WO2023241073A1 - 用于调节室内空气的方法、装置、介质和空气处理系统 - Google Patents

用于调节室内空气的方法、装置、介质和空气处理系统 Download PDF

Info

Publication number
WO2023241073A1
WO2023241073A1 PCT/CN2023/075379 CN2023075379W WO2023241073A1 WO 2023241073 A1 WO2023241073 A1 WO 2023241073A1 CN 2023075379 W CN2023075379 W CN 2023075379W WO 2023241073 A1 WO2023241073 A1 WO 2023241073A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
indoor
air
environment
threshold
Prior art date
Application number
PCT/CN2023/075379
Other languages
English (en)
French (fr)
Inventor
陈栋
吴炳良
张桂芳
吴洪金
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023241073A1 publication Critical patent/WO2023241073A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This application relates to the technical field of intelligent air conditioning, for example, to a method, device, medium and air treatment system for regulating indoor air.
  • air conditioners are equipped with an indoor sensor to detect indoor temperature/humidity, etc., and perform air conditioning in the house based on the detected temperature/humidity values.
  • this kind of sensor installed at a fixed position on the air conditioner can only detect the temperature/humidity of the air inlet of the indoor unit of the air conditioner, but cannot detect the temperature/humidity of various locations in the room, causing the air conditioner to operate only based on the temperature/humidity of the air inlet of the indoor unit. That is to say, the temperature/humidity at the sensor detection location does not completely represent the overall temperature/humidity in the room. Therefore, the overall air data collected is not accurate enough, and the adjustment of indoor air does not meet the actual situation.
  • multiple indoor ambient temperatures can be obtained through multiple temperature sensors, and the indoor temperature can be determined based on the multiple indoor ambient temperatures, and then the operating parameters of the smart air conditioner can be adjusted based on the indoor temperature to achieve adjustment of the indoor temperature.
  • Embodiments of the present disclosure provide a method, device, medium and air treatment system for adjusting indoor air, and provide a set of detailed processes for indoor air conditioning based on multiple sensors, which improves the feasibility of program implementation.
  • the method for regulating indoor air includes:
  • the indoor air is adjusted according to the indoor environmental values.
  • determine the indoor environment value based on the first environment value and the second environment value of n locations including:
  • T [T 0 + ( ⁇ T i * ⁇ i )/n]/2 to obtain the indoor environment value T;
  • T 0 is the first environment value;
  • Ti is the second environment value at the i-th position,
  • ⁇ i is positively related to d i ; where d i represents the distance between the i-th sensor and the air handler.
  • the environmental value is a temperature value, a humidity value or a carbon dioxide concentration value.
  • the indoor air is adjusted according to the indoor ambient value, including:
  • the sensor When the air processor is running for cooling and the indoor environment value T is greater than the first threshold, the sensor whose value in the mark Ti is higher than the indoor environment value T corresponds to the position in the room;
  • the method also includes:
  • the sensor whose value in the mark Ti is lower than the indoor environment value T corresponds to the position in the room;
  • the first threshold is a preset temperature threshold.
  • the indoor air is adjusted according to the indoor environmental value, including:
  • the sensor When the air processor is running for dehumidification and the indoor environment value T is greater than the second threshold, the sensor whose value in the mark Ti is higher than the indoor environment value T corresponds to the position in the room;
  • the method also includes:
  • the sensor whose value in the mark Ti is lower than the indoor environment value T corresponds to the position in the room;
  • the second threshold is a preset humidity threshold.
  • the indoor air is adjusted according to the indoor ambient value, including:
  • the third threshold is a preset carbon dioxide concentration threshold.
  • an apparatus for adjusting indoor air includes: a processor and a memory storing program instructions, and the processor is configured to execute the above method for adjusting indoor air when running the program instructions.
  • the air treatment system includes: an air processor, arranged indoors, for detecting the first environmental value at the location of the air processor and regulating the indoor air; n sensors, respectively arranged indoors. n positions, used to detect second environmental values of n indoor positions; a mobile terminal, establishing communication connections with the air processor and n sensors, used to control the air processor in response to user instructions; also includes The device for regulating indoor air according to the above embodiment.
  • the air treatment system also includes a mobile terminal that has established communication with the air handler and the n sensors; before acquiring the first environment value and the second environment value, the method for adjusting the indoor air also includes:
  • the method for adjusting indoor air also includes: when a change in the position of a certain sensor is detected, sending a prompt message to the user that ⁇ i needs to be modified;
  • Embodiments of the present disclosure relate to the technical field of smart air conditioning and provide a method for adjusting indoor air.
  • n sensors are set up indoors to detect the second environment values at n different locations indoors.
  • an overall environment value that can represent the indoor air condition is obtained based on the second environment value and the first environment value detected by the air processor.
  • the indoor air is adjusted according to the indoor environmental value.
  • a detailed process for indoor air conditioning based on multiple sensors is given, which improves the feasibility of the implementation of the solution.
  • this application uses n sensors to collect environmental values at different indoor locations as one of the considerations for controlling the air processor, so that the subsequent adjustment of indoor air can be more consistent with the actual indoor conditions.
  • Figure 1 is a schematic diagram of a method for regulating indoor air provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of a method for adjusting indoor temperature provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of a method for adjusting indoor humidity provided by an embodiment of the present disclosure
  • Figure 4 is a schematic diagram of a method for adjusting indoor air quality provided by an embodiment of the present disclosure
