WO2024016978A1 - 用于控制空调器的方法、装置及空调器、存储介质 - Google Patents

用于控制空调器的方法、装置及空调器、存储介质 Download PDF

Info

Publication number
WO2024016978A1
WO2024016978A1 PCT/CN2023/103388 CN2023103388W WO2024016978A1 WO 2024016978 A1 WO2024016978 A1 WO 2024016978A1 CN 2023103388 W CN2023103388 W CN 2023103388W WO 2024016978 A1 WO2024016978 A1 WO 2024016978A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
working mode
mutually exclusive
preset
preset working
Prior art date
Application number
PCT/CN2023/103388
Other languages
English (en)
French (fr)
Inventor
宋世芳
李锦亮
严博
张桂芳
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2024016978A1 publication Critical patent/WO2024016978A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This application relates to the technical field of smart home appliances, for example, to a method and device for controlling an air conditioner, an air conditioner, and a storage medium.
  • the relevant technology directly ends the control, thus ignoring the user's control request. Therefore, the related technology has a low degree of intelligence and is difficult to meet the personalized needs of users.
  • Embodiments of the present disclosure provide a method and device for controlling an air conditioner, as well as an air conditioner and a storage medium, which can improve the intelligence of the air conditioner and help meet the personalized needs of users.
  • the method includes:
  • the device includes a processor and a memory storing program instructions, and the processor is configured to execute the above method for controlling an air conditioner when running the program instructions.
  • the air conditioner includes the above-mentioned device for controlling the air conditioner.
  • the storage medium stores program instructions, and when the program instructions are run, the above-mentioned method for controlling an air conditioner is executed.
  • embodiments of the present disclosure when the air conditioner is running in the preset operating mode and receives a control instruction, it is first determined whether the two will form mutual exclusion. If mutual exclusion is formed, the specific mutually exclusive parameters of the control instructions and the preset working mode are further obtained, and the specific types of the mutually exclusive parameters are determined, and based on this, the preset working mode is controlled to continue running or to exit immediately. Therefore, embodiments of the present disclosure can deeply identify the mutually exclusive parameters of the control instructions and the preset working mode to determine whether the mutually exclusive parameters affect the reliability of the operation of the preset working mode. In this way, instructions with low impact can be filtered out and executed based on mutually exclusive parameter types, which is conducive to improving the intelligence of the air conditioner to meet the personalized needs of users.
  • Figure 1 is a schematic diagram of a method for controlling an air conditioner provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of another method for controlling an air conditioner provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of another method for controlling an air conditioner provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of another method for controlling an air conditioner provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic diagram of another method for controlling an air conditioner provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic diagram of another method for controlling an air conditioner provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic diagram of a device for controlling an air conditioner provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or A and B.
  • correspondence can refer to an association relationship or a binding relationship.
  • correspondence between A and B refers to an association relationship or a binding relationship between A and B.
  • smart home appliances refer to home appliances that are formed by introducing microprocessors, sensor technology, and network communication technology into home appliances. They have the characteristics of intelligent control, intelligent perception, and intelligent applications.
  • the operation process of smart home appliances often relies on The application and processing of modern technologies such as the Internet of Things, the Internet, and electronic chips, for example, smart home appliances can enable users to remotely control and manage smart home appliances by connecting to electronic devices.
  • the terminal device refers to an electronic device with a wireless connection function.
  • the terminal device can communicate with the above smart home appliances by connecting to the Internet, or can directly communicate with the above smart home appliances through Bluetooth, wifi, etc. connect.
  • the terminal device is, for example, a mobile device, a computer, or a vehicle-mounted device built into a floating vehicle, or any combination thereof.
  • Mobile devices may include, for example, mobile phones, smart home devices, wearable devices, smart mobile devices, virtual reality devices, etc., or any combination thereof.
  • Wearable devices may include, for example, smart watches, smart bracelets, pedometers, etc.
  • the relevant technology directly ends the control, thus ignoring the user's control request. Therefore, the related technology has a low degree of intelligence and is difficult to meet the personalized needs of users.
  • an embodiment of the present disclosure provides a method for controlling an air conditioner, including:
  • the processor obtains the mutually exclusive parameters of the control instruction and the preset working mode.
  • the processor determines the type of the mutually exclusive parameter.
  • S104 The processor controls the operation of the preset working mode according to the type of the mutually exclusive parameter.
  • embodiments of the present disclosure Using the method for controlling an air conditioner provided by embodiments of the present disclosure, when the air conditioner is running in a preset operating mode and receives a control instruction, it is first determined whether the two will form mutual exclusion. If mutual exclusion is formed, the specific mutually exclusive parameters of the control instructions and the preset working mode are further obtained, and the specific types of the mutually exclusive parameters are determined, and based on this, the preset working mode is controlled to continue running or to exit immediately. Therefore, embodiments of the present disclosure can deeply identify the mutually exclusive parameters of the control instructions and the preset working mode to determine whether the mutually exclusive parameters affect the reliability of the operation of the preset working mode. In this way, instructions with low impact can be filtered out and executed based on mutually exclusive parameter types, which is conducive to improving the intelligence of the air conditioner to meet the personalized needs of users.
  • the method for controlling the air conditioner may be executed in the air conditioner or in a server that communicates with the air conditioner.
  • the solution is explained with the processor in the air conditioner as the execution subject.
  • the processor determines whether the control instruction satisfies the mutually exclusive condition, including: the processor obtains the preset operating parameters of the preset working mode and the parameters to be adjusted corresponding to the control instruction; the processor performs a process on the parameters to be adjusted and the preset operating parameters. Match to determine whether there are shared parameters; if there are no shared parameters, the processor determines that the control instructions do not meet the mutual exclusion conditions; if there are shared parameters, the processor determines that the control instructions meet the mutual exclusion conditions.
  • the embodiments of the present disclosure can determine mutually exclusive conditions more accurately, thereby making it possible to more reasonably adjust the operation of the preset working mode. It is conducive to improving the intelligence of air conditioners to meet the personalized needs of users.
  • the processor obtains mutually exclusive parameters of the control instruction and the preset operating mode, including: the processor obtains common parameters of the parameters to be adjusted and the preset operating parameters, and determines the common parameters as mutually exclusive parameters.
  • the embodiments of the present disclosure can quickly extract the mutually exclusive parameters of the control instructions and the preset working mode, so that the operation of the preset working mode can be adjusted in a timely manner. It is conducive to improving the intelligence of air conditioners to meet the personalized needs of users.
  • the processor determines the type of mutually exclusive parameters, including: the processor determines the main push function of the preset working mode, and obtains the preset operating parameters corresponding to the main push function; the mutually exclusive parameters are the preset operating parameters corresponding to the main push function In the case where the mutually exclusive parameter is not a preset operating parameter corresponding to the main push function, the processor determines that the mutually exclusive parameter is a flexible indicator parameter. In this way, the embodiment of the present disclosure can determine the specific type of the mutually exclusive parameter in combination with the current main push function of the preset working mode.
  • the main function reflects the current operating target of the preset working mode.
  • embodiments of the present disclosure can divide them into fixed index parameters and flexible index parameters. Therefore, when mutual exclusion occurs, the specific type of the mutual exclusion parameter can be determined to control the preset working mode and make reasonable adjustments, which is conducive to improving the intelligence of the air conditioner to meet the personalized needs of users.
  • the default working mode is the comfortable home mode.
  • the comfortable home mode refers to a mode that can adjust the environment based on the seasonal conditions of the area where the air conditioner is located, the age group conditions of the family members associated with the air conditioner, and the indoor air environment conditions where the air conditioner is located.
  • the method further includes: in response to the start instruction of the preset working mode, the processor obtains the target season information of the area where the air conditioner is located; the processor determines the preset working mode based on the target season information. target operation plan, and control the air conditioner to operate the target operation plan.
  • the default working mode is the comfortable home mode. In this way, embodiments of the present disclosure can respond to the start command and determine the target season information of the area where the air conditioner is located after the air conditioner receives the start command corresponding to the comfortable home mode.
  • the region where the air conditioner is located may be the city where the air conditioner is located or the province where the air conditioner is located, and the target season information may be one of spring, summer, autumn, and winter.
  • the air conditioner can obtain the current date information and the regional information where the air conditioner is located; thereby combining the current date information and the regional information where the air conditioner is located, the target season information of the region where the air conditioner is located is determined.
  • the processor obtains the target season information of the area where the air conditioner is located, including: the processor obtains the current date information and the area information where the air conditioner is located; the processor determines the air conditioner based on the current date information and the area information where the air conditioner is located.
  • Target seasonal information for the area where the device is located can be combined.
  • the processor determines the target season information of the area where the air conditioner is located based on the current date information and the regional information where the air conditioner is located, including: the processor determines the target month range to which the current date information belongs; the processor determines the target month range according to the target month range. and the regional information where the air conditioner is located, to determine the target seasonal information for the area where the air conditioner is located.
  • embodiments of the present disclosure can determine the target season information of the area where the air conditioner is located by combining the target month range and the regional information where the air conditioner is located.
  • the processor can determine the target season information of the area where the air conditioner is located in combination with its pre-stored table data.
  • Table 1 is a regional seasonal table, which can represent seasonal information of different regions in different month ranges.
  • the embodiments of the present disclosure can combine the climate conditions of different regions in different month ranges to achieve accurate acquisition of target seasonal information, providing an accurate data basis for the operation of the comfortable home mode.
  • the processor determines the target season information of the region where the air conditioner is located based on the target month range and the regional information where the air conditioner is located, including: the processor obtains a regional season database, and the regional season database stores different regions in different month ranges. Corresponding seasonal information; the processor matches the seasonal information corresponding to the regional information and the target month range where the air conditioner is located in the regional season database, and determines it as the target seasonal information for the area where the air conditioner is located.
  • the embodiment of the present disclosure can also obtain the regional seasonal database stored on the server side.
  • the server can be a cloud server.
  • the server can perform data summary analysis after acquiring climate changes in different regions over the years to generate seasonal information corresponding to different regions in different month ranges, and store it in the regional seasonal database.
  • embodiments of the present disclosure can effectively ensure the validity and accuracy of data stored in the regional seasonal database.
  • the processor determines a target operating plan for the preset operating mode based on the target season information, and controls the air conditioner to run the target operating plan, including: when the target season information is spring, the processor controls the air conditioner to operate in the purification mode , to purify the environment where the air conditioner is located.
  • the processor controls the air conditioner to operate in the purification mode , to purify the environment where the air conditioner is located.
  • embodiments of the present disclosure can control the operation purification mode of the air conditioner when the target season information of the area where the air conditioner is located is accurately determined to be spring, so as to perform environmental purification of the environment where the air conditioner is located, and effectively remove bacteria and viruses in the environment where the air conditioner is located.
  • Air pollutants such as catkins and pollen can reduce the adverse effects on users caused by the increase in air pollutants such as bacteria, catkins and pollen in the environment, and meet users' comfort needs for their environment.
  • the method also includes: the processor obtains the ambient humidity of the environment where the air conditioner is located; when the ambient humidity is higher than the humidity threshold, the processor controls the air conditioner to run a constant temperature dehumidification mode.
  • the air conditioner can detect the ambient humidity of its environment through its associated detection element, and when the ambient humidity is higher than the humidity threshold, the air conditioner controls it to run in constant temperature dehumidification mode.
  • the humidity threshold can be 85%.
  • the constant temperature dehumidification mode refers to an operating mode that can reduce the ambient humidity while maintaining the ambient temperature.
  • the target set value for ambient humidity may be 52%.
  • the constant temperature dehumidification mode can be run to reduce the indoor ambient humidity while maintaining the ambient temperature.
  • the purification mode is started to effectively clear the air conditioner.
  • Air pollutants such as bacteria, catkins, and pollen in the environment can be reduced to reduce the adverse effects on users caused by the increase in air pollutants such as bacteria, catkins, and pollen in the environment, and meet users' comfort needs for their environment.
  • the processor determines the target operation plan of the preset operating mode based on the target season information, and controls the air conditioner to run the target operation plan, including: when the target season information is autumn, the processor controls the air conditioner to operate the purification mode and humidification mode to purify and humidify the environment where the air conditioner is located.
  • the embodiment of the present disclosure can accurately determine the target season information of the area where the air conditioner is located to be autumn, control the air conditioner to operate the purification mode and the humidification mode, so as to purify and humidify the environment where the air conditioner is located, and can improve the environment where the air conditioner is located. It also removes air pollutants such as dust and particulate matter from the environment where the air conditioner is located, while reducing the ambient humidity of the environment. It reduces the adverse effects of air dryness, dust and particulate matter and other air pollutants on users, and meets the comfort needs of users for the environment in which they are located. .
  • the processor determines the target operation plan of the preset operating mode based on the target season information, and controls the air conditioner to operate the target operation plan, including: when the target season information is summer, the processor obtains the environment of the air conditioner. Particulate matter concentration; when the particulate matter concentration is not lower than the first preset concentration, the processor controls the air conditioner to operate in the purification mode.
  • the air conditioner receives the start command and determines that the target season information is summer, it can detect the concentration of particulate matter in its environment through its associated detection element. And when the concentration of particulate matter in the environment is higher than or equal to the first preset concentration, the air conditioner is controlled to operate in the purification mode.
  • the first preset concentration may be 75ug/m3.
  • the embodiment of the present disclosure can purify the environment where the air conditioner is located by running the purification mode, thereby effectively reducing the concentration of particulate matter in the environment where the air conditioner is located.
  • the method further includes: when the concentration of particulate matter in the environment where the air conditioner is located is lower than the second preset concentration, the processor controls the air conditioner to turn off the purification mode.
  • the first preset concentration is higher than the second preset concentration.
  • the second preset concentration may be 35ug/m3.
  • embodiments of the present disclosure can determine that the concentration of particulate matter in the environment where the air conditioner is located has been reduced when the concentration of particulate matter in the environment where the air conditioner is located is lower than the second preset concentration.
  • the air conditioner can be controlled to turn off the purification mode. With this solution, embodiments of the present disclosure can accurately determine the timing of turning off the purification mode, thereby achieving energy-saving control of the air conditioner while meeting the user's comfort needs for the environment in which they are located.
  • the processor determines a target operating plan for the preset operating mode based on the target season information, and controls the air conditioner to operate the target operating plan, including: when the target season information is winter, the processor obtains the target user's response to the air conditioner.
  • the setting habit information the processor determines the target setting temperature of the air conditioner based on the setting habit information; the processor controls the air conditioner to operate at the target setting temperature.
  • embodiments of the present disclosure can determine the target setting temperature of the air conditioner based on the user's setting habit information for the air conditioner when it is accurately determined that the target season information of the area where the air conditioner is located is winter. It also controls the air conditioner to operate at the target set temperature to more accurately provide users with personalized air conditioning control services and meet users' comfort needs for their environment.
  • the target user refers to the user with the highest priority in the environment where the air conditioner is located.
  • the target user's setting habit information for the air conditioner includes the target user's temperature adjustment trend and temperature adjustment range for the air conditioner.
  • the target user's temperature adjustment trend of the air conditioner includes one of upward adjustment or downward adjustment.
