WO2024017272A1 - 一种小直径钻柱井下驱动装置及方法 - Google Patents

一种小直径钻柱井下驱动装置及方法 Download PDF

Info

Publication number
WO2024017272A1
WO2024017272A1 PCT/CN2023/108028 CN2023108028W WO2024017272A1 WO 2024017272 A1 WO2024017272 A1 WO 2024017272A1 CN 2023108028 W CN2023108028 W CN 2023108028W WO 2024017272 A1 WO2024017272 A1 WO 2024017272A1
Authority
WO
WIPO (PCT)
Prior art keywords
string
sidetrack
driving
torque transmission
power
Prior art date
Application number
PCT/CN2023/108028
Other languages
English (en)
French (fr)
Inventor
万晓跃
徐梓辰
杨忠华
Original Assignee
万晓跃
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210852352.4A external-priority patent/CN117449761A/zh
Priority claimed from CN202210854711.XA external-priority patent/CN117468859A/zh
Application filed by 万晓跃 filed Critical 万晓跃
Publication of WO2024017272A1 publication Critical patent/WO2024017272A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/05Swivel joints
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/20Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling

Definitions

  • the invention relates to the field of drilling technology, specifically to a small-diameter drill string downhole driving device and method.
  • the rotational power of the drill bit mainly relies on turbine drilling tools and screw drilling tools.
  • the drill string is sliding drilling and the drill bit is rotating drilling. Its overall drilling efficiency is average.
  • the present invention provides the following technical solutions: a small diameter drill string downhole driving device and method,
  • It includes a sidetrack string, a guide structure and a drive string;
  • the guide structure is connected below the drive string, and the sidetrack string penetrates inside the drive string and enters the formation through the guide structure;
  • a power device is provided at the bottom of the driving pipe string, and the power device is ring-enclosed on the outside of the sidetrack pipe string; a transmission device is provided between the power device and the sidetrack pipe string, and the power device can pass through all The transmission device provides rotational power for the sidetrack string or achieves angular position control.
  • the power device is fixedly connected to the driving string, which can provide rotational power for the sidetrack string or swing the tool face angle, and its transmission connection only transmits torque but does not hinder the movement of the sidetrack string along the axis. , realize the "underground turntable" drive.
  • a guide channel is provided inside the guide structure, and a guide channel is provided inside the drive column.
  • the pipe string is drilled along the sidetrack extension of the main wellbore.
  • the guide structure is a whipstock, and the guide structure is entered into the well along with the driving string during the operation, and is used to guide the sidetrack string to implement the sidetracking operation.
  • the power source of the driving column is either hydraulic energy or electrical energy.
  • the driving column at least includes a power end and an output end.
  • a through hole is provided in the center of the output end.
  • the output end is provided with a through hole.
  • a torque transmission mechanism is provided between the end and the sidetrack string, which can transmit rotational power to the sidetrack string through the torque transmission mechanism or change the tool face angle of its lower directional motor through the sidetrack string.
  • the power device when the power device is driven by hydraulic energy, the power device is an underground motor, and the drive string further includes a drive flow channel, and the hydraulic fluid can drive the power end to rotate through the drive flow channel, and The output torque is output from the output end through the torque transmission mechanism to drive the sidetrack string to rotate and perform work.
  • the power device when driven by hydraulic energy, is mainly a turbine motor and a screw motor. It mainly uses the hydraulic energy of the drilling circulation medium to drive the turbine or screw motor to rotate.
  • the downhole motor is a turbine motor
  • the driving string also includes a circulation flow channel, which can be disposed between the power end and the output end, or below the output end, for communicating with all
  • the driving flow channel and the main wellbore annulus after the fluid completes the driving work through the power end, can enter the main wellbore annulus along the circulating flow channel and return to the surface, forming a driving cycle.
  • the sidetrack string is provided with an internal circulation channel, and the sidetrack drilling medium directly enters the internal circulation channel of the sidetrack string from the ground to the drill bit water hole, and then enters the main wellbore through the sidetrack wellbore and returns.
  • the ground completes the cycle.
  • the sidetrack string includes a drill bit
  • the rock breaking method of the drill bit is a method of mechanical rock breaking as the main method and hydraulic rock breaking as a supplement, or a method of hydraulic rock breaking as the main method as mechanical rock breaking as a supplement.
  • the method is one or more of hydraulic self-driving method, mechanical pressurization, and hydraulic pressurization.
  • At least one set of torque transmission mechanisms is provided between the driving string and the sidetrack string, and the torque transmission mechanism includes a driving end torque transmission mechanism and a drill string end torque transmission mechanism;
  • the driving end torque transmission mechanism runs through the output end, and the distance between the drill string end torque transmission mechanism and the drill bit is greater than the design depth of the branch wellbore and less than the overall length of the output end.
  • the power device is a hydraulically controlled annular piston, which uses the hydraulic system to provide a large torque to provide power for the rotation and orientation of the sidetrack string 1;
  • the hydraulically controlled annular piston at least includes a hydraulic power source, an annular piston and a motion conversion mechanism.
  • the motion conversion mechanism converts the motion of the annular piston along the axis into rotational motion or swing of the output end, and is used to drive the sidetrack string to rotate or Change the tool face angle.
  • the sidetrack string is a flexible drill string capable of directional drilling, which is a complete set of drilling string including at least a flexible drill pipe and a drill bit, and the flexible drill pipe is a highly elastic metal drill string.
  • the lower part of the sidetrack string also includes a deflection drilling device.
  • the deflection drilling device is a directional motor and a drill bit with a deflection mechanism, or the deflection drilling device is a deflection drilling device with a deflection mechanism.
  • the power device is a downhole motor system; the downhole motor system includes a motor and an angular position sensor, and the angular position sensor is used to indicate the angular position of the output end of the motor system and is used to rotate the sidetrack pipe.
  • the column controls the tool face angle of the deflection drilling device.
  • the driving end torque transmission mechanism 801 of the torque transmission mechanism 8 and the drill string end torque transmission mechanism described in the present invention do not imply any specific structural form.
  • the present invention cites four cases to define the present invention.
  • the tool surface positioning structure in the machine such as keyway structure, polysquare sleeve structure, spline structure, roller raceway structure, etc.
  • a directional motor 11 may be provided at the lower part of the sidetrack string 1.
  • the outer diameter of the directional motor is smaller than the diameter of the drill bit 112 and smaller than the inner diameter of the output end of the power unit, and can pass through the powerplant.
  • the tool face angle of the directional motor can be controlled by adjusting the angle of the power unit.
  • the power device is the annular hydraulic device or the downhole motor system
  • the tool face angle of the directional motor can be better controlled in real time to achieve the purpose of directional drilling of tiny holes.
  • the present invention provides a small-diameter drill string downhole driving device and method, which has the following beneficial effects:
  • the driving pipe string and the guide structure can be used to guide the sidetracking pipe string into the formation smoothly, and the driving pipe string can provide rotational power for the sidetracking pipe string, wherein the torque transmission mechanism can effectively
  • the transmission torque allows the driving string to provide mechanical energy to the sidetrack string for rock breaking, and at the same time, hydraulic energy is used to break rock or apply drilling pressure, thereby improving the overall drilling efficiency.
  • the technical effects of the present invention also include the ability to use annular motors and annular hydraulic devices to control the tool face angle of the sidetrack string and achieve wellbore trajectory control during the drilling process of micro holes.
  • Figure 1 is a schematic structural diagram of Embodiment 1 of a small-diameter drill string downhole driving device and method
  • Figure 2 is a schematic cross-sectional view of Embodiment 1 of a torque transmission mechanism in a small-diameter drill string downhole driving device and method;
  • Figure 3 is a schematic structural diagram of Embodiment 2 of a small-diameter drill string downhole driving device and method
  • Figure 4 is a schematic cross-sectional view of Embodiment 2 of a torque transmission mechanism in a small-diameter drill string downhole driving device and method;
  • Figure 5 is a schematic structural diagram of Embodiment 3 of a small-diameter drill string downhole driving device and method
  • Figure 6 is a schematic cross-sectional view of Embodiment 3 of a torque transmission mechanism in a small-diameter drill string downhole driving device and method;
  • Figure 7 is a schematic structural diagram of Embodiment 4 of a small-diameter drill string downhole driving device and method
  • Figure 8 is a schematic structural diagram of Embodiment 5 of a small-diameter drill string downhole driving device and method
  • Figure 9 is a schematic cross-sectional view of an annular hydraulic device in a small-diameter drill string downhole driving device and method
  • Figure 10 is a schematic structural diagram of Embodiment 6 of a small-diameter drill string downhole driving device and method
  • Figure 11 is a partial schematic diagram of a stepping annular hydraulic device in a small-diameter drill string downhole driving device and method
  • Figure 12 is a partial structural schematic diagram of Embodiment 4 of a small-diameter drill string downhole driving device and method
  • Figure 13 is a schematic cross-sectional view of Embodiment 4 of the torque transmission mechanism in a small-diameter drill string downhole driving device and method;
  • Figure 13 is a partial structural schematic diagram of Embodiment 5 of a small-diameter drill string downhole driving device and method
  • a small diameter drill string downhole driving device and method include a sidetrack string 1, a guide structure 2 and a driving string 3; the guide structure 2 is connected to The lower part of the driving pipe string 3 enters the well together, and the sidetracking pipe string 1 enters the formation from the inside of the guide structure 2 and the driving pipe string 3;
  • the sidetrack string 1 at least includes a flexible drill pipe, a drill bit or a measurement and control system while drilling. Since the flexible drill pipe needs to pass through the guide structure 2, it needs to be sufficiently flexible. Specifically in this embodiment,
  • the flexible drill pipe is a highly elastic metal drill pipe
  • the flexible drill pipe also has sufficient rigidity.
  • the flexible drill pipe rotates under the action of the driving string 3 and transmits torque to the bottom hole drill bit for mechanical breaking. rock.
  • an downhole motor in addition to being provided with a drill bit or a measurement and control system while drilling, can be provided below the flexible drill pipe to provide drilling power for the drill bit.
  • the downhole motor Preferably, it is a turbine motor.
  • the measurement and control system while drilling can measure the inclination and orientation of the bottom hole, and can communicate with the ground control center for directional control; the turbine motor and the measurement while drilling system are both It is currently a mature technology and will not be repeated here;
  • a guide channel 4 is provided inside the guide structure 2, and a through channel 5 is provided inside the drive string 3.
  • the guide channel 4 The sidetrack string 1 and the through channel 5 interpenetrate each other to form a channel for the sidetrack string 1 to slide forward.
  • the overall outer diameter of the sidetrack string 1 matches the through channel 5 and the guide channel 4, so that it can Smoothly pass through the guide structure 2 and the driving pipe string 3, and drill along the main wellbore sidetrack extension;
  • the upper pipe string is usually required to lower the guide structure 2 and the driving pipe string 3 to the predetermined well depth in advance and complete the orientation and seat clamping.
  • the orientation of the guide structure 2 can be fixed, maintained and preset. The orientation is consistent.
  • the guide structure 2 is a whipstock, and the whipstock is entered into the well along with the driving string 3, and the two are preferably connected through threads;
  • the diameter of the sidetrack string is within the range of 10-100 mm.
  • the driving force for rock formation and extended drilling is mainly hydraulic energy, specifically including hydraulic rock breaking and hydraulic self-driving.
  • hydraulic rock breaking and extension drilling need to overcome greater forward resistance.
  • mechanical energy-based rock breaking methods are required, and in directional inclined wells, The section can also be pressurized using hydraulic energy to better apply weight on bit to the lower drilling tool.
  • the driving string 3 can provide rotational power for the sidetrack string 1, provide mechanical energy for rock breaking, and at the same time supplement with hydraulic energy for rock breaking or apply drilling pressure;