  • Figure 5 is a schematic structural diagram of a device for regulating indoor air provided by an embodiment of the present disclosure
  • Figure 6 is a schematic structural diagram of an air treatment system provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or A and B.
  • correspondence can refer to an association relationship or a binding relationship.
  • correspondence between A and B refers to an association relationship or a binding relationship between A and B.
  • air conditioners are only equipped with one sensor for detecting indoor temperature/humidity or carbon dioxide concentration.
  • the sensor itself is very close to the air conditioner, and the temperature/humidity or carbon dioxide concentration near the air conditioner cannot represent the entire indoor situation.
  • the air handling system includes air Air processor 601, n sensors 602 and device 603 for regulating indoor air.
  • the air processor 601 is installed indoors and is used to detect the first environmental value of the indoor environment and regulate the indoor air.
  • the n sensors 602 are respectively arranged at different positions indoors and are used to detect the second environment values at n positions indoors.
  • the device 603 for adjusting indoor air also includes a processor, which can control the indoor air conditioning process according to the indoor environmental value during operation.
  • the air processor 601 refers to a smart home appliance with multiple indoor air conditioning functions, including but not limited to adjusting room temperature, indoor humidity, and indoor air quality.
  • Smart home appliances refer to home appliances that are formed by introducing microprocessors, sensor technology, and network communication technology into home appliances. They have the characteristics of smart control, smart perception, and smart applications. The operation process of smart home appliances often relies on the Internet of Things and the Internet. As well as the application and processing of modern technologies such as electronic chips, for example, smart home appliances can enable users to remotely control and manage smart home appliances by connecting to electronic devices.
  • the above air treatment system may also include a mobile terminal 604.
  • the device 603 for regulating indoor air also includes a wireless transmitting device 605 and a wireless receiving device 606.
  • the mobile terminal 604 has established communication connections with the air sensor 601 and n sensors 602 for controlling the air processor 601 according to user instructions.
  • the wireless transmitting device 605 and the wireless receiving device 606 are used to establish communication connections, data exchange and other behaviors between various devices.
  • inventions of the present application provide a method for regulating indoor air.
  • methods used to condition indoor air include:
  • the processor obtains the first environment value of the location of the air processor, and obtains the second environment value of n indoor locations.
  • the processor determines the indoor environment value based on the first environment value and the second environment value of n locations.
  • S103 The processor adjusts the indoor air according to the indoor environmental value.
  • a method for regulating indoor air is provided.
  • n sensors are set up indoors to detect the second environment values at n different locations indoors.
  • the second environment value and the first environment value detected by the air processor are sent to the processor to calculate the indoor environment value.
  • the processor regulates the indoor air according to the indoor environmental values.
  • a detailed process for indoor air conditioning based on multiple sensors is given, which improves the feasibility of the implementation of the solution.
  • this application uses n sensors to collect environmental values at different indoor locations as one of the considerations for controlling the air processor, so that the subsequent adjustment of indoor air can be more consistent with the actual indoor conditions, thereby improving the implementability of the solution.
  • BLE Bluetooth low energy, Bluetooth low energy
  • BLE sensors can collect air data such as indoor temperature and humidity.
  • BLE sensors compared with ordinary temperature sensors installed indoors in the existing technology, it can collect a variety of air data and save energy.
  • T 0 is the first environment value.
  • Ti is the second environment value of the i-th position.
  • ⁇ i is positively related to d i
  • d i represents the distance between the i-th sensor and the air handler.
  • the data detected at different locations have different influences on the final indoor environment value T.
  • the signal strength value is affected by the distance between each BLE sensor and the air handler. Therefore, the weighting value may also be set based on each signal strength value. For example, the farther the sensor is from the air handler, the weaker the signal strength value, so a higher weighting value needs to be assigned. It should be stated in advance that the sum of the weighted values of each sensor is 1.
  • the first environment value and the second environment value may be temperature, humidity, and indoor carbon dioxide concentration.
  • the environmental value is a temperature value
  • the method of adjusting the indoor air according to the indoor environmental value is shown in Figure 2, including:
  • the processor obtains the first temperature value at the location of the air processor, and obtains the second temperature value at n locations in the room.
  • the processor determines the indoor temperature value T temperature based on the first temperature value and the second temperature values at n locations.
  • the first threshold is a preset temperature threshold.
  • the processor adjusts the wind direction and speed of the air processor to focus on cooling the marked location.
  • the processor adjusts the wind direction and speed of the air processor to focus on heating the marked location.
  • the processor obtains the first temperature value around the air handler collected by the air handler, and the second temperature value at each position in the room collected by n sensors. Then, the final indoor temperature value T temperature is calculated based on the first temperature value and the second temperature value. The calculation method has been mentioned above and will not be repeated here. Then determine whether the current mode is cooling mode or heating mode. In the cooling mode, when the indoor temperature value T temperature is greater than the first threshold, it means that the current indoor temperature is high and cooling is required. At the same time, the data detected by each of the n sensors will be compared with the first threshold.
