WO2024016778A1 - Buck电路及其控制方法、控制器、控制装置、存储介质 - Google Patents
Buck电路及其控制方法、控制器、控制装置、存储介质 Download PDFInfo
- Publication number
- WO2024016778A1 WO2024016778A1 PCT/CN2023/091285 CN2023091285W WO2024016778A1 WO 2024016778 A1 WO2024016778 A1 WO 2024016778A1 CN 2023091285 W CN2023091285 W CN 2023091285W WO 2024016778 A1 WO2024016778 A1 WO 2024016778A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- buck circuit
- control
- load
- current
- voltage
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 159
- 239000003990 capacitor Substances 0.000 claims description 105
- 230000007423 decrease Effects 0.000 description 23
- 238000010586 diagram Methods 0.000 description 18
- 230000009471 action Effects 0.000 description 15
- 230000006870 function Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
Definitions
- the present disclosure relates to the field of power supply technology, and in particular, to a BUCK circuit and its control method, controller, control device, and storage medium.
- BUCK circuit is widely used in various occasions as a step-down circuit.
- the currently commonly used BUCK circuit is shown in Figure 1.
- the control method shown in Figure 2 is generally used to control the switching tubes Q1 and Q2.
- Frequency on-off control the dotted box in Figure 2(b) indicates that during the entire step-down working time, the switching tubes Q1 and Q2 are in a high-frequency on-off state, which results in extremely large switching losses in the circuit and poor circuit efficiency. .
- the present disclosure aims to solve one of the technical problems in the related art, at least to a certain extent.
- the first purpose of this disclosure is to propose a control method for the BUCK circuit, determine the control type and control method of the BUCK circuit based on the load information of the BUCK circuit, and thereby control the carrier frequency of the first switch tube in the BUCK circuit. and duty cycle, so that the BUCK circuit operates at a switching frequency, which can reduce the average switching frequency of the switching tube without affecting the normal operation of the load, thereby effectively reducing the switching loss of the switching tube and improving the working efficiency of the BCUK circuit.
- the second purpose of the present disclosure is to provide a controller for a BUCK circuit.
- a third object of the present disclosure is to provide a computer-readable storage medium.
- the fourth object of the present disclosure is to provide a control device for a BUCK circuit.
- the fifth object of the present disclosure is to provide a BUCK circuit.
- the first embodiment of the present disclosure proposes a control method of the BUCK circuit, which includes: determining the load information of the BUCK circuit; determining the control type and control method of the BUCK circuit based on the load information; and determining the control type and control method of the BUCK circuit based on the control type and control method.
- the carrier frequency and duty cycle of the first switching tube in the BUCK circuit are controlled so that the BUCK circuit operates at a switching frequency.
- the control type and control mode of the BUCK circuit are determined according to the load information of the BUCK circuit, and the carrier frequency and duty cycle of the first switch tube in the BUCK circuit are thereby controlled, so that The BUCK circuit operates at a variable switching frequency, which can reduce the average switching frequency of the switching tube without affecting the normal operation of the load, thereby effectively reducing the switching loss of the switching tube and improving the working efficiency of the BCUK circuit.
- the second embodiment of the present disclosure proposes a controller of a BUCK circuit, which includes a memory, a processor, and a control program of the BUCK circuit stored in the memory and executable on the processor.
- the processor executes the BUCK circuit.
- the control program of the circuit is implemented, the control method of the BUCK circuit mentioned above is implemented.
- the aforementioned control method of the BUCK circuit is implemented through the processor, so that the BUCK circuit operates at a switching frequency, which can reduce the average switching frequency of the switching tube without affecting the normal operation of the load. , thereby effectively reducing the switching loss of the switch tube and improving the working efficiency of the BCUK circuit.
- the third embodiment of the present disclosure proposes a computer-readable storage medium on which a control program of the BUCK circuit is stored.
- the control program of the BUCK circuit is executed by the processor, the control of the aforementioned BUCK circuit is realized. method.
- the BUCK circuit is operated at a switching frequency, which can reduce the average switching frequency of the switching tube without affecting the normal operation of the load, thereby effectively Reduce the switching loss of the switch tube and improve the working efficiency of the BCUK circuit.
- the fourth embodiment of the present disclosure proposes a control device for a BUCK circuit, including: a determination module for determining the load information of the BUCK circuit, and determining the control type and control method of the BUCK circuit based on the load information; control module for root The carrier frequency and duty cycle of the first switching tube in the BUCK circuit are controlled according to the control type and control method, so that the BUCK circuit operates at a switching frequency.
- the load information of the BUCK circuit is determined through the determination module, and the control type and control method of the BUCK circuit are determined based on the load information, and the control module controls the carrier frequency of the first switching tube accordingly. and duty cycle, so that the BUCK circuit operates at a switching frequency, which can reduce the average switching frequency of the switching tube without affecting the normal operation of the load, thereby effectively reducing the switching loss of the switching tube and improving the working efficiency of the BCUK circuit.
- the fifth embodiment of the present disclosure provides a BUCK circuit, including: an input side capacitor; a first switch tube, one end of the first switch tube is connected to one end of the input side capacitor; a freewheeling element, a freewheeling element One end of the component is connected to the other end of the first switching tube, the other end of the freewheeling component is connected to the other end of the input side capacitor; the inductor, one end of the inductor is connected to the other end of the first switching tube; the output side capacitor, the output side capacitor One end of the capacitor is connected to the other end of the inductor, and the other end of the output side capacitor is connected to the other end of the freewheeling element; the controller is used to determine the load information of the BUCK circuit, and determine the control type and control method of the BUCK circuit based on the load information. and controlling the carrier frequency and duty cycle of the first switching tube according to the control type and control method, so that the BUCK circuit operates at a switching frequency.
- the controller determines the load information of the BUCK circuit, and determines the control type and control method of the BUCK circuit based on the load information, and thereby controls the carrier frequency and duty cycle of the first switch tube, so that
- the BUCK circuit operates at a variable switching frequency, which can reduce the average switching frequency of the switching tube without affecting the normal operation of the load, thereby effectively reducing the switching loss of the switching tube and improving the working efficiency of the BCUK circuit.
- Figure 1 is a circuit diagram of a BUCK circuit in the related art
- Figure 2 is a diagram showing the relationship between switching tube action and voltage and current of a BUCK circuit in the related art
- Figure 3 is a circuit diagram of a BUCK circuit according to an embodiment of the present disclosure.
- Figure 4 is a circuit diagram of a BUCK circuit according to another embodiment of the present disclosure.
- Figure 5 is a flow chart of a control method of a BUCK circuit according to an embodiment of the present disclosure
- Figure 6 is a flow chart of a control method of a BUCK circuit according to an embodiment of the present disclosure
- Figures 7a-7d are diagrams showing the relationship between switching tube action and voltage and current of the BUCK circuit according to some embodiments of the present disclosure
- Figure 8 is a flow chart of a control method of a BUCK circuit according to another embodiment of the present disclosure.
- Figures 9a-9d are diagrams showing the relationship between the switching tube action and the voltage and current of the BUCK circuit according to other embodiments of the present disclosure.
- Figure 10 is a flow chart of a control method of a BUCK circuit according to an embodiment of the present invention.
- Figures 11a-11d are diagrams showing the relationship between switching tube action and voltage and current of the BUCK circuit according to some embodiments of the present invention.
- Figure 12 is a flow chart of a control method of a BUCK circuit according to an embodiment of the present invention.
- Figure 13 is a flow chart of a control method of a BUCK circuit according to an embodiment of the present invention.
- Figure 14 is a flow chart of a control method of a BUCK circuit according to an embodiment of the present invention.
- Figures 15a-15d are diagrams showing the relationship between switching tube action and voltage and current of the BUCK circuit according to other embodiments of the present invention.
- Figure 16 is a schematic structural diagram of a controller of a BUCK circuit according to an embodiment of the present disclosure
- Figure 17 is a schematic structural diagram of a control device of a BUCK circuit according to an embodiment of the present disclosure.
- Figure 18 is a circuit diagram of a BUCK circuit according to one embodiment of the present disclosure.
- the control method of the present disclosure can be applied to the BUCK circuit shown in Figure 3 or Figure 4.
- the BUCK circuit includes an input side capacitor C1, a first switching transistor Q1, a freewheeling element, an inductor L1 and an output side capacitor C2.
- the freewheeling element can be the diode D shown in Figure 3 or the diode D shown in Figure 4
- the second switching tube Q2 is shown, in which one end of the first switching tube Q1 is connected to one end of the input side capacitor C1; one end of the freewheeling element is connected to the other end of the first switching tube Q1, and the other end of the freewheeling element is connected to The other end of the input side capacitor C1 is connected; one end of the inductor L1 is connected to the other end of the first switching tube Q1; one end of the output side capacitor C2 is connected to the other end of the inductor L1, and the output side capacitor The other end of capacitor C2 is connected to the other end of the freewheeling element.
- the voltage reduction function of the BUCK circuit can be realized to reduce the input voltage (that is, the voltage across the input side capacitor C1).
