WO2024018154A1 - Procédé d'obtention d'un revêtement de protection contre l'oxydation d'une pièce en alliage à base de titane - Google Patents

Procédé d'obtention d'un revêtement de protection contre l'oxydation d'une pièce en alliage à base de titane Download PDF

Info

Publication number
WO2024018154A1
WO2024018154A1 PCT/FR2023/051121 FR2023051121W WO2024018154A1 WO 2024018154 A1 WO2024018154 A1 WO 2024018154A1 FR 2023051121 W FR2023051121 W FR 2023051121W WO 2024018154 A1 WO2024018154 A1 WO 2024018154A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid composition
precursor
precursors
aluminum
metallic element
Prior art date
Application number
PCT/FR2023/051121
Other languages
English (en)
Inventor
Sophie SENANI
Bérangère Toury
Kurt Gérard Yves HERMANGE
Stéphane BENAYOUN
Clara DESGRANGES
Jérome DELFOSSE
Original Assignee
Safran
Centre National De La Recherche Scientifique
Ecole Centrale De Lyon
Universite Claude Bernard Lyon 1
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran, Centre National De La Recherche Scientifique, Ecole Centrale De Lyon, Universite Claude Bernard Lyon 1 filed Critical Safran
Publication of WO2024018154A1 publication Critical patent/WO2024018154A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles

Definitions

  • the present presentation concerns obtaining a protective coating against the oxidation of titanium-based alloys, for example for applications in turbomachines, in particular aeronautical turbomachines.
  • Titanium-based alloys offer a particularly interesting combination of properties up to operating temperatures of 550°C for applications in turbomachines such as turbojets. Indeed, titanium-based alloys have low density, good damage tolerance and good fatigue resistance.
  • the depths affected by the diffusion of oxygen in the alloy can reach a few hundred microns in this temperature range after 100 hours of operation at service temperatures.
  • the incorporation of oxygen into the crystal lattice of the metal phase leads, on the atomic scale, to more covalent bonds. This results in a loss of ductility of the alloy underlying the oxide layer, in the oxygen-enriched zone, which significantly lowers the macroscopic mechanical properties.
  • the application of coatings on these alloys can limit these phenomena and increase the exposure temperatures of these alloys.
  • titanium-based alloys are not protected against high temperature oxidation.
  • the nature of the alloy for a part is chosen according to the maximum operating temperatures and the expected lifespan according to the reduction in mechanical properties resulting from the diffusion of oxygen within the titanium-based alloy. . Titanium parts made of thin thicknesses (plates, honeycomb) are all the more sensitive to oxidation phenomena as their thickness is reduced.
  • the invention relates to a method for obtaining a protective coating against oxidation of a titanium-based alloy part, comprising:
  • a liquid composition on the part comprising at least (i) a first precursor which is a metallo-organic sol-gel precursor of a metallic element El or a salt of this metallic element El, said metallic element El being chosen from aluminum or zirconium, (ii) a second precursor which is an organic-inorganic sol-gel precursor of an element E2 or a salt of this element E2, said element E2 being chosen from aluminum, zirconium, titanium, tin, zinc, phosphorus or rare earths and being different from the metallic element El, and (iii) water, and
  • the invention makes it possible to produce a multifunctional coating which makes it possible to protect the substrate from oxidation at temperatures of up to 700°C and therefore increase the lifespan of the parts in operation compared to the existing one.
  • the invention relates to the field of wet surface treatments for metal substrates and in particular titanium alloys Ti6242 and Ti[321S. It can be applied to all titanium parts, for example, compressor disks in aircraft engines, nacelle exhaust nozzles or impellers in helicopter engines.
  • the invention is based on the choice of particular precursors as described above which, in the presence of water, are capable of forming a mixed oxide network interconnected by elements El and E2 with E1-0-E2 bonds providing protection against oxidation at high temperatures, notably up to 700°C.
  • the hydrolysis and condensation leading to the formation of the network can take place without adding heat at room temperature (20°C), or require heat treatment for example at a temperature greater than or equal to 150°C, in particular between 150°C and 700°C, to accelerate the kinetics of obtaining this network and to be compatible with an industrial processing rate.
  • the duration of application of the possible heat treatment varies depending on the precursors used and can typically be greater than or equal to 10 minutes, for example between 10 minutes and 5 hours, in particular between 10 minutes and 2 hours.
  • the water in the liquid composition provides at least part of the oxygen from the mixed oxide network.
  • Water can be added in addition to the precursors, as a solvent for the latter, or can be provided by the use of first and second hydrated precursors, the liquid medium of the composition then being non-aqueous by alcoholic example.
  • first and second precursors can be dissolved in the liquid composition.
  • the coating obtained notably limits the quantity of oxygen diffusing within the substrate over the first 10 to 20 microns for oxidations up to 700°C at contents much lower than the contents encountered for the uncoated alloy oxidized in the same terms.
  • the metallic element El is aluminum and the element E2 is a rare earth, in particular the element E2 can be yttrium.
  • the metallic element El is aluminum and the element E2 is phosphorus.
  • the first precursor is a metallo-organic sol-gel precursor
  • it can be of general formula R xEl OR ⁇ x WHERE V is the valence of El
  • x is an integer between 0 and v
  • R 1 and R 2 are organic groups chosen, independently of each other, from: alkyls, branched alkyls, methacrylates, carbamates, epoxides, cycloepoxides, isocyanates, amino groups, alkylamino groups , vinyl groups, and imide groups.
  • R 1 and/or R 2 groups may be identical or different.
  • each R 1 and R 2 group can comprise from 1 to 4 carbon atoms. Similar considerations apply to the second precursor when it is an organic-inorganic sol-gel precursor of element E2. So in this case, the second precursor can be of general formula R 3 wy E2(OR 4 ) y where w is the valence of E2, y is an integer between 0 and w and R 3 and R 4 are selected organic groups , independently of each other, from: alkyls, branched alkyls, methacrylates, carbamates, epoxides, cycloepoxides, isocyanates, amino groups, alkylamino groups, vinyl groups, and imide groups . When several R 3 and/or R 4 groups are present, they may be identical or different. Generally speaking, each R 3 and R 4 group can comprise from 1 to 4 carbon atoms.
  • At least one of the first and second precursors is an organoalkoxide sol-gel precursor with 1 to 4 carbon atoms for each alkoxy group present.
  • Such a choice of precursor helps to further limit cracking of the coating in operation.
  • This case corresponds to at least one of x and y being non-zero and at least one of R 2 and R 4 corresponding to an alkyl or a branched C 4 alkyl in the precursor formulas above.
  • the first and second precursors are such organoalkoxide sol-gel precursors.
  • the precursors may alternatively be in the form of metal salts, having a general formula EIC v or E2CI 2 W depending on whether it is the first or the second precursor, with Cil and CI2 designating a counter- ion chosen from: the nitrate ion, the acetate ion, a halide ion, for example the chloride ion, or a carbamate ion, and v and w being as defined above.
  • the liquid composition does not comprise a precursor comprising silicon, such as an organosilane or an organoalkoxysilane.
  • the liquid composition further comprises reactive particles, distinct from the first and second precursors, capable of reacting with oxygen or trapping it.
  • Such a characteristic makes it possible to further improve the protection against oxidation conferred by the coating by having particles capable of interacting chemically with oxygen.
  • reactive particles mention may be made of particles formed from the following compounds: carbides, borides, nitrides, silicides or metals, for example, Si, SiC, TiC, VB 2 , TiSi, TiB 2 , TiSi 2 , MgO, Ti, Ag, Cu.
  • the liquid composition further comprises fillers, distinct from the first and second precursors, capable of filling part of the porosity of the interconnected mixed oxide network so as to hinder the diffusion of oxygen.
  • the charges are inert with respect to oxygen.
  • Such a characteristic makes it possible to further improve the protection against oxidation conferred by the coating by having particles capable of physically blocking the access path of oxygen through the interconnected network.
  • particles formed from the following compounds: oxides or metals, for example, SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 , or BN.
  • the reactive particles or fillers can have an average size D50 of between 10 nm and 500 nm.
  • the reactive particles or fillers can be in the solid state in the liquid composition as well as in the coating obtained.
  • the liquid composition may comprise the reactive particles or the fillers in a mass content of between 2% and 50%, or the liquid composition may comprise the reactive particles as well as the fillers present in a total mass content, corresponding to the sum of the mass contents. reactive particles and fillers, between 2% and 50%.
  • the liquid composition can be deposited in contact with the titanium alloy part (without a layer interposed between this composition and the titanium alloy).
  • the liquid composition consists essentially of the first precursor, the second precursor and water, optionally with a solvent other than water such as an alcohol and possibly with reactive particles or fillers as described above.
  • the protective coating is completely amorphous and therefore does not have a crystalline phase.
  • the part is an aircraft part, in particular a compressor part, an exhaust nozzle or part of such a nozzle, or a helicopter impeller.
  • the mixture thus obtained was applied to a part made of titanium alloy type TI6242 and the coating underwent a heat treatment for 60 minutes at a temperature of 700°C. An improvement in protection against oxidation was thus obtained.
  • the two solutions are then mixed: 2 volumes of the aluminum solution and 1 volume of the phosphorus-based solution.
  • the mixture is left stirring for 24 hours before coating.
  • the mixture thus obtained was applied to a part made of Ti6242 type titanium alloy and the coating underwent a heat treatment for 5 hours at a temperature of 600°C. An improvement in protection against oxidation was thus obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