  • Figure 3 When the environmental value is the humidity value, the method of adjusting the indoor air according to the indoor environmental value is shown in Figure 3, including:
  • the processor obtains the first humidity value at the location of the air processor, and obtains the second humidity value at n indoor locations.
  • the processor determines the indoor humidity value Thumid based on the first humidity value and the second humidity values at n locations.
  • the second threshold is a preset humidity threshold.
  • the processor adjusts the wind direction and speed of the air processor to dehumidify the marked location.
  • the processor adjusts the wind direction and speed of the air processor to humidify the marked location.
  • the processor obtains the first humidity value around the air processor collected by the air processor, and the second humidity value at each location in the room collected by n sensors. Then, the final indoor humidity value T is calculated based on the first humidity value and the second humidity value. The next step requires the processor to determine whether the current mode is dehumidification mode or humidification mode. In the dehumidification mode, when the indoor humidity value Thumid is greater than the second threshold, it means that the current indoor humidity is relatively high and dehumidification is required.
  • the data detected by each sensor is compared with the second threshold, the position of the sensor higher than the second threshold is marked, and then focused dehumidification is performed on the marked position.
  • focused dehumidification can be carried out at different locations to achieve better dehumidification effects.
  • bathroom entrances and clothes drying areas are places where moisture may be high.
  • the humidity in these places is generally higher than in other locations. Therefore, when it is higher than the second threshold, focus on dehumidifying these places. To achieve better dehumidification effect.
  • S3032 and S30422 it is the adjustment of humidification mode. Humidification can also be carried out in drier places, and the process will not be described again.
  • the processor obtains the first carbon dioxide concentration value at the location of the air processor, and obtains the second carbon dioxide concentration value at n indoor locations.
  • the processor determines the indoor carbon dioxide concentration value T according to the first carbon dioxide concentration value and the second carbon dioxide concentration values at n locations.
  • the third threshold is the carbon dioxide concentration threshold.
  • S404 The processor replaces the marked position with fresh air.
  • the processor obtains the first carbon dioxide concentration value around the air processor collected by the air processor, and the second carbon dioxide concentration value collected by n sensors at various locations in the room. Then, the final indoor carbon dioxide concentration value T rich is calculated based on the first carbon dioxide concentration value and the second carbon dioxide concentration value.
  • the air handler is in the fresh air replacement mode, when the indoor carbon dioxide concentration value T is greater than the third threshold, it means that the current indoor carbon dioxide concentration is high and the oxygen content is low. Therefore, fresh air needs to be introduced.
  • the data detected by each sensor will be compared with the third threshold, and the position of the sensor higher than the third threshold will be marked, and then the marked position will be replaced with fresh air.
  • a higher concentration of oxygen can be supplied to the marked location than to other locations, or fresh air can be vented for a longer period of time than other locations, thereby achieving a better fresh air effect.
  • a device 603 for adjusting indoor air includes a processor 500 and a memory 501 .
  • the device may also include a communication interface (Communication Interface) 502 and a bus 503.
  • Communication interface 502 may be used for information transmission.
  • the processor 500 can call logical instructions in the memory 501 to execute the method for adjusting indoor air in the above embodiment.
  • the above-mentioned logical instructions in the memory 501 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 501 can be used to store software programs, computer executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 500 executes the program instructions/modules stored in the memory 501 to execute functional applications and data processing, that is, to implement the method for adjusting indoor air in the above embodiment.
  • the memory 501 may include a stored program area and a stored data area, where the stored program area may store an operating system and an application program required for at least one function; the stored data area may store data created according to the use of the terminal device, etc.
  • the memory 501 may include high-speed random access memory and may also include non-volatile memory.
  • An embodiment of the present disclosure provides a computer program that, when executed by a computer, causes the computer to implement the above method for adjusting indoor air.
  • Embodiments of the present disclosure provide a computer program product.
  • the computer program product includes computer instructions stored on a computer-readable storage medium.
  • the program instructions are executed by a computer, the computer is caused to implement the above-mentioned method for adjusting an indoor environment. air method.
  • the term “and/or” as used in this application is meant to encompass any and all possible combinations of one or more of the associated listed items.
  • the term “comprise” and its variations “comprises” and/or “comprising” etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not exclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the statement “comprises a" does not exclude the presence of additional identical elements in a process, method or apparatus including the stated element.
  • each embodiment may focus on its differences from other embodiments, and the same and similar parts among various embodiments may be referred to each other.
  • the relevant parts can be referred to the description of the method part.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more components for implementing the specified logical function(s).
  • Executable instructions may be included in the box.
  • the functionality noted in the box may also be The order of occurrence differs from that noted in the accompanying drawings. For example, two consecutive blocks may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请涉及智能空调技术领域,公开一种用于调节室内空气的方法、装置、介质和空气处理系统。用于调节室内空气的方法包括:获得空气处理器所在位置的第一环境值,并,获得室内n个位置的第二环境值;根据第一环境值和n个位置的第二环境值,确定室内的环境值;根据室内的环境值,对室内空气进行调节。与现有技术中如何解决多传感器中某传感器发生故障的方案相比,给出了一套根据多个传感器对室内空气调节的详细流程,提高了方案实施的可行性。除此之外,本申请通过n个传感器采集室内不同位置的环境值作为控制空气处理器的考量之一,使后续对室内空气的调节更符合室内的实际情况。