- the output voltage is obtained by reducing the voltage (that is, the voltage across the output side capacitor C2), and the input voltage is greater than the output voltage; as shown in Figure 3, by controlling the on or off of the first switch Q1, the voltage reduction of the BUCK circuit can be achieved Function.
- FIG. 5 is a flow chart of a control method of a BUCK circuit according to an embodiment of the present disclosure. It should be noted that, in order to simplify the description, the following description mainly takes the control method applied to the BUCK circuit shown in Figure 3 as an example.
- control method of the BUCK circuit may include the following steps:
- the load information of the BUCK circuit can include load type and load size.
- the load type can be divided into current-sensitive type and voltage-sensitive type.
- the current-sensitive type means that the current fluctuation of the BUCK circuit has a greater impact on the load, which may cause the load to Failure; voltage-sensitive type means that the voltage fluctuation of the BUCK circuit has a greater impact on the load, which may cause load failure.
- control type of the BUCK circuit can include current control type and voltage control type.
- the current control type refers to controlling the BUCK circuit based on current parameters so that the current parameters meet the preset requirements;
- voltage control type refers to The BUCK circuit is controlled based on the voltage parameters so that the voltage parameters meet the preset requirements. Both are suitable for different loads. For example, when the load is sensitive to current parameters, the current control type can be used to control the BUCK circuit; when the load is sensitive to voltage parameters, the voltage control type can be used to control the BUCK circuit.
- the control method of the BUCK circuit refers to the method of controlling the carrier frequency and duty cycle of the first switching tube in the BUCK circuit based on corresponding voltage or current parameters.
- determining the control type and control method of the BUCK circuit based on the load information includes: determining the control type based on the load type, and determining the control method based on the load size, where the control type includes a current control type and a voltage control type.
- load types correspond to different control types.
- the current control type is used to control the BUCK circuit to limit the inductor current to an appropriate range.
- the load type is voltage In the sensitive type, the voltage control type is used to control the BUCK circuit to limit the output side capacitor voltage within an appropriate range.
- the load size i.e. load power
- the control method of the BUCK circuit can be determined based on the load size.
- a current detection module can be set on the input side of the converter shown in Figure 3, and The current detected by the current detection module is used as the input current; since the input voltage is a fixed value, for example, the input voltage can be the usual 220v mains voltage, the load size can be determined based on the input current size, and then the BUCK circuit is determined based on the load size. control method.
- the method of determining the load size based on the input current is only for illustrative purposes and does not limit the disclosure.
- the output voltage and output current of the load terminal can also be detected and the load power can be obtained directly based on the product of the two. Determine payload size.
- control method is determined according to the load size, including: when the load of the BUCK circuit is greater than or equal to the preset value, the control method is determined to be a low carrier frequency, high duty cycle control method; when the load of the BUCK circuit is less than the preset value , determine the control mode as high carrier frequency and high duty cycle control mode.
- different load sizes correspond to different control methods. For example, when the load is large, a low carrier frequency and high duty cycle control method is used; when the load is small, a high carrier frequency and high duty cycle control method is used. Way.
- the control method when the input current of the BUCK circuit is greater than or equal to the preset current threshold, it means that the load is greater than or equal to the preset value.
- the control method is set to low carrier frequency and high duty cycle, so that the inductor current and output side capacitance The voltage rises, and the low carrier frequency control method reduces the switching loss of the first switch tube; when the input current is less than the preset current threshold, it means that the load is less than the preset value.
- the control method is set to high carrier frequency, high occupancy The empty ratio causes the inductor current and the output side capacitor voltage to increase.
- the high carrier frequency control method reduces the ripple current and ripple voltage of the first switch tube to prevent excessive ripple current from affecting the load operation.
- S106 Control the carrier frequency and duty cycle of the first switching tube in the BUCK circuit according to the control type and control method, so that the BUCK circuit operates at a switching frequency.
- the carrier frequency affects the switching loss of the first switching tube, that is, the higher the carrier frequency, the higher the switching loss of the first switching tube; the lower the carrier frequency, the lower the switching loss of the first switching tube.
- the duty cycle affects the changing trend of the inductor current and output-side capacitor voltage of the BUCK circuit. That is, when the duty ratio is large, the inductor current and output-side capacitor voltage increase; when the duty ratio is small, the inductor current and output-side capacitor voltage decrease. .
- the carrier frequency and duty cycle of the first switching tube are controlled based on the control type and control method, so that the BUCK circuit operates at a switching frequency, thereby not only satisfying the load requirements, and by changing Changing the switching frequency of the BUCK circuit and using low frequency to control the first switching tube at certain times can reduce the switching frequency of the switching tube, thereby reducing the switching loss of the switching tube and improving the efficiency of the BUCK circuit.
- the carrier frequency and duty cycle of the first switch tube in the BUCK circuit are controlled, including: using low carrier frequency and high duty cycle control When controlling the first switch tube in this way, the inductor current of the BUCK circuit is obtained, and when the inductor current reaches the first given current, a high carrier frequency, low duty cycle control method is used to control the first switch tube, so as to Reduce the inductor current to the second given current; or, when using a high carrier frequency, high duty cycle control method to control the first switching tube, obtain the inductor current of the BUCK circuit, and when the inductor current reaches the first given current When the current is constant, a low carrier frequency and low duty cycle control method is used to control the first switch tube so that the inductor current is reduced to the second given current.
- the load size can be determined by obtaining the input current of the BUCK circuit ( The load size can also be determined through other methods, which are not limited here). If it is determined based on the input current that the load of the BCUK circuit is greater than or equal to the preset value, first use a low carrier frequency, high duty cycle control method to control the first switch Q1 Control is performed. At this time, the relationship between the switching tube action and the voltage and current is as shown in Figure 7a or Figure 7b.
- the inductor current rises, and due to the low switching frequency, the switching loss of the first switching tube Q1 is low.
- adjust the control method of the first switching transistor Q1 that is, use a high carrier frequency, low duty cycle control method to continue to control the first switching transistor Q1. Since the duty cycle decreases, The inductor current decreases, and due to the higher switching frequency, the ripple current of the BUCK circuit is smaller, preventing excessive ripple current from affecting the load operation.
- the inductor current drops to the second given current, the input current is re-detected to determine the load size.
- the load of the BCUK circuit is determined to be less than the preset value based on the input current, first use a high carrier frequency and high duty cycle control method to control the first switch Q1.
- the relationship between the switch action and the voltage and current is shown in Figure 7c-
- the ripple current is small, which avoids excessive ripple current affecting the load operation; when the inductor current rises to the first given current , adjust the control method of the first switch Q1, that is, use a low carrier frequency, low duty cycle control method to continue to control the first switch Q1.
- the inductor current decreases, and due to the low switching frequency, The switching loss of the first switching tube Q1 is reduced.
- the input current is re-detected to determine the load size.
- the first given current needs to be less than or equal to the maximum current required by the load, and must be less than or equal to the maximum allowable current of each component in the BUCK circuit (such as less than or equal to the withstand current of the first switch tube and the saturation current of the inductor) smaller value) to ensure that each component will not be damaged due to excessive current (such as ensuring that the first switch tube will not be damaged by breakdown and the inductor will not be saturated);
- the second given current must be greater than or equal to zero and less than
- the first given current as shown in Figure 7a and Figure 7c, the second given current is equal to zero, as shown in Figure 7b and Figure 7d, the second given current is greater than zero and less than the first given current; the first given current
- the current difference between the current and the second given current is the current ripple, which needs to meet the load working requirements; the average current of the inductor is equal to the load required working current to ensure that the load can work normally.
- the carrier frequency and duty cycle of the first switch tube in the BUCK circuit are controlled, including: when using low carrier frequency and high duty cycle
- the control method controls the first switch the output side capacitor voltage of the BUCK circuit is obtained, and when the output side capacitor voltage reaches the first given voltage, a high carrier frequency, low duty cycle control method is used to control the first switch.
- the output side capacitor voltage of the BUCK circuit is obtained by controlling the first switching tube to reduce the output side capacitor voltage to a second given voltage; or, when using a high carrier frequency and high duty cycle control method to control the first switching tube.
- a low carrier frequency and low duty cycle control method is used to control the first switching tube, so that the output-side capacitor voltage is reduced to the second given voltage.
- the load size can be determined by obtaining the input current of the BUCK circuit (or Determine the load size through other methods (no restrictions here)), if the load of the BCUK circuit is determined to be greater than or equal to the preset value based on the input current, first use a low carrier frequency, high duty cycle control method to control the first switch Q1 , at this time, the relationship between the switching tube action and the voltage and current is as shown in Figure 7a or Figure 7b. Due to the high duty ratio, the output side capacitor voltage rises, and due to the low switching frequency, the switching loss of the first switching tube Q1 is low.
- the output side capacitor voltage When the output side capacitor voltage reaches the first given voltage, adjust the control method of the first switching transistor Q1, that is, use a high carrier frequency, low duty cycle control method to continue to control the first switching transistor Q1. Since the duty cycle decreases , the output side capacitor voltage drops, and due to the high switching frequency, the ripple voltage of the BUCK circuit is relatively Small, which avoids excessive ripple voltage affecting load operation.