L'invention concerne un procédé d'obtention d'un revêtement de protection contre l'oxydation d'une pièce en alliage à base de titane, comprenant : - le dépôt d'une composition liquide sur la pièce comprenant au moins (i) un premier précurseur qui est un précurseur sol-gel métallo-organique d'un élément métallique E1 ou un sel de cet élément métallique E1, ledit élément métallique E1 étant choisi parmi l'aluminium ou le zirconium, (ii) un deuxième précurseur qui est un précurseur sol-gel organique-inorganique d'un élément E2 ou un sel de cet élément E2, ledit élément E2 étant choisi parmi l'aluminium, le zirconium, le titane, l'étain, le zinc, le phosphore ou les terres rares et étant différent de l'élément métallique E1, et (iii) de l'eau, et - l'hydrolyse des premier et deuxième précurseurs de la composition liquide ainsi déposée et leur condensation de sorte à former le revêtement de protection contre l'oxydation qui comprend un réseau d'oxyde mixte interconnecté des éléments E1 et E2.

Description

Description Titre de l'invention : Procédé d'obtention d'un revêtement de protection contre l'oxydation d'une pièce en alliage à base de titane
Domaine Technique
Le présent exposé concerne l'obtention d'un revêtement de protection contre l'oxydation d'alliages à base de titane, par exemple pour des applications dans des turbomachines, en particulier des turbomachines aéronautiques.
Technique antérieure
Les alliages à base de titane offrent une combinaison de propriétés particulièrement intéressante jusqu'à des températures de fonctionnement de 550°C pour des applications dans des turbomachines telles que des turboréacteurs. En effet, les alliages à base de titane présentent une faible densité, de bonnes tolérances aux dommages et une bonne tenue à la fatigue.
Cependant, la réduction des émissions polluantes reste un enjeu stratégique majeur pour l'industrie aéronautique. Deux grandes voies existent pour réduire les émissions de polluants : l'amélioration du rendement des moteurs qui implique l'augmentation de la température de fonctionnement du moteur et/ou la réduction de la masse totale de l'aéronef. Les propriétés mécaniques des alliages à base de titane ont tendance à décroître de façon rédhibitoire au-delà de 550°C. Une des principales sources de dégradation des propriétés des alliages à base de titane avec l'augmentation de la température est liée aux phénomènes d'oxydation. Pour les alliages à base de titane, l'oxydation se manifeste par deux mécanismes distincts : d'une part, la croissance de la couche d'oxyde de titane en surface de la pièce et d'autre part une diffusion importante de l'oxygène au sein de l'alliage sous-jacent à la couche d'oxyde. Ce second phénomène est lié à la forte solubilité de l'oxygène dans le titane. Les profondeurs affectées par la diffusion de l'oxygène dans l'alliage peuvent atteindre dans cette gamme de températures quelques centaines de microns après 100 heures de fonctionnement aux températures de service. L'incorporation de l'oxygène dans la maille cristalline de la phase métallique conduit, à l'échelle atomique, à des liaisons plus covalentes. Il en résulte une perte de ductilité de l'alliage sous-jacent à la couche d'oxyde, dans la zone enrichie en oxygène, qui abaisse de manière significative les propriétés mécaniques macroscopiques. L'application de revêtements sur ces alliages peut permettre de limiter ces phénomènes et augmenter les températures d'exposition de ces alliages. Aujourd'hui les alliages à base de titane ne sont pas protégés contre l'oxydation haute température. La nature de l'alliage pour une pièce est choisie en fonction des températures maximum de fonctionnement et de la durée de vie attendue selon l'abattement des propriétés mécaniques conséquence de la diffusion de l'oxygène au sein de l'alliage à base de titane. Les pièces de titane formées d'épaisseurs fines (plaques, nid d'abeilles) sont d'autant plus sensibles aux phénomènes d'oxydation que leur épaisseur est réduite.