  • the driving string 3 is a downhole turbine, which converts the energy of high-pressure drilling fluid fluid into mechanical energy to output torque.
  • the turbine at least includes a power end 6 and an output end 7.
  • the power end 6 is composed of a turbine blade group.
  • the rotational power output by the turbine blade set can drive the internal core shaft to rotate; the core shaft can be connected to the output end 7 through a threaded or hinged structure.
  • the power end is the stator and the output end is the rotor.
  • the output end 7 can also be integrally formed with the mandrel, or include a number of rigid nipples connected by threads, or a number of rigid nipples connected by a hinge.
  • the driving column 3 also includes a sealing system and a bearing system, which can ensure flow channel sealing and stable transmission of torque.
  • the torque is transmitted to the sidetrack string 1 through the torque transmission mechanism 8 at the output end 7 .
  • the torque transmission mechanism 8 includes a driving end torque transmission mechanism 801 and a drill string end torque transmission mechanism 802.
  • the driving end torque transmission mechanism 801 is preferably a groove
  • the drill string end torque transmission mechanism 802 is preferably a boss, and the size of the boss matches the size of the groove, so that the boss can just slide inside the groove.
  • the output end 7 is The upper and lower ends are preferably provided with double helix guide bevels, which can guide the boss to enter the groove smoothly.
  • the drill string end torque transmission mechanism 802 transmits the torque to the sidetrack string 1 .
  • a set of torque transmission mechanisms 8 is provided between the driving string 3 and the sidetrack string 1, wherein the driving end torque transmission mechanism 801 runs throughout The output end 7 reaches the entrance of the guide channel 4 of the guide structure 2 , and the distance between the drill string end torque transmission mechanism 802 and the drill bit is greater than the design depth of the branch wellbore and less than the entire output end 7 length, so that when side drilling is first started, the drill string end torque transmission mechanism 802 is located at the upper part of the driving end torque transmission mechanism 801. As the side drilling deepens, the drill string end torque transmission mechanism 802 and The sidetrack string 1 moves forward together until it reaches the predetermined well depth. During this process, the drill string end torque transmission mechanism 802 can ensure that it always slides inside the drive end torque transmission mechanism 801 .
  • the driving pipe string 3 is driven by high-pressure drilling fluid.
  • a driving flow channel 9 is provided inside the driving pipe string 3.
  • the driving flow channel 9 can connect the liquid flow channel of the upper drill string and the turbine blades.
  • the high-pressure drilling fluid pumped into the well by the surface mud pump can drive the blade set to rotate through the driving flow channel 9 to drive the power end 6 to rotate, and the output end 7 outputs torque through the torque transmission mechanism 8 to drive the side drill.
  • Column 1 rotates to do work.
  • the driving column 3 is provided with a plurality of circulation flow channels 10, and the circulation flow channels 10 are disposed between the power end 6 and the output end 7.
  • the plurality of circulating flow channels 10 can realize the connection between the driving flow channel 9 and the wellbore annulus.
  • the high-pressure drilling fluid that has completed its work can enter the main wellbore along the circulating flow channels 10 and then return to the surface, forming a complete drive cycle.
  • the power end 6 refers to the stator end of the power device
  • the output end 7 refers to the rotor of the power device.
  • the sidetrack string 1 is provided with a circulation loop different from the driving string 3.
  • the sidetrack string drilling medium directly enters the internal circulation channel of the sidetrack string 1 from the ground to the drill bit water hole. Then it enters the main wellbore from the sidetrack wellbore and returns to the surface to complete the cycle.
  • the sidetrack string drilling medium circulation circuit contains high-pressure drilling fluid.
  • the high-pressure drilling fluid can assist in rock breaking, carrying rock, and cooling the drill bit.
  • its hydraulic energy can be used to provide the sidetrack string 1 with water. Extended drilling drive.
  • multiple torque transmission mechanisms 8 are provided on the sidetrack string 1 .
  • a plurality of drill string end torque transmission mechanisms 802 are provided on the sidetrack string 1 , and the distance between each drill string end torque transmission mechanism 802 is less than the axis length of the power unit output end 7 .
  • the plurality of torque transmission mechanisms can sequentially achieve transmission connection with the output end 7 of the power unit in the form of a relay during the descending process of the sidetrack string 1, which can realize the sidetrack string 1 of hundreds of meters. Continuous transmission.
  • a directional motor 11 is provided at the lower part of the sidetrack string 1.
  • the outer diameter of the directional motor is smaller than the diameter of the drill bit and smaller than the inner diameter of the output end of the power unit, and can pass through the power unit.
  • the driving string 3 is preferably a screw motor; the screw motor is hollow, so that the sidetracking string 1 can be connected by the guide structure 2 and the driving pipe.
  • the interior of column 3 enters the ground;
  • the sidetrack string 1 at least includes a flexible drill pipe, a drill bit or a measurement and control system while drilling, and its size matches the internal channel of the guide structure 2 and the driving string 3;
  • the screw motor is a positive displacement motor, which is currently a mature technology and will not be repeated here. It can provide rotational power for the sidetrack string 1 by using high-pressure drilling mud, and at the same time, the sidetrack string 1 can be drilled while drilling.
  • the measurement and control system can perform directional control on the downhole pipe string;
  • the driving pipe string 3 can provide rotational mechanical energy for the sidetracking pipe string 1 to perform rock breaking. At the same time, it can also be supplemented by the hydraulic energy in the sidetracking pipe string 1 to perform rock breaking. rock or apply drilling pressure;
  • the driving string 3 converts high-pressure drilling fluid energy into mechanical energy to output torque.
  • the screw motor at least includes a power end 6 and an output end 7.
  • the power end 6 is composed of a positive displacement screw.
  • the internal screw shaft can generate rotational power, and is connected and output with the output end 7 through a threaded or hinged structure.
  • the power end is Stator
  • the output end is the rotor.
  • the screw here is a power device used to drive the entire sidetracking string 1, and the directional motor 11 is provided at the lower part of the sidetracking string 1 for directly driving the drill bit and guiding.
  • the output end 7 can also be integrally formed with the screw shaft.
  • the driving column 3 also includes a sealing system and a bearing system, which can ensure flow channel sealing and stable transmission of torque.
  • a sealing system and a bearing system, which can ensure flow channel sealing and stable transmission of torque.
  • the screw motor shaft since the screw motor shaft must be hollow so that the sidetrack string 1 can smoothly pass through the driving drill string 3 and enter the formation, there is a moving gap between the inner wall of the screw motor shaft and the sidetrack string 1, and a seal can usually be provided in this gap.
  • the components are sealed, or a throttling structure or throttling device is provided in the gap to increase the flow resistance of drilling fluid into the gap, thereby forcing the fluid to enter the positive displacement motor;
  • the seal, throttling structure or throttling device can also be provided on the outside of the sidetrack string 1, but in this case, it usually needs to be arranged very densely to ensure a certain seal. Effect.
  • the torque is transmitted to the sidetrack string 1 through the torque transmission mechanism 8 at the output end 7 .
  • the torque transmission mechanism 8 is a nested torque transmission mechanism, which includes a nested drive end torque transmission mechanism 803 and a nested drill string end torque transmission mechanism 804.
  • the transmission structure includes a polygon sleeve or a spline.
  • the driving end torque transmission mechanism 803 is preferably a regular hexagonal groove.
  • the drill string end torque transmission mechanism 804 is preferably a regular hexagonal boss corresponding to the groove.
  • the regular hexagonal boss is preferably a regular hexagonal boss corresponding to the groove.
  • the size of the hexagonal boss matches the size of the regular hexagonal groove, so that the boss can just slide inside the groove.
  • a set of torque transmission mechanisms 8 is provided between the driving string 3 and the sidetrack string 1 .
  • the driving end torque transmission mechanism 803 runs through the entire output end 7 to the entrance of the guide channel 4 of the guide structure 2, and the installation length of the drill string end torque transmission mechanism 804 should be greater than the length of the branch wellbore.
  • the design depth is such that when side drilling is first started, the drill string end torque transmission mechanism 804 is located at the upper part of the driving end torque transmission mechanism 803. As the side drilling deepens, the drill string end torque transmission mechanism 804 It moves forward with the sidetrack string 1 until it reaches the predetermined well depth. During this process, the drill string end torque transmission mechanism 804 can ensure that it always slides inside the drive end torque transmission mechanism 803 .
  • the driving string 3 is preferably an downhole motor system; the downhole motor system is hollow inside, and the sidetrack string 1 can pass through the downhole motor system. Internal passage, and enters the stratum from inside the guidance structure 2;
  • the underground motor system at least includes an analysis circuit 1201, a control circuit 1202, a motor 1203 and a deceleration mechanism 1204, wherein the analysis circuit 1201, the control circuit 1202, and the motor 1203 are connected by a cable.
  • the analysis circuit 1201 can accept and analyze ground commands, and pass the analysis results to the control circuit 1202, and then control the working status of the motor 1203;
  • the driving pipe string 3 at least includes a pulling section 1301, a driving section 1302 and a guiding section 1303.
  • the pulling section 1301 is composed of several rigid drill strings, the lower part of which is connected to the fixed driving section 1302 and the guiding section through threads in sequence.
  • the driving section 1302 also includes a number of rigid nipples, which are provided with a number of accommodation cavities and sealing systems.
  • An analysis circuit 1201, a control circuit 1202, a motor 1203 and a torque transmission mechanism 1204 can be respectively provided;
  • the guide section 1303 is hollow, and the guide structure 2 is fixed below the guide section 1303 through threaded connection;
  • the guide structure 2 described in this embodiment adopts hydraulic control, specifically including a guide control circuit 201, a guide motor 202, a guide hydraulic power source 203 and a piston pushing mechanism 204;
  • the guide control The circuit 201 can accept and analyze ground commands, and control the guidance motor 202 according to the analysis results.
  • An axial piston is provided between the guidance motor 202 and the guidance hydraulic power source 203.
  • the axial piston is connected to the output of the guidance motor 202.
  • the shaft is connected and fixed and is controlled by the guide motor 202. Its output shaft can drive the axial piston to move up and down, thereby expanding or squeezing the space of the guide hydraulic power source 203;
  • the piston pushing mechanism 204 is evenly distributed along the axial direction and/or circumferential direction of the guide structure 2.
  • several hydraulic chambers are evenly distributed along the axial direction and/or circumferential direction of the guide structure 2.
  • a number of hydraulic pistons 206 are provided in the hydraulic chamber 205. When the hydraulic pistons 206 move up and down, the seat clamp 207 can be pushed to extend or retract, thereby completing the seat clamp and retraction of the guide structure 2.
  • the guide structure 2 is provided with a hydraulic channel 208 inside, and the hydraulic channel 208 communicates with the guide hydraulic power source 203 and the hydraulic chamber 205.
  • the hydraulic power source 203 and the hydraulic chamber 205 are filled with hydraulic oil.
  • the hydraulic piston 206 includes a piston disk 2061 and a wedge cone 2062.
  • the piston disk 2061 and the wedge cone 2062 are connected and fixed or integrally formed.
  • the seat clamp 207 is also provided with a wedge-shaped As the hydraulic pressure in the hydraulic chamber 205 rises on the corresponding slope of the face cone 2062, the hydraulic piston disc 2061 drives the wedge face cone 2062 to move upward or downward under the action of the hydraulic pressure, pushing the seat card 207 to extend;
  • the analysis circuit 1201, the control circuit 1202, the motor 1203 and the torque transmission mechanism 1204 are arranged in the accommodation cavity and sealing system inside the rigid sub-joint.
  • the accommodation cavity and sealing system are in the form of a hollow cylindrical structure as a whole.
  • the interior is hollow, allowing the sidetrack string 1 to pass through the driving string 3 smoothly.
  • the end of the motor 1203 is an output end, and the output end is connected to and fixed to the input end of the torque transmission mechanism 1204 or the output end of the motor 1203 is the input end of the torque transmission mechanism 1204;
  • the torque transmission mechanism 1204 is preferably a planetary gear reduction mechanism.
  • the working principle of the planetary gear reduction mechanism is an existing mature technology and will not be repeated here.