- the input current is re-detected to determine the load size.
- the output side capacitor voltage decreases, and due to The switching frequency is lower, and the switching loss of the first switching tube Q1 is reduced.
- the input current is re-detected to determine the load size.
- the first given voltage must be less than or equal to the maximum voltage required by the load, and must be less than or equal to the withstand voltage value of each component in the BUCK circuit, such as less than or equal to the withstand voltage value of the output side capacitor, to ensure that the output side capacitor It will not be damaged by overvoltage;
- the second given voltage must be greater than zero and less than the first given voltage, as shown in Figure 7a- Figure 7d, the second given voltage is greater than zero and less than the first given voltage; the first given voltage
- the voltage difference between the constant voltage and the second given voltage is the voltage ripple, and the voltage ripple needs to meet the load operating requirements.
- different control modes for the first switch tube are selected according to the load size.
- high frequency and low frequency are used alternately to control the first switch tube, and the output side capacitor voltage of the BUCK circuit is controlled at Within the target range, ensure that the load can operate normally, and reduce the average switching frequency of the first switching tube without affecting the working state of the load, thereby reducing the switching loss of the switching tube and improving the efficiency of the BUCK circuit.
- the method when the freewheeling element in the BUCK circuit is a second switch, the method further includes: controlling the second switch to turn off when controlling the first switch to turn on; and controlling the first switch to turn off. When it is off, the second switch tube is controlled to be turned on.
- the second switching tube Q2 can be used instead of the diode D.
- the relationship between the switching tube action and the voltage and current at this time is as shown in Figures 9a-9d.
- the second switching tube Q2 is turned on, providing a freewheeling circuit for the inductor L1; when the first switching tube Q1 is turned on, the second switching tube Q2 is turned off, and the circuit in which it is located is disconnected, which does not affect the power supply function of the BUCK circuit to the load.
- the second switching transistor Q2 is used to realize all the functions of the diode D.
- the BUCK circuit in which the freewheeling element is a second switching tube the only difference from the BUCK circuit in which the freewheeling element is a diode is the control of the second switching tube, while the control of the first switching tube is the same, so it has the same characteristics as the continuous current switching tube.
- the current component is the same effect as a diode. Please refer to the above for details and will not go into details here.
- FIG. 10 is a flow chart of a control method of a BUCK circuit according to an embodiment of the present invention. It should be noted that, in order to simplify the description, the following description mainly takes the control method applied to the BUCK circuit shown in Figure 3 as an example.
- control method of the BUCK circuit may include the following steps:
- the load type of the BUCK circuit can be divided into current-sensitive type and voltage-sensitive type.
- the current-sensitive type means that the current fluctuation of the BUCK circuit has a greater impact on the load and may cause load failure
- the voltage-sensitive type refers to the BUCK Voltage fluctuations in the circuit have a greater impact on the load and may cause load failure.
- different load types correspond to different control types.
- the control type is current control type
- the control type is voltage control type
- the current control type can be used to control the BUCK circuit.
- the load size of the BUCK circuit ie, the load power size
- Figure 3 It shows that a current detection module is installed on the input side of the converter, and the current detected by the current detection module is used as the input current of the BUCK circuit. Since the voltage on the input side of the converter is a fixed value, the input power is proportional to the input current. At the same time, because the converter The conversion efficiency of the BUCK circuit is constant, and the load power is proportional to the input power, so the load size can be determined based on the input current.
- the method of determining the load size based on the input current is only for illustrative purposes and does not limit the application.
- the load can also be directly determined by detecting the output voltage and output current and obtaining the load power based on the product of the two. size.
- a corresponding preset threshold can be set for the physical quantity detected for determining the load size to determine whether the load is greater than the preset value.
- the input of the BUCK circuit can be The current is greater than or equal to the preset current threshold
- the first switch tube in the BUCK circuit can be controlled to continue to be turned on, so that the inductor current of the BUCK circuit continues to rise, and when the inductor current rises to the first given current
- the load when the BUCK circuit is working, the load can be determined by obtaining the input current of the BUCK circuit. size (the load size can also be determined by other methods, which is not limited here). If it is determined based on the input current that the load of the BCUK circuit is greater than or equal to the preset value, first control the first switch Q1 to continue to turn on. At this time, the input voltage passes through the first The switching tube Q1 charges the inductor L1 and the output side capacitor C2, and the inductor current continues to rise.
- the control mode of the first switching tube Q1 is changed, that is, the high-frequency switching control mode is used to control the first switching tube Q1.
- a switching tube Q1 performs on-off control, as shown in the dotted box in Figure 11a- Figure 11b. During this period, when the first switching tube Q1 is turned off, the inductor L1 freewheels through the diode D, and the inductor current decreases. When the first switching tube Q1 is turned off, the inductor L1 freewheels. When the switch Q1 is turned on, the input voltage charges the inductor L1 and the output side capacitor C2 through the first switch Q1, and the inductor current rises.
- the overall inductor current can show a downward trend, so that the inductor current starts from the The first given current is gradually reduced to the second given current; then, the input current of the BUCK circuit is obtained again. If it is determined based on the input current that the load of the BCUK circuit is greater than or equal to the preset value, the first switch Q1 is again controlled to continue to be turned on, and so on repeatedly.
- the duty cycle cannot be too large to ensure that the inductor current is in a declining state; the first given current needs to be less than or equal to the maximum load demand current, and must be less than or equal to the maximum allowable current of each component in the BUCK circuit (for example, less than or equal to the smaller of the withstand current of the first switch and the saturation current of the inductor) to ensure that each component will not be affected by excessive current.
- the second given current must be greater than or equal to zero and less than the first given current, as shown in Figure 11a, the second given current The current is equal to zero, as shown in Figure 11b, the second given current is greater than zero and less than the first given current; the current difference between the first given current and the second given current is the current ripple, and the current ripple It needs to meet the load working requirements; the average current of the inductor is equal to the load required working current to ensure that the load can work normally.
- high-frequency switching control is performed on the first switching tube to increase the inductor current of the BUCK circuit, and when the inductor current rises to the first given current, The first switching tube is controlled to be turned off to reduce the inductor current to the second given current.
- the input current of the BUCK circuit is less than the preset current threshold, it can be determined that the load of the BUCK circuit is less than the preset value.
- high-frequency switching control can be performed on the first switch tube in the BUCK circuit.
- the duty cycle of the switch tube is set appropriately so that the inductor current of the BUCK circuit continues to rise.
- the first switch tube is controlled to continue to turn off, so that the inductor current continues to decrease until it decreases. to the second given current; then, determine the load size of the BUCK circuit again, and when the load is less than the preset value, perform high-frequency switching control on the first switch tube again, and so on.
- the load when the BUCK circuit is working, the load can be determined by obtaining the input current of the BUCK circuit. size (the load size can also be determined by other methods, which are not limited here). If it is determined based on the input current that the load of the BCUK circuit is less than the preset value, then the high-frequency switching control method is first used to control the on-off of the first switching tube Q1.
- FIGS 11a and 11b are diagrams showing the relationship between switching tube action and voltage and current when the load is both greater than or equal to the preset value.
- Figures 11c and Figure 11d are diagrams showing the relationship between switch tube action and voltage and current when the load is both less than the preset value.
- the first switching tube is intermittently controlled by high-frequency switching based on the load size, which not only ensures that the BUCK circuit meets the load demand, but also Reduce BUCK power
- the switching loss of the switch tube in the circuit improves the working efficiency of the BCUK circuit.
- the components in the BUCK circuit can be prevented from being damaged due to excessive current.
- the method further includes:
- the voltage control type can be used to control the BUCK circuit.
- the load size (i.e. load power size) of the BUCK circuit can be obtained in a variety of ways, for example, A current detection module can be installed on the input side of the converter shown in Figure 3, and the current detected by the current detection module can be used as the input current of the BUCK circuit.
- the first switch in the BUCK circuit can be controlled to continue to be turned on, so that the BUCK circuit
- the output voltage that is, the voltage across the output side capacitor C2 continues to rise, and when the output voltage rises to the first given voltage, high-frequency switching control is performed on the first switching tube.
- the load size can be determined by obtaining the input current of the BUCK circuit. (The load size can also be determined through other methods, which are not limited here.) If it is determined based on the input current that the load of the BCUK circuit is greater than or equal to the preset value, first control the first switch Q1 to continue to turn on. At this time, the input voltage passes through the first switch The tube Q1 charges the inductor L1 and the output side capacitor C2, and the output voltage continues to rise.
- the control mode of the first switching tube Q1 is changed, that is, the high-frequency switching control mode is used to control the first switching tube Q1.
- the switch Q1 performs on-off control, as shown in the dotted box in Figure 11a- Figure 11b. During this period, when the first switch Q1 is turned off, the output side capacitor C2 supplies power to the load, and the output voltage drops.
- the first switch Q1 When the tube Q1 is turned on, the input voltage charges the inductor L1 and the output side capacitor C2 through the first switching tube Q1, and the output voltage rises.