  • the processor determines the target setting temperature of the air conditioner based on the setting habit information, including: in the case where the temperature adjustment trend of the air conditioner by the target user is the same for multiple consecutive times, the processor determines the temperature adjustment range. Amplitude range; the processor determines the temperature adjustment deviation value that matches the amplitude range; the processor determines the target set temperature of the air conditioner based on the temperature adjustment trend, the temperature adjustment deviation value and the current set temperature of the air conditioner.
  • embodiments of the present disclosure can combine the temperature adjustment trend, the temperature adjustment deviation value and the current set temperature of the air conditioner to achieve accurate acquisition of the target set temperature, so that the target set temperature determined in this way meets the temperature setting of the target user. rules to meet the target users’ personalized control needs for air conditioners.
  • the processor determines the target set temperature of the air conditioner based on the temperature adjustment trend, the temperature adjustment deviation value and the current set temperature of the air conditioner, including: when the temperature adjustment trend is upward, the processor will adjust the temperature The sum of the deviation value and the current set temperature is determined as the target set temperature of the air conditioner; when the temperature adjustment trend is downward, the processor determines the difference between the current set temperature and the temperature adjustment deviation value as the air conditioner's target set temperature. Target set temperature.
  • embodiments of the present disclosure can combine the temperature adjustment trend, the temperature adjustment deviation value and the current set temperature of the air conditioner to achieve accurate acquisition of the target set temperature, so that the target set temperature determined in this way meets the temperature setting of the target user. rules to meet the target users’ personalized control needs for air conditioners.
  • the processor determines the target operating plan of the preset operating mode based on the target seasonal information, and controls the air conditioner to operate the target operating plan, including: the processor determines the target operating conditions of the constant temperature dehumidification mode based on the target seasonal information; when the conditions are met Under the target operating conditions, the processor controls the air conditioner to operate in constant temperature and dehumidification mode.
  • the constant temperature dehumidification mode refers to an operating mode that can reduce the ambient humidity while maintaining the ambient temperature unchanged.
  • the embodiments of the present disclosure can accurately determine the target operating conditions of the constant temperature dehumidification mode in combination with the target season information. And when the target operating conditions are met, the air conditioner is controlled to run in constant temperature dehumidification mode.
  • the environment where the air conditioner is located can be adjusted in a timely and effective manner, while maintaining the ambient temperature unchanged, reducing the adverse effects of high humidity in the environment on users, and meeting the user's comfort needs for the environment in which they are located.
  • the processor determines the target operating conditions of the constant temperature dehumidification mode according to the target season information, including: the processor determines the operating conditions corresponding to the target season information as the target operation of the constant temperature dehumidification mode according to a preset correspondence relationship. condition.
  • embodiments of the present disclosure can preset the corresponding relationship between the seasonal information and the operating conditions of the constant temperature dehumidification mode in the air conditioner based on the climatic environmental conditions of different regional seasons. As an example, if the seasonal information is spring, the corresponding operating conditions of the constant temperature dehumidification mode are that the air conditioner runs in the comfortable home mode and the current ambient humidity is greater than the humidity threshold.
  • the corresponding operating condition of the constant temperature dehumidification mode is the air conditioner operating comfortable home mode.
  • the humidity threshold can be 85%.
  • an embodiment of the present disclosure provides another method for controlling an air conditioner, including:
  • the processor obtains the mutually exclusive parameters of the control instruction and the preset working mode.
  • S203 The processor determines the main push function of the preset working mode and obtains the preset operating parameters corresponding to the main push function.
  • S206 The processor controls the operation of the preset working mode according to the type of the mutually exclusive parameter.
  • the air conditioner when the air conditioner is running in a preset operating mode and receives a control instruction, it is first determined whether the two will form mutual exclusion. If mutual exclusion is formed, the specific mutually exclusive parameters of the control instructions and the preset working mode are further obtained, and the specific types of the mutually exclusive parameters are determined based on the current main push function of the preset working mode to control the preset working mode to continue running or to exit immediately. .
  • the main function reflects the current operating target of the preset working mode. According to the relationship between the preset operating parameters in the preset working mode and the main push function, embodiments of the present disclosure can divide them into fixed index parameters and flexible index parameters. Therefore, when mutual exclusion occurs, the specific type of the mutual exclusion parameter can be determined to control the preset working mode and make reasonable adjustments, which is conducive to improving the intelligence of the air conditioner to meet the personalized needs of users.
  • the method for controlling the air conditioner may be executed in the air conditioner or in a server that communicates with the air conditioner.
  • the solution is explained with the processor in the air conditioner as the execution subject.
  • the processor determines the main function of the preset working mode, including: the processor obtains current season information, and determines the main function of the preset working mode based on the current season information.
  • the processor obtains current season information, and determines the main function of the preset working mode based on the current season information.
  • embodiments of the present disclosure can enable the preset working mode to always run functional services suitable for the current season, which is beneficial to ensuring the user's comfortable experience.
  • the processor determines the main function of the preset working mode, including: the processor obtains indoor user information, and determines the main function of the preset working mode based on the indoor user information.
  • the embodiments of the present disclosure can enable the preset working mode to always run functional services suitable for the current user, which is beneficial to ensuring the user's comfortable experience.
  • the processor determines the main function of the preset working mode, including: the processor obtains the geographical location information, and determines the main function of the preset working mode based on the geographical location information.
  • the embodiments of the present disclosure can enable the preset working mode to always run functional services suitable for the current area, which is beneficial to ensuring the user's comfortable experience.
  • the processor determines the main function of the preset working mode, including: the processor determines the main function of the preset working mode according to the target operating plan.
  • the embodiment of the present disclosure can determine the main push function based on the function service initially opened when the default working mode is started, which is beneficial to ensuring the reliability of the operation of the default working mode.
  • the embodiments of the present disclosure may also provide other determination methods, and are not limited to the above several determination methods.
  • the main functions of the preset working mode can be set according to the corresponding detection information, and I will not list them one by one here.
  • the embodiments of the present disclosure can also be combined and applied based on the above-mentioned multiple determination methods to further ensure the user's comfortable experience.
  • the processor controls the operation of the preset working mode according to the type of the mutually exclusive parameter, including: when the type of the mutually exclusive parameter is a fixed indicator parameter, the processor controls the air conditioner to exit the preset working mode and executes Control instruction; when the type of the mutually exclusive parameter is a flexible indicator parameter, the processor fine-tunes the preset working mode based on the control instruction, and controls the air conditioner to continue running the fine-tuned preset working mode.
  • the embodiments of the present disclosure can combine the types of mutually exclusive parameters to control the preset working mode to continue running or exit immediately, which is beneficial to improving the intelligence of the air conditioner to meet the personalized needs of users.
  • an embodiment of the present disclosure provides another method for controlling an air conditioner, including:
  • the processor obtains the mutually exclusive parameters of the control instruction and the preset working mode.
  • S303 The processor determines the main push function of the preset working mode and obtains the preset operating parameters corresponding to the main push function.
  • the processor fine-tunes the preset working mode based on the control instruction, and controls the air conditioner to run the fine-tuned preset working mode.
  • the air conditioner when the air conditioner is running in a preset operating mode and receives a control instruction, it is first determined whether the two will form mutual exclusion. If mutual exclusion is formed, the specific mutually exclusive parameters of the control instructions and the preset working mode are further obtained, and the specific types of the mutually exclusive parameters are determined based on the current main push function of the preset working mode to control the preset working mode to continue running or to exit immediately. .
  • the main function reflects the current operating goal of the preset working mode. In order to ensure that the goal can be achieved, its associated operating parameters must always remain stable.
  • such operating parameters that need to be kept stable are set as fixed indicator parameters, and when mutual exclusion occurs, the preset working mode is selected to exit to execute control instructions, so that it can first meet the user's personalized needs.
  • Appropriate adjustment of operating parameters unrelated to the main push function within a reasonable range will usually not affect the achievement of comfort goals. Therefore, the embodiments of the present disclosure can set such operating parameters with little impact as flexible indicator parameters, and when mutual exclusion occurs, they can retain the preset operating mode while executing corresponding instructions, thereby improving the intelligence of the air conditioner. , which is conducive to meeting the personalized needs of users.
  • the method for controlling the air conditioner may be executed in the air conditioner or in a server that communicates with the air conditioner.
  • the solution is explained with the processor in the air conditioner as the execution subject.
  • the processor fine-tunes the preset working mode based on the control instruction, including: the processor obtains the target value of the mutually exclusive parameter corresponding to the control instruction, and obtains the preset value range of the mutually exclusive parameter corresponding to the preset working mode; in the target When the value falls within the preset value range, the processor adjusts the mutually exclusive parameters in the preset working mode to the target value; when the target value does not fall within the preset value range, the processor adjusts the mutually exclusive parameter in the preset working mode. Exclusion parameters maintain their current values.
  • the embodiment of the present disclosure can further determine whether the adjustment target value of the mutually exclusive parameter is within a reasonable range, so as to avoid the execution of unreasonable instructions. This will help ensure the reliability of the preset working mode operation, and also help ensure the user's comfortable experience.
  • an embodiment of the present disclosure provides another method for controlling an air conditioner, including:
  • S403 The processor determines the main push function of the preset working mode and obtains the preset operating parameters corresponding to the main push function.
  • the processor obtains the target value of the mutually exclusive parameter corresponding to the control instruction, and obtains the preset value range of the mutually exclusive parameter corresponding to the preset working mode.
  • the processor controls the air conditioner to continue running the fine-tuned preset working mode.
  • the air conditioner when the air conditioner is running in a preset operating mode and receives a control instruction, it is first determined whether the two will form mutual exclusion. If mutual exclusion is formed, the specific mutually exclusive parameters of the control instructions and the preset working mode are further obtained, and the specific types of the mutually exclusive parameters are determined based on the current main push function of the preset working mode to control the preset working mode to continue running or to exit immediately. .
  • the main push function reflects the current operating goal of the preset working mode. Appropriate adjustment of irrelevant operating parameters within a reasonable range will usually not affect the achievement of the comfort goal.
  • the embodiments of the present disclosure can set such operating parameters with little impact as flexible indicator parameters, and when mutual exclusion occurs, they can retain the preset operating mode while executing corresponding instructions, thereby improving the intelligence of the air conditioner. , which is conducive to meeting the personalized needs of users. Moreover, the embodiment of the present disclosure can further determine whether the adjustment target value of the mutually exclusive parameter is within a reasonable range, so as to avoid the execution of unreasonable instructions. This will help ensure the reliability of the preset working mode operation, and also help ensure the user's comfortable experience.
  • the method for controlling the air conditioner may be executed in the air conditioner or in a server that communicates with the air conditioner.
  • the solution is explained with the processor in the air conditioner as the execution subject.
  • an embodiment of the present disclosure provides another method for controlling an air conditioner, including:
  • S503 The processor determines the main push function of the preset working mode and obtains the preset operating parameters corresponding to the main push function.
  • S506 The processor obtains the preset execution time corresponding to the control instruction.
  • the processor controls the air conditioner to re-enter the preset working mode.
  • the air conditioner when the air conditioner is running in a preset operating mode and receives a control instruction, it is first determined whether the two will form mutual exclusion. If mutual exclusion is formed, the specific mutually exclusive parameters of the control instructions and the preset working mode are further obtained, and the specific types of the mutually exclusive parameters are determined based on the current main push function of the preset working mode to control the preset working mode to continue running or to exit immediately. .
  • the main function reflects the current operating goal of the preset working mode. In order to ensure that the goal can be achieved, its associated operating parameters must always remain stable.
  • the embodiment of the present disclosure can also combine the preset execution time corresponding to each control instruction to set the restart timing of the preset working mode, thereby improving the intelligence of the air conditioner and helping to more comprehensively protect the user's safety. Comfortable experience.
  • the method for controlling the air conditioner may be executed in the air conditioner or in a server that communicates with the air conditioner.
  • the solution is explained with the processor in the air conditioner as the execution subject.
  • an embodiment of the present disclosure provides another method for controlling an air conditioner, including:
  • S603 The processor controls the operation of the preset working mode according to the type of control instruction.
  • the processor determines the type of the mutually exclusive parameter.
  • S606 The processor controls the operation of the preset working mode according to the type of the mutually exclusive parameter.
  • embodiments of the present disclosure can perform in-depth identification of received control instructions to determine whether the control instructions originate from the user's current needs. In this way, instructions with strong user willingness to actively adjust can be screened out and executed based on the control instruction type, which is conducive to improving the intelligence of the air conditioner to meet the user's personalized needs.
  • the embodiment of the present disclosure When the air conditioner initially determines that it does not respond to the control command and continues to run the preset working mode, the embodiment of the present disclosure further obtains the specific mutually exclusive parameters of the control command and the preset working mode, and determines the specific types of the mutually exclusive parameters, and accordingly Control the preset working mode to continue running or exit immediately. Therefore, embodiments of the present disclosure can deeply identify the mutually exclusive parameters of the control instructions and the preset working mode to determine whether the mutually exclusive parameters affect the reliability of the operation of the preset working mode. In this way, instructions with low impact can be filtered out and executed based on mutually exclusive parameter types, which is conducive to improving the intelligence of the air conditioner to meet the personalized needs of users.
  • the method for controlling the air conditioner may be executed in the air conditioner or in a server that communicates with the air conditioner.
  • the solution is explained with the processor in the air conditioner as the execution subject.
  • the processor determines the type of the control instruction, including: the processor obtains the source of the control instruction; and the processor determines the type of the control instruction based on the source of the control instruction.
  • the embodiment of the present disclosure can determine the specific type of the control instruction based on its source.
  • the source of the control instruction can reflect the initiator of the relevant control, and then it can be judged whether the control instruction originates from the user's current needs. This allows the operation of the preset working mode to be more reasonably adjusted, which is conducive to improving the intelligence of the air conditioner to meet the individual needs of users.
  • the processor determines the type of the control instruction according to the source of the control instruction, including: when the source of the control instruction is a preset port, the processor determines the type of the control instruction to be a user adjustment instruction; when the source of the control instruction If it is not a preset port, the processor determines that the type of control instruction is a system self-identification instruction.
  • the embodiment of the present disclosure can determine the specific type of the control instruction based on whether the source of the control instruction is a preset port. The fact that the control command comes from the preset port indicates that the relevant control is issued by the user, and it can be judged that the control command originates from the user's current needs. This allows the operation of the preset working mode to be more reasonably adjusted, which is conducive to improving the intelligence of the air conditioner to meet the individual needs of users.
  • the preset port includes one or more of APP, remote control, screen terminal or voice terminal.
  • the control command coming from the preset port indicates that the relevant control is issued by the user, and it can be judged that the control command originates from the user's current needs.
  • This enables the operation of the preset working mode to be more reasonably adjusted, such as filtering out and executing instructions that users have a strong willingness to actively adjust, which is conducive to improving the intelligence of the air conditioner to meet the individual needs of users.
  • the system self-identification instructions include but are not limited to intelligent fresh air control instructions, humidity exceeding the standard control instructions, comfortable cooling control instructions, comfortable heating control instructions, high temperature sensing self-starting control instructions, air conditioning sterilization control instructions, and solar term care control instructions. , one or more of the air conditioner long-term operation control instructions, air conditioner security control instructions, intelligent self-cleaning control instructions, filter dirty and clogged control instructions, intelligent energy-saving control instructions, intelligent sleep control instructions, and scheduled power on/off control instructions.