Description

用于调节室内空气的方法、装置、介质和空气处理系统
本申请基于申请号为202210668176.9、申请日为2022年6月14日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能空调技术领域,例如涉及一种用于调节室内空气的方法、装置、介质和空气处理系统。
背景技术
目前,在空调上都设置了一个室内传感器,用于检测室内温度/湿度等,并根据检测到的温度/湿度值对屋内进行空气调节。但这种设置在空调上固定位置的传感器,仅能检测空调室内机进风口的温度/湿度,而不能检测房间各位置的温度/湿度,导致空调仅基于室内机进风口温度/湿度来运行。也即,传感器检测位置处的温度/湿度并不能完全代表房间内的整体温度/湿度,因此采集到的整体空气数据不够精准,对室内空气的调节不符合实际情况。
相关技术中,公开了可通过多个温度传感器获得多个室内环境温度,并根据多个室内环境温度确定室内温度,进而依据室内温度调节智能空调的运行参数,实现对室内温度的调节。
但该技术所解决的问题是当传感器发生故障后,通过忽略该传感器,根据其他传感器确定的最终室内温度的准确性较差的问题,并没有给出传感器非故障情况下详细的控制流程和方案。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于调节室内空气的方法、装置、介质和空气处理系统,给出了一套根据多个传感器对室内空气调节的详细流程,提高了方案实施的可行性。
在一些实施例中,所述用于调节室内空气的方法,包括:
获得空气处理器所在位置的第一环境值,并,获得室内n个位置的第二环境值;
根据所述第一环境值和n个位置的第二环境值,确定室内的环境值;
根据室内的环境值,对室内空气进行调节。
可选地,根据第一环境值和n个位置的第二环境值,确定室内的环境值,包括:
计算T=[T0+(ΣTii)/n]/2,获得室内的环境值T;其中,T0为第一环境值;Ti为第i个位置的第二环境值,ɑi为第i个位置的权重值;i=1、2、…、n。
可选地,ɑi与di正相关;其中,di表示第i个传感器与空气处理器之间的距离。
可选地,所述环境值为温度值、湿度值或二氧化碳浓度值。
可选地,在环境值为温度值的情况下,根据室内的环境值,对室内空气进行调节,包括:
在空气处理器制冷运行且室内的环境值T大于第一阈值的情况下,标记Ti中数值高于室内的环境值T的传感器对应在室内所处的位置;
调节空气处理器的风向和风速,对已标记的位置进行重点降温;
可选地,所述方法还包括:
在空气处理器制热运行且室内的环境值T小于所述第一阈值的情况下,标记Ti中数值低于室内的环境值T的传感器对应在室内所处的位置;
调节空气处理器的风向和风速,对已标记的位置进行重点升温;
其中,所述第一阈值为预设温度阈值。
可选地,在环境值为湿度值的情况下,根据室内的环境值,对室内空气进行调节,包括:
在空气处理器除湿运行且室内的环境值T大于第二阈值的情况下,标记Ti中数值高于室内的环境值T的传感器对应在室内所处的位置;
调节空气处理器的风向和风速,对已标记的位置进行除湿;
可选地,所述方法还包括:
在空气处理器加湿运行且室内的环境值T小于所述第二阈值的情况下,标记Ti中数值低于室内的环境值T的传感器对应在室内所处的位置;
调节空气处理器的风向和风速,对已标记的位置进行加湿;
其中,所述第二阈值为预设湿度阈值。
可选地,在环境值为二氧化碳浓度值的情况下,根据室内的环境值,对室内空气进行调节,包括:
在空气处理器处于更换新风模式且室内的环境值T大于第三阈值的情况下,标记Ti 中数值高于室内的环境值T的传感器对应在室内所处的位置;
对已标记的位置更换新风;
其中,所述第三阈值为预设二氧化碳浓度阈值。
在一些实施例中,用于调节室内空气的装置包括:处理器和存储有程序指令的存储器,处理器被配置为在运行程序指令时,执行上述的用于调节室内空气的方法。
在一些实施例中,空气处理系统包括:空气处理器,设置于室内,用于检测所述空气处理器所在位置的第一环境值并对室内空气进行调节;n个传感器,分别设置于室内的n个位置,用于检测室内n个位置的第二环境值;移动终端,与所述空气处理器和n个传感器建立通信连接,用于响应用户指令对所述空气处理器进行控制;还包括上述实施例的用于调节室内空气的装置。
空气处理系统还包括已与空气处理器和n个传感器建立通信的移动终端;在获取第一环境值和第二环境值之前,用于调节室内空气的方法还包括:
向移动终端发送授权请求;在得到授权后,获取空气处理器检测的第一环境值和n个传感器检测的第二环境值。
可选地,用于调节室内空气的方法还包括:在检测到某传感器的位置发生改变的情况下,向用户发出需要修改ɑi的提示信息;
响应用户的输入指令,记录新的预设比重。
本公开实施例提供的用于调节室内空气的方法、装置、介质和空气处理系统,可以实现以下技术效果:
本公开实施例涉及智能空调技术领域,提供了一种用于调节室内空气的方法。首先在室内设置了n个传感器,用于检测室内n个不同位置的第二环境值。进而根据第二环境值与空气处理器检测到的第一环境值一起得到可以代表室内空气情况的整体环境值。最后根据室内的环境值,对室内空气进行调节。与现有技术中如何解决多传感器中某传感器发生故障的方案相比,给出了一套根据多个传感器对室内空气调节的详细流程,提高了方案实施的可行性。且本申请通过n个传感器采集室内不同位置的环境值作为控制空气处理器的考量之一,使后续对室内空气的调节更符合室内的实际情况。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成 比例限制,并且其中:
图1是本公开实施例提供的一种用于调节室内空气的方法的示意图;
图2是本公开实施例提供的用于调节室内温度的方法的示意图;
图3是本公开实施例提供的用于调节室内湿度的方法的示意图;