- the overall output voltage can show a downward trend, so that the output voltage changes from the first The given voltage is gradually reduced to the second given voltage; then, the input current of the BUCK circuit is obtained again. If it is determined based on the input current that the load of the BCUK circuit is greater than or equal to the preset value, the first switch Q1 is again controlled to continue to be turned on, and so on. .
- the duty cycle cannot be too large to ensure that the output voltage is in a declining state;
- the first given voltage must be less than or equal to the maximum load demand voltage, and must be less than or equal to the withstand voltage value of each component in the BUCK circuit, such as less than or equal to the withstand voltage value of the output side capacitor, to ensure that the output side capacitor will not be damaged by overvoltage;
- the second given voltage must be greater than zero and less than The first given voltage, as shown in Figure 11a- Figure 11b, the second given voltage is both greater than zero and less than the first given voltage; the voltage difference between the first given voltage and the second given voltage is the voltage Ripple, the voltage ripple needs to meet the load working requirements.
- the first switching tube when the load of the BUCK circuit is less than a preset value, the first switching tube is controlled at a high frequency so that the output-side capacitor voltage of the BUCK circuit rises, and when the output-side capacitor voltage rises to the first When the voltage is constant, the first switch is controlled to be turned off, so that the output side capacitor voltage is reduced to the second given voltage.
- the input current of the BUCK circuit is less than the preset current threshold, it can be determined that the load of the BUCK circuit is less than the preset value.
- high-frequency switching control can be performed on the first switch tube in the BUCK circuit.
- the duty cycle of the switching tube is set appropriately so that the output voltage of the BUCK circuit continues to rise.
- the first switching tube is controlled to continue to turn off, so that the output voltage continues to decrease until it decreases. to the second given voltage; then, determine the load size of the BUCK circuit again, and when the load is less than the preset value, perform high-frequency switching control on the first switch tube again, and so on.
- the load when the BUCK circuit is working, the load can be determined by obtaining the input current of the BUCK circuit size (the load size can also be determined by other methods, which are not limited here). If it is determined based on the input current that the load of the BCUK circuit is less than the preset value, then the high-frequency switching control method is first used to control the on-off of the first switching tube Q1. As shown in the dotted box in Figure 11c- Figure 11d, during this period, when the first switch Q1 is turned on, the input voltage charges the inductor L1 and the output side capacitor C2 through the first switch Q1, and the output voltage rises.
- the output side capacitor C2 supplies power to the load, and the output voltage decreases.
- the overall output voltage can show an upward trend until the output voltage rises to the first given voltage, changing the The control method of the first switch Q1 is to control the first switch Q1 to continue to turn off. At this time, the output voltage continues to decrease until it drops to the second given voltage; then, the input voltage of the BUCK circuit is obtained again. current, if it is determined based on the input current that the load of the BCUK circuit is less than the preset value, the high-frequency switching control method is used again to control the first switch Q1 on and off, and so on.
- FIGS 11a and 11b are diagrams showing the relationship between switching tube action and voltage and current when the load is both greater than or equal to the preset value.
- Figures 11c and Figure 11d are diagrams showing the relationship between switch tube action and voltage and current when the load is both less than the preset value.
- the control type is determined to be the voltage control type according to the load type
- the first switching tube is intermittently controlled by high-frequency switching based on the load size, which not only ensures that the BUCK circuit meets the load demand, but also Reduce the switching loss of the switch tube in the BUCK circuit and improve the working efficiency of the BCUK circuit.
- the method when the freewheeling element in the BUCK circuit is a second switch, the method further includes: controlling the first switch to turn on, controlling the second switch to turn off; and controlling the first switch to turn off.
- the second switch tube is controlled to be turned on.
- the second switching tube Q2 can be used instead of the diode D.
- the relationship between the switching tube action and the voltage and current at this time is as shown in Figure 15a- Figure 15d.
- the second switching tube Q2 is turned on to provide a freewheeling circuit for the inductor L1; when the first switching tube Q1 is turned on, the second switching tube Q2 is turned off, and the circuit in which it is located is disconnected, which does not affect the power supply function of the BUCK circuit to the load, thereby achieving In order to use the second switch Q2 to realize all the functions of the diode D.
- the BUCK circuit in which the freewheeling element is a second switching tube the only difference from the BUCK circuit in which the freewheeling element is a diode is the control of the second switching tube, while the control of the first switching tube is the same, so it has the same characteristics as the continuous current switching tube.
- the current component is the same effect as a diode. Please refer to the above for details and will not go into details here.
- the control type and control method of the BUCK circuit are determined according to the load information of the BUCK circuit, and the carrier frequency and frequency of the first switch tube in the BUCK circuit are thereby controlled.
- the duty cycle allows the BUCK circuit to operate at a switching frequency, which can reduce the average switching frequency of the switching tube without affecting the normal operation of the load, thereby effectively reducing the switching loss of the switching tube and improving the working efficiency of the BCUK circuit.
- embodiments of the present disclosure also provide a controller of a BUCK circuit.
- FIG. 16 is a schematic structural diagram of a controller of a BUCK circuit according to an embodiment of the present disclosure.
- the controller 110 includes a memory 111, a processor 112, and is stored in the memory 111 and can run on the processor 112.
- the processor 112 executes the control program of the BUCK circuit, the aforementioned control method of the BUCK circuit is implemented.
- the aforementioned control method of the BUCK circuit is implemented through the processor, so that the BUCK circuit operates at a switching frequency, which can reduce the average switching frequency of the switching tube without affecting the normal operation of the load. , thereby effectively reducing the switching loss of the switch tube and improving the working efficiency of the BCUK circuit.
- embodiments of the present disclosure also provide a computer-readable storage medium on which a control program of the BUCK circuit is stored.
- the control program of the BUCK circuit is executed by the processor, the aforementioned control method of the BUCK circuit is implemented. .
- the BUCK circuit is operated at a switching frequency, which can reduce the average switching frequency of the switching tube without affecting the normal operation of the load, thereby effectively Reduce the switching loss of the switch tube and improve the working efficiency of the BCUK circuit.
- embodiments of the present disclosure also provide a control device for a BUCK circuit.
- FIG. 17 is a schematic structural diagram of a control device of a BUCK circuit according to an embodiment of the present disclosure.
- the control device 200 includes: a determination module 210 and a control module 220 .
- the determination module 210 is used to determine the load information of the BUCK circuit, and determine the control type and control mode of the BUCK circuit according to the load information; the control module 220 is used to determine the carrier of the first switch Q1 in the BUCK circuit according to the control type and control mode. The frequency and duty cycle are controlled to make the BUCK circuit operate at the switching frequency.
- the load information includes load type and load size
- the determination module 210 is further configured to: determine a control type according to the load type, and determine a control mode according to the load size, where the control type includes a current control type and a voltage control type. .
- the determination module 210 is also used to: determine the control mode to be a low carrier frequency, high duty cycle control mode when the load of the BUCK circuit is greater than or equal to a preset value; when the load of the BUCK circuit is less than a preset value, When setting the value, make sure the control mode is high carrier frequency and high duty cycle.
- the control module 220 when using the current control type to control the BUCK circuit, is also used to: when using a low carrier frequency, high duty cycle control method to control the first switching tube, obtain The inductor current of the BUCK circuit, and when the inductor current reaches the first given current, a high carrier frequency, low duty cycle control method is used to control the first switch tube to reduce the inductor current to the second given current; Or when using a high carrier frequency, high duty cycle control method to control the first switch, obtain the inductor current of the BUCK circuit, and when the inductor current reaches the first given current, use a low carrier frequency, low duty cycle.
- the first switching tube is controlled using a ratio control method to reduce the inductor current to a second given current.
- the control module 220 when using the voltage control type to control the BUCK circuit, is also used to: when using a low carrier frequency, high duty cycle control method to control the first switching tube, obtain The output side capacitor voltage of the BUCK circuit, and when the output side capacitor voltage reaches the first given voltage, a high carrier frequency, low duty cycle control method is used to control the first switch tube, so that the output side capacitor voltage is reduced to The second given voltage; or when controlling the first switch tube using a high carrier frequency and high duty cycle control method, obtain the output side capacitor voltage of the BUCK circuit, and when the output side capacitor voltage reaches the first given voltage When , a low carrier frequency and low duty cycle control method is used to control the first switch tube so that the output side capacitor voltage is reduced to the second given voltage.
- the determination module 210 is used to determine the load type of the BUCK circuit; the control module 220 is used to obtain the load size of the BUCK circuit when the current control type is used to control the BUCK circuit according to the load type; the control module 220 It is also used to control the first switch in the BUCK circuit to turn on when the load of the BUCK circuit is greater than or equal to the preset value, so that the inductor current of the BUCK circuit rises, and when the inductor current rises to the first given current, the first switching tube is turned on.
- a switching tube performs high-frequency switching control to reduce the inductor current to a second given current.
- control module 220 is also used to: when the load of the BUCK circuit is less than a preset value, perform high-frequency switching control on the first switch tube, so that the inductor current of the BUCK circuit increases, and when the inductor current When the current rises to the first given current, the first switch is controlled to turn off, so that the inductor current decreases to the second given current.
