WO2024018562A1 - System and program - Google Patents

System and program Download PDF

Info

Publication number
WO2024018562A1
WO2024018562A1 PCT/JP2022/028217 JP2022028217W WO2024018562A1 WO 2024018562 A1 WO2024018562 A1 WO 2024018562A1 JP 2022028217 W JP2022028217 W JP 2022028217W WO 2024018562 A1 WO2024018562 A1 WO 2024018562A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing tool
conditions
polishing
workpiece
amount
Prior art date
Application number
PCT/JP2022/028217
Other languages
French (fr)
Japanese (ja)
Inventor
啓輔 福島
佳輝 蔭山
Original Assignee
株式会社ジーベックテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジーベックテクノロジー filed Critical 株式会社ジーベックテクノロジー
Priority to JP2022575297A priority Critical patent/JP7229621B1/en
Priority to PCT/JP2022/028217 priority patent/WO2024018562A1/en
Priority to JP2023017911A priority patent/JP2024014687A/en
Publication of WO2024018562A1 publication Critical patent/WO2024018562A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/013Control or regulation of feed movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B17/00Special adaptations of machines or devices for grinding controlled by patterns, drawings, magnetic tapes or the like; Accessories therefor
    • B24B17/10Special adaptations of machines or devices for grinding controlled by patterns, drawings, magnetic tapes or the like; Accessories therefor involving electrical transmission means only, e.g. controlled by magnetic tape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/16Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a system and a program that make it possible to maintain the machining accuracy of a workpiece even if the abrasive material wears out.
  • burr metal fuzz
  • deburring a process of removing the burr
  • chamfering a process of cutting the corner where the burr is generated
  • NC numerical control
  • the abrasive material of the polishing tool attached to the machine tool gradually wears out.
  • the amount of cut into the workpiece by the polishing tool decreases, making it difficult to maintain machining accuracy of the workpiece.
  • An object of the present invention is to provide a system and a program that make it possible to maintain the machining accuracy of a workpiece even if the abrasive material wears out.
  • the purpose of the present invention is to [1] A system comprising at least one computer device, wherein the storage means stores information regarding the wear rate of the abrasive material of the polishing tool under the conditions in association with information regarding the conditions when polishing the workpiece with the polishing tool.
  • a system comprising: an input means for accepting input of conditions for polishing a workpiece; and a specifying means for specifying information regarding the wear rate of the abrasive material corresponding to the accepted conditions;
  • a system comprising at least one computer device, an input means for accepting input of conditions for polishing a workpiece with a polishing tool, and information regarding conditions for polishing the workpiece as input data,
  • a system comprising: identifying means for specifying information regarding the wear rate of the abrasive material under accepted conditions using a machine-learned predictive model using information regarding the wear rate of the abrasive material of the polishing tool as output data;
  • Based on the information regarding the specified wear rate the contact between the polishing tool and the workpiece is adjusted so that the load applied to the polishing tool and/or the amount of change in load when polishing under the above conditions is within a predetermined range.
  • the system according to [1] or [2] above comprising a generating means for generating control information for controlling the position in the direction or the amount of protrusion or the amount of cut in the contact direction of the abrasive material; [4] The system according to [3] above, comprising a control means for controlling the position of the polishing tool in the contact direction, or the amount of protrusion or the amount of cut in the contact direction of the abrasive material, based on the generated control information; [5] The system according to [3] or [4], comprising a transmitting means for transmitting the generated control information to another computer device different from the first computer device; [6] Based on the information on the identified wear rate, adjust the position of the polishing tool in the contact direction with the workpiece or the contact direction of the abrasive material so that the amount of cut into the workpiece by the polishing tool is within a predetermined range.
  • the system according to [6] or [7] comprising a transmitting means for transmitting the generated control information to another computer device different from the first computer device; [9]
  • the storage means stores the received information regarding the wear rate of the abrasive material in association with the received information regarding the conditions;
  • Information receiving means for receiving information regarding the conditions under which a workpiece was polished by a polishing tool in another device different from the computer device 1, and information regarding the wear rate of the abrasive material of the polishing tool under the conditions. as described in any one of [2] to [8] above, wherein the predictive model is machine-learned by using the received information regarding the conditions as input data and the received information regarding the wear rate of the abrasive material as output data.
  • a system comprising at least one computer device, in which the load applied to the polishing tool and/or the amount of change in the load is applied to the polishing tool when polishing under the conditions, in association with information regarding the conditions when polishing the workpiece with the polishing tool.
  • a system comprising an input means for accepting input of conditions for polishing a workpiece, and a specifying means for specifying control information corresponding to the accepted conditions; [12] A system comprising at least one computer device, in which the amount of cut into the workpiece by the polishing tool is set within a predetermined range under the conditions, in association with information regarding the conditions when polishing the workpiece with the polishing tool.
  • a system comprising: an input means for accepting an input; and a specifying means for specifying control information corresponding to the accepted condition; [13]
  • a system comprising at least one computer device, an input means for accepting input of conditions for polishing a workpiece with a polishing tool, information regarding conditions for polishing the workpiece as input data, In order to keep the load applied to the polishing tool during polishing and/or the amount of change in load within a predetermined range, the position of the polishing tool in the contact direction in contact with the work, or the amount of protrusion or cutting of the abrasive material of the polishing tool in the contact direction.
  • a system comprising at least one computer device, an input means for accepting input of conditions for polishing a workpiece with a polishing tool, information regarding conditions for polishing the workpiece as input data, To control the position of the polishing tool in the contact direction in contact with the workpiece in order to keep the cutting amount of the polishing tool into the workpiece within a predetermined range, or the protrusion amount or cutting amount of the abrasive material of the polishing tool in the contact direction.
  • a system comprising: identifying means for identifying control information under accepted conditions using a machine-learned predictive model using control information as output data; [15] A control means for controlling the position of the polishing tool in the contact direction in contact with the workpiece or the protrusion amount or cutting amount of the abrasive material in the contact direction based on the specified control information, [11] to The system according to any one of [14]; [16] The system according to any one of [11] to [15], comprising a transmitting means for transmitting the specified control information to another computer device different from the first computer device; [17] Information regarding the conditions under which the workpiece was polished with a polishing tool in another device different from the computer device in 1 above, and the load and/or the amount of change in the load applied to the polishing tool when polishing under the conditions.
  • Information receiving means for receiving information regarding the position of the polishing tool in the contact direction in contact with the workpiece or the protrusion amount or cutting amount of the abrasive material of the polishing tool in the contact direction to achieve a predetermined range
  • the predictive model includes: Machine learning is performed using information regarding the received conditions as input data and information regarding the received position of the polishing tool in the contact direction or the protrusion amount or cutting amount in the contact direction of the abrasive material of the polishing tool as output data.
  • the information regarding the conditions is information regarding the type of abrasive material, the type of workpiece, the rotational speed of the polishing tool, the feed rate of the polishing tool, the state of the workpiece before polishing, and/or the state of the workpiece after polishing.
  • the system according to any one of [1] to [20] above; [22] A program executed on a computer device, the computer device being associated with information regarding conditions for polishing a workpiece with a polishing tool, and storing information regarding the wear rate of the abrasive material of the polishing tool under the conditions.
  • a program executed on a computer device the computer device being an input means for accepting input of conditions for polishing a workpiece with a polishing tool, and information regarding conditions for polishing the workpiece as input data
  • a program executed on a computer device which associates the computer device with information regarding conditions for polishing a workpiece with a polishing tool, and calculates the load and/or load applied to the polishing tool when polishing under the conditions.
  • a memory for storing control information for controlling the position of the polishing tool in the contact direction in contact with the workpiece or the amount of protrusion or cutting in the contact direction of the abrasive material of the polishing tool in order to keep the amount of change within a predetermined range.
  • a program that functions as a means, an input means for accepting input of conditions for polishing a workpiece, and a specifying means for specifying control information corresponding to the accepted conditions; [25]
  • a program executed on a computer device which associates the computer device with information regarding conditions for polishing a workpiece with a polishing tool, and controls the amount of cut into the workpiece by the polishing tool within a predetermined range under the conditions.
  • a storage means for storing control information for controlling the position of the polishing tool in the contact direction in contact with the workpiece or the amount of protrusion or cutting in the contact direction of the abrasive material of the polishing tool;
  • a program that functions as an input means for accepting input of conditions at the time of use and as a specifying means for specifying control information corresponding to the accepted conditions;
  • a program executed on a computer device the computer device being an input means for receiving input of conditions for polishing a workpiece with a polishing tool, and information regarding conditions for polishing the workpiece as input data, The position of the polishing tool in the contact direction in contact with the workpiece or the protrusion of the abrasive material of the polishing tool in the contact direction in order to keep the load applied to the polishing tool and/or the amount of change in load within a predetermined range when polishing under the above conditions.
  • a program that functions as a specifying means for specifying control information under accepted conditions using a machine-learned predictive model using control information for controlling the amount or depth of cut as output data [27] A program to be executed on a computer device, the computer device being an input means for accepting input of conditions for polishing a workpiece with a polishing tool, and information regarding conditions for polishing the workpiece as input data, Controlling the position of the polishing tool in the contact direction in contact with the workpiece or the protrusion amount or cutting amount of the abrasive material of the polishing tool in the contact direction in order to keep the cutting amount of the polishing tool into the workpiece within a predetermined range under the above conditions.
  • a program that functions as a specifying means for specifying control information under accepted conditions using a machine-learned predictive model using control information as output data This can be achieved by
  • FIG. 3 is a diagram illustrating an example of machining a workpiece using a polishing tool according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing the structure of a polishing tool according to an embodiment of the present invention.
  • 5 is a flowchart of control information generation processing according to an embodiment of the present invention. It is a figure showing an example of a display screen concerning an embodiment of the present invention. It is a figure showing a material master table concerning an embodiment of the present invention. It is a figure showing the state of the burr which occurred in the work before processing concerning an embodiment of the present invention. It is a figure showing the workpiece after processing concerning an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing the structure of a polishing tool according to an embodiment of the present invention.
  • 5 is a flowchart of control information generation processing according to an embodiment of the present invention. It is a figure showing an example of a display screen concerning an embodiment of the present invention. It is a figure showing a material master table concerning
  • FIG. 3 is a diagram representing an edge quality master table according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a polishing tool master table according to an embodiment of the present invention. It is a figure showing a wear rate master table concerning an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a load and an amount of change in the load according to an embodiment of the present invention. 7 is a flowchart of control information specifying processing according to an embodiment of the present invention.
  • FIG. 3 is a diagram representing a control information master table according to an embodiment of the present invention.
  • the system of the present invention includes at least one computer device.
  • the computer device included in the system of the present invention may be only one computer device or may be a plurality of computer devices.
  • the computer device included in the system of the present invention may be a computer device included in a machine tool.
  • a computer device installed in a machine tool can control the machine tool and process a workpiece (workpiece).
  • the computer device provided in the system of the present invention (hereinafter also referred to as the computer device of the present invention) is not a computer device provided in a machine tool, but a computer capable of communication connection with a computer device provided in a machine tool. It may be a device.
  • the computer device of the present invention includes at least a control section, a RAM, and a storage section, each of which is connected by an internal bus.
  • the control unit includes a CPU (Central Processing Unit) and a ROM (Read Only Memory), and executes a program stored in the storage unit to control the computer device.
  • the control unit includes an internal timer that measures time.
  • RAM Random Access Memory
  • the storage unit is a storage area for storing programs and data. The control unit reads programs and data from the RAM and performs program execution processing.
  • the computer device of the present invention may include a display section and/or an input section.
  • the display section displays various information such as the results of calculations in the control section.
  • the display unit may be a touch panel including a touch sensor. This touch panel functions as an input section. The user can input information and operation instructions by operating the input unit.
  • the computer device of the present invention may include a communication interface.
  • the communication interface can be connected to a communication network wirelessly or by wire, and can send and receive data to and from other computer devices via the communication network. Data received via the communication interface is loaded into the RAM, and arithmetic processing is performed by the control unit.
  • the display section displays information such as a menu for a user to operate the machine tool. By selecting these displayed menus, the user can process the workpiece using the machine tool.
  • control information is specified in the computer device installed in the machine tool, and according to the specified control information, the contact direction of the machine tool (the direction in which the abrasive material of the polishing tool is brought into contact with the workpiece and pushed into the workpiece) is determined. position (direction) can be controlled.
  • the computer device of the present invention may be included in a polishing tool holder, which will be described later.
  • a microcomputer can be used as the computer device of the present invention.
  • control information is specified, and according to the specified control information, the contact direction of the abrasive material (the direction in which the abrasive material of the polishing tool can be brought into contact with the workpiece and pushed into the workpiece) is determined. ) can be controlled.
  • FIG. 1 is a diagram illustrating an example of machining a workpiece using a polishing tool according to an embodiment of the present invention.
  • the polishing tool 1 includes a polishing tool holder 2 and an abrasive material 6 that is detachably held in the polishing tool holder 2.
  • the polishing tool holder 2 includes a large diameter portion 3, a sleeve 4, and a shank 5.
  • the polishing tool holder 2 holds the abrasive material 6 such that the end portion of the abrasive material 6 protrudes from the sleeve 4 .
  • the rotation axis direction becomes the contact direction.
  • the rotation axis direction will be referred to as the Z-axis direction (rotation axis direction).
  • the abrasive material 6 is used to polish the processed surface 8 of the workpiece 7, and is, for example, a brush-like abrasive that is formed into a brush by bundling a plurality of linear abrasive materials as shown in FIG. material, an elastic grindstone, etc. are used.
  • the material of the workpiece 7 may be either metal or resin.
  • the abrasive material 6 can be appropriately selected depending on the material of the workpiece 7.
  • burrs When the workpiece 7 is processed by cutting, grinding, drilling, etc. using a machine tool, metal fuzz called “burrs" may be generated on the processed surface of the workpiece 7.
  • the polishing tool 1 By connecting the polishing tool 1 to a machine tool and rotating the polishing tool 1 clockwise or counterclockwise using the shank 5 as the axis (rotation axis) while bringing the abrasive material 6 into contact with the workpiece 7, the workpiece surface can be polished. 8 is polished, and burrs generated on the processed surface 8 can be removed.
  • the surface to be processed 8 is a flat surface, it is preferable that the abrasive material 6 is brought into contact with the workpiece 7 so that the rotation axis R is perpendicular to the surface to be processed 8.
  • the abrasive material 6 is brought into contact with the workpiece 7 so that the rotation axis R is parallel to the normal line of the surface to be processed 8 at the contact point between the abrasive material 6 and the workpiece. It is preferable.
  • the polishing tool 1 is used with the shank 5 of the polishing tool 1 connected to the spindle of a machine tool. With the shank 5 of the polishing tool 1 connected to the spindle, the polishing tool 1 can be moved along the processing path by moving the spindle along a path set in advance by a program. As a result, the polishing tool 1 can polish the surface 8 of the workpiece 7 .
  • the machining path of the polishing tool 1 by the machine tool can be controlled not only on the XY plane perpendicular to the Z-axis direction, but also the position in the Z-axis direction.
  • the amount (hereinafter referred to as (referred to as the depth of cut) can be set to a predetermined value. For example, when using a polishing tool 1 having an abrasive material 6 with a protrusion of 5 mm, if the depth of cut is 2 mm, the distance between the workpiece surface 8 of the workpiece 7 and the tip of the sleeve 4 of the polishing tool holder 2 will be 3 mm. .
  • the depth of cut is 0 mm, for example, when using the polishing tool 1 having the abrasive material 6 with a protrusion of 5 mm, and when the distance between the processed surface 8 of the workpiece 7 and the tip of the sleeve 4 of the polishing tool holder 2 is 5 mm. (That is, the state in which the tip of the abrasive material 6 is in contact with the surface to be processed 8 of the workpiece 7).
  • the abrasive material 6 When the polishing process is performed, the abrasive material 6 is worn out, and the amount of protrusion of the abrasive material 6 becomes shorter.
  • the position of the polishing tool 1 in the Z-axis direction remains the same, when the protrusion amount of the abrasive material 6 becomes shorter due to the polishing process, the depth of cut becomes smaller.
  • polishing cannot be performed. Therefore, it is necessary to maintain the depth of cut within a predetermined range (or a predetermined value) depending on the state of wear of the abrasive material 6 due to polishing.
  • a method of adjusting this depth of cut within a predetermined range or a method of maintaining this depth of cut within a predetermined value there is a method of changing the position of the polishing tool 1 in the Z-axis direction, or a method of changing the position of the abrasive tool 1 in the Z-axis direction.
  • One example is a method of changing the amount of protrusion.
  • the position of the polishing tool 1 in the Z-axis direction is adjusted by a predetermined distance.
  • One method is to move it to the workpiece 7 side.
  • a polishing tool holder 2 is used which has a function of adjusting the amount of protrusion of the abrasive material 6 when the depth of cut reaches a predetermined value due to polishing.
  • the abrasive material 6 is made to protrude from the sleeve 4 by a predetermined amount.
  • One way to maintain the depth of cut at a predetermined value is to continuously move the position of the polishing tool 1 in the Z-axis direction toward the workpiece 7 in accordance with the rate at which the abrasive material 6 wears and becomes shorter.
  • the abrasive tool holder 2 which has a function of adjusting the protrusion amount of the abrasive material 6, is used to adjust the abrasive material 6 to the speed at which the abrasive material 6 wears and becomes shorter.
  • One method is to make it continuously protrude from the sleeve 4.
  • the load applied to the polishing tool 1 changes depending on the depth of cut. Generally, when the depth of cut is large, the load applied to the polishing tool 1 becomes large. Furthermore, if the depth of cut is small, the load applied to the polishing tool 1 will be small. Therefore, by maintaining the cutting depth of the polishing tool 1 within a predetermined range (or a predetermined value), the load applied to the polishing tool 1 and/or the amount of change in the load can be kept within a predetermined range (or a predetermined value). can be maintained.
  • the amount of change in load means, for example, the amount of change in load per unit time.
  • a known method may be used to measure the load applied to the polishing tool 1 and the amount of change in the load, and there are no particular limitations.
  • a method for measuring the load applied to the polishing tool 1 and the amount of change in the load for example, the method described below is used.
  • FIG. 2 is a schematic diagram showing the structure of a polishing tool according to an embodiment of the present invention.
  • FIG. 2 shows a cross-sectional view of the polishing tool 1 in a plane including the rotation axis R.
  • the abrasive material 6 is provided inside the large diameter portion 3 of the polishing tool holder 2 and the sleeve 4.
  • the end of the abrasive material 6 opposite to the side protruding from the sleeve 4 is held by the abrasive material holder 6a.
  • the abrasive material holder 6a has a through hole 6b, and a feed shaft 3a connected to the large diameter portion 3 passes through the through hole 6b.
  • the feed shaft 3a is coaxial with the shank 5 (rotation axis R).
  • the abrasive material holder 6a is removably held inside the large diameter portion 3 of the polishing tool holder 2 via a mounting portion.
  • the polishing tool 1 includes a load detector D inside the large diameter portion 3.
  • the load detector D can be, for example, a pressure sensor, a vibration detector, or a sonic detector that detects the amplitude of sound generated in the polishing tool.
  • the load detector D is a pressure sensor
  • the load detector D contacts the feed shaft 3a from the rear Z1 and detects the pressure in the Z-axis direction applied to the feed shaft 3a.
  • the polishing tool holder 2 used to detect the load includes a control system including at least a control section including a CPU, a storage section connected to the control section, and a timer.
  • a load detector D is connected to the input side of the control section.
  • a motor is connected to the output side of the control section.
  • the polishing tool holder 2 also includes a motor battery that supplies power to the motor, and a control battery that supplies power to the control unit and the timer. The motor battery and the control battery can be charged from outside by connecting a cable.
  • the control section detects the output (load) from the load detector D and sequentially calculates the amount of load change per predetermined unit time. More specifically, the control unit acquires the load output from the load detector D at regular intervals, and also acquires the amount of load change per unit time from the three loads acquired in order in time series. do.
  • the load can be acquired at intervals of 0.001 seconds to 1 second.
  • the unit time for calculating the amount of change in load is three times the time it takes to obtain the load. Calculation of the amount of change in load is performed at the same interval as the interval at which the load is acquired.
  • a polishing tool 1 is attached to a spindle of a machine tool. By rotating this spindle and rotating the polishing tool 1, the workpiece 7 can be polished.
  • the control unit of the machine tool controls movement of the spindle according to control information of the machining path of the polishing tool 1. By moving the spindle, the polishing tool 1 can be moved along the processing path.
  • the machining path of the polishing tool 1 can be controlled not only on the XY plane but also in the Z-axis direction.
  • the abrasive material 6 is provided inside the large diameter portion 3 of the polishing tool holder 2 and the sleeve 4. As shown in FIGS. The end of the abrasive material 6 opposite to the side protruding from the sleeve 4 is held by the abrasive material holder 6a.
  • the abrasive material holder 6a has a through hole 6b, and a feed shaft 3a connected to the large diameter portion 3 passes through the through hole 6b.
  • the feed shaft 3a is coaxial with the shank 5 (rotation axis R).
  • FIG. 2(a) shows the case where the total length of the abrasive material 6 provided inside the sleeve 4 of the polishing tool is La
  • FIG. 2(b) shows the case where the total length of the abrasive material 6 provided inside the sleeve 4 of the polishing tool is The case of Lb whose total length is shorter than La is shown.
  • a case will be described in which the total length of the abrasive material 6 is changed to the same protrusion amount as when the total length of the abrasive material 6 is La, when the total length of the abrasive material 6 is Lb.
  • the amount of protrusion of the abrasive material 6 is determined from the side of the large diameter portion 3 where the sleeve 4 connects the abrasive material holder 6a with the abrasive material 6 along the feed shaft 3a (rotation axis R) (in both the upward direction and the Z1 direction in FIG. 2). ), or by moving it toward the opening of the sleeve 4, that is, toward the tip of the abrasive material 6 (downward in FIG. 2, also referred to as the Z2 direction) (see FIG. 2).
  • the structure is not particularly limited as long as the abrasive material holder 6a can be moved along the feed shaft 3a, but for example, the feed shaft 3a and the through hole 6b of the abrasive material holder 6a are threaded, A mechanism can be adopted in which the abrasive material holder 6a can be moved along the feed shaft 3a by turning a screw.
  • the amount of protrusion can also be changed manually.
  • a mechanism may be used in which the large diameter portion 3 is provided with a dial, and when the dial is turned, a screw turns, and the abrasive material holder 6a moves along the feed shaft 3a.
  • the polishing tool holder 2 may be provided with a microcomputer including at least a control section and a communication section, and the large diameter section 3 may be provided with a battery and a motor.
  • the amount of protrusion can be changed by a mechanism in which a motor is driven by a battery to rotate a dial and move the abrasive material holder 6a along the feed shaft 3a based on instructions from the control section of the microcomputer. .
  • the abrasive material holder 6a is at the highest position, and if the abrasive materials 6 have the same length, the amount of protrusion is the smallest.
  • the abrasive material holder 6a is moving downward.
  • the amount of protrusion of the abrasive material 6 also varies depending on the length of the worn abrasive material 6. Therefore, when the polishing holder 6a as shown in FIG. 2(b) is moved downward from the uppermost position in FIG.
  • the control is performed by controlling the amount of movement of the polishing holder 6a, that is, the value of (Lb-La) (that is, the amount of movement of the polishing holder 6a).
  • the system according to the first embodiment and the second embodiment adjusts the abrasive material 6 of the polishing tool 1 according to the conditions when polishing the workpiece (hereinafter sometimes referred to as processing conditions). It is possible to determine the wear rate of In the case of a system that specifies the wear rate of the abrasive material 6 of the polishing tool 1 according to such processing conditions, the position of the polishing tool 1 in the Z-axis direction or the Z-axis of the abrasive material 6 is determined based on the identified wear rate.
  • the amount of cut into the work by the polishing tool 1 can be maintained within a predetermined range (or a predetermined value), or the load applied to the polishing tool 1 or the load per unit time can be maintained. It becomes possible to maintain the amount of change within a predetermined range (or a predetermined value).
  • a machine tool to which the polishing tool 1 is attached functions as a computer device that identifies the wear rate of the abrasive material 6 of the polishing tool 1.
  • the machine tool specifies the wear rate of the abrasive material 6 of the polishing tool 1, and further, based on the specified wear rate, the machine tool adjusts the amount of cut into the workpiece 7 of the polishing tool 1 to a predetermined value.
  • the polishing tool 1 is adjusted so that the load applied to the polishing tool 1 or the amount of change in the load per unit time is within a predetermined range (or a predetermined value).
  • the position in the Z-axis direction can be controlled.
  • a computer device different from the machine tool functions as a computer device that specifies the wear rate of the abrasive material 6 of the polishing tool 1.
  • this computer device specifies information regarding the wear rate of the abrasive material 6 of the polishing tool 1, and controls the position of the polishing tool 1 in the Z-axis direction based on the information regarding the identified wear rate.
  • information or control information for controlling the amount of protrusion or cutting in the Z-axis direction of the abrasive material 6, and the generated control information can be transmitted to the machine tool or the polishing tool holder 2.
  • the machine tool controls the position of the polishing tool 1 in the Z-axis direction according to the received control information. Further, in the polishing tool holder 2, the amount of protrusion or the amount of cut in the Z-axis direction of the abrasive material 6 is controlled according to the received control information.
  • the machining conditions are input into the machine tool or a device different from the machine tool, the input machining conditions are sent to the computer device, and the computer device calculates the wear rate based on the received machining conditions.
  • Control information may be generated by specifying information related to
  • This computer device can communicate with multiple machine tools, receive machining conditions from multiple machine tools, and send control information generated based on the received machining conditions to the corresponding machine tool. can do.
  • a computer device different from the machine tool functions as a device that specifies the wear rate of the abrasive material 6 of the polishing tool 1.
  • information regarding the wear rate of the abrasive material 6 of the specified polishing tool 1 may be transmitted to the machine tool.
  • the machine tool uses control information for controlling the position of the polishing tool 1 in the Z-axis direction, or the protrusion amount or cutting depth of the abrasive material 6 in the Z-axis direction, based on the received information regarding the wear rate.
  • control information for controlling the amount, and control the position of the polishing tool 1 in the Z-axis direction, or the protrusion amount or cutting amount of the abrasive material 6 in the Z-axis direction, according to the generated control information. can.
  • the machining conditions are input into the machine tool or a device different from the machine tool, the input machining conditions are sent to the computer device, and the computer device calculates the wear rate based on the received machining conditions. You may also specify information about
  • This computer device is capable of communication connection with multiple machine tools, receives machining conditions from multiple machine tools, and transmits information on the wear rate identified based on the received machining conditions to the corresponding machine tool. can be sent to.
  • the systems according to the third embodiment and the fourth embodiment described later are configured to keep the load applied to the polishing tool 1 during polishing and/or the amount of change in the load within a predetermined range depending on the processing conditions. It is possible to specify control information for controlling the position of the polishing tool 1 in the Z-axis direction or the amount of protrusion or cutting in the Z-axis direction of the abrasive material 6 of the polishing tool 1.
  • the systems according to the third embodiment and the fourth embodiment are capable of controlling the polishing tool 1 in the Z-axis direction in order to keep the cutting amount of the polishing tool 1 into the workpiece within a predetermined range according to the machining conditions. It is possible to specify control information for controlling the position or the amount of protrusion or depth of cut in the Z-axis direction of the abrasive material 6 of the polishing tool 1.
  • the machine tool to which the polishing tool 1 is attached may function as a computer device that specifies control information.
  • the machine tool controls the position of the polishing tool 1 in the Z-axis direction, or the amount of protrusion or cutting in the Z-axis direction of the abrasive material 6 included in the polishing tool 1, according to the specified control information.
  • a computer device different from the machine tool may function as a computer device that specifies control information for the abrasive material 6 of the polishing tool 1.
  • this computer device can transmit the specified control information to the machine tool or polishing tool holder 2.
  • the machine tool controls the position of the polishing tool 1 in the Z-axis direction according to the received control information. Further, in the polishing tool holder 2, the amount of protrusion or the amount of cutting in the Z-axis direction of the abrasive material 6 is controlled according to the received control information.
  • the machining conditions are input into the machine tool or a device different from the machine tool, the input machining conditions are sent to the computer device, and the computer device generates control information based on the received machining conditions. may be generated.
  • This computer device can communicate with multiple machine tools, receive machining conditions from multiple machine tools, and send control information generated based on the received machining conditions to the corresponding machine tool. can do.
  • the system of the first embodiment uses information regarding the wear rate of the abrasive material 6 of the polishing tool 1 under the processing conditions in a computer device in association with information regarding the processing conditions when polishing the workpiece 7 with the polishing tool 1.
  • Information is stored in a master table (wear rate table to be described later), and the wear rate of the abrasive material 6 of the polishing tool 1 is specified by referring to the master table according to the input machining conditions.
  • the information regarding the machining conditions and the information regarding the wear rate stored in this master table may be added using information received from other devices. For example, a workpiece is polished in another device, and information regarding the processing conditions at this time and information regarding the measured wear rate are associated and stored in a master table of the computer device. By doing so, the accuracy of the specified wear rate becomes higher.
  • the system of the second embodiment uses a computer device as input data regarding processing conditions when polishing a workpiece 7, and outputs information regarding the wear rate of the abrasive material 6 of the polishing tool 1 under these processing conditions.
  • the wear rate of the abrasive material 6 under the input machining conditions is specified using a machine-learned predictive model (learning model) as data.
  • learning model machine-learned predictive model
  • information received from another device may be used as training data for this prediction model.
  • information regarding processing conditions is used as input data
  • information regarding the measured wear rate is used as output data.
  • a system uses a computer device to associate control information regarding the processing conditions when polishing the workpiece 7 with the polishing tool 1 and create a master table (control information table, which will be described later). ), and the control information is specified by referring to the master table according to the input processing conditions.
  • the information regarding processing conditions and control information stored in this master table may be added using information received from other devices. For example, when a workpiece is polished by another device, information regarding the processing conditions at this time and the polishing tool 1 are provided so that the load applied to the polishing tool 1 and/or the amount of change in the load is within a predetermined range.
  • Control information when controlling the position of the workpiece 7 in the Z-axis direction or the amount of protrusion or cutting in the Z-axis direction of the abrasive material 6 is associated and stored in the master table of the computer device. For example, when the workpiece 7 is polished by another device, information regarding the machining conditions at this time and the position of the polishing tool 1 on the workpiece in the Z-axis direction so that the depth of cut falls within a predetermined range. Alternatively, control information when controlling the amount of protrusion or depth of cut of the abrasive material 6 in the Z-axis direction is associated and stored in addition to the master table of the computer device. By doing so, the accuracy of the specified control information becomes higher.
  • the system of the fourth embodiment uses information regarding machining conditions when polishing a workpiece 7 as input data in a computer device, and calculates the load applied to the polishing tool 1 and/or the amount of change in the load under these machining conditions.
  • a machine-learned prediction model is used as output data that is control information that allows the depth of cut to be within a predetermined range, or control information that allows the depth of cut to be within a predetermined range. This specifies control information for the abrasive material 6.
  • information received from another device may be used as training data for this prediction model.
  • control information that uses information regarding processing conditions as input data when polishing the workpiece 7 is executed by another device and sets the load applied to the polishing tool 1 and/or the amount of change in the load within a predetermined range;
  • control information that sets the depth of cut of the polishing tool 1 within a predetermined range is used as output data.
  • control information that allows the load applied to the polishing tool 1 and/or the amount of change in the load to be within a predetermined range, or the amount of cut of the polishing tool 1 to be within a predetermined range, depending on the input processing conditions, can be provided. It becomes possible to obtain control information that falls within the range.
  • first embodiment information regarding the wear rate of the abrasive material of the polishing tool under the processing conditions is stored in association with information regarding the processing conditions when polishing the workpiece with the polishing tool, and the workpiece is polished.
  • This invention relates to a system for identifying the wear rate of abrasive material corresponding to the actual machining conditions. Based on the specified wear rate, the system adjusts the load applied to the polishing tool and/or the amount of change in load to be within a predetermined range during polishing under the processing conditions, or adjusts the cutting speed of the polishing tool to the workpiece.
