WO2024016860A1 - 一种潮汐波浪空气储能发电系统 - Google Patents

一种潮汐波浪空气储能发电系统 Download PDF

Info

Publication number
WO2024016860A1
WO2024016860A1 PCT/CN2023/098060 CN2023098060W WO2024016860A1 WO 2024016860 A1 WO2024016860 A1 WO 2024016860A1 CN 2023098060 W CN2023098060 W CN 2023098060W WO 2024016860 A1 WO2024016860 A1 WO 2024016860A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
gas
energy
power generation
inlet pipe
Prior art date
Application number
PCT/CN2023/098060
Other languages
English (en)
French (fr)
Inventor
余汉华
鲁国文
王备
范毅
朱磊
Original Assignee
上海能源建设工程设计研究有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海能源建设工程设计研究有限公司 filed Critical 上海能源建设工程设计研究有限公司
Publication of WO2024016860A1 publication Critical patent/WO2024016860A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/08Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/22Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the flow of water resulting from wave movements to drive a motor or turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/268Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy making use of a dam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention relates to the field of new energy, and in particular to a tidal wave air energy storage power generation system.
  • the present invention provides a tidal wave air energy storage power generation system, including:
  • the dam is arranged on the shore of the water area, with one side in contact with the water body of the water area;
  • Water storage facilities are provided on the other side of the dam body;
  • a gate is provided in the dam body; the gate is configured to be openable, so that the water body in the water area flows into the water storage facility through the gate;
  • a floating body arranged on the water surface of the water area
  • An air energy power generation device is connected to the floating body and is configured to: convert the kinetic potential energy of the waves in the water area into electrical energy through the floating body;
  • a gas-liquid energy power generation device is installed in the water storage facility and configured to convert water potential energy into electrical energy through the water flow in the water storage facility.
  • the air energy power generation device includes:
  • a pressure cylinder tank is connected to the floating body through a connecting rod and its associated sealing ring, and is configured such that the floating body is driven by the waves of the water area so that the connecting rod and its accompanying sealing ring compress the pressure
  • the air in the tank forms compressed air energy
  • a shore-based pressure storage tank is arranged on the shore or on the dam body, and is connected to the pressure cylinder tank through a high-pressure transmission pipeline to receive the compressed air energy from the pressure cylinder tank;
  • An air energy generator is connected to the shore-based pressure storage tank and is driven by the compressed air energy to complete electrical energy conversion.
  • the water storage facility includes a conductive cascade water diversion channel and a water storage reservoir.
  • One end of the conductive cascade water diversion channel is connected to the gate, and the other end is connected to the water storage reservoir.
  • the water storage facility is configured such that after the gate is opened, the conductive cascade water diversion channel begins to store water, and after reaching the water storage threshold, under the control of the back pressure valve, the conductive cascade water diversion channel starts to store water.
  • the water channel gates are opened in sequence until the water in the reservoir reaches the water storage threshold.
  • the water storage facility also includes a drainage system, which is respectively connected to the conductive cascade water diversion channel, the water storage reservoir and the water area, and is configured to: between the conductive cascade water diversion channel and the water area. /Or after the water storage in the water storage reservoir reaches the water storage threshold, the overflowing water body is directed back to the water area through the drainage system.
  • the gas-liquid energy power generation device includes: a gas-liquid pump storage tank, a gas-liquid pump and a gas-liquid energy generator.
  • the gas-liquid pump storage tank is connected to the conductive cascade diversion channel and/or the water storage tank.
  • the gas-liquid pump is arranged in the gas-liquid pump storage tank
  • the gas-liquid energy generator is connected to the gas-liquid pump
  • the gas-liquid energy power generation device is configured as: the conduction cascade water diversion channel and /Or the water potential energy of the water storage reservoir flows into the gas-liquid pump storage tank, and under the action of the gas-liquid pump, the water potential energy drives the gas-liquid energy generator to automatically generate electricity.
  • the gas-liquid pump includes: a main water inlet pipe, an auxiliary water inlet pipe, and a water outlet pipe; one end of the main water inlet pipe and the auxiliary water inlet pipe are arranged in the gas-liquid pump storage tank, and the main water inlet pipe and the other end of the auxiliary water inlet pipe are connected to one end of the water outlet pipe through pipes to form an overflow three-way port; a first pneumatic valve is provided at the other end of the water outlet pipe, and is connected to the main water inlet pipe.
  • a second pneumatic valve is provided at the opposite opening of the overflow three-way port, a third pneumatic valve is provided on the main water inlet pipe, and a float ball is provided on the auxiliary water inlet pipe; A limit switch B7 is provided on the outside.
  • the gas-liquid pump is configured such that the gas-liquid pump enters a pre-working state after being pre-started, and enters a working state after being started.
  • the first pneumatic valve is opened, the third pneumatic valve of the main water inlet pipe is closed and the first pneumatic valve is guided to open; the gas-liquid pump is pre-worked.