  • the end of the planetary gear reduction mechanism is the output end 7 , and the torque can also be transmitted to the sidetrack string 1 through the torque transmission mechanism 8 .
  • the torque transmission mechanism 8 includes a multi-square sleeve type driving end torque transmission mechanism 805 and a multi-square sleeve type drill string end torque transmission mechanism 806.
  • the multi-square sleeve type drive end torque transmission mechanism 805 is preferably a regular eight-sided shaped groove
  • the multi-square drill string end torque transmission mechanism 806 is preferably a regular octagonal boss corresponding to the groove, and the size of the regular octagonal boss matches the size of the regular octagonal groove, so that The boss can just slide inside the groove.
  • a set of torque transmission mechanisms 8 is provided between the driving string 3 and the sidetrack string 1 .
  • the multi-square sleeve type drive end torque transmission mechanism 805 runs through the entire output end 7, and the installation length of the multi-square sleeve type drill string end torque transmission mechanism 806 should be greater than the design depth of the branch wellbore and the length of the guide section 1303. The total length, as the side drilling goes deeper, the multi-square drill string end torque transmission mechanism 806 can ensure that it always slides inside the multi-square sleeve type driving end torque transmission mechanism 805.
  • the micro-sized sidetrack string 1 at least includes a rigid section 101 and a flexible section 102.
  • the rigid section 101 can be connected by a number of rigid sub-sections, used to lift the flexible section 102 of the sidetrack string 1, and is It transmits the drilling weight and torque;
  • the flexible section 102 can be a flexible steel pipe or a flexible pipe string hinged by several short sections.
  • the flexible pipe string can pass through the guide structure 2 with a very small turning radius and move in a specific direction. Target formation extension drilling.
  • the high-pressure drilling fluid flowing inside the flexible section 102 can also assist in driving the drilling tool forward, and utilize Hydraulic energy assists rock breaking.
  • the sidetrack string 1 in the embodiment of the present invention is a larger-sized drill tool assembly.
  • the drill tool assembly usually includes a drill bit, a directional tool, and downhole power. Downhole tools such as drilling tools;
  • the underground motor system at least includes an analysis circuit 1201, a control circuit 1202, a motor 1203 and a deceleration mechanism 1204, in which a driving end torque transmission mechanism is provided at the end of the deceleration mechanism 1204 as a torque transmission shaft 807 , the torque transmission shaft 807 extends from the end of the reduction mechanism 1204 to the upper end of the guide structure, and its length is usually greater than the design depth of extended drilling;
  • a bearing system is provided between the end of the torque transmission shaft 807 and the inner wall of the guide section 1303 for centering; the torque transmission shaft 807 can be threaded or hinged with the output end of the reduction mechanism 1204 The connection is fixed, or the torque transmission shaft 807 can be integrally formed as a part extending downward from the output end;
  • the torque transmission structure 8 can also be a drill string end torque transmission mechanism that is a transmission external coupling 808 and a torque transmission shaft 807.
  • the transmission external coupling 808 outside the sidetrack string 1 is provided with a special boss structure, or
  • the transmission external coupling 808 is designed as a regular polygon for torque transmission, wherein a regular polygonal groove is provided in the torque transmission shaft 807.
  • the transmission external coupling 808 outside the sidetrack string 1 is configured as a regular polygon convex.
  • the size of the regular polygon boss matches the size of the regular polygon groove, so that the boss can just slide inside the groove.
  • a multi-stage transmission outer coupling 808 is provided on the outside of the sidetrack string 1, so that during the drilling process, at least two-stage transmission outer couplings 808 are in torque transmission at the same time. In the shaft 807, this can improve torque transmission and ensure stable sliding of the sidetrack string 1.
  • the transmission external coupling 808 can not only be arranged at both ends of the sidetrack string sub-joint, but can also be arranged at any position on the sub-joint body.
  • the torque transmission shaft 807 can also be provided with a regular polygonal boss, and correspondingly, the transmission outer coupling 808 outside the sidetrack string 1 can be provided with a regular polygonal groove. The same can be done Achieve torque transmission.
  • a roller groove structure is used to realize torque transmission.
  • the drive end torque transmission mechanism is a rolling groove, and the drill string end torque transmission mechanism is a roller; This method can not only achieve good torque transmission but also ensure smooth circumferential sliding of the sidetrack string 1.
  • the hydraulically controlled annular piston can also be used to use high-pressure fluid energy to provide greater torque, thereby providing greater torque to the sidetrack string 1.
  • Rotational orientation provides power;
  • the hydraulically controlled annular piston at least includes an analytical circuit 1201, a control circuit 1202, a hydraulic power end 1207, a hydraulic power source 1208, a reversing system 1209 and an annular piston 1210, wherein the hydraulic power end 1207 can be an underground motor.
  • the instructions issued by the ground control center are analyzed by the analysis circuit 1201 and then controlled by the control circuit 1202;
  • the downhole motor can complete the pressurization and pressure relief actions by squeezing or releasing the space of the hydraulic power source 1208 or other actions.
  • the annular piston 1210 is provided on the torque transmission shaft 807 and the guide section. At the upper end of the inner wall gap of 1303, there is a reciprocating cavity 1211 for the piston to slide between the annular piston 1210, the torque transmission shaft 807, the guide section 1303 and the seal;
  • hydraulic oil is pre-stored in the hydraulic power source 1208 and the reciprocating chamber 1211, and the hydraulic oil between the hydraulic power source 1208 and the reciprocating chamber 1211 can be connected through hydraulic pipelines or channels, and the reversing system 1209.
  • a bearing system is provided between both ends of the torque transmission shaft 807 and the inner wall of the guide section 1303 for centering and sealing;
  • the external transmission coupling 808 outside the sidetrack string 1 is provided with a special boss structure, which transmits torque corresponding to the groove provided in the torque transmission shaft 807, and the torque is
  • a boss structure 1212 is also provided outside the transmission shaft 807.
  • a spiral guide bevel is provided inside the annular piston 1210. The spiral guide bevel matches the size of the boss structure 1212, so that the boss structure 1212 can move along the The spiral guide ramp inside the annular piston 1210 slides and rotates.
  • a structure 1213 is provided between the annular piston 1210 and the guide section 1303 to limit the rotation of the piston.
  • the structure 1213 can be any polygonal structure or other form. The matching structure of the boss and the groove prevents the annular piston from rotating.
  • the initial position of the piston is located at the upper end of the reciprocating chamber 1211.
  • a command is issued from the ground.
  • the analysis circuit 1201 controls the downhole motor through the control circuit 1202, forcing the hydraulic power source 1208 Pressure is applied outward, and the hydraulic oil enters the cavity above the annular piston 1210 and the reciprocating cavity 1211 through the high-pressure side of the reversing system 1209, the hydraulic pipeline or the flow channel, causing the upper pressure to rise.
  • the pressure in the cavity below the annular piston 1210 and the reciprocating cavity 1211 increases.
  • Hydraulic oil can return to the hydraulic power source 1208 from the low-pressure side of the reversing system 1209; during this process, the annular piston 1210 slides downward under the action of hydraulic pressure, and its axis motion is converted into rotational motion or swing of the output end through the motion conversion mechanism.
  • the motion conversion mechanism includes the annular piston 1210 and a structure 1213 that limits the rotation of the piston.
  • the annular piston 1210 should have sufficient stroke in the reciprocating chamber 1211.
  • the torque transmission shaft 807 can rotate at least 2 to 3 times.
  • the reversing system 1209 in this embodiment is preferably a two-way solenoid valve; when the annular piston 1210 slides downward in the reciprocating chamber 1211, the torque transmission shaft 807 will rotate in the clockwise direction.
  • two sets of independent hydraulic sources can be used to supply liquid to the upper and lower chambers of the annular piston 1210 respectively. The two sets of independent hydraulic sources can alternately work to push the annular piston upward or downward, thus forming a reversing system.
  • this embodiment adopts a step-by-step hydraulic system, including an electronically controlled reciprocating piston, which uses high-pressure fluid energy to push the piston to reciprocate and drive the sidetrack pipe in a step-by-step manner.
  • the column moves periodically to provide rotational drilling power for the sidetrack string 1 or to achieve rotational orientation;
  • the electronically controlled reciprocating piston in this embodiment at least includes an analysis circuit 1201, a control circuit 1202, a hydraulic power end 1207, a hydraulic power source 1208, a reversing system 1209 and a reciprocating piston 1214, where the analysis circuit 1201 and the control circuit 1202
  • the working principles of the hydraulic power end 1207, the hydraulic power source 1208, and the reversing system 1209 are the same as in the above embodiment;
  • the reciprocating piston 1214 at least includes a reciprocating mandrel 1215 and a rotating cylinder 1216.
  • the rotating cylinder 1216 replaces the torque transmission shaft 807 for torque transmission, and is connected with the transmission outside the sidetrack string 1.
  • the torque transmission structure between the outer couplings 808 has been described in the above embodiment and will not be repeated here.
  • the reciprocating mandrel 1215 is disposed at the upper end of the inner wall gap between the rotating cylinder 1216 and the guide section 1303. There is a space between the reciprocating mandrel 1215 and the rotating cylinder 1216, the guide section 1303 and the seal.
  • the reciprocating cavity 1211 in which the piston slides, and the reciprocating mandrel 1215 can divide the reciprocating cavity 1211 into an upper cavity and a lower cavity;
  • the reciprocating mandrel 1215 has a special polygonal cylinder structure, which can ensure that there is no rotation between the sliding component and the guide section 1303, and it can only slide along its axis without deflection.
  • the inner circumference of the reciprocating mandrel 1215 is evenly distributed with a number of guide bodies 1217, and the guide bodies 1217 can be in any form such as bosses, pins, etc.;
  • the outer wall surface of the rotating cylinder 1216 is close to the inner wall surface of the reciprocating mandrel 1215 of the rotating cylinder, and a guide groove 1218 is provided at a position corresponding to the guide body 1217, the size of which is the same as that of the guide groove 1218.
  • the body 1217 matches, so that the guide body 1217 can slide in the groove.
  • the guide groove 1218 is a special guide structure whose features include at least a first guide surface 12011 , a second guide surface 12012 and a third guide surface 12013 .
  • the guide groove 1218 surrounds the outer surface of the rotating cylinder 1216 and divides it into two parts that can mesh with each other.
  • the guide body 1217 slides upward or downward in the guide groove 1218, it slides upward or downward.
  • the first guide surface 12011, the second guide surface 12012 and the third guide surface 12013 can make the guide body 1217 always move forward in a certain direction.
  • the reciprocating mandrel 1215 can only slide along the axial direction of the guide section 1303 without rotating relative thereto, when the guide body 1217 slides back and forth in the guide groove 1218, the first guide surface 12011, The power of the second guide surface 12012 and the third guide surface 12013 to force the guide rotor 1217 to always move forward in a certain direction can be fed back to the rotating cylinder 1216, and then force the rotating cylinder 1216 to always rotate in a certain direction.
  • the rotating cylinder 1216 can rotate once in a certain direction, and the guide body 1217 slides back and forth once in the guide groove 1218, so that the rotating cylinder 1216 can rotate once in a certain direction.
  • the angle value of one rotation of the rotating cylinder is related to the number of guide surfaces arranged. The more the number of guide surfaces arranged, the smaller the angle value of one rotation of the rotating cylinder, and vice versa.
  • the power source for the reciprocating mandrel 1215 to achieve reciprocating motion is the hydraulic power source 1208.
  • the hydraulic oil provided by the hydraulic power source 1208 enters the upper chamber of the reciprocating chamber 1211 under the action of the reversing system 1209. body or lower cavity, the reciprocating mandrel 1215 can be dragged to achieve up and down reciprocating motion.
  • the hydraulic power source is a hydraulic power source controlled by a solenoid valve.
  • the hydraulic power source includes a power fluid and a solenoid valve.
  • the solenoid valve controls the communication properties between the power fluid and the reciprocating piston.
  • the high-pressure power fluid comes from the turbine pump, motor pump or hydraulic pipeline.
  • the power source includes a hydraulic system driving a motor and a pump.
  • the hydraulic system driving motor drives the pump to provide power fluid for the reciprocating piston.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

