WO2024016820A1 - Nano chitosan/dsgrk complex, preparation method therefor, and application thereof - Google Patents

Nano chitosan/dsgrk complex, preparation method therefor, and application thereof Download PDF

Info

Publication number
WO2024016820A1
WO2024016820A1 PCT/CN2023/095169 CN2023095169W WO2024016820A1 WO 2024016820 A1 WO2024016820 A1 WO 2024016820A1 CN 2023095169 W CN2023095169 W CN 2023095169W WO 2024016820 A1 WO2024016820 A1 WO 2024016820A1
Authority
WO
WIPO (PCT)
Prior art keywords
chitosan
dsgrk
complex
nanoscale
dsalgrk2
Prior art date
Application number
PCT/CN2023/095169
Other languages
French (fr)
Chinese (zh)
Inventor
谭永安
乔恒
王小锋
胡珍娣
肖留斌
赵静
Original Assignee
江苏省农业科学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省农业科学院 filed Critical 江苏省农业科学院
Publication of WO2024016820A1 publication Critical patent/WO2024016820A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

Provided are a nano chitosan/dsGRK complex, a preparation method therefor, and an application thereof. The nano chitosan/dsGRK complex comprises dsGRK and chitosan, and the degree of deacetylation of the chitosan is 75%. An apolygus lucorum nano chitosan/dsGRK complex can effectively improve the stability of the dsGRK. The death rate of the apolygus lucorum in the nano chitosan/dsGRK complex treatment group is significantly improved.