  • the above-mentioned system self-identification instructions are all used by the system to detect relevant parameters of the air conditioner itself or the environment in which it is located, and automatically issue it after judging that it meets the corresponding preset conditions to control the corresponding functional mode of the air conditioner operation.
  • the user adjustment instructions include but are not limited to power on/off control instructions, humidity control instructions, function mode selection instructions, target temperature adjustment instructions, target humidity adjustment instructions, target wind speed adjustment instructions, left wind zone wind speed adjustment instructions, right wind speed adjustment instructions, etc.
  • One or more of the silent mode control instructions and the powerful mode control instructions are all issued by the user after operating the preset port to control the air conditioner to perform the function adjustment required by the user.
  • the processor controls the operation of the preset working mode according to the type of control instruction, including: when the type of control instruction is a user adjustment instruction, the processor controls the air conditioner to exit the preset working mode and performs user adjustment. Instruction; when the type of control instruction is a system self-identification instruction, the processor controls the air conditioner to continue running in the preset working mode.
  • the type of control instruction is a user adjustment instruction
  • the processor controls the air conditioner to continue running in the preset working mode.
  • the processor controls the operation of the preset working mode according to the type of the control instruction, including: when the type of the control instruction is a user adjustment instruction, the processor determines the initiating user corresponding to the user adjustment instruction; the processor will initiate The user is matched with the authorized user of the preset working mode; if an authorized user with the same identity as the initiating user is matched, the processor controls the air conditioner to exit the preset working mode and executes the user adjustment instruction; if the user is not matched with the initiating user, In the case of authorized users with consistent user identities, the processor controls the air conditioner to continue running in the preset working mode. In this way, when it is recognized that the control instruction is a user adjustment instruction, it indicates that the control instruction is initiated by the user.
  • the disclosed embodiment further confirms the user's identity and matches it with the authorized user of the preset working mode, and can control the preset working mode to make reasonable adjustments based on the legitimacy of the initiating user's identity. This will help improve the intelligence of the air conditioner to meet the individual needs of users.
  • the authorized users of the preset working mode include broad authorized users or narrow authorized users.
  • generalized authorized users are all users who have been registered and verified in the default user information database.
  • embodiments of the present disclosure can prevent illegal users from interfering with the operation of the preset working mode.
  • an authorized user in a narrow sense is a user who turns on the preset working mode.
  • the embodiment of the present disclosure can prevent other users from interfering with the operation of the preset working mode.
  • the processor controls the operation of the preset working mode according to the type of the control instruction, including: when the type of the control instruction is a system self-identification instruction, the processor compares the priority coefficient of the system self-identification instruction with the preset The priority coefficient of the working mode; when the priority coefficient of the system self-recognition command is less than or equal to the priority coefficient of the preset working mode, the processor controls the air conditioner to continue running the preset working mode; when the priority coefficient of the system self-recognition command is When the level coefficient is greater than the priority coefficient of the preset working mode, the processor controls the air conditioner to exit the preset working mode and executes the system self-identification command.
  • the disclosed embodiment can control the preset working mode to make reasonable adjustments based on the importance of the system self-recognition command. This will help improve the intelligence of the air conditioner to meet the individual needs of users.
  • the priority coefficient can be pre-configured according to the importance of the system's self-identification instructions.
  • the priority coefficient of instructions related to the safety of the air conditioner can be adaptively adjusted higher to ensure that they can be executed promptly and accurately, which is beneficial to ensuring the safety performance of the air conditioner.
  • the processor controls the air conditioner to continue running the preset working mode, it also includes: according to the system self-identifying instruction Priority coefficient, the processor determines the preset waiting time for the control command; after the preset waiting time, the processor controls the air conditioner to exit the preset working mode and execute the system self-identification command.
  • the embodiment of the present disclosure can combine the priority coefficient to set the execution timing of the system self-recognition command, thereby ensuring that the system self-recognition command will not be missed, which is beneficial to ensuring the reliability of the air conditioner operation.
  • the processor controls the air conditioner to continue running in the preset working mode, it also includes: the processor sending the control instruction to the terminal device of the authorized user of the preset working mode; and after receiving the authorization instruction sent by the terminal device of the authorized user.
  • the processor controls the air conditioner to exit the preset working mode and executes the control instructions; in the case of not receiving the authorization instruction sent by the authorized user's terminal device, the processor controls the air conditioner to continue running in the preset working mode.
  • the embodiment of the present disclosure will also initiate verification to the authorized user of the preset working mode, so as to re-execute the control instruction after the verification is successful. This will help improve the intelligence of the air conditioner to meet the individual needs of users.
  • the preset working mode has multiple target operation schemes corresponding to different user identities.
  • the method for controlling the air conditioner also includes: when the priority of the initiating user identity corresponding to the control instruction in the default priority is higher than the priority of the running user identity corresponding to the preset working mode currently being executed, processing The processor determines the user's work and rest habits based on the identity of the initiating user; the processor determines the execution priority based on the user's work and rest habits and the time when the control command is first received; the processor controls the target operation corresponding to the user identity with the highest priority in the execution priority of the air conditioner. plan.
  • the execution can be determined based on the user's work and rest habits corresponding to the initiating user identity and the moment when the user control instruction is first received.
  • Priority and controls the air conditioner to enter the target operation plan corresponding to the user identity with the highest priority among the execution priorities, instead of adopting the target operation plan corresponding to the user identity with the highest priority under the default priority.
  • the user status includes the elderly, children or adults.
  • the processor determines the user's work and rest habits based on the identity of the initiating user, including: when the identity of the initiating user is an elderly person, the processor determines the user's work and rest habits as the first work and rest habit; when the identity of the initiating user is a child, the processor determines the user's work and rest habits The work and rest habit is the second work and rest habit; when the identity of the initiating user is an adult, the processor determines that the user's work and rest habit is the third work and rest habit.
  • the first work and rest habit, the second work and rest habit, and the third work and rest habit are not exactly the same. In this way, the embodiments of the present disclosure are conducive to better determining the user's work and rest habits based on the user's identity.
  • the first work and rest habit includes: the time when the control instruction is received is not in the time period of going out for shopping or the time period of going out for morning exercise and evening exercise.
  • the second work and rest habit includes: the time when the control instruction is received is not in the school time period or the interest class time period.
  • the third work and rest habit includes: the time when the control instruction is received is not in the time period for working outside, the time period for fitness outside, or the time period for shopping.
  • the processor determines the execution priority based on the user's work and rest habits and the time when the control instruction is first received, including: the processor determines whether the time when the control instruction is first received is consistent with the user's work and rest habits; when the time when the control instruction is first received is consistent with In the case of the user's work and rest habits, the processor determines the execution priority as the default priority; in the case where the moment when the control instruction is first received does not conform to the user's work and rest habits, the processor determines the execution priority as the reorder priority. Among them, in the reordering of priorities, the priority of the initiating user identity is lower than the priority of the running user identity corresponding to the currently executing preset working mode. In this way, when there are multiple users controlling the operation of the air conditioner, it is conducive to meeting the user's reasonable air conditioner control needs according to the user's work and rest habits, and improving the intelligence of the air conditioner.
  • the processor controls the air conditioner to run the target operation plan corresponding to the user identity with the highest priority among the execution priorities, it also includes: the processor determines the execution priority based on the moment when the control instruction is received for the second time; the processor controls The air conditioner runs and executes the target operation plan corresponding to the user identity with the highest priority.
  • the initiating user who receives the control instruction for the second time and who receives the control instruction for the first time is the same user. In this way, when there are multiple users controlling the operation of the air conditioner, it is conducive to meeting the user's reasonable air conditioner control needs according to the user's work and rest habits, and improving the intelligence of the air conditioner.
  • the processor determines the execution priority based on the time when the control instruction is received for the second time, including: the processor determines the length of the interval between the time when the control instruction is received for the second time and the time when the control instruction is first received; The interval length determines the execution priority.
  • the method for controlling the air conditioner further includes: when the first port that enters the preset operating mode is inconsistent with the second port that issues the control instruction, the processor determines the first port based on the initiator of the control instruction. The priority of the port and the second port; the processor controls the air conditioner to maintain or exit the preset working mode entered through the first port according to the priority of the first port and the second port, and execute or not execute the output issued by the second port. control instructions.
  • the embodiment of the present disclosure can respond reasonably according to the initiator of the control command, avoiding chaotic execution or non-execution of the command, which is conducive to improving the intelligence of the air conditioner.
  • the processor determines the priority of the first port and the second port according to the initiator of the control instruction, including: when the initiator of entering the preset working mode through the first port is a user, and the second port issues the control instruction.
  • the processor determines that the priority of the first port is higher than the priority of the second port; when the initiator enters the preset working mode through the first port and is not a user, and the second port issues a control
  • the processor determines that the priority of the first port is lower than the priority of the second port; when the initiator of entering the preset working mode through the first port is a user, and the second port issues a control
  • the processor determines that the priority of the first port is equal to the priority of the second port.
  • the processor controls the air conditioner to maintain or exit the preset working mode entered through the first port according to the priorities of the first port and the second port, and execute or not execute the control instructions issued by the second port, including : When the priority of the first port is higher than the priority of the second port, the processor controls the air conditioner to maintain the default operating mode entered through the first port, and does not execute the control instructions issued by the second port; in When the priority of the first port is lower than the priority of the second port, the processor controls the air conditioner to exit the preset operating mode entered through the first port, and executes the control instructions issued by the second port; in the first port In the case where the priority is equal to the priority of the second port, the processor controls the air conditioner to issue an active inquiry according to the user identity priority of the initiator of the instruction of the first port and the second port, or controls the air conditioner to maintain or Exit the preset working mode entered through the first port, and execute or not execute the control instructions issued by the second port. In this way, when the multi-port control air conditioner conflicts, the embodiment of
  • the processor controls the air conditioner to issue an active query according to the priority of the user identity of the initiator of the instruction of the first port and the second port, or controls the air conditioner to maintain or exit the preset work entered through the first port. mode, and executing or not executing a control instruction issued by the second port, including: the priority of the user identity of the initiator of the instruction on the first port is higher than the priority of the user identity of the initiator of the instruction on the second port.
  • the processor controls the air conditioner to maintain the preset working mode entered through the first port, and does not execute the control instruction issued by the second port; the user identity of the initiator of the instruction at the first port has a priority lower than that of the first port.
  • the processor controls the air conditioner to issue an active inquiry, and the content of the active inquiry is whether to control the air conditioner to exit the preset working mode entered through the first port, and execute the second Control instructions issued by the second port.
  • the embodiment of the present disclosure can make a reasonable response with a user-centered approach, avoiding chaotic execution or non-execution of instructions, which is conducive to improving the intelligence of the air conditioner.
  • the preset working mode has multiple target operation schemes corresponding to different user identities.
  • the method for controlling an air conditioner further includes: the processor comparing the user identity of the first user who has voice interaction with the air conditioner and the user identity of the second user corresponding to the currently executing preset working mode in the default priority.
  • the priority order in the case where the priority order in the default priority is that the user identity of the first user is higher than the user identity of the second user, the processor is based on the moment when the first user first interacts with the air conditioner by voice, and /Or, when the first user issues a control instruction, the air conditioner is controlled to issue or not issue an active inquiry.
  • the active inquiry content is whether to switch to the default working mode corresponding to the first user.
  • the processor controls the air conditioner to issue or not issue an active inquiry based on the time when the first user first interacts with the air conditioner by voice, and/or the time when the first user issues a control instruction, including: when ⁇ t1 ⁇ T1 In the case of When voice interaction occurs with the air conditioner for the second time, the air conditioner is controlled to issue an active inquiry.
  • ⁇ t1 t2-t1
  • ⁇ t1 is the time interval between the first user's first voice interaction with the air conditioner and the first user's control instruction
  • t1 is the time when the first user first has voice interaction with the air conditioner
  • t2 is When the first user issues a control instruction
  • T1 is the first preset duration threshold
  • T2 is the second preset duration threshold
  • the value of T1 may be 15min
  • the value of T2 may be 30min.
  • the processor controls the air conditioner to issue an active inquiry according to the moment when the first user interacts with the air conditioner by voice for the second time, including: in the case of ⁇ t2>T2, the processor controls the air conditioner to issue an active inquiry.
  • ⁇ t2 t3-t1
  • ⁇ t2 is the time interval between the first user's first voice interaction with the air conditioner and the second time the first user has voice interaction with the air conditioner
  • t3 is the time when the first user has the second voice interaction with the air conditioner.
  • the priority order in the default priority is: users whose identities are elderly and children have a higher priority than users whose identities are adults.
  • the priority of elderly and child users is higher than that of adult users, which is conducive to taking more reasonable care of the health of elderly and child users.
  • an embodiment of the present disclosure provides a device for controlling an air conditioner, including a processor 701 and a memory 702 .
  • the device may also include a communication interface (Communication Interface) 703 and a bus 704.
  • the processor 701, the communication interface 703, and the memory 702 can communicate with each other through the bus 704.
  • Communication interface 703 can be used for information transmission.
  • the processor 701 can call logical instructions in the memory 702 to execute the method for controlling the air conditioner of the above embodiment.
  • the above-mentioned logical instructions in the memory 702 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 702 can be used to store software programs, computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 701 executes the program instructions/modules stored in the memory 702 to execute functional applications and data processing, that is, to implement the method for controlling the air conditioner in the above embodiment.
  • the memory 702 may include a program storage area and a data storage area, where the program storage area may store an operating system and an application program required for at least one function; the storage data area may store data created according to the use of the terminal device, etc.
  • the memory 702 may include high-speed random access memory and may also include non-volatile memory.
  • An embodiment of the present disclosure provides an air conditioner, including the above device for controlling the air conditioner.
  • Embodiments of the present disclosure provide a storage medium that stores computer-executable instructions. When the computer-executable instructions are run, the above-mentioned method for controlling an air conditioner is executed.
  • the above-mentioned storage medium may be a transient computer-readable storage medium or a non-transitory computer-readable storage medium.
  • the technical solution of the embodiments of the present disclosure may be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes one or more instructions to enable a computer device (which may be a personal computer, a server, or a network equipment, etc.) to perform all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage media can be non-transitory storage media, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
  • the term “and/or” as used in this application is meant to encompass any and all possible combinations of one or more of the associated listed items.
  • the term “comprise” and its variations “comprises” and/or “comprising” etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not exclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the statement “comprises a" does not exclude the presence of additional identical elements in a process, method or apparatus including the stated element.
  • each embodiment may focus on its differences from other embodiments, and the same and similar parts among various embodiments may be referred to each other.
  • the relevant parts can be referred to the description of the method part.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined. Either it can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in the embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more components for implementing the specified logical function(s).
  • Executable instructions may be included in the block.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two consecutive blocks may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.