本发明公开了一种小直径钻柱井下驱动装置及方法,包括侧钻管柱、导引结构和驱动管柱;所述导引结构连接于所述驱动管柱下方且一同入井,侧钻管柱由导引结构和驱动管柱内部进入地层;所述驱动管柱底部设置有动力装置,动力装置与所述侧钻管柱之间设置有传动装置,所述动力装置能通过所述传动装置为所述侧钻管柱提供旋转动力或实现角度位置控制;所述动力装置环套于所述侧钻管柱的外侧。本发明提出井下转盘的设计理念,实现了小直径钻柱井下驱动,解决了微小孔眼钻井无法有效传递旋转动力以及托钻压的问题,可大幅增加微小孔眼分支钻井的延申能力。

Description

一种小直径钻柱井下驱动装置及方法
相关申请
本申请要求专利申请号为2022108523524、申请日为2022年7月19日、名为“一种井下驱动小直径钻柱”的中国发明专利的优先权;
同时要求专利申请号为202210854711.X、申请日为2022年7月20日、名为“一种微小井眼井下定向装置”的中国发明专利的优先权;
技术领域
本发明涉及钻井技术领域,具体是一种小直径钻柱井下驱动装置及方法。
背景技术
在定向井钻井施工中,钻头的旋转动力主要依靠涡轮钻具和螺杆钻具提供。其中,钻柱为滑动钻进,钻头为旋转钻进,其整体钻进效率一般。
因此,有必要提供一种小直径钻柱井下驱动装置及方法,以解决上述背景技术中提出的问题。
发明内容
为实现上述目的,本发明提供如下技术方案:一种小直径钻柱井下驱动装置及方法,
包括侧钻管柱、导引结构和驱动管柱;所述导引结构连接于所述驱动管柱下方,侧钻管柱穿设于驱动管柱内部并经过导引结构进入地层;
所述驱动管柱底部设置有动力装置,所述动力装置环套于所述侧钻管柱的外侧;动力装置与所述侧钻管柱之间设置有传动装置,所述动力装置能通过所述传动装置为所述侧钻管柱提供旋转动力或实现角度位置控制。
需要说明的是,所述动力装置与所述驱动管柱固定连接,其能为侧钻管柱提供旋转动力或摆工具面角度,其传动连接仅传递扭矩但不阻碍侧钻管柱沿轴线运动,实现“井下转盘”驱动。
进一步,作为优选,所述导引结构内部设有导引通道,所述驱动管柱内部 设有贯通通道,所述导引通道和贯通通道相互贯通,所述侧钻管柱整体外径与所述贯通通道及导引通道相匹配,使侧钻管柱能够顺利通过导引结构和驱动管柱,沿主井眼侧钻延伸钻进。
进一步,作为优选,所述导引结构为斜向器,所述导引结构在作业过程中随驱动管柱一同入井,用于引导侧钻管柱实现侧钻作业。
进一步,作为优选,所述驱动管柱的动力来源为液压能或电能中任何一种,所述驱动管柱至少包括动力端和输出端,所述输出端中心部设置有贯通孔,所述输出端与所述侧钻管柱之间设置有扭力传递机构,其能够通过扭矩传递机构将旋转动力传递给所述侧钻管柱或通过侧钻管柱改变其下部定向马达的工具面角度。
进一步,作为优选,当所述动力装置采用液压能驱动时,所述动力装置为井下马达,所述驱动管柱还包括驱动流道,液压流体通过所述驱动流道可驱动动力端旋转,并由输出端通过扭矩传递机构输出扭矩带动侧钻管柱旋转做功。需要说明的是,用过液压能驱动时,所述动力装置主要是涡轮马达、螺杆马达。主要是利用钻井循环介质的液压能驱动涡轮或螺杆马达旋转。
进一步,作为优选,所述井下马达为涡轮马达所述驱动管柱还包括循环流道,所述循环流道可设置于动力端和输出端之间,或者设置于输出端下方,用于连通所述驱动流道与主井眼环空,当流体经过动力端完成驱动做功之后,可沿所述循环流道进入主井眼环空返回地面,构成驱动循环。
进一步,作为优选,所述侧钻管柱设有内部循环通道,侧钻管柱钻井介质由地面直接进入侧钻管柱的内部循环通道直至钻头水眼,再由侧钻井眼进入主井眼返回地面完成循环。需要说明的是,侧钻管柱包括钻头,所述钻头的破岩方式为机械破岩为主水力破岩为辅的方式或者是水力破岩为主机械破岩为辅的方式,其送钻方式为水力自驱动方式、机械加压、水力加压中的一种或多种。
进一步,作为优选,所述驱动管柱和所述侧钻管柱之间至少设有一组扭矩传递机构,所述扭矩传递机构包括驱动端扭矩传递机构和钻柱端扭矩传递机构; 其中,所述驱动端扭矩传递机构贯穿于输出端,所述钻柱端扭矩传递机构设置位置与钻头之间的距离大于分支井眼的设计深度且小于输出端的整体长度。
进一步,作为优选,所述动力装置为液控环形活塞,利用液压系统提供较大的扭矩,从而为侧钻管柱1的旋转定向提供动力;
所述液控环形活塞至少包括液压动力源、环形活塞和运动转换机构,所述运动转换机构将环形活塞的沿轴线的运动转化为输出端的旋转运动或摆动,用于驱动侧钻管柱旋转或改变工具面角度。
进一步,作为优选,所述侧钻管柱为能够实现定向钻井的柔性钻柱,其为至少包括柔性钻杆、钻头在内的一套完整钻井管柱,所述柔性钻杆为高弹性金属钻杆、铰接式钻杆,或是由多个扭矩传递短节串接而成的钻杆。
进一步,作为优选,所述侧钻管柱下部还包括造斜钻进装置,所述造斜钻进装置为带有造斜机构的定向马达及钻头,或者,所述造斜钻进装置为带有造斜机构的水射流钻头;所述造斜机构包括弯接头或推靠肋翼。
进一步,作为优选,所述动力装置为井下电机系统;所述井下电机系统包括电机,还包括角度位置传感器,所述角度位置传感器用于指示电机系统输出端的角度位置,用于通过旋转侧钻管柱控制所述造斜钻进装置的工具面角度。
需要说明的是,本发明中所述的扭矩传递机构8驱动端扭矩传递机构801和钻柱端扭矩传递机构并不意味着任意具体的结构形式,本发明举出四种案例用于定义本发明中的工具面定位结构,例如键槽结构、多方套结构、花键结构、滚轮滚道结构等。
需要说明的是,本发明中任意实施例中所述侧钻管柱1下部均可设置定向马达11,所述定向马达外直径小于钻头112直径,小于动力装置输出端的内直径,能穿越所述动力装置。通过调节动力装置的角度即可控制定向马达的工具面角度。当所述动力装置为所述环形液压装置或所述井下电机系统时,能更好的实时控制定向马达的工具面角度,达到微小孔眼定向钻井的目的。
与现有技术相比,本发明提供了一种小直径钻柱井下驱动装置及方法,具备以下有益效果:
本发明实施例中,利用驱动管柱和导引结构能够引导侧钻管柱顺利进入地层,并且,驱动管柱可为所述侧钻管柱提供旋转动力,其中,通过扭矩传递机构能够很好的传递扭矩,进而使得驱动管柱可为所述侧钻管柱提供机械能量进行破岩,同时辅以水力能量进行破岩或者施加钻压,提高整体的钻进效率。此外,本发明的技术效果还包括可以利用环形马达、环形液压装置对侧钻管柱的工具面角度进行控制,在微小孔眼钻孔过程中实现井眼轨迹控制。
附图说明
图1为一种小直径钻柱井下驱动装置及方法实施例一的结构示意图;
图2为一种小直径钻柱井下驱动装置及方法中扭矩传递机构实施例一的截面示意图;
图3为一种小直径钻柱井下驱动装置及方法实施例二的结构示意图;
图4为一种小直径钻柱井下驱动装置及方法中扭矩传递机构实施例二的截面示意图;
图5为一种小直径钻柱井下驱动装置及方法实施例三的结构示意图;
图6为一种小直径钻柱井下驱动装置及方法中扭矩传递机构实施例三的截面示意图;
图7为一种小直径钻柱井下驱动装置及方法实施例四的结构示意图;
图8为一种小直径钻柱井下驱动装置及方法实施例五的结构示意图;
图9为一种小直径钻柱井下驱动装置及方法中环形液压装置的截面示意图;
图10为一种小直径钻柱井下驱动装置及方法实施例六的结构示意图;
图11为一种小直径钻柱井下驱动装置及方法中步进式环形液压装置的局部示意图;
图12为一种小直径钻柱井下驱动装置及方法实施例四的局部结构示意图;
图13为一种小直径钻柱井下驱动装置及方法中扭矩传递机构实施例四的截面示意图;
图13为一种小直径钻柱井下驱动装置及方法实施例五的局部结构示意图;
图例:
1、侧钻管柱;2、导引结构;3、驱动管柱;4、导引通道;5、贯通通道;6、动力端;7、输出端;8、扭矩传递机构;801、驱动端扭矩传递机构;802、钻柱端扭矩传递机构;803、嵌套式驱动端扭矩传递机构;804、嵌套式钻柱端扭矩传递机构;805、多方套式驱动端扭矩传递机构;806、多方套式嵌套式钻柱端扭矩传递机构;807、扭矩传动轴;808、传动外接箍;9、驱动流道;10、循环流道;11、定向马达;111、造斜机构;112、钻头;1201、括解析电路;1202、控制电路;1207、液压动力端;1208、液压动力源;1209、换向系统;1210、环形活塞;1211、往复腔;1214、复活塞;1215、往复芯轴;1216、旋转筒体;1217、导旋体;1218、导向沟槽;1301、提拉段;1302、驱动段;1303、导引段;
具体实施方式一:
请参阅图1~2,本发明实施例中,一种小直径钻柱井下驱动装置及方法,包括侧钻管柱1、导引结构2和驱动管柱3;所述导引结构2连接于所述驱动管柱3下方一同入井,侧钻管柱1由导引结构2和驱动管柱3内部进入地层;
作为本实施例的优选方案之一,所述侧钻管柱1至少包括柔性钻杆、钻头或随钻测控系统,由于所述柔性钻杆需要通过导引结构2,需要其具有足够的柔性,具体到本实施例中,
所述柔性钻杆为高弹性金属钻杆;
进一步的,所述柔性钻杆除了具备足够的柔性之外,还具备足够的刚性,本实施例中,所述柔性钻杆在驱动管柱3的作用下旋转,传递扭矩至井底钻头机械破岩。
或者,作为另一种方案,所述柔性钻杆下方,除了设有钻头或随钻测控系统以外,还可以设置井下马达为所述钻头提供钻井动力,当采用井下马达驱动时,所述井下马达优选为涡轮马达,所述随钻测控系统可测量井底井斜、方位,可与地面控制中心通信连接,进行定向控制;所述涡轮马达和随钻测量系统均 为目前成熟技术,在此不再复述;
作为优选,为使所述侧钻管柱1能够顺利进入地层,所述导引结构2内部设有导引通道4,所述驱动管柱3内部设有贯通通道5,所述导引通道4和贯通通道5相互贯通共同构成可供所述侧钻管柱1向前滑行的通道,所述侧钻管柱1整体外径与所述贯通通道5及导引通道4相匹配,使其能够顺利通过导引结构2和驱动管柱3,沿主井眼侧钻延伸钻进;
施工过程中,通常还需要上部管柱将导引结构2和驱动管柱3预先下至预定井深并完成定向、座卡固定,此时所述导引结构2定向方位即可固定保持与预设方位一致。
作为本实施例的优选方案之一,所述导引结构2为斜向器,所述斜向器随驱动管柱3一同入井,二者之间优选通过螺纹进行连接;
进一步的,所述侧钻管柱的直径在10-100毫米范围之内,通常而言,对于尺寸较小的侧钻管柱1,其可轻松的通过导引结构2进入地层,而且其破岩方式及延伸钻进的驱动力均以水力能量为主,具体的包括水力破岩和水力自驱动前行。
再进一步的,对尺寸较大的侧钻管柱1,依靠水力破岩和延伸钻进需要克服更大的前行阻力,通常需要采取以机械能量为主的破岩方式,而且在定向斜井段还可以利用水力能量进行加压,以更好的为下部钻具施加钻压。
作为本实施例的优选方案之一,所述驱动管柱3可为所述侧钻管柱1提供旋转动力,提供机械能量进行破岩,同时辅以水力能量进行破岩或者施加钻压;
作为优选,所述驱动管柱3为井下涡轮,通过利用高压钻井液流体能量转化为机械能输出扭矩,所述涡轮至少包括动力端6和输出端7,所述动力端6由涡轮叶片组组成,所述涡轮叶片组输出的旋转动力可带动内部芯轴旋转;所述芯轴可通过螺纹或铰接结构与所述输出端7进行连接。本实施例中所述动力端为定子,输出端为转子。