Description

一种纳米化壳聚糖/dsGRK复合体及其制备方法和应用A nanoscale chitosan/dsGRK complex and its preparation method and application 技术领域Technical field
本发明属于农业基因工程技术领域,具体涉及一种纳米化壳聚糖/dsGRK复合体及其制备方法和在绿盲蝽防治中的应用。The invention belongs to the technical field of agricultural genetic engineering, and specifically relates to a nanoscale chitosan/dsGRK complex, its preparation method and its application in the prevention and control of green stink bugs.
背景技术Background technique
绿盲蝽Apolygus lucorum(Hemiptera:Miridae)属半翅目盲蝽科,是果树、蔬菜等多种经济作物上的重要害虫。绿盲蝽的防治主要依赖化学农药防治,但长期使用化学药剂会带来3R效应。近年来,双链RNA(dsRNA)介导的RNA干扰(RNAi)技术,已广泛应用于昆虫基因的功能研究,并在害虫防治方面显示出巨大的应用潜力。常用的RNAi方法包括注射﹑浸泡以及饲喂等。其中,由于成本高,对操作技术要求较高,因此注射法仅适用于实验室研究,不能实现在田间的推广应用。此外,由于dsRNA在外界环境中及不稳定,因此采用浸泡或饲喂法,RNAi效果较低。Apolygus lucorum (Hemiptera: Miridae) belongs to the family Hemiptera, Apolygus lucorum, and is an important pest on fruit trees, vegetables and other economic crops. The control of green stink bugs mainly relies on chemical pesticides, but long-term use of chemical agents will bring about the 3R effect. In recent years, double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) technology has been widely used in the functional study of insect genes and has shown great application potential in pest control. Commonly used RNAi methods include injection, immersion and feeding. Among them, due to the high cost and high operational technical requirements, the injection method is only suitable for laboratory research and cannot be promoted and applied in the field. In addition, since dsRNA is unstable in the external environment, the RNAi effect is lower when soaking or feeding methods are used.
近年来,与传统的dsRNA递送系统相比,通过纳米材料介导的dsRNA传递系统在提高RNAi效率方面显示出了巨大优势。纳米材料主要通过静电、范德华力、氢键等相互作用与核酸的磷酸基团结合,形成dsRNA/纳米材料复合物,可提升其稳定性。壳聚糖(Chitosan,CS)又称脱乙酰甲壳素,是由广泛存在于自然界的几丁质(chitin)经化学处理脱乙酰作用得到。壳聚糖含有羟基和氨基,是最常用的聚合物之一。由于其具有成本低、易降解、生物相容性好等优点,可成为dsRNA、siRNA、质粒DNA、寡核苷酸、肽甚至蛋白质的一种有前途的递送系统。壳聚糖在微酸性条件下带正电荷,有助于与带负电荷的核酸通过静电作用形成dsRNA/纳米复合物。In recent years, dsRNA delivery systems mediated through nanomaterials have shown great advantages in improving RNAi efficiency compared with traditional dsRNA delivery systems. Nanomaterials mainly combine with the phosphate groups of nucleic acids through interactions such as electrostatic, van der Waals forces, and hydrogen bonds to form dsRNA/nanomaterial complexes, which can improve their stability. Chitosan (CS), also known as chitosan, is obtained from chitin (chitin), which is widely found in nature, through chemical treatment and deacetylation. Chitosan contains hydroxyl and amino groups and is one of the most commonly used polymers. Due to its low cost, easy degradation, and good biocompatibility, it can become a promising delivery system for dsRNA, siRNA, plasmid DNA, oligonucleotides, peptides, and even proteins. Chitosan is positively charged under slightly acidic conditions, which helps form dsRNA/nanocomplexes through electrostatic interactions with negatively charged nucleic acids.
目前,已有研究表明,壳聚糖与dsRNA形成的纳米复合物可以稳定和有效的递送进入植物或昆虫中,但是RNAi纳米制剂在绿盲蝽防治中的研究仍是空白。At present, studies have shown that the nanocomplex formed by chitosan and dsRNA can be stably and effectively delivered into plants or insects, but the research on RNAi nanopreparations in the control of green stink bugs is still blank.
发明内容Contents of the invention
发明目的:本发明所要解决的技术问题是通过体外合成绿盲蝽GRK基因dsRNA,与壳聚糖形成纳米制剂即纳米化壳聚糖/dsGRK复合体,提高dsRNA的稳定性,有效的增强RNA干扰效率,以进一步提升防治绿盲蝽的效果。Purpose of the invention: The technical problem to be solved by the present invention is to synthesize the dsRNA of the green stink bug GRK gene in vitro, and form a nano preparation with chitosan, that is, a nanoscale chitosan/dsGRK complex, to improve the stability of dsRNA and effectively enhance RNA interference. efficiency to further improve the effectiveness of controlling green stink bugs.
本发明还要解决的技术问题是提供了纳米化壳聚糖/dsGRK复合体的制备方法。 The technical problem to be solved by the present invention is to provide a preparation method for nanoscale chitosan/dsGRK complex.
本发明最后要解决的技术问题是提供了所述纳米化壳聚糖/dsGRK复合体在防治绿盲蝽中的应用。The final technical problem to be solved by the present invention is to provide the application of the nanoscale chitosan/dsGRK complex in preventing and controlling green stink bugs.
技术方案:为解决上述技术问题,本发明提供了一种纳米化壳聚糖/dsGRK复合体,所述纳米化壳聚糖/dsGRK复合体包括dsGRK和壳聚糖,所述壳聚糖的去乙酰化程度为75~80%。其中,所述dsGRK为绿盲蝽G蛋白偶联受体激酶(GRK)的dsRNA,其dsRNA的核苷酸序列如SEQ ID NO.1所示。Technical solution: In order to solve the above technical problems, the present invention provides a nanoscale chitosan/dsGRK complex. The nanoscale chitosan/dsGRK complex includes dsGRK and chitosan, and the chitosan is removed. The degree of acetylation is 75 to 80%. Wherein, the dsGRK is the dsRNA of the green stink bug G protein-coupled receptor kinase (GRK), and the nucleotide sequence of its dsRNA is shown in SEQ ID NO.1.
本发明的GRK基因实际为GRK2基因,GRK2基因是GRK基因家族的一个亚型基因,因此,绿盲蝽GRK基因进一步命名为AlGRK2。The GRK gene of the present invention is actually the GRK2 gene, and the GRK2 gene is a subtype gene of the GRK gene family. Therefore, the A. chlorophylla GRK gene is further named AlGRK2.
其中,所述dsGRK和壳聚糖的质量比为1:2~5。Wherein, the mass ratio of dsGRK and chitosan is 1:2-5.
其中,所述纳米化壳聚糖/dsGRK复合体尺寸为200~400nm,表面电荷为16.9±4.24mV。作为优选地,纳米化壳聚糖/dsGRK复合体尺寸为69±12nm。Among them, the size of the nanoscale chitosan/dsGRK complex is 200-400nm, and the surface charge is 16.9±4.24mV. Preferably, the size of the nanoscale chitosan/dsGRK complex is 69±12nm.
本发明内容还包括所述的纳米化壳聚糖/dsGRK复合体的制备方法,包括以下步骤:1)将去乙酰化程度为75~80%的壳聚糖溶解在醋酸钠溶液中制备壳聚糖溶液;The content of the present invention also includes the preparation method of the nanoscale chitosan/dsGRK complex, which includes the following steps: 1) Dissolve chitosan with a deacetylation degree of 75 to 80% in a sodium acetate solution to prepare chitosan sugar solution;
2)向体外合成的dsGRK中加入硫酸钠溶液制备dsGRK悬浮液;2) Add sodium sulfate solution to the dsGRK synthesized in vitro to prepare a dsGRK suspension;
3)将壳聚糖溶液和dsGRK悬浮液混合,水浴静置后高速离心即得。3) Mix chitosan solution and dsGRK suspension, let stand in a water bath and then centrifuge at high speed to obtain.
其中,步骤1)中,所述壳聚糖溶液中的壳聚糖浓度为0.02~0.1w/v%;步骤2)中,所述硫酸纳溶液的浓度为50~100mmol/L。Wherein, in step 1), the chitosan concentration in the chitosan solution is 0.02-0.1 w/v%; in step 2), the concentration of the sodium sulfate solution is 50-100 mmol/L.
其中,步骤2)中,所述dsAlGRK2与硫酸钠的质量比为1:10~20,Wherein, in step 2), the mass ratio of dsAlGRK2 and sodium sulfate is 1:10~20,
其中,步骤2)中,所述dsAlGRK2与硫酸钠溶液体积比为1:1~2。Wherein, in step 2), the volume ratio of dsAlGRK2 to sodium sulfate solution is 1:1-2.
其中,在步骤2)中,所述硫酸钠溶液的浓度为50~100mmol/L;优选的浓度为100mmol/L。Wherein, in step 2), the concentration of the sodium sulfate solution is 50-100mmol/L; the preferred concentration is 100mmol/L.
