 10 represents the following events.
  • the control angles of 30 degrees and 45 degrees have been calculated.
  • the RIS pattern of 30 degrees and the RIS pattern of 45 degrees are different.
  • the reflection characteristic list of 30 degrees is ⁇ .
  • the 45 degree reflection characteristic list is ⁇
  • the right side of FIG. 10 shows that the new simulation parameters target the following control angles for analysis. 30 degrees (RIS pattern is
  • the method of the third embodiment it is determined whether diversion is possible based on the identity of the RIS pattern.
  • the 32 degree RIS pattern is the same as the calculated 30 degree RIS pattern. Therefore, in the method of the third embodiment, the results of ⁇ and ⁇ are used for the calculated 30 degrees and 45 degrees, and the existing ⁇ is used as the result for the uncalculated 32 degrees. Divert. Then, a new simulation is performed only for 60 degrees that have not been calculated and the same RIS pattern is not included in the calculated patterns.
  • the simulation can be made more efficient by using the method of the third embodiment. .
  • the relay station is an RIS
  • the relay station need only have the function of relaying wireless signals, and may be, for example, a general repeater. Even if a simulation is required for a service area using a general repeater, the simulation may be omitted and existing results may be used for parameters for which the results can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)

Abstract

Provided is a system that increases the efficiency of a simulation of the radio wave propagation characteristics of a relay station. A simulation result storage unit 30 stores a calculated parameter and a calculation result of a simulation based on the calculated parameter. Upon reception of a simulation parameter including information regarding the arrangement of a transmitter, a receiver, and a relay station, a simulation efficiency increasing device 20 determines whether or not the simulation result storage unit 30 stores a calculated parameter that can be diverted. If a calculated parameter that can be diverted is found, the calculation result based on the calculated parameter is output as a calculation result for the simulation parameter. Only in cases when a calculated parameter that can be diverted is not found, the simulation parameter is provided to a simulator 40 and a calculation result obtained by the simulator 40 is output as a calculation result for the simulation parameter.