Abstract

本申请涉及智能家电技术领域,公开一种用于控制空调器的方法,包括:在空调器运行预设工作模式的情况下,若接收到控制指令,则判断控制指令是否满足互斥条件;在满足互斥条件的情况下,获取控制指令与预设工作模式的互斥参数;确定互斥参数的类型;根据互斥参数的类型,控制预设工作模式的运行。本申请能够对控制指令与预设工作模式的互斥参数进行深度识别,以判断该互斥参数是否影响预设工作模式运行的可靠性。从而能够基于互斥参数类型筛选出影响程度不高的指令并执行,有利于提升空调器的智能化程度,以满足用户的个性化需求。本申请还公开一种用于控制空调器的装置及空调器、存储介质。

Description

[根据细则26改正 18.07.2023]用于控制空调器的方法、装置及空调器、存储介质
本申请基于申请号为202210857549.7、申请日为2022年07月20日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能家电技术领域,例如涉及一种用于控制空调器的方法、装置及空调器、存储介质。
背景技术
目前,大部分空调器都配置有多种运行模式。除了制冷模式、制热模式、送风模式和除湿模式等常规模式之外,某些空调器还可以配置一些智能场景模式,以进一步提升用户的舒适体验。当运行智能场景模式时,空调器的相关参数会按照预设状态调节。若此时用户基于自身需求利用相关指令控制空调器作出功能调整,由于相关指令需要自定义空调器的部分参数,因此极有可能会与智能场景模式下的相关参数产生冲突,进而影响模式运行的准确性。为此,相关技术中提出了基于第一指令判断是否与空调现行状态互斥;如果互斥,则结束控制;如果不互斥,则执行第一指令。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
在控制指令与空调器现行状态或当前模式发生互斥时,相关技术直接结束控制,故而无视了用户的控制请求。因此,相关技术的智能化程度较低,难以满足用户的个性化需求。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于控制空调器的方法、装置及空调器、存储介质,能够提升空调器的智能化程度,有利于满足用户的个性化需求。
在一些实施例中,所述方法包括:
在空调器运行预设工作模式的情况下,若接收到控制指令,则判断控制指令是否满足互斥条件;
在满足互斥条件的情况下,获取控制指令与预设工作模式的互斥参数;
确定互斥参数的类型;
根据互斥参数的类型,控制预设工作模式的运行。
在一些实施例中,所述装置包括处理器和存储有程序指令的存储器,所述处理器被配置为在运行所述程序指令时,执行上述的用于控制空调器的方法。
在一些实施例中,所述空调器包括上述的用于控制空调器的装置。
在一些实施例中,所述存储介质,存储有程序指令,所述程序指令在运行时,执行上述的用于控制空调器的方法。
本公开实施例提供的用于控制空调器的方法、装置及空调器、存储介质,可以实现以下技术效果:
本公开实施例,在空调器正在运行预设工作模式且接收到控制指令的情况下,首先判断二者是否会形成互斥。若形成互斥,则进一步获取控制指令与预设工作模式的具体互斥参数,以及确定互斥参数的具体类型,并据此控制预设工作模式继续运行或者立即退出。由此,本公开实施例能够对控制指令与预设工作模式的互斥参数进行深度识别,以判断该互斥参数是否影响预设工作模式运行的可靠性。从而能够基于互斥参数类型筛选出影响程度不高的指令并执行,有利于提升空调器的智能化程度,以满足用户的个性化需求。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个用于控制空调器的方法的示意图;
图2是本公开实施例提供的另一个用于控制空调器的方法的示意图;
图3是本公开实施例提供的另一个用于控制空调器的方法的示意图;
图4是本公开实施例提供的另一个用于控制空调器的方法的示意图;
图5是本公开实施例提供的另一个用于控制空调器的方法的示意图;
图6是本公开实施例提供的另一个用于控制空调器的方法的示意图;
图7是本公开实施例提供的一个用于控制空调器的装置的示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
术语“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
本公开实施例中,智能家电是指将微处理器、传感器技术、网络通信技术引入家电设备后形成的家电产品,具有智能控制、智能感知及智能应用的特征,智能家电的运作过程往往依赖于物联网、互联网以及电子芯片等现代技术的应用和处理,例如智能家电可以通过连接电子设备,实现用户对智能家电的远程控制和管理。
本公开实施例中,终端设备是指具有无线连接功能的电子设备,终端设备可以通过连接互联网,与如上的智能家电进行通信连接,也可以直接通过蓝牙、wifi等方式与如上的智能家电进行通信连接。在一些实施例中,终端设备例如为移动设备、电脑、或悬浮车中内置的车载设备等,或其任意组合。移动设备例如可以包括手机、智能家居设备、可穿戴设备、智能移动设备、虚拟现实设备等,或其任意组合,其中,可穿戴设备例如包括:智能手表、智能手环、计步器等。
目前,大部分空调器都配置有多种运行模式。除了制冷模式、制热模式、送风模式和除湿模式等常规模式之外,某些空调器还可以配置一些智能场景模式,以进一步提升用户的舒适体验。当运行智能场景模式时,空调器的相关参数会按照预设状态调节。若此时用户基于自身需求利用相关指令控制空调器作出功能调整,由于相关指令需要自定义空调器的部分参数,因此极有可能会与智能场景模式下的相关参数产生冲突,进而影响模式运行的准确性。为此,相关技术中提出了基于第一指令判断是否与空调现行状态互斥;如果互斥,则结束控制;如果不互斥,则执行第一指令。
在控制指令与空调器现行状态或当前模式发生互斥时,相关技术直接结束控制,故而无视了用户的控制请求。因此,相关技术的智能化程度较低,难以满足用户的个性化需求。
结合图1所示,本公开实施例提供一种用于控制空调器的方法,包括:
S101,在空调器运行预设工作模式的情况下,若处理器接收到控制指令,则判断控制指令是否满足互斥条件。
S102,在满足互斥条件的情况下,处理器获取控制指令与预设工作模式的互斥参数。
S103,处理器确定互斥参数的类型。
S104,处理器根据互斥参数的类型,控制预设工作模式的运行。
采用本公开实施例提供的用于控制空调器的方法,在空调器正在运行预设工作模式且接收到控制指令的情况下,首先判断二者是否会形成互斥。若形成互斥,则进一步获取控制指令与预设工作模式的具体互斥参数,以及确定互斥参数的具体类型,并据此控制预设工作模式继续运行或者立即退出。由此,本公开实施例能够对控制指令与预设工作模式的互斥参数进行深度识别,以判断该互斥参数是否影响预设工作模式运行的可靠性。从而能够基于互斥参数类型筛选出影响程度不高的指令并执行,有利于提升空调器的智能化程度,以满足用户的个性化需求。
可选地,该用于控制空调器的方法可以在空调器中执行,也可以在与空调器进行通信的服务器中执行。在本公开实施例中,以空调器中的处理器为执行主体对方案做出说明。
可选地,处理器判断控制指令是否满足互斥条件,包括:处理器获取预设工作模式的预设运行参数和控制指令对应的待调节参数;处理器将待调节参数与预设运行参数进行匹配,判断是否存在共有参数;在不存在共有参数的情况下,处理器确定控制指令不满足互斥条件;在存在共有参数的情况下,处理器确定控制指令满足互斥条件。这样,通过比较预设工作模式的预设运行参数和控制指令对应的待调节参数,能够确定二者对应的参数是否发生交叉,并据此进一步判断出控制指令是否满足互斥条件。本公开实施例能够较准确地判定互斥条件,从而能够更合理地调整预设工作模式的运行。有利于提升空调器的智能化程度,以满足用户的个性化需求。
可选地,处理器获取控制指令与预设工作模式的互斥参数,包括:处理器获取待调节参数与预设运行参数的共有参数,并将共有参数确定为互斥参数。这样,本公开实施例能够快速提取控制指令与预设工作模式的互斥参数,从而能够及时调整预设工作模式的运行。有利于提升空调器的智能化程度,以满足用户的个性化需求。
可选地,处理器确定互斥参数的类型,包括:处理器确定预设工作模式的主推功能,并获取主推功能对应的预设运行参数;在互斥参数为主推功能对应的预设运行参数的情况下,处理器确定互斥参数的类型为固定指标参数;在互斥参数不为主推功能对应的预设运行参数的情况下,处理器确定互斥参数的类型为灵活指标参数。这样,本公开实施例能够结合预设工作模式当前的主推功能来判断互斥参数的具体类型。主推功能反映了预设工作模式的当前运行目标。根据预设工作模式中的预设运行参数与主推功能的关联关系,本公开实施例能够将其划分为固定指标参数和灵活指标参数。从而能够在发生互斥时通过判断互斥参数具体类型来控制预设工作模式作出合理调整,有利于提升空调器的智能化程度,以满足用户的个性化需求。
可选地,预设工作模式为舒适家模式。具体地,舒适家模式是指能够结合空调器所在地域的季节情况、空调器关联家庭成员的年龄群体情况及空调器所在室内的空气环境情况进行环境调节的模式。
可选地,空调器运行预设工作模式之前,还包括:响应于预设工作模式的启动指令,处理器获取空调器所在地域的目标季节信息;处理器根据目标季节信息,确定预设工作模式的目标运行方案,并控制空调器运行目标运行方案。其中,预设工作模式为舒适家模式。这样,本公开实施例可以在空调器接收对应舒适家模式的启动指令后,响应于该启动指令,并确定空调器所在地域的目标季节信息。这里,空调器所在地域可以为空调器所在的城市或空调器所在的省份,目标季节信息可以为春季、夏季、秋季、冬季中的一种。在一种示例中,空调器可以获得当前的日期信息及空调器所在的地域信息;从而结合当前的日期信息及空调器所在的地域信息,确定空调器所在地域的目标季节信息。以此方案,本公开实施例能够实现目标季节信息的精准获取,以满足用户对其所在环境的舒适性需求。
可选地,处理器获取空调器所在地域的目标季节信息,包括:处理器获得当前的日期信息及空调器所在的地域信息;处理器根据当前的日期信息及空调器所在的地域信息,确定空调器所在地域的目标季节信息。这样,本公开实施例能够结合不同地域在不同时间的气候情况,实现目标季节信息的精准获取,为舒适家模式的运行提供了精准地数据基础。
可选地,处理器根据当前的日期信息及空调器所在的地域信息,确定空调器所在地域的目标季节信息,包括:处理器确定当前的日期信息所属的目标月份范围;处理器根据目标月份范围及空调器所在的地域信息,确定空调器所在地域的目标季节信息。这样,本公开实施例可以结合目标月份范围及空调器所在的地域信息,确定空调器所在地域的目标季节信息。
具体地,处理器可以结合其预先存储的表格数据,确定空调器所在地域的目标季节信息。具体请参考表1。这里,表1为地域季节表,该地域季节表能够表示不同地域在不同月份范围的季节信息。
表1
如表1所示,作为一种示例,若空调器所在的地域信息为广西省,当前的日期信息所属的目标月份范围为1月~2月,则确定空调器所在地域的目标季节信息为冬季。这样,本公开实施例能够结合不同地域在不同月份范围的气候情况,实现目标季节信息的精准获取,为舒适家模式的运行提供了精准地数据基础。
可选地,处理器根据目标月份范围及空调器所在的地域信息,确定空调器所在地域的目标季节信息,包括:处理器获得地域季节库,地域季节库中存储有不同地域在不同月份范围各自对应的季节信息;处理器在地域季节库中匹配出与空调器所在的地域信息及目标月份范围相对应的季节信息,并将其确定为空调器所在地域的目标季节信息。这样,本公开实施例还可以获得服务端存储的地域季节库。这里,服务端可以为云端服务器。具体地,服务端可以在获取不同地域历年的气候变化后进行数据汇总分析,以生成不同地域在不同月份范围各自对应的季节信息,并将其存储于地域季节库。以此方式,本公开实施例能够有效确保地域季节库中存储数据的有效性及精准度。
可选地,处理器根据目标季节信息,确定预设工作模式的目标运行方案,并控制空调器运行目标运行方案,包括:在目标季节信息为春季的情况下,处理器控制空调器运行净化模式,以对空调器所在环境进行环境净化。这样,本公开实施例能够在精准确定空调器所在地域的目标季节信息为春季的情况下,控制空调器运行净化模式,以对空调器所在环境进行环境净化,有效清除空调器所在环境的细菌、柳絮及花粉等空气污染物,降低环境中细菌、柳絮及花粉等空气污染物增加给用户带来的不良影响,满足用户对其所在环境的舒适性需求。
可选地,在目标季节信息为春季的情况下,还包括:处理器获取空调器所在环境的环境湿度;在环境湿度高于湿度阈值的情况下,处理器控制空调器运行恒温除湿模式。这样,在接收到启动指令后,空调器可以通过其关联的检测元件检测其所在环境的环境湿度,并在环境湿度高于湿度阈值的情况下,空调器控制其运行恒温除湿模式。这里,湿度阈值可以为85%。恒温除湿模式是指能够在维持环境温度保持不变的情况下降低环境湿度的运行模式。在一种示例中,环境湿度的目标设定值可以为52%。这样,能够在确定环境湿度较高的情况下,通过运行恒温除湿模式,以在维持环境温度不变的情况下降低室内的环境湿度,并在同时启动净化模式的情况下,有效清除空调器所在环境的细菌、柳絮及花粉等空气污染物,降低环境中细菌、柳絮及花粉等空气污染物增加给用户带来的不良影响,满足用户对其所在环境的舒适性需求。
可选地,处理器根据目标季节信息,确定预设工作模式的目标运行方案,并控制空调器运行目标运行方案,包括:在目标季节信息为秋季的情况下,处理器控制空调器运行净化模式及加湿模式,以对空调器所在环境进行净化加湿。这样,本公开实施例能够在精准确定空调器所在地域的目标季节信息为秋季的情况下,控制空调器运行净化模式及加湿模式,以对空调器所在环境进行净化加湿,能够在提高空调器所在环境的环境湿度的同时清除空调器所在环境的扬尘、颗粒物等空气污染物,降低空气干燥、扬尘及颗粒物等空气污染物增加给用户带来的不良影响,满足用户对其所在环境的舒适性需求。
可选地,处理器根据目标季节信息,确定预设工作模式的目标运行方案,并控制空调器运行目标运行方案,包括:在目标季节信息为夏季的情况下,处理器获取空调器所在环境的颗粒物浓度;在颗粒物浓度不低于第一预设浓度的情况下,处理器控制空调器运行净化模式。这样,在空调器接收到启动指令且确定目标季节信息为夏季的情况下,可以通过其关联的检测元件检测其所在环境内的颗粒物浓度。并在所在环境内的颗粒物浓度高于或等于第一预设浓度的情况下,控制空调器运行净化模式。这里,第一预设浓度可以为75ug/m3。这样,本公开实施例能够在确定空调器所在环境内颗粒物浓度较高的情况下,通过运行净化模式,以对空调器所在环境进行环境净化,有效降低空调所在环境的颗粒物浓度。
可选地,处理器控制空调器运行净化模式之后,还包括:在空调器所在环境内的颗粒物浓度低于第二预设浓度的情况下,处理器控制空调器关闭净化模式。其中,第一预设浓度高于第二预设浓度。作为一种示例,第二预设浓度可以为35ug/m3。这样,本公开实施例可以在空调所在环境内的颗粒物浓度低于第二预设浓度的情况下,确定空调所在环境内的颗粒物浓度已经降低,为了节约空气处理资源,可以控制空调关闭净化模式。以此方案,本公开实施例能够精准确定净化模式的关闭时机,以在满足用户对其所在环境的舒适性需求的同时,实现了空调器的节能控制。