其中,步骤3)水浴静置步骤中,水浴温度为50~60℃,静置1~2min;步骤3)高速离心步骤中,离心条件12000~15000rpm,1~2min。Wherein, in step 3), in the water bath standing step, the water bath temperature is 50-60°C, and let stand for 1-2 minutes; in step 3), the high-speed centrifugation step, the centrifugation conditions are 12000-15000 rpm, 1-2 minutes.
本发明内容还包括所述的纳米化壳聚糖/dsAlGRK2复合体在绿盲蝽防治中的应用。The present invention also includes the application of the nanoscale chitosan/dsAlGRK2 complex in the prevention and control of green stink bug.
其中,所述应用为:将纳米化壳聚糖/dsAlGRK2复合体喷施在植物表面上,喂食所述的绿盲蝽;或者将植物浸泡在纳米化壳聚糖/dsAlGRK2复合体中,干燥后,喂食所述的绿盲蝽。Wherein, the application is: spraying the nanoscale chitosan/dsAlGRK2 complex on the surface of the plant and feeding the green stink bug; or soaking the plant in the nanoscale chitosan/dsAlGRK2 complex and drying it , feeding the green stink bug.
其中,所述植物包括但不仅限于四季豆。Wherein, the plants include but are not limited to green beans.
有益效果:与现有技术相比,本发明具有以下优点: Beneficial effects: Compared with the existing technology, the present invention has the following advantages:
(1)本发明提供了一种绿盲蝽纳米化壳聚糖/ds AlGRK2复合体,纳米材料为75%去乙酰化的壳聚糖;ds AlGRK2的靶标基因为绿盲蝽G蛋白偶联受体激酶基因;采用体外合成ds AlGRK2,利用纳米材料壳聚糖,可有效提高ds AlGRK2的稳定性。(1) The present invention provides a green stink bug nanoscaled chitosan/ds AlGRK2 complex. The nanomaterial is 75% deacetylated chitosan; the target gene of ds AlGRK2 is a green stink bug G protein-coupled receptor. Somatic kinase gene; ds AlGRK2 is synthesized in vitro and the nanomaterial chitosan is used to effectively improve the stability of ds AlGRK2.
(2)本发明提供了一种绿盲蝽纳米化壳聚糖/ds AlGRK2复合体的制备方法,工艺简单,且对环境无污染。(2) The present invention provides a method for preparing a green stink bug nanoscaled chitosan/ds AlGRK2 complex, which has a simple process and no pollution to the environment.
(3)本发明提供了一种纳米化壳聚糖/ds AlGRK2复合体在绿盲蝽防治中的应用,纳米化壳聚糖/ds AlGRK2复合体处理组中的绿盲蝽死亡率显著提高,效果良好。(3) The present invention provides an application of a nanoscale chitosan/ds AlGRK2 complex in the prevention and control of chlorophyll bugs. The mortality rate of chlorophyll bugs in the nanoscale chitosan/ds AlGRK2 complex treatment group is significantly increased, The effect is good.
附图说明Description of drawings
图1为体外合成ds AlGRK2的电泳图。Figure 1 shows the electrophoresis pattern of dsAlGRK2 synthesized in vitro.
图2为纳米化壳聚糖/ds AlGRK2复合体最佳负载比例电泳图。图中,M:maker;泳道1:裸露的dsAlGRK2;泳道2:壳聚糖溶液;泳道3:dsAlGRK2-壳聚糖质量比为5:1;泳道4:dsAlGRK2-壳聚糖质量比为4:1;泳道5:dsAlGRK2-壳聚糖质量比为3:1;泳道6:dsAlGRK2-壳聚糖质量比为2:1;泳道7:dsAlGRK2-壳聚糖质量比为1:1;泳道8:dsAlGRK2-壳聚糖质量比为1:2;泳道9:dsAlGRK2-壳聚糖质量比为1:3;泳道10:dsAlGRK2-壳聚糖质量比为1:4;泳道11:dsAlGRK2-壳聚糖质量比为1:5。Figure 2 shows the electrophoresis diagram of the optimal loading ratio of nanoscale chitosan/ds AlGRK2 complex. In the figure, M: maker; lane 1: naked dsAlGRK2; lane 2: chitosan solution; lane 3: dsAlGRK2-chitosan mass ratio is 5:1; lane 4: dsAlGRK2-chitosan mass ratio is 4: 1; Lane 5: The mass ratio of dsAlGRK2-chitosan is 3:1; Lane 6: The mass ratio of dsAlGRK2-chitosan is 2:1; Lane 7: The mass ratio of dsAlGRK2-chitosan is 1:1; Lane 8: The mass ratio of dsAlGRK2-chitosan is 1:2; lane 9: the mass ratio of dsAlGRK2-chitosan is 1:3; lane 10: the mass ratio of dsAlGRK2-chitosan is 1:4; lane 11: dsAlGRK2-chitosan The mass ratio is 1:5.
图3为纳米化壳聚糖/dsAlGRK2复合体的平均粒径(Z-average)和表面电荷(Zeta电位)。Figure 3 shows the average particle size (Z-average) and surface charge (Zeta potential) of nanoscale chitosan/dsAlGRK2 complex.
图4为纳米化壳聚糖/dsAlGRK2复合体的透射电镜图像。Figure 4 is a transmission electron microscope image of nanoscale chitosan/dsAlGRK2 complex.
图5为检测纳米化壳聚糖/dsAlGRK2复合体稳定性的电泳图。A:分别pH 2、3、4、5、6、7、8、9、10、11、12下处理10min,对应于泳道1、2、3、4、5、6、7、8、9、10、11,M:maker;B:分别在5、10、15、20、25、30、35、40、45℃处理10min,对应于泳道1、2、3、4、5、6、7、8、9,M:maker;C:M:maker;泳道1:未经过RNase A处理的dsAlGRK2;泳道2:未经过RNase A处理的CS-dsAlGRK2;泳道3:经过RNase A处理的dsAlGRK2;泳道4:经过RNase A处理的CS-dsAlGRK2。Figure 5 is an electrophoresis chart to detect the stability of nanoscale chitosan/dsAlGRK2 complex. A: Treat at pH 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 for 10 minutes respectively, corresponding to lanes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, M: maker; B: treated at 5, 10, 15, 20, 25, 30, 35, 40, and 45°C for 10 minutes respectively, corresponding to lanes 1, 2, 3, 4, 5, 6, 7, 8, 9, M: maker; C: M: maker; Lane 1: dsAlGRK2 without RNase A treatment; Lane 2: CS-dsAlGRK2 without RNase A treatment; Lane 3: dsAlGRK2 after RNase A treatment; Lane 4 : CS-dsAlGRK2 treated with RNase A.
图6为qRT-PCR检测AlGRK2的相对表达量,即RNAi的沉默效率。Figure 6 shows the relative expression of AlGRK2 detected by qRT-PCR, that is, the silencing efficiency of RNAi.
图7为不同处理组下绿盲蝽的存活率;Figure 7 shows the survival rate of green stink bug under different treatment groups;
图8为不同处理组下绿盲蝽4龄若虫的发育历期;Figure 8 shows the development period of the 4th instar nymphs of the green bug under different treatment groups;
图9为不同处理组下绿盲蝽5龄若虫的体重。Figure 9 shows the body weight of 5th instar nymphs of the green bug under different treatment groups.
具体实施方式 Detailed ways
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。The embodiments of the present invention will be described in detail below with reference to examples, but those skilled in the art will understand that the following examples are only used to illustrate the present invention and should not be regarded as limiting the scope of the present invention. If the specific conditions are not specified in the examples, the conditions should be carried out according to the conventional conditions or the conditions recommended by the manufacturer. If the manufacturer of the reagents or instruments used is not indicated, they are all conventional products that can be purchased commercially.
本发明的GRK基因实际为GRK2基因,GRK2基因是GRK基因家族的一个亚型基因,因此,绿盲蝽GRK基因进一步命名为AlGRK2。The GRK gene of the present invention is actually the GRK2 gene, and the GRK2 gene is a subtype gene of the GRK gene family. Therefore, the A. chlorophylla GRK gene is further named AlGRK2.
实施例1绿盲蝽GRK2基因的dsRNA核苷酸序列的获取Example 1 Obtaining the dsRNA nucleotide sequence of the green stink bug GRK2 gene
1、利用Primer Premier 5.0软件设计绿盲蝽GRK2基因(Gen Bank登录号:MN514868)的克隆引物对,引物对序列如下:1. Use Primer Premier 5.0 software to design a cloning primer pair for the GRK2 gene (Gen Bank accession number: MN514868). The sequence of the primer pair is as follows:
GRK2F,SEQ ID NO.2:GGTTTGGAGAAGTTTACGGCGRK2F, SEQ ID NO.2: GGTTTGGAGAAGTTTACGGC
GRK2-R,SEQ ID NO.3:ATGAGAAGGAG TCGGGAAGCGRK2-R, SEQ ID NO.3: ATGAGAAGGAG TCGGGAAGC
引物对均由上海生工生物工程股份有限公司合成。Primer pairs were synthesized by Shanghai Sangon Bioengineering Co., Ltd.
2、利用Trizol法提取绿盲蝽总RNA并反转录获取cDNA模板:2. Use the Trizol method to extract the total RNA of the green stink bug and reverse-transcribe to obtain the cDNA template:
选取初孵3龄绿盲蝽若虫作为样本,10头为一生物学重复,置于液氮中速冻。利用电动研磨器进行研磨,并依照TRIzol Reagent(TIANGEN,北京)进行提取总RNA;按照反转录试剂盒HiScript III RT SuperMix(Vazyme,南京)合成第一链cDNA,作为PCR反应的模板。The newly hatched third-instar green stink bug nymphs were selected as samples, and 10 nymphs constituted a biological replicate, and were quickly frozen in liquid nitrogen. Grind with an electric grinder, and extract total RNA according to TRIzol Reagent (TIANGEN, Beijing); synthesize first-strand cDNA according to the reverse transcription kit HiScript III RT SuperMix (Vazyme, Nanjing) as a template for the PCR reaction.
3、PCR反应获得绿盲蝽GRK2基因dsAlGRK2核苷酸序列:3. PCR reaction to obtain the dsAlGRK2 nucleotide sequence of the green stink bug GRK2 gene:
利用步骤1合成的引物和步骤2获取的cDNA模板,通过PCR反应获得绿盲蝽GRK2基因序列,反应体系如下:
Using the primers synthesized in step 1 and the cDNA template obtained in step 2, obtain the Green Lygus GRK2 gene sequence through PCR reaction. The reaction system is as follows:
PCR反应条件为:94℃30s;98℃10s,65℃30s,72℃1min,循环35次;72℃2min。 PCR reaction conditions were: 94°C for 30 s; 98°C for 10 s, 65°C for 30 s, 72°C for 1 min, 35 cycles; 72°C for 2 min.
PCR产物用1.2%琼脂糖凝胶电泳分析,切胶回收,利用DNA胶回收试剂盒进行纯化,得到纯化后的PCR产物;并连接至T/A blunt vector载体(Vazyme,南京)上,转入感受态细胞E.coli DH5α中,涂布于LB固体平板上,在37℃培养箱中,先正置10min后倒置过夜培养12~14h;挑取阳性单菌落进行菌液PCR检测,琼脂糖凝胶电泳分析;将验证正确的菌液送至杰李(上海)生物技术公司测序,测序结果正确后,返回质粒DNA。The PCR product was analyzed by 1.2% agarose gel electrophoresis, recovered by cutting the gel, and purified using a DNA gel recovery kit to obtain the purified PCR product; and connected to the T/A blunt vector vector (Vazyme, Nanjing), and transferred into Competent cells E.coli DH5α were spread on LB solid plates, placed upright for 10 minutes and then inverted overnight in a 37°C incubator for 12 to 14 hours; positive single colonies were picked for bacterial liquid PCR detection, and the agarose was condensed. Gel electrophoresis analysis; send the verified bacterial solution to Jieli (Shanghai) Biotechnology Company for sequencing. After the sequencing results are correct, the plasmid DNA will be returned.
测序得到的绿盲蝽GRK2基因dsRNA的核苷酸序列为SEQ ID NO.1所示。The nucleotide sequence of the dsRNA of the green stink bug GRK2 gene obtained by sequencing is shown in SEQ ID NO.1.
实施例2dsAlGRK2的体外合成Example 2 In vitro synthesis of dsAlGRK2
1、利用Primer Premier 5.0软件设计含T7启动子的特异性引物对,特异性引物序列如下:1. Use Primer Premier 5.0 software to design a specific primer pair containing the T7 promoter. The specific primer sequence is as follows:
GRK2-T7-F,SEQ ID NO.4:TAATACGACTCACTATAGGGGGTTTGGAGAAGTTTACGGCGRK2-T7-F, SEQ ID NO.4: TAATACGACTCACTATAGGGGGTTTGGAGAAGTTTACGGC
GRK2-T7-R,SEQ ID NO.5:TAATACGACTCACTATAGGGATGAGAAGGAGTCGGGAAGCGRK2-T7-R, SEQ ID NO.5: TAATACGACTCACTATAGGG ATGAGAAGGAGTCGGGAAGC
下划线部分为T7启动子序列。The underlined part is the T7 promoter sequence.
2、DNA模板的制备2. Preparation of DNA template
利用克隆引物对(SEQ ID NO.2,SEQ ID NO.3)和含T7启动子的特异性引物对(SEQ ID NO.4,SEQ ID NO.5),以实施例1的质粒DNA为PCR模板,按如下步骤制备dsRNA的合成DNA模板:Utilize the cloning primer pair (SEQ ID NO.2, SEQ ID NO.3) and the specific primer pair containing the T7 promoter (SEQ ID NO.4, SEQ ID NO.5), using the plasmid DNA of Example 1 as PCR Template, follow the steps below to prepare the synthetic DNA template for dsRNA:
(1)反应体系如下:
(1) The reaction system is as follows:
(2)PCR反应条件如下:(2) PCR reaction conditions are as follows:
94℃30s;98℃10s,65℃30s,72℃1min,循环35次;72℃2min。94℃ 30s; 98℃ 10s, 65℃ 30s, 72℃ 1min, cycle 35 times; 72℃ 2min.
3、产物的回收与纯化 3. Product recovery and purification
PCR扩增产物用1.2%的琼脂糖凝胶电泳检测,参照琼脂糖凝胶DNA回收试剂盒(TIANGEN,北京),回收目的片段。The PCR amplification product was detected by 1.2% agarose gel electrophoresis, and the target fragment was recovered with reference to the agarose gel DNA recovery kit (TIANGEN, Beijing).
回收操作步骤如下:The recycling operation steps are as follows:
(1)柱平衡步骤:向吸附柱CA2中(吸附柱放入收集管中)加入500μl平衡液BL,12 000rpm离心1min,倒掉收集管中的废液,将吸附柱重新放回收集管中;(1) Column equilibration step: Add 500 μl of balancing solution BL to the adsorption column CA2 (the adsorption column is placed in the collection tube), centrifuge at 12,000 rpm for 1 min, discard the waste liquid in the collection tube, and put the adsorption column back into the collection tube. ;
(2)在紫外灯下,将单一的目的DNA条带从琼脂糖凝胶中切下(尽量切除多余部分)放入干净的离心管中,称取重量;(2) Under UV light, cut out the single target DNA band from the agarose gel (try to cut off the excess part), put it into a clean centrifuge tube, and weigh it;
(3)向胶块中加入等倍体积裂解液PN(如果凝胶重为0.1g,其体积可视为100μL,则加入100μL PN溶液),50℃水浴放置,其间不断温和地上下翻转离心管,以确保胶块充分溶解;如果还有未溶的胶块,可继续放置几分钟或再补加一些溶胶液,直至胶块完全溶解;(3) Add an equal volume of lysis solution PN to the gel block (if the gel weight is 0.1g, its volume can be regarded as 100μL, then add 100μL PN solution), place it in a 50°C water bath, and gently turn the centrifuge tube up and down during this period. , to ensure that the glue block is fully dissolved; if there is still undissolved glue block, you can continue to leave it for a few minutes or add some more sol liquid until the glue block is completely dissolved;
(4)将上一步所得溶液加入到一个吸附柱CA2中(吸附柱放入收集管中,室温放置2min,12 000rpm离心30~60s,倒掉收集管中的废液,将吸附柱CA2放入收集管中;(4) Add the solution obtained in the previous step to an adsorption column CA2 (put the adsorption column into the collection tube, place it at room temperature for 2 minutes, centrifuge at 12 000 rpm for 30 to 60 seconds, pour out the waste liquid in the collection tube, and put the adsorption column CA2 into in the collection tube;
(5)向吸附柱CA2中加入600μL漂洗液PW,12 000rpm离心30~60s,倒掉收集管中的废液,将吸附柱CA2放入收集管中;(5) Add 600 μL of rinse solution PW to the adsorption column CA2, centrifuge at 12 000 rpm for 30 to 60 seconds, pour out the waste liquid in the collection tube, and put the adsorption column CA2 into the collection tube;
(6)重复操作步骤(5);(6) Repeat step (5);
(7)将吸附柱CA2放回收集管中,12 000rpm离心2min,尽量除尽漂洗液;将吸附柱CA2置于室温放置数分钟,彻底地晾干,以防止残留的漂洗液影响下一步实验;(8)将吸附柱CA2放到一个干净离心管中,向吸附膜中间位置悬空滴加适量洗脱缓冲液EB,室温放置2min。12 000rpm离心2min收集DNA溶液;(7) Put the adsorption column CA2 back into the collection tube, centrifuge at 12 000 rpm for 2 minutes, and remove as much rinse liquid as possible; place the adsorption column CA2 at room temperature for a few minutes, and dry it thoroughly to prevent the remaining rinse liquid from affecting the next experiment. ; (8) Place the adsorption column CA2 into a clean centrifuge tube, drop an appropriate amount of elution buffer EB into the middle of the adsorption membrane, and leave it at room temperature for 2 minutes. Centrifuge at 12 000 rpm for 2 minutes to collect the DNA solution;
(9)通过1%琼脂糖凝胶检测浓度及条带是否单一。(9) Check the concentration and whether the band is single through 1% agarose gel.
4、体外转录合成dsAlGRK24. In vitro transcription and synthesis of dsAlGRK2
获取DNA模板后,根据T7 RNA干扰试剂盒合成dsAlGRK2,具体操作如下:After obtaining the DNA template, synthesize dsAlGRK2 according to the T7 RNA interference kit. The specific operations are as follows:
(1)室温下,在200μL无核酶离心管中分别配置正向含T7和反向含T7的DNA的体外转录体系:

(1) At room temperature, configure the in vitro transcription system of forward T7-containing DNA and reverse T7-containing DNA in a 200 μL ribozyme-free centrifuge tube:

轻柔混匀后,于PCR仪中37℃2h;After gentle mixing, place in a PCR machine at 37°C for 2 hours;
(2)将正向及反向的转录产物转移至同一无核酶离心管中,轻柔混匀后PCR仪70℃10min进行正反链RNA融合,后在室温静置约20min缓慢冷却;(2) Transfer the forward and reverse transcription products to the same ribozyme-free centrifuge tube, mix gently, and then fuse the forward and reverse strand RNA in a PCR machine at 70°C for 10 minutes, then let it stand at room temperature for about 20 minutes to cool slowly;
(3)融合后形成双链RNA加入2μL的RNase稀释液(1:200)和2μL的DNase溶液,混匀后于PCR仪37℃30min进行DNA模板和单链RNA的消化;(3) After fusion to form double-stranded RNA, add 2 μL of RNase diluent (1:200) and 2 μL of DNase solution, mix and digest the DNA template and single-stranded RNA in a PCR machine at 37°C for 30 minutes;
5、dsRNA的纯化5. Purification of dsRNA
向消化后的dsRNA溶液中,加入4.4μL的醋酸钠(3mol/L)和44μL的异丙醇,混匀后置于冰上5min,4℃ 15 000rpm离心10min,弃上清。加入500μL 70%冰乙醇洗涤两次后弃上清,沉淀室温晾干5min后,加入50μL的RNase-Free Water重悬,获得纯化后的双链RNA。通过紫外分光光度计和1%琼脂糖凝胶电泳检测dsRNA浓度和纯度,浓度为6.686~7.384μg/μL,A260/A280为2.05~2.06,A260/A230为2.36~2.45,纯度如图1所示。图1为体外合成ds AlGRK2的电泳图,M为maker,泳道1和2为体外合成的dsAlGRK。Add 4.4 μL of sodium acetate (3 mol/L) and 44 μL of isopropyl alcohol to the digested dsRNA solution, mix well, place on ice for 5 min, centrifuge at 15,000 rpm at 4°C for 10 min, and discard the supernatant. Add 500 μL of 70% ice-cold ethanol and wash twice, discard the supernatant, dry the precipitate at room temperature for 5 minutes, add 50 μL of RNase-Free Water and resuspend to obtain purified double-stranded RNA. The concentration and purity of dsRNA were detected by UV spectrophotometer and 1% agarose gel electrophoresis. The concentration was 6.686~7.384μg/μL, A 260 /A 280 was 2.05~2.06, A 260 /A 230 was 2.36~2.45, and the purity was as follows As shown in Figure 1. Figure 1 shows the electrophoresis pattern of dsAlGRK2 synthesized in vitro, M is maker, and lanes 1 and 2 are dsAlGRK synthesized in vitro.
实施例3绿盲蝽纳米化壳聚糖/dsGRK复合体的制备Example 3 Preparation of nanoscale chitosan/dsGRK complex of green stink bug
本实施例的用于绿盲蝽的纳米化壳聚糖/dsGRK复合体,包括壳聚糖和dsGRK;壳聚糖为直接购买的去乙酰化程度为75%的壳聚糖,dsGRK和壳聚糖的质量比为5:1、4:1、3:1、2:1、1:1、1:2、1:3、1:4、1:5;dsGRK选择实施例2中体外合成的绿盲蝽GRK基因的dsRNA;The nanoscale chitosan/dsGRK complex used in this embodiment for green stink bugs includes chitosan and dsGRK; chitosan is directly purchased chitosan with a deacetylation degree of 75%, dsGRK and chitosan. The mass ratio of sugar is 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5; dsGRK was synthesized in vitro in Example 2. dsRNA of the green stink bug GRK gene;
步骤如下:Proceed as follows:
(1)室温下,配制100mmol/L硫酸钠和100mmol/L乙酸钠(pH 4.5)缓冲液;(1) Prepare 100mmol/L sodium sulfate and 100mmol/L sodium acetate (pH 4.5) buffer at room temperature;
(2)将去乙酰程度为75%的壳聚糖溶于100mmol/L醋酸钠缓冲液中,制成0.02%(w/v)的工作液,在使用前保持室温;(2) Dissolve chitosan with a deacetylation degree of 75% in 100mmol/L sodium acetate buffer to make a 0.02% (w/v) working solution, and keep it at room temperature before use;
(3)向400ng dsGRK加入1μL 100mmol/L硫酸钠缓冲液中,制成每1μl 50mmol/L硫酸钠含2μg dsGRK的溶液;(3) Add 1μL 100mmol/L sodium sulfate buffer to 400ng dsGRK to prepare a solution containing 2μg dsGRK per 1μl 50mmol/L sodium sulfate;
(4)按dsGRK:壳聚糖(CS)质量比为5:1、4:1、3:1、2:1、1:1、1:2、1:3、1:4、1:5的倍数分别进行负载。分别取0.4、0.5、0.67、1、2、4、6、8、10μL 壳聚糖溶液至干净的无核酶离心管中,向离心管中加入步骤(3)中的400ng dsGRK溶液,并用无核酶水补至20μL;(4) According to dsGRK: chitosan (CS) mass ratio is 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5 The multiples are loaded separately. Take 0.4, 0.5, 0.67, 1, 2, 4, 6, 8, 10μL respectively Pour the chitosan solution into a clean ribozyme-free centrifuge tube, add 400ng of the dsGRK solution in step (3) into the centrifuge tube, and make up to 20 μL with ribozyme-free water;
(5)在55℃的水浴中加热1min,后在室温下高速旋转,12 000rpm,1min,以促进CS-dsGRK纳米颗粒的形成;(5) Heat in a water bath at 55°C for 1 min, and then rotate at high speed at room temperature, 12 000 rpm, for 1 min to promote the formation of CS-dsGRK nanoparticles;
(6)通过在1%琼脂糖凝胶点样孔中保留的纳米化壳聚糖/dsGRK复合体来评估dsGRK的完整载量。(6) The complete loading of dsGRK was assessed by the nanosized chitosan/dsGRK complex retained in the spotted wells of 1% agarose gel.
图2为纳米化壳聚糖/dsGRK复合体最佳负载比例电泳图。图中,M:maker;泳道1:裸露的dsGRK;泳道2:壳聚糖溶液;泳道3:dsGRK-壳聚糖质量比为5:1;泳道4:dsGRK-壳聚糖质量比为4:1;泳道5:dsGRK-壳聚糖质量比为3:1;泳道6:dsGRK-壳聚糖质量比为2:1;泳道7:dsGRK-壳聚糖质量比为1:1;泳道8:dsGRK-壳聚糖质量比为1:2;泳道9:dsGRK-壳聚糖质量比为1:3;泳道10:dsGRK-壳聚糖质量比为1:4;泳道11:dsGRK-壳聚糖质量比为1:5。从图中可以看出,dsGRK-壳聚糖质量比为1:2时,其负载率最佳,达到约87.91%。Figure 2 shows the electrophoresis diagram of the optimal loading ratio of nanoscale chitosan/dsGRK complex. In the figure, M: maker; lane 1: naked dsGRK; lane 2: chitosan solution; lane 3: dsGRK-chitosan mass ratio is 5:1; lane 4: dsGRK-chitosan mass ratio is 4: 1; Lane 5: The mass ratio of dsGRK-chitosan is 3:1; Lane 6: The mass ratio of dsGRK-chitosan is 2:1; Lane 7: The mass ratio of dsGRK-chitosan is 1:1; Lane 8: The mass ratio of dsGRK-chitosan is 1:2; lane 9: the mass ratio of dsGRK-chitosan is 1:3; lane 10: the mass ratio of dsGRK-chitosan is 1:4; lane 11: dsGRK-chitosan The mass ratio is 1:5. It can be seen from the figure that when the mass ratio of dsGRK-chitosan is 1:2, the loading rate is optimal, reaching about 87.91%.
实施例4绿盲蝽纳米化壳聚糖/dsGRK2复合体粒子的表征分析Example 4 Characterization and analysis of nanoscale chitosan/dsGRK2 complex particles of Green Lysogus
室温下,利用Zetasizer(Malvern Instruments,英国)的光子相关光谱(Photon Correlation Spectroscopy,PCS)测量了纳米化壳聚糖/dsGRK复合体的表面电荷(Zeta电位)。如图3所示,负载最佳(dsGRK-壳聚糖质量比为1:2)纳米化壳聚糖/dsGRK复合体的表面电荷为16.9±4.24mV。At room temperature, the surface charge (Zeta potential) of the nanoscale chitosan/dsGRK complex was measured using Photon Correlation Spectroscopy (PCS) of Zetasizer (Malvern Instruments, UK). As shown in Figure 3, the surface charge of the nanoscale chitosan/dsGRK complex with the best loading (dsGRK-chitosan mass ratio is 1:2) is 16.9±4.24mV.
为了确定纳米颗粒的形态,在透射电子显微镜(Transmission Electron Microscope,TEM)下进行观察颗粒。将一滴纳米化壳聚糖/dsGRK复合体固定在2%磷钨酸自然染色的铜微网格上。将染色的纳米颗粒在室温下孵育10min。然后在透射电镜(HRTEM,JEOL2010F,日本)下观察纳米颗粒,并获取图像,见图4,纳米化壳聚糖/dsAlGRK2复合体粒径为69±12nm。In order to determine the morphology of the nanoparticles, the particles were observed under a transmission electron microscope (TEM). A drop of nanosized chitosan/dsGRK complex was fixed on a copper microgrid naturally stained with 2% phosphotungstic acid. The dyed nanoparticles were incubated at room temperature for 10 min. Then the nanoparticles were observed under a transmission electron microscope (HRTEM, JEOL2010F, Japan) and images were obtained, as shown in Figure 4. The particle size of the nanoscale chitosan/dsAlGRK2 complex was 69±12nm.
实施例5检测绿盲蝽纳米化壳聚糖/dsGRK2复合体的稳定性Example 5 Detection of Stability of Nanosized Chitosan/dsGRK2 Complex of Green Lygus
1、不同pH下,壳聚糖/dsAlGRK2复合体的稳定性:1. Stability of chitosan/dsAlGRK2 complex under different pH:
为了确定不同pH下,壳聚糖/dsAlGRK2复合体的稳定性及dsAlGRK2的释放情况。按照实施例3以以dsAlGRK2:壳聚糖(CS)质量比1:2加载dsAlGRK2,总体系20μL,dsAlGRK2质量400ng,高速离心后,去上清,加入10μL不同的pH溶液(pH=2、3、4、5、6、7、8、9、10、11、12),处理10min,通过1%琼脂糖凝胶电泳检测结果。 In order to determine the stability of chitosan/dsAlGRK2 complex and the release of dsAlGRK2 under different pH. According to Example 3, load dsAlGRK2 with a dsAlGRK2:chitosan (CS) mass ratio of 1:2, the total system is 20 μL, and the mass of dsAlGRK2 is 400 ng. After high-speed centrifugation, the supernatant is removed, and 10 μL of different pH solutions (pH=2, 3) are added. , 4, 5, 6, 7, 8, 9, 10, 11, 12), treat for 10 min, and detect the results by 1% agarose gel electrophoresis.