- the first given current is less than or equal to the maximum current required by the load, and is less than or equal to the smaller value of the withstand current of the first switch tube and the inductor saturation current
- the second given current is greater than or equal to zero, and less than the first given current
- the control module 220 is also used to: when using the voltage control type to control the BUCK circuit according to the load type, obtain the load size of the BUCK circuit; when the load of the BUCK circuit is When it is greater than or equal to the preset value, the first switch tube in the BUCK circuit is controlled to be turned on, so that the output side capacitor voltage of the BUCK circuit rises, and when the output side capacitor voltage rises to the first given voltage, the first switch tube is High-frequency switching control to reduce the output side capacitor voltage to the second given voltage.
- control module 220 is also used to: when the load of the BUCK circuit is less than a preset value, perform high-frequency switching control on the first switch tube, so that the capacitor voltage on the output side of the BUCK circuit rises, and When the output-side capacitor voltage rises to the first given voltage, the first switch is controlled to turn off, so that the output-side capacitor voltage decreases to the second given voltage.
- the first given voltage is less than or equal to the maximum voltage required by the load and less than or equal to the withstand voltage value of the output side capacitor, and the second given voltage is greater than zero and less than the first given voltage.
- control module 220 when the freewheeling element in the BUCK circuit is a second switch, is further configured to: control the second switch to turn off when controlling the first switch to turn on; When the first switch tube is turned off, the second switch tube is controlled to be turned on.
- control device of the BUCK circuit in this disclosure please refer to the relevant description of the control method of the BUCK circuit in this disclosure, and the details will not be described again here.
- the load information of the BUCK circuit is determined through the determination module, and the control type and control method of the BUCK circuit are determined based on the load information, and the carrier frequency of the first switching tube is controlled through the control module. and duty cycle, so that the BUCK circuit operates at a switching frequency, reducing the average switching frequency of the switching tube without affecting the normal operation of the load, thereby effectively reducing the loss of the switching tube and improving the working efficiency of the BCUK circuit.
- embodiments of the present disclosure also provide a BUCK circuit.
- FIG 18 is a circuit diagram of a BUCK circuit according to an embodiment of the present disclosure.
- the BUCK circuit 100 includes: input side capacitor C1, first switching tube Q1, freewheeling element XL, inductor L1, and output side capacitor C2 and controller 110.
- One end of the first switching tube Q1 is connected to one end of the input-side capacitor; one end of the freewheeling element XL is connected to the other end of the first switching tube Q1, and the other end of the freewheeling element XL is connected to the other end of the input-side capacitor C1; One end of the inductor L1 is connected to the other end of the first switching tube Q1; one end of the output-side capacitor C2 is connected to the other end of the inductor L1, and the other end of the output-side capacitor C2 is connected to the other end of the freewheeling element; the controller 110 is used to Determine the load information of the BUCK circuit, and determine the control type and control method of the BUCK circuit 100 based on the load information, and controlling the carrier frequency and duty cycle of the first switching tube Q1 according to the control type and control method, so that the BUCK circuit 100 operates at a switching frequency.
- the load information includes load type and load size
- the controller 110 is further configured to: determine a control type according to the load type, and determine a control mode according to the load size, where the control type includes a current control type and a voltage control type. .
- the controller 110 is also configured to: when the load of the BUCK circuit is greater than or equal to a preset value, determine the control mode to be a low carrier frequency, high duty cycle control mode; when the load of the BUCK circuit is less than the preset value When setting the value, make sure the control mode is high carrier frequency and high duty cycle.
- the controller 110 when using the current control type to control the BUCK circuit, the controller 110 is also used to: when using a low carrier frequency, high duty cycle control method to control the first switch Q1, Obtain the inductor current of the BUCK circuit, and when the inductor current reaches the first given current, use a high carrier frequency, low duty cycle control method to control the first switch Q1 to reduce the inductor current to the second given current.
- high duty cycle control method to control the first switch Q1
- obtain the inductor current of the BUCK circuit and when the inductor current reaches the first given current, use a low carrier frequency, The low duty cycle control method controls the first switch Q1 to reduce the inductor current to the second given current.
- the controller 110 when the voltage control type is used to control the BUCK circuit, the controller 110 is also used to: when using a low carrier frequency, high duty cycle control method to control the first switch Q1, Obtain the output side capacitor voltage of the BUCK circuit, and when the output side capacitor voltage reaches the first given voltage, use a high carrier frequency, low duty cycle control method to control the first switching tube Q1, so that the output side capacitor voltage Reduce to the second given voltage; or when using a high carrier frequency, high duty cycle control method to control the first switch Q1, obtain the output side capacitor voltage of the BUCK circuit, and when the output side capacitor voltage reaches the first When the voltage is given, a low carrier frequency and low duty cycle control method is used to control the first switching transistor Q1 so that the output side capacitor voltage is reduced to the second given voltage.
- the controller 110 is used to determine the load type of the BUCK circuit; when using the current control type to control the BUCK circuit according to the load type, obtain the load size of the BUCK circuit; when the load of the BUCK circuit is greater than or equal to At the preset value, the first switch tube in the BUCK circuit is controlled to be turned on so that the inductor current of the BUCK circuit rises, and when the inductor current rises to the first given current, the first switch tube is controlled at high frequency to switch Reduce the inductor current to the second given current.
- the controller 110 is also configured to: when the load of the BUCK circuit is less than a preset value, perform high-frequency switching control on the first switch tube, so that the inductor current of the BUCK circuit increases, and when the inductor current When the current rises to the first given current, the first switch is controlled to turn off, so that the inductor current decreases to the second given current.
- the first given current is less than or equal to the maximum current required by the load, and is less than or equal to the smaller value of the withstand current of the first switch tube and the inductor saturation current
- the second given current is greater than or equal to zero, and less than the first given current
- the controller 110 is also used to: obtain the load size of the BUCK circuit when using the voltage control type to control the BUCK circuit according to the load type; when the load of the BUCK circuit is When it is greater than or equal to the preset value, the first switch tube in the BUCK circuit is controlled to be turned on, so that the output side capacitor voltage of the BUCK circuit rises, and when the output side capacitor voltage rises to the first given voltage, the first switch tube is High-frequency switching control to reduce the output side capacitor voltage to the second given voltage.
- the controller 110 is also configured to: when the load of the BUCK circuit is less than a preset value, perform high-frequency switching control on the first switch tube, so that the capacitor voltage on the output side of the BUCK circuit rises, and When the output-side capacitor voltage rises to the first given voltage, the first switch is controlled to turn off, so that the output-side capacitor voltage decreases to the second given voltage.
- the first given voltage is less than or equal to the maximum voltage required by the load and less than or equal to the withstand voltage value of the output side capacitor, and the second given voltage is greater than zero and less than the first given voltage.
- the controller 110 when the freewheeling element in the BUCK circuit is the second switching tube, the controller 110 is also used to: when controlling the first switching tube Q1 to turn on, control the second switching tube to turn off; When the first switching tube Q1 is controlled to be turned off, the second switching tube is controlled to be turned on.
- the controller determines the load information of the BUCK circuit, and determines the control type and control method of the BUCK circuit based on the load information, thereby controlling the carrier frequency and duty cycle of the first switch tube, so that the BUCK
- the circuit operates at a variable switching frequency, which reduces the average switching frequency of the switching tube without affecting the normal operation of the load, thereby effectively reducing the loss of the switching tube and improving the working efficiency of the BCUK circuit.
- a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
- Non-exhaustive list of computer readable media include the following: electrical connections with one or more wires (electronic device), portable computer disk cartridges (magnetic device), random access memory (RAM), Read-only memory (ROM), erasable and programmable read-only memory (EPROM or flash memory), fiber optic devices, and portable compact disc read-only memory (CDROM).
- the computer-readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, and subsequently edited, interpreted, or otherwise suitable as necessary. process to obtain the program electronically and then store it in computer memory.
- various parts of the present disclosure may be implemented in hardware, software, firmware, or combinations thereof.
- various steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
- a logic gate circuit with a logic gate circuit for implementing a logic function on a data signal.