Description

中継局シミュレーションシステム、中継局シミュレーション効率化装置、中継局シミュレーション方法および中継局シミュレーション効率化プログラムRelay station simulation system, relay station simulation efficiency device, relay station simulation method, and relay station simulation efficiency program
 この開示は、中継局シミュレーションシステム、中継局シミュレーション効率化装置、中継局シミュレーション方法および中継局シミュレーション効率化プログラムに係り、特に、無線信号を反射する中継局の電波伝搬特性に関するシミュレーションを効率化するうえで好適な中継局シミュレーションシステム、中継局シミュレーション効率化装置、中継局シミュレーション方法および中継局シミュレーション効率化プログラムに関する。 This disclosure relates to a relay station simulation system, a relay station simulation efficiency device, a relay station simulation method, and a relay station simulation efficiency program, and in particular, to improve the efficiency of simulation regarding radio wave propagation characteristics of a relay station that reflects wireless signals. The present invention relates to a relay station simulation system, a relay station simulation efficiency improvement device, a relay station simulation method, and a relay station simulation efficiency improvement program.
 無線通信の分野では、無線基地局と端末装置との間に中継局を配置することがある。中継局を用いると、例えば、無線基地局から端末装置に向かう直接のパスが障害物によって遮られてしまうような環境下で、反射を介して両者をつなぐパスを確立することができる。このため、中継局を用いることでサービスエリア内のデッドスポットを減らすことができる。 In the field of wireless communications, relay stations are sometimes placed between wireless base stations and terminal devices. By using a relay station, for example, in an environment where a direct path from a wireless base station to a terminal device is blocked by an obstacle, it is possible to establish a path connecting the two via reflection. Therefore, dead spots within the service area can be reduced by using relay stations.
 中継局の一つとして動的反射板(RIS: Reconfigurable Intelligent Surface)が知られている。RISは、格子状に並んだ複数の素子を備えており、素子それぞれの特性を電気的に変化させることで、電磁波の反射特性を動的に変化させることができる。 A dynamic reflector (RIS: Reconfigurable Intelligent Surface) is known as one type of relay station. RIS includes multiple elements arranged in a grid, and by electrically changing the characteristics of each element, it is possible to dynamically change the reflection characteristics of electromagnetic waves.
 無線通信のサービスを提供するにあたっては、無線基地局と中継局との配置に対して、サービス対象のエリアにどのような電波環境が構築されるかを、シミュレーションにより解析することが求められることがある。中継局としてRISを用いる場合、RISでの反射は正規反射の方向とは異なる方向にも生ずる。 When providing wireless communication services, it is necessary to analyze, through simulation, what kind of radio wave environment will be created in the service target area based on the placement of wireless base stations and relay stations. be. When using a RIS as a relay station, reflections at the RIS also occur in a direction different from the direction of regular reflection.
 下記非特許文献1には、既存の3次元電波伝搬シミュレータおよび3次元電磁界シミュレータを用いて、正規反射方向以外の全方向の吸収量を電磁界解析して、レイトレース法による正規反射の方向以外のパスを考慮する手法が提案されている。例えば、ここに提案されているシミュレーションの手法によれば、中継局としてRISを用いるシステムについて、サービス対象のエリアで生ずる電波伝搬特性をシミュレーションにより計算することが可能である。 The following non-patent document 1 describes the electromagnetic field analysis of the amount of absorption in all directions other than the normal reflection direction using an existing three-dimensional radio wave propagation simulator and three-dimensional electromagnetic field simulator, and the direction of normal reflection using the ray tracing method. A method has been proposed that considers paths other than For example, according to the simulation method proposed herein, it is possible to calculate, by simulation, the radio wave propagation characteristics that occur in the service target area for a system that uses RIS as a relay station.
 ところで、従来の解析手法では、RISの制御パタン、設置位置、設置台数などのパラメータを特定したうえで、電波伝搬特性のシミュレーションが実行される。そして、制御パタン等のパラメータが代われば、変更後のパラメータに基づいて新たにシミュレーションが実行されることになる。 By the way, in conventional analysis methods, a simulation of radio wave propagation characteristics is executed after specifying parameters such as the control pattern, installation position, and number of RIS units installed. If parameters such as a control pattern are changed, a new simulation is executed based on the changed parameters.
 しかしながら、個々の設定に対するシミュレーションにはある程度の時間を要する。このため、従来の解析の手法では、RISの制御パタンが動的に変化するような場合に、一連のシミュレーションを完遂するためには多大な時間が必要になるという課題が生じていた。 However, simulation for each setting requires a certain amount of time. For this reason, conventional analysis methods have had the problem of requiring a large amount of time to complete a series of simulations when the RIS control pattern changes dynamically.
 本開示は、上記の課題に鑑みてなされたものであり、無線信号の中継局に関わるパラメータが変化した場合に、所望の結果を効率的に取得することのできる中継局シミュレーションシステムを提供することを第1の目的とする。 The present disclosure has been made in view of the above problems, and provides a relay station simulation system that can efficiently obtain desired results when parameters related to a wireless signal relay station change. is the primary purpose.
 また、本開示は、無線信号の中継局に関わるパラメータが変化した場合に、所望の結果を効率的に取得するための中継局シミュレーション効率化装置を提供することを第2の目的とする。 A second object of the present disclosure is to provide a relay station simulation efficiency device for efficiently obtaining desired results when parameters related to a wireless signal relay station change.
 また、本開示は、無線信号の中継局に関わるパラメータが変化した場合に、所望の結果を効率的に取得するための中継局シミュレーション方法を提供することを第3の目的とする。 A third object of the present disclosure is to provide a relay station simulation method for efficiently obtaining desired results when parameters related to a wireless signal relay station change.
 また、本開示は、無線信号の中継局に関わるパラメータが変化した場合に、所望の結果を効率的に取得するための中継局シミュレーション効率化プログラムを提供することを第4の目的とする。 A fourth object of the present disclosure is to provide a relay station simulation efficiency program for efficiently obtaining desired results when parameters related to a wireless signal relay station change.
 第1の態様は、上記の目的を達成するため、送信機からの無線信号を受信機に向けて反射する中継局の電波特性をシミュレーションにより計算する中継局シミュレーションシステムであって、
 計算済みパラメータと、当該計算済みパラメータに基づくシミュレーションの計算結果とを記憶するシミュレーション結果記憶部と、
 前記送信機、前記受信機および前記中継局の配置に関わる情報を含むパラメータに基づいて前記電波特性のシミュレーションを実行するシミュレータと、
 前記シミュレーション結果記憶部および前記シミュレータの双方と通信可能なシミュレーション効率化装置とを備え、
 前記シミュレーション効率化装置は、
 前記配置に関わる情報を含むシミュレーションパラメータを受け取る処理と、
 前記シミュレーションパラメータとして流用可能な計算済みパラメータが前記シミュレーション結果記憶部に格納されているか否かを判別する流用判定処理と、
 前記流用可能な計算済みパラメータの存在が認められた場合に、当該計算済みパラメータに基づく前記計算結果を、前記シミュレーション結果記憶部から読み出して前記シミュレーションパラメータに対する計算結果として出力する結果出力処理と、
 前記流用可能な計算済みパラメータの存在が認められない場合に、前記シミュレーションパラメータを前記パラメータとして前記シミュレータに提供し、前記シミュレータによる計算結果を前記シミュレーションパラメータに対する計算結果として出力する処理と、
 を実行するように構成されていることが望ましい。
In order to achieve the above object, a first aspect is a relay station simulation system that calculates radio wave characteristics of a relay station that reflects a radio signal from a transmitter toward a receiver by simulation,
a simulation result storage unit that stores calculated parameters and simulation calculation results based on the calculated parameters;
a simulator that executes a simulation of the radio wave characteristics based on parameters including information related to the arrangement of the transmitter, the receiver, and the relay station;
a simulation efficiency improvement device capable of communicating with both the simulation result storage unit and the simulator;
The simulation efficiency device includes:
a process of receiving simulation parameters including information related to the arrangement;
a diversion determination process that determines whether a calculated parameter that can be diverted as the simulation parameter is stored in the simulation result storage unit;
a result output process of reading out the calculation result based on the calculated parameter from the simulation result storage unit and outputting it as a calculation result for the simulation parameter when the existence of the calculated parameter that can be used is recognized;
If the existence of the reusable calculated parameters is not recognized, providing the simulation parameters as the parameters to the simulator, and outputting the calculation results by the simulator as the calculation results for the simulation parameters;
It is preferable that the system be configured to run .
 また、第2の態様は、送信機からの無線信号を受信機に向けて反射する中継局の電波特性に関するシミュレーションを効率化する中継局シミュレーション効率化装置であって、
 前記送信機、前記受信機および前記中継局の配置に関わる情報を含むシミュレーションパラメータを受け取る処理と、
 計算済みパラメータと、当該計算済みパラメータに基づくシミュレーションの計算結果とを記憶するシミュレーション結果記憶部に、前記シミュレーションパラメータとして流用可能な計算済みパラメータが格納されているか否かを判別する処理と、
 前記流用可能な計算済みパラメータの存在が認められた場合に、当該計算済みパラメータに基づく前記計算結果を、前記シミュレーション結果記憶部から読み出して前記シミュレーションパラメータに対する計算結果として出力する処理と、
 前記流用可能な計算済みパラメータの存在が認められない場合に、前記シミュレーションパラメータをシミュレータに提供し、前記シミュレータによる計算結果を前記シミュレーションパラメータに対する計算結果として出力する処理と、
 を実行するように構成されていることが望ましい。
Further, a second aspect is a relay station simulation efficiency improvement device that streamlines simulation regarding radio wave characteristics of a relay station that reflects a radio signal from a transmitter toward a receiver,
receiving simulation parameters including information related to the arrangement of the transmitter, the receiver, and the relay station;
a process of determining whether or not a calculated parameter that can be used as the simulation parameter is stored in a simulation result storage unit that stores calculated parameters and calculation results of a simulation based on the calculated parameters;
When the existence of the reusable calculated parameter is recognized, a process of reading the calculation result based on the calculated parameter from the simulation result storage unit and outputting it as a calculation result for the simulation parameter;
a process of providing the simulation parameters to a simulator and outputting calculation results by the simulator as calculation results for the simulation parameters when the existence of the reusable calculated parameters is not recognized;
