WO2024018093A1 - Method and device for monitoring a task of a tool of a robotic arm - Google Patents

Method and device for monitoring a task of a tool of a robotic arm Download PDF

Info

Publication number
WO2024018093A1
WO2024018093A1 PCT/ES2022/070475 ES2022070475W WO2024018093A1 WO 2024018093 A1 WO2024018093 A1 WO 2024018093A1 ES 2022070475 W ES2022070475 W ES 2022070475W WO 2024018093 A1 WO2024018093 A1 WO 2024018093A1
Authority
WO
WIPO (PCT)
Prior art keywords
robotic arm
task
tool
mobile robotic
monitoring
Prior art date
Application number
PCT/ES2022/070475
Other languages
Spanish (es)
French (fr)
Inventor
Emilio José SANCHEZ PITA
Jorge Juan Gil Nobajas
Original Assignee
Asociacion Centro Tecnologico Ceit
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asociacion Centro Tecnologico Ceit filed Critical Asociacion Centro Tecnologico Ceit
Priority to PCT/ES2022/070475 priority Critical patent/WO2024018093A1/en
Publication of WO2024018093A1 publication Critical patent/WO2024018093A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls

Definitions

  • the present invention is related to the technical field of industrial robots, in particular to mobile robotic arms such as those fixed on autonomous vehicles, and more specifically with a procedure and system for pose monitoring during the performance of a task.
  • collaborative robots consist of an articulated robotic arm with the purpose of integrating into chain production environments to facilitate and speed up industrial work, in addition to freeing operators from dangerous and monotonous tasks, and avoiding injuries due to repetitive strain and accidents.
  • robots respond more intelligently and even more so when they are taken out of the automatic cell (structured environment) and placed in front of an everyday scenario where there is coexistence with human operators and other vehicles (unstructured environment).
  • collaborative robots have sensors with which they can understand what surrounds them and avoid accidents, collisions with personnel or other objects, stopping their operations cold if necessary.
  • both the robotic arms and the AGVs have position sensors that allow the controller to close a position/force loop, and also, in the case of AGVs, the generation of maps.
  • AGV Automatic Guided Vehicle
  • the position information of the six-degree-of-freedom mobile robot arm can be measured as values of the six angles at the six joints (joint position) or as a pose transformation matrix (position plus orientation) relating two reference systems ( Cartesian position), one located at the base of the robot (fixed reference system), and another located at the end of the robot tool (moving reference system).
  • the information of this pose must be combined with information of the AGV's pose and in this way know the pose of the tool, located at the end of the robot, with respect to a system of fixed reference that can also be used to define the target poses for task performance.
  • the pose measurement is measured assuming that said AGV always moves in a horizontal plane. Therefore the pose is 3 coordinates (X position, Y position and rotation according to Z). As a side effect, if the autonomous vehicle changes height or moves down a ramp, the pose measurement is completely wrong.
  • Determining the pose of the AGV becomes more critical when it does not have any external guidance system and its pose (position and orientation) can only be calculated by odometry, which usually presents non-negligible precision errors.
  • Another option consists of using GPS to determine position, however, this technology must be used in outdoor spaces since in closed environments such as inside industrial warehouses, errors occur in its operation.
  • the mobile manipulator can be made up of an autonomous vehicle from different manufacturers and this can make the development of a control module very difficult.
  • software and requires particular developments for each particular case of integration of an arm with an autonomous vehicle, this being a long and tedious procedure that increases the costs of the collaborative robot, or incompatibility problems that result in measurement errors.
  • the present invention provides a task monitoring procedure for a mobile robotic arm such as a fixed robotic arm.
  • a mobile robotic arm such as a fixed robotic arm.
  • AGV Automatic Guided Vehicle
  • AMR Automatic mobile robot
  • inertial reference system which includes the phases of: -capture of pose data during the performance of a task of a tool coupled to a robotic arm that is in turn coupled to a vehicle with respect to the inertial reference system of a tool coupled to the robotic arm during the performance of a task, -generation of a database of the data of captured pose associated with the task, and -manipulation of the data generated in the database for optimization of the robot task.
  • the aforementioned arm pose database can be established, which can be used to compare with theoretical poses and correct deviations or errors in the pose of the mobile robotic arm during the performance of the tasks. In this way, the precision and safety of the mobile robotic arm is improved, optimizing tasks and reducing adjustment times or repetition of tasks executed in a defective manner.
  • data capture is carried out using accelerometers, gyroscopes, and/or magnetometers. With this information, the data are processed to obtain three degrees of freedom for position and three for orientation.
  • the monitoring procedure contemplates that in said data capture, atmospheric pressure, temperature and/or force/torque data are additionally taken. These additional data are interesting for the control of the task performed by the mobile robotic arm, obtaining a complete characterization.