  • Control information is generated for controlling the position of the polishing tool in the contact direction in contact with the workpiece, or the protrusion amount or incision amount of the abrasive material in the contact direction so that the depth of the abrasive material falls within a predetermined range.
  • FIG. 3 is a flowchart of control information generation processing according to the embodiment of the present invention.
  • a computer device installed in a machine tool identifies the wear rate and generates control information.
  • a user inputs various machining conditions via a display unit provided on a machine tool. Any conditions can be input as the processing conditions.
  • the machining conditions to be input may be the conditions for actually polishing the workpiece, or may be hypothetical conditions for estimating the wear rate etc. without actually machining the workpiece.
  • Processing conditions are conditions when polishing a workpiece, and are conditions that can affect the processing of the workpiece and the wear of the abrasive material.
  • processing conditions include the material and physical properties of the workpiece, the type and physical properties of the polishing tool used for processing, the state of the workpiece before processing such as the state of burrs, and the quality of the workpiece after processing.
  • the processing conditions may also include conditions related to the environment in which the workpiece is processed (temperature, humidity, etc.).
  • the input conditions are stored in the storage section of the machine tool. In the following, a case will be described in which information about the workpiece, the state of burrs before processing, and the quality after processing are input as processing conditions.
  • FIG. 4 is a diagram showing an example of the display screen of the display unit according to the embodiment of the present invention.
  • the display screen 50 is configured such that the user can enter information 51 regarding the workpiece, the state of burrs 52, and the quality after processing 53 by selecting numerical values or numerical values for the processing conditions for each condition input by the user. .
  • the input of each condition will be explained below.
  • the input of information 51 regarding the work is accepted by the user's operation on the display unit (step S1).
  • the information regarding the workpiece includes information regarding the hardness and/or tensile strength of the workpiece, and specific cutting resistance. If the hardness value is proportional to the tensile strength value, the tensile strength may be calculated from the hardness, or the hardness may be calculated from the tensile strength, and the input of either information may be accepted. You can. Furthermore, it may be possible to receive input of information regarding the surface properties of the surface of the object to be machined (whether or not it is a material surface, surface roughness, etc.). That is, the information regarding the workpiece includes material properties that represent characteristics based on the quality of the material that constitutes the workpiece.
  • FIG. 5 is a diagram showing a material master table according to an embodiment of the present invention.
  • the material master table 60 is stored in the storage section of the machine tool.
  • the material master table 60 stores hardness 63, tensile strength 64, and specific cutting resistance 65 for each workpiece material 61 in association with a classification code 62.
  • the material 61 of the workpiece is classified into seven series based on the selection criteria for cemented carbide of ISO and JIS-B50431.
  • the hardness 63, the tensile strength 64, and the specific cutting resistance 65 may each be set to values measured by a predetermined measurement method.
  • the material 61 and classification code 62 shown in FIG. 5 may be input (FIG. 4). The user can set conditions by simply inputting the material 61 and classification code 62 along the material master table 60 without inputting the physical properties of the material 61.
  • FIG. 6 is a diagram showing the state of burrs generated on the workpiece before processing according to the embodiment of the present invention.
  • FIG. 6A shows a vertical burr that is a burr that protrudes in the vertical direction of the upper surface of the workpiece.
  • the length of the burr in the horizontal direction on the top surface of the workpiece is called the ⁇ burr thickness,'' and the length of the burr in the vertical direction of the workpiece is called the ⁇ burr height.'' FIG.
  • burrs generated by processing such as cutting and drilling can be classified as either vertical burrs or horizontal burrs.
  • FIG. 7 is a diagram showing a workpiece after processing according to an embodiment of the present invention.
  • FIGS. 7A and 7B are horizontal views of the edge of the workpiece after processing.
  • the edge is the intersection of two surfaces, one parallel to the vertical direction and the other perpendicular to the workpiece. Furthermore, the intersection refers to a ridgeline.
  • FIG. 7(a) shows the state after machining when the workpiece is machined so that it has a gentler slope with respect to the top surface than with the side surface.
  • the workpiece in FIG. 7A is machined so that the top surface quality, which is the length after processing in the horizontal direction of the top surface of the workpiece, is longer than the depth quality, which is the length after processing in the vertical direction of the top surface of the workpiece.
  • FIG. 7(b) shows the state after machining when the workpiece is machined to have a gentler inclination with respect to the side surface than with the top surface. In the workpiece shown in FIG. 7(b), the depth quality is machined longer than the top surface quality.
  • FIG. 8 is a diagram representing an edge quality master table according to an embodiment of the present invention.
  • a dimension 72 is stored in association with an edge quality designation 71.
  • Edge quality designation 71 is, for example, based on the edge where the top surface and side surface of the workpiece intersect, where the angle between the top surface and the side surface is 90°, that is, the edge is a so-called pin angle.
  • the edge quality is defined in the Japanese Industrial Standards (see JIS B0721-2004), but is not limited thereto, and an independently defined edge quality standard may be used.
  • the edge quality master table 70 For example, if the edge quality designation 71 is "minus 2", the dimension 72 should be -0.2 mm or less calculated from the reference point. shows. Similarly, when the edge quality designation 71 is "plus 1", this indicates that the dimension 72 is greater than 0 and less than +0.2 mm calculated from the reference point.
  • the burr height is "plus 2" and the burr thickness is "plus 1”.
  • the top surface quality shown in FIG. 7(a) is -0.4 mm and the depth quality is -0.1 mm, the top surface quality is "minus 2" and the depth quality is "minus 1". becomes.
  • the information regarding the state of the burr input in step S2 is, for example, the burr thickness and burr height of the vertical burr shown in FIG. 6(a) or the horizontal burr shown in FIG. 6(b), and the burr height shown in FIG.
  • This is information representing which dimension 72 of the edge quality master table this corresponds to. That is, the edge quality designation 71 corresponding to the corresponding dimension 72 can be set as the burr state of the edge portion. For example, if the height of the vertical burr shown in FIG. 6(a) is +0.3 mm and the thickness is +0.1 mm, in step S2, the burr height is "plus 2" and the burr thickness is "Plus 1" is input.
  • the size of the burr may be measured automatically using tracing control or a visual sensor, or may be measured manually by the user.
  • the information regarding the quality after processing input in step S3 is, for example, whether the top surface quality or depth quality shown in FIG. 7(a) or FIG. 7(b) is in the edge quality master table shown in FIG.
  • the edge quality designation 71 is used to indicate whether the edge quality corresponds to the dimension 72 of . That is, the edge quality designation 71 corresponding to the corresponding dimension 72 can be set as the burr state of the edge portion.
  • the user performing the processing can directly input the numerical value of the required edge quality, or select one of the edge quality designations 71 by referring to the dimensions 72 stored in the edge quality master table 70.
  • the quality after processing may be specified. By designing in this way, the user can carry out processing only by considering the quality after processing, and can set processing conditions intuitively and efficiently.
  • the maximum size of the burr may be used as information to be input. Further, by inputting measured data, the edge quality may be designed to be automatically selected by referring to the edge quality master table 70.
  • the criteria can be set such that "minus 2" is the lowest and "plus 2" is the highest. At this time, if the burr condition is minus 1, the quality after processing cannot be set to plus 1. That is, it is not possible to increase the quality after processing with respect to the burr state.
  • the processing conditions may include information regarding the polishing tool used for processing.
  • the selection may be made based on the information regarding the work accepted in step S1 or the information regarding the state of the burr accepted in step S2.
  • a polishing tool master table as shown in FIG. 9 can be prepared.
  • a polishing tool diameter 82, a wire type 83, a wire length 84, and a segment number 85 are stored in association with the polishing tool No. 81.
  • the polishing tool diameter 82 represents the diameter of the blade or brush portion of the polishing tool that is used for processing.
  • the wire rod type 83 represents the material of the blade portion and brush portion used to perform processing.
  • the wire length 84 represents the length of the blade portion or brush portion used to perform processing.
  • the number of segments 85 represents the number of brush bundles when the polishing tool has a brush portion.
  • the display section displays information registered in the polishing tool masterable about the plurality of polishing tools 1, such as polishing tool No. 81, polishing tool diameter 82, wire type 83, wire length 84, and/or segment number 85, It is possible to input which of these polishing tools 1 to use.
  • the machine tool receives input of polishing conditions 54 via the display section (step S4).
  • the polishing conditions 54 determine the relative positional relationship and speed between the workpiece and the polishing tool used for processing, including the rotational speed of the workpiece or polishing tool, the feed rate of the workpiece or polishing tool, and conditions such as depth of cut. All of these polishing conditions 54 can be treated as variables, but for example, it is also possible to treat one of the polishing conditions 54, such as the rotational speed of the polishing tool, as a variable and the other conditions as constants.
  • Rotation speed refers to the speed at which a workpiece or polishing tool rotates per unit time, and is also referred to as rotation speed.
  • the feed speed refers to the relative speed in the XY plane between the polishing tool used for machining and the workpiece.
  • the depth of cut refers to the amount by which the tip of the polishing tool is pushed into the surface of the workpiece in one machining process.
  • the control unit of the machine tool refers to the wear rate master table and specifies information regarding the wear rate of the abrasive material corresponding to the accepted machining conditions.
  • the material of the workpiece is "stainless steel”
  • the height of the burr is “plus 2”
  • the thickness of the burr is “plus 2”
  • the top surface quality is “minus 2”
  • the depth quality is "minus 2”.
  • the polishing condition is "4000/min” and is input in steps S1 to S4
  • the wear rate per unit distance is specified as 0.6 mm/mm.
  • the "wear rate per unit distance” is determined by dividing the amount of wear of the abrasive material by the machining distance of the workpiece.
  • the processing distance of the workpiece is the distance that the workpiece has been processed by the polishing tool.
  • the moving distance of the polishing tool on the XY plane becomes the processing distance of the workpiece.
  • the moving distance of the polishing tool on the XY plane becomes the processing distance of the workpiece.
  • FIG. 10 is a diagram representing a wear rate master table according to an embodiment of the present invention.
  • a wear rate 95 is stored in association with a workpiece material 91, a burr condition 92, a post-processing quality 93, and a polishing condition 94.
  • the burr state 92 includes a burr height 92a and a burr thickness 92b.
  • the burr height 92a and the burr thickness 92b are registered using the edge quality designation 71.
  • the post-processing quality 93 includes a top surface quality 93a and a depth quality 93b. Top surface quality 93a and depth quality 93b are also registered under edge quality designation 71.
  • the wear rate 95 is, for example, the length (or amount of wear) of the abrasive material of the polishing tool per unit distance, and is based on the material 91 of a given workpiece, the state of burrs 92, the quality after processing 93, and the polishing Under condition 94, the wear rate of the abrasive material when a workpiece was actually polished by rotating the polishing tool was measured and stored in advance.
  • step S5 the wear rate 95 corresponding to the machining conditions input in steps S1 to S4 is specified.
  • the wear rate 95 is defined as the length (or amount of wear) of the abrasive material of the polishing tool per unit time for a given workpiece material 91, burr condition 92, post-processing quality 93, and polishing conditions 94.
  • the wear rate of the abrasive material may be measured and stored in advance when the workpiece is actually polished by rotating the polishing tool.
  • the load applied to the polishing tool and/or the amount of change in load can be maintained within a predetermined range (or a predetermined value), or the depth of cut of the polishing tool can be maintained within a predetermined range.
  • the position of the polishing tool in the Z-axis direction or the amount of protrusion or depth of cut in the Z-axis direction of the abrasive material (that is, the value of (Lb-La)) is controlled so that it can be maintained within the range (predetermined value). Control information for this purpose is generated (step S6).
  • FIG. 11 is a diagram showing an example of the load and the amount of change in the load according to the embodiment of the present invention.
  • the horizontal axis is time
  • the vertical axis is the load amount of the abrasive material 6 applied to the polishing tool.
  • Polishing is started with the depth of cut input by the user as processing conditions.
  • the depth of cut at the start of polishing becomes the upper limit of the predetermined range of depth of cut.
  • the predetermined range of the depth of cut may be automatically set based on the upper limit of the depth of cut, or the user may input not only the upper limit but also the lower limit of the depth of cut as machining conditions. Good too.
  • the lower limit may be the value obtained by subtracting a predetermined value from the upper limit. It may be calculated by multiplying by a smaller coefficient.
  • the load applied to the polishing tool 1 is at the upper limit value.
  • the position of the polishing tool 1 in the Z-axis direction is constant and the amount of protrusion of the abrasive material 6 in the Z-axis direction is constant, as the processing of the workpiece 7 by the polishing tool 1 progresses, the abrasive material 6 wears out.
  • the depth of cut becomes smaller.
  • the load applied to the polishing tool 1 also reaches the lower limit value.
  • the position of the polishing tool 1 in the Z-axis direction may be controlled to approach the workpiece 7 while continuing polishing, or the abrasive material 6 may be continuously moved closer to the workpiece 7.
  • the amount of protrusion in the Z-axis direction may be large, the amount of cut increases, and the amount of load applied to the polishing tool 1 increases accordingly.
  • the depth of cut increases and reaches the upper limit value of the depth of cut, the load on the polishing tool 1 also reaches the upper limit value.
  • the depth of cut is reduced by stopping the movement of the polishing tool 1 in the Z-axis direction or by stopping the increase in the protrusion amount of the abrasive material 6 in the Z-axis direction. changes from increasing to decreasing. By repeating these controls, the depth of cut, the load applied to the polishing tool 1, and/or the amount of change in the load can be maintained within a predetermined range.
  • step S6 based on the identified wear rate, for example, by repeating the control described above, the depth of cut can be maintained within a predetermined range, or the load and the amount of change in load can be maintained within a predetermined range.
  • Control information regarding the position of the polishing tool 1 in the Z-axis direction, or the amount of protrusion or depth of cut in the Z-axis direction of the abrasive material 6, which can be maintained within the range of is generated.
  • the machine tool processes the workpiece according to the control information.
  • information regarding the wear rate is determined by referring to the wear rate table when the control unit of the machine tool receives input of the material of the workpiece, the state of burrs, the quality after machining, and the polishing conditions.
  • the memory unit of a machine tool may store information regarding the material of the workpiece, the state of burrs, the quality after machining, the polishing conditions, and the wear rate.
  • a predetermined relational expression is stored, and the control unit of the machine tool, based on the received input workpiece material, burr condition, post-processing quality, and polishing conditions, and the stored relational expression, It may also be an embodiment in which information regarding the wear rate is specified.
  • the input reception in steps S1 to S4 was explained as being received via the display section of the machine tool, but as described above, the input reception in steps S1 to S4 is accepted via the display section of the machine tool. It can be input. In addition to performing the input operation at a worksite where the machine tool is located, the input operation can also be performed at a location other than the worksite (for example, the location of the orderer who requests processing to the worksite where the machine tool is located). Further, the input reception in steps S1 to S4 may be performed by reading data.
  • the second embodiment uses a machine-learned predictive model with input data as information regarding the processing conditions when polishing a workpiece and output data as information regarding the wear rate of the abrasive material of the polishing tool under the conditions.
  • the present invention relates to a system for identifying information regarding the wear rate of an abrasive material under actual processing conditions. Based on the specified wear rate, the system adjusts the load applied to the polishing tool and/or the amount of change in load to be within a predetermined range during polishing under the processing conditions, or adjusts the cutting speed of the polishing tool to the workpiece.
  • Control information is generated for controlling the position of the polishing tool in the contact direction in contact with the work, or the amount of protrusion or incision of the abrasive material in the contact direction so that the depth of the abrasive material falls within a predetermined range.
  • the storage unit of the machine tool has input data as information regarding machining conditions when polishing a workpiece, and output data as information regarding the wear rate of the abrasive material of the polishing tool under the machining conditions.
  • the machine learned prediction model is stored.
  • Machine learning algorithms are not particularly limited, and known ones can be used, such as linear regression, multiple regression analysis, support vector machines, decision trees, random forests, and deep learning using multilayer neural networks. can be mentioned.
  • a multilayer neural network has an input layer, an output layer, and multiple intermediate layers. Weights are set for edges connecting nodes in each layer. A weight corresponding to each input to the node is set to the edge, and each input to the node is multiplied by the corresponding weight, and the value obtained by multiplying by these weights and the bias are added. The values obtained by the addition are subjected to non-linear transformation using an activation function to calculate an activation value. The calculated activation value becomes the input value passed to the next layer node.
  • the number of intermediate layers can be designed as appropriate.
  • the weights are optimized using the above training data.
  • the information regarding the processing conditions when polishing the workpiece as the input data includes, for example, the material of the workpiece, the condition of the burr (burr height, burr thickness), the quality after processing (top surface quality, depth quality), Information regarding the polishing tool and/or polishing conditions are included.
  • the output data information regarding the wear rate of the abrasive material when a workpiece is actually polished under these processing conditions is stored.
  • Information regarding the wear rate of the abrasive material can be specified in accordance with the flowchart of the control information specifying process shown in FIG. 3, as in the first embodiment.
  • the machine tool receives input of information 51 regarding the workpiece via the display section (step S1).
  • the machine tool receives input of information regarding the burr state 52 of the work before machining via the display unit (step S2), and further receives input of information regarding the quality 53 after machining (step S3).
  • the machine tool receives input of polishing conditions 54 via the display section (step S4).
  • the control unit of the machine tool uses the information regarding the machining conditions for polishing the workpiece as input data, and selects the abrasive material of the polishing tool under the machining conditions.
  • Information regarding the wear rate of the abrasive material corresponding to the accepted machining conditions is specified using a machine-learned predictive model using information regarding the wear rate of the abrasive material as output data (step S5).
  • the load applied to the polishing tool and/or the amount of change in the load is adjusted to be within a predetermined range (or the amount of cut of the polishing tool is adjusted based on the information regarding the identified wear rate).
  • Step S6 Generate control information for controlling the position of the polishing tool in the Z-axis direction or the protrusion amount or depth of cut (that is, the value of (Lb-La)) in the Z-axis direction of the abrasive material (so that it falls within a predetermined range) (Step S6).
  • the input reception in steps S1 to S4 was explained as being received via the display section of the machine tool, but similarly to the first embodiment, communication with the machine tool is performed by wire or wirelessly.
  • the input may be made on other devices where possible. Further, the input reception in steps S1 to S4 may be performed by reading data.
  • a machine tool was used as an example of a computer device for specifying information regarding the wear rate of the present invention.
  • the determination of information regarding the wear rate may be performed in a computer device. Further, the wear rate may be determined only by the machine tool, or may be determined by a system in which the machine tool and other devices cooperate.
  • the step of controlling the position of the polishing tool in the Z-axis direction or the protrusion amount or cutting amount of the abrasive material in the Z-axis direction is performed based on the control information.
  • the explanation has been given as an example of execution in the control section of the machine tool, it may be controlled in the control section of a microcomputer provided in a polishing tool holder connected to the machine tool.
  • the process of generating control information based on the identified information regarding the wear rate is executed in the server device and transmitted to the control unit of the machine tool.
  • An embodiment may also be adopted in which the information regarding the wear rate obtained is transmitted to the control section of the machine tool, and the control section of the machine tool executes the step of generating control information.
  • the step of controlling the position of the polishing tool in the Z-axis direction or the amount of protrusion or depth of cut in the Z-axis direction of the abrasive material based on the control information generated by the server device or the control section of the machine tool is performed by the control section of the machine tool.
  • the process may be executed in a microcomputer control section provided in a polishing tool holder connected to a machine tool. In this case, it is assumed that the generated control information is transmitted to the control unit of the machine tool or microcomputer that executes the control by communication means as necessary.
  • the program is executed on another computer device that can communicate with the machine tool and the server device, input each condition in steps S1 to S4 in the control information specifying process shown in FIG. It is conceivable that the step of accepting the request is executed in another computer device, and the step of specifying the information regarding the wear rate in step S5 is executed in the server device. After identifying information regarding the wear rate in the server device, a step of generating control information based on the identified information regarding the wear rate is executed in the server device and transmitted to the control unit of the machine tool via the communication unit.
  • the method is executed in the server device and transmitted to another computer device via the communication section, and the information regarding the identified wear rate is sent to the control section of the machine tool or other computer device via the communication section.
  • the process of generating the control information may be performed in a control unit of a machine tool or another computer device.
  • the step of controlling the position of the polishing tool in the Z-axis direction or the protrusion amount or cutting amount of the abrasive material in the Z-axis direction based on control information generated in the control unit of the server device, machine tool, or other computer device The process may be executed in a control unit of a machine tool, or may be executed in a control unit of a microcomputer provided in a polishing tool holder connected to a machine tool. In this case, it is assumed that the generated control information is transmitted to the control unit of the machine tool or microcomputer that executes the control by communication means as necessary.
  • the load applied to the polishing tool and/or the amount of change in the load when polishing under the processing conditions is set within a predetermined range in association with information regarding processing conditions when polishing a workpiece with a polishing tool.
  • control information for controlling the position of the polishing tool in the contact direction in contact with the workpiece or the amount of protrusion or cutting in the contact direction of the abrasive material of the polishing tool, and the processing conditions when polishing the workpiece Relating to a system that identifies corresponding control information.
  • the third embodiment provides a polishing tool that is associated with information regarding processing conditions when polishing a workpiece with a polishing tool, and makes the depth of cut of the polishing tool into the workpiece within a predetermined range under the processing conditions. storing control information for controlling the position in the contact direction of contact with the workpiece or the protrusion amount of the abrasive material of the polishing tool in the contact direction, and specifying control information corresponding to processing conditions when polishing the workpiece; Regarding the system.
  • control information is specified in a computer device installed in a machine tool.
  • the descriptions of the material master table in FIG. 5, the edge quality master table in FIG. 8, and the polishing tool master table in FIG. 9 in the first embodiment apply similarly to the third embodiment. Further, the description of the state of burrs formed on the workpiece before machining in FIG. 6 and the description of the workpiece after machining in FIG. 7 in the first embodiment is similarly applied to the third embodiment. Furthermore, the description regarding the display screen in FIG. 4 in the first embodiment is similarly applied to the third embodiment.
  • Specifying the control information can be performed according to the flowchart of the control information specifying process shown in FIG. 12.
  • the machine tool receives input of information 101 regarding the workpiece (step S11).
  • the machine tool receives input of information regarding the burr state 102 of the work before machining via the display section (step S12), and receives input of information regarding the quality 103 after machining (step S13).
  • the machine tool receives input of polishing conditions 104 via the display section (step S14). Any processing conditions are input in steps S11 to S14.
  • the machining conditions to be input may be conditions for actually polishing the workpiece, or may be hypothetical conditions for the purpose of predicting control information without actually machining the workpiece.
  • control section of the machine tool refers to the control information master table to identify control information corresponding to the received machining conditions (step S15).
  • FIG. 13 is a diagram showing a control information master table according to an embodiment of the present invention.
  • the control information master table 100 stores, for example, a wear rate 105 in association with a workpiece material 101, a burr state 102, a post-processing quality 103, and a polishing condition 104.
  • the burr state 102 includes a burr height 102a and a burr thickness 102b.
  • the burr height 102a and the burr thickness 102b are registered using the edge quality designation 71.
  • the post-processing quality 103 includes a top surface quality 103a and a depth quality 103b. Top surface quality 103a and depth quality 103b are also registered under edge quality designation 71.
  • elements of the polishing conditions 54 that affect the wear rate are registered.
  • the control information 105 is information for setting the load applied to the polishing tool and/or the amount of change in the load within a predetermined range (or a predetermined value), or the amount of cut of the polishing tool within a predetermined range (or a predetermined value). This is information for controlling the position of the polishing tool in the Z-axis direction or the amount of protrusion or cutting in the Z-axis direction of the abrasive material of the polishing tool (that is, the value of (Lb-La)).
  • the control information 105 includes the load and load applied to the polishing tool when the polishing tool is actually rotated and the workpiece is polished under a predetermined workpiece material 101, burr condition 102, post-processing quality 103, and polishing conditions 104.
  • control information 105 corresponding to the machining conditions input in steps S11 to S14 is specified.
  • control information 105 includes the position of the polishing tool in the Z-axis direction or the value (Lb-La) of the abrasive material of the polishing tool in the Z-axis direction until a predetermined time has elapsed from the start of polishing. After a predetermined first time has elapsed without changing the position of the polishing tool in the Z-axis direction or the value of (Lb-La) in the Z-axis direction of the abrasive material possessed by the polishing tool, at a predetermined speed.
  • control is repeated such as stopping the change in the position of the polishing tool in the Z-axis direction or the value of (Lb-La) in the Z-axis direction of the abrasive material possessed by the polishing tool. It is possible to carry out the execution.
  • the control unit of the machine tool controls the position of the polishing tool in the Z-axis direction, or the amount of protrusion or cutting depth of the abrasive material in the Z-axis direction.
  • a machine tool processes a workpiece at a controlled position, protrusion amount, or depth of cut.
  • the input reception in steps S11 to S14 has been described as being received via the display section of the machine tool, but it is also possible to input the input from another device that can communicate with the machine tool by wire or wirelessly. can do. Further, the input reception in steps S11 to S14 may be performed by reading data.
  • a fourth embodiment provides information regarding processing conditions when polishing a workpiece, and a polishing tool for keeping the load applied to the polishing tool and/or the amount of change in the load within a predetermined range when polishing under the processing conditions.
  • a machine-learned predictive model as training data
  • the position in the contact direction of contact with the workpiece, or the control information for controlling the protrusion amount or depth of cut in the contact direction of the abrasive material of the polishing tool is used to calculate the actual
  • the present invention relates to a system that specifies control information in processing conditions.
  • the fourth embodiment provides information regarding processing conditions when polishing a workpiece, and information regarding the contact between the polishing tool and the workpiece in order to make the amount of cut into the workpiece by the polishing tool within a predetermined range under the processing conditions.
  • Control information for controlling the position in the contact direction or the amount of protrusion or depth of cut in the contact direction of the abrasive material of the polishing tool is used as training data to generate control information under actual machining conditions using a machine-learned predictive model. , regarding the system.
  • control information is specified in a computer device installed in a machine tool.
  • the storage unit of the machine tool has input data information regarding processing conditions when polishing a workpiece, and when the workpiece is polished under the processing conditions, the load and/or load applied to the polishing tool and/or Or the position of the polishing tool in the Z-axis direction to keep the amount of change in load within a predetermined range, or the control information for controlling the amount of protrusion or depth of cut in the Z-axis direction of the abrasive material of the polishing tool.
  • the machine learned prediction model is stored as
  • the storage unit of the machine tool has input data information regarding processing conditions when polishing a workpiece, and when the workpiece is polished under the processing conditions, the depth of cut of the polishing tool is determined.
  • the model is memorized.
  • Machine learning algorithms are not particularly limited, and known ones can be used, such as linear regression, multiple regression analysis, support vector machines, decision trees, random forests, and deep learning using multilayer neural networks. can be mentioned.
  • a multilayer neural network has an input layer, an output layer, and multiple intermediate layers. Weights are set for edges connecting nodes in each layer. A weight corresponding to each input to the node is set to the edge, and each input to the node is multiplied by the corresponding weight, and the value obtained by multiplying by these weights and the bias are added. The values obtained by the addition are subjected to non-linear transformation using an activation function to calculate an activation value. The calculated activation value becomes the input value passed to the next layer node.
  • the number of intermediate layers can be designed as appropriate.
  • the weights are optimized using the above training data.
  • the information regarding the processing conditions when polishing the workpiece as the input data includes, for example, the material of the workpiece, the condition of the burr (burr height, burr thickness), the quality after processing (top surface quality, depth quality), Information regarding the polishing tool and/or polishing conditions are included.
  • the output data includes the upper or lower limit of the load applied to the polishing tool (the upper or lower limit of the amount of change in load) when actually polishing a workpiece under these processing conditions, and the Z-axis direction of the polishing tool. Control information on the position, or the amount of protrusion or depth of cut in the Z-axis direction of the abrasive material of the polishing tool is stored.
  • the output data may include the upper limit or lower limit of the depth of cut of the polishing tool, the position of the polishing tool in the Z-axis direction, or the Z of the abrasive material possessed by the polishing tool when the workpiece is actually polished under these processing conditions. Control information on the amount of protrusion or the amount of cut in the axial direction is stored.
  • Information regarding the wear rate of the abrasive material can be specified in accordance with the flowchart of the control information specifying process shown in FIG. 12, similarly to the third embodiment.
  • the machine tool receives input of information 101 regarding the workpiece via the display section (step S11).
  • the machine tool receives input of information regarding the burr state 102 of the work before machining via the display section (step S12), and receives input of information regarding the quality 103 after machining (step S13).
  • the machine tool receives input of polishing conditions 104 via the display section (step S14).
  • the control unit of the machine tool uses the information regarding the machining conditions for polishing the workpiece as input data, and selects the abrasive material of the polishing tool under the machining conditions.
  • Control information corresponding to the received machining conditions is specified using a machine-learned predictive model using information regarding the wear rate as output data (step S15).
  • the polishing tool is adjusted in the Z-axis direction so that the load applied to the polishing tool and/or the amount of change in the load is within a predetermined range (or so that the cutting depth of the polishing tool is within a predetermined range).
  • Control information for controlling the position or the amount of protrusion or depth of cut in the Z-axis direction of the abrasive material that is, the value of (Lb-La) is generated.
  • the control unit of the machine tool controls the position of the polishing tool in the Z-axis direction, or the amount of protrusion or cutting depth of the abrasive material in the Z-axis direction.
  • a machine tool processes a workpiece at a controlled position, protrusion amount, or depth of cut.
  • the training data of the predictive model stored in the storage unit of the machine tool may include information on the machining time from the start of machining and information on the machining path associated with the machining time. In this case, it becomes possible to more accurately specify information regarding the wear rate when a predetermined period of time has elapsed from the start of machining.
  • the input reception in steps S11 to S14 has been described as being received via the display section of the machine tool, but similarly to the first embodiment, communication with the machine tool is made by wire or wirelessly.
  • the input may be made on other devices where possible. Alternatively, it may be configured to accept input without having a specific UI.
  • steps S11 to S14 may be performed by inputting numerical values, selecting and inputting from a menu, or accepting input by reading data.
  • a machine tool was explained as an example of a device that executes a program for specifying information regarding the wear rate of the present invention, but it is possible to communicate with a machine tool by wire or wirelessly.
  • the program may also be executed on other devices.
  • the program for specifying information regarding the wear rate may be executed by the machine tool alone, or may be executed in a system that cooperates with other devices that can communicate with the machine tool by wire or wirelessly. .
  • the step of controlling the position of the polishing tool in the Z-axis direction or the protrusion amount or cutting amount of the abrasive material in the Z-axis direction is performed based on the control information.
  • the explanation has been given as an example of execution in the control section of the machine tool, it may be controlled in the control section of a microcomputer that includes at least a control section and a communication section provided in a polishing tool holder connected to the machine tool.
  • a machine tool executes a program in cooperation with other devices
  • the machine tool executes the step of accepting input of each condition in steps S11 to S14 in the control information specifying process of FIG. 12, and the step of specifying the control information in step S15. It is conceivable to execute this on a server device.
  • the control information is sent to the control unit of the machine tool, or to the control unit of the microcomputer provided in the polishing tool holder connected to the machine tool. It is also possible to adopt a mode in which the
  • the step of controlling the position of the polishing tool in the Z-axis direction or the protrusion amount or cutting amount of the abrasive material in the Z-axis direction may be performed in the control section of the machine tool, and may be performed in the control section of the machine tool, and may be performed in the polishing tool holder connected to the machine tool. It may be executed in a control unit of a microcomputer provided.
  • polishing tool 1 polishing tool, 2 polishing tool holder, 3 large diameter section, 3a feed shaft, 4 sleeve, 5 shank, 6 abrasive material, 6a abrasive material holder, 6b through hole, 7 workpiece, 8 workpiece surface, 50 display screen, 51 information about the workpiece, 52 burr condition, 53 Quality after processing, 54 Polishing conditions, 60 Material master table, 70 Edge quality master table, 80 Polishing tool master table, 90 Wear rate table, 100 Control information table