It is preferable that the system be configured to run .
 また、第3の態様は、送信機からの無線信号を受信機に向けて反射する中継局の電波特性をシミュレーションにより計算するための中継局シミュレーション方法であって、
 計算済みパラメータと、当該計算済みパラメータに基づくシミュレーションの計算結果とをシミュレーション結果記憶部に記憶させるステップと、
 前記送信機、前記受信機および前記中継局の配置に関わる情報を含むシミュレーションパラメータを受け取るステップと、
 前記シミュレーションパラメータとして流用可能な計算済みパラメータが前記シミュレーション結果記憶部に格納されているか否かを判別するステップと、
 前記流用可能な計算済みパラメータの存在が認められた場合に、当該計算済みパラメータに基づく前記計算結果を、前記シミュレーション結果記憶部から読み出して前記シミュレーションパラメータに対する計算結果として出力するステップと、
 前記流用可能な計算済みパラメータの存在が認められない場合に、前記シミュレーションパラメータをシミュレータに提供し、前記シミュレータによる計算結果を前記シミュレーションパラメータに対する計算結果として出力するステップと、
 を含むことが望ましい。
Further, a third aspect is a relay station simulation method for calculating, by simulation, the radio wave characteristics of a relay station that reflects a radio signal from a transmitter toward a receiver,
storing the calculated parameters and the calculation results of the simulation based on the calculated parameters in a simulation result storage unit;
receiving simulation parameters including information regarding placement of the transmitter, the receiver and the relay station;
determining whether a calculated parameter that can be used as the simulation parameter is stored in the simulation result storage unit;
If the existence of the reusable calculated parameter is recognized, reading the calculation result based on the calculated parameter from the simulation result storage unit and outputting it as a calculation result for the simulation parameter;
If the existence of the reusable calculated parameters is not recognized, providing the simulation parameters to a simulator and outputting the calculation results by the simulator as calculation results for the simulation parameters;
It is desirable to include.
 また、第4の態様は、送信機からの無線信号を受信機に向けて反射する中継局の電波特性に関するシミュレーションを効率化するために中継局シミュレーション効率化装置に実行させる中継局シミュレーション効率化プログラムであって、
 前記中継局シミュレーション効率化装置が備えるプロセッサユニットに、
 前記送信機、前記受信機および前記中継局の配置に関わる情報を含むシミュレーションパラメータを受け取る処理と、
 計算済みパラメータと、当該計算済みパラメータに基づくシミュレーションの計算結果とを記憶するシミュレーション結果記憶部に、前記シミュレーションパラメータとして流用可能な計算済みパラメータが格納されているか否かを判別する処理と、
 前記流用可能な計算済みパラメータの存在が認められた場合に、当該計算済みパラメータに基づく前記計算結果を、前記シミュレーション結果記憶部から読み出して前記シミュレーションパラメータに対する計算結果として出力する処理と、
 前記流用可能な計算済みパラメータの存在が認められない場合に、前記シミュレーションパラメータをシミュレータに提供し、前記シミュレータによる計算結果を前記シミュレーションパラメータに対する計算結果として出力する処理と、
 を実行させるプログラムを含むことが望ましい。
Further, a fourth aspect is a relay station simulation efficiency improvement program that is caused to be executed by a relay station simulation efficiency device in order to streamline simulation regarding radio wave characteristics of a relay station that reflects a radio signal from a transmitter toward a receiver. And,
A processor unit included in the relay station simulation efficiency improvement device,
receiving simulation parameters including information related to the arrangement of the transmitter, the receiver, and the relay station;
a process of determining whether or not a calculated parameter that can be used as the simulation parameter is stored in a simulation result storage unit that stores calculated parameters and calculation results of a simulation based on the calculated parameters;
When the existence of the reusable calculated parameter is recognized, a process of reading the calculation result based on the calculated parameter from the simulation result storage unit and outputting it as a calculation result for the simulation parameter;
a process of providing the simulation parameters to a simulator and outputting calculation results by the simulator as calculation results for the simulation parameters when the existence of the calculated parameters that can be used is not recognized;
It is desirable to include a program that executes.
 第1乃至第4の態様によれば、無線信号の中継局に関わるパラメータが変化した場合に、所望の結果を効率的に取得することができるように、中継局の電波特性に関するシミュレーションを効率化することができる。 According to the first to fourth aspects, the simulation regarding the radio wave characteristics of the relay station is made more efficient so that the desired result can be efficiently obtained when the parameters related to the wireless signal relay station change. can do.
本開示の実施の形態1において実行されるシミュレーションの対象を説明するための図である。FIG. 2 is a diagram for explaining a simulation target executed in Embodiment 1 of the present disclosure. 本開示の実施の形態1の中継局シミュレーションシステムの概要を説明するための図である。FIG. 1 is a diagram for explaining an overview of a relay station simulation system according to Embodiment 1 of the present disclosure. 図1に示す中継局シミュレーションシステムの機能ブロック図である。2 is a functional block diagram of the relay station simulation system shown in FIG. 1. FIG. 図1に示すシミュレーション効率化装置が実行する処理の流れを説明するためのフローチャートである。2 is a flowchart for explaining the flow of processing executed by the simulation efficiency improvement device shown in FIG. 1. FIG. 図1に示す中継局シミュレーションシステムを用いてシミュレーションを効率化する手法の第1実施例の概要を説明するための図である。FIG. 2 is a diagram for explaining an overview of a first example of a method for improving the efficiency of simulation using the relay station simulation system shown in FIG. 1. FIG. シミュレーションを効率化する手法の第1実施例の特徴を説明するための図である。FIG. 2 is a diagram for explaining features of a first example of a method for making simulation more efficient. 図1に示す中継局シミュレーションシステムを用いてシミュレーションを効率化する手法の第2実施例の概要を説明するための図である。FIG. 2 is a diagram for explaining an overview of a second embodiment of a method for increasing the efficiency of simulation using the relay station simulation system shown in FIG. 1. FIG. シミュレーションを効率化する手法の第2実施例の特徴を説明するための図である。FIG. 7 is a diagram for explaining the features of a second example of a method for making simulation more efficient. 図1に示す中継局シミュレーションシステムを用いてシミュレーションを効率化する手法の第3実施例の概要を説明するための図である。FIG. 2 is a diagram for explaining an overview of a third embodiment of a method for improving the efficiency of simulation using the relay station simulation system shown in FIG. 1; シミュレーションを効率化する手法の第3実施例の特徴を説明するための図である。FIG. 7 is a diagram for explaining the features of a third example of a method for making simulation more efficient.
実施の形態1.
[実施の形態1の背景]
図1は、本開示の実施の形態1がシミュレーションの対象として想定するサービスエリア10の一例を示す。図1において、サービスエリア10の左上には無線基地局12が配置されている。また、サービスエリアの右側中央には中継局として機能するRIS14が配置されている。RIS14は、格子状に並んだ複数の素子を備え、素子それぞれの特性を電気的に変化させることで、電磁波の反射特性を動的に変化させることのできる反射板である。
Embodiment 1.
[Background of Embodiment 1]
FIG. 1 shows an example of a service area 10 assumed as a simulation target in the first embodiment of the present disclosure. In FIG. 1, a wireless base station 12 is located at the upper left of a service area 10. Furthermore, an RIS 14 functioning as a relay station is placed at the center on the right side of the service area. The RIS 14 is a reflection plate that includes a plurality of elements arranged in a grid pattern and can dynamically change the reflection characteristics of electromagnetic waves by electrically changing the characteristics of each element.
 サービスエリア10には、無線信号の直進を阻害する障害壁16が設置されている。図1は、障害壁16の影響で無線基地局12からの信号が直接到達し難いデッドスペースに端末装置18が位置する様子を表している。このような環境下でも、無線基地局12からの無線信号をRIS14が端末装置18に向けて適切に反射すれば、無線基地局12と端末装置18との間にパスを形成することができ、良好な通信品質を得ることができる。 An obstacle wall 16 is installed in the service area 10 to prevent the wireless signal from traveling straight. FIG. 1 shows a terminal device 18 located in a dead space where a signal from a wireless base station 12 is difficult to reach directly due to an obstruction wall 16. Even under such an environment, if the RIS 14 appropriately reflects the radio signal from the radio base station 12 toward the terminal device 18, a path can be formed between the radio base station 12 and the terminal device 18. Good communication quality can be obtained.
 サービスエリア10の全体で良好な無線品質を提供するためには、無線基地局12からの無線信号が、サービスエリア10においてどのように伝搬するかを調査しておく必要がある。サービスエリア10内の電波伝搬特性は、RIS14の制御パタン、設置位置、設置台数などにより変化する。このため、RIS14を用いて最適な環境を作り出すためには、その制御パタン、設置位置等を変化させて、様々な条件下で電波伝搬特性を調査しておくことが必要となる。 In order to provide good wireless quality throughout the service area 10, it is necessary to investigate how the wireless signal from the wireless base station 12 propagates in the service area 10. The radio wave propagation characteristics within the service area 10 change depending on the control pattern of the RIS 14, the installation position, the number of installations, etc. Therefore, in order to create an optimal environment using the RIS 14, it is necessary to change its control pattern, installation position, etc., and investigate the radio wave propagation characteristics under various conditions.
 本実施形態の中継局シミュレーションシステムは、実地の調査に代えて、上記の電波伝搬特性を計算により求めるために用いられる。より具体的には、本実施形態のシステムは、RIS14の制御パタン、設置位置および設置台数、並びに無線基地局12の設置位置等をパラメータとして、サービスエリア10内各部の電波強度をシミュレーションにより求めるために用いられる。 The relay station simulation system of this embodiment is used to calculate the above-mentioned radio wave propagation characteristics instead of an actual survey. More specifically, the system of this embodiment uses the control pattern, installation position and number of RIS 14, installation position of the wireless base station 12, etc. as parameters to calculate the radio field strength in each part within the service area 10 by simulation. used for.
[実施の形態1の構成]
 図2は、本開示の実施の形態1の中継局シミュレーションシステムの概要を説明するための図である。本実施形態のシステムは、シミュレーション効率化装置20を備えている。シミュレーション効率化装置20は、図示しないプロセッサユニットとメモリ装置を内蔵している。メモリ装置には、プロセッサユニットが実行するシミュレーション効率化プログラムが格納されている。シミュレーション効率化装置20の機能は、プロセッサユニットが、上記のプログラムを実行することで実現される。
[Configuration of Embodiment 1]
FIG. 2 is a diagram for explaining an overview of the relay station simulation system according to Embodiment 1 of the present disclosure. The system of this embodiment includes a simulation efficiency improvement device 20. The simulation efficiency improvement device 20 includes a processor unit and a memory device (not shown). A simulation efficiency improvement program executed by the processor unit is stored in the memory device. The functions of the simulation efficiency improvement device 20 are realized by the processor unit executing the above program.