  • the gas-liquid pump reservoir stores water and pumps filling water from the guide port, the second pneumatic valve and the first pneumatic valve are closed; the water outlet pipe is working, and the auxiliary water inlet pipe is under the action of pressure difference
  • the lower linkage works and causes the water level of the storage tank to drop; after the limit switch is activated, the filling water in the pipeline is unbalanced until the pipeline is flush with the water level of the storage tank; when the gas-liquid pump is started, all of the main water inlet pipes
  • the third pneumatic valve is activated, the conduction cascade water diversion channel and the water storage reservoir are opened to divert water to the water storage tank to the pipeline and the water level of the water storage tank reaches the overflow tee port and the air in the pipeline is emptied.
  • the gas-liquid pump officially works; the conductive cascade diversion channel and the water storage reservoir are replenished, the limit switch is activated, and the pipeline water flows backward until the float ball of the auxiliary water inlet pipe intercepts the flow, and the main water inlet pipe enters The water stops working and the water outlet pipe drains water.
  • the floating ball of the auxiliary water inlet pipe rises to the storage tank, the main water inlet pipe and the auxiliary water inlet pipe.
  • the water level balance in the water inlet pipe finally achieves endogenous cycle power generation.
  • an intelligent energy management device configured to control the coordinated power supply of the air energy power generation device and the gas-liquid energy power generation device, as well as to achieve system balance and system scheduling.
  • the invention provides a tidal wave air energy storage power generation system that relies on the kinetic energy of wave energy peaks and troughs to be converted into compressed air energy, and then uses the compressed air energy to drive an air energy generator to achieve electrical energy conversion.
  • the water potential energy pressure difference drives the micro-water gas-liquid pump to achieve electrical energy conversion.
  • tidal and wave energy can be coordinated to achieve peak-shifting power generation, smooth power output, and shore-based local off-grid user energy demand management and load smoothing. Its beneficial effect is to combine real-time electric energy conversion of tidal and wave energy with air and water energy storage to achieve an endogenous cycle of energy use.
  • Figure 1 is a schematic diagram of a tidal wave air energy storage power generation system according to a preferred embodiment of the present invention
  • Figure 2 is a partial enlarged view of the X area in Figure 1
  • Figure 3 is a working principle diagram of tidal gas-liquid energy.
  • the present invention provides a tidal wave air energy storage power generation system, which is based on the shore-based mode and uses the potential energy of tides and waves to generate electricity.
  • the tidal wave air energy storage power generation system is set up on the shore of waters A1 such as rivers, rivers, lakes, and seas.
  • the tidal wave air energy storage power generation system includes:
  • Dam body A7 is set on the shore of water area A1, and one side of it is in contact with the water body of water area A1, which can block the flow of water;
  • Water storage facilities are set up on the other side of the dam body A7;
  • the gate A5 is set in the dam body A7. By opening the gate A5, the water in the water area A1 can flow into the water storage facility through the gate A5;
  • Floating body A2 is set on the water surface of water area A1; when there are waves or tides on water area A1, floating body A2 can float along with the water surface of water area A1;
  • the air energy power generation device is connected to the floating body A2; when the floating body A2 floats with the water surface of the water area A1, the kinetic energy of the wave energy peaks and troughs is transmitted to the floating body A2, and then compressed air energy is generated in the air energy power generation device and converted into for electrical energy;
  • the gas-liquid power generation device is installed in the water storage facility; when the gate A5 of the dam body A7 is opened, the water flows from the water area A1 to the water storage facility. As the water body with water potential energy in the water storage facility flows in, the gas-liquid power generation device Convert water potential energy into electrical energy.
  • the air energy power generation device includes:
  • the pressure cylinder A3 is set on the floating body A2 and is connected to the floating body A2 through the connecting rod and its associated sealing ring A13; the floating body A2 can drive the connecting rod to move, causing the connecting rod and its accompanying sealing ring A13 to squeeze the pressure cylinder A3
  • the air can form compressed air; the pressure cylinder tank A3 is of filling and pumping type.
  • the shore-based pressure storage tank A6 is installed on the shore or the dam body A7, and is connected to the pressure cylinder tank A3 through the high-pressure transmission pipeline A4. When the air in the pressure cylinder tank A3 is compressed, the compressed air can be transported to the shore-based pressure storage tank A6 through the high-pressure pipeline A4;
  • the air energy generator A8 is connected to the shore-based pressure storage tank A6; the compressed air in the shore-based pressure storage tank A6 can drive the air energy generator A8 to complete electrical energy conversion.
  • the water storage facility includes a conductive cascade water diversion channel A9 and a water storage reservoir A11, and a plurality of water channel gates A5 are sequentially provided in the conductive cascade water diversion channel.