  • the data generated in the pose database of the mobile robotic arm are acquired by an artificial intelligence system and subsequently processed by a CPU for optimized control of the robotic arm.
  • the robot's task performance is optimized automatically, and can also be reprogrammed to perform other tasks in a production line in an automatic and optimized manner, providing a flexible solution, without requiring specialized personnel to reassign tasks, since through a Learning such an artificial intelligence system allows each task to be reconfigured.
  • the invention relates to a device for monitoring a mobile robotic arm task according to the procedure described above, which comprises a module that can be removably coupled between the connecting flange of the tool and the tool it houses, a sensing unit arranged in said module to capture the pose data of the task and a processing unit for said data.
  • the module that includes the sensing unit is replaceable, and attachable in the position closest to the tool for correct data capture of the pose of the mobile robotic arm that will be used to generate the database of pose during the performance of the task.
  • the device object of the invention comprises wireless communication means with a CPU for controlling the mobile robotic arm, for the generation of databases and processing for controlling the robotic arm.
  • the sensing unit will be in the form of a multi-sensor card, comprising acceleration sensors, gyroscopes, and/or magnetometers, as well as optionally humidity, temperature and/or force/torque sensors. This sensor will be integrated into the sensing module itself so that it can be attached as close as possible to the tool while carrying out the task of the robotic arm.
  • the sensing module of the monitoring device has universal coupling means in correspondence with the flange at the end of the robotic arm and with the coupling of the tool. Thanks to this configuration, for example, tongue-and-groove, the device can be coupled to other robotic arms, providing greater versatility.
  • the device comprises an artificial intelligence that stores and analyzes the pose information during the robotic arm task for its optimization and automatic execution of tasks.
  • Figure 1 shows a schematic elevation view of a robotic arm fixed on an automatic guidance vehicle (mobile robotic arm), with a sensing module of a device that is the object of the invention.
  • Figure 2 shows a detailed perspective schematic view of the coupling of the sensing module at the end of the robotic arm.
  • Figure 1 shows a robotic arm (1) fixed on an Automatic Guided Vehicle (AGV) (2) intended for carrying out tasks in a controlled manner. It is also contemplated that the mobile robotic arm is of the AMR type (of its acronym in English Autonomous mobile robot).
  • AMR Automatic Guided Vehicle
  • FIG 1 and in more detail in figure 2 you can see a sensing module (5) of a task monitoring device object of the invention, which It has a universal coupling in correspondence with a tool (4) coupled to said robotic arm (1), and on its opposite side with a universal coupling in correspondence with a connection flange of the tool (3).
  • said sensing module (5) is coupled to the robotic arm (1) in the position closest to the tool (4), being easily removable and installed on other robotic arms (1).
  • This sensing module (5) includes an integrated sensing unit in the form of a multi-sensor card that includes an accelerometer, a gyroscope, and/or a magnetometer, and may also have humidity, temperature, pressure and/or force sensors.
  • a control unit controls the robotic arm (1) to execute a programmed task.
  • the monitoring device captures pose data of the robotic arm (1), that is, position and orientation of the tool (3) positioned at the end of the robotic arm (1).
  • the monitoring device captures data through the multisensor card and processes it to obtain the pose of the mobile robotic arm (1) during the performance of the task.
  • the signal from the sensors of the multisensor card is a raw signal that must be processed since they do not provide a direct measurement of the pose, since in some cases a partial orientation measurement is given. Therefore, for data processing, an integration of the acceleration signal is preferably carried out twice, and it is combined with the orientation signal defined by the gyroscope or magnetometer to obtain a pose with six degrees of freedom (three degrees of freedom). freedom of position and three degrees of freedom of orientation).
  • Another option could be the combination with data from location systems in real time through ultra-broadband technologies.
  • atmospheric pressure, temperature, and/or force/torque data can be used, so that the process being carried out by the robotic arm (1) is controlled.
  • the database information obtained from the pose of the robotic arm in the different tasks will be the entry point for an artificial intelligence system.
  • This artificial intelligence model will be used to optimize the robot's performance, and may be a simple decision tree, or a logistic regression such as a complex neural network that implements a reinforcement learning agent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The invention relates to a method for monitoring a task of a tool (4) coupled to a mobile robotic arm (1) coupled to a vehicle (2) that can be moved relative to an inertial reference system, comprising the phases of capturing pose data for the tool (4) relative to the inertial reference system while a task is being performed; generating a database of the captured pose data associated with the task; and manipulating the generated data in the database for the optimisation of the task of the mobile robotic arm (1). The invention also relates to a monitoring device that carries out said method.