 シミュレーション効率化装置20は、また、図示しない入力インターフェースおよび出力インターフェースを備えている。シミュレーション効率化装置20には、入力インターフェースを介して、オペレータによって設定されたシミュレーションパラメータが提供される。シミュレーションパラメータには、以下のような情報が含まれる。
・サービスエリア10における無線基地局12の設置位置
・サービスエリア10に配置されるRIS14の数
・それぞれのRIS14の設置位置
・それぞれのRIS14に施される制御パタン
The simulation efficiency improvement device 20 also includes an input interface and an output interface (not shown). The simulation efficiency device 20 is provided with simulation parameters set by an operator via an input interface. The simulation parameters include information such as:
・The installation position of the wireless base station 12 in the service area 10 ・The number of RISs 14 arranged in the service area 10 ・The installation position of each RIS 14 ・The control pattern applied to each RIS 14
 シミュレーション効率化装置20は、シミュレーション結果記憶部30にアクセスして、データの読み出しおよび書き込みを行うことができる。シミュレーション結果記憶部30は、電波伝搬特性に関するシミュレーション結果と、その結果を得た際のミュレーションパラメータ(以下、「計算済みパラメータ」と称す)とを格納するためのデータベースである。 The simulation efficiency improvement device 20 can access the simulation result storage unit 30 to read and write data. The simulation result storage unit 30 is a database for storing simulation results regarding radio wave propagation characteristics and simulation parameters (hereinafter referred to as "calculated parameters") used when obtaining the results.
 シミュレーション効率化装置20は、新たなシミュレーションパラメータを受け取ると、先ず、シミュレーション結果記憶部30にアクセスして、そのパラメータと同一視できる計算済みパラメータが存在していないかを確認する。そして、同一視可能な計算済みパラメータが認められた場合は、その計算済みパラメータに対応するシミュレーション結果を読み出して、その結果を、新たなシミュレーションパラメータに対応する計算結果として出力する。 When the simulation efficiency improvement device 20 receives a new simulation parameter, it first accesses the simulation result storage unit 30 to check whether there is a calculated parameter that can be equated with the new parameter. If a calculated parameter that can be equated is found, a simulation result corresponding to the calculated parameter is read out, and the result is output as a calculation result corresponding to a new simulation parameter.
 他方、新たなシミュレーションパラメータと同一視可能な計算済みパラメータが認められない場合は、そのパラメータをシミュレータ40に提供する。シミュレータ40は、レイトレースの手法で解析した無線信号のパスおよび入射角に基づいて電磁界解析を行うことによりRISによる反射波の電波伝搬特性を計算する機能を有している。シミュレータ40は、例えば、構造計画研究所が提供する3次元電波伝搬シミュレータRapLabおよび3次元電磁界シミュレータXFdtdにより実現することができる。 On the other hand, if a calculated parameter that can be equated with the new simulation parameter is not recognized, the parameter is provided to the simulator 40. The simulator 40 has a function of calculating the radio wave propagation characteristics of the reflected waves by the RIS by performing electromagnetic field analysis based on the path and incidence angle of the radio signal analyzed using the ray tracing method. The simulator 40 can be realized by, for example, a three-dimensional radio wave propagation simulator RapLab and a three-dimensional electromagnetic field simulator XFdtd provided by Kozo Keikaku Institute.
 上記の通り、シミュレーション効率化装置20は、新たなシミュレーションパラメータと同一視できる計算済みパラメータが存在しない場合にのみ、そのパラメータをシミュレータ40に提供する。このため、シミュレータ40は、既存の計算結果が流用できない場合に限ってシミュレーションを実行することになる。 As described above, the simulation efficiency improvement device 20 provides the simulator 40 with a parameter only when there is no calculated parameter that can be equated with a new simulation parameter. Therefore, the simulator 40 executes simulation only when existing calculation results cannot be used.
 シミュレータ40によるシミュレーションの結果は、計算結果としてシミュレーション効率化装置20に提供される。シミュレーション効率化装置20は、このようにしてシミュレータ40から計算結果を受け取ると、今回のシミュレーションの基礎としたシミュレーションパラメータと共に、その計算結果をシミュレーション結果記憶部30に書き込む。更に、シミュレータ40から受け取った計算結果を、新たなシミュレーションパラメータに対応する計算結果として出力する。 The results of the simulation by the simulator 40 are provided to the simulation efficiency improvement device 20 as calculation results. When the simulation efficiency improvement device 20 receives the calculation result from the simulator 40 in this manner, it writes the calculation result into the simulation result storage unit 30 together with the simulation parameters that are the basis of the current simulation. Furthermore, the calculation results received from the simulator 40 are output as calculation results corresponding to new simulation parameters.
 図3は、図1に示す中継局シミュレーションシステムの構成を、機能的に分解して表した機能ブロック図である。なお、図3において、シミュレーション効率化装置20が備える機能は、符号「20」に添え字「-n」を付した参照符号を付して表している。また、シミュレータ40およびシミュレーション結果記憶部30については、図1と共通する参照符号を付している。 FIG. 3 is a functional block diagram functionally decomposing the configuration of the relay station simulation system shown in FIG. 1. Note that in FIG. 3, the functions included in the simulation efficiency improvement device 20 are indicated by a reference numeral with a suffix "-n" added to the reference numeral "20". Further, the simulator 40 and the simulation result storage section 30 are given the same reference numerals as in FIG. 1.
 図3において、シミュレーションパラメータ読み込み部20-1は、シミュレーション効率化装置20の入力インターフェースである。オペレータによって設定された各種パラメータは、シミュレーションパラメータ読み込み部20-1によって取り込まれる。 In FIG. 3, the simulation parameter reading unit 20-1 is an input interface of the simulation efficiency improvement device 20. Various parameters set by the operator are taken in by the simulation parameter reading section 20-1.
 計算結果流用判定部20-2は、新たに読み込んだシミュレーションパラメータと同一視できる計算済みパラメータが、シミュレーション結果記憶部30に格納されているか否かを判定する。その結果、流用可能な計算済みパラメータが認められなければ、新たなシミュレーションパラメータが、シミュレーションパラメータ設定部20-3によってシミュレータ40に設定される。 The calculation result diversion determination unit 20-2 determines whether the simulation result storage unit 30 stores a calculated parameter that can be equated with the newly read simulation parameter. As a result, if no reusable calculated parameters are found, new simulation parameters are set in the simulator 40 by the simulation parameter setting unit 20-3.
 他方、計算結果流用判定部20-2が、流用可能な計算済みパラメータの存在を認めると、シミュレーション結果書き換え部20-4に、必要に応じてシミュレーション結果を書き換える旨の指令が発せられる。 On the other hand, when the calculation result diversion determination unit 20-2 recognizes the existence of calculated parameters that can be used, a command is issued to the simulation result rewriting unit 20-4 to rewrite the simulation results as necessary.
 シミュレーション結果記憶部30には、流用可能と判断された計算済みパラメータとの組み合わせで、レイトレースの手法で解析された単なる正規反射のシミュレーション結果が格納されていることがある。中継局としてRISを用いる場合は、その正規反射のシミュレーション結果を電磁界解析に基づくシミュレーション結果に置き換える必要がある。シミュレーション結果書き換え部20-4は、このような場合に、シミュレーション結果記憶部30に格納されているデータを、正規反射の結果から電磁界解析の結果に書き換える。 The simulation result storage unit 30 may store simulation results of simple regular reflections analyzed using a ray tracing method in combination with calculated parameters that are determined to be reusable. When using RIS as a relay station, it is necessary to replace the simulation results of its regular reflection with simulation results based on electromagnetic field analysis. In such a case, the simulation result rewriting unit 20-4 rewrites the data stored in the simulation result storage unit 30 from the results of regular reflection to the results of electromagnetic field analysis.
 シミュレーション結果出力部20-5は、シミュレーション効率化装置20の出力インターフェースである。シミュレータ40からシミュレーション効率化装置20に戻されたシミュレーション結果、並びに流用可能なものとしてシミュレーション結果記憶部30から読み出されたシミュレーション結果は、シミュレーション結果出力部20-5から、例えばオペレータに向けて、出力される。 The simulation result output unit 20-5 is an output interface of the simulation efficiency improvement device 20. The simulation results returned from the simulator 40 to the simulation efficiency improvement device 20 and the simulation results read out from the simulation result storage unit 30 as reusable ones are sent from the simulation result output unit 20-5 to, for example, an operator. Output.
[実施の形態1における処理の流れ]
 図4は、シミュレーション効率化装置20のプロセッサユニットが、シミュレーション効率化プログラムを実行することにより進行する処理の流れを説明するためのフローチャートである。図4に示すルーチンは、シミュレーション効率化装置20に、新たなシミュレーションパラメータが提供されることにより起動される。
[Flow of processing in Embodiment 1]
FIG. 4 is a flowchart for explaining the flow of processing that proceeds when the processor unit of the simulation efficiency improvement device 20 executes the simulation efficiency improvement program. The routine shown in FIG. 4 is activated when new simulation parameters are provided to the simulation efficiency improvement device 20.
 ここでは、先ず、新たに提供を受けたシミュレーションパラメータが読み込まれる(ステップ100)。 Here, first, newly provided simulation parameters are read (step 100).
 次に、流用可能な計算済みパラメータが存在するか否かが判別される(ステップ102)。尚、如何なる条件で「流用可能」か否かを判断するかは、後に、第1実施例乃至第3実施例を参照して詳細に説明する。 Next, it is determined whether there are any calculated parameters that can be used (step 102). Note that the conditions under which it is determined whether or not "appropriation" is possible will be explained in detail later with reference to the first to third embodiments.
 上記の処理で、流用可能な計算済みパラメータが存在しないと判別された場合は、新たなシミュレーションパラメータがシミュレータ40に設定される(ステップ104)。 In the above process, if it is determined that there are no calculated parameters that can be used, new simulation parameters are set in the simulator 40 (step 104).
 次いで、シミュレータ40に対してシミュレーションの実行が指示される。その後、シミュレータ40がシミュレーションを終了すると、その実行の結果がシミュレーション効率化装置20に取り込まれる(ステップ106)。 Next, the simulator 40 is instructed to execute the simulation. Thereafter, when the simulator 40 finishes the simulation, the results of the execution are taken into the simulation efficiency improvement device 20 (step 106).
 一方、上記ステップ102において、流用可能な計算済みパラメータが存在すると判別された場合は、その計算済みパラメータに対応する既存のシミュレーション結果が、シミュレーション結果記憶部30から読み込まれる(ステップ108)。 On the other hand, if it is determined in step 102 that there is a calculated parameter that can be used, the existing simulation result corresponding to the calculated parameter is read from the simulation result storage unit 30 (step 108).