Abstract

The purpose of the present invention is to provide a system and a program for enabling workpiece processing precision to be maintained even if a grinding material is worn down. A system comprising at least one computer device, the system also comprising: a storage means that stores information relating to the wear speed of a grinding material provided to a polishing tool under a condition in which a workpiece is being polished by the polishing tool, in association with information relating to the aforementioned condition; an input means that accepts input of a condition under which the workpiece is being polished; and a specifying means that specifies information relating to the wear speed of the grinding material, the wear speed corresponding to the accepted condition.

Description

システム及びプログラムSystem and program
 本発明は、砥材が摩耗しても、ワークの加工精度を維持することを可能とするためのシステム及びプログラムに関する。 The present invention relates to a system and a program that make it possible to maintain the machining accuracy of a workpiece even if the abrasive material wears out.
 工作機械により被加工物であるワークに対して切削、穴あけ等の加工をした際に、ワークの加工面に生じる「バリ」と呼ばれる金属の毛羽が生じることがある。このバリをとる加工(以下、バリ取りという)、又は、バリの生じた角部を削る加工(以下、面取りという)を行うことが知られている。 When a machine tool performs processing such as cutting or drilling on a workpiece, metal fuzz called "burr" may occur on the machined surface of the workpiece. It is known to perform a process of removing the burr (hereinafter referred to as deburring) or a process of cutting the corner where the burr is generated (hereinafter referred to as chamfering).
 これらの加工は、手作業で、あるいは、数値制御(NC)加工用の工作機械を用いて行われる。工作機械を用いた加工においては、NCプログラム(NCデータともいう)を利用し、工作機械に対して作業者等が直接データを入力する、あるいは、CAD(Computer Aided Design)ソフトにより設計したワークの形状データを用いて、CAM(Computer Aided Manufacturing)ソフトにより、工作機械に取り付けられた工具の経路を特定するなどの方法がとられている(例えば、特許文献1)。 These processes are performed manually or using a machine tool for numerical control (NC) processing. In machining using a machine tool, an NC program (also referred to as NC data) is used to input data directly into the machine tool by a worker, or a workpiece designed using CAD (Computer Aided Design) software is used. A method has been adopted in which shape data is used to specify the path of a tool attached to a machine tool using CAM (Computer Aided Manufacturing) software (for example, Patent Document 1).
 ところで、工作機械を用いてバリ取りや面取り等の加工を行うと、工作機械に取り付けられた研磨具の砥材は、徐々に摩耗していく。砥材の摩耗が進むと、研磨具のワークへの切込量が低下して、ワークの加工精度を維持することが難しくなる。 By the way, when processing such as deburring or chamfering is performed using a machine tool, the abrasive material of the polishing tool attached to the machine tool gradually wears out. As the abrasive wear progresses, the amount of cut into the workpiece by the polishing tool decreases, making it difficult to maintain machining accuracy of the workpiece.
特開2016-150428号公報Japanese Patent Application Publication No. 2016-150428
 本発明は、砥材が摩耗しても、ワークの加工精度を維持することを可能とするためのシステム及びプログラムを提供することを目的とする。 An object of the present invention is to provide a system and a program that make it possible to maintain the machining accuracy of a workpiece even if the abrasive material wears out.
 本発明の目的は、
[1]少なくとも1のコンピュータ装置を備えるシステムであって、研磨具によりワークを研磨する際の条件に関する情報と関連付けて、前記条件における研磨具の有する砥材の摩耗速度に関する情報を記憶する記憶手段と、ワークを研磨する際の条件の入力を受け付ける入力手段と、受け付けた条件に対応する砥材の摩耗速度に関する情報を特定する特定手段とを備える、システム;
[2]少なくとも1のコンピュータ装置を備えるシステムであって、研磨具によりワークを研磨する際の条件の入力を受け付ける入力手段と、ワークを研磨する際の条件に関する情報を入力データとし、前記条件における研磨具の有する砥材の摩耗速度に関する情報を出力データとして機械学習された予測モデルを用いて、受け付けた条件における砥材の摩耗速度に関する情報を特定する特定手段とを備える、システム;
[3]特定した摩耗速度に関する情報をもとに、前記条件において研磨した際に研磨具にかかる負荷及び/又は負荷の変化量が所定の範囲となるように、研磨具のワークと接触する接触方向の位置又は砥材の接触方向の突出量若しくは切込量を制御するための制御情報を生成する生成手段とを備える、前記[1]又は[2]に記載のシステム;
[4]生成した制御情報をもとに、研磨具の接触方向の位置又は砥材の接触方向の突出量若しくは切込量を制御する制御手段とを備える、前記[3]に記載のシステム;
[5]生成した制御情報を、前記1のコンピュータ装置とは異なる他のコンピュータ装置に送信する送信手段とを備える、前記[3]又は[4]に記載のシステム;
[6]特定した摩耗速度に関する情報をもとに、研磨具のワークへの切込量が所定の範囲となるように、研磨具のワークと接触する接触方向の位置又は砥材の接触方向の突出量若しくは切込量を制御するための制御情報を生成する生成手段とを備える、前記[1]又は[2]に記載のシステム;
[7]生成した制御情報をもとに、研磨具の接触方向の位置又は砥材の接触方向の突出量若しくは切込量を制御する制御手段とを備える、前記[6]に記載のシステム;
[8]生成した制御情報を、前記1のコンピュータ装置とは異なる他のコンピュータ装置に送信する送信手段とを備える、前記[6]又は[7]に記載のシステム;
[9]前記1のコンピュータ装置とは異なる他の装置において研磨具によりワークを研磨した際の条件に関する情報、及び、前記条件における研磨具の有する砥材の摩耗速度に関する情報を受け付ける受付手段とを備え、記憶手段が、受け付けた条件に関する情報と関連付けて、受け付けた砥材の摩耗速度に関する情報を記憶する、前記[1]及び[3]~[8]のいずれかに記載のシステム;
[10]前記1のコンピュータ装置とは異なる他の装置において研磨具によりワークを研磨した際の条件に関する情報、及び、前記条件における研磨具の有する砥材の摩耗速度に関する情報を受け付ける情報受付手段とを備え、予測モデルが、受け付けた条件に関する情報を入力データとし、受け付けた砥材の摩耗速度に関する情報を出力データとして機械学習したものである、前記[2]~[8]のいずれかに記載のシステム;
[11]少なくとも1のコンピュータ装置を備えるシステムであって、研磨具によりワークを研磨する際の条件に関する情報と関連付けて、前記条件において研磨した際に研磨具にかかる負荷及び/又は負荷の変化量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報を記憶する記憶手段と、ワークを研磨する際の条件の入力を受け付ける入力手段と、受け付けた条件に対応する制御情報を特定する特定手段とを備える、システム;
[12]少なくとも1のコンピュータ装置を備えるシステムであって、研磨具によりワークを研磨する際の条件に関する情報と関連付けて、前記条件において研磨具のワークへの切込量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報を記憶する記憶手段と、ワークを研磨する際の条件の入力を受け付ける入力手段と、受け付けた条件に対応する制御情報を特定する特定手段とを備える、システム;
[13]少なくとも1のコンピュータ装置を備えるシステムであって、研磨具によりワークを研磨する際の条件の入力を受け付ける入力手段と、ワークを研磨する際の条件に関する情報を入力データとし、前記条件において研磨した際に研磨具にかかる負荷及び/又は負荷の変化量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報を出力データとして機械学習された予測モデルを用いて、受け付けた条件における制御情報を特定する特定手段とを備える、システム;
[14]少なくとも1のコンピュータ装置を備えるシステムであって、研磨具によりワークを研磨する際の条件の入力を受け付ける入力手段と、ワークを研磨する際の条件に関する情報を入力データとし、前記条件において研磨具のワークへの切込量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報を出力データとして機械学習された予測モデルを用いて、受け付けた条件における制御情報を特定する特定手段とを備える、システム;
[15]特定した制御情報をもとに、研磨具のワークと接触する接触方向の位置又は砥材の接触方向の突出量若しくは切込量を制御する制御手段とを備える、前記[11]~[14]のいずれかに記載のシステム;
[16]特定した制御情報を、前記1のコンピュータ装置とは異なる他のコンピュータ装置に送信する送信手段とを備える、前記[11]~[15]のいずれかに記載のシステム;
[17]前記1のコンピュータ装置とは異なる他の装置において研磨具によりワークを研磨した際の条件に関する情報、及び、前記条件において研磨した際に研磨具にかかる負荷及び/又は負荷の変化量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量に関する情報を受け付ける情報受付手段とを備え、記憶手段が、受け付けた条件に関する情報と関連付けて、受け付けた研磨具の接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量に関する情報を記憶する、前記[11]、[15]及び[16]のいずれかに記載のシステム;
[18]前記1のコンピュータ装置とは異なる他の装置において研磨具によりワークを研磨した際の条件に関する情報、及び、前記条件において研磨した際に研磨具にかかる負荷及び/又は負荷の変化量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量に関する情報を受け付ける情報受付手段とを備え、予測モデルが、受け付けた条件に関する情報を入力データとし、受け付けた研磨具の接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量に関する情報を出力データとして機械学習したものである、前記[12]、[15]及び[16]のいずれかに記載のシステム;
[19]前記1のコンピュータ装置とは異なる他の装置において研磨具によりワークを研磨した際の条件に関する情報、及び、前記条件において研磨具のワークへの切込量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量に関する情報を受け付ける情報受付手段とを備え、記憶手段が、受け付けた条件に関する情報と関連付けて、受け付けた研磨具の接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量に関する情報を記憶する、前記[13]、[15]及び[16]のいずれかに記載のシステム;
[20]前記1のコンピュータ装置とは異なる他の装置において研磨具によりワークを研磨した際の条件に関する情報、及び、前記条件において研磨具のワークへの切込量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量に関する情報を受け付ける情報受付手段とを備え、予測モデルが、受け付けた条件に関する情報を入力データとし、受け付けた研磨具の接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量に関する情報を出力データとして機械学習したものである、[14]~[16]のいずれかに記載のシステム;
[21]条件に関する情報が、砥材の種類、ワークの種類、研磨具の回転速度、研磨具の送り速度、研磨前のワークの状態、及び/又は、研磨後のワークの状態に関する情報である、前記[1]~[20]のいずれかに記載のシステム;
[22]コンピュータ装置において実行されるプログラムであって、コンピュータ装置を、研磨具によりワークを研磨する際の条件に関する情報と関連付けて、前記条件における研磨具の有する砥材の摩耗速度に関する情報を記憶する記憶手段と、ワークを研磨する際の条件の入力を受け付ける入力手段と、受け付けた条件に対応する砥材の摩耗速度に関する情報を特定する特定手段として機能させる、プログラム;
[23]コンピュータ装置において実行されるプログラムであって、コンピュータ装置を、研磨具によりワークを研磨する際の条件の入力を受け付ける入力手段と、ワークを研磨する際の条件に関する情報を入力データとし、前記条件における研磨具の有する砥材の摩耗速度に関する情報を出力データとして機械学習された予測モデルを用いて、受け付けた条件における砥材の摩耗速度に関する情報を特定する特定手段として機能させる、プログラム;
[24]コンピュータ装置において実行されるプログラムであって、コンピュータ装置を、研磨具によりワークを研磨する際の条件に関する情報と関連付けて、前記条件において研磨した際に研磨具にかかる負荷及び/又は負荷の変化量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報を記憶する記憶手段と、ワークを研磨する際の条件の入力を受け付ける入力手段と、受け付けた条件に対応する制御情報を特定する特定手段として機能させる、プログラム;
[25]コンピュータ装置において実行されるプログラムであって、コンピュータ装置を、研磨具によりワークを研磨する際の条件に関する情報と関連付けて、前記条件において研磨具のワークへの切込量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報を記憶する記憶手段と、ワークを研磨する際の条件の入力を受け付ける入力手段と、受け付けた条件に対応する制御情報を特定する特定手段として機能させる、プログラム;
[26]コンピュータ装置において実行されるプログラムであって、コンピュータ装置を、研磨具によりワークを研磨する際の条件の入力を受け付ける入力手段と、ワークを研磨する際の条件に関する情報を入力データとし、前記条件において研磨した際に研磨具にかかる負荷及び/又は負荷の変化量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報を出力データとして機械学習された予測モデルを用いて、受け付けた条件における制御情報を特定する特定手段として機能させる、プログラム;
[27]コンピュータ装置において実行されるプログラムであって、コンピュータ装置を、研磨具によりワークを研磨する際の条件の入力を受け付ける入力手段と、ワークを研磨する際の条件に関する情報を入力データとし、前記条件において研磨具のワークへの切込量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報を出力データとして機械学習された予測モデルを用いて、受け付けた条件における制御情報を特定する特定手段として機能させる、プログラム;
により達成することができる。
The purpose of the present invention is to
[1] A system comprising at least one computer device, wherein the storage means stores information regarding the wear rate of the abrasive material of the polishing tool under the conditions in association with information regarding the conditions when polishing the workpiece with the polishing tool. a system comprising: an input means for accepting input of conditions for polishing a workpiece; and a specifying means for specifying information regarding the wear rate of the abrasive material corresponding to the accepted conditions;
[2] A system comprising at least one computer device, an input means for accepting input of conditions for polishing a workpiece with a polishing tool, and information regarding conditions for polishing the workpiece as input data, A system comprising: identifying means for specifying information regarding the wear rate of the abrasive material under accepted conditions using a machine-learned predictive model using information regarding the wear rate of the abrasive material of the polishing tool as output data;
[3] Based on the information regarding the specified wear rate, the contact between the polishing tool and the workpiece is adjusted so that the load applied to the polishing tool and/or the amount of change in load when polishing under the above conditions is within a predetermined range. The system according to [1] or [2] above, comprising a generating means for generating control information for controlling the position in the direction or the amount of protrusion or the amount of cut in the contact direction of the abrasive material;
[4] The system according to [3] above, comprising a control means for controlling the position of the polishing tool in the contact direction, or the amount of protrusion or the amount of cut in the contact direction of the abrasive material, based on the generated control information;
[5] The system according to [3] or [4], comprising a transmitting means for transmitting the generated control information to another computer device different from the first computer device;
[6] Based on the information on the identified wear rate, adjust the position of the polishing tool in the contact direction with the workpiece or the contact direction of the abrasive material so that the amount of cut into the workpiece by the polishing tool is within a predetermined range. The system according to [1] or [2], comprising a generating means for generating control information for controlling the amount of protrusion or the amount of cut;
[7] The system according to [6] above, comprising a control means for controlling the position of the polishing tool in the contact direction, or the amount of protrusion or cutting in the contact direction of the abrasive material, based on the generated control information;
[8] The system according to [6] or [7], comprising a transmitting means for transmitting the generated control information to another computer device different from the first computer device;
[9] Receiving means for receiving information regarding the conditions when a workpiece is polished by a polishing tool in another device different from the computer device 1, and information regarding the wear rate of the abrasive material of the polishing tool under the conditions. The system according to any one of [1] and [3] to [8], wherein the storage means stores the received information regarding the wear rate of the abrasive material in association with the received information regarding the conditions;
[10] Information receiving means for receiving information regarding the conditions under which a workpiece was polished by a polishing tool in another device different from the computer device 1, and information regarding the wear rate of the abrasive material of the polishing tool under the conditions. as described in any one of [2] to [8] above, wherein the predictive model is machine-learned by using the received information regarding the conditions as input data and the received information regarding the wear rate of the abrasive material as output data. system;
[11] A system comprising at least one computer device, in which the load applied to the polishing tool and/or the amount of change in the load is applied to the polishing tool when polishing under the conditions, in association with information regarding the conditions when polishing the workpiece with the polishing tool. storage means for storing control information for controlling the position of the polishing tool in the contact direction in contact with the workpiece or the amount of protrusion or the amount of cut in the contact direction of the abrasive material of the polishing tool to keep the polishing tool in a predetermined range; A system comprising an input means for accepting input of conditions for polishing a workpiece, and a specifying means for specifying control information corresponding to the accepted conditions;
[12] A system comprising at least one computer device, in which the amount of cut into the workpiece by the polishing tool is set within a predetermined range under the conditions, in association with information regarding the conditions when polishing the workpiece with the polishing tool. storage means for storing control information for controlling the position of the polishing tool in contact with the work in the contact direction or the amount of protrusion or cutting in the contact direction of the abrasive material of the polishing tool; and conditions for polishing the work. A system comprising: an input means for accepting an input; and a specifying means for specifying control information corresponding to the accepted condition;
[13] A system comprising at least one computer device, an input means for accepting input of conditions for polishing a workpiece with a polishing tool, information regarding conditions for polishing the workpiece as input data, In order to keep the load applied to the polishing tool during polishing and/or the amount of change in load within a predetermined range, the position of the polishing tool in the contact direction in contact with the work, or the amount of protrusion or cutting of the abrasive material of the polishing tool in the contact direction. a system that specifies control information under accepted conditions using a machine-learned predictive model using control information for controlling the amount of water as output data;
[14] A system comprising at least one computer device, an input means for accepting input of conditions for polishing a workpiece with a polishing tool, information regarding conditions for polishing the workpiece as input data, To control the position of the polishing tool in the contact direction in contact with the workpiece in order to keep the cutting amount of the polishing tool into the workpiece within a predetermined range, or the protrusion amount or cutting amount of the abrasive material of the polishing tool in the contact direction. A system comprising: identifying means for identifying control information under accepted conditions using a machine-learned predictive model using control information as output data;
[15] A control means for controlling the position of the polishing tool in the contact direction in contact with the workpiece or the protrusion amount or cutting amount of the abrasive material in the contact direction based on the specified control information, [11] to The system according to any one of [14];
[16] The system according to any one of [11] to [15], comprising a transmitting means for transmitting the specified control information to another computer device different from the first computer device;
[17] Information regarding the conditions under which the workpiece was polished with a polishing tool in another device different from the computer device in 1 above, and the load and/or the amount of change in the load applied to the polishing tool when polishing under the conditions. information receiving means for receiving information regarding the position of the polishing tool in the contact direction in contact with the workpiece or the protrusion amount or cutting amount of the abrasive material of the polishing tool in the contact direction to achieve a predetermined range; [11], [15], and the above-mentioned [11], [15], which stores information regarding the received position of the polishing tool in the contact direction or the protrusion amount or cutting amount in the contact direction of the abrasive material of the polishing tool in association with the information regarding the received condition; The system according to any one of [16];
[18] Information regarding the conditions under which the workpiece was polished with a polishing tool in another device different from the computer device mentioned above, and the load and/or the amount of change in the load applied to the polishing tool when polishing under the conditions. Information receiving means for receiving information regarding the position of the polishing tool in the contact direction in contact with the workpiece or the protrusion amount or cutting amount of the abrasive material of the polishing tool in the contact direction to achieve a predetermined range, and the predictive model includes: Machine learning is performed using information regarding the received conditions as input data and information regarding the received position of the polishing tool in the contact direction or the protrusion amount or cutting amount in the contact direction of the abrasive material of the polishing tool as output data. The system according to any one of [12], [15] and [16];
[19] Information regarding the conditions under which a workpiece was polished with a polishing tool in another device different from the computer device described in 1 above, and information for setting the amount of cut into the workpiece by the polishing tool within a predetermined range under the conditions. information receiving means for receiving information regarding the position of the polishing tool in the contact direction in contact with the workpiece, or the amount of protrusion or cutting in the contact direction of the abrasive material of the polishing tool, and the storage means associates the information with the received information regarding the conditions. and storing the received information regarding the position of the polishing tool in the contact direction or the protrusion amount or cutting amount of the abrasive material of the polishing tool in the contact direction. System described;
[20] Information regarding the conditions under which a workpiece was polished by a polishing tool in another device different from the computer device mentioned in 1 above, and information for setting the amount of cut into the workpiece by the polishing tool within a predetermined range under the conditions. and an information receiving means for receiving information regarding the position of the polishing tool in the contact direction in contact with the workpiece, or the protrusion amount or cutting amount in the contact direction of the abrasive material of the polishing tool, and the predictive model inputs the information regarding the received conditions. [14] to [16], which is machine learning using the received position of the polishing tool in the contact direction or the protrusion amount or cutting amount of the abrasive material of the polishing tool in the contact direction as output data. The system described in any of the above;
[21] The information regarding the conditions is information regarding the type of abrasive material, the type of workpiece, the rotational speed of the polishing tool, the feed rate of the polishing tool, the state of the workpiece before polishing, and/or the state of the workpiece after polishing. , the system according to any one of [1] to [20] above;
[22] A program executed on a computer device, the computer device being associated with information regarding conditions for polishing a workpiece with a polishing tool, and storing information regarding the wear rate of the abrasive material of the polishing tool under the conditions. a program that functions as a storage means for storing information, an input means for accepting input of conditions for polishing a workpiece, and a specifying means for specifying information regarding the wear rate of the abrasive material corresponding to the accepted conditions;
[23] A program executed on a computer device, the computer device being an input means for accepting input of conditions for polishing a workpiece with a polishing tool, and information regarding conditions for polishing the workpiece as input data, A program that functions as a specifying means for specifying information regarding the wear rate of the abrasive material under the accepted conditions using a predictive model learned by machine learning using information regarding the wear rate of the abrasive material of the polishing tool as output data under the conditions;
[24] A program executed on a computer device, which associates the computer device with information regarding conditions for polishing a workpiece with a polishing tool, and calculates the load and/or load applied to the polishing tool when polishing under the conditions. A memory for storing control information for controlling the position of the polishing tool in the contact direction in contact with the workpiece or the amount of protrusion or cutting in the contact direction of the abrasive material of the polishing tool in order to keep the amount of change within a predetermined range. a program that functions as a means, an input means for accepting input of conditions for polishing a workpiece, and a specifying means for specifying control information corresponding to the accepted conditions;
[25] A program executed on a computer device, which associates the computer device with information regarding conditions for polishing a workpiece with a polishing tool, and controls the amount of cut into the workpiece by the polishing tool within a predetermined range under the conditions. a storage means for storing control information for controlling the position of the polishing tool in the contact direction in contact with the workpiece or the amount of protrusion or cutting in the contact direction of the abrasive material of the polishing tool; A program that functions as an input means for accepting input of conditions at the time of use and as a specifying means for specifying control information corresponding to the accepted conditions;
[26] A program executed on a computer device, the computer device being an input means for receiving input of conditions for polishing a workpiece with a polishing tool, and information regarding conditions for polishing the workpiece as input data, The position of the polishing tool in the contact direction in contact with the workpiece or the protrusion of the abrasive material of the polishing tool in the contact direction in order to keep the load applied to the polishing tool and/or the amount of change in load within a predetermined range when polishing under the above conditions. A program that functions as a specifying means for specifying control information under accepted conditions using a machine-learned predictive model using control information for controlling the amount or depth of cut as output data;
[27] A program to be executed on a computer device, the computer device being an input means for accepting input of conditions for polishing a workpiece with a polishing tool, and information regarding conditions for polishing the workpiece as input data, Controlling the position of the polishing tool in the contact direction in contact with the workpiece or the protrusion amount or cutting amount of the abrasive material of the polishing tool in the contact direction in order to keep the cutting amount of the polishing tool into the workpiece within a predetermined range under the above conditions. A program that functions as a specifying means for specifying control information under accepted conditions using a machine-learned predictive model using control information as output data;
This can be achieved by
 本発明によれば、砥材が摩耗しても、ワークの加工精度を維持することを可能とするためのシステム及びプログラムを提供することができる。 According to the present invention, it is possible to provide a system and a program that make it possible to maintain the machining accuracy of a workpiece even if the abrasive material wears out.
本発明の実施の形態にかかる、研磨具によるワークの加工の一例を説明する図である。FIG. 3 is a diagram illustrating an example of machining a workpiece using a polishing tool according to an embodiment of the present invention. 本発明の実施の形態にかかる、本発明の実施の形態にかかる研磨具の構造を表す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing the structure of a polishing tool according to an embodiment of the present invention. 本発明の実施の形態にかかる、制御情報の生成処理のフローチャートである。5 is a flowchart of control information generation processing according to an embodiment of the present invention. 本発明の実施の形態にかかる、表示画面の一例を示す図である。It is a figure showing an example of a display screen concerning an embodiment of the present invention. 本発明の実施の形態にかかる、材質マスタテーブルを表す図である。It is a figure showing a material master table concerning an embodiment of the present invention. 本発明の実施の形態にかかる、加工前におけるワークに生じたバリの状態を表す図である。It is a figure showing the state of the burr which occurred in the work before processing concerning an embodiment of the present invention. 本発明の実施の形態にかかる、加工後におけるワークを表す図である。It is a figure showing the workpiece after processing concerning an embodiment of the present invention. 本発明の実施の形態にかかる、エッジ品質マスタテーブルを表す図である。FIG. 3 is a diagram representing an edge quality master table according to an embodiment of the present invention. 本発明の実施の形態にかかる、研磨具マスタテーブルの例を示す図である。FIG. 3 is a diagram showing an example of a polishing tool master table according to an embodiment of the present invention. 本発明の実施の形態にかかる、摩耗速度マスタテーブルを表す図である。It is a figure showing a wear rate master table concerning an embodiment of the present invention. 本発明の実施の形態にかかる、負荷及び負荷の変化量の一例を示す図である。FIG. 3 is a diagram showing an example of a load and an amount of change in the load according to an embodiment of the present invention. 本発明の実施の形態にかかる、制御情報の特定処理のフローチャートである。7 is a flowchart of control information specifying processing according to an embodiment of the present invention. 本発明の実施の形態にかかる、制御情報マスタテーブルを表す図である。FIG. 3 is a diagram representing a control information master table according to an embodiment of the present invention.
 以下、本発明を実施するための形態について、以下、詳細に説明する。なお、本発明は以下の実施の形態に限定されるものでなく、本発明の趣旨に反しない限り、適宜変更をして実施することができる。また、以下で説明するフローチャートを構成する各処理は、処理内容に矛盾や不整合が生じない範囲で順不同である。また、処理内容に矛盾や不整合が生じない範囲で、処理の一部を省略する又は他の処理を追加してもよい。 Hereinafter, modes for carrying out the present invention will be described in detail. Note that the present invention is not limited to the following embodiments, and can be implemented with appropriate changes as long as it does not go against the spirit of the present invention. Further, each process constituting the flowchart described below may be performed in any order as long as no contradiction or inconsistency occurs in the process contents. Further, a part of the process may be omitted or other processes may be added as long as there is no contradiction or inconsistency in the process content.