  • One end of the conductive cascade diversion channel A9 is connected to the gate A5, and the other end is connected to the water storage reservoir A11.
  • the gate A5 is opened, the water flows through the conduction cascade diversion canal A9 and begins to store water.
  • the conduction cascade diversion canal A9 opens the canal gates in sequence until the water storage reservoir A11 reaches the storage level. water threshold.
  • the gas-liquid power generation device is installed in the conductive cascade diversion channel A9 and the water storage reservoir A11. When the water storage reaches the water storage threshold, the gas-liquid power generation device automatically generates electricity.
  • the gas-liquid energy power generation device includes a gas-liquid pump storage tank B10, a gas-liquid pump, and a gas-liquid energy generator A10.
  • the gas-liquid pump storage tank B10 is connected to the conductive cascade diversion channel A9 and the water storage tank A11.
  • the pump is installed in the gas-liquid pump storage tank B10, and the gas-liquid energy generator A10 is connected to the gas-liquid pump.
  • the water potential energy drives the gas-liquid energy generator A10 to automatically generate electricity.
  • the air-liquid pump includes a main water inlet pipe B6, an auxiliary water inlet pipe B9, and an outlet pipe B2.
  • One end of the main water inlet pipe B6 and the auxiliary water inlet pipe B9 is disposed in the air-liquid pump storage tank B10.
  • a first pneumatic valve B1 is provided at the other end of the water outlet pipe B2, and is connected to the overflow three-way port on the main water inlet pipe B6
  • a second pneumatic valve B4 is provided at the opening opposite to B3
  • a third pneumatic valve B5 is provided on the main water inlet pipe B6, and a float B8 is provided on the auxiliary water inlet pipe B9; a limit switch is provided outside the main water inlet pipe B6.
  • the working process of the gas-liquid pump is as follows: when the gas-liquid pump is pre-started, the first pneumatic valve B1 is opened, the third pneumatic valve B5 of the main water inlet pipe B6 is closed and the second pneumatic valve B4 is guided to open; when the gas-liquid pump is pre-started, the storage Pool B10 stores water and pumps the filling water from the guide port to close the second pneumatic valve B4 and the first pneumatic valve B1; the outlet pipe B2 works, and the auxiliary water inlet pipe B9 works in conjunction under the pressure difference and causes the water level of the storage pool B10 to drop; After the limit switch B7 is activated, the filling water in pipes B6 and B9 becomes unbalanced until the water level of the pipes and the water reservoir 10 is flush.
  • the third pneumatic valve B5 of the main water inlet pipe B6 starts, and the cascade diversion channel A9 and the water storage tank A11 open and divert water from the water storage tank B10 to the pipes B6, B9 and the water tank B10.
  • the water level reaches the overflow tee port B3.
  • the air in the pipeline is emptied, and the air-liquid pump officially works.
  • the water replenishment of the conduction cascade diversion channel A9 and the water storage reservoir A11 is completed, the limit switch B7 is activated, and the pipeline water flows backward until the float B8 of the auxiliary water inlet pipe B9 intercepts the water.
  • the main water inlet pipe B6 stops working when water inflows, and the outlet pipe B2 drains water until the water storage tank is ready.
  • the water level of B10 is balanced with the main water inlet pipe B6.
  • the float B8 of the auxiliary water inlet pipe B9 rises to the water level balance of the storage tank B10, the main water inlet pipe B6 and the auxiliary water inlet pipe B9, and finally realizes endogenous cycle power generation.
  • the limit switch B7 is connected to the pipe close to the second start valve B4 through an air guide pipe.
  • the water storage facility also includes a drainage system A12, which is connected to the conductive cascade diversion channel A9, the water storage reservoir A10, and the water area A1 respectively.
  • a drainage system A12 which is connected to the conductive cascade diversion channel A9, the water storage reservoir A10, and the water area A1 respectively.
  • the tidal wave air energy storage power generation system also includes an intelligent energy management device that can control the power generation of air energy power generation devices and gas-liquid energy power generation devices, and generate electricity from high-pressure air for shore-based local off-grid users during peak power consumption periods.
  • the machine and the gas-liquid energy generator work together to provide power, and the gas-liquid energy generator motor converts the compressed air and flexible load control to balance the system.
  • the gas-liquid energy generator and the gas-liquid energy generator motor convert the compressed air system. Balance to achieve compressed air energy storage and balance system power.
  • the intelligent energy management device uses the prony principle to perform a priori zero-point prediction of the gas-liquid energy generator A10, the air energy generator A8, the storage tank A6, and the user's flexible load, so as to realize the source-grid load storage echelon energy consumption, and use the SVM classifier
  • the least squares support vector machine with fuzzy membership degree is used to extract multi-objective feature vector data and self-learning to achieve economic dispatch of the source grid load storage system.
  • This invention comprehensively utilizes tidal energy and wave energy, relies on shore-based local off-grid users and combines the principle of air energy storage. With the curse of advanced algorithms of intelligent energy management systems, it realizes peak-shaving and valley-filling of energy and the utilization of electric energy. Effectively smooth balance. While making full use of green energy, it also reduces the secondary loss of process energy, perfectly interpreting the harmless and efficiency-optimized application of green energy.