 次いで、必要に応じて、読み込んだ既存のシミュレーション結果の書き換えが行われる(ステップ110)。具体的には、読み込んだ結果がレイトレース法による正規反射の結果であった場合は、その結果を、電磁界解析の結果に書き換える処理が行われる。尚、読み込んだ結果が電磁界解析の結果であった場合は、書き換えの必要が無いと判断されて、書き換えの処理はスキップされる。 Next, if necessary, the existing simulation results that have been read are rewritten (step 110). Specifically, if the read result is the result of regular reflection by the ray tracing method, processing is performed to rewrite the result to the result of electromagnetic field analysis. Note that if the read result is the result of electromagnetic field analysis, it is determined that there is no need to rewrite, and the rewriting process is skipped.
 上記の処理が終わると、今回のルーチンで処理の対象としたシミュレーションパラメータと、そのパラメータに対応するシミュレーション結果とが、シミュレーション結果記憶部30に記憶される。また、この回のルーチンで得られたシミュレーション結果が、例えばオペレータに向けて、出力される(ステップ112)。 When the above processing is completed, the simulation parameters processed in the current routine and the simulation results corresponding to the parameters are stored in the simulation result storage unit 30. Further, the simulation results obtained in this routine are outputted, for example, to the operator (step 112).
 以上説明した通り、本実施形態の中継局シミュレーションシステムによれば、既存の計算結果を有効に活用することができる。このため、本実施形態のシステムによれば、RIS14に関わるパラメータが変化した場合に、所望の計算結果を効率的に取得することができ、高効率でシミュレーションを完遂させることができる。 As explained above, according to the relay station simulation system of this embodiment, existing calculation results can be effectively utilized. Therefore, according to the system of this embodiment, when the parameters related to the RIS 14 change, desired calculation results can be efficiently obtained, and the simulation can be completed with high efficiency.
(第1実施例)
 以下、図5および図6を参照して、本実施形態の中継局シミュレーションシステムを用いてシミュレーションを効率化する手法の第1実施例について説明する。
 図5は、第1実施例の概要を説明するための図、より具体的には、第1実施例が、シミュレーションの効率化のために着目する要素を説明するための図である。
(First example)
Hereinafter, with reference to FIGS. 5 and 6, a first example of a method for increasing the efficiency of simulation using the relay station simulation system of this embodiment will be described.
FIG. 5 is a diagram for explaining the outline of the first embodiment, and more specifically, a diagram for explaining the elements that the first embodiment focuses on in order to improve the efficiency of simulation.
 サービスエリア10についてのシミュレーションを実行する際には、先ず、サービスエリア10の物理的な構成を確定する。具体的には、送信機として機能する無線基地局12、中継局として機能するRIS14、および受信機として機能する端末装置18の位置などを確定する(ステップ120)。 When performing a simulation regarding the service area 10, first, the physical configuration of the service area 10 is determined. Specifically, the positions of the wireless base station 12 functioning as a transmitter, the RIS 14 functioning as a relay station, and the terminal device 18 functioning as a receiver are determined (step 120).
 次に、レイトレースの手法により、送信機から中継局を経由して受信機に至るパスを解析する(ステップ122)。更に、解析によって得たパス毎に、無線信号が中継局に入射する角度を、解析すべき入射角として特定する(ステップ124)。これらの特定が完了すると、電磁界解析によるシミュレーションの実行が可能となる。 Next, the path from the transmitter to the receiver via the relay station is analyzed using the ray tracing method (step 122). Furthermore, for each path obtained through analysis, the angle at which the wireless signal enters the relay station is specified as the angle of incidence to be analyzed (step 124). Once these specifications are completed, it becomes possible to perform simulations using electromagnetic field analysis.
 図5に示す「解析結果(パス)」が同じであれば、「解析すべき入射角」も「電磁界解析」によるシミュレーションの結果も同一になる。このため、第1実施例では、図3に示す計算結果流用判定部20-2が、図4に示すステップ102の処理により、「解析結果(パス)」の同一性に基づいて、計算済みパラメータが「流用可能」か否かを判断する。 If the "analysis results (paths)" shown in FIG. 5 are the same, the "incident angle to be analyzed" and the simulation result by "electromagnetic field analysis" will be the same. Therefore, in the first embodiment, the calculation result diversion determination unit 20-2 shown in FIG. Determine whether it is “appropriable” or not.
 図6は、上述した第1実施例の特徴を説明するための図である。図6左上の欄には、計算済みパラメータの一つが示すサービスエリア10のレイアウトを示している。ここには、送信機として機能する無線基地局12と、受信機として機能する端末装置18との間に、三台のRIS14-1~14-3が配置されている。 FIG. 6 is a diagram for explaining the features of the first embodiment described above. The upper left column of FIG. 6 shows the layout of the service area 10 indicated by one of the calculated parameters. Here, three RISs 14-1 to 14-3 are arranged between the radio base station 12 that functions as a transmitter and the terminal device 18 that functions as a receiver.
 図6右上の欄には、新たなシミュレーションパラメータが示す解析対象のレイアウトを示す。ここには、無線基地局12と端末装置18との間に、二台のRIS14-1および14-3が配置されている。それらの位置は、計算済みパラメータに対応するそれらの位置と同一である。 The upper right column in FIG. 6 shows the layout of the analysis target indicated by the new simulation parameters. Here, two RISs 14-1 and 14-3 are arranged between the radio base station 12 and the terminal device 18. Their positions are the same as those corresponding to the calculated parameters.
 上記の通り、第1実施例の手法では、パスの同一性に基づいて流用の可否が判断される。図6に示す解析対象において、RIS14-1を経由するパス、並びにRIS14-3を経由するパスは、何れも計算済みのレイアウトにおいてそれらを経由するパスと同一であると推定できる。従って、この場合は、計算済みパラメータとの組み合わせで記憶されているシミュレーション結果から、解析対象に存在しないRIS14-2経由のパスに関わる結果を削除すれば、新たなシミュレーションパラメータに対するシミュレーション結果として流用可能な結果を得ることができる(図6中、右下欄参照)。 As described above, in the method of the first embodiment, it is determined whether diversion is possible based on the identity of the paths. In the analysis target shown in FIG. 6, the path passing through the RIS 14-1 and the path passing through the RIS 14-3 can be estimated to be the same as the paths passing through them in the already calculated layout. Therefore, in this case, if you delete the results related to the path via RIS14-2 that does not exist in the analysis target from the simulation results stored in combination with the calculated parameters, you can use them as simulation results for new simulation parameters. (See lower right column in FIG. 6).
 以上説明したように、効率化の第1実施例では、パスの同一性に基づいて計算済みパラメータの流用可否を判断する。そして、本実施形態の中継局シミュレーションシステムは、解析対象に含まれる無線基地局12、端末装置18およびRIS14の位置が、計算済みのレイアウトにおけるそれらの位置と同じであれば、第1実施例の手法を用いることでシミュレーションを効率化することができる。 As explained above, in the first example of efficiency improvement, it is determined whether or not a calculated parameter can be reused based on the identity of the path. Then, in the relay station simulation system of the present embodiment, if the positions of the radio base station 12, terminal device 18, and RIS 14 included in the analysis target are the same as their positions in the calculated layout, the relay station simulation system of the first embodiment By using this method, simulation can be made more efficient.
(第2実施例)
 次に、図7および図8を参照して、本実施形態の中継局シミュレーションシステムを用いてシミュレーションを効率化する手法の第2実施例について説明する。
 図7は、第2実施例の概要を説明するための図、より具体的には、第2実施例が、シミュレーションの効率化のために着目する要素を説明するための図である。尚、図7において、図5に示す要素と同一の要素については、共通する符号を付して重複する説明を省略または簡略する。
(Second example)
Next, a second example of a method for increasing the efficiency of simulation using the relay station simulation system of this embodiment will be described with reference to FIGS. 7 and 8.
FIG. 7 is a diagram for explaining the outline of the second embodiment, and more specifically, a diagram for explaining the elements that the second embodiment focuses on in order to improve the efficiency of simulation. In FIG. 7, elements that are the same as those shown in FIG. 5 are given the same reference numerals and redundant explanations will be omitted or simplified.
 RIS14は、制御角度に応じて電波の反射方向を変化させる。このため、RIS14を含むサービスエリア10を対象とする電波伝搬特性のシミュレーションは、RIS14の制御角度毎に実行する必要がある(ステップ126)。 The RIS 14 changes the direction of reflection of radio waves according to the control angle. Therefore, simulation of radio wave propagation characteristics targeting the service area 10 including the RIS 14 needs to be executed for each control angle of the RIS 14 (step 126).
 RIS14による電波の反射方向は、RIS14が格子状に備えている複数の素子それぞれの特性を電気的に変化させることにより決定される。換言すると、RIS14の制御角度が決まると、その制御角度を実現するために各素子に与える特性のパタン、つまりRISパタンが数値計算により特定できる(ステップ128)。 The direction in which the radio waves are reflected by the RIS 14 is determined by electrically changing the characteristics of each of the plurality of elements that the RIS 14 has in a grid pattern. In other words, once the control angle of the RIS 14 is determined, the characteristic pattern given to each element to achieve the control angle, that is, the RIS pattern, can be specified by numerical calculation (step 128).
 電磁界解析によるシミュレーションは、RIS14が、特定のRISパタンαの下で、様々な入射角に対してどのような反射特性を示すかを解析する目的で実行されることがある(ステップ130)。 A simulation using electromagnetic field analysis may be performed for the purpose of analyzing what kind of reflection characteristics the RIS 14 exhibits with respect to various incident angles under a specific RIS pattern α (step 130).
 ここで、RISパタンαの下での反射特性は、入射角が同じであれば同一になる。このため、第2実施例では、図3に示す計算結果流用判定部20-2が、図4に示すステップ102の処理により、RIS14に対する「入射角」の同一性に基づいて、計算済みパラメータが「流用可能」か否かを判断する。 Here, the reflection characteristics under the RIS pattern α are the same if the incident angle is the same. Therefore, in the second embodiment, the calculation result diversion determination unit 20-2 shown in FIG. 3 uses the process of step 102 shown in FIG. Determine whether it is “appropriable” or not.
 図8は、上述した第2実施例の特徴を説明するための図である。図8左側の欄は、特定のRISパタンαについて、「入射角」30度および45度に対する「反射特性」が、それぞれXおよびYとして計算済みであることを示している。 FIG. 8 is a diagram for explaining the features of the second embodiment described above. The column on the left side of FIG. 8 shows that the "reflection characteristics" for the "incident angle" of 30 degrees and 45 degrees have been calculated as X and Y, respectively, for the specific RIS pattern α.
 一方、図8右側の欄は、新たなシミュレーションパラメータが、下記の入射角を解析対象としていることを表している。
 15度(未計算)
 30度(反射特性Xの計算結果有り)