(システム)
 本発明のシステムは、少なくとも1のコンピュータ装置を備えるものである。本発明のシステムに備えられるコンピュータ装置は、1のコンピュータ装置のみであってもよく、複数のコンピュータ装置であってもよい。本発明のシステムに備えられるコンピュータ装置は、工作機械に備えられたコンピュータ装置であってもよい。工作機械に備えられたコンピュータ装置は、工作機械を制御して、ワーク(被加工物)の加工を実行することができる。
(system)
The system of the present invention includes at least one computer device. The computer device included in the system of the present invention may be only one computer device or may be a plurality of computer devices. The computer device included in the system of the present invention may be a computer device included in a machine tool. A computer device installed in a machine tool can control the machine tool and process a workpiece (workpiece).
 また、本発明のシステムに備えられるコンピュータ装置(以下、本発明のコンピュータ装置ともいう)は、工作機械に備えられたコンピュータ装置ではなく、工作機械に備えられたコンピュータ装置と通信接続が可能なコンピュータ装置であってもよい。 Furthermore, the computer device provided in the system of the present invention (hereinafter also referred to as the computer device of the present invention) is not a computer device provided in a machine tool, but a computer capable of communication connection with a computer device provided in a machine tool. It may be a device.
 本発明のコンピュータ装置は、制御部、RAM、ストレージ部を少なくとも備え、それぞれ内部バスにより接続されている。制御部は、CPU(Central Processing Unit)やROM(Read Only Memory)から構成され、ストレージ部に格納されたプログラムを実行し、コンピュータ装置の制御を行う。制御部は時間を計時する内部タイマを備えている。RAM(Random Access Memory)は、制御部のワークエリアである。ストレージ部は、プログラムやデータを保存するための記憶領域である。制御部は、プログラム及びデータをRAMから読み出し、プログラム実行処理を行う。 The computer device of the present invention includes at least a control section, a RAM, and a storage section, each of which is connected by an internal bus. The control unit includes a CPU (Central Processing Unit) and a ROM (Read Only Memory), and executes a program stored in the storage unit to control the computer device. The control unit includes an internal timer that measures time. RAM (Random Access Memory) is a work area of the control unit. The storage unit is a storage area for storing programs and data. The control unit reads programs and data from the RAM and performs program execution processing.
 本発明のコンピュータ装置は、表示部及び/又は入力部を備えていてもよい。表示部には、制御部における演算の結果など種々の情報が表示される。表示部は、タッチセンサを備えるタッチパネルであってもよい。このタッチパネルが入力部として機能する。利用者は、入力部を操作して、情報の入力、操作指示の入力を行うことができる。 The computer device of the present invention may include a display section and/or an input section. The display section displays various information such as the results of calculations in the control section. The display unit may be a touch panel including a touch sensor. This touch panel functions as an input section. The user can input information and operation instructions by operating the input unit.
 本発明のコンピュータ装置は、通信インタフェースを備えていてもよい。通信インタフェースは無線又は有線により通信ネットワークに接続が可能であり、通信ネットワークを介して、他のコンピュータ装置とデータを送受信することが可能である。通信インタフェースを介して受信したデータは、RAMにロードされ、制御部により演算処理が行われる。 The computer device of the present invention may include a communication interface. The communication interface can be connected to a communication network wirelessly or by wire, and can send and receive data to and from other computer devices via the communication network. Data received via the communication interface is loaded into the RAM, and arithmetic processing is performed by the control unit.
 本発明のコンピュータ装置が、工作機械に備えられたコンピュータ装置である場合、表示部には、利用者が、工作機械を操作するためのメニュー等の情報等が表示される。利用者が、これらの表示されたメニューを選択することで、工作機械によるワークの加工を実行することができる。また、工作機械に備えられたコンピュータ装置において、制御情報が特定され、特定された制御情報にしたがって、工作機械の接触方向(研磨具の砥材をワークに接触させ、ワークへ押し込むことの可能な方向)の位置を制御することができる。 When the computer device of the present invention is a computer device included in a machine tool, the display section displays information such as a menu for a user to operate the machine tool. By selecting these displayed menus, the user can process the workpiece using the machine tool. In addition, control information is specified in the computer device installed in the machine tool, and according to the specified control information, the contact direction of the machine tool (the direction in which the abrasive material of the polishing tool is brought into contact with the workpiece and pushed into the workpiece) is determined. position (direction) can be controlled.
 また、本発明のコンピュータ装置は、後述する研磨具ホルダに備えられていてもよい。この場合、本発明のコンピュータ装置としては、マイコンを用いることができる。研磨具ホルダに備えられたコンピュータ装置において、制御情報が特定され、特定された制御情報にしたがって、砥材の接触方向(研磨具の砥材をワークに接触させ、ワークへ押し込むことの可能な方向)の突出量又は切込量を制御することができる。 Furthermore, the computer device of the present invention may be included in a polishing tool holder, which will be described later. In this case, a microcomputer can be used as the computer device of the present invention. In the computer device provided in the polishing tool holder, control information is specified, and according to the specified control information, the contact direction of the abrasive material (the direction in which the abrasive material of the polishing tool can be brought into contact with the workpiece and pushed into the workpiece) is determined. ) can be controlled.
(研磨具)
 図1は、本発明の実施の形態にかかる、研磨具によるワークの加工の一例を説明する図である。図1に示すように、研磨具1は、研磨具ホルダ2と、研磨具ホルダ2に着脱可能に保持される砥材6とを備える。研磨具ホルダ2は、大径部3、スリーブ4及びシャンク5により構成される。研磨具ホルダ2は、砥材6の端部がスリーブ4から突出した状態となるように、砥材6を保持する。研磨具1を回転させ、この回転軸方向(つまり、シャンク5の軸方向に平行な方向)にワーク7を押し込んで研磨を行う場合、回転軸方向が前記接触方向となる。ただし、以下では、回転軸方向をZ軸方向(回転軸方向)とする。
(polishing tool)
FIG. 1 is a diagram illustrating an example of machining a workpiece using a polishing tool according to an embodiment of the present invention. As shown in FIG. 1, the polishing tool 1 includes a polishing tool holder 2 and an abrasive material 6 that is detachably held in the polishing tool holder 2. The polishing tool holder 2 includes a large diameter portion 3, a sleeve 4, and a shank 5. The polishing tool holder 2 holds the abrasive material 6 such that the end portion of the abrasive material 6 protrudes from the sleeve 4 . When polishing is performed by rotating the polishing tool 1 and pushing the workpiece 7 in the direction of the rotation axis (that is, in a direction parallel to the axial direction of the shank 5), the rotation axis direction becomes the contact direction. However, in the following, the rotation axis direction will be referred to as the Z-axis direction (rotation axis direction).
 砥材6は、ワーク7の被加工面8を研磨するために用いられるものであり、例えば、図1に示すような複数本の線状砥材を束にしてブラシ状に形成したブラシ状砥材や、弾性砥石などが用いられる。ワーク7の材質は、金属、樹脂のいずれであってもよい。ワーク7の材質に合わせて、砥材6を適宜選択することができる。 The abrasive material 6 is used to polish the processed surface 8 of the workpiece 7, and is, for example, a brush-like abrasive that is formed into a brush by bundling a plurality of linear abrasive materials as shown in FIG. material, an elastic grindstone, etc. are used. The material of the workpiece 7 may be either metal or resin. The abrasive material 6 can be appropriately selected depending on the material of the workpiece 7.
 工作機械を用いてワーク7に対して切削、研削、穴あけ等の加工をした際に、ワーク7の加工面に「バリ」と呼ばれる金属の毛羽が生じることがある。工作機械に研磨具1を接続し、砥材6をワーク7に接触させながら、シャンク5を軸(回転軸)にして研磨具1を時計回り又は反時計回りに回転させることで、被加工面8が研磨され、被加工面8に発生したバリを除去することができる。この場合に、被加工面8が平面である場合は、回転軸Rが被加工面8に対して垂直となるように、砥材6をワーク7に接触させることが好ましい。また、被加工面8が曲面である場合は、回転軸Rが、砥材6とワークの接触点における被加工面8の法線と平行となるように、砥材6をワーク7に接触させることが好ましい。 When the workpiece 7 is processed by cutting, grinding, drilling, etc. using a machine tool, metal fuzz called "burrs" may be generated on the processed surface of the workpiece 7. By connecting the polishing tool 1 to a machine tool and rotating the polishing tool 1 clockwise or counterclockwise using the shank 5 as the axis (rotation axis) while bringing the abrasive material 6 into contact with the workpiece 7, the workpiece surface can be polished. 8 is polished, and burrs generated on the processed surface 8 can be removed. In this case, when the surface to be processed 8 is a flat surface, it is preferable that the abrasive material 6 is brought into contact with the workpiece 7 so that the rotation axis R is perpendicular to the surface to be processed 8. In addition, when the surface to be processed 8 is a curved surface, the abrasive material 6 is brought into contact with the workpiece 7 so that the rotation axis R is parallel to the normal line of the surface to be processed 8 at the contact point between the abrasive material 6 and the workpiece. It is preferable.
(研磨加工)
 ところで、研磨具1は、研磨具1のシャンク5が工作機械のスピンドルに接続された状態で使用される。研磨具1のシャンク5がスピンドルに接続された状態で、予めプログラムにより設定された経路に沿ってスピンドルを移動させることで、研磨具1を加工経路に沿って移動させることができる。その結果、研磨具1によりワーク7の被加工面8の研磨加工を実現することができる。工作機械による研磨具1の加工経路の制御は、Z軸方向に垂直なXY平面上の制御だけでなく、Z軸方向の位置の制御も可能である。
(polishing)
Incidentally, the polishing tool 1 is used with the shank 5 of the polishing tool 1 connected to the spindle of a machine tool. With the shank 5 of the polishing tool 1 connected to the spindle, the polishing tool 1 can be moved along the processing path by moving the spindle along a path set in advance by a program. As a result, the polishing tool 1 can polish the surface 8 of the workpiece 7 . The machining path of the polishing tool 1 by the machine tool can be controlled not only on the XY plane perpendicular to the Z-axis direction, but also the position in the Z-axis direction.
 研磨加工においては、1回の加工においてワーク7の被加工面8に対して、研磨具1の先端(砥材6を有する研磨具1の場合は砥材6の先端)を押し込む量(以下、切込量という)を所定の値に設定することができる。例えば、突出量が5mmの砥材6を有する研磨具1を用いる場合、切込量を2mmとすると、ワーク7の被加工面8と研磨具ホルダ2のスリーブ4先端までの距離は3mmになる。切込量が0mmとは、例えば、突出量が5mmの砥材6を有する研磨具1を用いる場合、ワーク7の被加工面8と研磨具ホルダ2のスリーブ4先端までの距離が5mmの場合(すなわち、ワーク7の被加工面8に砥材6の先端が接する状態)である。 In polishing, the amount (hereinafter referred to as (referred to as the depth of cut) can be set to a predetermined value. For example, when using a polishing tool 1 having an abrasive material 6 with a protrusion of 5 mm, if the depth of cut is 2 mm, the distance between the workpiece surface 8 of the workpiece 7 and the tip of the sleeve 4 of the polishing tool holder 2 will be 3 mm. . The depth of cut is 0 mm, for example, when using the polishing tool 1 having the abrasive material 6 with a protrusion of 5 mm, and when the distance between the processed surface 8 of the workpiece 7 and the tip of the sleeve 4 of the polishing tool holder 2 is 5 mm. (That is, the state in which the tip of the abrasive material 6 is in contact with the surface to be processed 8 of the workpiece 7).
 研磨加工を行うと、砥材6が摩耗し、砥材6の突出量が短くなる。研磨具1のZ軸方向の位置が同一のままである場合、研磨加工により砥材6の突出量が短くなると、切込量が小さくなる。砥材6の摩耗が進み、切込量がゼロになると、研磨加工を行うことができなくなる。そのため、研磨加工による砥材6の摩耗の状況に合わせて、切込量を所定の範囲内(又は所定の値)に維持することが必要となる。 When the polishing process is performed, the abrasive material 6 is worn out, and the amount of protrusion of the abrasive material 6 becomes shorter. When the position of the polishing tool 1 in the Z-axis direction remains the same, when the protrusion amount of the abrasive material 6 becomes shorter due to the polishing process, the depth of cut becomes smaller. When the abrasive material 6 wears out and the depth of cut becomes zero, polishing cannot be performed. Therefore, it is necessary to maintain the depth of cut within a predetermined range (or a predetermined value) depending on the state of wear of the abrasive material 6 due to polishing.
 この切込量を所定の範囲内に調整する方法、又は、この切込量を所定の値に維持する方法として、研磨具1のZ軸方向の位置を変更する方法、又は、砥材6の突出量を変更する方法が挙げられる。 As a method of adjusting this depth of cut within a predetermined range or a method of maintaining this depth of cut within a predetermined value, there is a method of changing the position of the polishing tool 1 in the Z-axis direction, or a method of changing the position of the abrasive tool 1 in the Z-axis direction. One example is a method of changing the amount of protrusion.
 より具体的には、切込量を所定の範囲内に調整する方法として、研磨加工により切込量が所定の値となった場合に、研磨具1のZ軸方向の位置を所定の距離だけワーク7側へ移動させる方法があげられる。また、切込量を所定の範囲内に調整する方法として、研磨加工により切込量が所定の値となった場合に、砥材6の突出量を調整する機能を有する研磨具ホルダ2を利用し、砥材6をスリーブ4から所定量だけ突出させる方法があげられる。 More specifically, as a method for adjusting the depth of cut within a predetermined range, when the depth of cut reaches a predetermined value through polishing, the position of the polishing tool 1 in the Z-axis direction is adjusted by a predetermined distance. One method is to move it to the workpiece 7 side. In addition, as a method for adjusting the depth of cut within a predetermined range, a polishing tool holder 2 is used which has a function of adjusting the amount of protrusion of the abrasive material 6 when the depth of cut reaches a predetermined value due to polishing. However, there is a method in which the abrasive material 6 is made to protrude from the sleeve 4 by a predetermined amount.
 切込量を所定の値に維持する方法として、砥材6が摩耗し短くなる速度にあわせて、研磨具1のZ軸方向の位置をワーク7側へ継続的に移動させる方法があげられる。切込量を所定の値に維持する方法として、砥材6の突出量を調整する機能を有する研磨具ホルダ2を利用し、砥材6が摩耗し短くなる速度にあわせて、砥材6をスリーブ4から継続的に突出させる方法があげられる。 One way to maintain the depth of cut at a predetermined value is to continuously move the position of the polishing tool 1 in the Z-axis direction toward the workpiece 7 in accordance with the rate at which the abrasive material 6 wears and becomes shorter. As a method of maintaining the depth of cut at a predetermined value, the abrasive tool holder 2, which has a function of adjusting the protrusion amount of the abrasive material 6, is used to adjust the abrasive material 6 to the speed at which the abrasive material 6 wears and becomes shorter. One method is to make it continuously protrude from the sleeve 4.
 切込量に応じて、研磨具1にかかる負荷は変化する。一般に、切込量が大きいと、研磨具1にかかる負荷は大きくなる。また、切込量が小さいと、研磨具1にかかる負荷は小さくなる。よって、研磨具1の切込量を所定の範囲内(又は所定の値)に維持することで、研磨具1にかかる負荷及び/又は負荷の変化量を所定の範囲内(又は所定の値)に維持することができる。なお、研磨具1の砥材6が摩耗して、その長さが短くなった状態において、砥材長さが長いときと同じ切込量で研磨加工をすると、砥材6のスリーブ4からの突出量にかかわらず、研磨具1にかかる負荷が大きくなることがある。このように、研磨具1の砥材6が摩耗して、砥材6のスリーブ4からの突出量にかかわらず、研磨具1にかかる負荷が大きくなる場合には、測定された研磨具1の負荷をもとに補正をした値を、研磨具1の負荷とすることができる。負荷を補正するための算出式は、砥材6の径や線材種に応じて異なるものが用いられる。なお、負荷の変化量は、例えば、単位時間当たりの負荷の変化量を意味する。 The load applied to the polishing tool 1 changes depending on the depth of cut. Generally, when the depth of cut is large, the load applied to the polishing tool 1 becomes large. Furthermore, if the depth of cut is small, the load applied to the polishing tool 1 will be small. Therefore, by maintaining the cutting depth of the polishing tool 1 within a predetermined range (or a predetermined value), the load applied to the polishing tool 1 and/or the amount of change in the load can be kept within a predetermined range (or a predetermined value). can be maintained. Note that when the abrasive material 6 of the polishing tool 1 is worn and its length has become short, if polishing is performed with the same depth of cut as when the abrasive material length is long, the abrasive material 6 will be removed from the sleeve 4. Regardless of the amount of protrusion, the load applied to the polishing tool 1 may become large. In this way, when the abrasive material 6 of the polishing tool 1 wears out and the load applied to the polishing tool 1 becomes large regardless of the amount of protrusion of the abrasive material 6 from the sleeve 4, the measured value of the polishing tool 1 increases. A value corrected based on the load can be used as the load of the polishing tool 1. Different calculation formulas are used to correct the load depending on the diameter of the abrasive material 6 and the type of wire material. Note that the amount of change in load means, for example, the amount of change in load per unit time.
 研磨具1にかかる負荷と、負荷の変化量を測定する方法は、公知の方法が用いられ、特に限定されない。研磨具1にかかる負荷と、負荷の変化量を測定する方法は、例えば、以下で説明する方法が用いられる。 A known method may be used to measure the load applied to the polishing tool 1 and the amount of change in the load, and there are no particular limitations. As a method for measuring the load applied to the polishing tool 1 and the amount of change in the load, for example, the method described below is used.
 図2は、本発明の実施の形態にかかる研磨具の構造を表す模式図である。図2は、研磨具1の回転軸Rを含む平面における断面図を示す。図2(a)及び図2(b)において、砥材6は、研磨具ホルダ2の大径部3及びスリーブ4の内側に備えられる。砥材6は、スリーブ4から突き出される側とは反対側の端部が砥材ホルダ6aに保持される。砥材ホルダ6aは貫通孔6bを有し、貫通孔6bに大径部3に連結された送り軸3aが貫通している。送り軸3aは、シャンク5(回転軸R)と同軸である。砥材ホルダ6aは、研磨具ホルダ2の大径部3内側に装着部を介して着脱可能に保持される。 FIG. 2 is a schematic diagram showing the structure of a polishing tool according to an embodiment of the present invention. FIG. 2 shows a cross-sectional view of the polishing tool 1 in a plane including the rotation axis R. As shown in FIG. In FIGS. 2(a) and 2(b), the abrasive material 6 is provided inside the large diameter portion 3 of the polishing tool holder 2 and the sleeve 4. As shown in FIGS. The end of the abrasive material 6 opposite to the side protruding from the sleeve 4 is held by the abrasive material holder 6a. The abrasive material holder 6a has a through hole 6b, and a feed shaft 3a connected to the large diameter portion 3 passes through the through hole 6b. The feed shaft 3a is coaxial with the shank 5 (rotation axis R). The abrasive material holder 6a is removably held inside the large diameter portion 3 of the polishing tool holder 2 via a mounting portion.
 研磨具1は、大径部3の内側に負荷検出器Dを備える。負荷検出器Dは、例えば、圧力センサや、振動検出器、研磨具に発生している音の振幅を検出する音波検出器とすることができる。負荷検出器Dが圧力センサの場合、負荷検出器Dは、送り軸3aに後方Z1から接触して当該送り軸3aにかかるZ軸方向の圧力を検出する。 The polishing tool 1 includes a load detector D inside the large diameter portion 3. The load detector D can be, for example, a pressure sensor, a vibration detector, or a sonic detector that detects the amplitude of sound generated in the polishing tool. When the load detector D is a pressure sensor, the load detector D contacts the feed shaft 3a from the rear Z1 and detects the pressure in the Z-axis direction applied to the feed shaft 3a.
 負荷を検出するために用いられる研磨具ホルダ2は、少なくともCPUを備える制御部と、制御部に接続された記憶部と、タイマとを備える制御系統を備える。制御部の入力側には負荷検出器Dが接続されている。制御部の出力側には、モータが接続されている。また、研磨具ホルダ2は、モータに電力を供給するモータ用電池と、制御部及びタイマに電力を供給する制御用電池とを備える。モータ用電池及び制御用電池は、外部からケーブルを接続して充電可能である。 The polishing tool holder 2 used to detect the load includes a control system including at least a control section including a CPU, a storage section connected to the control section, and a timer. A load detector D is connected to the input side of the control section. A motor is connected to the output side of the control section. The polishing tool holder 2 also includes a motor battery that supplies power to the motor, and a control battery that supplies power to the control unit and the timer. The motor battery and the control battery can be charged from outside by connecting a cable.
 研磨具1を用いて研磨加工する間、制御部は、負荷検出器Dからの出力(負荷)を検出するとともに、予め定めた単位時間当たりの負荷変化量を逐次に算出する。より具体的には、制御部は、負荷検出器Dから出力される負荷を一定周期で取得するとともに、時系列に沿って順番に取得した3つの負荷から、単位時間あたりの負荷変化量を取得する。ここで、負荷は、0.001秒~1秒間の間隔で取得するものとすることができる。負荷の変化量を算出する単位時間は、負荷を取得する感覚の3倍の時間である。負荷の変化量の算出は、負荷を取得する間隔と同一の間隔で行われる。 During polishing using the polishing tool 1, the control section detects the output (load) from the load detector D and sequentially calculates the amount of load change per predetermined unit time. More specifically, the control unit acquires the load output from the load detector D at regular intervals, and also acquires the amount of load change per unit time from the three loads acquired in order in time series. do. Here, the load can be acquired at intervals of 0.001 seconds to 1 second. The unit time for calculating the amount of change in load is three times the time it takes to obtain the load. Calculation of the amount of change in load is performed at the same interval as the interval at which the load is acquired.
(研磨具のZ軸方向の位置の制御)
 研磨具1は、工作機械のスピンドルに取り付けられている。このスピンドルを回転させ、研磨具1を回転させることで、ワーク7を研磨することができる。工作機械の制御部は、研磨具1の加工経路の制御情報にしたがって、スピンドルの移動を制御する。スピンドルを移動させることで、研磨具1を加工経路に沿って移動させることができる。研磨具1の加工経路の制御は、XY平面上の制御だけでなく、Z軸方向の制御も可能である。
(Controlling the position of the polishing tool in the Z-axis direction)
A polishing tool 1 is attached to a spindle of a machine tool. By rotating this spindle and rotating the polishing tool 1, the workpiece 7 can be polished. The control unit of the machine tool controls movement of the spindle according to control information of the machining path of the polishing tool 1. By moving the spindle, the polishing tool 1 can be moved along the processing path. The machining path of the polishing tool 1 can be controlled not only on the XY plane but also in the Z-axis direction.
(砥材の突出量の制御)
 図2(a)及び図2(b)において、砥材6は、研磨具ホルダ2の大径部3及びスリーブ4の内側に備えられる。砥材6は、スリーブ4から突き出される側とは反対側の端部が砥材ホルダ6aに保持される。砥材ホルダ6aは貫通孔6bを有し、貫通孔6bに大径部3に連結された送り軸3aが貫通している。送り軸3aは、シャンク5(回転軸R)と同軸である。
(Control of protrusion amount of abrasive material)
In FIGS. 2(a) and 2(b), the abrasive material 6 is provided inside the large diameter portion 3 of the polishing tool holder 2 and the sleeve 4. As shown in FIGS. The end of the abrasive material 6 opposite to the side protruding from the sleeve 4 is held by the abrasive material holder 6a. The abrasive material holder 6a has a through hole 6b, and a feed shaft 3a connected to the large diameter portion 3 passes through the through hole 6b. The feed shaft 3a is coaxial with the shank 5 (rotation axis R).
 図2(a)は、研磨具のスリーブ4の内側に備えられた砥材6の全長がLaの場合、図2(b)は、研磨具のスリーブ4の内側に備えられた砥材6の全長がLaよりも短いLbの場合を示す。砥材6の全長がLbとなった場合に、砥材6の全長がLaの場合と同じ突出量になるように変更する場合について説明する。 FIG. 2(a) shows the case where the total length of the abrasive material 6 provided inside the sleeve 4 of the polishing tool is La, and FIG. 2(b) shows the case where the total length of the abrasive material 6 provided inside the sleeve 4 of the polishing tool is The case of Lb whose total length is shorter than La is shown. A case will be described in which the total length of the abrasive material 6 is changed to the same protrusion amount as when the total length of the abrasive material 6 is La, when the total length of the abrasive material 6 is Lb.
 砥材6の突出量は、砥材6を備えた砥材ホルダ6aを送り軸3a(回転軸R)に沿ってスリーブ4が接続する大径部3側(図2において上方向、Z1方向ともいう)、又は、スリーブ4開口側、つまり砥材6の先端側(図2において下方向、Z2方向ともいう)に移動させることにより変更する(図2参照)。砥材ホルダ6aを送り軸3aに沿って移動させることができる限り、その構造は特に限定されないが、例えば、送り軸3aと砥材ホルダ6aの貫通孔6bとに、ねじが切られており、ねじがまわることで砥材ホルダ6aを送り軸3aに沿って移動可能となる機構を採用することができる。 The amount of protrusion of the abrasive material 6 is determined from the side of the large diameter portion 3 where the sleeve 4 connects the abrasive material holder 6a with the abrasive material 6 along the feed shaft 3a (rotation axis R) (in both the upward direction and the Z1 direction in FIG. 2). ), or by moving it toward the opening of the sleeve 4, that is, toward the tip of the abrasive material 6 (downward in FIG. 2, also referred to as the Z2 direction) (see FIG. 2). The structure is not particularly limited as long as the abrasive material holder 6a can be moved along the feed shaft 3a, but for example, the feed shaft 3a and the through hole 6b of the abrasive material holder 6a are threaded, A mechanism can be adopted in which the abrasive material holder 6a can be moved along the feed shaft 3a by turning a screw.
 突出量の変更は、手動で行うこともできる。手動で行う場合、例えば、大径部3にダイヤルを備え、ダイヤルを回すとねじがまわり、砥材ホルダ6aが送り軸3aに沿って移動する機構とすることができる。また、突出量の変更を自動で行なう場合、研磨具ホルダ2に、少なくとも制御部と通信部を含むマイコンを備え、大径部3に電池及びモータを備える態様とすることができる。この場合、突出量の変更は、マイコンの制御部の指示に基づいて、電池によりモータを駆動させることでダイヤルが回り、砥材ホルダ6aを送り軸3aに沿って移動させる機構とすることができる。 The amount of protrusion can also be changed manually. In the case of manual operation, for example, a mechanism may be used in which the large diameter portion 3 is provided with a dial, and when the dial is turned, a screw turns, and the abrasive material holder 6a moves along the feed shaft 3a. Further, in the case of automatically changing the amount of protrusion, the polishing tool holder 2 may be provided with a microcomputer including at least a control section and a communication section, and the large diameter section 3 may be provided with a battery and a motor. In this case, the amount of protrusion can be changed by a mechanism in which a motor is driven by a battery to rotate a dial and move the abrasive material holder 6a along the feed shaft 3a based on instructions from the control section of the microcomputer. .
 ところで、図2(a)は、砥材ホルダ6aが最も高い位置にあり、同じ長さの砥材6であれば、最も突出量が小さくなる。一方、図2(b)は、砥材ホルダ6aが下側に移動している。砥材6の突出量は、摩耗した砥材6の長さによっても異なる。そのため、図2(b)のような研磨ホルダ6aが、図2(a)の最上位位置から下側に移動しているような場合において、後述する砥材6の突出量又は切込量の制御は、研磨ホルダ6aの移動量、つまり、(Lb-La)の値(つまり、研磨ホルダ6aの移動量)を制御することによって行われる。 By the way, in FIG. 2(a), the abrasive material holder 6a is at the highest position, and if the abrasive materials 6 have the same length, the amount of protrusion is the smallest. On the other hand, in FIG. 2(b), the abrasive material holder 6a is moving downward. The amount of protrusion of the abrasive material 6 also varies depending on the length of the worn abrasive material 6. Therefore, when the polishing holder 6a as shown in FIG. 2(b) is moved downward from the uppermost position in FIG. The control is performed by controlling the amount of movement of the polishing holder 6a, that is, the value of (Lb-La) (that is, the amount of movement of the polishing holder 6a).
 後述する第一の実施の形態及び第二の実施の形態にかかるシステムは、ワークを研磨する際の条件(以下において、加工条件ということがある。)に応じて、研磨具1の砥材6の摩耗速度を特定することができるものである。このような加工条件に応じて、研磨具1の砥材6の摩耗速度を特定するシステムの場合、特定した摩耗速度をもとに、研磨具1のZ軸方向の位置又は砥材6のZ軸方向の突出量を制御することで、研磨具1のワークへの切込量を所定の範囲内(又は所定の値)に維持する、又は、研磨具1にかかる負荷又は負荷の単位時間当たりの変化量を所定の範囲内(又は所定の値)に維持することが可能となる。 The system according to the first embodiment and the second embodiment, which will be described later, adjusts the abrasive material 6 of the polishing tool 1 according to the conditions when polishing the workpiece (hereinafter sometimes referred to as processing conditions). It is possible to determine the wear rate of In the case of a system that specifies the wear rate of the abrasive material 6 of the polishing tool 1 according to such processing conditions, the position of the polishing tool 1 in the Z-axis direction or the Z-axis of the abrasive material 6 is determined based on the identified wear rate. By controlling the amount of protrusion in the axial direction, the amount of cut into the work by the polishing tool 1 can be maintained within a predetermined range (or a predetermined value), or the load applied to the polishing tool 1 or the load per unit time can be maintained. It becomes possible to maintain the amount of change within a predetermined range (or a predetermined value).
 加工条件に応じて、研磨具1の砥材6の摩耗速度を特定できるシステムにおいて、研磨具1が取り付けられる工作機械が、研磨具1の砥材6の摩耗速度を特定するコンピュータ装置として機能してもよい。この場合、工作機械が、研磨具1の砥材6の摩耗速度を特定し、さらに、工作機械において、特定した摩耗速度をもとに、研磨具1のワーク7への切込量が所定の範囲内(又は所定の値)となるように、又は、研磨具1にかかる負荷又は負荷の単位時間当たりの変化量が所定の範囲内(又は所定の値)となるように、研磨具1のZ軸方向の位置を制御することができる。 In a system that can identify the wear rate of the abrasive material 6 of the polishing tool 1 according to processing conditions, a machine tool to which the polishing tool 1 is attached functions as a computer device that identifies the wear rate of the abrasive material 6 of the polishing tool 1. You can. In this case, the machine tool specifies the wear rate of the abrasive material 6 of the polishing tool 1, and further, based on the specified wear rate, the machine tool adjusts the amount of cut into the workpiece 7 of the polishing tool 1 to a predetermined value. The polishing tool 1 is adjusted so that the load applied to the polishing tool 1 or the amount of change in the load per unit time is within a predetermined range (or a predetermined value). The position in the Z-axis direction can be controlled.