- Discrete logic circuits application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
- first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
- “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
- connection In this disclosure, unless otherwise explicitly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified limitations. For those of ordinary skill in the art, the specific meanings of the above terms in this disclosure can be understood according to specific circumstances.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
一种BUCK电路及其控制方法、控制器、控制装置、存储介质,其中控制方法包括:确定BUCK电路的负载信息(S102);根据负载信息确定BUCK电路的控制类型和控制方式(S104);根据控制类型和控制方式对BUCK电路中第一开关管的载波频率和占空比进行控制,以使BUCK电路变开关频率运行(S106)。
Description
相关申请的交叉引用
本公开要求于2022年07月22日提交的申请号为202210869341.7,名称为“BUCK电路及其控制方法、控制器、控制装置、存储介质”、以及2022年07月22日提交的申请号为202210872129.6,名称为“BUCK电路及其控制方法、控制器、控制装置、存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
本公开涉及电源技术领域,尤其涉及一种BUCK电路及其控制方法、控制器、控制装置、存储介质。
BUCK电路作为降压电路被广泛应用于各种场合,目前常用的BUCK电路如图1所示,在BUCK电路工作过程中,一般采用如图2所示的控制方法对开关管Q1和Q2进行高频通断控制,如图2(b)的虚线框表示在整个降压工作时间内,开关管Q1和Q2均处于高频通断状态,这就导致电路中的开关损耗特别大,电路效率差。
公开内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的第一个目的在于提出一种BUCK电路的控制方法,根据BUCK电路的负载信息确定BUCK电路的控制类型和控制方式,并以此控制BUCK电路中第一开关管的载波频率和占空比,使BUCK电路变开关频率运行,能够在不影响负载正常工作的前提下,降低开关管的平均开关频率,从而有效降低开关管的开关损耗,提高BCUK电路的工作效率。
本公开的第二个目的在于提出一种BUCK电路的控制器。
本公开的第三个目的在于提出一种计算机可读存储介质。
本公开的第四个目的在于提出一种BUCK电路的控制装置。
本公开的第五个目的在于提出一种BUCK电路。
为达到上述目的,本公开第一方面实施例提出了一种BUCK电路的控制方法,包括:确定BUCK电路的负载信息;根据负载信息确定BUCK电路的控制类型和控制方式;根据控制类型和控制方式对BUCK电路中第一开关管的载波频率和占空比进行控制,以使BUCK电路变开关频率运行。
根据本公开实施例的BUCK电路的控制方法,通过根据BUCK电路的负载信息确定BUCK电路的控制类型和控制方式,并以此控制BUCK电路中的第一开关管的载波频率和占空比,使BUCK电路变开关频率运行,能够在不影响负载正常工作的前提下,降低开关管的平均开关频率,从而有效降低开关管的开关损耗,提高BCUK电路的工作效率。
为达到上述目的,本公开第二方面实施例提出了一种BUCK电路的控制器,包括存储器、处理器及存储在存储器上并可在处理器上运行的BUCK电路的控制程序,处理器执行BUCK电路的控制程序时,实现前述的BUCK电路的控制方法。
根据本公开实施例的BUCK电路的控制器,通过处理器实现前述的BUCK电路的控制方法,使BUCK电路变开关频率运行,能够在不影响负载正常工作的前提下,降低开关管的平均开关频率,从而有效降低开关管的开关损耗,提高BCUK电路的工作效率。
为达到上述目的,本公开第三方面实施例提出了一种计算机可读存储介质,其上存储有BUCK电路的控制程序,该BUCK电路的控制程序被处理器执行时实现前述的BUCK电路的控制方法。
根据本公开实施例的计算机可读存储介质,通过前述的BUCK电路的控制方法,使BUCK电路变开关频率运行,能够在不影响负载正常工作的前提下,降低开关管的平均开关频率,从而有效降低开关管的开关损耗,提高BCUK电路的工作效率。
为达到上述目的,本公开第四方面实施例提出了一种BUCK电路的控制装置,包括:确定模块,用于确定BUCK电路的负载信息,并根据负载信息确定BUCK电路的控制类型和控制方式;控制模块,用于根
据控制类型和控制方式对BUCK电路中第一开关管的载波频率和占空比进行控制,以使BUCK电路变开关频率运行。
根据本公开实施例的BUCK电路的控制装置,通过确定模块确定BUCK电路的负载信息,并根据负载信息确定BUCK电路的控制类型和控制方式,并由控制模块以此控制第一开关管的载波频率和占空比,使BUCK电路变开关频率运行,能够在不影响负载正常工作的前提下,降低开关管的平均开关频率,从而有效降低开关管的开关损耗,提高BCUK电路的工作效率。
为达到上述目的,本公开第五方面实施例提供了一种BUCK电路,包括:输入侧电容;第一开关管,第一开关管的一端与输入侧电容的一端相连;续流元件,续流元件的一端与第一开关管的另一端相连,续流元件的另一端与输入侧电容的另一端相连;电感,电感的一端与第一开关管的另一端相连;输出侧电容,输出侧电容的一端与电感的另一端相连,输出侧电容的另一端与续流元件的另一端相连;控制器,用于确定BUCK电路的负载信息,并根据负载信息确定BUCK电路的控制类型和控制方式,以及根据控制类型和控制方式对第一开关管的载波频率和占空比进行控制,以使BUCK电路变开关频率运行。
根据本公开实施例的BUCK电路,通过控制器确定BUCK电路的负载信息,并根据负载信息确定BUCK电路的控制类型和控制方式,并以此控制第一开关管的载波频率和占空比,使BUCK电路变开关频率运行,能够在不影响负载正常工作的前提下,降低开关管的平均开关频率,从而有效降低开关管的开关损耗,提高BCUK电路的工作效率。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
图1为相关技术中的一种BUCK电路的电路图;
图2为根据相关技术中一种BUCK电路的开关管动作和电压电流关系图;
图3为根据本公开一个实施例的BUCK电路的电路图;
图4为根据本公开另一个实施例的BUCK电路的电路图;
图5为根据本公开一个实施例的BUCK电路的控制方法的流程图;
图6为根据本公开一个实施例的BUCK电路的控制方法的流程图;
图7a-图7d为根据本公开一些实施例的BUCK电路的开关管动作和电压电流关系图;
图8为根据本公开另一个实施例的BUCK电路的控制方法的流程图;
图9a-图9d为根据本公开另一些实施例的BUCK电路的开关管动作和电压电流关系图;
图10为根据本发明一个实施例的BUCK电路的控制方法的流程图;
图11a-图11d为根据本发明一些实施例的BUCK电路的开关管动作和电压电流关系图;
图12根据本发明一个实施例的BUCK电路的控制方法的流程图;
图13为根据本发明一个实施例的BUCK电路的控制方法的流程图;
图14为根据本发明一个实施例的BUCK电路的控制方法的流程图;
图15a-图15d为根据本发明另一些实施例的BUCK电路的开关管动作和电压电流关系图;
图16为根据本公开一个实施例的BUCK电路的控制器的结构示意图;
图17为根据本公开一个实施例的BUCK电路的控制装置的结构示意图;
图18为根据本公开一个实施例的BUCK电路的电路图。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
需要说明的是,本公开的控制方法可应用于图3或图4所示的BUCK电路。参考图3-图4所示,BUCK电路包括输入侧电容C1、第一开关管Q1、续流元件、电感L1和输出侧电容C2,续流元件可为图3所示的二极管D或者图4所示的第二开关管Q2,其中,第一开关管Q1的一端与输入侧电容C1的一端相连;续流元件的一端与第一开关管Q1的另一端相连,续流元件的另一端与输入侧电容C1的另一端相连;电感L1的一端与第一开关管Q1的另一端相连;输出侧电容C2的一端与电感L1的另一端相连,输出侧电
容C2的另一端与续流元件的另一端相连。如图4所示,通过控制第一开关管Q1和第二开关管Q2的导通或关断,可实现BUCK电路的降压功能,以对输入电压(即输入侧电容C1两端的电压)进行降压得到输出电压(即输出侧电容C2两端的电压),且输入电压大于输出电压;如图3所示,通过控制第一开关管Q1的导通或关断,可实现BUCK电路的降压功能。
图5为根据本公开一个实施例的BUCK电路的控制方法的流程图。需要说明的是,为简化描述,下面主要以控制方法应用于图3所示BUCK电路为例进行说明。