 45度(反射特性Yの計算結果有り)
 60度(未計算)
On the other hand, the column on the right side of FIG. 8 indicates that the new simulation parameters target the following incident angles for analysis.
15 degrees (uncalculated)
30 degrees (with calculation results of reflection characteristics X)
45 degrees (with calculation results of reflection characteristics Y)
60 degrees (uncalculated)
 上記の通り、第2実施例の手法では、入射角の同一性に基づいて流用の可否が判断される。図8に示す解析対象中、30度および45度については、それらと同じ入射角が計算済みのパラメータに含まれている。このため、第2実施例の手法では、解析対象のうち、30度および45度については、既存結果XおよびYが流用され、流用するべき結果が存在しない15度および60度についてのみシミュレーションが新たに実行される。 As described above, in the method of the second embodiment, it is determined whether or not it can be reused based on the identity of the incident angles. Of the analysis targets shown in FIG. 8, the same incident angles as 30 degrees and 45 degrees are included in the calculated parameters. Therefore, in the method of the second embodiment, existing results X and Y are used for 30 degrees and 45 degrees among the analysis targets, and new simulations are performed only for 15 degrees and 60 degrees for which there are no results to be used. is executed.
 以上説明したように、効率化の第2実施例では、RIS14に対する入射角の同一性に基づいて計算済みパラメータの流用可否が判断される。そして、本実施形態の中継局シミュレーションシステムは、解析対象に含まれる入射角が、計算済みの入射角と同じであれば、第2実施例の手法を用いることで、シミュレーションを効率化することができる。 As explained above, in the second example of efficiency improvement, it is determined whether or not the calculated parameters can be used based on the sameness of the angle of incidence with respect to the RIS 14. In the relay station simulation system of this embodiment, if the angle of incidence included in the analysis target is the same as the already calculated angle of incidence, the simulation can be made more efficient by using the method of the second embodiment. can.
 尚、上記の第2実施例では、RISパタンαについて、計算済みの入射角30度および45度のシミュレーション結果を流用することとしている。しかしながら、本開示はこれに限定されるものではない。設定可能なRISパタンn(n=l~N)の全てについて、30度および45度の反射特性XnおよびYnが計算済みであれば、RISパタンαに限ることなく、あらゆるRISパタンについて入射角30度および45度の結果XnおよびYnを流用可能なものとして取り扱うこととしてもよい。 Note that in the second embodiment described above, the calculated simulation results for the incident angles of 30 degrees and 45 degrees are used for the RIS pattern α. However, the present disclosure is not limited thereto. If the reflection characteristics Xn and Yn at 30 degrees and 45 degrees have been calculated for all settable RIS patterns n (n = l to N), the incident angle of 30 degrees can be calculated for all RIS patterns, not limited to RIS pattern α. It is also possible to treat the results Xn and Yn of degrees and 45 degrees as reusable.
(第3実施例)
 次に、図9および図10を参照して、本実施形態の中継局シミュレーションシステムを用いてシミュレーションを効率化する手法の第3実施例について説明する。
 図9は、第3実施例の概要を説明するための図、より具体的には、第3実施例が、シミュレーションの効率化のために着目する要素を説明するための図である。尚、図9において、図5または図7に示す要素と同一の要素については、共通する符号を付して重複する説明を省略または簡略する。
(Third example)
Next, a third example of a method for increasing the efficiency of simulation using the relay station simulation system of this embodiment will be described with reference to FIGS. 9 and 10.
FIG. 9 is a diagram for explaining the outline of the third embodiment, and more specifically, a diagram for explaining the elements that the third embodiment focuses on in order to improve the efficiency of simulation. In FIG. 9, elements that are the same as those shown in FIG. 5 or 7 are given the same reference numerals and redundant explanations will be omitted or simplified.
 第2実施例において説明した通り、RIS14を含むサービスエリア10を対象とするシミュレーションは、RIS14の制御角度を決めて実行される(ステップ126)。そして、RIS14の制御角度を実現するRISパタンαを決めて(ステップ128)、入射角毎の反射特性がシミュレーションにより計算される(ステップ130)。 As described in the second embodiment, a simulation targeting the service area 10 including the RIS 14 is executed after determining the control angle of the RIS 14 (step 126). Then, a RIS pattern α that realizes the control angle of the RIS 14 is determined (step 128), and reflection characteristics for each incident angle are calculated by simulation (step 130).
 ところで、上記ステップ126の処理において、RIS14の制御角度は、RIS14で反射された信号が、サービスエリア10内の特定箇所に位置する端末装置18に向かって進行するように決定される。一方で、RIS14による信号の反射方向は、RISパタンの変更に伴って、ステップ的に変化する。このため、二つの制御角度の差が僅かである場合は、それらに対応するRISパタンが同一のものとなることがある。 Incidentally, in the process of step 126, the control angle of the RIS 14 is determined such that the signal reflected by the RIS 14 travels toward the terminal device 18 located at a specific location within the service area 10. On the other hand, the direction in which the signal is reflected by the RIS 14 changes stepwise as the RIS pattern changes. Therefore, if the difference between two control angles is small, the corresponding RIS patterns may be the same.
 ここで、制御角度が異なっていても、RISパタンが同一であれば、それらの制御角度に対するシミュレーションの結果は同一となる。このため、第3実施例では、図3に示す計算結果流用判定部20-2が、図4に示すステップ102の処理により、「RISパタン」の同一性に基づいて、計算済みパラメータが「流用可能」か否かを判断する。 Here, even if the control angles are different, if the RIS pattern is the same, the simulation results for those control angles will be the same. Therefore, in the third embodiment, the calculation result diversion determination unit 20-2 shown in FIG. Determine whether it is possible.
 図10は、上述した第3実施例の特徴を説明するための図である。図10左側の欄は、RIS14の「制御角度」が30度および45度の場合が計算済みであることを示している。ここでは、RIS14が、3×3の格子状に配置された9個の素子を備えていることとする。制御角度「30度」のRISパタンの欄に示す3×3の「1」または「0」は、格子状に配列された9個の素子それぞれの状態を表している。例えば、「1」は位相変更の状態を表し、「0」は位相不変更の状態を表すこととする。 FIG. 10 is a diagram for explaining the features of the third embodiment described above. The column on the left side of FIG. 10 shows that the cases where the "control angle" of the RIS 14 is 30 degrees and 45 degrees have been calculated. Here, it is assumed that the RIS 14 includes nine elements arranged in a 3×3 grid. The 3×3 “1” or “0” shown in the RIS pattern column for the control angle “30 degrees” represents the state of each of the nine elements arranged in a grid. For example, "1" represents a phase change state, and "0" represents a phase unchanged state.
 つまり、図10左側の欄は、以下の事象を表している。
(1)30度および45度の制御角度が計算済みであること
(2)30度のRISパタンと、45度のRISパタンは異なっていること
(3)30度の反射特性リストがαであり、45度の反射特性リストがβであること
That is, the column on the left side of FIG. 10 represents the following events.
(1) The control angles of 30 degrees and 45 degrees have been calculated. (2) The RIS pattern of 30 degrees and the RIS pattern of 45 degrees are different. (3) The reflection characteristic list of 30 degrees is α. , the 45 degree reflection characteristic list is β
 図10の右側は、新たなシミュレーションパラメータが、下記の制御角度を解析対象としていることを表している。
 30度(RISパタンは|110|×3、反射特性リストαの計算結果有り)
 32度(RISパタンは30度の場合と同じ、従って反射特性リストαは流用可能)
 45度(RISパタンは|101|×3、反射特性リストβの計算結果有り)
 60度(RISパタンは|010|×3、反射特性リストは未計算)
The right side of FIG. 10 shows that the new simulation parameters target the following control angles for analysis.
30 degrees (RIS pattern is |110|×3, calculation results of reflection characteristic list α are included)
32 degrees (RIS pattern is the same as 30 degrees, so reflection characteristic list α can be used)
45 degrees (RIS pattern is |101|×3, calculation results of reflection characteristic list β are included)
60 degrees (RIS pattern is |010|×3, reflection characteristic list is not calculated)
 上記の通り、第3実施例の手法では、RISパタンの同一性に基づいて流用の可否が判断される。図10に示す解析対象中、32度のRISパタンは、計算済みの30度のRISパタンと同一である。このため、第3実施例の手法では、解析対象のうち、計算済みの30度および45度についてはαおよびβの結果を流用し、更に、未計算の32度についても既存のαを結果として流用する。そして、未計算であり、かつ同一RISパタンが計算済みのパタンに含まれていない60度についてのみシミュレーションが新たに実行される。 As described above, in the method of the third embodiment, it is determined whether diversion is possible based on the identity of the RIS pattern. Among the analysis targets shown in FIG. 10, the 32 degree RIS pattern is the same as the calculated 30 degree RIS pattern. Therefore, in the method of the third embodiment, the results of α and β are used for the calculated 30 degrees and 45 degrees, and the existing α is used as the result for the uncalculated 32 degrees. Divert. Then, a new simulation is performed only for 60 degrees that have not been calculated and the same RIS pattern is not included in the calculated patterns.
 以上説明したように、効率化の第3実施例では、RISパタンの同一性に基づいて計算済みパラメータの流用可否が判断される。そして、本実施形態の中継局シミュレーションシステムは、解析対象に含まれるRISパタンが、計算済みのRISパタンと同じであれば、第3実施例の手法を用いることでシミュレーションを効率化することができる。 As explained above, in the third example of efficiency improvement, it is determined whether or not a calculated parameter can be reused based on the identity of the RIS pattern. In addition, in the relay station simulation system of this embodiment, if the RIS pattern included in the analysis target is the same as the calculated RIS pattern, the simulation can be made more efficient by using the method of the third embodiment. .
[実施の形態1の変形例]
 ところで、上述した実施の形態1では、中継局がRISである場合について説明しているが、本開示はこれに限定されるものではない。中継局は、無線信号を中継する機能を有するものであれば足り、例えば、一般的なリピータであってもよい。一般的なリピータを用いるサービスエリアについてシミュレーションが必要な場合にも、結果が流用できるパラメータについてはシミュレーションを省略して既存結果を活用することとしてもよい。
[Modification of Embodiment 1]
By the way, in the first embodiment described above, a case where the relay station is an RIS is described, but the present disclosure is not limited to this. The relay station need only have the function of relaying wireless signals, and may be, for example, a general repeater. Even if a simulation is required for a service area using a general repeater, the simulation may be omitted and existing results may be used for parameters for which the results can be used.
10 サービスエリア
12 無線基地局
14 RIS(Reconfigurable Intelligent Surface)
16 障害壁
18 端末装置
20 シミュレーション効率化装置
30 シミュレーション結果記憶部
40 シミュレータ
10 Service area 12 Wireless base station 14 RIS (Reconfigurable Intelligent Surface)
16 Obstacle wall 18 Terminal device 20 Simulation efficiency device 30 Simulation result storage unit 40 Simulator