 また、加工条件に応じて、研磨具1の砥材6の摩耗速度を特定できるシステムにおいて、工作機械とは異なるコンピュータ装置が、研磨具1の砥材6の摩耗速度を特定するコンピュータ装置として機能してもよい。この場合、このコンピュータ装置が、研磨具1の砥材6の摩耗速度に関する情報を特定し、特定した摩耗速度に関する情報をもとに、研磨具1のZ軸方向の位置を制御するための制御情報、又は、砥材6のZ軸方向の突出量若しくは切込量を制御するための制御情報を生成し、生成した制御情報を工作機械又は研磨具ホルダ2へ送信することができる。工作機械では、受信した制御情報にしたがって、研磨具1のZ軸方向の位置を制御する。また、研磨具ホルダ2では、受信した制御情報にしたがって、砥材6のZ軸方向の突出量若しくは切込量を制御する。 In addition, in a system that can specify the wear rate of the abrasive material 6 of the polishing tool 1 according to processing conditions, a computer device different from the machine tool functions as a computer device that specifies the wear rate of the abrasive material 6 of the polishing tool 1. You may. In this case, this computer device specifies information regarding the wear rate of the abrasive material 6 of the polishing tool 1, and controls the position of the polishing tool 1 in the Z-axis direction based on the information regarding the identified wear rate. information or control information for controlling the amount of protrusion or cutting in the Z-axis direction of the abrasive material 6, and the generated control information can be transmitted to the machine tool or the polishing tool holder 2. The machine tool controls the position of the polishing tool 1 in the Z-axis direction according to the received control information. Further, in the polishing tool holder 2, the amount of protrusion or the amount of cut in the Z-axis direction of the abrasive material 6 is controlled according to the received control information.
 この場合に、加工条件は、工作機械又は工作機械とは異なる装置にて入力され、入力された加工条件がコンピュータ装置に送信され、コンピュータ装置にて、受信した加工条件をもとに、摩耗速度に関する情報を特定し、制御情報を生成してもよい。 In this case, the machining conditions are input into the machine tool or a device different from the machine tool, the input machining conditions are sent to the computer device, and the computer device calculates the wear rate based on the received machining conditions. Control information may be generated by specifying information related to
 なお、このコンピュータ装置は、複数の工作機械と通信接続が可能であり、複数の工作機械から加工条件を受信し、受信した加工条件をもとに生成した制御情報を、対応する工作機械に送信することができる。 This computer device can communicate with multiple machine tools, receive machining conditions from multiple machine tools, and send control information generated based on the received machining conditions to the corresponding machine tool. can do.
 また、加工条件に応じて、研磨具1の砥材6の摩耗速度を特定できるシステムにおいて、工作機械とは異なるコンピュータ装置が、研磨具1の砥材6の摩耗速度を特定する装置として機能する場合に、特定した研磨具1の砥材6の摩耗速度に関する情報を、工作機械へ送信してもよい。この場合、工作機械では、受信した摩耗速度に関する情報をもとに、研磨具1のZ軸方向の位置を制御するための制御情報、又は、砥材6のZ軸方向の突出量若しくは切込量を制御するための制御情報を生成し、生成した制御情報にしたがって、研磨具1のZ軸方向の位置、又は、砥材6のZ軸方向の突出量若しくは切込量を制御することができる。 Further, in a system that can specify the wear rate of the abrasive material 6 of the polishing tool 1 according to processing conditions, a computer device different from the machine tool functions as a device that specifies the wear rate of the abrasive material 6 of the polishing tool 1. In this case, information regarding the wear rate of the abrasive material 6 of the specified polishing tool 1 may be transmitted to the machine tool. In this case, the machine tool uses control information for controlling the position of the polishing tool 1 in the Z-axis direction, or the protrusion amount or cutting depth of the abrasive material 6 in the Z-axis direction, based on the received information regarding the wear rate. It is possible to generate control information for controlling the amount, and control the position of the polishing tool 1 in the Z-axis direction, or the protrusion amount or cutting amount of the abrasive material 6 in the Z-axis direction, according to the generated control information. can.
 この場合に、加工条件は、工作機械又は工作機械とは異なる装置にて入力され、入力された加工条件がコンピュータ装置に送信され、コンピュータ装置にて、受信した加工条件をもとに、摩耗速度に関する情報を特定してもよい。 In this case, the machining conditions are input into the machine tool or a device different from the machine tool, the input machining conditions are sent to the computer device, and the computer device calculates the wear rate based on the received machining conditions. You may also specify information about
 なお、このコンピュータ装置は、複数の工作機械と通信接続が可能であり、複数の工作機械から加工条件を受信し、受信した加工条件をもとに特定した摩耗速度に関する情報を、対応する工作機械に送信することができる。 This computer device is capable of communication connection with multiple machine tools, receives machining conditions from multiple machine tools, and transmits information on the wear rate identified based on the received machining conditions to the corresponding machine tool. can be sent to.
 後述する第三の実施の形態及び第四の実施の形態にかかるシステムは、加工条件に応じて、研磨の際に研磨具1にかかる負荷及び/又は負荷の変化量を所定の範囲とするための研磨具1のZ軸方向の位置又は研磨具1の有する砥材6のZ軸方向の突出量若しくは切込量を制御するための制御情報を特定することができるものである。また、第三の実施の形態及び第四の実施の形態にかかるシステムは、加工条件に応じて、研磨具のワークへの切込量を所定の範囲とするための研磨具1のZ軸方向の位置又は研磨具1の有する砥材6のZ軸方向の突出量若しくは切込量を制御するための制御情報を特定することができるものである。 The systems according to the third embodiment and the fourth embodiment described later are configured to keep the load applied to the polishing tool 1 during polishing and/or the amount of change in the load within a predetermined range depending on the processing conditions. It is possible to specify control information for controlling the position of the polishing tool 1 in the Z-axis direction or the amount of protrusion or cutting in the Z-axis direction of the abrasive material 6 of the polishing tool 1. In addition, the systems according to the third embodiment and the fourth embodiment are capable of controlling the polishing tool 1 in the Z-axis direction in order to keep the cutting amount of the polishing tool 1 into the workpiece within a predetermined range according to the machining conditions. It is possible to specify control information for controlling the position or the amount of protrusion or depth of cut in the Z-axis direction of the abrasive material 6 of the polishing tool 1.
 このような加工条件に応じて制御情報を特定するシステムにおいては、研磨具1が取り付けられる工作機械が、制御情報を特定するコンピュータ装置として機能してもよい。この場合、工作機械が、特定した制御情報にしたがって、研磨具1のZ軸方向の位置又は研磨具1の有する砥材6のZ軸方向の突出量若しくは切込量の制御を実行する。 In such a system that specifies control information according to processing conditions, the machine tool to which the polishing tool 1 is attached may function as a computer device that specifies control information. In this case, the machine tool controls the position of the polishing tool 1 in the Z-axis direction, or the amount of protrusion or cutting in the Z-axis direction of the abrasive material 6 included in the polishing tool 1, according to the specified control information.
 また、このような加工条件に応じて制御情報を特定するシステムにおいては、工作機械とは異なるコンピュータ装置が、研磨具1の砥材6の制御情報を特定するコンピュータ装置として機能してもよい。この場合、このコンピュータ装置が、特定した制御情報を工作機械又は研磨具ホルダ2へ送信することができる。工作機械では、受信した制御情報にしたがって、研磨具1のZ軸方向の位置を制御する。また、研磨具ホルダ2では、受信した制御情報にしたがって、砥材6のZ軸方向の突出量又は切込量を制御する。 Furthermore, in such a system that specifies control information according to processing conditions, a computer device different from the machine tool may function as a computer device that specifies control information for the abrasive material 6 of the polishing tool 1. In this case, this computer device can transmit the specified control information to the machine tool or polishing tool holder 2. The machine tool controls the position of the polishing tool 1 in the Z-axis direction according to the received control information. Further, in the polishing tool holder 2, the amount of protrusion or the amount of cutting in the Z-axis direction of the abrasive material 6 is controlled according to the received control information.
 この場合に、加工条件は、工作機械又は工作機械とは異なる装置にて入力され、入力された加工条件がコンピュータ装置に送信され、コンピュータ装置にて、受信した加工条件をもとに、制御情報を生成してもよい。 In this case, the machining conditions are input into the machine tool or a device different from the machine tool, the input machining conditions are sent to the computer device, and the computer device generates control information based on the received machining conditions. may be generated.
 なお、このコンピュータ装置は、複数の工作機械と通信接続が可能であり、複数の工作機械から加工条件を受信し、受信した加工条件をもとに生成した制御情報を、対応する工作機械に送信することができる。 This computer device can communicate with multiple machine tools, receive machining conditions from multiple machine tools, and send control information generated based on the received machining conditions to the corresponding machine tool. can do.
 後述する第一の実施の形態のシステムは、コンピュータ装置において、研磨具1によりワーク7を研磨する際の加工条件に関する情報と関連付けて、前記加工条件における研磨具1の砥材6の摩耗速度に関する情報をマスタテーブル(後述する摩耗速度テーブル)に記憶しておき、入力された加工条件に応じて、マスタテーブルを参照して、研磨具1の砥材6の摩耗速度を特定するものである。このマスタテーブルに記憶される加工条件に関する情報と、摩耗速度に関する情報は、他の装置から受信した情報により追加されることとしてもよい。例えば、他の装置にて、ワークの研磨が実行され、この際の加工条件に関する情報と、測定された摩耗速度に関する情報が関連付けて、コンピュータ装置のマスタテーブルに追加して記憶される。このようにすることで、より特定される摩耗速度の精度が高くなる。 The system of the first embodiment, which will be described later, uses information regarding the wear rate of the abrasive material 6 of the polishing tool 1 under the processing conditions in a computer device in association with information regarding the processing conditions when polishing the workpiece 7 with the polishing tool 1. Information is stored in a master table (wear rate table to be described later), and the wear rate of the abrasive material 6 of the polishing tool 1 is specified by referring to the master table according to the input machining conditions. The information regarding the machining conditions and the information regarding the wear rate stored in this master table may be added using information received from other devices. For example, a workpiece is polished in another device, and information regarding the processing conditions at this time and information regarding the measured wear rate are associated and stored in a master table of the computer device. By doing so, the accuracy of the specified wear rate becomes higher.
 後述する第二の実施の形態のシステムは、コンピュータ装置において、ワーク7を研磨する際の加工条件に関する情報を入力データとし、この加工条件における研磨具1の砥材6の摩耗速度に関する情報を出力データとして機械学習された予測モデル(学習モデル)を用いて、入力された加工条件における砥材6の摩耗速度を特定するものである。ここで、他の装置から受信した情報を、この予測モデルの教師データとしてもよい。例えば、他の装置にてワーク7の研磨が実行された場合における、加工条件に関する情報を入力データとし、測定された摩耗速度に関する情報を出力データとする。このようにすることで、より特定される摩耗速度の精度が高くなる。 The system of the second embodiment, which will be described later, uses a computer device as input data regarding processing conditions when polishing a workpiece 7, and outputs information regarding the wear rate of the abrasive material 6 of the polishing tool 1 under these processing conditions. The wear rate of the abrasive material 6 under the input machining conditions is specified using a machine-learned predictive model (learning model) as data. Here, information received from another device may be used as training data for this prediction model. For example, when the workpiece 7 is polished by another device, information regarding processing conditions is used as input data, and information regarding the measured wear rate is used as output data. By doing so, the accuracy of the specified wear rate becomes higher.
 後述する第三の実施の形態のシステムは、コンピュータ装置において、研磨具1によりワーク7を研磨する際の加工条件に関する情報と関連付けて、前記加工条件における制御情報をマスタテーブル(後述する制御情報テーブル)に記憶しておき、入力された加工条件に応じて、マスタテーブルを参照して、制御情報を特定するものである。このマスタテーブルに記憶される加工条件に関する情報と、制御情報は、他の装置から受信した情報により追加されることとしてもよい。例えば、他の装置にて、ワークの研磨が実行され、この際の加工条件に関する情報と、研磨具1にかかる負荷及び/又は負荷の変化量が所定の範囲となるように、研磨具1のワーク7のZ軸方向の位置又は砥材6のZ軸方向の突出量若しくは切込量を制御した際の制御情報が関連付けて、コンピュータ装置のマスタテーブルに追加して記憶される。また、例えば、他の装置にて、ワーク7の研磨が実行され、この際の加工条件に関する情報と、切込量が所定の範囲となるように、研磨具1のワークのZ軸方向の位置又は砥材6のZ軸方向の突出量若しくは切込量を制御した際の制御情報が関連付けて、コンピュータ装置のマスタテーブルに追加して記憶される。このようにすることで、より特定される制御情報の精度が高くなる。 A system according to a third embodiment, which will be described later, uses a computer device to associate control information regarding the processing conditions when polishing the workpiece 7 with the polishing tool 1 and create a master table (control information table, which will be described later). ), and the control information is specified by referring to the master table according to the input processing conditions. The information regarding processing conditions and control information stored in this master table may be added using information received from other devices. For example, when a workpiece is polished by another device, information regarding the processing conditions at this time and the polishing tool 1 are provided so that the load applied to the polishing tool 1 and/or the amount of change in the load is within a predetermined range. Control information when controlling the position of the workpiece 7 in the Z-axis direction or the amount of protrusion or cutting in the Z-axis direction of the abrasive material 6 is associated and stored in the master table of the computer device. For example, when the workpiece 7 is polished by another device, information regarding the machining conditions at this time and the position of the polishing tool 1 on the workpiece in the Z-axis direction so that the depth of cut falls within a predetermined range. Alternatively, control information when controlling the amount of protrusion or depth of cut of the abrasive material 6 in the Z-axis direction is associated and stored in addition to the master table of the computer device. By doing so, the accuracy of the specified control information becomes higher.
 後述する第四の実施の形態のシステムは、コンピュータ装置において、ワーク7を研磨する際の加工条件に関する情報を入力データとし、この加工条件において、研磨具1にかかる負荷及び/若しくは負荷の変化量を所定の範囲内とすることができる制御情報、又は、切込量を所定の範囲内とすることができる制御情報を出力データとして機械学習された予測モデルを用いて、入力された加工条件における砥材6の制御情報を特定するものである。ここで、他の装置から受信した情報を、この予測モデルの教師データとしてもよい。例えば、他の装置にてワーク7の研磨が実行された場合における、加工条件に関する情報を入力データとし、研磨具1にかかる負荷及び/若しくは負荷の変化量を所定の範囲内とした制御情報、又は、研磨具1の切込量を所定の範囲内とした制御情報を出力データとする。このようにすることで、入力した加工条件に応じた、研磨具1にかかる負荷及び/若しくは負荷の変化量が所定の範囲内となる制御情報、又は、研磨具1の切込量が所定の範囲内となる制御情報を得ることが可能となる。 The system of the fourth embodiment, which will be described later, uses information regarding machining conditions when polishing a workpiece 7 as input data in a computer device, and calculates the load applied to the polishing tool 1 and/or the amount of change in the load under these machining conditions. Under the input machining conditions, a machine-learned prediction model is used as output data that is control information that allows the depth of cut to be within a predetermined range, or control information that allows the depth of cut to be within a predetermined range. This specifies control information for the abrasive material 6. Here, information received from another device may be used as training data for this prediction model. For example, control information that uses information regarding processing conditions as input data when polishing the workpiece 7 is executed by another device and sets the load applied to the polishing tool 1 and/or the amount of change in the load within a predetermined range; Alternatively, control information that sets the depth of cut of the polishing tool 1 within a predetermined range is used as output data. By doing so, control information that allows the load applied to the polishing tool 1 and/or the amount of change in the load to be within a predetermined range, or the amount of cut of the polishing tool 1 to be within a predetermined range, depending on the input processing conditions, can be provided. It becomes possible to obtain control information that falls within the range.
<第1の実施の形態>
 第1の実施の形態は、研磨具によりワークを研磨する際の加工条件に関する情報と関連付けて、前記加工条件における研磨具の有する砥材の摩耗速度に関する情報を記憶しておき、ワークを研磨する際の加工条件に対応する砥材の摩耗速度を特定するシステムに関する。システムは、特定した摩耗速度をもとに、前記加工条件において研磨した際に研磨具にかかる負荷及び/若しくは負荷の変化量が所定の範囲となるように、又は、研磨具のワークへの切込量が所定の範囲となるように、研磨具のワークと接触する接触方向の位置又は砥材の接触方向の突出量若しくは切込量を制御するための制御情報を生成する。
<First embodiment>
In the first embodiment, information regarding the wear rate of the abrasive material of the polishing tool under the processing conditions is stored in association with information regarding the processing conditions when polishing the workpiece with the polishing tool, and the workpiece is polished. This invention relates to a system for identifying the wear rate of abrasive material corresponding to the actual machining conditions. Based on the specified wear rate, the system adjusts the load applied to the polishing tool and/or the amount of change in load to be within a predetermined range during polishing under the processing conditions, or adjusts the cutting speed of the polishing tool to the workpiece. Control information is generated for controlling the position of the polishing tool in the contact direction in contact with the workpiece, or the protrusion amount or incision amount of the abrasive material in the contact direction so that the depth of the abrasive material falls within a predetermined range.
 図3は、本発明の実施の形態にかかる、制御情報の生成処理のフローチャートである。以下では、工作機械に備えられたコンピュータ装置において、摩耗速度を特定し、制御情報を生成する場合について、説明をする。まず、利用者は、工作機械に備えられた表示部を介して、各種の加工条件を入力する。入力される加工条件としては、任意の条件を入力することができる。入力する加工条件は、これから実際にワークを研磨する際の条件でもよく、また、実際にはワークを加工しないが、摩耗速度等を見積もることを目的とした、仮定の条件であってもよい。 FIG. 3 is a flowchart of control information generation processing according to the embodiment of the present invention. In the following, a case will be described in which a computer device installed in a machine tool identifies the wear rate and generates control information. First, a user inputs various machining conditions via a display unit provided on a machine tool. Any conditions can be input as the processing conditions. The machining conditions to be input may be the conditions for actually polishing the workpiece, or may be hypothetical conditions for estimating the wear rate etc. without actually machining the workpiece.
 加工条件とは、ワークを研磨する際の条件であって、ワークの加工及び砥材の摩耗に影響を与え得る条件をいう。加工条件としては、例えば、ワークの材質や物性、加工に用いる研磨具の種類や物性、バリの状態などの加工前のワークの状態、加工後のワークの品質などが挙げられる。これらの条件の他、ワークを加工する環境に関する条件(温度、湿度等)を加工条件に含めてもよい。入力された条件は、工作機械の記憶部に記憶される。以下では、ワークに関する情報と、加工前のバリの状態、加工後の品質を加工条件として入力する場合について説明する。 Processing conditions are conditions when polishing a workpiece, and are conditions that can affect the processing of the workpiece and the wear of the abrasive material. Examples of processing conditions include the material and physical properties of the workpiece, the type and physical properties of the polishing tool used for processing, the state of the workpiece before processing such as the state of burrs, and the quality of the workpiece after processing. In addition to these conditions, the processing conditions may also include conditions related to the environment in which the workpiece is processed (temperature, humidity, etc.). The input conditions are stored in the storage section of the machine tool. In the following, a case will be described in which information about the workpiece, the state of burrs before processing, and the quality after processing are input as processing conditions.
 図4は、本発明の実施の形態にかかる、表示部の表示画面の一例を示す図である。表示画面50は、利用者が入力する条件ごとに、例えば、ワークに関する情報51と、バリの状態52、加工後の品質53を加工条件について数値又は数値の選択により条件を入力可能に構成される。以下、各条件の入力について説明をする。 FIG. 4 is a diagram showing an example of the display screen of the display unit according to the embodiment of the present invention. The display screen 50 is configured such that the user can enter information 51 regarding the workpiece, the state of burrs 52, and the quality after processing 53 by selecting numerical values or numerical values for the processing conditions for each condition input by the user. . The input of each condition will be explained below.
 利用者による表示部への操作により、ワークに関する情報51の入力を受け付ける(ステップS1)。ワークに関する情報には、ワークの硬度及び/又は引張強さ、並びに、比切削抵抗に関する情報が含まれる。硬度の値が引張強さの値と比例する場合には、硬度から引張強さを、あるいは、引張強さから硬度を算出するようにしてもよく、いずれか一方の情報の入力を受け付けるようにしてもよい。さらに、加工対象の表面の面性状(素材面であるか否か、面粗度等)に関する情報の入力を受け付けるようにしてもよい。すなわち、ワークに関する情報には、ワークを構成する材料の材質に基づいた特性を表す材料特性が含まれる。 The input of information 51 regarding the work is accepted by the user's operation on the display unit (step S1). The information regarding the workpiece includes information regarding the hardness and/or tensile strength of the workpiece, and specific cutting resistance. If the hardness value is proportional to the tensile strength value, the tensile strength may be calculated from the hardness, or the hardness may be calculated from the tensile strength, and the input of either information may be accepted. You can. Furthermore, it may be possible to receive input of information regarding the surface properties of the surface of the object to be machined (whether or not it is a material surface, surface roughness, etc.). That is, the information regarding the workpiece includes material properties that represent characteristics based on the quality of the material that constitutes the workpiece.
 図5は、本発明の実施の形態にかかる、材質マスタテーブルを表す図である。材質マスタテーブル60は、工作機械の記憶部に記憶される。材質マスタテーブル60は、ワークの材質61ごとに、分類コード62に関連付けて、硬度63、引張強さ64、及び比切削抵抗65が記憶されている。ワークの材質61は、ISO及びJIS-B50431の超硬合金の選択基準にならった7系列に分類される。硬度63、引張強さ64、及び比切削抵抗65は、それぞれ所定の測定方法で測定された値が設定され得る。ワークに関する情報51として、図5に示す材質61、分類コード62を入力するようにしてもよい(図4)。利用者は、材質マスタテーブル60に沿って材質61、分類コード62を入力するだけで、材質61の諸物性を入力することなく、条件を設定することができる。 FIG. 5 is a diagram showing a material master table according to an embodiment of the present invention. The material master table 60 is stored in the storage section of the machine tool. The material master table 60 stores hardness 63, tensile strength 64, and specific cutting resistance 65 for each workpiece material 61 in association with a classification code 62. The material 61 of the workpiece is classified into seven series based on the selection criteria for cemented carbide of ISO and JIS-B50431. The hardness 63, the tensile strength 64, and the specific cutting resistance 65 may each be set to values measured by a predetermined measurement method. As the information 51 regarding the workpiece, the material 61 and classification code 62 shown in FIG. 5 may be input (FIG. 4). The user can set conditions by simply inputting the material 61 and classification code 62 along the material master table 60 without inputting the physical properties of the material 61.
 次に、利用者による表示部への操作により、加工前のワークのバリの状態52に関する情報の入力を受け付ける(ステップS2)。次に、利用者による表示部への操作により、加工後の品質53に関する情報の入力を受け付ける(ステップS3)。図6は、本発明の実施の形態にかかる、加工前におけるワークに生じたバリの状態を表す図である。図6(a)は、ワークの上面鉛直方向に突出するバリである縦バリを表す。縦バリの場合は、ワークの上面水平方向のバリの長さを「バリ厚み」といい、ワークの鉛直方向のバリの長さを「バリ高さ」という。図6(b)は、ワークの上面水平方向に突出するバリである横バリを表す。横バリの場合は、ワークの上面水平方向のバリの長さを「バリ高さ」といい、ワークの上面鉛直方向のバリの長さを「バリ厚み」という。切削、穴あけ等の加工により生じるバリは、縦バリ又は横バリのいずれかに分類可能である。 Next, input of information regarding the burr state 52 of the workpiece before processing is accepted by the user's operation on the display unit (step S2). Next, input of information regarding the quality 53 after processing is accepted by the user's operation on the display unit (step S3). FIG. 6 is a diagram showing the state of burrs generated on the workpiece before processing according to the embodiment of the present invention. FIG. 6A shows a vertical burr that is a burr that protrudes in the vertical direction of the upper surface of the workpiece. In the case of vertical burrs, the length of the burr in the horizontal direction on the top surface of the workpiece is called the ``burr thickness,'' and the length of the burr in the vertical direction of the workpiece is called the ``burr height.'' FIG. 6(b) shows horizontal burrs that are burrs that protrude horizontally from the upper surface of the workpiece. In the case of horizontal burrs, the length of the burr in the horizontal direction on the top surface of the workpiece is called the "burr height," and the length of the burr in the vertical direction on the top surface of the workpiece is called the "burr thickness." Burrs generated by processing such as cutting and drilling can be classified as either vertical burrs or horizontal burrs.
 図7は、本発明の実施の形態にかかる、加工後におけるワークを表す図である。図7(a)及び図7(b)は、加工後のワークのエッジを水平方向視した図である。ここで、エッジとは、ワークの鉛直方向に平行な面と垂直な面との二つの面の交わり部である。また、交わり部とは、稜線をいう。 FIG. 7 is a diagram showing a workpiece after processing according to an embodiment of the present invention. FIGS. 7A and 7B are horizontal views of the edge of the workpiece after processing. Here, the edge is the intersection of two surfaces, one parallel to the vertical direction and the other perpendicular to the workpiece. Furthermore, the intersection refers to a ridgeline.
 図7(a)は、ワークの側面よりも上面に対してなだらかな傾斜を有するように加工した場合の加工後の状態である。図7(a)のワークは、ワークの上面水平方向に対する加工後の長さである上面品質が、ワークの上面鉛直方向に対する加工後の長さである深さ品質より長く加工される。図7(b)は、ワークの上面よりも側面に対してなだらかな傾斜を有するように加工した場合の加工後の状態である。図7(b)のワークは、上面品質より深さ品質の方が長く加工される。 FIG. 7(a) shows the state after machining when the workpiece is machined so that it has a gentler slope with respect to the top surface than with the side surface. The workpiece in FIG. 7A is machined so that the top surface quality, which is the length after processing in the horizontal direction of the top surface of the workpiece, is longer than the depth quality, which is the length after processing in the vertical direction of the top surface of the workpiece. FIG. 7(b) shows the state after machining when the workpiece is machined to have a gentler inclination with respect to the side surface than with the top surface. In the workpiece shown in FIG. 7(b), the depth quality is machined longer than the top surface quality.
 図8は、本発明の実施の形態にかかる、エッジ品質マスタテーブルを表す図である。エッジ品質マスタテーブル70には、エッジ品質呼称71に関連付けて、寸法72が記憶されている。エッジ品質呼称71は、例えば、ワークの上面と側面とが交わるエッジにおいて、上面と側面とがなす角度が90°、つまりエッジがいわゆるピン角である状態の角を基準点としてエッジ品質呼称71を「0」とした場合に、加工前のバリの高さ及び厚みの寸法をプラス方向に定め、加工後の上面品質及び深さ品質の寸法をマイナス方向に定めて、エッジの品質基準を表すようにしたものである。エッジ品質に関しては、日本工業規格(JIS B0721-2004を参照)に定められているが、これに限定されるものではなく、独自に定めたエッジ品質基準を用いてもよい。 FIG. 8 is a diagram representing an edge quality master table according to an embodiment of the present invention. In the edge quality master table 70, a dimension 72 is stored in association with an edge quality designation 71. Edge quality designation 71 is, for example, based on the edge where the top surface and side surface of the workpiece intersect, where the angle between the top surface and the side surface is 90°, that is, the edge is a so-called pin angle. When set to "0", the height and thickness of the burr before processing are set in the positive direction, and the dimensions of the top surface quality and depth quality after processing are set in the negative direction to represent the edge quality standard. This is what I did. The edge quality is defined in the Japanese Industrial Standards (see JIS B0721-2004), but is not limited thereto, and an independently defined edge quality standard may be used.
 エッジ品質マスタテーブル70を用いてより詳細に説明すると、例えば、エッジ品質呼称71が「マイナス2」である場合には、寸法72は基準点から計算して-0.2mm以下の寸法であることを示す。同様に、エッジ品質呼称71が「プラス1」である場合には、寸法72は基準点から計算して0より大きく+0.2mm未満の寸法であることを示す。図6(a)に示す縦バリの高さが+0.3mmであり、厚みが+0.1mmである場合には、バリ高さは「プラス2」、バリ厚みは「プラス1」となる。同様に、図7(a)に示す上面品質が-0.4mmであり、深さ品質が-0.1mmである場合には、上面品質は「マイナス2」、深さ品質は「マイナス1」となる。 To explain in more detail using the edge quality master table 70, for example, if the edge quality designation 71 is "minus 2", the dimension 72 should be -0.2 mm or less calculated from the reference point. shows. Similarly, when the edge quality designation 71 is "plus 1", this indicates that the dimension 72 is greater than 0 and less than +0.2 mm calculated from the reference point. When the height of the vertical burr shown in FIG. 6A is +0.3 mm and the thickness is +0.1 mm, the burr height is "plus 2" and the burr thickness is "plus 1". Similarly, if the top surface quality shown in FIG. 7(a) is -0.4 mm and the depth quality is -0.1 mm, the top surface quality is "minus 2" and the depth quality is "minus 1". becomes.
 ステップS2にて入力されるバリの状態に関する情報とは、例えば、図6(a)に示す縦バリ又は図6(b)に示す横バリのバリ厚み及びバリ高さが、図8に示したエッジ品質マスタテーブルのいずれの寸法72に該当するかを表す情報である。すなわち、該当する寸法72に対応するエッジ品質呼称71が、エッジ部のバリの状態として設定され得る。例えば、図6(a)に示す縦バリの高さが+0.3mmであり、厚みが+0.1mmである場合であれば、ステップS2にて、バリ高さは「プラス2」、バリ厚みは「プラス1」と入力される。バリに関する大きさの計測は、倣い制御や視覚センサにより自動で計測してもよいし、利用者が手動で計測してもよい。 The information regarding the state of the burr input in step S2 is, for example, the burr thickness and burr height of the vertical burr shown in FIG. 6(a) or the horizontal burr shown in FIG. 6(b), and the burr height shown in FIG. This is information representing which dimension 72 of the edge quality master table this corresponds to. That is, the edge quality designation 71 corresponding to the corresponding dimension 72 can be set as the burr state of the edge portion. For example, if the height of the vertical burr shown in FIG. 6(a) is +0.3 mm and the thickness is +0.1 mm, in step S2, the burr height is "plus 2" and the burr thickness is "Plus 1" is input. The size of the burr may be measured automatically using tracing control or a visual sensor, or may be measured manually by the user.