图4是本公开实施例提供的用于调节室内空气质量的方法的示意图;
图5是本公开实施例提供的一种用于调节室内空气的装置的结构示意图;
图6是本公开实施例提供的一种空气处理系统的结构示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
术语“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
目前而言,从节约成本的角度考虑,空调上都只设置了一个用于检测室内温/湿度或二氧化碳浓度的传感器。但该传感器本身就距离空调很近,而空调附近的温/湿度或二氧化碳浓度,是无法代表整个室内的情况的。
而在这种情况下,现有技术中也有在室内设置多个传感器的方案。但该类方案,要么是设置了普通传感器测量温度,要么是传感器故障情况下如何处理的方案。并没有给出根据多个传感器对室内空气调节的详细流程。
基于此,本申请实施例提供了一种空气处理系统。如图6所示,空气处理系统包括空 气处理器601、n个传感器602和用于调节室内空气的装置603。其中,空气处理器601设置于室内,用于检测室内环境的第一环境值并对室内空气进行调节。n个传感器602分别设置与室内的不同位置,用于检测室内n个位置的第二环境值。用于调节室内空气的装置603其中还包括处理器,处理器在运行时可以根据室内的环境值对室内空气调节的过程进行控制。
本公开实施例中,空气处理器601指具有多种室内空气调节功能的智能家电设备,包括但不限于对室温调节、室内湿度及室内空气质量进行调节。智能家电设备是指将微处理器、传感器技术、网络通信技术引入家电设备后形成的家电产品,具有智能控制、智能感知及智能应用的特征,智能家电设备的运作过程往往依赖于物联网、互联网以及电子芯片等现代技术的应用和处理,例如智能家电设备可以通过连接电子设备,实现用户对智能家电设备的远程控制和管理。
此外,在上述的空气处理系统中,还可以包括移动终端604。用于调节室内空气的装置603中还包括无线发射装置605和无线接收装置606。移动终端604已与空气传感器601和n个传感器602建立通信连接,用于根据用户指令对空气处理器601进行控制。无线发射装置605和无线接收装置606用于建立各设备间的通信连接、数据交互等行为。
结合图6所示的空气处理系统,本申请实施例提供了一种用于调节室内空气的方法。如图1所示,用于调节室内空气的方法包括:
S101,处理器获得空气处理器所在位置的第一环境值,并,获得室内n个位置的第二环境值。
S102,处理器根据第一环境值和n个位置的第二环境值,确定室内的环境值。
S103,处理器根据室内的环境值,对室内空气进行调节。
在本申请实施例中,提供了一种用于调节室内空气的方法。首先在室内设置了n个传感器,用于检测室内n个不同位置的第二环境值。进而将第二环境值与空气处理器检测到的第一环境值一起发送到处理器中计算室内的环境值。处理器根据室内的环境值对室内空气进行调节。与现有技术中如何解决多传感器中某传感器发生故障的方案相比,给出了一套根据多个传感器对室内空气调节的详细流程,提高了方案实施的可行性。且本申请通过n个传感器采集室内不同位置的环境值作为控制空气处理器的考量之一,使后续对室内空气的调节更符合室内的实际情况,从而提高了方案的可实施性。
值得注意的是,本申请中在室内设置的传感器,采用BLE(Bluetooth low energy,蓝牙低功耗)传感器,功耗较小。BLE传感器可以采集室内温度、湿度等空气数据。通过采用BLE传感器,相较于现有技术中在室内设置的普通温度传感器而言,既能采集多种空气 数据,又能节省电能。
在该实施例中,处理器根据第一环境值和n个位置的第二环境值,确定室内的环境值,包括:计算T=[T0+(ΣTii)/n]/2,获得室内的环境值T。其中,T0为第一环境值。Ti为第i个位置的第二环境值。ɑi为第i个位置的权重值。i=1、2、…、n。且ɑi与di正相关,di表示第i个传感器与空气处理器之间的距离。通过在室内不同位置设置BLE传感器,并根据各BLE传感器与空气处理器之间的距离di赋予权重ɑi,使得不同位置检测到的数据对最终求得的室内环境值T影响力度也不同。传感器距离空气处理器越远,越需要考虑该位置的具体情况,因此该传感器所对应的加权值应该更高。从而通过上述方式最终求得的室内环境值T会更加符合室内的整体情况。需要提前声明的是,各传感器的加权值之和为1。
可选地,由于各BLE传感器与空气处理器之间的距离影响信号强度值。因此,加权值也可以根据各信号强度值来设定。例如传感器距离空气处理器越远,信号强度值较弱,因此需要赋予更高的加权值。需要提前声明的是,各传感器的加权值之和为1。
在上述实施例中,第一环境值和第二环境值可以是温度、湿度、以及室内二氧化碳浓度。当环境值为温度值的情况下,根据室内的环境值,对室内空气进行调节的方法,如图2所示,包括:
S201,处理器获得空气处理器所在位置的第一温度值,并,获得室内n个位置的第二温度值。
S202,处理器根据第一温度值和n个位置的第二温度值,确定室内的温度值T温。
S2031,处理器在空气处理器制冷运行且室内的温度值T大于第一阈值的情况下,标记Ti中数值高于室内的温度值T的传感器对应在室内所处的位置。
S2032,处理器在空气处理器制热运行且室内的温度值T小于第一阈值的情况下,标记Ti中数值低于室内的温度值T的传感器对应在室内所处的位置。
其中,第一阈值为预设温度阈值。
S2041,处理器调节空气处理器的风向和风速,对已标记的位置进行重点降温。
S2042,处理器调节空气处理器的风向和风速,对已标记的位置进行重点升温。