进一步的,所述输出端7还可以与所述芯轴一体成型,或包括若干螺纹连接的刚性短节,或包括若干铰接连接的刚性短节。
进一步的,所述驱动管柱3还包括密封系统和轴承系统,可确保流道密封和扭矩的稳定传输。
再进一步的,所述扭矩是在所述输出端7位置,通过扭矩传递机构8传递给所述侧钻管柱1的。
作为优选,如图2,所述扭矩传递机构8包括驱动端扭矩传递机构801和钻柱端扭矩传递机构802,所述驱动端扭矩传递机构801优选为凹槽,所述钻柱端扭矩传递机构802优选为凸台,所述凸台尺寸与所述凹槽尺寸相匹配,使得凸台刚好可以在凹槽内部滑行,为确保所述凸台可以顺利进入凹槽,在所述输出端7的上、下端,优选的设置有双螺旋导向斜面,所述双螺旋导向斜面可引导所述凸台可以顺利进入凹槽,当所述驱动端扭矩传递机构801旋转时,所述扭矩即可通过所述钻柱端扭矩传递机构802传递给侧钻管柱1。
进一步的,作为本实施例的优选方案之一,所述驱动管柱3和所述侧钻管柱1之间设有一组扭矩传递机构8,其中,所述驱动端扭矩传递机构801贯穿于整个输出端7直至所述导引结构2的导引通道4入口处,而所述钻柱端扭矩传递机构802设置位置与钻头之间的距离大于分支井眼的设计深度且小于输出端7的整体长度,这就使得当刚开始侧钻时,所述钻柱端扭矩传递机构802位于所述驱动端扭矩传递机构801的上部,随着侧钻的深入,所述钻柱端扭矩传递机构802与侧钻管柱1一同前行直至到达预定井深,此过程中所述钻柱端扭矩传递机构802可确保始终在所述驱动端扭矩传递机构801的内部滑行。
钻进过程中,所述驱动管柱3采用高压钻井液进行驱动,所述驱动管柱3内部设有驱动流道9,所述驱动流道9可以连通上部钻柱的液流通道以及涡轮叶片组的液流通道,地面泥浆泵泵入井内的高压钻井液通过所述驱动流道9可驱动叶片组旋转从而带动动力端6旋转,并由输出端7通过扭矩传递机构8输出扭矩带动侧钻管柱1旋转做功。
再进一步的,当高压钻井液经过动力端6完成驱动做功之后,需要进入井眼环空返回地面完成循环。作为本实施例的优选方案之一,所述驱动管柱3上设有若干循环流道10,所述循环流道10设置于动力端6和输出端7之间,通过 所述若干循环流道10,可以实现所述驱动流道9与井眼环空的连通,做完功的高压钻井液即可沿所述循环流道10进入主井眼后返回地面,构成完整的驱动循环回路。本实施例中,动力端6指动力装置的定子端,所述输出端7指动力装置的转子。
作为优选,所述侧钻管柱1设有与所述驱动管柱3不同的循环回路,所述侧钻管柱钻井介质由地面直接进入侧钻管柱1的内部循环通道直至钻头水眼,再由侧钻井眼进入主井眼返回地面完成循环。
作为优选,所述侧钻管柱钻井介质循环回路内部为高压钻井液,所述高压钻井液可辅助破岩、携岩、冷却钻头,同时可利用其水力能量为所述侧钻管柱1提供延伸钻进驱动力。
作为优选,侧钻管柱1上设置有多个扭矩传递机构8。具体的,侧钻管柱1上设置有多个钻柱端扭矩传递机构802,每个钻柱端扭矩传递机构802之间的距离小于所述动力装置输出端7的轴线长度。本实施例中,所述多个扭矩传递机构可在侧钻管柱1下行过程中以接力的形式与所述动力装置输出端7顺序实现传动连接,可实现数百米侧钻管柱1的持续传动。
作为优选,侧钻管柱1下部设置有定向马达11,所述定向马达外直径小于钻头直径,小于动力装置输出端的内直径,能穿越所述动力装置。
具体实施方式二:
请参阅图3,与上述实施例不同的是,本发明实施例中,所述驱动管柱3优选为螺杆马达;所述螺杆马达中空,使得侧钻管柱1可由导引结构2和驱动管柱3的内部进入地层;
作为本实施例的优选方案之一,所述侧钻管柱1至少包括柔性钻杆、钻头或随钻测控系统,且其尺寸与导引结构2和驱动管柱3的内部通道相匹配;
进一步的,所述螺杆马达为容积式马达,是目前成熟技术,在此不再复述,其可通过利用高压钻井泥浆为侧钻管柱1提供旋转动力,同时侧钻管柱1中的随钻测控系统可对井下管柱进行定向控制;
作为本实施例的优选方案之一,所述驱动管柱3可为所述侧钻管柱1提供旋转机械能量进行破岩,同时,还可辅以侧钻管柱1中的水力能量进行破岩或者施加钻压;
具体的,所述驱动管柱3将高压钻井液流体能量转化为机械能输出扭矩,所述螺杆马达至少包括动力端6和输出端7,所述动力端6由容积式螺杆组成,当高压钻井流体经过螺杆容腔时,内部螺杆轴即可产生旋转动力,并通过螺纹或铰接结构与所述输出端7进行连接、输出,需要说明的是,本发明所述的实施例中所述动力端为定子,输出端为转子。此处的螺杆为动力装置,用于驱动整个侧钻管柱1,而定向马达11是设置于侧钻管柱1的下部用于直接驱动钻头以及导向。
进一步的,所述输出端7还可以与所述螺杆轴一体成型。
进一步的,所述驱动管柱3还包括密封系统和轴承系统,可确保流道密封和扭矩的稳定传输。本实施例中,由于螺杆马达转轴必须中空,以便侧钻管柱1顺利通过驱动钻柱3进入地层,螺杆马达转轴内壁面和侧钻管柱1即存在活动间隙,该间隙内通常可设置密封件进行密封,或者该间隙内设置节流结构或节流装置,以增加钻井流体进入该间隙的流动阻力,从而迫使流体进入容积马达做工;
钻井过程中,由于驱动管柱3连接导向结构2座卡固定于主井眼中静止不动,而侧钻管柱1需要不断的向前延伸滑行,所以所述螺杆马达转轴内壁面和侧钻管柱1设置的密封件、节流结构或节流装置通常可以固定设置在螺杆马达转轴内部,这样就可以确保侧钻管柱1在不断向前滑行的过程中,始终保持良好的流道密封性。
或者,在某些情况下,所述密封件、节流结构或节流装置也可以设置在侧钻管柱1的外侧,但在这种情况下,通常需要布置的很密才能确保一定的密封效果。
再进一步的,所述扭矩是在所述输出端7位置,通过扭矩传递机构8传递给所述侧钻管柱1的。
作为优选,如图4,所述扭矩传递机构8为嵌套式扭力传递机构,其包括嵌套式驱动端扭矩传递机构803和嵌套式钻柱端扭矩传递机构804,所述嵌套式扭力传递结构包括多方套或花键,所述驱动端扭矩传递机构803优选为正六边形凹槽,所述钻柱端扭矩传递机构804优选为与凹槽对应的正六边形凸台,所述正六边形凸台尺寸与所述正六边形凹槽尺寸相匹配,使得凸台刚好可以在凹槽内部滑行,当所述驱动端扭矩传递机构803旋转时,所述扭矩即可通过所述钻柱端扭矩传递机构804传递给侧钻管柱1。
进一步的,作为本实施例的优选方案之一,所述驱动管柱3和所述侧钻管柱1之间设有一组扭矩传递机构8。其中,所述驱动端扭矩传递机构803贯穿于整个输出端7直至所述导引结构2的导引通道4入口处,而所述钻柱端扭矩传递机构804的设置长度应大于分支井眼的设计深度,这就使得当刚开始侧钻时,所述钻柱端扭矩传递机构804位于所述驱动端扭矩传递机构803的上部,随着侧钻的深入,所述钻柱端扭矩传递机构804与侧钻管柱1一同前行直至到达预定井深,此过程中所述钻柱端扭矩传递机构804可确保始终在所述驱动端扭矩传递机构803的内部滑行。
具体实施方式三:
请参阅图5,与上述实施例不同的是,本发明实施例中,所述驱动管柱3优选为井下电机系统;所述井下电机系统内部中空,侧钻管柱1可穿过井下电机系统内部通道,并由导引结构2内部进入地层;
作为本实施例的优选方案之一,所述井下电机系统至少包括解析电路1201、控制电路1202、电机1203和减速机构1204,其中,所述解析电路1201、控制电路1202、电机1203之间通过电缆实现电信号连接,解析电路1201可接受和解析地面指令,并将解析结果传递给控制电路1202,继而控制电机1203的工作状态;
进一步的,所述驱动管柱3至少包含提拉段1301、驱动段1302和导引段1303,其中提拉段1301由若干刚性钻柱组成,其下部通过螺纹依次连接固定驱动段1302和导引段1303,其上部一直向上延伸,并与地面设备连接固定;所述 驱动段1302同样包含若干刚性短节,所述刚性短节内部设置有若干容置腔和密封系统,可分别设置解析电路1201、控制电路1202、电机1203和扭矩传递机构1204;所述导引段1303中空,导引结构2通过螺纹连接固定在导引段1303下方;
进一步的,本实施例中所述的导引结构2采用液压控制,具体的包括导引控制电路201、导引电机202、导引液压动力源203和活塞推靠机构204;所述导引控制电路201可接受和解析地面指令,并根据解析结果控制导引电机202,导引电机202和导引液压动力源203之间设置一轴向活塞,所述轴向活塞与导引电机202的输出轴连接固定,受导引电机202控制,其输出轴可带动所述轴向活塞上、下移动,继而扩大或挤压导引液压动力源203的空间;
进一步的,所述活塞推靠机构204沿导引结构2的轴向和/或周向均匀分布,与之对应的,所述导引结构2的轴向和/或周向均匀分布若干液压腔205,所述液压腔205内设置有若干液压活塞206,所述液压活塞206上、下移动时,即可推动座卡207伸出或收回,继而完成导引结构2的座卡和收回。
具体的,所述导引结构2内部设有液压通道208,所述液压通道208联通导引液压动力源203和液压腔205,所述液压动力源203和液压腔205内部充满液压油,当所述导引电机202工作时,若其输出轴带动所述轴向活塞向下移动,活塞将会挤压导引液压动力源203的空间,液压动力源203内的液压上升,此时液压油将会通过液压通道208进入液压腔205,造成压力上升,所述液压活塞206在液压力的作用下将会向上或向下移动;
再进一步的,所述液压活塞206包括活塞盘2061和楔面锥2062,所述活塞盘2061和楔面锥2062连接固定或一体成型,与之对应的,所述座卡207同样设置有与楔面锥2062对应的斜面,随着液压腔205内的液压力上升,所述液压活塞盘2061在液压力的作用下带动楔面锥2062向上或向下移动,推动座卡207伸出;
相反的,若其输出轴带动所述轴向活塞向上移动,活塞将会扩大导引液压动力源203的空间,液压动力源203内的液压下降,此时液压油将会通过液压 通道208流出液压腔205,造成压力下降,所述液压活塞206在外部推靠力或者其他回复力的作用下将会向下或向上移动,并最终达到平衡状态,座卡207收回;
作为优选,所述解析电路1201、控制电路1202、电机1203和扭矩传递机构1204布置在刚性短节内部的容置腔和密封系统内,所述容置腔和密封系统整体呈空心圆柱结构,其内部中空,使得侧钻管柱1能够顺利的通过驱动管柱3。
作为优选,所述电机1203的末端为输出端,所述输出端连接固定有扭矩传递机构1204的输入端或者所述电机1203的输出端即为扭矩传递机构1204的输入端;
所述扭矩传递机构1204优选为行星齿轮减速机构,行星齿轮减速机构的工作原理为现有成熟技术,在此不再复述。
对于扭矩的传递,所述行星齿轮减速机构的末端即为输出端7,同样的可通过扭矩传递机构8,将扭矩传递给所述侧钻管柱1。