Pour répondre à cette problématique, la littérature présente des essais d'élaboration de revêtements, principalement d'oxydes, tels que silice, alumine, zircone, par différents procédés d'élaboration par voie sèche (dépôt chimique en phase vapeur, dépôt physique en phase vapeur, projection plasma...) ou par voie humide. L'ensemble de ces travaux conduisent néanmoins soit à la pénétration de l'oxygène au sein du substrat après quelques dizaines d'heures d'oxydation, soit à une perte d'adhérence ou une fissuration du dépôt en condition de cycles thermiques du fait de la forte différence de dilatation thermique avec le substrat qui conduit à des contraintes au sein du film de l'ordre du GPa, conduisant à l'oxydation du substrat.
Exposé de l'invention
L'invention concerne un procédé d'obtention d'un revêtement de protection contre l'oxydation d'une pièce en alliage à base de titane, comprenant :
- le dépôt d'une composition liquide sur la pièce comprenant au moins (i) un premier précurseur qui est un précurseur sol-gel métallo-organique d'un élément métallique El ou un sel de cet élément métallique El, ledit élément métallique El étant choisi parmi l'aluminium ou le zirconium, (ii) un deuxième précurseur qui est un précurseur sol-gel organique-inorganique d'un élément E2 ou un sel de cet élément E2, ledit élément E2 étant choisi parmi l'aluminium, le zirconium, le titane, l'étain, le zinc, le phosphore ou les terres rares et étant différent de l'élément métallique El, et (iii) de l'eau, et
- l'hydrolyse des premier et deuxième précurseurs de la composition liquide ainsi déposée et leur condensation de sorte à former le revêtement de protection contre l'oxydation qui comprend un réseau d'oxyde mixte interconnecté des éléments El et E2.
L'invention permet de réaliser un revêtement multifonctionnel qui permet de protéger le substrat de l'oxydation à des températures allant jusqu'à 700°C et donc augmenter la durée de vie des pièces en fonctionnement par rapport à l'existant. L'invention concerne le domaine des traitements de surface par voie humide pour des substrats métalliques et en particulier les alliages de titane Ti6242 et Ti[321S. Elle peut s'appliquer à toutes pièces en titane, par exemple, les disques de compresseur dans les moteurs d'avions, les tuyères d'échappement des nacelles ou les rouets dans les moteurs d'hélicoptères. L'invention repose sur le choix de précurseurs particuliers tels que décrit plus haut qui, en présence d'eau, sont aptes à former un réseau d'oxyde mixte interconnecté des éléments El et E2 avec liaisons E1-0-E2 apportant une protection contre l'oxydation à haute température, notamment jusqu'à 700°C. Selon le choix opéré pour les précurseurs, l'hydrolyse et la condensation aboutissant à la formation du réseau peuvent avoir lieu sans apport de chaleur à température ambiante (20°C), ou nécessiter un traitement thermique par exemple à une température supérieure ou égale à 150°C, notamment comprise entre 150°C et 700°C, pour accélérer la cinétique d'obtention de ce réseau et être compatible d'une cadence de traitement industrielle. La durée d'application du traitement thermique éventuel est variable en fonction des précurseurs mis en oeuvre et peut typiquement être supérieure ou égale à 10 minutes, par exemple comprise entre 10 minutes et 5 heures, notamment entre 10 minutes et 2 heures. L'eau de la composition liquide apporte une partie au moins de l'oxygène du réseau d'oxyde mixte. L'eau peut être ajoutée en plus des précurseurs, en tant que solvant de ces derniers, ou peut être apportée par l'emploi de premier et deuxième précurseurs hydratés, le milieu liquide de la composition étant alors non aqueux par exemple alcoolique. D'une manière générale, les premier et deuxième précurseurs peuvent être à l'état dissous dans la composition liquide.
Plus précisément le choix spécifique de précurseurs opéré dans l'invention permet de réaliser un revêtement protecteur multifonctionnel qui présente simultanément les fonctions suivantes :
- une modification de la surface permettant de limiter la quantité d'oxygène pénétrant au sein du substrat,
- une accommodation des contraintes thermomécaniques en fonctionnement grâce à un coefficient de dilatation thermique relativement proche de celui de la pièce (limitation de la fissuration et augmentation de la durabilité de l'accroche du revêtement en fonctionnement), et
- une propriété de barrière thermique pour permettre d'abaisser la température de la pièce, réduisant ainsi la pénétration de l'oxygène.