在本实施例中,对当检测的环境值是温度值,也即对室内进行温度调节的过程进行了说明。首先处理器获取了通过空气处理器采集的空气处理器周围的第一温度值,以及n个传感器采集的室内各位置的第二温度值。进而通过根据第一温度值和第二温度值计算最终的室内温度值T。计算方式上述已经提到,在此不再赘述。进而判断当前是制冷模式还是制热模式。在制冷模式下,当室内的温度值T大于第一阈值,说明当前室内温度较高,需要进行降温。与此同时,还会将n个传感器中每个传感器检测到的数据与第一阈值进行 比较,对n个数据中高于第一阈值的传感器的位置进行标记,进而对标记的位置进行重点降温。通过上述方法,不但对室内各个位置的具体情况进行了采集,还可以针对不同位置进行重点降温以达到更好的降温效果。不会出现降温后一些位置温度适宜,一些位置温度较低使得人体感觉特别冷的情况。反之,如S2032和S2042,是与上述制冷模式相反的制热模式的调节。同样也可以针对不同位置进行重点升温以使整个屋子气温更均匀更舒适,过程不再赘述。
当环境值为湿度值的情况下,根据室内的环境值,对室内空气进行调节的方法,如图3所示,包括:
S301,处理器获得空气处理器所在位置的第一湿度值,并,获得室内n个位置的第二湿度值。
S302,处理器根据第一湿度值和n个位置的第二湿度值,确定室内的湿度值T湿。
S3031,处理器在空气处理器除湿运行且室内的湿度值T湿大于第二阈值的情况下,标记Ti中数值高于室内的湿度值T湿的传感器对应在室内所处的位置。
S3032,处理器在空气处理器加湿运行且室内的湿度值T湿小于第二阈值的情况下,标记Ti中数值低于室内的湿度值T湿的传感器对应在室内所处的位置。
其中,第二阈值为预设湿度阈值。
S3041,处理器调节空气处理器的风向和风速,对已标记的位置进行除湿。
S3042,处理器调节空气处理器的风向和风速,对已标记的位置进行加湿。
在本实施例中,对当检测的环境值是湿度值,也即对室内进行湿度调节的过程进行了说明。首先处理器获取了通过空气处理器采集的空气处理器周围的第一湿度值,以及n个传感器采集的室内各位置的第二湿度值。进而通过根据第一湿度值和第二湿度值计算最终的室内湿度值T湿下一步需要处理器判断当前是除湿模式还是加湿模式。在除湿模式下,当室内的湿度值T湿大于第二阈值,说明当前室内湿度较大,需要进行除湿。将每个传感器检测到的数据与第二阈值进行比较,对高于第二阈值的传感器的位置进行标记,进而对标记的位置进行重点除湿。通过上述方法,不但对室内各个位置的具体情况进行了采集,还可以针对不同位置进行重点除湿以达到更好的除湿效果。例如在卫生间门口、衣服晾晒区域,都是湿气可能较大的地方,这些地方的湿度一般相较于其他位置更高,所以在高于第二阈值的情况下,对这些地方进行重点除湿,以达到更好的除湿效果。反之,如S3032和S3042,是加湿模式的调节。同样也可以对较干燥的地方进行加湿,过程不再赘述。
当环境值为二氧化碳浓度值的情况下,根据室内的环境值,对室内空气进行调节的方法,如图4所示,包括:
S401,处理器获得空气处理器所在位置的第一二氧化碳浓度值,并,获得室内n个位置的第二二氧化碳浓度值。
S402,处理器根据第一二氧化碳浓度值和n个位置的第二二氧化碳浓度值,确定室内的二氧化碳浓度值T
S403,处理器在空气处理器处于更换新风模式且室内的二氧化碳浓度值T大于第三阈值的情况下,标记Ti中数值高于室内的二氧化碳浓度值T的传感器对应在室内所处的位置。
其中,第三阈值为二氧化碳浓度阈值。
S404,处理器对已标记的位置更换新风。
在本实施例中,对当检测的环境值是二氧化碳浓度值,也即对室内进行更换新风的过程进行了说明。首先,处理器获取了通过空气处理器采集的空气处理器周围的第一二氧化碳浓度值,以及n个传感器采集的室内各位置的第二二氧化碳浓度值。进而通过根据第一二氧化碳浓度值和第二二氧化碳浓度值计算最终的室内二氧化碳浓度值T。在空气处理器的工作状态为更换新风模式下,当室内的二氧化碳浓度值T大于第三阈值,说明当前室内二氧化碳浓度较高,氧气含量较低。因此需要通入新风。此外,每个传感器检测到的数据都会和第三阈值进行比较,对高于第三阈值的传感器的位置进行标记,进而对标记的位置进行重点更换新风。例如可以通过对已标记位置通入比其他位置更高浓度的氧气,或是通新风的时间可以比其他位置更久均可,从而达到更好的新风效果。
结合图5所示,用于调节室内空气的装置603包括处理器(processor)500和存储器(memory)501。可选地,该装置还可以包括通信接口(Communication Interface)502和总线503。其中,处理器500、通信接口502、存储器501可以通过总线503完成相互间的通信。通信接口502可以用于信息传输。处理器500可以调用存储器501中的逻辑指令,以执行上述实施例的用于调节室内空气的方法。
此外,上述的存储器501中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器501作为一种存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器500通过运行存储在存储器501中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于调节室内空气的方法。
存储器501可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器501可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现上述用于调节室内空气的方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现上述用于调节室内空气的方法。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以 不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (12)