类似的,如图6,所述扭矩传递机构8包括多方套式驱动端扭矩传递机构805和多方套式钻柱端扭矩传递机构806,所述多方套式驱动端扭矩传递机构805优选为正八边形凹槽,所述多方套式钻柱端扭矩传递机构806优选为与凹槽对应的正八边形凸台,所述正八边形凸台尺寸与所述正八边形凹槽尺寸相匹配,使得凸台刚好可以在凹槽内部滑行,当所述多方套式驱动端扭矩传递机构805旋转时,所述扭矩即可通过所述多方套式钻柱端扭矩传递机构806传递给侧钻管柱1。
进一步的,作为本实施例的优选方案之一,所述驱动管柱3和所述侧钻管柱1之间设有一组扭矩传递机构8。其中,所述多方套式驱动端扭矩传递机构805贯穿于整个输出端7,而所述多方套式钻柱端扭矩传递机构806的设置长度应大于分支井眼的设计深度及导引段1303的长度之和,随着侧钻的深入,所述多方套式钻柱端扭矩传递机构806可确保始终在所述多方套式驱动端扭矩传递机构805的内部滑行。
再进一步的,本实施例所述的优选方案,可用于微小尺寸的侧钻钻进,所 述微小尺寸的侧钻管柱1至少包括刚性段101和柔性段102,所述刚性段101可有若干刚性短节连接而成,用于提拉侧钻管柱1的柔性段102,并为其传递钻压和扭矩;所述柔性段102可为柔性钢管或由若干短节铰接而成的柔性管柱,该柔性管柱能以极小的转弯半径通过导引结构2,沿特定方向朝目标地层延伸钻进。
更进一步的,应用于微小尺寸的侧钻钻进时,除了刚性段101可传递钻压和扭矩外,所述柔性段102内部过流的高压钻井液也可以辅助驱动钻具前行,并利用水力能量辅助破岩。
具体实施方式四:
请参阅图7和图12,与上述实施例不同的是,本发明实施例中的侧钻管柱1为较大尺寸的钻具组合,此时钻具组合通常包括钻头、定向工具、井下动力钻具等井下工具;
作为本实施例的优选方案之一,所述井下电机系统至少包括解析电路1201、控制电路1202、电机1203和减速机构1204,其中,减速机构1204末端设有驱动端扭矩传递机构为扭矩传动轴807,所述扭矩传动轴807由减速机构1204末端一直延伸至导引结构上端,其长度通常大于延伸钻进的设计深度;
进一步的,所述扭矩传动轴807的末端与所述导引段1303内壁之间设置有轴承系统进行扶正;所述扭矩传动轴807可通过螺纹或铰接的方式与所述减速机构1204的输出端连接固定,或者所述扭矩传动轴807可作为输出端向下延伸的一部分一体成型;
类似的,所述扭矩传递结构8还可以钻柱端扭矩传递机构是传动外接箍808和扭矩传动轴807,所述侧钻管柱1外部的传动外接箍808设置有特殊的凸台结构,或者所述传动外接箍808设计为正多边形进行扭矩传递,其中,所述扭矩传动轴807内设置正多边形凹槽,相对应的,侧钻管柱1外部的传动外接箍808设设置为正多边形凸台,所述正多边形凸台尺寸与所述正多边形凹槽尺寸相匹配,使得凸台刚好可以在凹槽内部滑行,当减速机构1204带动末端的扭矩传动轴807旋转时,所述扭矩即可通过传动外接箍808传递给侧钻管柱1。
进一步的,作为本实施例的优选方案之一,所述侧钻管柱1外部设有多级传动外接箍808,使得钻进过程中,同一时刻至少有两级传动外接箍808同时处于扭矩传动轴807内,这样可以改善扭矩传递,并确保侧钻管柱1稳定滑行。
再进一步的,所述传动外接箍808不仅可以设置在侧钻管柱短节的两端,还可以设置在短节本体的任意位置。
另外,在某些实施例中,所述扭矩传动轴807内还可以设置成正多边形凸台,而相对应的,侧钻管柱1外部的传动外接箍808则设置为正多边形凹槽,同样可以实现扭矩传递。如图12和图13,作为扭矩传递机构8的另外一种选择,采用滚轮沟槽结构实现扭矩传递,所述驱动端扭矩传递机构为滚槽,所述钻柱端扭矩传递机构为滚轮;该方式既能很好的实现扭矩传递又能保障侧钻管柱1顺畅的周向滑动。
具体实施方式五:
请参阅图8,与上述实施例不同的是,当侧钻管柱1长度较大时,还可以通过液控环形活塞,利用高压流体能量提供较大的扭矩,从而为侧钻管柱1的旋转定向提供动力;
作为本实施例的优选方案之一,所述液控环形活塞至少包括解析电路1201、控制电路1202、液压动力端1207、液压动力源1208、换向系统1209和环形活塞1210,其中,液压动力端1207可以是井下电机,地面控制中心发出的指令,由解析电路1201解析后,经控制电路1202对井下电机进行控制;
作为优选,井下电机可通过挤压或释放液压动力源1208的空间或其他动作,来完成加压和泄压动作,本实施例中,所述环形活塞1210设置于扭矩传动轴807和导引段1303内壁间隙的上端,所述环形活塞1210、扭矩传动轴807、导引段1303和密封件之间设有可供活塞滑行的往复腔1211;
进一步的,所述液压动力源1208和往复腔1211中均预存有液压油,且液压动力源1208和往复腔1211之间的液压油可通过液压管线或通道、换向系统1209进行联通。
进一步的,所述扭矩传动轴807的两端与所述导引段1303内壁之间设置有轴承系统进行扶正以及密封件;
类似的,参考图9,所述侧钻管柱1外部的传动外接箍808设置有特殊的凸台结构,与所述扭矩传动轴807内设置凹槽相对应的进行扭矩传递,而所述扭矩传动轴807外侧,同样设置有凸台结构1212,与之对应的,所述环形活塞1210内部设置有螺旋导斜面,所述螺旋导斜面与凸台结构1212尺寸匹配,使得凸台结构1212可沿环形活塞1210内部的螺旋导斜面滑移旋转。
进一步的,作为本实施例的优选方案之一,所述环形活塞1210与所述导引段1303之间设有限制活塞旋转的结构1213,所述结构1213可以是任意一种多边形结构或其他形式的凸台与凹槽相配合的结构,使环形活塞不能发生自转。
本实施例中的环形活塞工作时所产生的效果如下:
活塞初始位位于往复腔1211的上端,当需要调整侧钻管柱1的定位时,由地面发出指令,解析电路1201解析地面指令后,经控制电路1202对井下电机进行控制,迫使液压动力源1208向外加压,液压油通过换向系统1209的高压侧、液压管线或流道进入环形活塞1210与往复腔1211上方腔体内,造成上部压力上升,同时环形活塞1210与往复腔1211下方腔体内的液压油,可由换向系统1209的低压侧返回液压动力源1208;在此过程中,环形活塞1210受液压力作用向下滑移,通过运动转换机构将其轴线运动转化为输出端的旋转运动或摆动,所述运动转换机构包括所述环形活塞1210和限制活塞旋转的结构1213。由于所述环形活塞1210与驱动管柱(3)之间设有限制活塞旋转的结构1213,而环形活塞1210内部设置有螺旋导斜面,当环形活塞1210向下滑移时,所述螺旋导斜面即可迫使凸台结构1212沿螺旋导斜面产生旋转运动,并进一步的由所述侧钻管柱1外部的传动外接箍808与所述扭矩传动轴807内设置的扭矩传递结构进行扭矩传递。
作为优选,环形活塞1210在所述往复腔1211内应具有足够的行程,当所述环形活塞1210在所述往复腔1211内单向滑行一次时,所述扭矩传动轴807至少可以旋转2~3圈
作为优选,本实施例中所述的换向系统1209优选为双向电磁阀;所述环形活塞1210在所述往复腔1211内向下滑行时,扭矩传动轴807将沿顺时针方向旋转。或者采用两套独立的液压源分别为所述环形活塞1210的上下腔供液,则两套独立的液压源可交替工作推动环形活塞上行或下行,即构成换向系统。
具体实施方式六:
请参阅图10,与上述实施例不同的是,本实施例采用了步进式液压系统,包括了电控往复活塞,利用高压流体能量推动活塞往复运动,以步进式的形式驱动侧钻管柱周期性运动,从而为侧钻管柱1提供旋转钻井动力或者实现旋转定向;
类似的,本实施例所述电控往复活塞至少包括解析电路1201、控制电路1202、液压动力端1207、液压动力源1208、换向系统1209和往复活塞1214,其中,解析电路1201、控制电路1202、液压动力端1207、液压动力源1208、换向系统1209的工作原理以上述实施例相同;
作为优选,所述往复活塞1214至少包括往复芯轴1215和旋转筒体1216,本实施例中,所述旋转筒体1216替代扭矩传动轴807进行扭矩传递,其与侧钻管柱1外部的传动外接箍808之间的扭矩传递结构,在上述实施例中已有描述,在此不再复述。
进一步的,所述往复芯轴1215设置于旋转筒体1216和导引段1303内壁间隙的上端,所述往复芯轴1215和旋转筒体1216、导引段1303和密封件之间设有可供活塞滑行的往复腔1211,且往复芯轴1215可将往复腔1211分为上腔体和下腔体;
特别的,所诉往复芯轴1215为特殊的多边形柱体结构,可确保滑动部件与导引段1303之间不产生转动,仅沿其轴线进行滑移而不会产生偏移。
进一步的,所述往复芯轴1215内部圆周均匀分布由若干导旋体1217,所述导旋体1217可以是凸台、销钉等任意形式;
与之对应的,所述旋转筒体1216外壁面紧贴旋转筒体往复芯轴1215的内壁面,且在与导旋体1217相对应的位置,设置有导向沟槽1218,其尺寸与导旋体1217匹配,可使导旋体1217在沟槽内滑移。
进一步的,参考图11,所述导向沟槽1218为某种特殊的导向结构,其特征至少包含第一导向面12011、第二导向面12012和第三导向面12013。所述导向沟槽1218沿所述旋转筒体1216的外表面环绕一周,并将其分割成能够相互啮合的两部分,当导旋体1217在导向沟槽1218内无论是向上还是向下产生滑移时,所述第一导向面12011、第二导向面12012和第三导向面12013可使导旋体1217始终沿着某一方向前进。
由于所述往复芯轴1215仅能沿导引段1303的轴向滑移,而不会与之相对转动,当导旋体1217在导向沟槽1218内往复滑移时,第一导向面12011、第二导向面12012和第三导向面12013迫使导旋体1217始终沿着某一方向前进的动力即可反馈至旋转筒体1216,继而迫使旋转筒体1216始终沿某一方向旋转。
导旋体1217在导向沟槽1218内往复滑移一次,旋转筒体1216即可沿某一方向旋转一次,而所述导旋体1217在导向沟槽1218内往复滑移一次,能够使所述旋转筒体旋转一次的角度值,与导向面的布置数量有关,导向面的布置数量越多,旋转筒体旋转一次的角度值越小,反之则越大。
本实施例中,所述往复芯轴1215实现往复运动的动力来源为液压动力源1208提供,液压动力源1208提供的液压油,在换向系统1209的作用下,分别进入往复腔1211的上腔体或下腔体,即可拖动往复芯轴1215实现上下往复运动。
本实施例中,液压动力源为电磁阀控制的液压动力源,所述液压动力源包括动力液和电磁阀,所述电磁阀控制动力液与往复活塞的联通性质,当动力液与往复活塞联通时往复活塞运动一步,当动力液与往复活塞断开联通时所述往复活塞在复位弹簧的作用下归位,所述高压动力液来自于涡轮泵、电机泵或液压管线。作为另外的选择,所述动力源包括液压系统驱动电机和泵,所述液压系统驱动电机驱动泵为往复活塞提供动力液,当电机泵为往复活塞输入动力液 时往复活塞运动一步,当电机泵停止为往复活塞输送动力液时所述往复活塞在复位弹簧的作用下归位。
以上所述的,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (12)