 ステップS3にて入力される加工後の品質に関する情報とは、例えば、図7(a)又は図7(b)に示す上面品質又は深さ品質が、図8に示したエッジ品質マスタテーブルのいずれの寸法72に該当するかを、エッジ品質呼称71を用いて表すものである。すなわち、該当する寸法72に対応するエッジ品質呼称71が、エッジ部のバリの状態として設定され得る。ここでは、加工を行う利用者が、要求するエッジ品質の数値を直接入力する、あるいは、エッジ品質マスタテーブル70に記憶された寸法72を参照していずれかのエッジ品質呼称71を選択することにより、加工後の品質を指定できるようにしてもよい。このように設計することで、利用者は加工後の品質だけを意識すれば加工処理を行うことができ、直感的かつ効率的に加工条件を設定することができる。 The information regarding the quality after processing input in step S3 is, for example, whether the top surface quality or depth quality shown in FIG. 7(a) or FIG. 7(b) is in the edge quality master table shown in FIG. The edge quality designation 71 is used to indicate whether the edge quality corresponds to the dimension 72 of . That is, the edge quality designation 71 corresponding to the corresponding dimension 72 can be set as the burr state of the edge portion. Here, the user performing the processing can directly input the numerical value of the required edge quality, or select one of the edge quality designations 71 by referring to the dimensions 72 stored in the edge quality master table 70. , the quality after processing may be specified. By designing in this way, the user can carry out processing only by considering the quality after processing, and can set processing conditions intuitively and efficiently.
 複数の大きさのバリが存在する場合には、バリに関する大きさは、最大の大きさを入力する情報として採用してもよい。また、計測したデータを入力することで、エッジ品質マスタテーブル70を参照して自動でエッジ品質が選択されるように設計してもよい。 If there are burrs of multiple sizes, the maximum size of the burr may be used as information to be input. Further, by inputting measured data, the edge quality may be designed to be automatically selected by referring to the edge quality master table 70.
 なお、加工後の品質に関する情報には、ステップS2において受け付けたバリの状態に関する情報よりも基準が低くなるような情報を設定することはできないものとする。基準は、例えば、「マイナス2」が最も低く、「プラス2」が最も高いと設定することができる。このとき、バリの状態がマイナス1である場合に、加工後の品質をプラス1に設定することはできない。すなわち、バリの状態に対して、加工後の品質を増加させることはできない。 Note that it is not possible to set information regarding the quality after processing that would result in a lower standard than the information regarding the state of burrs received in step S2. For example, the criteria can be set such that "minus 2" is the lowest and "plus 2" is the highest. At this time, if the burr condition is minus 1, the quality after processing cannot be set to plus 1. That is, it is not possible to increase the quality after processing with respect to the burr state.
 第1の実施の形態において、上記加工条件には、加工に使用する研磨具に関する情報を含めてもよい。ステップS1において受け付けられたワークに関する情報、あるいは、ステップS2において受け付けられたバリの状態に関する情報に基づいて選択できるようにしてもよい。 In the first embodiment, the processing conditions may include information regarding the polishing tool used for processing. The selection may be made based on the information regarding the work accepted in step S1 or the information regarding the state of the burr accepted in step S2.
 加工条件として、加工に使用する研磨具に関する情報を入力する場合、図9に示すような、研磨具マスタテーブルを用意することができる。研磨具マスタテーブル80には、例えば、研磨具No81に関連付けて、研磨具径82、線材種83、線材長84、及びセグメント数85が記憶されている。 When inputting information regarding the polishing tool used for processing as processing conditions, a polishing tool master table as shown in FIG. 9 can be prepared. In the polishing tool master table 80, for example, a polishing tool diameter 82, a wire type 83, a wire length 84, and a segment number 85 are stored in association with the polishing tool No. 81.
 研磨具径82は、研磨具のうち、加工の実行に使用される刃部やブラシ部の直径を表す。線材種83は、加工の実行に使用される刃部やブラシ部の材質を表す。線材長84は、加工の実行に使用される刃部やブラシ部の長さを表す。セグメント数85は、研磨具がブラシ部を有する場合に、ブラシの束の数を表す。これらの情報に加えて、研磨具No81毎に、材質マスタテーブル60に記憶された材質61に対する使用が適切か否かを記憶するようにしてもよい。表示部には、複数の研磨具1について、研磨具マスターブルに登録された情報、例えば、研磨具No81、研磨具径82、線材種83、線材長84及び/又はセグメント数85が表示され、これらの研磨具1のいずれを利用するのかを入力することができる。 The polishing tool diameter 82 represents the diameter of the blade or brush portion of the polishing tool that is used for processing. The wire rod type 83 represents the material of the blade portion and brush portion used to perform processing. The wire length 84 represents the length of the blade portion or brush portion used to perform processing. The number of segments 85 represents the number of brush bundles when the polishing tool has a brush portion. In addition to this information, whether or not the use of the material 61 stored in the material master table 60 is appropriate may be stored for each polishing tool No. 81. The display section displays information registered in the polishing tool masterable about the plurality of polishing tools 1, such as polishing tool No. 81, polishing tool diameter 82, wire type 83, wire length 84, and/or segment number 85, It is possible to input which of these polishing tools 1 to use.
 次に、工作機械は、表示部を介して、研磨条件54の入力を受け付ける(ステップS4)。研磨条件54とは、具体的には、ワークと加工に用いる研磨具との相対的な位置関係や速度を定めるものであって、ワーク又は研磨具の回転速度、ワーク又は研磨具の送り速度、及び切込量などの条件が挙げられる。これらの研磨条件54は、すべてを変数として扱うこともできるが、例えば、研磨具の回転速度など研磨条件54のうちの1つを変数として、その他の条件は定数として扱うことも可能である。 Next, the machine tool receives input of polishing conditions 54 via the display section (step S4). Specifically, the polishing conditions 54 determine the relative positional relationship and speed between the workpiece and the polishing tool used for processing, including the rotational speed of the workpiece or polishing tool, the feed rate of the workpiece or polishing tool, and conditions such as depth of cut. All of these polishing conditions 54 can be treated as variables, but for example, it is also possible to treat one of the polishing conditions 54, such as the rotational speed of the polishing tool, as a variable and the other conditions as constants.
 回転速度とは、単位時間あたりにワーク又は研磨具が回転する速さをいい、回転数ともいう。送り速度とは、加工に使用される研磨具とワークとのXY平面における相対速度をいう。切込量とは、上記に説明したように、1回の加工においてワークの表面に対して、研磨具の先端を押し込む量をいう。 Rotation speed refers to the speed at which a workpiece or polishing tool rotates per unit time, and is also referred to as rotation speed. The feed speed refers to the relative speed in the XY plane between the polishing tool used for machining and the workpiece. As explained above, the depth of cut refers to the amount by which the tip of the polishing tool is pushed into the surface of the workpiece in one machining process.
 工作機械において、ステップS1~S4までの情報の入力を受け付けると、工作機械の制御部にて、摩耗速度マスタテーブルを参照して、受け付けた加工条件に対応する砥材の摩耗速度に関する情報が特定される(ステップS5)。例えば、ワークの材質が「ステンレス系」であり、バリの高さが「プラス2」、バリの厚みが「プラス2」であり、上面品質が「マイナス2」、深さ品質が「マイナス2」であり、研磨条件が「4000/min」であると、ステップS1~S4にて入力をされると、単位距離あたりの摩耗速度は0.6mm/mmと特定される。「単位距離あたりの摩耗速度」は、砥材の摩耗量を、ワークの加工距離で除することにより求められる。ここで、ワークの加工距離とは、ワークが研磨具により加工された距離である。例えば、ワークを固定した状態で研磨具を移動させて加工する場合は、研磨具のXY平面上の移動距離が、ワークの加工距離となる。また、例えば、研磨具を固定した状態でワークを移動させて加工する場合は、研磨具のXY平面上の移動距離が、ワークの加工距離となる。ワークを固定した状態で加工する場合に、XY平面上の研磨具の移動距離が10mmであり、この加工により研磨具の砥材が5mm摩耗したとすると、単位距離あたりの摩耗速度は0.5mm/mmと求められる。 When the machine tool receives the input of information from steps S1 to S4, the control unit of the machine tool refers to the wear rate master table and specifies information regarding the wear rate of the abrasive material corresponding to the accepted machining conditions. (Step S5). For example, the material of the workpiece is "stainless steel", the height of the burr is "plus 2", the thickness of the burr is "plus 2", the top surface quality is "minus 2", and the depth quality is "minus 2". When the polishing condition is "4000/min" and is input in steps S1 to S4, the wear rate per unit distance is specified as 0.6 mm/mm. The "wear rate per unit distance" is determined by dividing the amount of wear of the abrasive material by the machining distance of the workpiece. Here, the processing distance of the workpiece is the distance that the workpiece has been processed by the polishing tool. For example, when processing a workpiece by moving a polishing tool while the workpiece is fixed, the moving distance of the polishing tool on the XY plane becomes the processing distance of the workpiece. Further, for example, when processing a workpiece by moving it with a fixed polishing tool, the moving distance of the polishing tool on the XY plane becomes the processing distance of the workpiece. When machining with a fixed workpiece, if the moving distance of the abrasive tool on the XY plane is 10 mm and the abrasive material of the abrasive tool wears 5 mm due to this machining, the wear rate per unit distance is 0.5 mm. /mm.
 図10は、本発明の実施の形態にかかる、摩耗速度マスタテーブルを表す図である。摩耗速度テーブル90には、例えば、ワークの材質91、バリの状態92、加工後品質93及び研磨条件94に関連付けて、摩耗速度95が記憶されている。バリの状態92には、バリの高さ92a、バリの厚み92bが含まれている。バリの高さ92a、バリの厚み92bは、エッジ品質呼称71を用いて登録されている。加工後品質93には、上面品質93a、深さ品質93bが含まれている。上面品質93a、深さ品質93bも同様に、エッジ品質呼称71にて登録されている。研磨条件94は、研磨条件54のうち、摩耗速度に影響を与える要素が登録されている。摩耗速度95は、例えば、単位距離あたりに、研磨具の有する砥材が摩耗する長さ(又は摩耗する量)であり、所定のワークの材質91、バリの状態92、加工後品質93、研磨条件94において、実際に、研磨具を回転させてワークを研磨加工した際の砥材の摩耗速度を測定し、予め記憶したものである。ステップS5では、ステップS1~S4にて入力された加工条件に対応する摩耗速度95が特定される。摩耗速度95として、単位時間あたりに、研磨具の有する砥材が摩耗する長さ(又は摩耗する量)を、所定のワークの材質91、バリの状態92、加工後品質93、研磨条件94において、実際に、研磨具を回転させてワークを研磨加工した際の砥材の摩耗速度を測定し、予め記憶したものとしてもよい。 FIG. 10 is a diagram representing a wear rate master table according to an embodiment of the present invention. In the wear rate table 90, for example, a wear rate 95 is stored in association with a workpiece material 91, a burr condition 92, a post-processing quality 93, and a polishing condition 94. The burr state 92 includes a burr height 92a and a burr thickness 92b. The burr height 92a and the burr thickness 92b are registered using the edge quality designation 71. The post-processing quality 93 includes a top surface quality 93a and a depth quality 93b. Top surface quality 93a and depth quality 93b are also registered under edge quality designation 71. In the polishing conditions 94, elements of the polishing conditions 54 that affect the wear rate are registered. The wear rate 95 is, for example, the length (or amount of wear) of the abrasive material of the polishing tool per unit distance, and is based on the material 91 of a given workpiece, the state of burrs 92, the quality after processing 93, and the polishing Under condition 94, the wear rate of the abrasive material when a workpiece was actually polished by rotating the polishing tool was measured and stored in advance. In step S5, the wear rate 95 corresponding to the machining conditions input in steps S1 to S4 is specified. The wear rate 95 is defined as the length (or amount of wear) of the abrasive material of the polishing tool per unit time for a given workpiece material 91, burr condition 92, post-processing quality 93, and polishing conditions 94. The wear rate of the abrasive material may be measured and stored in advance when the workpiece is actually polished by rotating the polishing tool.
 特定した摩耗速度に関する情報をもとに、研磨具にかかる負荷及び/若しくは負荷の変化量が所定の範囲内(又は所定の値)に維持できるように、又は、研磨具の切込量が所定の範囲内(所定の値)に維持できるように、研磨具のZ軸方向の位置又は砥材のZ軸方向の突出量若しく切込量(つまり、(Lb-La)の値)を制御するための制御情報を生成する(ステップS6)。 Based on the information on the identified wear rate, the load applied to the polishing tool and/or the amount of change in load can be maintained within a predetermined range (or a predetermined value), or the depth of cut of the polishing tool can be maintained within a predetermined range. The position of the polishing tool in the Z-axis direction or the amount of protrusion or depth of cut in the Z-axis direction of the abrasive material (that is, the value of (Lb-La)) is controlled so that it can be maintained within the range (predetermined value). Control information for this purpose is generated (step S6).
 図11は、本発明の実施の形態にかかる、負荷及び負荷の変化量の一例を示す図である。図11において、横軸は時間、縦軸は研磨具にかかる砥材6の負荷量である。利用者により加工条件として入力された切込量で研磨が開始される。この研磨開始時の切込量が、切込量の所定の範囲の上限値となる。切込量の所定の範囲は、切込量の上限値をもとに自動的に設定されてもよく、利用者が、加工条件として切込量の上限値だけでなく下限値を入力してもよい。切込量の上限値をもとに、切込量の下限値を自動的に設定する場合は、上限値から所定の値を差し引いた値を下限値としてもよく、上限値に0より大きく1より小さい係数を乗じることで算出してもよい。 FIG. 11 is a diagram showing an example of the load and the amount of change in the load according to the embodiment of the present invention. In FIG. 11, the horizontal axis is time, and the vertical axis is the load amount of the abrasive material 6 applied to the polishing tool. Polishing is started with the depth of cut input by the user as processing conditions. The depth of cut at the start of polishing becomes the upper limit of the predetermined range of depth of cut. The predetermined range of the depth of cut may be automatically set based on the upper limit of the depth of cut, or the user may input not only the upper limit but also the lower limit of the depth of cut as machining conditions. Good too. When automatically setting the lower limit of the depth of cut based on the upper limit of the depth of cut, the lower limit may be the value obtained by subtracting a predetermined value from the upper limit. It may be calculated by multiplying by a smaller coefficient.
 図11に示すように、研磨の開始時は、研磨具1にかかる負荷は上限値となっている。研磨具1のZ軸方向の位置が一定で、且つ、砥材6のZ軸方向の突出量が一定である場合、研磨具1によるワーク7の加工が進むについて、砥材6が摩耗し、切込量が小さくなる。切込量が小さくなり、切込量の下限値に到達すると、研磨具1にかかる負荷も下限値に到達する。ここで、加工精度を維持するために、研磨を継続しながら、継続的に研磨具1のZ軸方向の位置がワーク7へ近づくように制御することで、或いは、継続的に砥材6のZ軸方向の突出量を大きくするよう制御することで、切込量が大きくなり、それにあわせて研磨具1にかかる負荷量も大きくなる。 As shown in FIG. 11, at the start of polishing, the load applied to the polishing tool 1 is at the upper limit value. When the position of the polishing tool 1 in the Z-axis direction is constant and the amount of protrusion of the abrasive material 6 in the Z-axis direction is constant, as the processing of the workpiece 7 by the polishing tool 1 progresses, the abrasive material 6 wears out. The depth of cut becomes smaller. When the depth of cut becomes smaller and reaches the lower limit value of the depth of cut, the load applied to the polishing tool 1 also reaches the lower limit value. Here, in order to maintain machining accuracy, the position of the polishing tool 1 in the Z-axis direction may be controlled to approach the workpiece 7 while continuing polishing, or the abrasive material 6 may be continuously moved closer to the workpiece 7. By controlling the amount of protrusion in the Z-axis direction to be large, the amount of cut increases, and the amount of load applied to the polishing tool 1 increases accordingly.
 切込量が大きくなり、切込量の上限値に到達すると、研磨具1にかかる負荷も上限値に到達する。切込量の上限値に到達すると、研磨具1のZ軸方向の位置の移動を停止することで、又は、砥材6のZ軸方向の突出量の増加を停止することで、切込量が増加から減少へ転じる。これらの制御を繰り返すことで、切込量と研磨具1にかかる負荷及び/又は負荷の変化量を所定の範囲内に維持することができる。 When the depth of cut increases and reaches the upper limit value of the depth of cut, the load on the polishing tool 1 also reaches the upper limit value. When the upper limit of the depth of cut is reached, the depth of cut is reduced by stopping the movement of the polishing tool 1 in the Z-axis direction or by stopping the increase in the protrusion amount of the abrasive material 6 in the Z-axis direction. changes from increasing to decreasing. By repeating these controls, the depth of cut, the load applied to the polishing tool 1, and/or the amount of change in the load can be maintained within a predetermined range.
 ステップS6では、特定された摩耗速度をもとに、例えば、上で述べたような制御を繰り返すことで、切込量を所定の範囲内に維持できる、又は、負荷及び負荷の変化量を所定の範囲内に維持できる、研磨具1のZ軸方向の位置又は砥材6のZ軸方向の突出量若しくは切込量についての制御情報を生成する。工作機械は、制御情報にしたがって、ワークの加工を実行する。 In step S6, based on the identified wear rate, for example, by repeating the control described above, the depth of cut can be maintained within a predetermined range, or the load and the amount of change in load can be maintained within a predetermined range. Control information regarding the position of the polishing tool 1 in the Z-axis direction, or the amount of protrusion or depth of cut in the Z-axis direction of the abrasive material 6, which can be maintained within the range of , is generated. The machine tool processes the workpiece according to the control information.
 第1の実施の形態において、摩耗速度に関する情報は、工作機械の制御部がワークの材質、バリの状態、加工後品質、及び研磨条件の入力を受け付けると、摩耗速度テーブルを参照して、摩耗速度テーブルに記憶された摩耗速度に関する情報を特定する態様について説明をしたが、例えば、工作機械の記憶部が、ワークの材質、バリの状態、加工後品質、及び研磨条件と、摩耗速度に関する情報との所定の関係式を記憶しておき、工作機械の制御部が、入力を受け付けたワークの材質、バリの状態、加工後品質、及び研磨条件と、記憶された関係式とに基づいて、摩耗速度に関する情報を特定する態様であってもよい。 In the first embodiment, information regarding the wear rate is determined by referring to the wear rate table when the control unit of the machine tool receives input of the material of the workpiece, the state of burrs, the quality after machining, and the polishing conditions. We have described the manner in which information regarding the wear rate stored in the speed table is specified. For example, the memory unit of a machine tool may store information regarding the material of the workpiece, the state of burrs, the quality after machining, the polishing conditions, and the wear rate. A predetermined relational expression is stored, and the control unit of the machine tool, based on the received input workpiece material, burr condition, post-processing quality, and polishing conditions, and the stored relational expression, It may also be an embodiment in which information regarding the wear rate is specified.
 第1の実施の形態において、ステップS1~S4の入力受付は、工作機械の表示部を介して受け付けるものとして説明したが、上記のように工作機械と有線又は無線により通信可能な他の装置において入力するものとすることができる。工作機械のある作業所において入力操作を行うほか、作業所以外の場所(例えば、工作機械を有する作業所に対して加工を依頼する発注者の所在地)において入力操作を行うことができる。また、ステップS1~S4の入力受付は、データを読み込むことにより入力を受け付ける態様としてもよい。 In the first embodiment, the input reception in steps S1 to S4 was explained as being received via the display section of the machine tool, but as described above, the input reception in steps S1 to S4 is accepted via the display section of the machine tool. It can be input. In addition to performing the input operation at a worksite where the machine tool is located, the input operation can also be performed at a location other than the worksite (for example, the location of the orderer who requests processing to the worksite where the machine tool is located). Further, the input reception in steps S1 to S4 may be performed by reading data.
<第2の実施の形態>
 第2の実施の形態は、ワークを研磨する際の加工条件に関する情報を入力データとし、前記条件における研磨具の有する砥材の摩耗速度に関する情報とを出力データとして機械学習された予測モデルを用いて、実際の加工条件における砥材の摩耗速度に関する情報を特定する、システムに関する。システムは、特定した摩耗速度をもとに、前記加工条件において研磨した際に研磨具にかかる負荷及び/若しくは負荷の変化量が所定の範囲となるように、又は、研磨具のワークへの切込量が所定の範囲となるように、研磨具のワークと接触する接触方向の位置又は砥材の接触方向の突出量若しくは切込量を制御するための制御情報を生成する。
<Second embodiment>
The second embodiment uses a machine-learned predictive model with input data as information regarding the processing conditions when polishing a workpiece and output data as information regarding the wear rate of the abrasive material of the polishing tool under the conditions. The present invention relates to a system for identifying information regarding the wear rate of an abrasive material under actual processing conditions. Based on the specified wear rate, the system adjusts the load applied to the polishing tool and/or the amount of change in load to be within a predetermined range during polishing under the processing conditions, or adjusts the cutting speed of the polishing tool to the workpiece. Control information is generated for controlling the position of the polishing tool in the contact direction in contact with the work, or the amount of protrusion or incision of the abrasive material in the contact direction so that the depth of the abrasive material falls within a predetermined range.
 以下では、工作機械に備えられたコンピュータ装置において、摩耗速度を特定し、制御情報を生成する場合について、説明をする。 Below, a case will be explained in which a computer device installed in a machine tool identifies the wear rate and generates control information.
(予測モデル)
 第2の実施の形態において、工作機械の記憶部には、ワークを研磨する際の加工条件に関する情報を入力データとし、該加工条件における研磨具の有する砥材の摩耗速度に関する情報を出力データとして機械学習された予測モデルが記憶される。機械学習のアルゴリズムは、特に限定されるものではなく、公知のものを用いることができ、例えば、線形回帰、重回帰分析、サポートベクタマシン、決定木、ランダムフォレスト、多層ニューラルネットワークを用いた深層学習が挙げられる。
(prediction model)
In the second embodiment, the storage unit of the machine tool has input data as information regarding machining conditions when polishing a workpiece, and output data as information regarding the wear rate of the abrasive material of the polishing tool under the machining conditions. The machine learned prediction model is stored. Machine learning algorithms are not particularly limited, and known ones can be used, such as linear regression, multiple regression analysis, support vector machines, decision trees, random forests, and deep learning using multilayer neural networks. can be mentioned.
 多層ニューラルネットワークは、入力層、出力層、複数の中間層を有している。各層のノードとノードとを結ぶエッジには、重みが設定されている。エッジには、ノードへの各入力に対応する重みが設定されており、ノードへの各入力に対応する重みを乗じて、これらの重みを乗じて得られた値とバイアスを加算する。加算されて得られた値を、活性化関数を用いて非線形変換を行い、活性値を算出する。算出された活性値は、次の層のノードに渡される入力の値となる。中間層の数は、適宜設計することができる。上記教師データにより重みが最適化される。 A multilayer neural network has an input layer, an output layer, and multiple intermediate layers. Weights are set for edges connecting nodes in each layer. A weight corresponding to each input to the node is set to the edge, and each input to the node is multiplied by the corresponding weight, and the value obtained by multiplying by these weights and the bias are added. The values obtained by the addition are subjected to non-linear transformation using an activation function to calculate an activation value. The calculated activation value becomes the input value passed to the next layer node. The number of intermediate layers can be designed as appropriate. The weights are optimized using the above training data.
 前記入力データとしてのワークを研磨する際の加工条件に関する情報には、例えば、ワークの材質、バリの状態(バリの高さ、バリの厚み)、加工後品質(上面品質、深さ品質)、研磨具に関する情報、及び/又は、研磨条件が含まれる。一方で、前記出力データとして、これらの加工条件において実際にワークを研磨した際の砥材の摩耗速度に関する情報が記憶されている。 The information regarding the processing conditions when polishing the workpiece as the input data includes, for example, the material of the workpiece, the condition of the burr (burr height, burr thickness), the quality after processing (top surface quality, depth quality), Information regarding the polishing tool and/or polishing conditions are included. On the other hand, as the output data, information regarding the wear rate of the abrasive material when a workpiece is actually polished under these processing conditions is stored.
(制御情報の特定処理)
 砥材の摩耗速度に関する情報の特定は、第1の実施の形態と同様に、図3に示す制御情報の特定処理のフローチャートに沿って実行することができる。まず、工作機械は、表示部を介して、ワークに関する情報51の入力を受け付ける(ステップS1)。次に、工作機械は、表示部を介して、加工前のワークのバリの状態52に関する情報の入力を受け付け(ステップS2)、さらに、加工後の品質53に関する情報の入力を受け付ける(ステップS3)。工作機械は、表示部を介して、研磨条件54の入力を受け付ける(ステップS4)。
(Specific processing of control information)
Information regarding the wear rate of the abrasive material can be specified in accordance with the flowchart of the control information specifying process shown in FIG. 3, as in the first embodiment. First, the machine tool receives input of information 51 regarding the workpiece via the display section (step S1). Next, the machine tool receives input of information regarding the burr state 52 of the work before machining via the display unit (step S2), and further receives input of information regarding the quality 53 after machining (step S3). . The machine tool receives input of polishing conditions 54 via the display section (step S4).
 工作機械において、ステップS1~S4までの情報の入力を受け付けると、工作機械の制御部にて、ワークを研磨する際の加工条件に関する情報を入力データとし、該加工条件における研磨具の有する砥材の摩耗速度に関する情報を出力データとして機械学習された予測モデルを用いて、受け付けた加工条件に対応する砥材の摩耗速度に関する情報が特定される(ステップS5)。第2の実施の形態において、上記特定した摩耗速度に関する情報をもとに、研磨具にかかる負荷及び/又は負荷の変化量が所定の範囲となるように(或いは、研磨具の切込量が所定の範囲となるように)、研磨具のZ軸方向の位置又は砥材のZ軸方向の突出量若しくは切込量(つまり(Lb-La)の値)を制御するための制御情報を生成する(ステップS6)。 When the machine tool receives the input of information from steps S1 to S4, the control unit of the machine tool uses the information regarding the machining conditions for polishing the workpiece as input data, and selects the abrasive material of the polishing tool under the machining conditions. Information regarding the wear rate of the abrasive material corresponding to the accepted machining conditions is specified using a machine-learned predictive model using information regarding the wear rate of the abrasive material as output data (step S5). In the second embodiment, the load applied to the polishing tool and/or the amount of change in the load is adjusted to be within a predetermined range (or the amount of cut of the polishing tool is adjusted based on the information regarding the identified wear rate). Generate control information for controlling the position of the polishing tool in the Z-axis direction or the protrusion amount or depth of cut (that is, the value of (Lb-La)) in the Z-axis direction of the abrasive material (so that it falls within a predetermined range) (Step S6).
 第2の実施の形態において、ステップS1~S4の入力受付は、工作機械の表示部を介して受け付けるものとして説明したが、第1の実施の形態と同様に、工作機械と有線又は無線により通信可能な他の装置において入力するものとすることができる。また、ステップS1~S4の入力受付は、データを読み込むことにより入力を受け付ける態様としてもよい。 In the second embodiment, the input reception in steps S1 to S4 was explained as being received via the display section of the machine tool, but similarly to the first embodiment, communication with the machine tool is performed by wire or wirelessly. The input may be made on other devices where possible. Further, the input reception in steps S1 to S4 may be performed by reading data.
<第1の実施の形態及び第2の実施の形態>
 第1の実施の形態及び第2の実施の形態において、本発明の摩耗速度に関する情報を特定するコンピュータ装置として、工作機械を例に説明したが、工作機械と有線又は無線により通信可能な他のコンピュータ装置において、摩耗速度に関する情報の特定を実行するものとしてもよい。また、摩耗速度の特定は、工作機械のみで実行するものであってもよく、工作機械と他の装置とが協働するシステムにおいて実行するものとしてもよい。
<First embodiment and second embodiment>
In the first embodiment and the second embodiment, a machine tool was used as an example of a computer device for specifying information regarding the wear rate of the present invention. The determination of information regarding the wear rate may be performed in a computer device. Further, the wear rate may be determined only by the machine tool, or may be determined by a system in which the machine tool and other devices cooperate.
 また、第1の実施の形態及び第2の実施の形態において、制御情報に基づいて研磨具のZ軸方向の位置又は砥材のZ軸方向の突出量若しくは切込量を制御する工程は、工作機械の制御部において実行されることを例に説明したが、工作機械に接続される研磨具ホルダに備えられるマイコンの制御部において制御されるものとしてもよい。 Further, in the first embodiment and the second embodiment, the step of controlling the position of the polishing tool in the Z-axis direction or the protrusion amount or cutting amount of the abrasive material in the Z-axis direction is performed based on the control information. Although the explanation has been given as an example of execution in the control section of the machine tool, it may be controlled in the control section of a microcomputer provided in a polishing tool holder connected to the machine tool.
 工作機械が他の装置と協働してプログラムを実行する場合について、以下に説明する。工作機械とサーバ装置とにおいてプログラムを実行する場合、図3の制御情報の特定処理におけるステップS1~S4の各条件の入力を受け付ける工程を工作機械において実行し、ステップS5の摩耗速度に関する情報を特定する工程をサーバ装置において実行することが考えられる。サーバ装置において摩耗速度に関する情報を特定した後、特定した摩耗速度に関する情報をもとに制御情報を生成する工程は、サーバ装置において実行されて、工作機械の制御部に送信される態様や、特定した摩耗速度に関する情報を、工作機械の制御部に送信して、工作機械の制御部において、制御情報を生成する工程が実行される態様としてもよい。 A case in which a machine tool executes a program in cooperation with other devices will be described below. When executing a program on a machine tool and a server device, the machine tool executes the process of accepting input of each condition in steps S1 to S4 in the control information specifying process shown in FIG. 3, and specifies information regarding the wear rate in step S5. It is conceivable that the process of doing so is executed in the server device. After identifying the information regarding the wear rate in the server device, the process of generating control information based on the identified information regarding the wear rate is executed in the server device and transmitted to the control unit of the machine tool, An embodiment may also be adopted in which the information regarding the wear rate obtained is transmitted to the control section of the machine tool, and the control section of the machine tool executes the step of generating control information.