Abstract

一种潮汐波浪空气储能发电系统包括:坝体(A7),设置在水域的岸边,其一侧与水域的水体接触;储水设施,设置在坝体(A7)的另一侧;闸门(A5),设置在坝体(A7)内,水域中的水体通过闸门(A5)流入储水设施;浮体(A2),设置在水域的水面上;空气能发电装置,与浮体(A2)连接,通过浮体(A2)将水域的波浪的动势能转化为电能;气液能发电装置,安装在储水设施中,通过储水设施中的水流,将水势能转化为电能。该发电系统可实现潮汐、波浪能的实时电能转换以及空气、蓄水的储能。

Description

一种潮汐波浪空气储能发电系统 技术领域
本发明涉及新能源领域,尤其涉及一种潮汐波浪空气储能发电系统。
背景技术
为减少碳排放,需要用多样性绿色能源替代传统化石能源,实现“30.60”碳排放目标。降低化石能源应用比例是减少碳排放的主要途径之一,随之就需要绿能的大比例替代化石能源,提升能源转换过程损耗也是降碳增效的途径之一。目前主要的绿能应用占比较大能源主要是水力发电、风光储能等,但都受制于环境因素,譬如水力发电对蓄能要求高,工程量巨大,而风力以及光伏发电对风资源、光资源要求更高,且功率输出不稳定严重影响到电网系统安全以及用能质量要求。用能需求高的区域主要集中在沿海城市,其紧靠江河提供了便捷的运输条件,同时开发具有巨大潜力的海浪能或潮汐能也是江河赐予沿海城市优势。
因此,本领域的技术人员致力于开发一种潮汐波浪空气储能发电系统,结合潮汐、波浪能的实时电能转换与空气、蓄水储能,实现了用能的内生循环。
发明内容
为实现上述目的,本发明提供了一种潮汐波浪空气储能发电系统,包括:
坝体,设置在水域的岸边,其一侧与所述水域的水体接触;
储水设施,设置在所述坝体的另一侧;
闸门,设置在所述坝体内;所述闸门被配置为可以开启,使得所述水域中的所述水体通过所述闸门流入所述储水设施;
浮体,设置在所述水域的水面上;
空气能发电装置,与所述浮体连接,并被配置为:通过所述浮体,将所述水域的波浪的动势能转化为电能;
气液能发电装置,安装在所述储水设施中,并被配置为:通过所述储水设施中的水流,将水势能转化为电能。
进一步地,所述空气能发电装置包括:
压力筒罐,通过连杆及其附属密封圈与所述浮体连接,并被配置为:所述浮体在所述水域的波浪的驱动下,使得所述连杆及其附属密封圈压缩所述压力筒罐内的空气形成压缩空气能;
岸基压力储罐,设置在岸边或所述坝体上,通过高压输送管道与所述压力筒罐连接,以接收来自所述压力筒罐的所述压缩空气能;
空气能发电机,与所述岸基压力储罐连接,并被所述压缩空气能驱动以完成电能转化。
进一步地,所述储水设施包括传导级联引水渠和储水库,所述传导级联引水渠的一端连通至所述闸门,另一端连通所述储水库。
进一步地,所述储水设施被配置为:在所述闸门开启后所述传导级联引水渠开始蓄水,且达到蓄水阈值后,在反压阀控制下,所述传导级联引水渠依次开启水渠闸门,直至所述蓄水库蓄水达到蓄水阈值。
进一步地,所述储水设施还包括排水系统,所述排水系统分别连通所述传导级联引水渠、所述储水库和所述水域,并被配置为:在所述传导级联引水渠和/或所述储水库的蓄水达到所述蓄水阈值后,溢出水体通过所述排水系统引流回归至所述水域。
进一步地,所述气液能发电装置包括:气液泵储水池、气液泵和气液能发电机,所述气液泵储水池与所述传导级联引水渠和/或所述储水库连通,所述气液泵设置在所述气液泵储水池中,所述气液能发电机连接所述气液泵,所述气液能发电装置被配置为:所述传导级联引水渠和/或所述储水库的所述水势能流入所述气液泵储水池,在所述气液泵的作用下,由所述水势能驱动所述气液能发电机自动发电。
进一步地,所述气液泵包括:主进水管、副进水管、出水管;所述主进水管和所述副进水管的一端设置在所述气液泵储水池内,所述主进水管和所述副进水管的另一端均通过管道与所述出水管的一端连通以形成溢水三通口;在所述出水管的另一端设置有第一气动阀,在所述主进水管上与所述溢水三通口相对的开口处设置有第二气动阀,在所述主进水管上设置有第三气动阀,在所述副进水管上设置有浮球;在所述主进水管的外侧设置有限位开关B7。