可选地,处理器根据目标季节信息,确定预设工作模式的目标运行方案,并控制空调器运行目标运行方案,包括:在目标季节信息为冬季的情况下,处理器获得目标用户对空调器的设定习惯信息;处理器根据设定习惯信息,确定空调器的目标设定温度;处理器控制空调器在目标设定温度下运行。这样,本公开实施例能够在精准确定空调器所在地域的目标季节信息为冬季的情况下,结合用户对空调器的设定习惯信息,确定空调器的目标设定温度。并控制空调器在目标设定温度下运行,以更加精准地为用户提供个性化的空调控制服务,满足用户对其所在环境的舒适性需求。
需要说明的是,目标用户是指空调器所在环境内优先级最高的用户。目标用户对空调器的设定习惯信息包括目标用户对空调其的温度调节趋势及温度调节幅度。目标用户对空调器的温度调节趋势包括上调或下调中的一种。
可选地,处理器根据设定习惯信息,确定空调器的目标设定温度,包括:在连续多次目标用户对空调器的温度调节趋势均相同的情况下,处理器确定温度调节幅度所在的幅度范围;处理器确定与幅度范围相匹配的调温偏差值;处理器根据温度调节趋势、调温偏差值及空调器当前的设定温度,确定空调器的目标设定温度。这样,本公开实施例可以结合温度调节趋势、调温偏差值及空调当前的设定温度,实现目标设定温度的精准获取,使得通过该方式确定的目标设定温度符合目标用户的温度设定规律,满足目标用户对空调的个性化控制需求。
可选地,处理器根据温度调节趋势、调温偏差值及空调器当前的设定温度,确定空调器的目标设定温度,包括:在温度调节趋势为上调的情况下,处理器将调温偏差值与当前的设定温度之和确定为空调器的目标设定温度;在温度调节趋势为下调的情况下,处理器将当前的设定温度与调温偏差值之差确定为空调器的目标设定温度。这样,本公开实施例可以结合温度调节趋势、调温偏差值及空调当前的设定温度,实现目标设定温度的精准获取,使得通过该方式确定的目标设定温度符合目标用户的温度设定规律,满足目标用户对空调的个性化控制需求。
可选地,处理器根据目标季节信息,确定预设工作模式的目标运行方案,并控制空调器运行目标运行方案,包括:处理器根据目标季节信息,确定恒温除湿模式的目标运行条件;在满足目标运行条件的情况下,处理器控制空调器运行恒温除湿模式。可以理解地,不同地域的季节不同,相应的环境气候情况也不相同。这里,恒温除湿模式是指能够在维持环境温度保持不变的情况下降低环境湿度的运行模式。这样,本公开实施例在精准确定空调器所在地域的目标季节信息后,能够结合目标季节信息,精准地确定恒温除湿模式的目标运行条件。并在满足目标运行条件的情况下,控制空调器运行恒温除湿模式。从而能够及时有效地对空调器所在的环境进行调节,在维持所在环境温度不变的情况下,降低所在环境湿度较大给用户带来的不良影响,满足用户对其所在环境的舒适性需求。
可选地,处理器根据目标季节信息,确定恒温除湿模式的目标运行条件,包括:处理器根据预设的对应关系,将与目标季节信息相对应的运行条件,确定为恒温除湿模式的目标运行条件。这样,本公开实施例可以结合不同地域季节的气候环境情况,在空调器中预设季节信息与恒温除湿模式的运行条件的对应关系。作为一种示例,若季节信息为春季,则与之对应的恒温除湿模式的运行条件为空调器运行舒适家模式且当前的环境湿度大于湿度阈值。若季节信息为夏季,则与之对应的恒温除湿模式的运行条件为空调器运行舒适家模式。其中,湿度阈值可以为85%。这样,本公开实施例可以结合预设的对应关系,将与目标季节信息相对应的运行条件,确定为恒温除湿模式的目标运行条件。以此方式,能够实现目标运行条件的精准确定。
结合图2所示,本公开实施例提供另一种用于控制空调器的方法,包括:
S201,在空调器运行预设工作模式的情况下,若处理器接收到控制指令,则判断控制指令是否满足互斥条件。
S202,在满足互斥条件的情况下,处理器获取控制指令与预设工作模式的互斥参数。
S203,处理器确定预设工作模式的主推功能,并获取主推功能对应的预设运行参数。
S204,在互斥参数为主推功能对应的预设运行参数的情况下,处理器确定互斥参数的类型为固定指标参数。
S205,在互斥参数不为主推功能对应的预设运行参数的情况下,处理器确定互斥参数的类型为灵活指标参数。
S206,处理器根据互斥参数的类型,控制预设工作模式的运行。
采用本公开实施例提供的用于控制空调器的方法,在空调器正在运行预设工作模式且接收到控制指令的情况下,首先判断二者是否会形成互斥。若形成互斥,则进一步获取控制指令与预设工作模式的具体互斥参数,并结合预设工作模式当前的主推功能确定互斥参数的具体类型,以控制预设工作模式继续运行或者立即退出。主推功能反映了预设工作模式的当前运行目标。根据预设工作模式中的预设运行参数与主推功能的关联关系,本公开实施例能够将其划分为固定指标参数和灵活指标参数。从而能够在发生互斥时通过判断互斥参数具体类型来控制预设工作模式作出合理调整,有利于提升空调器的智能化程度,以满足用户的个性化需求。
可选地,该用于控制空调器的方法可以在空调器中执行,也可以在与空调器进行通信的服务器中执行。在本公开实施例中,以空调器中的处理器为执行主体对方案做出说明。
可选地,处理器确定预设工作模式的主推功能,包括:处理器获取当前季节信息,并根据当前季节信息确定预设工作模式的主推功能。这样,本公开实施例能够使预设工作模式始终运行适合当前季节的功能服务,有利于保障用户的舒适体验。
可选地,处理器确定预设工作模式的主推功能,包括:处理器获取室内用户信息,并根据室内用户信息确定预设工作模式的主推功能。这样,本公开实施例能够使预设工作模式始终运行适合当前用户的功能服务,有利于保障用户的舒适体验。
可选地,处理器确定预设工作模式的主推功能,包括:处理器获取地理位置信息,并根据地理位置信息确定预设工作模式的主推功能。这样,本公开实施例能够使预设工作模式始终运行适合当前区域的功能服务,有利于保障用户的舒适体验。
可选地,处理器确定预设工作模式的主推功能,包括:处理器根据目标运行方案确定预设工作模式的主推功能。这样,本公开实施例能够由预设工作模式启动时最初开启的功能服务来确定主推功能,有利于保障预设工作模式运行的可靠性。
可选地,本公开实施例还可以设置其它的确定方式,并不局限于上述的几种确定方式。预设工作模式的主推功能可以根据对应的检测信息进行设置,在此不一一例举。同时,本公开实施例还可以基于上述的多种确定方式进行组合应用,以进一步保障用户的舒适体验。
可选地,处理器根据互斥参数的类型,控制预设工作模式的运行,包括:在互斥参数的类型为固定指标参数的情况下,处理器控制空调器退出预设工作模式,并执行控制指令;在互斥参数的类型为灵活指标参数的情况下,处理器基于控制指令对预设工作模式进行微调,并控制空调器继续运行微调后的预设工作模式。这样,本公开实施例能够结合互斥参数的类型来控制预设工作模式继续运行或者立即退出,有利于提升空调器的智能化程度,以满足用户的个性化需求。
结合图3所示,本公开实施例提供另一种用于控制空调器的方法,包括:
S301,在空调器运行预设工作模式的情况下,若处理器接收到控制指令,则判断控制指令是否满足互斥条件。
S302,在满足互斥条件的情况下,处理器获取控制指令与预设工作模式的互斥参数。
S303,处理器确定预设工作模式的主推功能,并获取主推功能对应的预设运行参数。
S304,在互斥参数为主推功能对应的预设运行参数的情况下,处理器确定互斥参数的类型为固定指标参数。
S305,在互斥参数的类型为固定指标参数的情况下,处理器控制空调器退出预设工作模式,并执行控制指令。
S306,在互斥参数不为主推功能对应的预设运行参数的情况下,处理器确定互斥参数的类型为灵活指标参数。
S307,在互斥参数的类型为灵活指标参数的情况下,处理器基于控制指令对预设工作模式进行微调,并控制空调器运行微调后的预设工作模式。
采用本公开实施例提供的用于控制空调器的方法,在空调器正在运行预设工作模式且接收到控制指令的情况下,首先判断二者是否会形成互斥。若形成互斥,则进一步获取控制指令与预设工作模式的具体互斥参数,并结合预设工作模式当前的主推功能确定互斥参数的具体类型,以控制预设工作模式继续运行或者立即退出。主推功能反映了预设工作模式的当前运行目标,为了确保能够达成该目标,其相关联的运行参数需始终保持稳定。故将此类需保持稳定的运行参数设置为固定指标参数,并在其发生互斥时选择退出预设工作模式以执行控制指令,使其优先满足用户的个性化需求。而与主推功能无关的运行参数在合理范围内适当调节通常不会影响舒适目标达成。故本公开实施例能够将此类影响程度不大的运行参数设置为灵活指标参数,并在其发生互斥时保留预设工作模式运行的同时执行对应指令,从而能够提升空调器的智能化程度,有利于满足用户的个性化需求。
可选地,该用于控制空调器的方法可以在空调器中执行,也可以在与空调器进行通信的服务器中执行。在本公开实施例中,以空调器中的处理器为执行主体对方案做出说明。
可选地,处理器基于控制指令对预设工作模式进行微调,包括:处理器获取控制指令对应互斥参数的目标数值,并获取预设工作模式对应互斥参数的预设数值范围;在目标数值属于预设数值范围的情况下,处理器将预设工作模式下的互斥参数调至目标数值;在目标数值不属于预设数值范围的情况下,处理器将预设工作模式下的互斥参数维持当前数值。这样,当检测到互斥参数为灵活指标参数时,本公开实施例能够进一步判断互斥参数的调节目标数值是否处于合理区间,以避免不合理指令的执行。从而有利于保障预设工作模式运行的可靠性,同时也有利于保障用户的舒适体验。
结合图4所示,本公开实施例提供另一种用于控制空调器的方法,包括:
S401,在空调器运行预设工作模式的情况下,若处理器接收到控制指令,则判断控制指令是否满足互斥条件。
S402,在满足互斥条件的情况下,处理器获取控制指令与预设工作模式的互斥参数。
S403,处理器确定预设工作模式的主推功能,并获取主推功能对应的预设运行参数。
S404,在互斥参数不为主推功能对应的预设运行参数的情况下,处理器确定互斥参数的类型为灵活指标参数。
S405,在互斥参数的类型为灵活指标参数的情况下,处理器获取控制指令对应互斥参数的目标数值,并获取预设工作模式对应互斥参数的预设数值范围。
S406,在目标数值属于预设数值范围的情况下,处理器将预设工作模式下的互斥参数调至目标数值。
S407,在目标数值不属于预设数值范围的情况下,处理器将预设工作模式下的互斥参数维持当前数值。
S408,处理器控制空调器继续运行微调后的预设工作模式。
采用本公开实施例提供的用于控制空调器的方法,在空调器正在运行预设工作模式且接收到控制指令的情况下,首先判断二者是否会形成互斥。若形成互斥,则进一步获取控制指令与预设工作模式的具体互斥参数,并结合预设工作模式当前的主推功能确定互斥参数的具体类型,以控制预设工作模式继续运行或者立即退出。主推功能反映了预设工作模式的当前运行目标,与其无关的的运行参数在合理范围内适当调节通常不会影响舒适目标达成。故本公开实施例能够将此类影响程度不大的运行参数设置为灵活指标参数,并在其发生互斥时保留预设工作模式运行的同时执行对应指令,从而能够提升空调器的智能化程度,有利于满足用户的个性化需求。且本公开实施例还能够进一步判断互斥参数的调节目标数值是否处于合理区间,以避免不合理指令的执行。从而有利于保障预设工作模式运行的可靠性,同时也有利于保障用户的舒适体验。
可选地,该用于控制空调器的方法可以在空调器中执行,也可以在与空调器进行通信的服务器中执行。在本公开实施例中,以空调器中的处理器为执行主体对方案做出说明。
结合图5所示,本公开实施例提供另一种用于控制空调器的方法,包括:
S501,在空调器运行预设工作模式的情况下,若处理器接收到控制指令,则判断控制指令是否满足互斥条件。
S502,在满足互斥条件的情况下,处理器获取控制指令与预设工作模式的互斥参数。
S503,处理器确定预设工作模式的主推功能,并获取主推功能对应的预设运行参数。
S504,在互斥参数为主推功能对应的预设运行参数的情况下,处理器确定互斥参数的类型为固定指标参数。
S505,在互斥参数的类型为固定指标参数的情况下,处理器控制空调器退出预设工作模式,并执行控制指令。
S506,处理器获取控制指令对应的预设执行时长。
S507,经过预设执行时长,处理器控制空调器重新进入预设工作模式。
采用本公开实施例提供的用于控制空调器的方法,在空调器正在运行预设工作模式且接收到控制指令的情况下,首先判断二者是否会形成互斥。若形成互斥,则进一步获取控制指令与预设工作模式的具体互斥参数,并结合预设工作模式当前的主推功能确定互斥参数的具体类型,以控制预设工作模式继续运行或者立即退出。主推功能反映了预设工作模式的当前运行目标,为了确保能够达成该目标,其相关联的运行参数需始终保持稳定。故将此类需保持稳定的运行参数设置为固定指标参数,并在其发生互斥时选择退出预设工作模式以执行控制指令,使其优先满足用户的个性化需求。在此之后,本公开实施例还能够结合各控制指令对应的预设执行时长来设定预设工作模式的重新开启时机,从而能够提升空调器的智能化程度,有利于更全面地保障用户的舒适体验。
可选地,该用于控制空调器的方法可以在空调器中执行,也可以在与空调器进行通信的服务器中执行。在本公开实施例中,以空调器中的处理器为执行主体对方案做出说明。
结合图6所示,本公开实施例提供另一种用于控制空调器的方法,包括:
S601,在空调器运行预设工作模式的情况下,若处理器接收到控制指令,则判断控制指令是否满足互斥条件。
S602,在满足互斥条件的情况下,处理器确定控制指令的类型。
S603,处理器根据控制指令的类型,控制预设工作模式的运行。
S604,在空调器继续运行预设工作模式的情况下,处理器获取控制指令与预设工作模式的互斥参数。
S605,处理器确定互斥参数的类型。
S606,处理器根据互斥参数的类型,控制预设工作模式的运行。
采用本公开实施例提供的用于控制空调器的方法,在空调器正在运行预设工作模式且接收到控制指令的情况下,首先判断二者是否会形成互斥。若形成互斥,则进一步确定控制指令的具体类型,并据此控制预设工作模式继续运行或者立即退出。由此,本公开实施例能够对接收到的控制指令进行深度识别,以判断该控制指令是否源自用户当前需求。从而能够基于控制指令类型筛选出用户主动调节意愿较强的指令并执行,有利于提升空调器的智能化程度,以满足用户的个性化需求。而当空调器初步判定不响应控制指令并且继续运行预设工作模式后,本公开实施例进一步获取控制指令与预设工作模式的具体互斥参数,以及确定互斥参数的具体类型,并据此控制预设工作模式继续运行或者立即退出。由此,本公开实施例能够对控制指令与预设工作模式的互斥参数进行深度识别,以判断该互斥参数是否影响预设工作模式运行的可靠性。从而能够基于互斥参数类型筛选出影响程度不高的指令并执行,有利于提升空调器的智能化程度,以满足用户的个性化需求。
可选地,该用于控制空调器的方法可以在空调器中执行,也可以在与空调器进行通信的服务器中执行。在本公开实施例中,以空调器中的处理器为执行主体对方案做出说明。
可选地,处理器确定控制指令的类型,包括:处理器获取控制指令的来源;处理器根据控制指令的来源,确定控制指令的类型。这样,本公开实施例能够结合控制指令的来源来判断其具体类型。控制指令的来源可以反映相关控制的发起者,进而可以判断该控制指令是否源自用户当前需求。从而能够更合理地调整预设工作模式的运行,有利于提升空调器的智能化程度,以满足用户的个性化需求。
可选地,处理器根据控制指令的来源,确定控制指令的类型,包括:在控制指令的来源为预设端口的情况下,处理器确定控制指令的类型为用户调节指令;在控制指令的来源不为预设端口的情况下,处理器确定控制指令的类型为系统自识别指令。这样,本公开实施例能够结合控制指令的来源是否为预设端口来判断其具体类型。控制指令来自预设端口表明相关控制由用户下发,进而可以判断该控制指令源自用户当前需求。从而能够更合理地调整预设工作模式的运行,有利于提升空调器的智能化程度,以满足用户的个性化需求。