 サーバ装置又は工作機械の制御部において生成された制御情報に基づいて研磨具のZ軸方向の位置又は砥材のZ軸方向の突出量若しくは切込量を制御する工程は、工作機械の制御部において実行されてもよく、工作機械に接続される研磨具ホルダに備えられるマイコンの制御部において実行されてもよい。この場合において、生成された制御情報は、必要に応じて通信手段により、制御を実行する工作機械又はマイコンの制御部に送信されるものとする。 The step of controlling the position of the polishing tool in the Z-axis direction or the amount of protrusion or depth of cut in the Z-axis direction of the abrasive material based on the control information generated by the server device or the control section of the machine tool is performed by the control section of the machine tool. The process may be executed in a microcomputer control section provided in a polishing tool holder connected to a machine tool. In this case, it is assumed that the generated control information is transmitted to the control unit of the machine tool or microcomputer that executes the control by communication means as necessary.
 また、工作機械とサーバ装置に加えて、工作機械とサーバ装置と通信可能な他のコンピュータ装置とにおいてプログラムを実行する場合、図3の制御情報の特定処理におけるステップS1~S4の各条件の入力を受け付ける工程を他のコンピュータ装置において実行し、ステップS5の摩耗速度に関する情報を特定する工程をサーバ装置において実行することが考えられる。サーバ装置において摩耗速度に関する情報を特定した後、特定した摩耗速度に関する情報をもとに制御情報を生成する工程は、サーバ装置において実行されて、通信部を介して工作機械の制御部に送信される態様や、サーバ装置において実行されて、通信部を介して他のコンピュータ装置に送信される態様や、特定した摩耗速度に関する情報を、通信部を介して工作機械の制御部又は他のコンピュータ装置に送信して、工作機械の制御部又は他のコンピュータ装置において、制御情報を生成する工程が実行される態様としてもよい。 In addition to the machine tool and the server device, if the program is executed on another computer device that can communicate with the machine tool and the server device, input each condition in steps S1 to S4 in the control information specifying process shown in FIG. It is conceivable that the step of accepting the request is executed in another computer device, and the step of specifying the information regarding the wear rate in step S5 is executed in the server device. After identifying information regarding the wear rate in the server device, a step of generating control information based on the identified information regarding the wear rate is executed in the server device and transmitted to the control unit of the machine tool via the communication unit. The method is executed in the server device and transmitted to another computer device via the communication section, and the information regarding the identified wear rate is sent to the control section of the machine tool or other computer device via the communication section. The process of generating the control information may be performed in a control unit of a machine tool or another computer device.
 サーバ装置、工作機械又は他のコンピュータ装置の制御部において生成された制御情報に基づいて研磨具のZ軸方向の位置又は砥材のZ軸方向の突出量若しくは切込量を制御する工程は、工作機械の制御部において実行されてもよく、工作機械に接続される研磨具ホルダに備えられるマイコンの制御部において実行されてもよい。この場合において、生成された制御情報は、必要に応じて通信手段により、制御を実行する工作機械又はマイコンの制御部に送信されるものとする。 The step of controlling the position of the polishing tool in the Z-axis direction or the protrusion amount or cutting amount of the abrasive material in the Z-axis direction based on control information generated in the control unit of the server device, machine tool, or other computer device, The process may be executed in a control unit of a machine tool, or may be executed in a control unit of a microcomputer provided in a polishing tool holder connected to a machine tool. In this case, it is assumed that the generated control information is transmitted to the control unit of the machine tool or microcomputer that executes the control by communication means as necessary.
<第3の実施の形態>
 第3の実施の形態は、研磨具によりワークを研磨する際の加工条件に関する情報と関連付けて、前記加工条件において研磨した際に研磨具にかかる負荷及び/又は負荷の変化量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報をし、ワークを研磨する際の加工条件に対応する制御情報を特定する、システムに関する。また、第3の実施の形態は、研磨具によりワークを研磨する際の加工条件に関する情報と関連付けて、前記加工条件において研磨具のワークへの切込量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量を制御するための制御情報を記憶し、ワークを研磨する際の加工条件に対応する制御情報を特定する、システムに関する。
<Third embodiment>
In the third embodiment, the load applied to the polishing tool and/or the amount of change in the load when polishing under the processing conditions is set within a predetermined range in association with information regarding processing conditions when polishing a workpiece with a polishing tool. control information for controlling the position of the polishing tool in the contact direction in contact with the workpiece or the amount of protrusion or cutting in the contact direction of the abrasive material of the polishing tool, and the processing conditions when polishing the workpiece. Relating to a system that identifies corresponding control information. Further, the third embodiment provides a polishing tool that is associated with information regarding processing conditions when polishing a workpiece with a polishing tool, and makes the depth of cut of the polishing tool into the workpiece within a predetermined range under the processing conditions. storing control information for controlling the position in the contact direction of contact with the workpiece or the protrusion amount of the abrasive material of the polishing tool in the contact direction, and specifying control information corresponding to processing conditions when polishing the workpiece; Regarding the system.
 以下では、工作機械に備えられたコンピュータ装置において、制御情報を特定する場合について、説明をする。 In the following, a case will be explained in which control information is specified in a computer device installed in a machine tool.
 第1の実施の形態における、図5の材質マスタテーブル、図8のエッジ品質マスタテーブル、及び、図9の研磨具マスタテーブルについての記載は、第3の実施の形態でも同様に適用される。また、第1の実施の形態における、図6の加工前におけるワークに生じたバリの状態、図7の加工後におけるワークについての記載も、第3の実施の形態でも同様に適用される。さらに、第1の実施の形態における、図4の表示画面についての記載も、第3の実施の形態でも同様に適用される。 The descriptions of the material master table in FIG. 5, the edge quality master table in FIG. 8, and the polishing tool master table in FIG. 9 in the first embodiment apply similarly to the third embodiment. Further, the description of the state of burrs formed on the workpiece before machining in FIG. 6 and the description of the workpiece after machining in FIG. 7 in the first embodiment is similarly applied to the third embodiment. Furthermore, the description regarding the display screen in FIG. 4 in the first embodiment is similarly applied to the third embodiment.
 制御情報の特定は、図12に示す制御情報の特定処理のフローチャートに沿って実行することができる。まず、工作機械は、ワークに関する情報101の入力を受け付ける(ステップS11)。次に、工作機械は、表示部を介して、加工前のワークのバリの状態102に関する情報の入力を受け付け(ステップS12)、加工後の品質103に関する情報の入力を受け付ける(ステップS13)。工作機械は、表示部を介して、研磨条件104の入力を受け付ける(ステップS14)。ステップS11~S14にて入力される加工条件は、任意の条件が入力される。入力する加工条件は、これから実際にワークを研磨する際の条件でもよく、また、実際にはワークを加工しないが、制御情報を予測することを目的とした、仮定の条件であってもよい。 Specifying the control information can be performed according to the flowchart of the control information specifying process shown in FIG. 12. First, the machine tool receives input of information 101 regarding the workpiece (step S11). Next, the machine tool receives input of information regarding the burr state 102 of the work before machining via the display section (step S12), and receives input of information regarding the quality 103 after machining (step S13). The machine tool receives input of polishing conditions 104 via the display section (step S14). Any processing conditions are input in steps S11 to S14. The machining conditions to be input may be conditions for actually polishing the workpiece, or may be hypothetical conditions for the purpose of predicting control information without actually machining the workpiece.
 工作機械において、ステップS11~ステップS14までの情報の入力を受け付けると、工作機械の制御部にて、制御情報マスタテーブルを参照して、受け付けた加工条件に対応する制御情報が特定される(ステップS15)。 When the machine tool receives the input of information from step S11 to step S14, the control section of the machine tool refers to the control information master table to identify control information corresponding to the received machining conditions (step S15).
 図13は、本発明の実施の形態にかかる、制御情報マスタテーブルを表す図である。制御情報マスタテーブル100には、例えば、ワークの材質101、バリの状態102、加工後品質103及び研磨条件104に関連付けて、摩耗速度105が記憶されている。バリの状態102には、バリの高さ102a、バリの厚み102bが含まれている。バリの高さ102a、バリの厚み102bは、エッジ品質呼称71を用いて登録されている。加工後品質103には、上面品質103a、深さ品質103bが含まれている。上面品質103a、深さ品質103bも同様に、エッジ品質呼称71にて登録されている。研磨条件104は、研磨条件54のうち、摩耗速度に影響を与える要素が登録されている。 FIG. 13 is a diagram showing a control information master table according to an embodiment of the present invention. The control information master table 100 stores, for example, a wear rate 105 in association with a workpiece material 101, a burr state 102, a post-processing quality 103, and a polishing condition 104. The burr state 102 includes a burr height 102a and a burr thickness 102b. The burr height 102a and the burr thickness 102b are registered using the edge quality designation 71. The post-processing quality 103 includes a top surface quality 103a and a depth quality 103b. Top surface quality 103a and depth quality 103b are also registered under edge quality designation 71. In the polishing conditions 104, elements of the polishing conditions 54 that affect the wear rate are registered.
 制御情報105は、研磨具にかかる負荷及び/又は負荷の変化量を所定の範囲(又は所定の値)、又は、研磨具の切込量を所定の範囲(又は所定の値)とするための研磨具のZ軸方向の位置又は研磨具の有する砥材のZ軸方向の突出量若しくは切込量(つまり(Lb-La)の値)を制御するための情報である。制御情報105は、所定のワークの材質101、バリの状態102、加工後品質103、研磨条件104において、実際に、研磨具を回転させてワークを研磨加工した際において、研磨具にかかる負荷及び/若しくは負荷の変化量を所定の範囲に制御することが可能な制御情報、又は、研磨具の切込量を所定の範囲に制御することが可能な制御情報を、予め記憶したものである。ステップS15では、ステップS11~S14にて入力された加工条件に対応する制御情報105が特定される。 The control information 105 is information for setting the load applied to the polishing tool and/or the amount of change in the load within a predetermined range (or a predetermined value), or the amount of cut of the polishing tool within a predetermined range (or a predetermined value). This is information for controlling the position of the polishing tool in the Z-axis direction or the amount of protrusion or cutting in the Z-axis direction of the abrasive material of the polishing tool (that is, the value of (Lb-La)). The control information 105 includes the load and load applied to the polishing tool when the polishing tool is actually rotated and the workpiece is polished under a predetermined workpiece material 101, burr condition 102, post-processing quality 103, and polishing conditions 104. /Or control information capable of controlling the amount of change in load within a predetermined range, or control information capable of controlling the cutting depth of the polishing tool within a predetermined range, is stored in advance. In step S15, control information 105 corresponding to the machining conditions input in steps S11 to S14 is specified.
 制御情報105は、より具体的には、研磨開始から所定の時間が経過するまでは、研磨具のZ軸方向の位置又は研磨具の有する砥材のZ軸方向の(Lb-La)の値を変化させず、所定の第1時間が経過した後に、所定の速度で、研磨具のZ軸方向の位置又は研磨具の有する砥材のZ軸方向の(Lb-La)の値を変化させ、さらに、所定の第2時間が経過した後に、研磨具のZ軸方向の位置又は研磨具の有する砥材のZ軸方向の(Lb-La)の値の変化を停止する、といった制御を繰り返し実行することを可能とするものである。 More specifically, the control information 105 includes the position of the polishing tool in the Z-axis direction or the value (Lb-La) of the abrasive material of the polishing tool in the Z-axis direction until a predetermined time has elapsed from the start of polishing. After a predetermined first time has elapsed without changing the position of the polishing tool in the Z-axis direction or the value of (Lb-La) in the Z-axis direction of the abrasive material possessed by the polishing tool, at a predetermined speed. , Furthermore, after a predetermined second time period has elapsed, control is repeated such as stopping the change in the position of the polishing tool in the Z-axis direction or the value of (Lb-La) in the Z-axis direction of the abrasive material possessed by the polishing tool. It is possible to carry out the execution.
 工作機械の制御部は、生成した制御情報をもとに、研磨具のZ軸方向の位置又は砥材のZ軸方向の突出量若しくは切込量を制御する。工作機械は、制御された位置又は突出量若しくは切込量にて、ワークの加工を実行する。 The control unit of the machine tool controls the position of the polishing tool in the Z-axis direction, or the amount of protrusion or cutting depth of the abrasive material in the Z-axis direction. A machine tool processes a workpiece at a controlled position, protrusion amount, or depth of cut.
 第3の実施の形態において、ステップS11~S14の入力受付は、工作機械の表示部を介して受け付けるものとして説明したが、工作機械と有線又は無線により通信可能な他の装置において入力するものとすることができる。また、ステップS11~S14の入力受付は、データを読み込むことにより入力を受け付ける態様としてもよい。 In the third embodiment, the input reception in steps S11 to S14 has been described as being received via the display section of the machine tool, but it is also possible to input the input from another device that can communicate with the machine tool by wire or wirelessly. can do. Further, the input reception in steps S11 to S14 may be performed by reading data.
<第4の実施の形態>
 第4の実施の形態は、ワークを研磨する際の加工条件に関する情報と、前記加工条件において研磨した際に研磨具にかかる負荷及び/又は負荷の変化量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報とを教師データとして機械学習された予測モデルを用いて、実際の加工条件における制御情報を特定する、システムに関する。また、第4の実施の形態は、ワークを研磨する際の加工条件に関する情報と、前記加工条件において研磨具のワークへの切込量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報とを教師データとして機械学習された予測モデルを用いて、実際の加工条件における制御情報を特定する、システムに関する。
<Fourth embodiment>
A fourth embodiment provides information regarding processing conditions when polishing a workpiece, and a polishing tool for keeping the load applied to the polishing tool and/or the amount of change in the load within a predetermined range when polishing under the processing conditions. Using a machine-learned predictive model as training data, the position in the contact direction of contact with the workpiece, or the control information for controlling the protrusion amount or depth of cut in the contact direction of the abrasive material of the polishing tool is used to calculate the actual The present invention relates to a system that specifies control information in processing conditions. Further, the fourth embodiment provides information regarding processing conditions when polishing a workpiece, and information regarding the contact between the polishing tool and the workpiece in order to make the amount of cut into the workpiece by the polishing tool within a predetermined range under the processing conditions. Control information for controlling the position in the contact direction or the amount of protrusion or depth of cut in the contact direction of the abrasive material of the polishing tool is used as training data to generate control information under actual machining conditions using a machine-learned predictive model. , regarding the system.
 以下では、工作機械に備えられたコンピュータ装置において、制御情報を特定する場合について、説明をする。 In the following, a case will be explained in which control information is specified in a computer device installed in a machine tool.
(予測モデル)
 第4の実施の形態において、工作機械の記憶部には、ワークを研磨する際の加工条件に関する情報を入力データとし、該加工条件にてワークを研磨した際に、研磨具にかかる負荷及び/又は負荷の変化量を所定の範囲とするための研磨具のZ軸方向の位置又は研磨具の有する砥材のZ軸方向の突出量若しくは切込量を制御するための制御情報とを教師データとして機械学習された予測モデルが記憶される。第4の実施の形態において、工作機械の記憶部には、ワークを研磨する際の加工条件に関する情報を入力データとし、該加工条件にてワークを研磨した際に、研磨具の切込量を所定の範囲とするための研磨具のZ軸方向の位置又は研磨具の有する砥材のZ軸方向の突出量若しくは切込量を制御するための制御情報とを教師データとして機械学習された予測モデルが記憶される。機械学習のアルゴリズムは、特に限定されるものではなく、公知のものを用いることができ、例えば、線形回帰、重回帰分析、サポートベクタマシン、決定木、ランダムフォレスト、多層ニューラルネットワークを用いた深層学習が挙げられる。
(prediction model)
In the fourth embodiment, the storage unit of the machine tool has input data information regarding processing conditions when polishing a workpiece, and when the workpiece is polished under the processing conditions, the load and/or load applied to the polishing tool and/or Or the position of the polishing tool in the Z-axis direction to keep the amount of change in load within a predetermined range, or the control information for controlling the amount of protrusion or depth of cut in the Z-axis direction of the abrasive material of the polishing tool. The machine learned prediction model is stored as In the fourth embodiment, the storage unit of the machine tool has input data information regarding processing conditions when polishing a workpiece, and when the workpiece is polished under the processing conditions, the depth of cut of the polishing tool is determined. Predictions made by machine learning using training data as the position of the polishing tool in the Z-axis direction or control information for controlling the protrusion amount or depth of cut in the Z-axis direction of the abrasive material of the polishing tool to achieve a predetermined range. The model is memorized. Machine learning algorithms are not particularly limited, and known ones can be used, such as linear regression, multiple regression analysis, support vector machines, decision trees, random forests, and deep learning using multilayer neural networks. can be mentioned.
 多層ニューラルネットワークは、入力層、出力層、複数の中間層を有している。各層のノードとノードとを結ぶエッジには、重みが設定されている。エッジには、ノードへの各入力に対応する重みが設定されており、ノードへの各入力に対応する重みを乗じて、これらの重みを乗じて得られた値とバイアスを加算する。加算されて得られた値を、活性化関数を用いて非線形変換を行い、活性値を算出する。算出された活性値は、次の層のノードに渡される入力の値となる。中間層の数は、適宜設計することができる。上記教師データにより重みが最適化される。 A multilayer neural network has an input layer, an output layer, and multiple intermediate layers. Weights are set for edges connecting nodes in each layer. A weight corresponding to each input to the node is set to the edge, and each input to the node is multiplied by the corresponding weight, and the value obtained by multiplying by these weights and the bias are added. The values obtained by the addition are subjected to non-linear transformation using an activation function to calculate an activation value. The calculated activation value becomes the input value passed to the next layer node. The number of intermediate layers can be designed as appropriate. The weights are optimized using the above training data.
 前記入力データとしてのワークを研磨する際の加工条件に関する情報には、例えば、ワークの材質、バリの状態(バリの高さ、バリの厚み)、加工後品質(上面品質、深さ品質)、研磨具に関する情報、及び/又は、研磨条件が含まれる。一方で、前記出力データとして、これらの加工条件において実際にワークを研磨した際における、研磨具にかかる負荷の上限若しくは下限(負荷の変化量の上限若しくは下限)と、研磨具のZ軸方向の位置又は研磨具の有する砥材のZ軸方向の突出量若しくは切込量の制御情報が記憶されている。または、前記出力データとして、これらの加工条件において実際にワークを研磨した際における、研磨具の切込量の上限又は下限と、研磨具のZ軸方向の位置又は研磨具の有する砥材のZ軸方向の突出量若しくは切込量の制御情報が記憶されている。 The information regarding the processing conditions when polishing the workpiece as the input data includes, for example, the material of the workpiece, the condition of the burr (burr height, burr thickness), the quality after processing (top surface quality, depth quality), Information regarding the polishing tool and/or polishing conditions are included. On the other hand, the output data includes the upper or lower limit of the load applied to the polishing tool (the upper or lower limit of the amount of change in load) when actually polishing a workpiece under these processing conditions, and the Z-axis direction of the polishing tool. Control information on the position, or the amount of protrusion or depth of cut in the Z-axis direction of the abrasive material of the polishing tool is stored. Alternatively, the output data may include the upper limit or lower limit of the depth of cut of the polishing tool, the position of the polishing tool in the Z-axis direction, or the Z of the abrasive material possessed by the polishing tool when the workpiece is actually polished under these processing conditions. Control information on the amount of protrusion or the amount of cut in the axial direction is stored.
(制御情報の特定処理)
 砥材の摩耗速度に関する情報の特定は、第3の実施の形態と同様に、図12に示す、制御情報の特定処理のフローチャートに沿って実行することができる。まず、工作機械は、表示部を介して、ワークに関する情報101の入力を受け付ける(ステップS11)。次に、工作機械は、表示部を介して、加工前のワークのバリの状態102に関する情報の入力を受け付け(ステップS12)、加工後の品質103に関する情報の入力を受け付ける(ステップS13)。工作機械は、表示部を介して、研磨条件104の入力を受け付ける(ステップS14)。
(Specific processing of control information)
Information regarding the wear rate of the abrasive material can be specified in accordance with the flowchart of the control information specifying process shown in FIG. 12, similarly to the third embodiment. First, the machine tool receives input of information 101 regarding the workpiece via the display section (step S11). Next, the machine tool receives input of information regarding the burr state 102 of the work before machining via the display section (step S12), and receives input of information regarding the quality 103 after machining (step S13). The machine tool receives input of polishing conditions 104 via the display section (step S14).
 工作機械において、ステップS11~S14までの情報の入力を受け付けると、工作機械の制御部にて、ワークを研磨する際の加工条件に関する情報を入力データとし、該加工条件における研磨具の有する砥材の摩耗速度に関する情報を出力データとして機械学習された予測モデルを用いて、受け付けた加工条件に対応する制御情報が特定される(ステップS15)。ステップS15により、研磨具にかかる負荷及び/又は負荷の変化量が所定の範囲となるように(或いは、研磨具の切込量が所定の範囲となるように)、研磨具のZ軸方向の位置又は砥材のZ軸方向の突出量若しくは切込量(つまり(Lb-La)の値)を制御するための制御情報が生成される。 When the machine tool receives the input of information from steps S11 to S14, the control unit of the machine tool uses the information regarding the machining conditions for polishing the workpiece as input data, and selects the abrasive material of the polishing tool under the machining conditions. Control information corresponding to the received machining conditions is specified using a machine-learned predictive model using information regarding the wear rate as output data (step S15). In step S15, the polishing tool is adjusted in the Z-axis direction so that the load applied to the polishing tool and/or the amount of change in the load is within a predetermined range (or so that the cutting depth of the polishing tool is within a predetermined range). Control information for controlling the position or the amount of protrusion or depth of cut in the Z-axis direction of the abrasive material (that is, the value of (Lb-La)) is generated.
 工作機械の制御部は、生成した制御情報をもとに、研磨具のZ軸方向の位置又は砥材のZ軸方向の突出量若しくは切込量を制御する。工作機械は、制御された位置又は突出量若しくは切込量にて、ワークの加工を実行する。 The control unit of the machine tool controls the position of the polishing tool in the Z-axis direction, or the amount of protrusion or cutting depth of the abrasive material in the Z-axis direction. A machine tool processes a workpiece at a controlled position, protrusion amount, or depth of cut.
 第4の実施の形態において、工作機械の記憶部に記憶する予測モデルの教師データには、加工開始からの加工時間の情報、該加工時間と関連付けた加工経路の情報を含めてもよい。この場合、加工開始から所定時間経過した場合の摩耗速度に関する情報を、より正確に特定することが可能となる。 In the fourth embodiment, the training data of the predictive model stored in the storage unit of the machine tool may include information on the machining time from the start of machining and information on the machining path associated with the machining time. In this case, it becomes possible to more accurately specify information regarding the wear rate when a predetermined period of time has elapsed from the start of machining.
 第4の実施の形態において、ステップS11~S14の入力受付は、工作機械の表示部を介して受け付けるものとして説明したが、第1の実施の形態と同様に、工作機械と有線又は無線により通信可能な他の装置において入力するものとすることができる。また、特定のUIを備えず、入力を受け付けるものとしてもよい。 In the fourth embodiment, the input reception in steps S11 to S14 has been described as being received via the display section of the machine tool, but similarly to the first embodiment, communication with the machine tool is made by wire or wirelessly. The input may be made on other devices where possible. Alternatively, it may be configured to accept input without having a specific UI.
 また、ステップS11~S14の入力受付は、数値を入力する、メニューから選択して入力する、データを読み込むことで入力を受け付ける態様としてもよい。 Furthermore, the input reception in steps S11 to S14 may be performed by inputting numerical values, selecting and inputting from a menu, or accepting input by reading data.
<第3の実施の形態及び第4の実施の形態>
 第3の実施の形態及び第4の実施の形態において、本発明の摩耗速度に関する情報を特定するプログラムを実行する装置として、工作機械を例に説明したが、工作機械と有線又は無線により通信可能な他の装置においてプログラムを実行するものであってもよい。また、摩耗速度に関する情報を特定するプログラムは、工作機械単独で実行するものであってもよく、工作機械と有線又は無線により通信可能な他の装置と協働するシステムにおいて実行するものとしてもよい。
<Third embodiment and fourth embodiment>
In the third embodiment and the fourth embodiment, a machine tool was explained as an example of a device that executes a program for specifying information regarding the wear rate of the present invention, but it is possible to communicate with a machine tool by wire or wirelessly. The program may also be executed on other devices. Further, the program for specifying information regarding the wear rate may be executed by the machine tool alone, or may be executed in a system that cooperates with other devices that can communicate with the machine tool by wire or wirelessly. .
 また、第3の実施の形態及び第4の実施の形態において、制御情報に基づいて研磨具のZ軸方向の位置又は砥材のZ軸方向の突出量若しくは切込量を制御する工程は、工作機械の制御部において実行されることを例に説明したが、工作機械に接続される研磨具ホルダに備えられる少なくとも制御部と通信部を含むマイコンの制御部において制御されるものとしてもよい。 Further, in the third embodiment and the fourth embodiment, the step of controlling the position of the polishing tool in the Z-axis direction or the protrusion amount or cutting amount of the abrasive material in the Z-axis direction is performed based on the control information. Although the explanation has been given as an example of execution in the control section of the machine tool, it may be controlled in the control section of a microcomputer that includes at least a control section and a communication section provided in a polishing tool holder connected to the machine tool.
 工作機械が他の装置と協働してプログラムを実行する場合について、以下に説明する。工作機械とサーバ装置とにおいてプログラムを実行する場合、図12の制御情報の特定処理におけるステップS11~S14の各条件の入力を受け付ける工程を工作機械において実行し、ステップS15の制御情報を特定する工程をサーバ装置において実行することが考えられる。サーバ装置において、加工条件に対応する制御情報を特定した後、該制御情報が工作機械の制御部に送信される態様や、工作機械に接続される研磨具ホルダに備えられるマイコンの制御部に送信される態様としてもよい。 A case in which a machine tool executes a program in cooperation with other devices will be described below. When the program is executed on the machine tool and the server device, the machine tool executes the step of accepting input of each condition in steps S11 to S14 in the control information specifying process of FIG. 12, and the step of specifying the control information in step S15. It is conceivable to execute this on a server device. In the server device, after specifying the control information corresponding to the machining conditions, the control information is sent to the control unit of the machine tool, or to the control unit of the microcomputer provided in the polishing tool holder connected to the machine tool. It is also possible to adopt a mode in which the
 また、工作機械とサーバ装置に加えて、工作機械とサーバ装置と通信可能な他のコンピュータ装置とにおいてプログラムを実行する場合、図12の制御情報の特定処理におけるステップS11~S14の各条件の入力を受け付ける工程を他のコンピュータ装置において実行し、ステップS15の制御情報を特定する工程をサーバ装置において実行することが考えられる。サーバ装置において、加工条件に対応する制御情報を特定した後、該制御情報が工作機械の制御部に送信される態様や、工作機械に接続される研磨具ホルダに備えられるマイコンの制御部に送信される態様としてもよい。 In addition to the machine tool and the server device, when the program is executed on another computer device that can communicate with the machine tool and the server device, input of each condition in steps S11 to S14 in the control information specifying process in FIG. It is conceivable that the step of accepting the request is executed in another computer device, and the step of specifying the control information in step S15 is executed in the server device. In the server device, after specifying the control information corresponding to the machining conditions, the control information is sent to the control unit of the machine tool or to the control unit of the microcomputer provided in the polishing tool holder connected to the machine tool. It is also possible to adopt a mode in which the
 研磨具のZ軸方向の位置又は砥材のZ軸方向の突出量若しくは切込量を制御する工程は、工作機械の制御部において実行されてもよく、工作機械に接続される研磨具ホルダに備えられるマイコンの制御部において実行されてもよい。 The step of controlling the position of the polishing tool in the Z-axis direction or the protrusion amount or cutting amount of the abrasive material in the Z-axis direction may be performed in the control section of the machine tool, and may be performed in the control section of the machine tool, and may be performed in the polishing tool holder connected to the machine tool. It may be executed in a control unit of a microcomputer provided.
 1 研磨具、 2 研磨具ホルダ、 3 大径部、 3a 送り軸、 4 スリーブ、
 5 シャンク、 6 砥材、 6a 砥材ホルダ、 6b 貫通孔、 7 ワーク、
 8 被加工面、 50 表示画面、 51 ワークに関する情報、 52 バリの状態、
 53 加工後の品質、54 研磨条件、 60 材質マスタテーブル、
 70 エッジ品質マスタテーブル、 80 研磨具マスタテーブル、
 90 摩耗速度テーブル、 100 制御情報テーブル