  1. 一种用于调节室内空气的方法,应用于包括空气处理器和n个传感器的空气处理系统,其中,所述n个传感器分别设置于室内的n个位置,用于检测室内n个位置的环境值,n为大于或等于1的整数;其特征在于,所述方法包括:
    获得空气处理器所在位置的第一环境值,并,获得室内n个位置的第二环境值;
    根据所述第一环境值和n个位置的第二环境值,确定室内的环境值;
    根据室内的环境值,对室内空气进行调节。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一环境值和n个位置的第二环境值,确定室内的环境值,包括:
    计算T=[T0+(ΣTii)/n]/2,获得室内的环境值T;
    其中,T0为第一环境值;
    Ti为第i个位置的第二环境值,ɑi为第i个位置的权重值;i=1、2、…、n。
  3. 根据权利要求2所述的方法,其特征在于,ɑi与di正相关;其中,di表示第i个传感器与空气处理器之间的距离。
  4. 根据权利要求2所述的方法,其特征在于,所述环境值为温度值、湿度值或二氧化碳浓度值。
  5. 根据权利要求4所述的方法,其特征在于,在环境值为温度值的情况下,根据室内的环境值,对室内空气进行调节,包括:
    在空气处理器制冷运行且室内的环境值T大于第一阈值的情况下,标记Ti中数值高于室内的环境值T的传感器对应在室内所处的位置;
    调节空气处理器的风向和风速,对已标记的位置进行重点降温;
    可选地,所述方法还包括:
    在空气处理器制热运行且室内的环境值T小于所述第一阈值的情况下,标记Ti中数值低于室内的环境值T的传感器对应在室内所处的位置;
    调节空气处理器的风向和风速,对已标记的位置进行重点升温;
    其中,所述第一阈值为预设温度阈值。
  6. 根据权利要求4所述的方法,其特征在于,在环境值为湿度值的情况下,根据室内的环境值,对室内空气进行调节,包括:
    在空气处理器除湿运行且室内的环境值T大于第二阈值的情况下,标记Ti中数值高于室内的环境值T的传感器对应在室内所处的位置;
    调节空气处理器的风向和风速,对已标记的位置进行除湿;
    可选地,所述方法还包括:
    在空气处理器加湿运行且室内的环境值T小于所述第二阈值的情况下,标记Ti中数值低于室内的环境值T的传感器对应在室内所处的位置;
    调节空气处理器的风向和风速,对已标记的位置进行加湿;
    其中,所述第二阈值为预设湿度阈值。
  7. 根据权利要求4所述的方法,其特征在于,在环境值为二氧化碳浓度值的情况下,根据室内的环境值,对室内空气进行调节,包括:
    在空气处理器处于更换新风模式且室内的环境值T大于第三阈值的情况下,标记Ti中数值高于室内的环境值T的传感器对应在室内所处的位置;
    对已标记的位置更换新风;
    其中,所述第三阈值为预设二氧化碳浓度阈值。
  8. 一种用于调节室内空气的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在运行所述程序指令时,执行如权利要求1至7任一项所述的用于调节室内空气的方法。
  9. 一种存储介质,存储有程序指令,其特征在于,所述程序指令在运行时,执行如权利要求1至7任一项所述的用于调节室内空气的方法。
  10. 一种空气处理系统,其特征在于,包括:
    空气处理器,设置于室内,用于检测所述空气处理器所在位置的第一环境值并对室内空气进行调节;
    n个传感器,分别设置于室内的n个位置,用于检测室内n个位置的第二环境值;
    移动终端,与所述空气处理器和n个传感器建立通信连接,用于响应用户指令对所述空气处理器进行控制;
    如权利要求8所述的用于调节室内空气的装置。
  11. 一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现如权利要求1至7任一项所述的用于调节室内空气的方法。
  12. 一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现如权利要求1至7任一项所述的用于调节室内空气的方法。
PCT/CN2023/075379 2022-06-14 2023-02-10 用于调节室内空气的方法、装置、介质和空气处理系统 WO2023241073A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210668176.9 2022-06-14
CN202210668176.9A CN115031395A (zh) 2022-06-14 2022-06-14 用于调节室内空气的方法、装置、介质和空气处理系统