进一步地,所述气液泵被配置为:所述气液泵预启动后进入预工作状态,以及启动后进入工作状态。
进一步地,所述气液泵预启动时,所述第一气动阀开启,所述主进水管的所述第三气动阀关闭且引导所述第一气动阀开启;所述气液泵预工作时,所述气液泵储水池储水且从引导口泵入填充水后关闭所述第二气动阀及所述第一气动阀;所述出水管工作,所述副进水管在压差作用下联动工作并使得所述储水池水位下降;所述限位开关动作后,管道填充水失衡直至管道与所述储水池水位齐平;所述气液泵启动时,所述主进水管的所述第三气动阀启动,所述传导级联引水渠、所述储水库开闸引水至所述储水池至管道与所述储水池水位达到所述溢水三通口并排空管道空气,所述气液泵正式工作;所述传导级联引水渠、所述储水库补水完成,所述限位开关动作,管道水逆流直至所述副进水管的所述浮球截流,所述主进水管进水停止工作,所述出水管排水,待所述储水池与所述主进水管水位平衡,所述副进水管的所述浮球上升至所述储水池、所述主进水管以及所述副进水管水位平衡最终实现内生循环发电。
进一步地,还包括智能能源管理装置,被配置为控制所述空气能发电装置、所述气液能发电装置协同供电,以及实现系统平衡和实现系统调度。
本发明提供的一种潮汐波浪空气储能发电系统,依托于波浪能波峰、波谷的动势能转换为压缩空气能,再以压缩空气能驱动空气能发电机实现电能转化,通过潮汐的潮来潮退水势能压差驱动微水气液泵实现电能转化。在智能能源管理系统配合调节下,实现潮汐与波浪能协同实现移峰发电、功率平滑输出及岸基局域离网用户用能需求管理、平滑负荷。其有益效果是结合潮汐、波浪能的实时电能转换与空气、蓄水储能,实现了用能的内生循环。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明的一个较佳实施例的潮汐波浪空气储能发电系统原理图;
图2是图1的X区域的局部放大图
图3是潮汐气液能工作原理图。
实施方式
以下参考说明书附图介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
如图1和图2所示,本发明提供了一种潮汐波浪空气储能发电系统,基于岸基模式,利用潮汐、波浪的势能进行发电。该潮汐波浪空气储能发电系统设置在江、河、湖、海等水域A1的岸边。该潮汐波浪空气储能发电系统包括:
坝体A7,设置在水域A1的岸边,其一侧与水域A1的水体接触,可以阻挡水流;
储水设施,设置在坝体A7的另一侧;
闸门A5,设置在坝体A7内,通过开启闸门A5,可以使得水域A1中的水通过闸门A5流入储水设施;
浮体A2,设置在水域A1的水面上;当水域A1上有波浪或潮汐时,浮体A2能够随着水域A1的水面浮动;
空气能发电装置,与浮体A2连接;当浮体A2随着水域A1的水面浮动时,波浪能波峰、波谷的动势能传到至浮体A2,进而在空气能发电装置中产生压缩空气能,并转化为电能;
气液能发电装置,设置在储水设施中;当坝体A7的闸门A5打开,水流从水域A1流向储水设施中,随着储水设施中具有水势能的水体流入,气液能发电装置将水势能转化为电能。
在一些实施方式中,空气能发电装置包括:
压力筒罐A3,设置在浮体A2上,并与浮体A2通过连杆及其附属密封圈A13连接;浮体A2能够驱动连杆运动,使得连杆及其附属密封圈A13挤压压力筒罐A3内的空气形成压缩空气能;压力筒罐A3为充、抽气式。
岸基压力储罐A6,设置在岸边或者坝体A7上,与压力筒罐A3通过高压输送管道A4连接。当压力筒罐A3内的空气被压缩时,压缩空气能通过高压输送管道A4输送至岸基压力储罐A6;
空气能发电机A8,与岸基压力储罐A6连接;岸基压力储罐A6中的压缩空气能驱动空气能发电机A8完成电能转化。