Description

DESCRIPCIÓN DESCRIPTION
PROCEDIMIENTO Y DISPOSITIVO DE MONITORIZACIÓN DE TAREA DE UNA HERRAMIENTA DE UN BRAZO ROBÓTICO PROCEDURE AND DEVICE FOR TASK MONITORING OF A ROBOTIC ARM TOOL
Sector de la técnica Technical sector
La presente invención está relacionada con el campo técnico de los robots industriales, en particular a los brazos robóticos móviles como pueden ser los fijados sobre vehículos autónomos, y más concretamente con un procedimiento y sistema de monitorización de pose durante la realización de una tarea. The present invention is related to the technical field of industrial robots, in particular to mobile robotic arms such as those fixed on autonomous vehicles, and more specifically with a procedure and system for pose monitoring during the performance of a task.
Estado de la técnica State of the art
En escenarios industriales para cumplir con los requisitos de tareas más complejas y variables y mejorar el rendimiento los robots se están integrando cada vez de manera más significativa. En este campo son conocidos los robots colaborativos que constan de un brazo robótico articulado con la finalidad de integrarse en entornos de producción en cadena para facilitar y agilizar el trabajo industrial, además de liberar a los operarios de tareas peligrosas y monótonas, y evitar lesiones por esfuerzo repetitivo y accidentes. In industrial settings to meet the requirements of more complex and variable tasks and improve performance, robots are being integrated more and more significantly. In this field, collaborative robots are known that consist of an articulated robotic arm with the purpose of integrating into chain production environments to facilitate and speed up industrial work, in addition to freeing operators from dangerous and monotonous tasks, and avoiding injuries due to repetitive strain and accidents.
Cada vez se pretende que los robots respondan de forma más inteligente y más aún cuando a estos se les saca de la célula automática (entorno estructurado) colocándose frente a un escenario cotidiano donde hay coexistencia con operario humanos y otros vehículos (entorno no estructurado). It is increasingly intended that robots respond more intelligently and even more so when they are taken out of the automatic cell (structured environment) and placed in front of an everyday scenario where there is coexistence with human operators and other vehicles (unstructured environment).
Para ello los robots colaborativos tienen sensores con los cuales pueden comprender lo que les rodea y evitar accidentes, colisiones con el personal u otros objetos deteniendo sus operaciones en seco si fuera necesario. To do this, collaborative robots have sensors with which they can understand what surrounds them and avoid accidents, collisions with personnel or other objects, stopping their operations cold if necessary.
No obstante, más allá de este tipo de sensores también es necesario conocer la pose del brazo robótico, es decir posición y orientación. Conociendo esta pose se puede actuar sobre el robot para corregir posibles errores de precisión en la realización de las tareas. However, beyond this type of sensors, it is also necessary to know the pose of the robotic arm, that is, position and orientation. Knowing this pose, you can act on the robot to correct possible precision errors in carrying out the tasks.
En el caso de que dicho brazo robótico sea móvil, como puede ser un brazo robótico que se disponga sobre un Vehículo de Guiado Automático (AGV), tanto los brazos robóticos como los AGVs disponen de sensores de posición que permiten a la controladora cerrar un lazo de posición/fuerza, y además, para el caso de AGVs, la generación de mapas. In the event that said robotic arm is mobile, such as a robotic arm that moves has an Automatic Guided Vehicle (AGV), both the robotic arms and the AGVs have position sensors that allow the controller to close a position/force loop, and also, in the case of AGVs, the generation of maps.
La información de posición del brazo robot móvil de seis grados de libertad se puede medir como valores de los seis ángulos en las seis articulaciones (posición articular) o como una matriz de transformación de pose (posición más orientación) que relaciona dos sistemas de referencia (posición cartesiana), uno ubicado en la base del robot (sistema de referencia fijo), y otro ubicado en el extremo final de la herramienta del robot (sistema de referencia móvil). The position information of the six-degree-of-freedom mobile robot arm can be measured as values of the six angles at the six joints (joint position) or as a pose transformation matrix (position plus orientation) relating two reference systems ( Cartesian position), one located at the base of the robot (fixed reference system), and another located at the end of the robot tool (moving reference system).
Para que el brazo robótico pueda realizar correctamente su trabajo, se debe combinar la información de esta pose con información de la pose del AGV y de esa forma conocer la pose de la herramienta, situada en el extremo final del robot, respecto a un sistema de referencia fijo que pueda ser también usado para definir las poses objetivo para desempeño de la tarea. In order for the robotic arm to correctly carry out its work, the information of this pose must be combined with information of the AGV's pose and in this way know the pose of the tool, located at the end of the robot, with respect to a system of fixed reference that can also be used to define the target poses for task performance.
Bajo este supuesto, los programas de control tanto del brazo como los del vehículo autónomo contienen valores de las pose objetivo donde tienen que hacer las tareas. Para que estas tareas puedan ser ejecutadas con éxito, estas poses tienen que, a su vez, estar definidas sobre el mismo sistema de referencia con el que trabajan respectivamente estos equipos. Under this assumption, the control programs of both the arm and the autonomous vehicle contain values of the target poses where they have to do the tasks. In order for these tasks to be executed successfully, these poses must, in turn, be defined on the same reference system with which these teams work respectively.
En el caso de AGVs, la medida de la pose se mide asumiendo que dicho AGV se desplaza siempre en un plano horizontal. Por ello la pose son 3 coordenadas (posición X, posición Y y rotación según Z). Como efecto colateral, si el vehículo autónomo cambia de altura o se mueve por una rampa, la medida de la pose es totalmente errónea. In the case of AGVs, the pose measurement is measured assuming that said AGV always moves in a horizontal plane. Therefore the pose is 3 coordinates (X position, Y position and rotation according to Z). As a side effect, if the autonomous vehicle changes height or moves down a ramp, the pose measurement is completely wrong.