从电泳图5(A)中看出,在pH 2~11下,壳聚糖/dsAlGRK2复合体稳定存在,当pH为12时,dsAlGRK2从复合体中释放出来。图中,pH 2、3、4、5、6、7、8、9、10、11、12下处理10min,分别对应于泳道1、2、3、4、5、6、7、8、9、10、11,M:maker。It can be seen from the electrophoresis figure 5(A) that the chitosan/dsAlGRK2 complex exists stably at pH 2 to 11. When the pH is 12, dsAlGRK2 is released from the complex. In the figure, pH 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 were treated for 10 minutes, corresponding to lanes 1, 2, 3, 4, 5, 6, 7, 8, and 9 respectively. , 10, 11, M: maker.
2、不同温度下,壳聚糖/dsAlGRK2复合体的稳定性:2. Stability of chitosan/dsAlGRK2 complex at different temperatures:
为了确定不同温度下,壳聚糖/dsAlGRK2复合体的稳定性及dsRNA的释放情况。按照实施例3以dsAlGRK2:壳聚糖(CS)质量比1:2加载dsAlGRK2,总体系20μL,dsAlGRK2质量400ng。在不同温度下(5、10、15、20、25、30、35、40和45℃),处理10min,通过1%琼脂糖凝胶电泳检测结果。In order to determine the stability of chitosan/dsAlGRK2 complex and the release of dsRNA at different temperatures. According to Example 3, dsAlGRK2 was loaded with a dsAlGRK2:chitosan (CS) mass ratio of 1:2, the total system was 20 μL, and the mass of dsAlGRK2 was 400 ng. Treat at different temperatures (5, 10, 15, 20, 25, 30, 35, 40 and 45°C) for 10 min, and detect the results by 1% agarose gel electrophoresis.
从电泳图5(B)中看出,在不同温度下,dsAlGRK2均没有被降解,可以稳定存在。图中,在5、10、15、20、25、30、35、40和45℃处理10min,分别对应于泳道1、2、3、4、5、6、7、8、9,M:maker。It can be seen from the electrophoresis figure 5(B) that dsAlGRK2 has not been degraded at different temperatures and can exist stably. In the figure, treatments were performed at 5, 10, 15, 20, 25, 30, 35, 40 and 45°C for 10 min, corresponding to lanes 1, 2, 3, 4, 5, 6, 7, 8 and 9 respectively, M: maker .
3、RNase A处理下,壳聚糖/dsAlGRK2复合体的稳定性:3. Stability of chitosan/dsAlGRK2 complex under RNase A treatment:
为了确定纳米化壳聚糖/dsAlGRK2复合体的稳定性,按照实施例3以dsAlGRK2:壳聚糖(CS)质量比1:2加载dsAlGRK2,总体系20μL,dsAlGRK2质量400ng,加入1μL RNase A(0.1μg/μL,50mM NaCl),在37℃下处理5min后得到CS-dsAlGRK2溶液,将CS-dsAlGRK2溶液在1,2000rpm离心1min,去除上清,加入20μL pH=12的NaOH溶液,处理30min,通过1%琼脂糖凝胶电泳检测结果。In order to determine the stability of the nanoscale chitosan/dsAlGRK2 complex, dsAlGRK2 was loaded according to Example 3 with a dsAlGRK2:chitosan (CS) mass ratio of 1:2, the total system was 20 μL, the mass of dsAlGRK2 was 400 ng, and 1 μL RNase A (0.1 μg/μL, 50mM NaCl), treat at 37°C for 5 minutes to obtain CS-dsAlGRK2 solution, centrifuge the CS-dsAlGRK2 solution at 1,2000rpm for 1min, remove the supernatant, add 20μL of NaOH solution with pH=12, treat for 30min, and pass 1% agarose gel electrophoresis detection results.
以裸露的dsAlGRK2为对照,观察电泳图的变化,检测纳米化壳聚糖/dsGRK复合体的稳定性。Using naked dsAlGRK2 as a control, observe the changes in the electrophoresis pattern and detect the stability of the nanochitosan/dsGRK complex.
从电泳图5(C)看出,壳聚糖可以有效的提高dsRNA的稳定性,减少被核酸酶的降解。图中,M:maker;泳道1:未经过RNase A处理的dsAlGRK2;泳道2:未经过RNase A处理的CS-dsAlGRK2;泳道3:经过RNase A处理的dsAlGRK2;泳道4:经过RNase A处理的CS-dsAlGRK2。It can be seen from the electrophoresis figure 5(C) that chitosan can effectively improve the stability of dsRNA and reduce degradation by nucleases. In the figure, M: maker; lane 1: dsAlGRK2 that has not been treated with RNase A; lane 2: CS-dsAlGRK2 that has not been treated with RNase A; lane 3: dsAlGRK2 that has been treated with RNase A; lane 4: CS that has been treated with RNase A -dsAlGRK2.
实施例6绿盲蝽GRK基因的dsAlGRK2的致死实验Example 6 Lethality experiment of dsAlGRK2 of the green stink bug GRK gene
1、检测绿盲蝽GRK2基因的沉默效率1. Detection of silencing efficiency of GRK2 gene of Green Lysogus
将壳聚糖和dsRNA以2:1的质量比混合制备纳米颗粒,用于qRT-PCR和生物测定实验。将四季豆(1cm3)分别浸泡(1h)在0.02%(w/v)壳聚糖、100ng/μL dsGFP、CS-dsGFP(dsGFP浓度为100ng/μL)、100ng/μL dsAlGRK2、CS-dsAlGRK2(dsAlGRK2浓度为100ng/μL)。在室温下分别干燥3、6、12、24、和48h后,将30头4龄若虫 转移到干燥后的四季豆上。饲喂24h后,从5只绿盲蝽若虫中提取RNA样本进行qRT-PCR实验,分别检测AlGRK2基因和内参基因β-actin的相对表达量,采用2-△△Ct法计算AlGRK2基因的沉默检测。反应体系(20μL):SYBR Green Master Mix(YEASEN,上海)10μL,上下游引物(10pmol/L;GRK2-F:TGAAGGGTGAGCAGTGCATA,GRK2-R:CCTGCTTTCTTGGCCATGTT)各0.4μL,cDNA模板2μL,RNase-free H2O 7.2μL。反应程序:95℃5min;95℃10s,60℃40s,循环40次;95℃15s,60℃60s,95℃15s形成溶解曲线。每个样品设置3个生物学重复及3个技术重复。Chitosan and dsRNA were mixed at a mass ratio of 2:1 to prepare nanoparticles for qRT-PCR and bioassay experiments. Green beans (1cm 3 ) were soaked (1h) in 0.02% (w/v) chitosan, 100ng/μL dsGFP, CS-dsGFP (dsGFP concentration is 100ng/μL), 100ng/μL dsAlGRK2, CS-dsAlGRK2 ( dsAlGRK2 concentration is 100ng/μL). After drying at room temperature for 3, 6, 12, 24, and 48 hours, 30 fourth-instar nymphs were Transfer to dried green beans. After 24 hours of feeding, RNA samples were extracted from five green stink bug nymphs for qRT-PCR experiments. The relative expression levels of the AlGRK2 gene and the internal reference gene β-actin were detected respectively. The 2- △△Ct method was used to calculate the silencing detection of the AlGRK2 gene. . Reaction system (20 μL): SYBR Green Master Mix (YEASEN, Shanghai) 10 μL, upstream and downstream primers (10 pmol/L; GRK2-F: TGAAGGGTGAGCAGTGCATA, GRK2-R: CCTGCTTTCTTGGCCATGTT) 0.4 μL each, 2 μL cDNA template, RNase-free H 2 O 7.2μL. Reaction program: 95℃ for 5min; 95℃ for 10s, 60℃ for 40s, cycle 40 times; 95℃ for 15s, 60℃ for 60s, and 95℃ for 15s to form a dissolution curve. Each sample had 3 biological replicates and 3 technical replicates.
图6表明,处理组(CS-dsAlGRK2)与对照组(CS、dsGFP、CS-dsGFP)以及(dsAlGRK2)相比,绿盲蝽GRK2基因的表达量显著降低。结果表明CS-dsAlGRK2显著提高了dsRNA对该基因的沉默效应。图中以*表示差异显著;NS表示无显著差异(t检验两两比较,P<0.05)。Figure 6 shows that compared with the control group (CS, dsGFP, CS-dsGFP) and (dsAlGRK2), the expression of the Green Lygus GRK2 gene in the treatment group (CS-dsAlGRK2) was significantly reduced. The results showed that CS-dsAlGRK2 significantly improved the silencing effect of dsRNA on this gene. * in the figure indicates significant difference; NS indicates no significant difference (pairwise comparison by t test, P<0.05).
2、喂食CS-dsAlGRK2对绿盲蝽若虫生长发育的影响2. Effects of feeding CS-dsAlGRK2 on the growth and development of green stink bug nymphs
生物测定实验采用相同的饲喂方法,将四季豆(1cm3)分别浸泡(1h)在0.02%(w/v)壳聚糖、100ng/μL dsGFP、CS-dsGFP(dsGFP浓度为100ng/μL)、100ng/μL dsAlGRK2、CS-dsAlGRK2(dsAlGRK2浓度为100ng/μL),分别在室温下在表面干燥6、12、24h后,喂食绿盲蝽,3天后统计试虫的存活率,并测定了4龄若虫的发育历期和5龄若虫的体重。每组处理30头若虫,设置3个生物学重复。The same feeding method was used in the bioassay experiment. Green beans (1cm 3 ) were soaked (1h) in 0.02% (w/v) chitosan, 100ng/μL dsGFP, and CS-dsGFP (dsGFP concentration was 100ng/μL). , 100ng/μL dsAlGRK2 and CS-dsAlGRK2 (dsAlGRK2 concentration is 100ng/μL). After drying on the surface at room temperature for 6, 12 and 24 hours respectively, the green bugs were fed. After 3 days, the survival rate of the test insects was counted, and 4 The development period of instar nymphs and the weight of 5th instar nymphs. Each group was treated with 30 nymphs, and 3 biological replicates were set.
图7表明,处理组(CS-dsAlGRK2)与对照组(CS、dsGFP、CS-dsGFP)以及(dsAlGRK2)相比,绿盲蝽的死亡率显著升高,而且CS-dsAlGRK2处理后,死亡率达到了50%,比裸露的dsAlGRK2提升了30%左右;图8表明,绿盲蝽取食CS-dsAlGRK2后,4龄绿盲蝽若虫的发育历期显著延长;图9表明,绿盲蝽取食CS-dsAlGRK2后,5龄绿盲蝽若虫的体重显著降低。图中不同字母之间有显著差异(小写字母表示处理组之间有显著差异,大写字母表示干燥时间之间有显著差异)。 Figure 7 shows that compared with the control group (CS, dsGFP, CS-dsGFP) and (dsAlGRK2), the mortality rate of the green stink bug in the treatment group (CS-dsAlGRK2) is significantly increased, and after CS-dsAlGRK2 treatment, the mortality rate reaches 50%, which is about 30% higher than that of bare dsAlGRK2; Figure 8 shows that after the green bug feeds on CS-dsAlGRK2, the development period of the 4th instar nymphs is significantly extended; Figure 9 shows that after the green bug feeds, After CS-dsAlGRK2, the body weight of 5th instar chlorophyll bug nymphs was significantly reduced. There are significant differences between different letters in the figure (lowercase letters indicate significant differences between treatment groups, capital letters indicate significant differences between drying times).