Claims (8)

  1.  送信機からの無線信号を受信機に向けて反射する中継局の電波特性をシミュレーションにより計算する中継局シミュレーションシステムであって、
     計算済みパラメータと、当該計算済みパラメータに基づくシミュレーションの計算結果とを記憶するシミュレーション結果記憶部と、
     前記送信機、前記受信機および前記中継局の配置に関わる情報を含むパラメータに基づいて前記電波特性のシミュレーションを実行するシミュレータと、
     前記シミュレーション結果記憶部および前記シミュレータの双方と通信可能なシミュレーション効率化装置とを備え、
     前記シミュレーション効率化装置は、
     前記配置に関わる情報を含むシミュレーションパラメータを受け取る処理と、
     前記シミュレーションパラメータとして流用可能な計算済みパラメータが前記シミュレーション結果記憶部に格納されているか否かを判別する流用判定処理と、
     前記流用可能な計算済みパラメータの存在が認められた場合に、当該計算済みパラメータに基づく前記計算結果を、前記シミュレーション結果記憶部から読み出して前記シミュレーションパラメータに対する計算結果として出力する結果出力処理と、
     前記流用可能な計算済みパラメータの存在が認められない場合に、前記シミュレーションパラメータを前記パラメータとして前記シミュレータに提供し、前記シミュレータによる計算結果を前記シミュレーションパラメータに対する計算結果として出力する処理と、
     を実行するように構成されている中継局シミュレーションシステム。
    A relay station simulation system that calculates radio wave characteristics of a relay station that reflects a radio signal from a transmitter toward a receiver by simulation,
    a simulation result storage unit that stores calculated parameters and simulation calculation results based on the calculated parameters;
    a simulator that executes a simulation of the radio wave characteristics based on parameters including information related to the arrangement of the transmitter, the receiver, and the relay station;
    a simulation efficiency improvement device capable of communicating with both the simulation result storage unit and the simulator;
    The simulation efficiency device includes:
    a process of receiving simulation parameters including information related to the arrangement;
    a diversion determination process that determines whether a calculated parameter that can be diverted as the simulation parameter is stored in the simulation result storage unit;
    a result output process of reading out the calculation result based on the calculated parameter from the simulation result storage unit and outputting it as a calculation result for the simulation parameter when the existence of the calculated parameter that can be used is recognized;
    If the existence of the reusable calculated parameters is not recognized, providing the simulation parameters as the parameters to the simulator, and outputting the calculation results by the simulator as the calculation results for the simulation parameters;
    A relay station simulation system configured to perform.
  2.  前記流用判定処理は、前記シミュレーションパラメータが示す無線信号のパスと、前記計算済みパラメータが示す無線信号のパスとの同一性に基づいて前記流用可能の成否を判断する処理を含む請求項1に記載の中継局シミュレーションシステム。 2. The diversion determination process includes a process of determining whether the diversion is possible based on the sameness between the path of the radio signal indicated by the simulation parameter and the path of the radio signal indicated by the calculated parameter. relay station simulation system.
  3.  前記流用判定処理は、前記シミュレーションパラメータが示す前記中継局への前記無線信号の入射角と、前記計算済みパラメータが示す前記中継局への前記無線信号の入射角との同一性に基づいて前記流用可能の成否を判断する処理を含む請求項1に記載の中継局シミュレーションシステム。 The diversion determination process includes determining the diversion based on the sameness between the angle of incidence of the wireless signal on the relay station indicated by the simulation parameter and the angle of incidence of the wireless signal on the relay station indicated by the calculated parameter. 2. The relay station simulation system according to claim 1, further comprising processing for determining whether or not the relay station is possible.
  4.  前記中継局はRISであり、
     前記RISは、設定されたRISパタンに応じた方向に前記無線信号を反射するように構成されており、
     前記流用判定処理は、前記シミュレーションパラメータが示す前記RISパタンと、前記計算済みパラメータが示す前記RISパタンとの同一性に基づいて前記流用可能の成否を判断する処理を含む請求項1に記載の中継局シミュレーションシステム。
    the relay station is a RIS;
    The RIS is configured to reflect the wireless signal in a direction according to a set RIS pattern,
    The relay according to claim 1, wherein the diversion determination process includes a process of determining whether the diversion is possible based on the sameness between the RIS pattern indicated by the simulation parameter and the RIS pattern indicated by the calculated parameter. Station simulation system.
  5.  前記中継局はRISであり、
     前記結果出力処理は、シミュレーション効率化装置は、前記シミュレーション結果記憶部から読み出した前記計算結果が、レイトレース法による正規反射対応の結果である場合に、当該結果を、前記RISを対象とする電磁界解析の結果に書き換える処理を含む請求項1乃至4の何れか1項に記載の中継局シミュレーションシステム。
    the relay station is a RIS;
    In the result output process, when the calculation result read from the simulation result storage unit is a result of regular reflection correspondence by the ray tracing method, the simulation efficiency improvement device outputs the result to an electromagnetic system that targets the RIS. 5. The relay station simulation system according to claim 1, further comprising a process of rewriting the result of field analysis.
  6.  送信機からの無線信号を受信機に向けて反射する中継局の電波特性に関するシミュレーションを効率化する中継局シミュレーション効率化装置であって、
     前記送信機、前記受信機および前記中継局の配置に関わる情報を含むシミュレーションパラメータを受け取る処理と、
     計算済みパラメータと、当該計算済みパラメータに基づくシミュレーションの計算結果とを記憶するシミュレーション結果記憶部に、前記シミュレーションパラメータとして流用可能な計算済みパラメータが格納されているか否かを判別する処理と、
     前記流用可能な計算済みパラメータの存在が認められた場合に、当該計算済みパラメータに基づく前記計算結果を、前記シミュレーション結果記憶部から読み出して前記シミュレーションパラメータに対する計算結果として出力する処理と、
     前記流用可能な計算済みパラメータの存在が認められない場合に、前記シミュレーションパラメータをシミュレータに提供し、前記シミュレータによる計算結果を前記シミュレーションパラメータに対する計算結果として出力する処理と、
     を実行するように構成されている中継局シミュレーション効率化装置。
    A relay station simulation efficiency improvement device that streamlines simulation regarding radio wave characteristics of a relay station that reflects a radio signal from a transmitter toward a receiver,
    receiving simulation parameters including information related to the arrangement of the transmitter, the receiver, and the relay station;
    a process of determining whether or not a calculated parameter that can be used as the simulation parameter is stored in a simulation result storage unit that stores calculated parameters and calculation results of a simulation based on the calculated parameters;
    When the existence of the reusable calculated parameter is recognized, a process of reading the calculation result based on the calculated parameter from the simulation result storage unit and outputting it as a calculation result for the simulation parameter;
    a process of providing the simulation parameters to a simulator and outputting calculation results by the simulator as calculation results for the simulation parameters when the existence of the reusable calculated parameters is not recognized;
    A relay station simulation efficiency device configured to perform.
  7.  送信機からの無線信号を受信機に向けて反射する中継局の電波特性をシミュレーションにより計算するための中継局シミュレーション方法であって、
     計算済みパラメータと、当該計算済みパラメータに基づくシミュレーションの計算結果とをシミュレーション結果記憶部に記憶させるステップと、
     前記送信機、前記受信機および前記中継局の配置に関わる情報を含むシミュレーションパラメータを受け取るステップと、
     前記シミュレーションパラメータとして流用可能な計算済みパラメータが前記シミュレーション結果記憶部に格納されているか否かを判別するステップと、
     前記流用可能な計算済みパラメータの存在が認められた場合に、当該計算済みパラメータに基づく前記計算結果を、前記シミュレーション結果記憶部から読み出して前記シミュレーションパラメータに対する計算結果として出力するステップと、
     前記流用可能な計算済みパラメータの存在が認められない場合に、前記シミュレーションパラメータをシミュレータに提供し、前記シミュレータによる計算結果を前記シミュレーションパラメータに対する計算結果として出力するステップと、
     を含む中継局シミュレーション方法。
    A relay station simulation method for calculating radio wave characteristics of a relay station that reflects a radio signal from a transmitter toward a receiver by simulation, the method comprising:
    storing the calculated parameters and the calculation results of the simulation based on the calculated parameters in a simulation result storage unit;
    receiving simulation parameters including information regarding placement of the transmitter, the receiver and the relay station;
    determining whether a calculated parameter that can be used as the simulation parameter is stored in the simulation result storage unit;
    If the existence of the reusable calculated parameter is recognized, reading the calculation result based on the calculated parameter from the simulation result storage unit and outputting it as a calculation result for the simulation parameter;
    If the existence of the reusable calculated parameters is not recognized, providing the simulation parameters to a simulator and outputting the calculation results by the simulator as calculation results for the simulation parameters;
    Relay station simulation method including.
  8.  送信機からの無線信号を受信機に向けて反射する中継局の電波特性に関するシミュレーションを効率化するために中継局シミュレーション効率化装置に実行させる中継局シミュレーション効率化プログラムであって、
     前記中継局シミュレーション効率化装置が備えるプロセッサユニットに、
     前記送信機、前記受信機および前記中継局の配置に関わる情報を含むシミュレーションパラメータを受け取る処理と、
     計算済みパラメータと、当該計算済みパラメータに基づくシミュレーションの計算結果とを記憶するシミュレーション結果記憶部に、前記シミュレーションパラメータとして流用可能な計算済みパラメータが格納されているか否かを判別する処理と、
     前記流用可能な計算済みパラメータの存在が認められた場合に、当該計算済みパラメータに基づく前記計算結果を、前記シミュレーション結果記憶部から読み出して前記シミュレーションパラメータに対する計算結果として出力する処理と、
     前記流用可能な計算済みパラメータの存在が認められない場合に、前記シミュレーションパラメータをシミュレータに提供し、前記シミュレータによる計算結果を前記シミュレーションパラメータに対する計算結果として出力する処理と、
     を実行させるプログラムを含む中継局シミュレーション効率化プログラム。
    A relay station simulation efficiency improvement program that is executed by a relay station simulation efficiency device in order to improve the efficiency of simulation regarding radio wave characteristics of a relay station that reflects a radio signal from a transmitter toward a receiver,
    A processor unit included in the relay station simulation efficiency improvement device,
    receiving simulation parameters including information related to the arrangement of the transmitter, the receiver, and the relay station;
    a process of determining whether or not a calculated parameter that can be used as the simulation parameter is stored in a simulation result storage unit that stores calculated parameters and calculation results of a simulation based on the calculated parameters;
    When the existence of the reusable calculated parameter is recognized, a process of reading the calculation result based on the calculated parameter from the simulation result storage unit and outputting it as a calculation result for the simulation parameter;
    a process of providing the simulation parameters to a simulator and outputting calculation results by the simulator as calculation results for the simulation parameters when the existence of the reusable calculated parameters is not recognized;
    A relay station simulation efficiency program that includes a program that executes.
PCT/JP2022/028502 2022-07-22 2022-07-22 Relay station simulation system, relay station simulation efficiency increasing device, relay station simulation method, and relay station simulation efficiency increasing program WO2024018622A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028502 WO2024018622A1 (en) 2022-07-22 2022-07-22 Relay station simulation system, relay station simulation efficiency increasing device, relay station simulation method, and relay station simulation efficiency increasing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028502 WO2024018622A1 (en) 2022-07-22 2022-07-22 Relay station simulation system, relay station simulation efficiency increasing device, relay station simulation method, and relay station simulation efficiency increasing program