La determinación de la pose del AGV se vuelve más crítica cuando éste no cuenta con ningún sistema de guiado externo y su pose (posición y orientación) sólo puede ser calculada por odometría, la cual suele presentar errores de precisión no despreciables. Determining the pose of the AGV becomes more critical when it does not have any external guidance system and its pose (position and orientation) can only be calculated by odometry, which usually presents non-negligible precision errors.
Otra opción consiste en la utilización de GPS para determinación de posición, sin embargo, esta tecnología debe ser utilizada en espacios exteriores ya que en entornos cerrados como en el interior de las naves industriales, se producen errores en su funcionamiento. Another option consists of using GPS to determine position, however, this technology must be used in outdoor spaces since in closed environments such as inside industrial warehouses, errors occur in its operation.
A esta problemática se suma que el manipulador móvil puede estar compuesto por un vehículo autónomo de fabricantes diferentes y ello puede dificultar mucho el desarrollo un módulo de software y obliga desarrollos particulares para cada caso particular de integración de un brazo con un vehículo autónomo siendo este un procedimiento largo y tedioso que incrementa los costes del robot colaborativo, o problemas de incompatibilidad que resultan en errores de medida. Added to this problem is that the mobile manipulator can be made up of an autonomous vehicle from different manufacturers and this can make the development of a control module very difficult. software and requires particular developments for each particular case of integration of an arm with an autonomous vehicle, this being a long and tedious procedure that increases the costs of the collaborative robot, or incompatibility problems that result in measurement errors.
A la vista de las descritas desventajas o limitaciones que presentan las soluciones existentes en la actualidad, resulta necesaria una solución versátil integrable en cualquier manipulador móvil que permita monitorizar la pose de un brazo robótico dispuesto sobre un AGV para que las tareas se realicen sin errores de precisión, a la vez que dicho robot responda de forma más inteligente. In view of the described disadvantages or limitations presented by the currently existing solutions, a versatile solution that can be integrated into any mobile manipulator is necessary that allows monitoring the pose of a robotic arm arranged on an AGV so that the tasks are carried out without errors. precision, while said robot responds more intelligently.
Objeto de la invención Object of the invention
Con la finalidad de cumplir este objetivo y solucionar los problemas técnicos comentados hasta el momento, además de aportar ventajas adicionales que se pueden derivar más adelante, la presente invención proporciona un procedimiento de monitorización de tarea de brazo robótico móvil como puede ser un brazo robótico fijado en un Vehículo de Guiado Automático (AGV) o un brazo robótico móvil AMR (de sus siglas en inglés Autonomous mobile robot) desplazable respecto de un sistema de referencia inercial, que comprende las fases de: -captura de datos de pose durante la realización de una tarea de una herramienta acoplada a un brazo robótico que a su vez está acoplado a un vehículo respecto al sistema de referencia inercial de una herramienta acoplada al brazo robótico durante la realización de una tarea, -generación de una base de datos de los datos de pose capturados asociados a la tarea, y -manipulación de los datos generados en la base de datos para optimización de la tarea del robot. In order to meet this objective and solve the technical problems discussed so far, in addition to providing additional advantages that can be derived later, the present invention provides a task monitoring procedure for a mobile robotic arm such as a fixed robotic arm. in an Automatic Guided Vehicle (AGV) or a mobile robotic arm AMR (Autonomous mobile robot) movable with respect to an inertial reference system, which includes the phases of: -capture of pose data during the performance of a task of a tool coupled to a robotic arm that is in turn coupled to a vehicle with respect to the inertial reference system of a tool coupled to the robotic arm during the performance of a task, -generation of a database of the data of captured pose associated with the task, and -manipulation of the data generated in the database for optimization of the robot task.
Con este procedimiento de monitorización tras la captura de datos de pose de la herramienta durante la realización de las tareas programadas para el brazo y para el vehículo, se puede establecer la mencionada base de datos de pose del brazo, que puede ser utilizada para comparar con las poses teóricas y corregir desviaciones o errores en la pose del brazo robótico móvil durante la realización de las tareas. De esta forma se mejora la precisión y seguridad del brazo robótico móvil, optimizando tareas y reduciendo en tiempos de ajuste o repetición de tareas ejecutadas de manera defectuosa. Preferentemente la captura de datos se realiza mediante acelerómetros, giróscopos, y/o magnetómetros. Con esta información se procesan los datos para obtención de tres grados de libertad para posición y tres para orientación. With this monitoring procedure after capturing tool pose data during the performance of the programmed tasks for the arm and for the vehicle, the aforementioned arm pose database can be established, which can be used to compare with theoretical poses and correct deviations or errors in the pose of the mobile robotic arm during the performance of the tasks. In this way, the precision and safety of the mobile robotic arm is improved, optimizing tasks and reducing adjustment times or repetition of tasks executed in a defective manner. Preferably, data capture is carried out using accelerometers, gyroscopes, and/or magnetometers. With this information, the data are processed to obtain three degrees of freedom for position and three for orientation.
De acuerdo con otra característica de la invención, el procedimiento de monitorización contempla que en dicha captura de datos adicionalmente se tomen datos de presión atmosférica, temperatura y/o fuerza/par. Estos datos adicionales resultan interesantes para el control de la tarea realizada por el brazo robótico móvil obteniendo una caracterización completa. According to another characteristic of the invention, the monitoring procedure contemplates that in said data capture, atmospheric pressure, temperature and/or force/torque data are additionally taken. These additional data are interesting for the control of the task performed by the mobile robotic arm, obtaining a complete characterization.