Claims (10)

  1. 一种纳米化壳聚糖/dsGRK复合体,其特征在于,所述纳米化壳聚糖/dsGRK复合体包括dsGRK和壳聚糖,所述壳聚糖的去乙酰化程度为75~80%,所述dsGRK为绿盲蝽G蛋白偶联受体激酶的dsRNA,其dsRNA的核苷酸序列如SEQ ID NO.1所示。A nanoscale chitosan/dsGRK complex, characterized in that the nanoscale chitosan/dsGRK complex includes dsGRK and chitosan, and the degree of deacetylation of the chitosan is 75 to 80%, The dsGRK is the dsRNA of the green stink bug G protein-coupled receptor kinase, and the nucleotide sequence of its dsRNA is shown in SEQ ID NO.1.
  2. 根据权利要求1所述的纳米化壳聚糖/dsGRK复合体,其特征在于,所述dsGRK和壳聚糖的质量比为1:2~5。The nanoscale chitosan/dsGRK complex according to claim 1, wherein the mass ratio of the dsGRK and chitosan is 1:2-5.
  3. 根据权利要求1所述的纳米化壳聚糖/dsGRK复合体,其特征在于,所述纳米化壳聚糖/dsGRK复合体尺寸为200~400nm,表面电荷为16.9±4.24mV。The nanochitosan/dsGRK complex according to claim 1, wherein the nanochitosan/dsGRK complex has a size of 200-400 nm and a surface charge of 16.9±4.24mV.
  4. 权利要求1~3任一项所述的纳米化壳聚糖/dsGRK复合体的制备方法,其特征在于,包括以下步骤:The preparation method of nanoscale chitosan/dsGRK complex according to any one of claims 1 to 3, characterized in that it includes the following steps:
    1)将去乙酰化程度为75~80%的壳聚糖溶解在醋酸钠溶液中制备壳聚糖溶液;1) Dissolve chitosan with a deacetylation degree of 75-80% in sodium acetate solution to prepare a chitosan solution;
    2)向体外合成的dsGRK中加入硫酸钠溶液制备dsGRK悬浮液;2) Add sodium sulfate solution to the dsGRK synthesized in vitro to prepare a dsGRK suspension;
    3)将壳聚糖溶液和dsGRK悬浮液混合,水浴静置后高速离心即得。3) Mix chitosan solution and dsGRK suspension, let stand in a water bath and then centrifuge at high speed to obtain.
  5. 根据权利要求4所述的纳米化壳聚糖/dsGRK复合体的制备方法,其特征在于,步骤1)中,所述壳聚糖溶液中的壳聚糖浓度为0.02~0.1w/v%;步骤2)中,所述硫酸纳溶液的浓度为50~100mmol/L。The method for preparing nanoscale chitosan/dsGRK complex according to claim 4, characterized in that in step 1), the chitosan concentration in the chitosan solution is 0.02 to 0.1 w/v%; In step 2), the concentration of the sodium sulfate solution is 50-100 mmol/L.
  6. 根据权利要求4所述的纳米化壳聚糖/dsGRK复合体的制备方法,其特征在于,步骤2)中,所述dsGRK与硫酸钠的质量比为1:10~20。The method for preparing nanoscale chitosan/dsGRK complex according to claim 4, characterized in that in step 2), the mass ratio of dsGRK to sodium sulfate is 1:10-20.
  7. 根据权利要求3所述的纳米化壳聚糖/dsGRK复合体的制备方法,其特征在于,步骤3)水浴静置步骤中,水浴温度为50~60℃,静置1~2min;步骤3)高速离心步骤中,离心条件12000~15000rpm,1~2min。The preparation method of nanoscale chitosan/dsGRK complex according to claim 3, characterized in that, in step 3), in the water bath standing step, the water bath temperature is 50-60°C, and the water bath is left standing for 1-2 minutes; step 3) In the high-speed centrifugation step, the centrifugation conditions are 12,000 to 15,000 rpm, 1 to 2 minutes.
  8. 权利要求1~3任一项所述的纳米化壳聚糖/dsGRK复合体在绿盲蝽防治中的应用。Application of the nanoscale chitosan/dsGRK complex described in any one of claims 1 to 3 in the prevention and control of green stink bug.
  9. 根据权利要求8所述的应用,其特征在于,所述应用为:将纳米化壳聚糖/dsGRK复合体喷施在植物表面上,喂食所述的绿盲蝽;或将植物浸泡在纳米化壳聚糖/dsGRK复合体中,干燥后,喂食所述的绿盲蝽。The application according to claim 8, characterized in that the application is: spraying the nanoscale chitosan/dsGRK complex on the surface of the plant and feeding the green stink bug; or soaking the plant in the nanoscale chitosan/dsGRK complex. In the chitosan/dsGRK complex, after drying, the green stink bug was fed.
  10. 根据权利要求9所述的应用,其特征在于,所述植物为四季豆。 The application according to claim 9, characterized in that the plant is kidney beans.
PCT/CN2023/095169 2022-07-22 2023-05-19 Nano chitosan/dsgrk complex, preparation method therefor, and application thereof WO2024016820A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210870353.1 2022-07-22
CN202210870353.1A CN115992131A (en) 2022-07-22 2022-07-22 Nanocrystallized chitosan/dsGRK complex and preparation method and application thereof