可选地,预设端口包括APP、遥控器、屏幕端或语音端中的一种或多种。这样,控制指令来自预设端口表明相关控制由用户下发,进而可以判断该控制指令源自用户当前需求。从而能够更合理地调整预设工作模式的运行,例如筛选出用户主动调节意愿较强的指令并执行,有利于提升空调器的智能化程度,以满足用户的个性化需求。
可选地,系统自识别指令包括但不限于智能新风控制指令、湿度超标控制指令、舒适制冷控制指令、舒适制热控制指令、高温感知自启动控制指令、空调除菌控制指令、节气关怀控制指令、空调长时间运行控制指令、空调安防控制指令、智能自清洁控制指令、滤网脏堵控制指令、智能节能控制指令、智能睡眠控制指令、定时开关机控制指令中的一个或多个。上述系统自识别指令均是由系统检测空调器自身或所处环境相关参数,并在判断其满足对应的预设条件后自动发出,以控制空调器运行对应的功能模式。
可选地,用户调节指令包括但不限于开关机控制指令、控湿控制指令、功能模式选择指令、目标温度调节指令、目标湿度调节指令、目标风速调节指令、左风区风速调节指令、右风区风速调节指令、目标风向调节指令、左风区上下摆风指令、右风区上下摆风指令、新风功能控制指令、新风风速调节指令、加湿控制指令、负离子模式控制指令、睡眠模式控制指令、静音模式控制指令、强力模式控制指令中的一个或多个。上述用户调节指令均是由用户在预设端口操作后发出,以控制空调器执行自身需求的功能调整。
可选地,处理器根据控制指令的类型,控制预设工作模式的运行,包括:在控制指令的类型为用户调节指令的情况下,处理器控制空调器退出预设工作模式,并执行用户调节指令;在控制指令的类型为系统自识别指令的情况下,处理器控制空调器继续运行预设工作模式。这样,本公开实施例能够结合控制指令的类型来控制预设工作模式继续运行或者立即退出,有利于提升空调器的智能化程度,以满足用户的个性化需求。
可选地,处理器根据控制指令的类型,控制预设工作模式的运行,包括:在控制指令的类型为用户调节指令的情况下,处理器确定用户调节指令对应的发起用户;处理器将发起用户与预设工作模式的授权用户进行匹配;在匹配到与发起用户身份一致的授权用户的情况下,处理器控制空调器退出预设工作模式,并执行用户调节指令;在未匹配到与发起用户身份一致的授权用户的情况下,处理器控制空调器继续运行预设工作模式。这样,当识别到控制指令为用户调节指令时,表明该控制指令由用户发起。但并非所有用户的指令均需要被执行。本公开实施例进一步确认用户身份并将其与预设工作模式的授权用户进行匹配,能够结合发起用户身份的合法性来控制预设工作模式作出合理调整。从而有利于提升空调器的智能化程度,以满足用户的个性化需求。
可选地,预设工作模式的授权用户包括广义授权用户或者狭义授权用户。
具体地,广义授权用户为预设用户信息库中经过注册验证的所有用户。这样,通过将发起用户与广义授权用户进行匹配,本公开实施例能够避免非法用户对预设工作模式运行的干扰。
具体地,狭义授权用户为开启预设工作模式的用户。这样,通过将发起用户与狭义授权用户进行匹配,本公开实施例能够避免其他用户对预设工作模式运行的干扰。
可选地,处理器根据控制指令的类型,控制预设工作模式的运行,包括:在控制指令的类型为系统自识别指令的情况下,处理器比较系统自识别指令的优先级系数和预设工作模式的优先级系数;在系统自识别指令的优先级系数小于或等于预设工作模式的优先级系数的情况下,处理器控制空调器继续运行预设工作模式;在系统自识别指令的优先级系数大于预设工作模式的优先级系数的情况下,处理器控制空调器退出预设工作模式,并执行系统自识别指令。这样,当识别到控制指令为系统自识别指令时,表明该控制指令并非由用户而是由系统自主发起。而不同的系统自识别指令的迫切程度各不相同。本公开实施例通过比较系统自识别指令与预设工作模式的优先级系数,能够结合系统自识别指令的重要程度来控制预设工作模式作出合理调整。从而有利于提升空调器的智能化程度,以满足用户的个性化需求。
可选地,优先级系数可根据系统自识别指令的重要程度进行预先配置。具体地,与空调器安全相关的指令的优先级系数可适应性调高一些,以确保其能及时准确执行,有利于保障空调器的安全性能。
可选地,在系统自识别指令的优先级系数小于或等于预设工作模式的优先级系数的情况下,处理器控制空调器继续运行预设工作模式之后,还包括:根据系统自识别指令的优先级系数,处理器确定控制指令的预设等待时长;经过预设等待时长,处理器控制空调器退出预设工作模式,并执行系统自识别指令。这样,本公开实施例能够结合优先级系数来设定系统自识别指令的执行时机,从而能够确保系统自识别指令不会发生遗漏,有利于保障空调器运行的可靠性。
可选地,处理器控制空调器继续运行预设工作模式之后,还包括:处理器将控制指令发送至预设工作模式的授权用户的终端设备;在接收到授权用户的终端设备发送的授权指令的情况下,处理器控制空调器退出预设工作模式,并执行控制指令;在未接收到授权用户的终端设备发送的授权指令的情况下,处理器控制空调器继续运行预设工作模式。这样,当判断继续运行预设工作模式时,本公开实施例还会向预设工作模式的授权用户发起验证,以在验证成功后重新执行该控制指令。从而有利于提升空调器的智能化程度,以满足用户的个性化需求。
可选地,预设工作模式对应于不同用户身份设置有多种目标运行方案。该用于控制空调器的方法,还包括:在默认优先级中控制指令对应的发起用户身份的优先级高于当前正在执行的预设工作模式对应的运行用户身份的优先级的情况下,处理器根据发起用户的身份确定用户作息习惯;处理器根据用户作息习惯和首次接收到控制指令的时刻确定执行优先级;处理器控制空调器运行执行优先级中最高优先级的用户身份对应的目标运行方案。这样,在发起用户身份的默认优先级高于当前正在执行的预设工作模式对应的运行用户身份的情况下,能够根据发起用户身份对应的用户作息习惯和首次接收到用户控制指令的时刻确定执行优先级,并控制空调器进入执行优先级中最高优先级的用户身份对应的目标运行方案,而非采用默认优先级下优先级最高的用户身份对应的目标运行方案。当控制空调器运行的用户为多个用户时,有利于根据用户的作息习惯满足用户的合理的空调器控制需求,提升空调器的智能化程度。
可选地,用户身份包括老人、儿童或成人。处理器根据发起用户的身份确定用户作息习惯,包括:在发起用户身份为老人的情况下,处理器确定用户作息习惯为第一作息习惯;在发起用户身份为儿童的情况下,处理器确定用户作息习惯为第二作息习惯;在发起用户身份为成人的情况下,处理器确定用户作息习惯为第三作息习惯。其中,第一作息习惯、第二作息习惯、第三作息习惯不完全相同。这样,本公开实施例有利于更好地根据用户身份确定用户的作息习惯。
可选地,第一作息习惯包括:接收到控制指令的时刻为不处于外出购物时间段、外出晨练晚练时间段的时刻。第二作息习惯包括:接收到控制指令的时刻为不处于上学时间段、兴趣班时间段的时刻。可选地,第三作息习惯包括:接收到控制指令的时刻为不处于外出工作时间段、外出健身时间段、购物时间段的时刻。
可选地,处理器根据用户作息习惯和首次接收到控制指令的时刻确定执行优先级,包括:处理器判断首次接收到控制指令的时刻是否符合用户作息习惯;在首次接收到控制指令的时刻符合用户作息习惯的情况下,处理器确定执行优先级为默认优先级;在首次接收到控制指令的时刻不符合用户作息习惯的情况下,处理器确定执行优先级为重排优先级。其中,重排优先级中,发起用户身份的优先级低于当前正在执行的预设工作模式对应的运行用户身份的优先级。这样,当控制空调器运行的用户为多个用户时,有利于根据用户的作息习惯满足用户的合理的空调器控制需求,提升空调器的智能化程度。
可选地,处理器控制空调器运行执行优先级中最高优先级的用户身份对应的目标运行方案之后,还包括:处理器根据第二次接收到控制指令的时刻确定执行优先级;处理器控制空调器运行执行优先级最高的用户身份对应的目标运行方案。其中,第二次接收到控制指令与首次接收到控制指令的发起用户为同一个用户。这样,当控制空调器运行的用户为多个用户时,有利于根据用户的作息习惯满足用户的合理的空调器控制需求,提升空调器的智能化程度。
可选地,处理器根据第二次接收到控制指令的时刻确定执行优先级,包括:处理器确定第二次接收到控制指令的时刻与首次接收到控制指令的时刻的间隔时长;处理器根据间隔时长确定执行优先级。这样,当控制空调器运行的用户为多个用户时,有利于根据用户的作息习惯满足用户的合理的空调器控制需求,提升空调器的智能化程度。
可选地,该用于控制空调器的方法,还包括:在进入预设工作模式的第一端口与发出控制指令的第二端口不一致的情况下,处理器根据控制指令的发起者确定第一端口和第二端口的优先级;处理器根据第一端口和第二端口的优先级,控制空调器维持或退出通过第一端口进入的预设工作模式,和,执行或不执行第二端口发出的控制指令。这样,当多端口控制空调器发生冲突时,本公开实施例能够根据控制指令的发起者作出合理地响应,避免指令混乱执行或不执行,有利于提升空调器的智能化程度。
可选地,处理器根据控制指令的发起者确定第一端口和第二端口的优先级,包括:在通过第一端口进入预设工作模式的发起者为用户,且第二端口发出控制指令的发起者不为用户的情况下,处理器确定第一端口的优先级高于第二端口的优先级;在通过第一端口进入预设工作模式的发起者不为用户,且第二端口发出控制指令的发起者为用户的情况下,处理器确定第一端口的优先级低于第二端口的优先级;在通过第一端口进入预设工作模式的发起者为用户,且第二端口发出控制指令的发起者为用户的情况下,处理器确定第一端口的优先级等于第二端口的优先级。这样,当多端口控制空调器发生冲突时,本公开实施例能够以用户为中心作出合理地响应,避免指令混乱执行或不执行,有利于提升空调器的智能化程度。
可选地,处理器根据第一端口和第二端口的优先级,控制空调器维持或退出通过第一端口进入的预设工作模式,和,执行或不执行第二端口发出的控制指令,包括:在第一端口的优先级高于第二端口的优先级的情况下,处理器控制空调器维持通过第一端口进入的预设工作模式,和,不执行第二端口发出的控制指令;在第一端口的优先级低于第二端口的优先级的情况下,处理器控制空调器退出通过第一端口进入的预设工作模式,和,执行第二端口发出的控制指令;在第一端口的优先级等于第二端口的优先级的情况下,处理器根据第一端口和第二端口的指令的发起者的用户身份的优先级,控制空调器发出主动询问,或,控制空调器维持或退出通过第一端口进入的预设工作模式,和,执行或不执行第二端口发出的控制指令。这样,当多端口控制空调器发生冲突时,本公开实施例能够以用户为中心作出合理地响应,避免指令混乱执行或不执行,有利于提升空调器的智能化程度。
可选地,处理器根据第一端口和第二端口的指令的发起者的用户身份的优先级,控制空调器发出主动询问,或,控制空调器维持或退出通过第一端口进入的预设工作模式,和,执行或不执行第二端口发出的控制指令,包括:在第一端口的指令的发起者的用户身份的优先级高于第二端口的指令的发起者的用户身份的优先级的情况下,处理器控制空调器维持通过第一端口进入的预设工作模式,和,不执行第二端口发出的控制指令;在第一端口的指令的发起者的用户身份的优先级低于第二端口的指令的发起者的用户身份的优先级的情况下,处理器控制空调器发出主动询问,主动询问内容为是否控制空调器退出通过第一端口进入的预设工作模式,和,执行第二端口发出的控制指令。这样,当多端口控制空调器发生冲突时,本公开实施例能够以用户为中心作出合理地响应,避免指令混乱执行或不执行,有利于提升空调器的智能化程度。
可选地,预设工作模式对应于不同用户身份设置有多种目标运行方案。该用于控制空调器的方法,还包括:处理器比较与空调器发生语音交互的第一用户的用户身份和当前正在执行的预设工作模式对应的第二用户的用户身份在默认优先级中的优先级顺序;在默认优先级中的优先级顺序为第一用户的用户身份高于第二用户的用户身份的情况下,处理器根据第一用户首次与空调器发生语音交互的时刻,和/或,第一用户发出控制指令的时刻,控制空调器发出或不发出主动询问。其中,主动询问内容为是否切换与第一用户对应的预设工作模式。这样,当控制空调器运行的用户为多个用户时,本公开实施例能够根据用户与空调的语音交互的情况满足用户的合理的空调器控制需求,有利于提升空调器的智能化程度。
可选地,处理器根据第一用户首次与空调器发生语音交互的时刻,和/或,第一用户发出控制指令的时刻,控制空调器发出或不发出主动询问,包括:在△t1<T1的情况下,处理器控制空调器不发出主动询问;在T1≤△t1≤T2的情况下,处理器控制空调器发出主动询问;在△t1>T2的情况下,处理器根据第一用户第二次与空调器发生语音交互的时刻控制空调器发出主动询问。其中,△t1=t2-t1,△t1为第一用户首次与空调器发生语音交互与第一用户发出控制指令的时间间隔,t1为第一用户首次与空调器发生语音交互的时刻,t2为第一用户发出控制指令的时刻,T1为第一预设时长阈值,T2为第二预设时长阈值,T1<T2。具体地,T1的取值可以是15min,T2的取值可以是30min。这样,当控制空调器运行的用户为多个用户时,本公开实施例能够根据用户与空调的语音交互的情况满足用户的合理的空调器控制需求,有利于提升空调器的智能化程度。
可选地,处理器根据第一用户第二次与空调器发生语音交互的时刻控制空调器发出主动询问,包括:在△t2>T2的情况下,处理器控制空调器发出主动询问。其中,△t2=t3-t1,△t2为第一用户首次与第二次与空调器发生语音交互的时间间隔,t3为第一用户第二次与空调器发生语音交互的时刻。这样,当控制空调器运行的用户为多个用户时,本公开实施例能够根据用户与空调的语音交互的情况满足用户的合理的空调器控制需求,有利于提升空调器的智能化程度。
可选地,默认优先级中的优先级顺序为:用户身份为老人和儿童的优先级高于用户身份为成人的优先级。这样,老人和儿童用户的优先级高于成人用户的优先级,有利于更合理地照顾到老人和儿童用户的健康。
结合图7所示,本公开实施例提供一种用于控制空调器的装置,包括处理器(processor)701和存储器(memory)702。可选地,该装置还可以包括通信接口(Communication Interface)703和总线704。其中,处理器701、通信接口703、存储器702可以通过总线704完成相互间的通信。通信接口703可以用于信息传输。处理器701可以调用存储器702中的逻辑指令,以执行上述实施例的用于控制空调器的方法。
此外,上述的存储器702中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器702作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器701通过运行存储在存储器702中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于控制空调器的方法。
存储器702可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器702可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种空调器,包含上述的用于控制空调器的装置。
本公开实施例提供了一种存储介质,存储有计算机可执行指令,所述计算机可执行指令在运行时,执行上述的用于控制空调器的方法。
上述的存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (11)