在一些实施方式中,储水设施包括传导级联引水渠A9和储水库A11,传导级联引水渠内依次设置有多个水渠闸门A5。传导级联引水渠A9的一端连通至闸门A5,另一端连通至储水库A11。当闸门A5开启后,水流经过传导级联引水渠A9开始蓄水,在达到蓄水阈值后,在反压阀控制下,传导级联引水渠A9依次开启水渠闸门直至储水库A11蓄水达到蓄水阈值。气液能发电装置安装在传导级联引水渠A9和储水库A11中,当蓄水达到蓄水阈值时,气液能发电装置自动发电。气液能发电装置可以设置为多个,可以设置在传导级联引水渠A9和储水库A11的一个中,也可以在两者中都设置。
在一些实施方式中,气液能发电装置包括气液泵储水池B10、气液泵和气液能发电机A10,气液泵储水池B10与传导级联引水渠A9和储水库A11连通,气液泵设置在气液泵储水池B10中,气液能发电机A10与气液泵连接。当一定水势能水体流入气液泵储水池B10,在气液泵的作用下,由水势能驱动气液能发电机A10自动发电。
在一些实施方式中,如图3所示,气液泵包括主进水管B6、副进水管B9、出水管B2,主进水管B6和副进水管B9的一端设置在气液泵储水池B10内,两者的另一端均通过管道与出水管B2的一端连通以形成溢水三通口B3;在出水管B2的另一端设置有第一气动阀B1,在主进水管B6上与溢水三通口B3相对的开口处设置有第二气动阀B4,在主进水管B6上设置有第三气动阀B5,在副进水管B9上设置有浮球B8;在主进水管B6的外侧设置有限位开关B7。气液泵的工作过程如下:气液泵预启动时,第一气动阀B1开启,主进水管B6的第三气动阀B5关闭且引导第二气动阀B4开启;气液泵预工作时,储水池B10储水且从引导口泵入填充水后关闭第二气动阀B4及第一气动阀B1;出水管B2工作,副进水管B9在压差作用下联动工作并使得储水池B10水位下降;限位开关B7动作后,管道B6、B9填充水失衡直至管道与储水池10水位齐平。气液泵启动时,主进水管B6的第三气动阀B5启动,传导级联引水渠A9、储水库A11开闸引水储水池B10至管道B6、B9与储水池B10水位达到溢水三通口B3并排空管道空气,气液泵正式工作。传导级联引水渠A9、储水库A11补水完成,限位开关B7动作,管道水逆流直至副进水管B9的浮球B8截流,主进水管B6进水停止工作,出水管B2排水,待储水池B10与主进水管B6水位平衡,副进水管B9的浮球B8上升至储水池B10、主进水管B6以及副进水管B9水位平衡最终实现内生循环发电。限位开关B7与靠近第二启动阀B4的管道通过导气管连接。
在一些实施方式中,储水设施还包括排水系统A12,排水系统A12分别与传导级联引水渠A9、储水库A10、水域A1连通。当传导级联引水渠A10或储水库A11蓄水达到阈值后,溢出水体由排水系统A12引流回归水域A1。
在一些实施方式中,潮汐波浪空气储能发电系统还包括智能能源管理装置,能够控制空气能发电装置、气液能发电装置的发电,为岸基局域离网用户用电高峰由高压空气发电机以及气液能发电机协同供电,并由气液能发电机电机能转换压缩空气和柔性负荷控制进行系统平衡,在用电低谷由气液能发电机以及气液能发电机电机能转换压缩空气系统平衡,实现压缩空气储能,平衡系统功率。进一步地,智能能源管理装置以prony原理进行气液能发电机A10、空气能发电机A8、储罐A6、用户柔性负荷先验性零点预测,实现源网荷储梯次用能,以SVM分类器对浮体A2集群、储罐A6集群、发电机(A10、A8)集群进行引入模糊隶属度的最小二乘支持向量机多目标特征向量数据提取与自学习,实现源网荷储系统经济调度。
本发明综合利用了潮汐能与波浪能,依托于岸基局域离网用户并结合空气储能原理,在智能能源管理系统先进算法的加持下,实现了用能的削峰填谷、电能的有效平滑平衡。在充分利用绿能的同时,减少了过程能源二次损耗,完美的诠释了绿能无害化、效率最优化应用。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