Le revêtement obtenu limite notamment la quantité d'oxygène diffusant au sein du substrat sur les 10 à 20 premiers microns pour des oxydations jusqu'à 700°C à des teneurs très inférieures aux teneurs rencontrées pour l'alliage non-revêtu oxydé dans les même conditions.
Dans un exemple de réalisation, l'élément métallique El est l'aluminium et l'élément E2 est une terre rare, en particulier l'élément E2 peut être l'yttrium.
En variante, l'élément métallique El est l'aluminium et l'élément E2 est le phosphore.
Divers types de précurseurs peuvent être mis en oeuvre dans le cadre de l'invention. En particulier, dans le cas où le premier précurseur est un précurseur sol-gel métallo-organique, il peut être de formule générale R xEl OR^x OÙ V est la valence de El, x est un entier compris entre 0 et v et R1 et R2 sont des groupements organiques choisis, indépendamment l'un de l'autre, parmi : les alkyles, les alkyles ramifiés, les méthacrylates, les carbamates, les époxydes, les cycloépoxydes, les isocyanates, les groupements amino, les groupements alkylamino, les groupements vinyle, et les groupements imides. Lorsque plusieurs groupements R1 et/ou R2 sont présents ils peuvent être identiques ou différents. De manière générale, chaque groupement R1 et R2 peut comprendre de 1 à 4 atomes de carbone. Des considérations similaires s'appliquent au deuxième précurseur lorsqu'il s'agit d'un précurseur sol-gel organique-inorganique de l'élément E2. Ainsi dans ce cas, le deuxième précurseur peut être de formule générale R3 w-yE2(OR4)y où w est la valence de E2, y est un entier compris entre 0 et w et R3 et R4 sont des groupements organiques choisis, indépendamment l'un de l'autre, parmi : les alkyles, les alkyles ramifiés, les méthacrylates, les carbamates, les époxydes, les cycloépoxydes, les isocyanates, les groupements amino, les groupements alkylamino, les groupements vinyle, et les groupements imides. Lorsque plusieurs groupements R3 et/ou R4 sont présents ils peuvent être identiques ou différents. De manière générale, chaque groupement R3 et R4 peut comprendre de 1 à 4 atomes de carbone.
Dans un exemple de réalisation, l'un au moins des premier et deuxième précurseurs est un précurseur sol-gel organoalcoxyde avec de 1 à 4 atomes de carbone pour chaque groupement alcoxy présent.
Un tel choix de précurseur participe à limiter davantage encore la fissuration du revêtement en fonctionnement. Ce cas correspond à l'un au moins de x et y non nul et l'un au moins de R2 et R4 correspondant à un alkyle ou un alkyle ramifié en Ci à C4 dans les formules de précurseurs ci-dessus. Avantageusement, le premier et le deuxième précurseurs sont de tels précurseurs sol-gel organoalcoxyde.
Comme indiqué plus haut, les précurseurs peuvent en variante être sous la forme de sels métalliques, ayant une formule générale EIC v ou E2CI2 W selon qu'il s'agisse du premier ou du deuxième précurseur, avec Cil et CI2 désignant un contre-ion choisi parmi : l'ion nitrate, l'ion acétate, un ion halogénure, par exemple l'ion chlorure, ou un ion carbamate, et v et w étant tels que définis plus haut.
Dans un exemple de réalisation, la composition liquide ne comprend pas de précurseur comprenant du silicium, tel qu'un organosilane ou un organoalcoxysilane. Dans un exemple de réalisation, la composition liquide comprend en outre des particules réactives, distinctes des premier et deuxième précurseurs, aptes à réagir avec l'oxygène ou à le piéger.
Une telle caractéristique permet d'améliorer davantage encore la protection contre l'oxydation conférée par le revêtement en disposant des particules aptes à interagir chimiquement avec l'oxygène. A titre d'exemple de telles particules réactives, on peut citer les particules formées des composés suivants : carbures, borures, nitrures, siliciures ou métalliques, par exemple, Si, SiC, TiC, VB2, TiSi, TiB2, TiSi2, MgO, Ti, Ag, Cu.
En variante ou en combinaison, la composition liquide comprend en outre des charges, distinctes des premier et deuxième précurseurs, aptes à combler une partie de la porosité du réseau d'oxyde mixte interconnecté de sorte à entraver la diffusion de l'oxygène. Les charges sont inertes par rapport à l'oxygène.