Preferentemente, de acuerdo con la invención, los datos generados en la base de datos de pose del brazo robótico móvil son adquiridos por un sistema de inteligencia artificial y posteriormente procesados por una CPU para control optimizado del brazo robótico. Preferably, according to the invention, the data generated in the pose database of the mobile robotic arm are acquired by an artificial intelligence system and subsequently processed by a CPU for optimized control of the robotic arm.
Se optimiza el desempeño de tareas del robot de forma automática, pudiendo además ser reprogramados para realizar otras tareas en una línea de producción de forma automática y optimizada, proporcionando una solución flexible, sin ser necesario personal especializado para reasignación de tareas, ya que mediante un aprendizaje dicho sistema de inteligencia artificial permite reconfigurar cada tarea. The robot's task performance is optimized automatically, and can also be reprogrammed to perform other tasks in a production line in an automatic and optimized manner, providing a flexible solution, without requiring specialized personnel to reassign tasks, since through a Learning such an artificial intelligence system allows each task to be reconfigured.
De acuerdo con otro aspecto, la invención se refiere a un dispositivo de monitorización de una tarea de brazo robótico móvil según el procedimiento anteriormente descrito, que comprende un módulo acoplable de forma removible entre la brida de conexión de la herramienta y la herramienta que aloja, una unidad de sensado dispuesta en dicho módulo para capturar los datos de pose de la tarea y una unidad de procesamiento de dichos datos. According to another aspect, the invention relates to a device for monitoring a mobile robotic arm task according to the procedure described above, which comprises a module that can be removably coupled between the connecting flange of the tool and the tool it houses, a sensing unit arranged in said module to capture the pose data of the task and a processing unit for said data.
Gracias a esta configuración, el módulo que comprende la unidad de sensado es sustituible, y acoplable en la posición más cercana a la herramienta para una correcta captura de datos de la pose del brazo robótico móvil que servirán para la generación de la base de datos de pose durante la realización de la tarea. Thanks to this configuration, the module that includes the sensing unit is replaceable, and attachable in the position closest to the tool for correct data capture of the pose of the mobile robotic arm that will be used to generate the database of pose during the performance of the task.
Preferentemente, el dispositivo objeto de la invención comprende medios de comunicación inalámbricos con una CPU de control del brazo robótico móvil, para la generación de bases de datos y procesamiento para control del brazo robótico. De forma preferente, la unidad de sensado será de la forma de una tarjeta multisensora, que comprenda sensores de aceleración, giróscopos, y/o magnetómetros, además de opcionalmente sensores de humedad, temperatura y/o fuerza/par. Esta sensora estará integrada en el propio módulo de sensado de forma que se pueda acoplar los más cerca posible de la herramienta durante la realización de la tarea del brazo robótico. Preferably, the device object of the invention comprises wireless communication means with a CPU for controlling the mobile robotic arm, for the generation of databases and processing for controlling the robotic arm. Preferably, the sensing unit will be in the form of a multi-sensor card, comprising acceleration sensors, gyroscopes, and/or magnetometers, as well as optionally humidity, temperature and/or force/torque sensors. This sensor will be integrated into the sensing module itself so that it can be attached as close as possible to the tool while carrying out the task of the robotic arm.
Según otra característica de la invención, el módulo de sensado del dispositivo de monitorización tiene unos medios de acoplamiento universales en correspondencia con la brida del extremo del brazo robótico y con el acoplamiento de la herramienta. Gracias a esta configuración, por ejemplo, de machiembrado, el dispositivo puede ser acoplado a otros brazos robóticos, proporcionando una mayor versatilidad. According to another characteristic of the invention, the sensing module of the monitoring device has universal coupling means in correspondence with the flange at the end of the robotic arm and with the coupling of the tool. Thanks to this configuration, for example, tongue-and-groove, the device can be coupled to other robotic arms, providing greater versatility.
Adicionalmente, de forma preferente el dispositivo comprende una inteligencia artificial que almacena y analiza la información de la pose durante la tarea de brazo robótico para su optimización y ejecución automática de tareas. Additionally, preferably the device comprises an artificial intelligence that stores and analyzes the pose information during the robotic arm task for its optimization and automatic execution of tasks.
Descripción de las figuras Description of the figures
La figura 1 muestra una vista esquemática de alzado de un brazo robótico fijado sobre un vehículo de guiado automático (brazo robótico móvil), con un módulo de sensado de un dispositivo objeto de la invención. Figure 1 shows a schematic elevation view of a robotic arm fixed on an automatic guidance vehicle (mobile robotic arm), with a sensing module of a device that is the object of the invention.
La figura 2 muestra una vista esquemática de detalle en perspectiva del acoplamiento del módulo de sensado en el extremo del brazo robótico. Figure 2 shows a detailed perspective schematic view of the coupling of the sensing module at the end of the robotic arm.
Descripción detallada de la invención Detailed description of the invention
A la vista de las mencionadas figuras, y de acuerdo con la numeración adoptada, se puede observar en ellas un ejemplo no limitativo de realización preferente de la invención. In view of the aforementioned figures, and in accordance with the numbering adopted, a non-limiting example of a preferred embodiment of the invention can be observed.