Publications (1)

Publication Number Publication Date
WO2024016820A1 true WO2024016820A1 (en) 2024-01-25

Family

ID=85993074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095169 WO2024016820A1 (en) 2022-07-22 2023-05-19 Nano chitosan/dsgrk complex, preparation method therefor, and application thereof

Country Status (2)

Country Link
CN (1) CN115992131A (en)
WO (1) WO2024016820A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115992131A (en) * 2022-07-22 2023-04-21 江苏省农业科学院 Nanocrystallized chitosan/dsGRK complex and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109169702A (en) * 2018-08-28 2019-01-11 湖南省植物保护研究所 Nanosizing RNAi preparation and its preparation method and application
CN110396524A (en) * 2019-05-31 2019-11-01 海南大学 A kind of RNAi nano particle and Preparation method and use for mosquito
CN111513077A (en) * 2020-05-25 2020-08-11 中国农业科学院烟草研究所 RNAi nano preparation, preparation method thereof and application thereof in TMV prevention and treatment
CN113943720A (en) * 2021-11-03 2022-01-18 江苏省农业科学院 Apolygus lucorum GRK gene, dsRNA thereof, synthetic method and application thereof
CN115992131A (en) * 2022-07-22 2023-04-21 江苏省农业科学院 Nanocrystallized chitosan/dsGRK complex and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9095630B2 (en) * 2005-05-19 2015-08-04 L'oreal Vectorization of dsRNA by cationic particles and use of same on a skin model
DK2037899T3 (en) * 2006-07-07 2011-05-09 Univ Aarhus Nucleic acid delivery nanoparticles
CN106399483A (en) * 2016-08-31 2017-02-15 中国农业科学院植物保护研究所 RNA interference feeding method for apolygus lucorum and application of feeding method in gene screening
CN106399331A (en) * 2016-08-31 2017-02-15 中国农业科学院植物保护研究所 Lygus lucorum ApEps15 gene and applications thereof in preventing and treating RNAi-mediated pests

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109169702A (en) * 2018-08-28 2019-01-11 湖南省植物保护研究所 Nanosizing RNAi preparation and its preparation method and application
CN110396524A (en) * 2019-05-31 2019-11-01 海南大学 A kind of RNAi nano particle and Preparation method and use for mosquito
CN111513077A (en) * 2020-05-25 2020-08-11 中国农业科学院烟草研究所 RNAi nano preparation, preparation method thereof and application thereof in TMV prevention and treatment
CN113943720A (en) * 2021-11-03 2022-01-18 江苏省农业科学院 Apolygus lucorum GRK gene, dsRNA thereof, synthetic method and application thereof
CN115992131A (en) * 2022-07-22 2023-04-21 江苏省农业科学院 Nanocrystallized chitosan/dsGRK complex and preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAOZHI REN; MUHAMMAD MUBASHAR ZAFAR; HUIJUAN MO; ZHAOEN YANG; FUGUANG LI: "Fighting Against Fall Armyworm by Using Multiple Genes Pyramiding and Silencing (MGPS) Technology", SCIENCE CHINA LIFE SCIENCES, ZHONGGUO KEXUE ZAZHISHE, CHINA, vol. 62, no. 12, 27 November 2019 (2019-11-27), China , pages 1703 - 1706, XP009552029, ISSN: 1674-7305, DOI: 10.1007/s11427-019-1586-7 *
RAMESH KUMAR D.; SARAVANA KUMAR P.; GANDHI M. RAJIV; AL-DHABI NAIF ABDULLAH; PAULRAJ M. GABRIEL; IGNACIMUTHU S.: "Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene inAedes aegyptimosquitoes", INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, ELSEVIER BV, NL, vol. 86, 12 January 2016 (2016-01-12), NL , pages 89 - 95, XP029470079, ISSN: 0141-8130, DOI: 10.1016/j.ijbiomac.2016.01.030 *

Also Published As

Publication number Publication date
CN115992131A (en) 2023-04-21

Similar Documents

Publication Publication Date Title
EP3320092B1 (en) Engineered crispr-cas9 compositions and methods of use
US11220694B1 (en) Rice cells and rice plants
WO2024016820A1 (en) Nano chitosan/dsgrk complex, preparation method therefor, and application thereof
JP2019500867A (en) Engineered nucleic acid targeted nucleic acid
US20230235349A1 (en) Novel maize cells and maize plants
AU2020358720A1 (en) Genetic engineering of fungi to modulate tryptamine expression
EP4281554A1 (en) Novel engineered and chimeric nucleases
CN107916264A (en) The dsRNA of wing development related gene vestigial and its application in citrus fruit fly is prevented
CN107254475B (en) A method of based on ZmMIKC2a Gene regulation Seed Starch Content in Maize
Xu et al. Evaluation of the anti-viral efficacy of three different dsRNA nanoparticles against potato virus Y using various delivery methods
US20220186248A1 (en) Genetically enhanced maize plants
Schwartz et al. Carbon dots for efficient siRNA delivery and gene silencing in plants
US20220282259A1 (en) Methods and compositions to promote targeted genome modifications using huh endonucleases
WO2022120142A1 (en) Pest and pathogen resistant soybean plants
US20200347389A1 (en) Compositions and methods for generating diversity at targeted nucleic acid sequences
CN112877331A (en) Method for creating high amylose corn germplasm
CN108949762A (en) The dsRNA of wing development related gene optomotor-blind and its application in control of insect
US11926835B1 (en) Methods for efficient tomato genome editing
CN112877368B (en) Gene editing system and method for mature plants
US11802288B1 (en) Methods for efficient soybean genome editing
US11866719B1 (en) Heterologous integration of regulatory elements to alter gene expression in wheat cells and wheat plants
CN108841827B (en) dsRNA (double-stranded ribonucleic acid) of wing development related gene wingless and application of dsRNA in controlling bactrocera dorsalis
Xu et al. A change in the cell wall status initiates the elimination of the nucellus in Arabidopsis
CN115812699A (en) Carbon-based nano material for delivering dsRNA (double-stranded ribonucleic acid) as nucleic acid carrier as well as preparation method and application of carbon-based nano material
US20240132908A1 (en) Pest and pathogen resistant soybean plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841889

Country of ref document: EP

Kind code of ref document: A1