  1. 一种用于控制空调器的方法,其特征在于,包括:
    在空调器运行预设工作模式的情况下,若接收到控制指令,则判断控制指令是否满足互斥条件;
    在满足互斥条件的情况下,获取控制指令与预设工作模式的互斥参数;
    确定互斥参数的类型;
    根据互斥参数的类型,控制预设工作模式的运行。
  2. 根据权利要求1所述的方法,其特征在于,所述确定互斥参数的类型,包括:
    确定预设工作模式的主推功能,并获取主推功能对应的预设运行参数;
    在互斥参数为主推功能对应的预设运行参数的情况下,确定互斥参数的类型为固定指标参数;
    在互斥参数不为主推功能对应的预设运行参数的情况下,确定互斥参数的类型为灵活指标参数。
  3. 根据权利要求2所述的方法,其特征在于,所述确定预设工作模式的主推功能,包括:
    获取当前季节信息,并根据当前季节信息确定预设工作模式的主推功能;和/或,
    获取室内用户信息,并根据室内用户信息确定预设工作模式的主推功能;和/或,
    获取地理位置信息,并根据地理位置信息确定预设工作模式的主推功能。
  4. 根据权利要求2所述的方法,其特征在于,所述根据互斥参数的类型,控制预设工作模式的运行,包括:
    在互斥参数的类型为固定指标参数的情况下,控制空调器退出预设工作模式,并执行控制指令;
    在互斥参数的类型为灵活指标参数的情况下,基于控制指令对预设工作模式进行微调,并控制空调器继续运行微调后的预设工作模式。
  5. 根据权利要求4所述的方法,其特征在于,所述基于控制指令对预设工作模式进行微调,包括:
    获取控制指令对应互斥参数的目标数值,并获取预设工作模式对应互斥参数的预设数值范围;
    在目标数值属于预设数值范围的情况下,将预设工作模式下的互斥参数调至目标数值;
    在目标数值不属于预设数值范围的情况下,处理器将预设工作模式下的互斥参数维持当前数值。
  6. 根据权利要求4所述的方法,其特征在于,所述在互斥参数的类型为固定指标参数的情况下,控制空调器退出预设工作模式,并执行控制指令之后,还包括:
    获取控制指令对应的预设执行时长;
    经过预设执行时长,控制空调器重新进入预设工作模式。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述判断控制指令是否满足互斥条件,包括:
    获取预设工作模式的预设运行参数和控制指令对应的待调节参数;
    将待调节参数与预设运行参数进行匹配,判断是否存在共有参数;
    在不存在共有参数的情况下,确定控制指令不满足互斥条件;
    在存在共有参数的情况下,确定控制指令满足互斥条件。
  8. 根据权利要求7所述的方法,其特征在于,所述获取控制指令与预设工作模式的互斥参数,包括:
    获取待调节参数与预设运行参数的共有参数,并将所述共有参数确定为互斥参数。
  9. 一种用于控制空调器的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在运行所述程序指令时,执行如权利要求1至8任一项所述的用于控制空调器的方法。
  10. 一种空调器,其特征在于,包括如权利要求9所述的用于控制空调器的装置。
  11. 一种存储介质,存储有程序指令,其特征在于,所述程序指令在运行时,执行如权利要求1至8任一项所述的用于控制空调器的方法。
PCT/CN2023/103388 2022-07-20 2023-06-28 用于控制空调器的方法、装置及空调器、存储介质 WO2024016978A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210857549.7 2022-07-20
CN202210857549.7A CN117490210A (zh) 2022-07-20 2022-07-20 用于控制空调器的方法、装置及空调器、存储介质