En la figura 1 se puede visualizar un brazo robótico (1) fijado sobre un Vehículo de Guiado Automático (AGV) (2) destinado a la realización de tareas de forma controlada, también se contempla que el brazo robótico móvil sea del tipo AMR (de sus siglas en inglés Autonomous mobile robot). En dicha figura 1 y más en detalle en la figura 2 se puede ver un módulo de sensado (5) de un dispositivo de monitorización de tareas objeto de la invención, el cual dispone de un acoplamiento universal en correspondencia con una herramienta (4) acopladle a dicho brazo robótico (1), y en su lado opuesto con un acoplamiento universal en correspondencia con una brida de conexión de la herramienta (3). Figure 1 shows a robotic arm (1) fixed on an Automatic Guided Vehicle (AGV) (2) intended for carrying out tasks in a controlled manner. It is also contemplated that the mobile robotic arm is of the AMR type (of its acronym in English Autonomous mobile robot). In said figure 1 and in more detail in figure 2 you can see a sensing module (5) of a task monitoring device object of the invention, which It has a universal coupling in correspondence with a tool (4) coupled to said robotic arm (1), and on its opposite side with a universal coupling in correspondence with a connection flange of the tool (3).
De esta forma, dicho módulo de sensado (5) queda acoplado en el brazo robótico (1) en la posición más cercana a la herramienta (4), siendo fácilmente desmontable e instaladle en otros brazos robóticos (1). Este módulo de sensado (5) comprende integrada una unidad de sensado de la forma de una tarjeta multisensora que comprende un acelerómetro, un giróscopo, y/o un magnetómetro, pudiendo disponer además de sensores de humedad, temperatura, presión y/ fuerza. In this way, said sensing module (5) is coupled to the robotic arm (1) in the position closest to the tool (4), being easily removable and installed on other robotic arms (1). This sensing module (5) includes an integrated sensing unit in the form of a multi-sensor card that includes an accelerometer, a gyroscope, and/or a magnetometer, and may also have humidity, temperature, pressure and/or force sensors.
Una vez instalado el módulo de sensado (5) del dispositivo de monitorización, una unidad de control controla el brazo robótico (1) para la ejecución de una tarea programada. Durante la ejecución de la tarea, el dispositivo de monitorización captura datos de pose del brazo robótico (1), es decir posición y orientación de la herramienta (3) posicionada en el extremo del brazo robótico (1). Once the sensing module (5) of the monitoring device is installed, a control unit controls the robotic arm (1) to execute a programmed task. During the execution of the task, the monitoring device captures pose data of the robotic arm (1), that is, position and orientation of the tool (3) positioned at the end of the robotic arm (1).
El dispositivo de monitorización captura datos a través de la tarjeta multisensora y los procesa para la obtención de la pose del brazo robótico móvil (1) durante la realización de la tarea. The monitoring device captures data through the multisensor card and processes it to obtain the pose of the mobile robotic arm (1) during the performance of the task.
La señal de los sensores de la tarjeta multisensora, es una señal bruta que debe ser procesada ya que no aportan una medida directa de la pose, puesto que en algunos casos se da una medida de orientación parcial. Por ello, para el procesamiento de los datos preferentemente se realiza una integración de la señal de aceleración dos veces, y se combina con la señal de orientación definida por el giróscopo o el magnetómetro para obtener una pose de seis grados de libertad (tres grados de libertad de posición y tres grados de libertad de orientación). The signal from the sensors of the multisensor card is a raw signal that must be processed since they do not provide a direct measurement of the pose, since in some cases a partial orientation measurement is given. Therefore, for data processing, an integration of the acceleration signal is preferably carried out twice, and it is combined with the orientation signal defined by the gyroscope or magnetometer to obtain a pose with six degrees of freedom (three degrees of freedom). freedom of position and three degrees of freedom of orientation).
Sin embargo, dado que los magnetómetros son sensibles a campos electromagnéticos siendo susceptibles de proporcionar medidas erróneas en determinadas ocasiones, para la compensación de errores, está previsto que el procesamiento de datos se realice mediante una combinación sensorial a través de filtro Kalman, de forma que se robustezca la medida de pose estimada. However, given that magnetometers are sensitive to electromagnetic fields and are susceptible to providing erroneous measurements on certain occasions, to compensate for errors, it is planned that the data processing will be carried out through a sensory combination through a Kalman filter, so that the estimated pose measure is strengthened.
Otra opción podría ser la combinación con los datos provenientes de sistemas de localización en tiempo real mediante tecnologías de ultra banda ancha. Another option could be the combination with data from location systems in real time through ultra-broadband technologies.
De forma opcional y para obtener una caracterización completa, se pueden emplear los datos de presión atmosférica, temperatura, y/o fuerza/par, de forma que se controle el proceso que está realizando el brazo robótico (1). Optionally and to obtain a complete characterization, atmospheric pressure, temperature, and/or force/torque data can be used, so that the process being carried out by the robotic arm (1) is controlled.
Con esta información, y con la sucesión de diferentes tareas se genera una base de datos que permite optimizar las tareas para corregir errores de precisión en las mismas. With this information, and with the succession of different tasks, a database is generated that allows the tasks to be optimized to correct accuracy errors in them.
Según una realización preferente de la invención, la información de la base de datos obtenida de la pose del brazo robótico en las diferentes tareas será el punto de entrada para un sistema de inteligencia artificial. Este modelo de inteligencia artificial será empleado para la optimización del desempeño del robot, pudiendo ser un simple árbol de decisión, o una regresión logística como una compleja red neuronal que implementa un agente de aprendizaje reforzado. According to a preferred embodiment of the invention, the database information obtained from the pose of the robotic arm in the different tasks will be the entry point for an artificial intelligence system. This artificial intelligence model will be used to optimize the robot's performance, and may be a simple decision tree, or a logistic regression such as a complex neural network that implements a reinforcement learning agent.
De esta forma el robot aprenderá a realizar su tarea con mayor eficiencia, corrigiendo errores de precisión y disminuyendo tiempos de tareas. In this way the robot will learn to perform its task more efficiently, correcting precision errors and reducing task times.