参考图5所示,该BUCK电路的控制方法可包括以下步骤:
S102,确定BUCK电路的负载信息。
需要说明的是,BUCK电路的负载信息可包括负载类型和负载大小,负载类型可分为电流敏感型和电压敏感型,电流敏感型是指BUCK电路的电流波动对负载影响较大,可能导致负载故障;电压敏感型是指BUCK电路的电压波动对负载影响较大,可能导致负载故障。
S104,根据负载信息确定BUCK电路的控制类型和控制方式。
需要说明的是,BUCK电路的控制类型可包括电流控制类型和电压控制类型,其中,电流控制类型是指基于电流参数对BUCK电路进行控制,以使电流参数满足预设需求;电压控制类型是指基于电压参数对BUCK电路进行控制,以使电压参数满足预设需求。两者适用于不同的负载,例如,当负载对电流参数敏感时,可采用电流控制类型控制BUCK电路;当负载对电压参数敏感时,可采用电压控制类型控制BUCK电路。BUCK电路的控制方式是指基于相应的电压或电流参数对BUCK电路中第一开关管的载波频率和占空比进行控制的方式。
在一些实施例中,根据负载信息确定BUCK电路的控制类型和控制方式,包括:根据负载类型确定控制类型,根据负载大小确定控制方式,其中,控制类型包括电流控制类型和电压控制类型。
具体来说,不同的负载类型对应不同的控制类型,例如,当负载类型为电流敏感型时,采用电流控制类型对BUCK电路进行控制,以将电感电流限制在合适范围内,当负载类型为电压敏感型时,采用电压控制类型对BUCK电路进行控制,以将输出侧电容电压限制在合适范围内。确定负载类型后,可通过多种方式确定负载大小(即负载功率大小),再根据负载大小确定BUCK电路的控制方式,例如,可在图3所示变换器的输入侧设置电流检测模块,并将通过电流检测模块检测获得的电流作为输入电流;由于输入电压为固定值,如输入电压为可为通常的220v市电电压,故可根据输入电流大小判断负载大小,再根据负载大小确定BUCK电路的控制方式。
需要说明的是,根据输入电流确定负载大小的方式仅作为示例性说明,并不作为对本公开的限制,也可通过检测负载端的输出电压和输出电流,根据两者乘积得出负载功率的方式直接确定负载大小。
进一步的,根据负载大小确定控制方式,包括:在BUCK电路的负载大于等于预设值时,确定控制方式为低载频、高占空比的控制方式;在BUCK电路的负载小于预设值时,确定控制方式为高载频、高占空比的控制方式。
也就是说,不同的负载大小对应不同的控制方式,如当负载较大时,采用低载频、高占空比的控制方式;当负载较小时,采用高载频、高占空比的控制方式。
举例来说,当BUCK电路的输入电流大于等于预设电流阈值时,表示负载大于等于预设值,此时将控制方式设定为低载频、高占空比,使电感电流及输出侧电容电压上升,同时低载频的控制方式使第一开关管的开关损耗降低;当输入电流小于预设电流阈值时,表示负载小于预设值,此时将控制方式设置为高载频、高占空比,使电感电流及输出侧电容电压上升,同时高载频的控制方式使第一开关管的纹波电流及纹波电压降低,避免纹波电流过大影响负载工作。
S106,根据控制类型和控制方式对BUCK电路中第一开关管的载波频率和占空比进行控制,以使BUCK电路变开关频率运行。
需要说明的是,载波频率影响第一开关管的开关损耗,即,载波频率越高,第一开关管的开关损耗越高;载波频率越低,第一开关管的开关损耗越低。占空比影响BUCK电路的电感电流和输出侧电容电压的变化趋势,即,当占空比较大时,电感电流和输出侧电容电压上升;当占空比较小时,电感电流和输出侧电容电压下降。
在通过前述步骤确定出BUCK电路的控制类型和控制方式时,基于控制类型和控制方式对第一开关管的载波频率和占空比进行控制,使BUCK电路变开关频率运行,从而不仅可以满足负载要求,而且通过改
变BUCK电路的开关频率,在部分时刻采用低频控制第一开关管,能够降低开关管的开关频率,进而降低开关管的开关损耗,提高BUCK电路效率。
作为一种实现方式,在采用电流控制类型对BUCK电路进行控制时,对BUCK电路中第一开关管的载波频率和占空比进行控制,包括:在采用低载频、高占空比的控制方式对第一开关管进行控制时,获取BUCK电路的电感电流,并在电感电流达到第一给定电流时,采用高载频、低占空比的控制方式对第一开关管进行控制,以使电感电流降低至第二给定电流;或者,在采用高载频、高占空比的控制方式对第一开关管进行控制时,获取BUCK电路的电感电流,并在电感电流达到第一给定电流时,采用低载频、低占空比的控制方式对第一开关管进行控制,以使电感电流降低至第二给定电流。
具体来说,如图3和图6所示,假设负载类型为电流敏感型,相应的控制类型为电流控制类型,在BUCK电路工作时,可通过获取BUCK电路的输入电流的方式确定负载大小(也可通过其他方式确定负载大小,在此不作限制),若根据输入电流确定BCUK电路的负载大于等于预设值,则先采用低载频、高占空比的控制方式对第一开关管Q1进行控制,此时开关管动作和电压电流关系如图7a或图7b所示,由于占空比较高,电感电流上升,且由于开关频率较低,第一开关管Q1的开关损耗较低。当电感电流上升至第一给定电流时,调整对第一开关管Q1的控制方式,即采用高载频、低占空比的控制方式继续控制第一开关管Q1,由于占空比降低,电感电流下降,且由于开关频率较高,BUCK电路的纹波电流较小,避免了纹波电流过大影响负载工作。当电感电流下降至第二给定电流时,重新检测输入电流以确定负载大小。
若根据输入电流确定BCUK电路的负载小于预设值,则先采用高载频、高占空比的控制方式对第一开关管Q1进行控制,此时开关管动作和电压电流关系如图7c-图7d所示,由于占空比较高,电感电流上升,同时由于开关频率较高,纹波电流较小,避免了纹波电流过大影响负载工作;当电感电流上升至第一给定电流时,调整对第一开关管Q1的控制方式,即采用低载频、低占空比的控制方式继续控制第一开关管Q1,由于占空比降低,电感电流下降,且由于开关频率较低,第一开关管Q1的开关损耗降低。当电感电流下降到第二给定电流时,重新检测输入电流以确定负载大小。
重复上述过程,直至BUCK电路停止降压工作。
需要说明的是,第一给定电流需小于等于负载需求最大电流,且需小于等于BUCK电路中各元器的最大允许电流(如小于等于第一开关管的耐受电流和电感的饱和电流中的较小值),以保证各元器件不会因电流过大而损坏(如保证第一开关管不会被击穿损坏以及电感不会发生饱和);第二给定电流需大于等于零且小于第一给定电流,如图7a和图7c所示,第二给定电流等于零,如图7b和图7d所示,第二给定电流大于零且小于第一给定电流;第一给定电流与第二给定电流之间的电流差值为电流纹波,该电流纹波需满足负载工作要求;电感的平均电流等于负载需求工作电流,保证负载能够正常工作。
上述实施例中,通过根据负载大小选择对第一开关管的不同控制方式,同时在不同控制方式中,交替使用高频和低频控制第一开关管,且将BUCK电路的电感电流控制在目标范围内,确保负载能够正常工作,实现在不影响负载工作状态的情况下,降低第一开关管的平均开关频率,从而降低了开关管的开关损耗,提高了BUCK电路效率。
作为另一种实现方式,在采用电压控制类型对BUCK电路进行控制时,对BUCK电路中第一开关管的载波频率和占空比进行控制,包括:在采用低载频、高占空比的控制方式对第一开关管进行控制时,获取BUCK电路的输出侧电容电压,并在输出侧电容电压达到第一给定电压时,采用高载频、低占空比的控制方式对第一开关管进行控制,以使输出侧电容电压降低至第二给定电压;或者,在采用高载频、高占空比的控制方式对第一开关管进行控制时,获取BUCK电路的输出侧电容电压,并在输出侧电容电压达到第一给定电压时,采用低载频、低占空比的控制方式对第一开关管进行控制,以使输出侧电容电压降低至第二给定电压。
具体来说,如图3和图8所示,假设负载类型为电压敏感型,相应的控制类型为电压控制类型,在BUCK电路工作时,可通过获取BUCK电路的输入电流确定负载大小(也可通过其他方式确定负载大小,在此不作限制),若根据输入电流确定BCUK电路的负载大于等于预设值,则先采用低载频、高占空比的控制方式对第一开关管Q1进行控制,此时开关管动作和电压电流关系如图7a或图7b所示,由于占空比较高,输出侧电容电压上升,且由于开关频率较低,第一开关管Q1的开关损耗较低。当输出侧电容电压达到第一给定电压时,调整对第一开关管Q1的控制方式,即采用高载频、低占空比的控制方式继续控制第一开关管Q1,由于占空比降低,输出侧电容电压下降,且由于开关频率较高,BUCK电路的纹波电压较
小,避免了纹波电压过大影响负载工作。当输出侧电容电压下降至第二给定电压时,重新检测输入电流以确定负载大小。
若根据输入电流确定BCUK电路的负载小于预设值,则先采用高载频、高占空比的控制方式对第一开关管Q1进行控制,此时开关管动作和电压电流关系如图7c-图7d所示,由于占空比较高,输出侧电容电压上升,同时由于开关频率较高,纹波电压较小,避免纹波电压过大影响负载工作;当输出侧电容电压上升到第一给定电压时,调整对第一开关管Q1的控制方式,即采用低载频、低占空比的控制方式继续控制第一开关管Q1,由于占空比降低,输出侧电容电压下降,且由于开关频率较低,第一开关管Q1的开关损耗降低。当输出侧电容电压下降到第二给定电压时,重新检测输入电流以确定负载大小。
重复上述过程,直至BUCK电路停止降压工作。