 
1 polishing tool, 2 polishing tool holder, 3 large diameter section, 3a feed shaft, 4 sleeve,
5 shank, 6 abrasive material, 6a abrasive material holder, 6b through hole, 7 workpiece,
8 workpiece surface, 50 display screen, 51 information about the workpiece, 52 burr condition,
53 Quality after processing, 54 Polishing conditions, 60 Material master table,
70 Edge quality master table, 80 Polishing tool master table,
90 Wear rate table, 100 Control information table

Claims (27)

  1. 少なくとも1のコンピュータ装置を備えるシステムであって、
    研磨具によりワークを研磨する際の条件に関する情報と関連付けて、前記条件における研磨具の有する砥材の摩耗速度に関する情報を記憶する記憶手段と、
    ワークを研磨する際の条件の入力を受け付ける入力手段と、
    受け付けた条件に対応する砥材の摩耗速度に関する情報を特定する特定手段と
    を備える、システム。
    A system comprising at least one computer device, the system comprising:
    a storage means for storing information regarding the wear rate of the abrasive material of the polishing tool under the conditions in association with information regarding the conditions for polishing the workpiece with the polishing tool;
    an input means for accepting input of conditions for polishing a work;
    and identifying means for identifying information regarding the wear rate of an abrasive material corresponding to accepted conditions.
  2. 少なくとも1のコンピュータ装置を備えるシステムであって、
    研磨具によりワークを研磨する際の条件の入力を受け付ける入力手段と、
    ワークを研磨する際の条件に関する情報を入力データとし、前記条件における研磨具の有する砥材の摩耗速度に関する情報を出力データとして機械学習された予測モデルを用いて、受け付けた条件における砥材の摩耗速度に関する情報を特定する特定手段と
    を備える、システム。
    A system comprising at least one computer device, the system comprising:
    an input means for accepting input of conditions for polishing a workpiece with a polishing tool;
    The wear rate of the abrasive material under the accepted conditions is calculated by using a machine learning prediction model with input data as input data regarding the conditions for polishing the workpiece and output data as information regarding the wear rate of the abrasive material of the polishing tool under the conditions. and identifying means for identifying information regarding speed.
  3. 特定した摩耗速度に関する情報をもとに、前記条件において研磨した際に研磨具にかかる負荷及び/又は負荷の変化量が所定の範囲となるように、研磨具のワークと接触する接触方向の位置又は砥材の接触方向の突出量若しくは切込量を制御するための制御情報を生成する生成手段と
    を備える、請求項1又は2に記載のシステム。
    Based on the information regarding the identified wear rate, the position of the polishing tool in the contact direction in contact with the workpiece is determined so that the load applied to the polishing tool and/or the amount of change in load during polishing under the above conditions is within a predetermined range. The system according to claim 1 or 2, further comprising a generating means for generating control information for controlling the amount of protrusion or the amount of cut in the contact direction of the abrasive material.
  4. 生成した制御情報をもとに、研磨具の接触方向の位置又は砥材の接触方向の突出量若しくは切込量を制御する制御手段と
    を備える、請求項3に記載のシステム。
    The system according to claim 3, further comprising a control means for controlling the position of the polishing tool in the contact direction, or the amount of protrusion or incision of the abrasive material in the contact direction, based on the generated control information.
  5. 生成した制御情報を、前記1のコンピュータ装置とは異なる他のコンピュータ装置に送信する送信手段と
    を備える、請求項3に記載のシステム。
    4. The system according to claim 3, further comprising a transmitting means for transmitting the generated control information to another computer device different from the first computer device.
  6. 特定した摩耗速度に関する情報をもとに、研磨具のワークへの切込量が所定の範囲となるように、研磨具のワークと接触する接触方向の位置又は砥材の接触方向の突出量若しくは切込量を制御するための制御情報を生成する生成手段と
    を備える、請求項1又は2に記載のシステム。
    Based on the information regarding the identified wear rate, the position of the polishing tool in the contact direction where it contacts the workpiece, the protrusion amount of the abrasive material in the contact direction, or The system according to claim 1 or 2, further comprising a generating means for generating control information for controlling the depth of cut.
  7. 生成した制御情報をもとに、研磨具の接触方向の位置又は砥材の接触方向の突出量若しくは切込量を制御する制御手段と
    を備える、請求項6に記載のシステム。
    The system according to claim 6, further comprising a control means for controlling the position of the polishing tool in the contact direction, or the amount of protrusion or incision of the abrasive material in the contact direction, based on the generated control information.
  8. 生成した制御情報を、前記1のコンピュータ装置とは異なる他のコンピュータ装置に送信する送信手段と
    を備える、請求項6に記載のシステム。
    7. The system according to claim 6, further comprising a transmitting means for transmitting the generated control information to another computer device different from the first computer device.
  9. 前記1のコンピュータ装置とは異なる他の装置において研磨具によりワークを研磨した際の条件に関する情報、及び、前記条件における研磨具の有する砥材の摩耗速度に関する情報を受け付ける受付手段と
    を備え、
    記憶手段が、受け付けた条件に関する情報と関連付けて、受け付けた砥材の摩耗速度に関する情報を記憶する、請求項1に記載のシステム。
    comprising a receiving means for receiving information regarding the conditions under which a workpiece was polished by a polishing tool in another device different from the first computer device, and information regarding the wear rate of the abrasive material of the polishing tool under the conditions;
    The system according to claim 1, wherein the storage means stores the received information regarding the wear rate of the abrasive material in association with the received information regarding the conditions.
  10. 前記1のコンピュータ装置とは異なる他の装置において研磨具によりワークを研磨した際の条件に関する情報、及び、前記条件における研磨具の有する砥材の摩耗速度に関する情報を受け付ける情報受付手段と
    を備え、
    予測モデルが、受け付けた条件に関する情報を入力データとし、受け付けた砥材の摩耗速度に関する情報を出力データとして機械学習したものである、請求項2に記載のシステム。
    Information receiving means for receiving information regarding the conditions under which a workpiece was polished with a polishing tool in another device different from the first computer device, and information regarding the wear rate of the abrasive material of the polishing tool under the conditions,
    3. The system according to claim 2, wherein the prediction model is machine-learned by using the received information regarding the conditions as input data and the received information regarding the wear rate of the abrasive material as output data.
  11. 少なくとも1のコンピュータ装置を備えるシステムであって、
    研磨具によりワークを研磨する際の条件に関する情報と関連付けて、前記条件において研磨した際に研磨具にかかる負荷及び/又は負荷の変化量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報を記憶する記憶手段と、
    ワークを研磨する際の条件の入力を受け付ける入力手段と、
    受け付けた条件に対応する制御情報を特定する特定手段と
    を備える、システム。
    A system comprising at least one computer device, the system comprising:
    Contact with the work of the polishing tool in order to bring the load applied to the polishing tool and/or the amount of change in the load within a predetermined range when polishing the work under the conditions, in association with information regarding the conditions for polishing the work with the polishing tool. a storage means for storing control information for controlling the position in the contact direction or the protrusion amount or cutting amount in the contact direction of the abrasive material of the polishing tool;
    an input means for accepting input of conditions for polishing a work;
    and identifying means for identifying control information corresponding to accepted conditions.
  12. 少なくとも1のコンピュータ装置を備えるシステムであって、
    研磨具によりワークを研磨する際の条件に関する情報と関連付けて、前記条件において研磨具のワークへの切込量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報を記憶する記憶手段と、
    ワークを研磨する際の条件の入力を受け付ける入力手段と、
    受け付けた条件に対応する制御情報を特定する特定手段と
    を備える、システム。
    A system comprising at least one computer device, the system comprising:
    In association with information regarding the conditions for polishing a workpiece with a polishing tool, the position of the polishing tool in the contact direction in contact with the workpiece or the polishing tool for making the amount of cut into the workpiece by the polishing tool within a predetermined range under the conditions. storage means for storing control information for controlling the amount of protrusion or the amount of cut in the contact direction of the abrasive material;
    an input means for accepting input of conditions for polishing a work;
    and identifying means for identifying control information corresponding to accepted conditions.
  13. 少なくとも1のコンピュータ装置を備えるシステムであって、
    研磨具によりワークを研磨する際の条件の入力を受け付ける入力手段と、
    ワークを研磨する際の条件に関する情報を入力データとし、前記条件において研磨した際に研磨具にかかる負荷及び/又は負荷の変化量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報を出力データとして機械学習された予測モデルを用いて、受け付けた条件における制御情報を特定する特定手段と
    を備える、システム。
    A system comprising at least one computer device, the system comprising:
    an input means for accepting input of conditions for polishing a workpiece with a polishing tool;
    The contact direction of the polishing tool with the workpiece is input data regarding the conditions for polishing the workpiece, and the contact direction of the polishing tool with the workpiece is used to keep the load applied to the polishing tool and/or the amount of change in load within a predetermined range when polishing under the conditions. Identification of specifying control information under the received conditions using a predictive model that is machine learned with output data as control information for controlling the position of the abrasive tool or the amount of protrusion or depth of cut in the contact direction of the abrasive material of the polishing tool. A system comprising means.
  14. 少なくとも1のコンピュータ装置を備えるシステムであって、
    研磨具によりワークを研磨する際の条件の入力を受け付ける入力手段と、
    ワークを研磨する際の条件に関する情報を入力データとし、前記条件において研磨具のワークへの切込量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報を出力データとして機械学習された予測モデルを用いて、受け付けた条件における制御情報を特定する特定手段と
    を備える、システム。
    A system comprising at least one computer device, the system comprising:
    an input means for accepting input of conditions for polishing a workpiece with a polishing tool;
    Information regarding the conditions for polishing the workpiece is input data, and the position of the polishing tool in the contact direction in contact with the workpiece or the position of the polishing tool in order to make the cutting amount of the polishing tool into the workpiece within a predetermined range under the conditions. A system comprising a specifying means for specifying control information under accepted conditions using a predictive model machine-learned using control information for controlling the protrusion amount or the cutting amount in the contact direction of the abrasive material as output data.
  15. 特定した制御情報をもとに、研磨具のワークと接触する接触方向の位置又は砥材の接触方向の突出量若しくは切込量を制御する制御手段と
    を備える、請求項11~14のいずれかに記載のシステム。
    Any one of claims 11 to 14, further comprising a control means for controlling the position of the polishing tool in the contact direction in contact with the workpiece, or the amount of protrusion or incision of the abrasive material in the contact direction, based on the specified control information. system described in.
  16. 特定した制御情報を、前記1のコンピュータ装置とは異なる他のコンピュータ装置に送信する送信手段と
    を備える、請求項11~14のいずれかに記載のシステム。
    15. The system according to claim 11, further comprising a transmitting means for transmitting the specified control information to another computer device different from the first computer device.
  17. 前記1のコンピュータ装置とは異なる他の装置において研磨具によりワークを研磨した際の条件に関する情報、及び、前記条件において研磨した際に研磨具にかかる負荷及び/又は負荷の変化量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量に関する情報を受け付ける情報受付手段と
    を備え、
    記憶手段が、受け付けた条件に関する情報と関連付けて、受け付けた研磨具の接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量に関する情報を記憶する、請求項11に記載のシステム。
    Information regarding the conditions under which the workpiece was polished with a polishing tool in another device different from the computer device 1 above, and the load applied to the polishing tool and/or the amount of change in the load when polishing under the conditions, within a predetermined range. information receiving means for receiving information regarding the position of the polishing tool in the contact direction in contact with the work, or the amount of protrusion or the amount of cut in the contact direction of the abrasive material of the polishing tool;
    12. The storage means stores information regarding the received position of the polishing tool in the contact direction or the protrusion amount or cutting amount of the abrasive material of the polishing tool in the contact direction in association with the received information regarding the condition. system.
  18. 前記1のコンピュータ装置とは異なる他の装置において研磨具によりワークを研磨した際の条件に関する情報、及び、前記条件において研磨した際に研磨具にかかる負荷及び/又は負荷の変化量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量に関する情報を受け付ける情報受付手段と
    を備え、
    予測モデルが、受け付けた条件に関する情報を入力データとし、受け付けた研磨具の接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量に関する情報を出力データとして機械学習したものである、請求項12に記載のシステム。
    Information regarding the conditions under which the workpiece was polished with a polishing tool in another device different from the computer device 1 above, and the load applied to the polishing tool and/or the amount of change in the load when polishing under the conditions, within a predetermined range. information receiving means for receiving information regarding the position of the polishing tool in the contact direction in contact with the work, or the amount of protrusion or the amount of cut in the contact direction of the abrasive material of the polishing tool;
    Machine learning is performed by the predictive model using information regarding the received conditions as input data and information regarding the received position of the polishing tool in the contact direction or the protrusion amount or depth of cut in the contact direction of the abrasive material of the polishing tool as output data. 13. The system of claim 12.
  19. 前記1のコンピュータ装置とは異なる他の装置において研磨具によりワークを研磨した際の条件に関する情報、及び、前記条件において研磨具のワークへの切込量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量に関する情報を受け付ける情報受付手段と
    を備え、
    記憶手段が、受け付けた条件に関する情報と関連付けて、受け付けた研磨具の接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量に関する情報を記憶する、請求項13に記載のシステム。
    Information regarding the conditions under which a workpiece was polished with a polishing tool in another device different from the computer device 1 above, and information on the polishing tool for making the amount of cut into the workpiece by the polishing tool within a predetermined range under the conditions. Information receiving means for receiving information regarding the position in the contact direction of contact with the workpiece or the amount of protrusion or depth of cut in the contact direction of the abrasive material of the polishing tool,
    14. The storage means stores information regarding the received position of the polishing tool in the contact direction or the protrusion amount or cutting amount of the abrasive material of the polishing tool in the contact direction in association with the received information regarding the condition. system.
  20. 前記1のコンピュータ装置とは異なる他の装置において研磨具によりワークを研磨した際の条件に関する情報、及び、前記条件において研磨具のワークへの切込量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量に関する情報を受け付ける情報受付手段と
    を備え、
    予測モデルが、受け付けた条件に関する情報を入力データとし、受け付けた研磨具の接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量に関する情報を出力データとして機械学習したものである、請求項14に記載のシステム。
    Information regarding the conditions under which a workpiece was polished with a polishing tool in another device different from the computer device 1 above, and information on the polishing tool for making the amount of cut into the workpiece by the polishing tool within a predetermined range under the conditions. Information receiving means for receiving information regarding the position in the contact direction of contact with the workpiece or the amount of protrusion or depth of cut in the contact direction of the abrasive material of the polishing tool,
    Machine learning is performed by the predictive model using information regarding the received conditions as input data and information regarding the received position of the polishing tool in the contact direction or the protrusion amount or depth of cut in the contact direction of the abrasive material of the polishing tool as output data. 15. The system of claim 14.
  21. 条件に関する情報が、砥材の種類、ワークの種類、研磨具の回転速度、研磨具の送り速度、研磨前のワークの状態、及び/又は、研磨後のワークの状態に関する情報である、請求項1、2、9、10~14及び17~20のいずれかに記載のシステム。 A claim in which the information regarding the conditions is information regarding the type of abrasive material, the type of workpiece, the rotational speed of the polishing tool, the feed rate of the polishing tool, the state of the workpiece before polishing, and/or the state of the workpiece after polishing. 1, 2, 9, 10-14 and 17-20.
  22. コンピュータ装置において実行されるプログラムであって、
    コンピュータ装置を、
    研磨具によりワークを研磨する際の条件に関する情報と関連付けて、前記条件における研磨具の有する砥材の摩耗速度に関する情報を記憶する記憶手段と、
    ワークを研磨する際の条件の入力を受け付ける入力手段と、
    受け付けた条件に対応する砥材の摩耗速度に関する情報を特定する特定手段
    として機能させる、プログラム。
    A program executed on a computer device,
    computer equipment,
    a storage means for storing information regarding the wear rate of the abrasive material of the polishing tool under the conditions in association with information regarding the conditions for polishing the workpiece with the polishing tool;
    an input means for accepting input of conditions for polishing a work;
    A program that functions as a specifying means for specifying information regarding the wear rate of abrasive materials corresponding to the accepted conditions.
  23. コンピュータ装置において実行されるプログラムであって、
    コンピュータ装置を、
    研磨具によりワークを研磨する際の条件の入力を受け付ける入力手段と、
    ワークを研磨する際の条件に関する情報を入力データとし、前記条件における研磨具の有する砥材の摩耗速度に関する情報を出力データとして機械学習された予測モデルを用いて、受け付けた条件における砥材の摩耗速度に関する情報を特定する特定手段
    として機能させる、プログラム。
    A program executed on a computer device,
    computer equipment,
    an input means for accepting input of conditions for polishing a workpiece with a polishing tool;
    The wear rate of the abrasive material under the accepted conditions is calculated by using a machine learning prediction model with input data as input data regarding the conditions for polishing the workpiece and output data as information regarding the wear rate of the abrasive material of the polishing tool under the conditions. A program that functions as a means of determining speed information.
  24. コンピュータ装置において実行されるプログラムであって、
    コンピュータ装置を、
    研磨具によりワークを研磨する際の条件に関する情報と関連付けて、前記条件において研磨した際に研磨具にかかる負荷及び/又は負荷の変化量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報を記憶する記憶手段と、
    ワークを研磨する際の条件の入力を受け付ける入力手段と、
    受け付けた条件に対応する制御情報を特定する特定手段
    として機能させる、プログラム。
    A program executed on a computer device,
    computer equipment,
    Contact with the work of the polishing tool in order to bring the load applied to the polishing tool and/or the amount of change in the load within a predetermined range when polishing the work under the conditions, in association with information regarding the conditions for polishing the work with the polishing tool. a storage means for storing control information for controlling the position in the contact direction or the protrusion amount or cutting amount in the contact direction of the abrasive material of the polishing tool;
    an input means for accepting input of conditions for polishing a work;
    A program that functions as a specifying means for specifying control information corresponding to accepted conditions.
  25. コンピュータ装置において実行されるプログラムであって、
    コンピュータ装置を、
    研磨具によりワークを研磨する際の条件に関する情報と関連付けて、前記条件において研磨具のワークへの切込量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報を記憶する記憶手段と、
    ワークを研磨する際の条件の入力を受け付ける入力手段と、
    受け付けた条件に対応する制御情報を特定する特定手段
    として機能させる、プログラム。
    A program executed on a computer device,
    computer equipment,
    In association with information regarding the conditions for polishing a workpiece with a polishing tool, the position of the polishing tool in the contact direction in contact with the workpiece or the polishing tool for making the amount of cut into the workpiece by the polishing tool within a predetermined range under the conditions. storage means for storing control information for controlling the amount of protrusion or the amount of cut in the contact direction of the abrasive material;
    an input means for accepting input of conditions for polishing a work;
    A program that functions as a specifying means for specifying control information corresponding to accepted conditions.
  26. コンピュータ装置において実行されるプログラムであって、
    コンピュータ装置を、
    研磨具によりワークを研磨する際の条件の入力を受け付ける入力手段と、
    ワークを研磨する際の条件に関する情報を入力データとし、前記条件において研磨した際に研磨具にかかる負荷及び/又は負荷の変化量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報を出力データとして機械学習された予測モデルを用いて、受け付けた条件における制御情報を特定する特定手段
    として機能させる、プログラム。
    A program executed on a computer device,
    computer equipment,
    an input means for accepting input of conditions for polishing a workpiece with a polishing tool;
    The contact direction of the polishing tool with the workpiece is input data regarding the conditions for polishing the workpiece, and the contact direction of the polishing tool with the workpiece is used to keep the load applied to the polishing tool and/or the amount of change in load within a predetermined range when polishing under the conditions. Identification of specifying control information under the received conditions using a predictive model that is machine learned with output data as control information for controlling the position of the abrasive tool or the amount of protrusion or depth of cut in the contact direction of the abrasive material of the polishing tool. A program that functions as a means.
  27. コンピュータ装置において実行されるプログラムであって、
    コンピュータ装置を、
    研磨具によりワークを研磨する際の条件の入力を受け付ける入力手段と、
    ワークを研磨する際の条件に関する情報を入力データとし、前記条件において研磨具のワークへの切込量を所定の範囲とするための研磨具のワークと接触する接触方向の位置又は研磨具の有する砥材の接触方向の突出量若しくは切込量を制御するための制御情報を出力データとして機械学習された予測モデルを用いて、受け付けた条件における制御情報を特定する特定手段
    として機能させる、プログラム。

     
    A program executed on a computer device,
    computer equipment,
    an input means for accepting input of conditions for polishing a workpiece with a polishing tool;
    Information regarding the conditions for polishing the workpiece is input data, and the position of the polishing tool in the contact direction in contact with the workpiece or the position of the polishing tool in order to make the cutting amount of the polishing tool into the workpiece within a predetermined range under the conditions. A program that functions as a specifying means for specifying control information under accepted conditions using a predictive model learned by machine learning with control information for controlling the amount of protrusion or depth of cut in the contact direction of the abrasive material as output data.

PCT/JP2022/028217 2022-07-20 2022-07-20 System and program WO2024018562A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022575297A JP7229621B1 (en) 2022-07-20 2022-07-20 System and program
PCT/JP2022/028217 WO2024018562A1 (en) 2022-07-20 2022-07-20 System and program
JP2023017911A JP2024014687A (en) 2022-07-20 2023-02-08 System and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028217 WO2024018562A1 (en) 2022-07-20 2022-07-20 System and program

Publications (1)

Publication Number Publication Date
WO2024018562A1 true WO2024018562A1 (en) 2024-01-25

Family

ID=85330616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028217 WO2024018562A1 (en) 2022-07-20 2022-07-20 System and program

Country Status (2)

Country Link
JP (2) JP7229621B1 (en)
WO (1) WO2024018562A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531659A (en) * 1991-07-26 1993-02-09 Hitachi Ltd Burr removing method and device thereof
WO2014122968A1 (en) * 2013-02-05 2014-08-14 新東工業株式会社 Brush unit, brush polishing device provided with this brush unit, brush polishing system, and brush polishing method
JP2015112702A (en) * 2013-12-13 2015-06-22 アイシン精機株式会社 Polishing brush, and machine tool using the same
WO2019138595A1 (en) * 2018-01-10 2019-07-18 株式会社ジーベックテクノロジー Polishing tool holder and polishing device
JP2019139755A (en) * 2018-02-06 2019-08-22 ファナック株式会社 Polishing tool wear loss prediction device, machine learning device and system
JP2020157425A (en) * 2019-03-27 2020-10-01 株式会社ジェイテクト Support device for grinding machine and support method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531659A (en) * 1991-07-26 1993-02-09 Hitachi Ltd Burr removing method and device thereof
WO2014122968A1 (en) * 2013-02-05 2014-08-14 新東工業株式会社 Brush unit, brush polishing device provided with this brush unit, brush polishing system, and brush polishing method
JP2015112702A (en) * 2013-12-13 2015-06-22 アイシン精機株式会社 Polishing brush, and machine tool using the same
WO2019138595A1 (en) * 2018-01-10 2019-07-18 株式会社ジーベックテクノロジー Polishing tool holder and polishing device
JP2019139755A (en) * 2018-02-06 2019-08-22 ファナック株式会社 Polishing tool wear loss prediction device, machine learning device and system
JP2020157425A (en) * 2019-03-27 2020-10-01 株式会社ジェイテクト Support device for grinding machine and support method therefor

Also Published As

Publication number Publication date
JP7229621B1 (en) 2023-02-28
JP2024014687A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
EP3582044B1 (en) Machining based on strategies selected from a database
EP3213161B1 (en) Method for optimizing the productivity of a machining process of a cnc machine
JP6649684B2 (en) An improved database for chatter prediction
KR100299412B1 (en) Machining processor
EP1034880B1 (en) Machining apparatus
WO2011122621A1 (en) Tool trajectory generation device, tool trajectory computation method, and tool trajectory generation program
EP2821870B1 (en) Setting method of revolutions per minute on real time of rotating cutting tool, and control device
CN111687652B (en) Grip force adjusting device and grip force adjusting system
US8676372B1 (en) Tool path generation for machining operations
US11126158B2 (en) Numerical controller and CAD/CAM-CNC integrated system
JP6148264B2 (en) Machine tools with a function to automatically change cutting conditions
JP2006068901A (en) Machine tool controller
JPH01234135A (en) Method of controlling machine tool
JP7383982B2 (en) Tool life prediction system
JP7101131B2 (en) Numerical control system
JP2020203356A (en) Abnormality detection device of machining tool
CN101224562A (en) Method for controlling a moveable tool, input device and processing machine
JP2008155371A (en) Tool determining method, working control device and tool determining program
WO2024018562A1 (en) System and program
JP6590711B2 (en) Manufacturing system and manufacturing method
CN111598364B (en) Digital process arrangement system for mechanical parts
KR101896291B1 (en) Tool path correction method of machining tools
Jerard et al. Process simulation and feedrate selection for three-axis sculptured surface machining
KR101108211B1 (en) Device for generating the part programs of multi-functional turning machines and method for generating the syncronizing program between multiful processes
KR101078800B1 (en) External device for generating the part programs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951949

Country of ref document: EP

Kind code of ref document: A1