  1. 一种小直径钻柱井下驱动装置及方法,其特征在于:包括侧钻管柱(1)、导引结构(2)和驱动管柱(3);所述导引结构(2)连接于所述驱动管柱(3)下方或内部,侧钻管柱(1)穿设于驱动管柱(3)内部并经过导引结构(2)进入地层;
    所述驱动管柱(3)底部设置有动力装置,所述动力装置环套于所述侧钻管柱(1)的外侧;动力装置与所述侧钻管柱(1)之间设置有传动装置,所述动力装置能通过所述传动装置为所述侧钻管柱(1)提供旋转动力或实现角度位置控制。
  2. 根据权利要求1所述的一种小直径钻柱井下驱动装置及方法,其特征在于:所述导引结构(2)内部设有导引通道(4),所述驱动管柱(3)内部设有贯通通道(5),所述导引通道(4)和贯通通道(5)相互贯通,所述侧钻管柱(1)整体外径与所述贯通通道(5)及导引通道(4)相匹配,使侧钻管柱能够顺利通过导引结构(2)和驱动管柱(3),沿主井眼侧钻延伸钻进。
  3. 根据权利要求1所述的一种小直径钻柱井下驱动装置及方法,其特征在于:所述导引结构(2)为斜向器,所述导引结构(2)在作业过程中随驱动管柱(3)一同入井,用于引导侧钻管柱(1)实现侧钻作业。
  4. 根据权利要求1所述的一种小直径钻柱井下驱动装置及方法,其特征在于:所述动力装置的动力来源为液压能或电能中任何一种,所述动力装置至少包括动力端(6)和输出端(7),所述输出端(7)中心部设置有贯通孔,所述输出端(7)与所述侧钻管柱之间设置有扭力传递机构(8),其能够通过扭矩传递机构(8)将旋转动力传递给所述侧钻管柱(1)或通过侧钻管柱(1)改变其下部定向马达的工具面角度。
  5. 根据权利要求1或4所述的一种小直径钻柱井下驱动装置及方法,其特 征在于:当所述动力装置采用液压能驱动时,所述动力装置为井下马达,所述驱动管柱(3)还包括驱动流道(9),液压流体通过所述驱动流道(9)可驱动动力端(6)旋转,并由输出端(7)通过扭矩传递机构(8)输出扭矩带动侧钻管柱(1)旋转做功。
  6. 根据权利要求5所述的一种小直径钻柱井下驱动装置及方法,其特征在于:所述井下马达为涡轮马达,所述驱动管柱(3)还包括循环流道(10),所述循环流道(10)可设置于动力端(6)和输出端(7)之间,或者设置于输出端(7)下方,用于连通所述驱动流道(9)与主井眼环空,当流体经过动力端(6)完成驱动做功之后,可沿所述循环流道(10)进入主井眼环空返回地面,构成驱动循环。
  7. 根据权利要求1所述的一种小直径钻柱井下驱动装置及方法,其特征在于:所述侧钻管柱(1)设有内部循环通道,侧钻管柱钻井介质由地面直接进入侧钻管柱(1)的内部循环通道直至钻头水眼,再由侧钻井眼进入主井眼返回地面完成循环。
  8. 根据权利要求4所述的一种小直径钻柱井下驱动装置及方法,其特征在于:所述驱动管柱(3)和所述侧钻管柱(1)之间至少设有一组扭矩传递机构(8),所述扭矩传递机构(8)包括驱动端扭矩传递机构(801)和钻柱端扭矩传递机构(802);其中,所述驱动端扭矩传递机构(801)贯穿于输出端(7),所述钻柱端扭矩传递机构(802)设置位置与钻头之间的距离大于分支井眼的设计深度且小于输出端(7)的整体长度。
  9. 根据权利要求1所述的一种小直径钻柱井下驱动装置及方法,其特征在于:所述动力装置为液控环形活塞,利用液压系统提供较大的扭矩,从而为侧钻管柱(1)的旋转定向提供动力;
    所述液控环形活塞至少包括液压动力源(1208)、环形活塞(1210)和运 动转换机构,所述运动转换机构将环形活塞的沿轴线的运动转化为输出端(7)的旋转运动或摆动,用于驱动侧钻管柱旋转或改变工具面角度。
  10. 根据权利要求1所述的一种小直径钻柱井下驱动装置及方法,其特征在于:所述侧钻管柱(1)为能够实现侧钻的柔性钻柱,其为至少包括柔性钻杆、钻头的一套完整钻井管柱;所述柔性钻杆为高弹性金属钻杆、铰接式钻杆,或是由多个扭矩传递短节串接而成的钻杆。
  11. 根据权利要求1所述的一种小直径钻柱井下驱动装置及方法,其特征在于:所述侧钻管柱(1)下部还包括造斜钻进装置,所述造斜钻进装置为带有造斜机构(111)的定向马达(11)及钻头,或者,所述造斜钻进装置为带有造斜机构的水射流钻头;所述造斜机构包括弯接头或推靠肋翼。
  12. 根据权利要求11所述的一种小直径钻柱井下驱动装置及方法,其特征在于:所述动力装置为井下电机系统;所述井下电机系统包括电机(1203),还包括角度位置传感器,所述角度位置传感器用于指示电机系统输出端的角度位置,用于通过旋转侧钻管柱(1)控制所述造斜钻进装置的工具面角度。
PCT/CN2023/108028 2022-07-19 2023-07-19 一种小直径钻柱井下驱动装置及方法 WO2024017272A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210852352.4A CN117449761A (zh) 2022-07-19 2022-07-19 一种井下驱动小直径钻柱
CN202210852352.4 2022-07-19
CN202210854711.XA CN117468859A (zh) 2022-07-20 2022-07-20 一种微小孔眼井下定向装置
CN202210854711.X 2022-07-20