Une telle caractéristique permet d'améliorer davantage encore la protection contre l'oxydation conférée par le revêtement en disposant des particules aptes à bloquer physiquement le chemin d'accès de l'oxygène au travers du réseau interconnecté. A titre d'exemple de telles charges, on peut citer les particules formées des composés suivants : oxydes ou métalliques, par exemple, SiO2, TiO2, ZrO2, AI2O3, ou BN.
D'une manière générale, les particules réactives ou les charges peuvent avoir une taille moyenne D50 comprise entre 10 nm et 500 nm.
D'une manière générale, les particules réactives ou les charges peuvent être à l'état solide dans la composition liquide ainsi que dans le revêtement obtenu. La composition liquide peut comprendre les particules réactives ou les charges en une teneur massique comprise entre 2% et 50%, ou la composition liquide peut comprendre les particules réactives ainsi que les charges présentes en une teneur massique totale, correspondant à la somme des teneurs massiques des particules réactives et des charges, comprise entre 2% et 50%.
La personne du métier reconnaîtra que le procédé qui vient d'être décrit peut être précédé d'un nettoyage et d'une activation de la surface de la pièce à revêtir, faisant appel à des techniques connues en soi qu'il n'est pas nécessaire de décrire davantage dans le présent exposé. La composition liquide peut être déposée au contact de la pièce en alliage de titane (sans couche interposée entre cette composition et l'alliage de titane).
Dans un exemple de réalisation, la composition liquide est constituée essentiellement par le premier précurseur, le deuxième précurseur et de l'eau, éventuellement avec un solvant différent de l'eau comme un alcool et éventuellement avec des particules réactives ou des charges telles que décrites plus haut.
Dans un exemple de réalisation, le revêtement de protection est totalement amorphe et ne présente donc pas de phase cristalline.
Dans un exemple de réalisation, la pièce est une pièce d'aéronef, en particulier une pièce de compresseur, une tuyère d'échappement ou une partie d'une telle tuyère, ou un rouet d'hélicoptère.
Exemples
Exemple 1 : système Y3AI5O12 (YAG)
38,301 grammes de Y(NO3)3.6H2O sont introduits dans une fiole jaugée de lOOmL. De l'éthanol absolu est ajouté dans la fiole (environ 35 mL). La solution est laissée sous agitation à 40-50°C entre 30 et 60 minutes jusqu'à dissolution complète du sel. La fiole est ensuite complétée à lOOmL toujours avec de l'éthanol et l'ensemble est laissé sous agitation 24 heures à température ambiante.
Dans une seconde fiole de lOOmL, 37,513 grammes de AI(NO3)3.9H2O sont introduits. De l'éthanol absolu est ajouté dans la fiole (environ 35 mL). La solution est laissée sous agitation à 40-50°C entre 30 et 60 minutes jusqu'à dissolution complète du sel. La fiole est ensuite complétée à lOOmL toujours avec de l'éthanol et l'ensemble est laissé sous agitation 24 heures à température ambiante.
A l'issue des 24 heures, 3 volumes de la solution d'yttrium sont mélangés avec 5 volumes de la solution d'aluminium. Le mélange est prêt pour l'enduction.
Le mélange ainsi obtenu a été appliqué sur une pièce en alliage de titane de type TI6242 et le revêtement a subi un traitement thermique d'une durée de 60 minutes sous une température de 700°C. Une amélioration de la protection contre l'oxydation a ainsi été obtenue.
Exemple 2 : système AI2POX
24,00 grammes de triethylphosphite (P(OCH2CH3)3) sont introduits dans une fiole de lOOmL et complétés avec de l'éthanol absolu. La solution est laissée sous agitation pendant 12 heures minimum. 56,27 grammes de AI(NO3)3.9H2O sont introduits dans une fiole jaugée de 100 mL complétée à l'éthanol absolu. La solution est laissée sous léger chauffage (40-50°C) jusqu'à dissolution complète du nitrate puis laissée sous agitation à température ambiante pendant minium 12 heures.
Les deux solutions sont alors mélangées : 2 volumes de la solution aluminium et 1 volume de la solution à base de phosphore. Le mélange est laissé sous agitation 24 heures avant l'enduction.
Le mélange ainsi obtenu a été appliqué sur une pièce en alliage de titane de type Ti6242 et le revêtement subit un traitement thermique d'une durée de 5 heures sous une température de 600°C. Une amélioration de la protection contre l'oxydation a ainsi été obtenue.
L'expression « compris(e) entre ... et ... » doit s'entendre comme incluant les bornes.