  1. 一种潮汐波浪空气储能发电系统,其特征在于,包括:
    坝体,设置在水域的岸边,其一侧与所述水域的水体接触;
    储水设施,设置在所述坝体的另一侧;
    闸门,设置在所述坝体内;所述闸门被配置为可以开启,使得所述水域中的所述水体通过所述闸门流入所述储水设施;
    浮体,设置在所述水域的水面上;
    空气能发电装置,与所述浮体连接,并被配置为:通过所述浮体,将所述水域的波浪的动势能转化为电能;
    气液能发电装置,安装在所述储水设施中,并被配置为:通过所述储水设施中的水流,将水势能转化为电能。
  2. 如权利要求1所述的潮汐波浪空气储能发电系统,其特征在于,所述空气能发电装置包括:
    压力筒罐,通过连杆及其附属密封圈与所述浮体连接,并被配置为:所述浮体在所述水域的波浪的驱动下,使得所述连杆及其附属密封圈压缩所述压力筒罐内的空气形成压缩空气能;
    岸基压力储罐,设置在岸边或所述坝体上,通过高压输送管道与所述压力筒罐连接,以接收来自所述压力筒罐的所述压缩空气能;
    空气能发电机,与所述岸基压力储罐连接,并被所述压缩空气能驱动以完成电能转化。
  3. 如权利要求1所述的潮汐波浪空气储能发电系统,其特征在于,所述储水设施包括传导级联引水渠和储水库,所述传导级联引水渠的一端连通至所述闸门,另一端连通所述储水库。
  4. 如权利要求3所述的潮汐波浪空气储能发电系统,其特征在于,所述储水设施被配置为:在所述闸门开启后所述传导级联引水渠开始蓄水,且达到蓄水阈值后,在反压阀控制下,所述传导级联引水渠依次开启水渠闸门,直至所述蓄水库蓄水达到蓄水阈值。
  5. 如权利要求4所述的潮汐波浪空气储能发电系统,其特征在于,所述储水设施还包括排水系统,所述排水系统分别连通所述传导级联引水渠、所述储水库和所述水域,并被配置为:在所述传导级联引水渠和/或所述储水库的蓄水达到所述蓄水阈值后,溢出水体通过所述排水系统引流回归至所述水域。
  6. 如权利要求3所述的潮汐波浪空气储能发电系统,其特征在于,所述气液能发电装置包括:气液泵储水池、气液泵和气液能发电机,所述气液泵储水池与所述传导级联引水渠和/或所述储水库连通,所述气液泵设置在所述气液泵储水池中,所述气液能发电机连接所述气液泵,所述气液能发电装置被配置为:所述传导级联引水渠和/或所述储水库的所述水势能流入所述气液泵储水池,在所述气液泵的作用下,由所述水势能驱动所述气液能发电机自动发电。
  7. 如权利要求6所述的潮汐波浪空气储能发电系统,其特征在于,所述气液泵包括:主进水管、副进水管、出水管;所述主进水管和所述副进水管的一端设置在所述气液泵储水池内,所述主进水管和所述副进水管的另一端均通过管道与所述出水管的一端连通以形成溢水三通口;在所述出水管的另一端设置有第一气动阀,在所述主进水管上与所述溢水三通口相对的开口处设置有第二气动阀,在所述主进水管上设置有第三气动阀,在所述副进水管上设置有浮球;在所述主进水管的外侧设置有限位开关B7。
  8. 如权利要求7所述的潮汐波浪空气储能发电系统,其特征在于,所述气液泵被配置为:所述气液泵预启动后进入预工作状态,以及启动后进入工作状态。
  9. 如权利要求8所述的潮汐波浪空气储能发电系统,其特征在于,所述气液泵预启动时,所述第一气动阀开启,所述主进水管的所述第三气动阀关闭且引导所述第一气动阀开启;所述气液泵预工作时,所述气液泵储水池储水且从引导口泵入填充水后关闭所述第二气动阀及所述第一气动阀;所述出水管工作,所述副进水管在压差作用下联动工作并使得所述储水池水位下降;所述限位开关动作后,管道填充水失衡直至管道与所述储水池水位齐平;所述气液泵启动时,所述主进水管的所述第三气动阀启动,所述传导级联引水渠、所述储水库开闸引水至所述储水池至管道与所述储水池水位达到所述溢水三通口并排空管道空气,所述气液泵正式工作;所述传导级联引水渠、所述储水库补水完成,所述限位开关动作,管道水逆流直至所述副进水管的所述浮球截流,所述主进水管进水停止工作,所述出水管排水,待所述储水池与所述主进水管水位平衡,所述副进水管的所述浮球上升至所述储水池、所述主进水管以及所述副进水管水位平衡最终实现内生循环发电。
  10. 如权利要求1所述的潮汐波浪空气储能发电系统,其特征在于,还包括智能能源管理装置,被配置为控制所述空气能发电装置、所述气液能发电装置协同供电,以及实现系统平衡和实现系统调度。
PCT/CN2023/098060 2022-07-22 2023-06-02 一种潮汐波浪空气储能发电系统 WO2024016860A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210873317.0A CN115126643A (zh) 2022-07-22 2022-07-22 一种潮汐波浪空气储能发电系统
CN202210873317.0 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024016860A1 true WO2024016860A1 (zh) 2024-01-25