Claims

REIVINDICACIONES
1 .-Procedimiento de monitorización de una tarea de una herramienta (4) acoplada a un brazo robótico móvil (1) que a su vez está acoplado en un vehículo (2) desplazadle respecto de un sistema de referencia ¡nercial, que comprende las fases de: 1.-Procedure for monitoring a task of a tool (4) coupled to a mobile robotic arm (1) which in turn is coupled to a vehicle (2) that moves it with respect to an inertial reference system, which includes the phases of:
-captura de datos de pose de la herramienta (4) del brazo robótico móvil (1) respecto al sistema de referencia ¡nercial durante la realización de una tarea, -capture of pose data of the tool (4) of the mobile robotic arm (1) with respect to the inertial reference system during the performance of a task,
-generación de una base de datos de los datos de pose capturados asociados a la tarea, y -manipulación de los datos generados en la base de datos para optimización de la tarea del brazo robótico móvil (1). -generation of a database of the captured pose data associated with the task, and -manipulation of the data generated in the database to optimize the task of the mobile robotic arm (1).
2.- Procedimiento de monitorización de una tarea de una herramienta (4) acoplada a un brazo robótico móvil (1) según reivindicación 1 caracterizado por que la captura de datos se realiza mediante acelerómetros, giróscopos y/o magnetómetros. 2.- Procedure for monitoring a task of a tool (4) coupled to a mobile robotic arm (1) according to claim 1 characterized in that data capture is carried out using accelerometers, gyroscopes and/or magnetometers.
3.- Procedimiento de monitorización de una tarea de una herramienta (4) acoplada a un brazo robótico móvil (1) según reivindicaciones 1 o 2 caracterizado por que adicionalmente para la captura de datos se toman datos de presión atmosférica, temperatura y/o fuerza/par. 3.- Procedure for monitoring a task of a tool (4) coupled to a mobile robotic arm (1) according to claims 1 or 2 characterized in that additionally, atmospheric pressure, temperature and/or force data are taken to capture data. /pair.
4.- Procedimiento de monitorización de una tarea de una herramienta (4) acoplada a un brazo robótico móvil (1) según una cualquiera de las reivindicaciones anteriores caracterizado por que los datos generados en la base de datos de pose de la herramienta (4) son adquiridos por un sistema de inteligencia artificial y procesados por una CPU para control optimizado del brazo robótico móvil (1). 4.- Procedure for monitoring a task of a tool (4) coupled to a mobile robotic arm (1) according to any one of the previous claims characterized in that the data generated in the pose database of the tool (4) They are acquired by an artificial intelligence system and processed by a CPU for optimized control of the mobile robotic arm (1).
5.- Dispositivo de monitorización de una tarea de una herramienta (4) acoplada a un brazo robótico móvil (1) según el procedimiento de monitorización de una cualquiera de las reivindicaciones anteriores, que comprende un módulo (5) acoplable de forma removible entre la brida de conexión de la herramienta (3) y la herramienta (4) que aloja, una unidad de sensado dispuesta en dicho módulo (5) para capturar los datos de pose de la tarea y una unidad de procesamiento de dichos datos. 5.- Device for monitoring a task of a tool (4) coupled to a mobile robotic arm (1) according to the monitoring procedure of any one of the preceding claims, which comprises a module (5) removablely attachable between the connection flange of the tool (3) and the tool (4) that houses, a sensing unit arranged in said module (5) to capture the pose data of the task and a processing unit for said data.
6.- Dispositivo de acuerdo con la reivindicación 5 que comprende medios de comunicación inalámbricos con una CPU de control del brazo robótico (1). 6. Device according to claim 5 comprising wireless communication means with a CPU for controlling the robotic arm (1).
7.- Dispositivo de acuerdo con las reivindicaciones 5 o 6 caracterizado por que la unidad de sensado es de la forma de una tarjeta multisensora. 7.- Device according to claims 5 or 6 characterized in that the sensing unit is in the form of a multi-sensor card.
8.- Dispositivo de acuerdo con una cualquiera de las reivindicaciones 5 a 7 caracterizado por que el módulo de sensado (5) tiene unos medios de acoplamiento universales en correspondencia con la brida (3) del extremo del brazo robótico móvil (1) y con el acoplamiento de la herramienta (4). 8. Device according to any one of claims 5 to 7 characterized in that the sensing module (5) has universal coupling means in correspondence with the flange (3) at the end of the mobile robotic arm (1) and with the tool coupling (4).
9.- Dispositivo de acuerdo con una cualquiera de las reivindicaciones 5 a 8 caracterizado por que comprende una inteligencia artificial que almacena y analiza la información de la pose durante la tarea del brazo robótico móvil (1). 9.- Device according to any one of claims 5 to 8 characterized in that it comprises an artificial intelligence that stores and analyzes the pose information during the task of the mobile robotic arm (1).
PCT/ES2022/070475 2022-07-20 2022-07-20 Method and device for monitoring a task of a tool of a robotic arm WO2024018093A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2022/070475 WO2024018093A1 (en) 2022-07-20 2022-07-20 Method and device for monitoring a task of a tool of a robotic arm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2022/070475 WO2024018093A1 (en) 2022-07-20 2022-07-20 Method and device for monitoring a task of a tool of a robotic arm