Publications (1)

Publication Number Publication Date
WO2024018622A1 true WO2024018622A1 (en) 2024-01-25

Family

ID=89617372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028502 WO2024018622A1 (en) 2022-07-22 2022-07-22 Relay station simulation system, relay station simulation efficiency increasing device, relay station simulation method, and relay station simulation efficiency increasing program

Country Status (1)

Country Link
WO (1) WO2024018622A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977394A (en) * 1995-07-07 1997-03-25 Hitachi Ltd Operation controller for elevator
JPH11306231A (en) * 1998-04-21 1999-11-05 Casio Comput Co Ltd Simulation device and method for display element
JP2010267209A (en) * 2009-05-18 2010-11-25 Fujitsu Semiconductor Ltd Program, apparatus, and method for supporting verification
JP2014186381A (en) * 2013-03-21 2014-10-02 Fujitsu Ltd Simulation program, simulation method, and simulation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977394A (en) * 1995-07-07 1997-03-25 Hitachi Ltd Operation controller for elevator
JPH11306231A (en) * 1998-04-21 1999-11-05 Casio Comput Co Ltd Simulation device and method for display element
JP2010267209A (en) * 2009-05-18 2010-11-25 Fujitsu Semiconductor Ltd Program, apparatus, and method for supporting verification
JP2014186381A (en) * 2013-03-21 2014-10-02 Fujitsu Ltd Simulation program, simulation method, and simulation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BASAR ERTUGRUL: "Reconfigurable Intelligent Surfaces for Doppler Effect and Multipath Fading Mitigation", FRONTIERS IN COMMUNICATIONS AND NETWORKS, vol. 2, 1 May 2021 (2021-05-01), pages 1 - 12, XP093130565, ISSN: 2673-530X, DOI: 10.3389/frcmn.2021.672857 *

Similar Documents

Publication Publication Date Title
US7634265B2 (en) Radio wave propagation characteristic estimation system, and its method and program
US5491644A (en) Cell engineering tool and methods
CN1498000B (en) Method, device of designing base station overlay area in mobile communication system
US6640089B1 (en) System and method for adaptively predicting radio wave propagation
EP2424293B1 (en) Radio wave propagation characteristic estimation apparatus, method, and computer program
CN105430664A (en) Method and device of predicting propagation path loss based on classification fitting
EP1933157B1 (en) Radio wave arrival state estimation system, radio wave arrival state estimation method, and program
WO2024018622A1 (en) Relay station simulation system, relay station simulation efficiency increasing device, relay station simulation method, and relay station simulation efficiency increasing program
JP2003318811A (en) Device, method, program for estimating and calculating reception electric field intensity and recording medium
CN111133785A (en) Analysis method and apparatus for network design in wireless communication system
US20050088165A1 (en) Radio-wave propagation characteristic forecasting system and its method, and program
CN109996242A (en) Antenna emulation of coverage capability method, apparatus, equipment and medium
CN111492602B (en) Method and apparatus for communication environment analysis and network design considering radio wave incident unit of building
CN110971282B (en) Antenna test system, method and device, electronic equipment and storage medium
CN114142878B (en) Wireless signal processing method, system, computer equipment and storage medium
Kifle et al. Comparison and extension of existing 3D propagation models with real-world effects based on ray-tracing: a basis for network planning and optimization
KR100329518B1 (en) Prediction and analysis method of cell planning for wireless communication
KR20100032615A (en) Rule-based wireless network optimization method using virtual mobiles
KR20100050895A (en) Rule-based wireless network optimization method using measured data
KR101090447B1 (en) Method for Determination of Propagation Model Coefficients Using Linear Regression and 3 Dimension Ray Tracing
CN107707319B (en) Method and device for predicting field intensity of wireless signal in building
Shah Optimization and Acceleration of 5G Link Layer Simulator
KR101260558B1 (en) Device and method of propagation environment prediction
CN101720137A (en) Parallel simulation method of wireless sensor networks
CN114339780A (en) Site coverage prediction method and related equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952006

Country of ref document: EP

Kind code of ref document: A1