Family

ID=83384495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098060 WO2024016860A1 (zh) 2022-07-22 2023-06-02 一种潮汐波浪空气储能发电系统

Country Status (2)

Country Link
CN (1) CN115126643A (zh)
WO (1) WO2024016860A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115126643A (zh) * 2022-07-22 2022-09-30 上海燃气工程设计研究有限公司 一种潮汐波浪空气储能发电系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293927A (ja) * 2002-04-05 2003-10-15 Mitsubishi Heavy Ind Ltd ダムの維持放流装置
CN102292134A (zh) * 2009-01-23 2011-12-21 阿尔斯通水电设备法国公司 用于将水力能转化为机械能或电能的设施
CN102943957A (zh) * 2012-10-25 2013-02-27 浙江大学宁波理工学院 潮汐能供气装置
CN103485971A (zh) * 2013-09-30 2014-01-01 武汉工程大学 用于海洋孤岛波浪能发电装置
CN204113522U (zh) * 2014-08-20 2015-01-21 广州中国科学院工业技术研究院 波浪能发电装置
CN207261155U (zh) * 2017-09-26 2018-04-20 大连海洋大学 一种与防波堤沉箱相结合的潮汐能发电装置
US20190032627A1 (en) * 2017-03-27 2019-01-31 Qussay Abdulatteef Jasim Al-Aani Method and Apparatuses for Generating-Green Energy Source- using the weight of Tidal Body of Water
CN115126643A (zh) * 2022-07-22 2022-09-30 上海燃气工程设计研究有限公司 一种潮汐波浪空气储能发电系统
CN217783667U (zh) * 2022-07-22 2022-11-11 上海燃气工程设计研究有限公司 一种潮汐波浪空气储能发电系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293927A (ja) * 2002-04-05 2003-10-15 Mitsubishi Heavy Ind Ltd ダムの維持放流装置
CN102292134A (zh) * 2009-01-23 2011-12-21 阿尔斯通水电设备法国公司 用于将水力能转化为机械能或电能的设施
CN102943957A (zh) * 2012-10-25 2013-02-27 浙江大学宁波理工学院 潮汐能供气装置
CN103485971A (zh) * 2013-09-30 2014-01-01 武汉工程大学 用于海洋孤岛波浪能发电装置
CN204113522U (zh) * 2014-08-20 2015-01-21 广州中国科学院工业技术研究院 波浪能发电装置
US20190032627A1 (en) * 2017-03-27 2019-01-31 Qussay Abdulatteef Jasim Al-Aani Method and Apparatuses for Generating-Green Energy Source- using the weight of Tidal Body of Water
CN207261155U (zh) * 2017-09-26 2018-04-20 大连海洋大学 一种与防波堤沉箱相结合的潮汐能发电装置
CN115126643A (zh) * 2022-07-22 2022-09-30 上海燃气工程设计研究有限公司 一种潮汐波浪空气储能发电系统
CN217783667U (zh) * 2022-07-22 2022-11-11 上海燃气工程设计研究有限公司 一种潮汐波浪空气储能发电系统

Also Published As

Publication number Publication date
CN115126643A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2024016860A1 (zh) 一种潮汐波浪空气储能发电系统
US7501712B2 (en) Process for using waste water from community sewer systems to generate electrical power
WO2020010872A1 (zh) 一种超低水头水力发电机
CN217783667U (zh) 一种潮汐波浪空气储能发电系统
CN105951661B (zh) 平原河流水质提升系统及方法
CN116696646B (zh) 潮汐电站和海水抽水蓄能电站的联合电站及其调度方法
CN113323791A (zh) 一种水坝用抽水蓄能储电系统
CN207761871U (zh) 乡村家用水力发电器
Gatte et al. Using water energy for electrical energy conservation by building of micro hydroelectric generators on the water pipelines that depend on the difference in elevation
TWM632392U (zh) 建構於坡地的水槽發電系統
CN108150338A (zh) 一种乡村家用水力发电器
CN107939592A (zh) 新能源水力发电塔
CN202707351U (zh) 一种可适用于水坝的虹吸发电装置
CN208533449U (zh) 一种用于拦河工程下放生态水的装置
CN208472682U (zh) 一种潮汐河口水动力控导柔性拍门装置
CN201943884U (zh) 一种利用风水发电的装置
CN110004893A (zh) 潮汐发电装置
Zhang et al. Research status and trends of ultra-low-head water resources and hydro-turbines
CN210106060U (zh) 一种基于水锤原理的波浪提水机
CN111188716A (zh) 一种高压水循环发电系统
CN218346333U (zh) 一种水利工程用水资源转运结构
WO2023087815A1 (zh) 一种海上蓄水与潮汐蓄水双用发电站
CN204131201U (zh) 一种环保节能型管道水力采电与储电系统
CN217923437U (zh) 一种潜式发电站
CN212343618U (zh) 一种用于海平面的磁性液体发电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841927

Country of ref document: EP

Kind code of ref document: A1