Claims

Revendications
[Revendication 1] Procédé d'obtention d'un revêtement de protection contre l'oxydation d'une pièce en alliage à base de titane, comprenant :
- le dépôt d'une composition liquide sur la pièce comprenant au moins (i) un premier précurseur qui est un précurseur sol-gel métallo-organique d'un élément métallique El ou un sel de cet élément métallique El, ledit élément métallique El étant choisi parmi l'aluminium ou le zirconium, (ii) un deuxième précurseur qui est un précurseur sol-gel organique-inorganique d'un élément E2 ou un sel de cet élément E2, ledit élément E2 étant choisi parmi l'aluminium, le zirconium, le titane, l'étain, le zinc, le phosphore ou les terres rares et étant différent de l'élément métallique El, et (iii) de l'eau, et
- l'hydrolyse des premier et deuxième précurseurs de la composition liquide ainsi déposée et leur condensation de sorte à former le revêtement de protection contre l'oxydation qui comprend un réseau d'oxyde mixte interconnecté des éléments El et E2.
[Revendication 2] Procédé selon la revendication 1, dans lequel l'élément métallique El est l'aluminium et l'élément E2 est une terre rare.
[Revendication 3] Procédé selon la revendication 2, dans lequel l'élément E2 est l'yttrium.
[Revendication 4] Procédé selon la revendication 1, dans lequel l'élément métallique El est l'aluminium et l'élément E2 est le phosphore.
[Revendication 5] Procédé selon l'une quelconque des revendications 1 à 4, dans lequel l'un au moins des premier et deuxième précurseurs est un précurseur sol-gel organoalcoxyde avec de 1 à 4 atomes de carbone pour chaque groupement alcoxy présent.
[Revendication 6] Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la composition liquide comprend en outre des particules réactives, distinctes des premier et deuxième précurseurs, aptes à réagir avec l'oxygène ou à le piéger.
[Revendication 7] Procédé selon l'une quelconque des revendications 1 à 6, dans lequel la composition liquide comprend en outre des charges, distinctes des premier et deuxième précurseurs, aptes à combler une partie de la porosité du réseau d'oxyde mixte interconnecté de sorte à entraver la diffusion de l'oxygène.
[Revendication 8] Procédé selon la revendication 6 ou 7, dans lequel la composition liquide comprend les particules réactives ou les charges en une teneur massique comprise entre 2% et 50%, ou la composition liquide comprend les particules réactives ainsi que les charges présentes en une teneur massique totale, correspondant à la somme des teneurs massiques des particules réactives et des charges, comprise entre 2% et 50%.
[Revendication 9] Procédé selon l'une quelconque des revendications 1 à 8, dans lequel la pièce est une pièce d'aéronef.
[Revendication 10] Procédé selon la revendication 9, dans lequel la pièce est une pièce de compresseur, une tuyère d'échappement ou une partie d'une telle tuyère, ou un rouet d'hélicoptère.
PCT/FR2023/051121 2022-07-20 2023-07-19 Procédé d'obtention d'un revêtement de protection contre l'oxydation d'une pièce en alliage à base de titane WO2024018154A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2207441 2022-07-20
FR2207441A FR3138152A1 (fr) 2022-07-20 2022-07-20 Procédé d’obtention d’un revêtement de protection contre l’oxydation d’une pièce en alliage à base de titane