Publications (1)

Publication Number Publication Date
WO2024017272A1 true WO2024017272A1 (zh) 2024-01-25

Family

ID=89617166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108028 WO2024017272A1 (zh) 2022-07-19 2023-07-19 一种小直径钻柱井下驱动装置及方法

Country Status (1)

Country Link
WO (1) WO2024017272A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6446737B1 (en) * 1999-09-14 2002-09-10 Deep Vision Llc Apparatus and method for rotating a portion of a drill string
US20090127000A1 (en) * 2007-11-19 2009-05-21 Cousins James E Sectional drive and coupling system
CN105569569A (zh) * 2015-11-19 2016-05-11 西南石油大学 新型内推指向式旋转导向工具
CN113047772A (zh) * 2021-03-12 2021-06-29 西南石油大学 一种协同井下动力钻具进行定向作业的工具及方法
CN113153151A (zh) * 2021-02-24 2021-07-23 万晓跃 一种柔性导向钻井工具
CN114109249A (zh) * 2021-10-13 2022-03-01 中国石油大学(北京) 连续管柔性钻杆超短半径径向钻井管柱、系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6446737B1 (en) * 1999-09-14 2002-09-10 Deep Vision Llc Apparatus and method for rotating a portion of a drill string
US20090127000A1 (en) * 2007-11-19 2009-05-21 Cousins James E Sectional drive and coupling system
CN105569569A (zh) * 2015-11-19 2016-05-11 西南石油大学 新型内推指向式旋转导向工具
CN113153151A (zh) * 2021-02-24 2021-07-23 万晓跃 一种柔性导向钻井工具
CN113047772A (zh) * 2021-03-12 2021-06-29 西南石油大学 一种协同井下动力钻具进行定向作业的工具及方法
CN114109249A (zh) * 2021-10-13 2022-03-01 中国石油大学(北京) 连续管柔性钻杆超短半径径向钻井管柱、系统及方法

Similar Documents

Publication Publication Date Title
CN109267982B (zh) 一种分段压裂及控水完井方法及管柱、井下滑套开关系统
CN109267965B (zh) 一种井下电控滑套开关工具
CN111173443A (zh) 双液驱动旋冲钻井冲击器及双液驱动旋冲钻进方法
WO2023198087A1 (zh) 一种液压推靠式自复位柔性钻杆及钻柱
CN113719267B (zh) 机械式非线性控制的近钻头可变频增压震荡工具
CN104963628A (zh) 一种连续管钻井电液控定向装置
CN111322011A (zh) 一种井下方位定向方法及其定向工具
CN1313698C (zh) 液体驱动井下钻机
WO2024017272A1 (zh) 一种小直径钻柱井下驱动装置及方法
CN113202414A (zh) 一种高可靠性柔性导向钻井工具
WO2023186055A1 (zh) 一种钻具、钻井方法及钻井导向方法
RU2436937C1 (ru) Перфоратор для получения каналов в обсаженной скважине
CN108374642B (zh) 基于滚动螺旋的液力变径扶正器
CN114135230B (zh) 一种遥控涡轮式脉冲发生器及其应用
CN1021516C (zh) 井下液压式加压推进器
CN212003032U (zh) 一种高精度、高扭矩井下方位定向器
CN115387729A (zh) 定向钻进钻柱旋转控制器
CN211524746U (zh) 油水井井下套管径向开窗钻孔装置
CN115874930A (zh) 用于海域天然气水合物储层的钻井装置及钻井方法
CN111322010A (zh) 一种高精度、高扭矩井下方位定向器
CN114673444B (zh) 柔性螺杆钻具及钻井方法
CN112922530A (zh) 一种定向钻进用空气反循环潜孔锤自回转钻具
CN110821433A (zh) 油水井井下套管径向开窗钻孔装置
WO2024017346A1 (zh) 一种径向定向钻井装置
CN113027329B (zh) 一种扭矩脉冲和压力脉冲双作用工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842335

Country of ref document: EP

Kind code of ref document: A1