Publications (1)

Publication Number Publication Date
WO2024016978A1 true WO2024016978A1 (zh) 2024-01-25

Family

ID=89617047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103388 WO2024016978A1 (zh) 2022-07-20 2023-06-28 用于控制空调器的方法、装置及空调器、存储介质

Country Status (2)

Country Link
CN (1) CN117490210A (zh)
WO (1) WO2024016978A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105020849A (zh) * 2015-06-29 2015-11-04 广东美的制冷设备有限公司 空调控制方法及装置
CN112526892A (zh) * 2020-12-18 2021-03-19 青岛海尔科技有限公司 用于控制智能家居设备的方法及装置、电子设备
CN113485134A (zh) * 2021-06-25 2021-10-08 青岛海尔科技有限公司 设备控制方法和装置、存储介质及电子设备
CN114019817A (zh) * 2021-11-16 2022-02-08 青岛海尔科技有限公司 智能家居设备的控制方法、控制装置与物联网系统
CN114322271A (zh) * 2021-12-06 2022-04-12 青岛海尔空调器有限总公司 用于空调的控制方法及装置、空调、存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105020849A (zh) * 2015-06-29 2015-11-04 广东美的制冷设备有限公司 空调控制方法及装置
CN112526892A (zh) * 2020-12-18 2021-03-19 青岛海尔科技有限公司 用于控制智能家居设备的方法及装置、电子设备
CN113485134A (zh) * 2021-06-25 2021-10-08 青岛海尔科技有限公司 设备控制方法和装置、存储介质及电子设备
CN114019817A (zh) * 2021-11-16 2022-02-08 青岛海尔科技有限公司 智能家居设备的控制方法、控制装置与物联网系统
CN114322271A (zh) * 2021-12-06 2022-04-12 青岛海尔空调器有限总公司 用于空调的控制方法及装置、空调、存储介质

Also Published As

Publication number Publication date
CN117490210A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
US20220060348A1 (en) Method for dynamically building environment conditioning rule list in smart home, and device
WO2022267671A1 (zh) 用于空调的运行模式推送方法及装置、空调
WO2022262370A1 (zh) 用于控制空调的方法、装置及空调
CN111965991B (zh) 智能控制开关的权限调节方法、装置、智能控制开关以及存储介质
WO2023050903A1 (zh) 用于空调控制的方法、装置、空调及存储介质
WO2023155438A1 (zh) 用于控制空调器的方法及装置、空调器、存储介质
WO2023035686A1 (zh) 用于控制空调的方法及装置、空调、存储介质
WO2023060909A1 (zh) 用于控制空调器的方法及装置、空调器
WO2023082624A1 (zh) 用于控制空调器的方法及装置、空调器
CN105509233B (zh) 一种空调系统智能控制方法
CN111594985A (zh) 一种空调控制方法、装置、电子设备及存储介质
WO2023241073A1 (zh) 用于调节室内空气的方法、装置、介质和空气处理系统
WO2022262405A1 (zh) 用于空调器的控制方法、装置、空调器及存储介质
WO2024041063A1 (zh) 用于控制新风空调系统的方法及装置、新风空调系统
WO2024016978A1 (zh) 用于控制空调器的方法、装置及空调器、存储介质
WO2024017020A1 (zh) 用于控制空调器的方法、装置及空调器、存储介质
WO2024016757A1 (zh) 用于空调的控制方法与装置、智能空调
WO2023040579A1 (zh) 用于调节室内环境的方法及装置、空调器
WO2023159963A1 (zh) 用于控制空调的方法及装置、空调、存储介质
WO2024016999A1 (zh) 用于空调的控制方法与装置、智能空调
WO2024016756A1 (zh) 用于空调的控制方法与装置、智能空调
WO2024016853A1 (zh) 用于空调的控制方法与装置、智能空调
WO2024016835A1 (zh) 用于控制空调器的方法及装置、空调器、存储介质
WO2024016831A1 (zh) 用于控制空调的方法、装置及空调
WO2024017018A1 (zh) 用于控制空调的方法、装置及空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842043

Country of ref document: EP

Kind code of ref document: A1