Publications (1)

Publication Number Publication Date
WO2024018154A1 true WO2024018154A1 (fr) 2024-01-25

Family

ID=83996093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/051121 WO2024018154A1 (fr) 2022-07-20 2023-07-19 Procédé d'obtention d'un revêtement de protection contre l'oxydation d'une pièce en alliage à base de titane

Country Status (2)

Country Link
FR (1) FR3138152A1 (fr)
WO (1) WO2024018154A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814137A (en) * 1996-11-04 1998-09-29 The Boeing Company Sol for coating metals
US7311944B2 (en) * 2002-12-23 2007-12-25 Applied Thin Films, Inc. Aluminum phosphate coatings
CN109972177A (zh) * 2018-04-26 2019-07-05 北京科技大学 一种长寿命铱锆系复合氧化物惰性阳极的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814137A (en) * 1996-11-04 1998-09-29 The Boeing Company Sol for coating metals
US7311944B2 (en) * 2002-12-23 2007-12-25 Applied Thin Films, Inc. Aluminum phosphate coatings
CN109972177A (zh) * 2018-04-26 2019-07-05 北京科技大学 一种长寿命铱锆系复合氧化物惰性阳极的制备方法

Also Published As

Publication number Publication date
FR3138152A1 (fr) 2024-01-26

Similar Documents

Publication Publication Date Title
EP2545198B1 (fr) Methode de fabrication d'une protecton de barriere thermique et revetement multicouche apte a former une barriere thermique.
EP2010612B1 (fr) Utilisation d'un materiau nanostructure, comme revetement protecteur de surfaces metalliques
EP1885911B1 (fr) Sol pour le revetement par voie sol-gel d'une surface et procede de revetement par voie sol-gel le mettant en uvre
EP2379471B1 (fr) Barriere environnementale pour substrat refractaire contenant du silicium
CN107001160B (zh) 用于高温工作的制品
CA2913974C (fr) Barriere environnementale pour substrat refractaire contenant du silicium
EP3638884B1 (fr) Pièce de turbomachine revêtue et procédé de fabrication associé
EP3538500B1 (fr) Piece de turbomachine revetue d'une barriere thermique et procede pour l'obtenir.
WO2018229409A1 (fr) Pièce de turbomachine revêtue et procédé de fabrication associé
FR2738836A1 (fr) Substrat a proprietes photocatalytiques a base de dioxyde de titane et dispersions organiques a base de dioxyde de titane
WO2007060180A1 (fr) Procede de realisation d'un revetement a base d'une ceramique oxyde conforme a la geometrie d'un substrat presentant des motifs en relief
WO2024018154A1 (fr) Procédé d'obtention d'un revêtement de protection contre l'oxydation d'une pièce en alliage à base de titane
WO2024018153A1 (fr) Procede d'obtention d'un revetement de protection contre l'oxydation d'une piece en alliage a base de titane
EP3701061A1 (fr) Piece comportant un revetement de protection a composition graduelle
FR3038624B1 (fr) Revetement de protection formant une barriere thermique, substrat recouvert d'un tel revetement, et piece de turbine a gaz comprenant un tel substrat
WO2020225508A1 (fr) Pièce en céramique ou cmc à base de silicium et procédé de réalisation d'une telle pièce
EP2419211A1 (fr) Substrat de catalyseur en nid d'abeilles et son procédé d'obtention
EP1184479A1 (fr) Formation d'un revêtement aluminiure incorporant un élément réactif sur un substrat métallique
EP4222130A1 (fr) Procede de fabrication d'une barriere environnementale
EP0409726A1 (fr) ProcÀ©dé de fabrication de moules-carapaces pour fonderie
FR3053076A1 (fr) Piece de turbomachine revetue d'une barriere thermique et d'un revetement de protection contre les cmas et procede pour l'obtenir
CA2802817C (fr) Procede d'aluminisation d'une surface avec depot prealable d'une couche de platine et de nickel
FR3060600A1 (fr) Revetement anti-erosion d'une piece mecanique et procede de traitement
WO2023094752A1 (fr) Procédé de revêtement par électrophorèse d'une pièce en matériau composite à matrice céramique par une barrière environnementale
FR2647436A1 (fr) Procede de fabrication de fibres de nitrure d'aluminium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23750667

Country of ref document: EP

Kind code of ref document: A1