Publications (1)

Publication Number Publication Date
WO2024018093A1 true WO2024018093A1 (en) 2024-01-25

Family

ID=89617227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2022/070475 WO2024018093A1 (en) 2022-07-20 2022-07-20 Method and device for monitoring a task of a tool of a robotic arm

Country Status (1)

Country Link
WO (1) WO2024018093A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170210005A1 (en) * 2014-08-08 2017-07-27 Bbz, S.R.L. Remote manipulation input device
US20190337152A1 (en) * 2018-05-02 2019-11-07 X Development Llc Positioning a Robot Sensor for Object Classification
US20200368911A1 (en) * 2019-05-24 2020-11-26 Seiko Epson Corporation Method Of Controlling Robot
US20210229265A1 (en) * 2018-06-05 2021-07-29 Tsinghua University Movable Hybrid Machining Robot based on Three-Degree-of-Freedom Force-Controlled Parallel Module
US20210379757A1 (en) * 2020-06-08 2021-12-09 Travis Schneider Robotic manipulation of pv modules
US20220016776A1 (en) * 2020-07-17 2022-01-20 Path Robotics, Inc. Real time feedback and dynamic adjustment for welding robots
EP4019200A1 (en) * 2019-08-30 2022-06-29 DMG Mori Co., Ltd. Production system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170210005A1 (en) * 2014-08-08 2017-07-27 Bbz, S.R.L. Remote manipulation input device
US20190337152A1 (en) * 2018-05-02 2019-11-07 X Development Llc Positioning a Robot Sensor for Object Classification
US20210229265A1 (en) * 2018-06-05 2021-07-29 Tsinghua University Movable Hybrid Machining Robot based on Three-Degree-of-Freedom Force-Controlled Parallel Module
US20200368911A1 (en) * 2019-05-24 2020-11-26 Seiko Epson Corporation Method Of Controlling Robot
EP4019200A1 (en) * 2019-08-30 2022-06-29 DMG Mori Co., Ltd. Production system
US20210379757A1 (en) * 2020-06-08 2021-12-09 Travis Schneider Robotic manipulation of pv modules
US20220016776A1 (en) * 2020-07-17 2022-01-20 Path Robotics, Inc. Real time feedback and dynamic adjustment for welding robots

Similar Documents

Publication Publication Date Title
ES2759082T3 (en) Portable device to control a robot and its method
KR102162756B1 (en) Mobile robot platform system for process and production management
Baumgartner et al. An autonomous vision-based mobile robot
Bostelman et al. Survey of research for performance measurement of mobile manipulators
JP2022500263A (en) Robot calibration for augmented reality and digital twins
Du et al. Online robot calibration based on hybrid sensors using Kalman Filters
JP6083520B2 (en) Robot guidance method and apparatus
Marwan et al. Calibration method for articulated industrial robots
Li et al. PCMPC: Perception-constrained model predictive control for quadrotors with suspended loads using a single camera and IMU
Hebert et al. Supervised remote robot with guided autonomy and teleoperation (SURROGATE): a framework for whole-body manipulation
Dong et al. Predictive visual servo kinematic control for autonomous robotic capture of non-cooperative space target
Barua et al. An ultrasonic line follower robot to detect obstacles and edges for industrial and rescue operations
Watanabe et al. Self-contained kinematic calibration of a novel whole-body artificial skin for human-robot collaboration
WO2024018093A1 (en) Method and device for monitoring a task of a tool of a robotic arm
Merkt et al. Towards shared autonomy applications using whole-body control formulations of locomanipulation
JP2003330538A (en) Autonomous moving robot and autonomous moving method thereof
Cechowicz et al. Indoor vehicle tracking with a smart MEMS sensor
Mäkinen et al. Redundancy-based visual tool center point pose estimation for long-reach manipulators
Gao et al. A Hybrid Navigation and Image Processing Model with Dynamic Mobile Manipulation
Tsoy et al. Estimation of 4-DoF manipulator optimal configuration for autonomous camera calibration of a mobile robot using on-board templates
CN115362069A (en) Modular wheel assembly
Lytle et al. Development of a robotic structural steel placement system
Urrea et al. Design, Construction, and Programming of a Mobile Robot Controlled by Artificial Vision
Siswoyo et al. Development Of an Autonomous Robot To Guide Visitors In Health Facilities Using A Heskylens Camera: Development Of an Autonomous Robot To Guide Visitors In Health Facilities Using A Heskylens Camera
Landa-Hurtado et al. Kinect-based trajectory teaching for industrial robots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951868

Country of ref document: EP

Kind code of ref document: A1