Publications (1)

Publication Number Publication Date
WO2023241073A1 true WO2023241073A1 (zh) 2023-12-21

Family

ID=83125029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075379 WO2023241073A1 (zh) 2022-06-14 2023-02-10 用于调节室内空气的方法、装置、介质和空气处理系统

Country Status (2)

Country Link
CN (1) CN115031395A (zh)
WO (1) WO2023241073A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115031395A (zh) * 2022-06-14 2022-09-09 青岛海尔空调器有限总公司 用于调节室内空气的方法、装置、介质和空气处理系统
CN115682338B (zh) * 2023-01-04 2023-05-05 百信信息技术有限公司 用于组装生产线车间的温湿度监控调节方法、系统及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103615794A (zh) * 2013-11-13 2014-03-05 青岛海尔软件有限公司 具有动态温度控制功能的空调
CN104990232A (zh) * 2015-07-31 2015-10-21 广东美的制冷设备有限公司 空调器的控制方法、控制装置和控制系统
JP2018146209A (ja) * 2017-03-09 2018-09-20 株式会社富士通ゼネラル 空気調和機
CN109780673A (zh) * 2019-01-30 2019-05-21 广东美的制冷设备有限公司 一拖多空调器的控制方法、一拖多空调器及存储介质
CN111055861A (zh) * 2018-10-16 2020-04-24 中车青岛四方机车车辆股份有限公司 一种车辆空调系统及控制方法
CN111947289A (zh) * 2020-08-26 2020-11-17 佛山市高明欧一电子制造有限公司 一种温控器控制系统及方法
CN113357779A (zh) * 2021-05-31 2021-09-07 青岛海尔空调器有限总公司 用于空气调节的控制方法及装置、家电设备
CN115031395A (zh) * 2022-06-14 2022-09-09 青岛海尔空调器有限总公司 用于调节室内空气的方法、装置、介质和空气处理系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103615794A (zh) * 2013-11-13 2014-03-05 青岛海尔软件有限公司 具有动态温度控制功能的空调
CN104990232A (zh) * 2015-07-31 2015-10-21 广东美的制冷设备有限公司 空调器的控制方法、控制装置和控制系统
JP2018146209A (ja) * 2017-03-09 2018-09-20 株式会社富士通ゼネラル 空気調和機
CN111055861A (zh) * 2018-10-16 2020-04-24 中车青岛四方机车车辆股份有限公司 一种车辆空调系统及控制方法
CN109780673A (zh) * 2019-01-30 2019-05-21 广东美的制冷设备有限公司 一拖多空调器的控制方法、一拖多空调器及存储介质
CN111947289A (zh) * 2020-08-26 2020-11-17 佛山市高明欧一电子制造有限公司 一种温控器控制系统及方法
CN113357779A (zh) * 2021-05-31 2021-09-07 青岛海尔空调器有限总公司 用于空气调节的控制方法及装置、家电设备
CN115031395A (zh) * 2022-06-14 2022-09-09 青岛海尔空调器有限总公司 用于调节室内空气的方法、装置、介质和空气处理系统

Also Published As

Publication number Publication date
CN115031395A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2023241073A1 (zh) 用于调节室内空气的方法、装置、介质和空气处理系统
CN110597075B (zh) 一种检测控制冲突的方法、装置、电子设备及存储介质
US11076758B2 (en) Controlling devices based on physiological measurements
JP6334299B2 (ja) 空調制御装置、空調制御方法、及びプログラム
CN107218706B (zh) 基于NB-IoT网络的空调器控制方法以及空调器
CN108679806B (zh) 空调器的控制方法、装置、空调器及存储介质
WO2022262371A1 (zh) 用于空气调节的方法、装置及空调器
CN108613332B (zh) 一种节能型建筑微区域人员交互式热舒适度调节方法
JP2007107871A (ja) 設備制御システムおよび設備制御装置
CN106225185A (zh) 一种空调系统及其控制方法
CN104748294A (zh) 空调器、空调系统及控制方法和移动终端
WO2023060947A1 (zh) 用于控制空调的方法及装置、空调、存储介质
CN104618441A (zh) 被控设备的控制方法及装置、服务器、物联网控制终端
KR20180072468A (ko) 빅데이터기반 사용자의 지능형 냉방 및 난방 서비스 제공 방법
WO2022160763A1 (zh) 用于加湿的方法、装置和智能家居系统
WO2023077830A1 (zh) 用于控制空调的方法及装置、空调、存储介质
CN104618443A (zh) 被控设备的控制方法及装置、服务器、物联网控制终端
Chu et al. Enthalpy estimation for thermal comfort and energy saving in air conditioning system
CN113934152A (zh) 一种设备控制方法和装置、电子设备和存储介质
JP2004324942A (ja) 空気調和機
WO2022242261A1 (zh) 用于空调除湿的方法、装置及空调
WO2024041063A1 (zh) 用于控制新风空调系统的方法及装置、新风空调系统
Yuto et al. Implementation of energy efficient thermal comfort control for cyber-physical home systems
CN105020849A (zh) 空调控制方法及装置
WO2023185397A1 (zh) 用于控制空调的方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822645

Country of ref document: EP

Kind code of ref document: A1