需要说明的是,第一给定电压需小于等于负载需求最大电压,且需小于等于BUCK电路中各元器件的耐受电压值,如小于等于输出侧电容的耐压值,以保证输出侧电容不会过压损坏;第二给定电压需大于零且小于第一给定电压,如图7a-图7d所示,第二给定电压均大于零且小于第一给定电压;第一给定电压与第二给定电压之间的电压差值为电压纹波,该电压纹波需满足负载工作要求。
上述实施例中,通过根据负载大小选择对第一开关管的不同控制方式,同时在不同控制方式中,交替使用高频和低频控制第一开关管,且将BUCK电路的输出侧电容电压控制在目标范围内,确保负载能够正常工作,实现在不影响负载工作状态的情况下,降低第一开关管的平均开关频率,从而降低了开关管的开关损耗,提高了BUCK电路效率。
在一些实施例中,在BUCK电路中的续流元件为第二开关管时,方法还包括:在控制第一开关管导通时,控制第二开关管关断;在控制第一开关管关断时,控制第二开关管导通。
具体来说,参考图4所示,可采用第二开关管Q2代替二极管D,此时的开关管动作和电压电流关系如图9a-图9d所示,当第一开关管Q1关断时,第二开关管Q2导通,为电感L1提供续流回路;当第一开关管Q1导通时,第二开关管Q2关断,自身所在电路断路,不影响BUCK电路的对负载的供电功能,从而实现了使用第二开关管Q2实现二极管D的全部功能。
需要说明的是,针对续流元件为第二开关管的BUCK电路,其与续流元件为二极管的区别仅在于第二开关管的控制,而对于第一开关管的控制相同,因此具有与续流元件为二极管的相同效果,具体参考前述,这里就不再赘述。
图10为根据本发明一个实施例的BUCK电路的控制方法的流程图。需要说明的是,为简化描述,下面主要以控制方法应用于图3所示BUCK电路为例进行说明。
参考图10所示,BUCK电路的控制方法可包括以下步骤:
S202,确定BUCK电路的负载类型。
需要说明的是,BUCK电路的负载类型可分为电流敏感型和电压敏感型,其中,电流敏感型是指BUCK电路的电流波动对负载影响较大,可能导致负载故障;电压敏感型是指BUCK电路的电压波动对负载影响较大,可能导致负载故障。
S204,根据负载类型采用电流控制类型对BUCK电路进行控制时,获取BUCK电路的负载大小。
具体地,不同的负载类型对应不同的控制类型,例如,当负载类型为电流敏感型时,控制类型为电流控制类型;当负载类型为电压敏感型时,控制类型为电压控制类型。假设当前确定的负载类型为电流敏感型,那么可采用电流控制类型对BUCK电路进行控制,此时可通过多种方式获取BUCK电路的负载大小(即负载功率大小),例如,可在图3所示变换器的输入侧设置电流检测模块,并将通过电流检测模块检测获得的电流作为BUCK电路的输入电流,由于变换器输入侧电压为固定值,输入功率与输入电流呈正比,同时由于变换器和BUCK电路的转换效率恒定,负载功率与输入功率呈正比,故可根据输入电流大小判断负载大小。
需要说明的是,根据输入电流确定负载大小的方式仅作为示例性说明,并不作为对本申请的限制,也可通过检测输出电压和输出电流,根据两者乘积得出负载功率的方式直接确定负载大小。
S206,在BUCK电路的负载大于等于预设值时,控制BUCK电路中的第一开关管开通,以使BUCK电路的电感电流上升,并在电感电流上升至第一给定电流时,对第一开关管进行高频开关控制,以使电感电流降低至第二给定电流。
具体地,可给用于确定负载大小而检测的物理量设置对应的预设阈值,以确定负载是否大于预设值,例如,在采用根据输入电流确定负载大小的方式时,可以当BUCK电路的输入电流大于等于预设电流阈值
时,确定BUCK电路的负载大于等于预设值,此时可先控制BUCK电路中的第一开关管持续开通,以使BUCK电路的电感电流持续上升,并在电感电流上升至第一给定电流时,对第一开关管进行高频开关控制,通过对第一开关管的占空比进行合理设置,使得电感电流从第一给定电流持续降低,直至降低至第二给定电流;而后,再次确定BUCK电路的负载大小,并在负载大于等于预设值时,再次控制第一开关管开通,如此反复。
进一步的,如图3、图11a-图11b所示,假设负载类型为电流敏感型,相应的控制类型为电流控制类型,在BUCK电路工作时,可通过获取BUCK电路的输入电流的方式确定负载大小(也可通过其他方式确定负载大小,在此不作限制),若根据输入电流确定BCUK电路的负载大于等于预设值,则先控制第一开关管Q1持续开通,此时输入电压通过第一开关管Q1给电感L1和输出侧电容C2进行充电,电感电流持续上升,当电感电流上升至第一给定电流时,改变第一开关管Q1的控制方式,即采用高频开关控制方式对第一开关管Q1进行通断控制,如图11a-图11b所示的虚线框,在此期间,当第一开关管Q1关断时,电感L1通过二极管D续流,电感电流下降,当第一开关管Q1开通时,输入电压通过第一开关管Q1给电感L1和输出侧电容C2充电,电感电流上升,通过设置合适的占空比,可使电感电流整体呈降低趋势,使得电感电流从第一给定电流逐步降低至第二给定电流;而后,再次获取BUCK电路的输入电流,若根据输入电流确定BCUK电路的负载大于等于预设值,则再次控制第一开关管Q1持续开通,如此反复。
需要说明的是,在负载大于等于预设值时,在第一开关管高频运行期间,占空比不能太大,以保证电感电流处于下降状态;第一给定电流需小于等于负载需求最大电流,且需小于等于BUCK电路中各元器的最大允许电流(如小于等于第一开关管的耐受电流和电感的饱和电流中的较小值),以保证各元器件不会因电流过大而损坏(如保证第一开关管不会被击穿损坏以及电感不会发生饱和);第二给定电流需大于等于零且小于第一给定电流,如图11a所示,第二给定电流等于零,如图11b所示,第二给定电流大于零且小于第一给定电流;第一给定电流与第二给定电流之间的电流差值为电流纹波,该电流纹波需满足负载工作要求;电感的平均电流等于负载需求工作电流,保证负载能够正常工作。
在一些实施例中,在BUCK电路的负载小于预设值时,对第一开关管进行高频开关控制,以使BUCK电路的电感电流上升,并在电感电流上升至第一给定电流时,控制第一开关管关断,以使电感电流降低至第二给定电流。
具体地,可在BUCK电路的输入电流小于预设电流阈值时,确定BUCK电路的负载小于预设值,此时可先对BUCK电路中的第一开关管进行高频开关控制,通过对第一开关管的占空比进行合理设置,使得BUCK电路的电感电流持续上升,并在电感电流上升至第一给定电流时,控制第一开关管持续关断,以使电感电流持续降低,直至降低至第二给定电流;而后,再次确定BUCK电路的负载大小,并在负载小于预设值时,再次对第一开关管进行高频开关控制,如此反复。
进一步的,如图3、图11c-图11d所示,假设负载类型为电流敏感型,相应的控制类型为电流控制类型,在BUCK电路工作时,可通过获取BUCK电路的输入电流的方式确定负载大小(也可通过其他方式确定负载大小,在此不作限制),若根据输入电流确定BCUK电路的负载小于预设值,则先采用高频开关控制方式对第一开关管Q1进行通断控制,如图11c-图11d所示的虚线框,在此期间,在第一开关管Q1开通时,输入电压通过第一开关管Q1给电感L1和输出侧电容C2进行充电,电感电流上升,在第一开关管Q1关断时,电感L1通过二极管D续流,电感电流降低,通过设置合适的占空比,可使电感电流整体呈上升趋势,直至电感电流上升至第一给定电流,改变第一开关管Q1的控制方式,即控制第一开关管Q1持续关断,此时电感电流持续下降,直至下降至第二给定电流;而后,再次获取BUCK电路的输入电流,若根据输入电流确定BCUK电路的负载小于预设值,则再次采用高频开关控制方式对第一开关管Q1进行通断控制,如此反复。
需要说明的是,在负载小于预设值时,在第一开关管高频运行期间,占空比不能太小,以保证电感电流处于上升状态。另外,图11a-图11b为负载均大于等于预设值的开关管动作和电压电流关系图,图11c-图11d为负载均小于预设值的开关管动作和电压电流关系图,在实际应用中,由于负载会发生变化,输入电流会发生变化,因此存在BUCK电路工作期间,负载大于、等于或小于预设值的情况,具体参考前述以及图12,这里不再赘述。
上述实施例中,在根据负载类型确定控制类型为电流控制类型时,在BUCK电路工作时,基于负载大小对第一开关管间歇进行高频开关控制,不仅能够保证BUCK电路满足负载需求,而且能够降低BUCK电
路中开关管的开关损耗,提高BCUK电路的工作效率,同时通过合理设置第一给定电流,可避免BUCK电路中的各元器件因电流过大而损坏。
在一些实施例中,如图13所示,在确定BUCK电路的负载类型之后,方法还包括:
S210,根据负载类型采用电压控制类型对BUCK电路进行控制时,获取BUCK电路的负载大小。
需要说明的是,假设当前确定的负载类型为电压敏感型,那么可采用电压控制类型对BUCK电路进行控制,此时可通过多种方式获取BUCK电路的负载大小(即负载功率大小),例如,可在图3所示变换器的输入侧设置电流检测模块,并将通过电流检测模块检测获得的电流作为BUCK电路的输入电流。
S212,根据输入电压确定BUCK电路的负载大小。
S214,在BUCK电路的负载大于等于预设值时,控制BUCK电路中的第一开关管开通,以使BUCK电路的输出侧电容电压上升,并在输出侧电容电压上升至第一给定电压时,对第一开关管进行高频开关控制,以使输出侧电容电压降低至第二给定电压。
具体地,可在在BUCK电路的输入电流大于等于预设电流阈值时,确定BUCK电路的负载大于等于预设值,此时可先控制BUCK电路中的第一开关管持续开通,以使BUCK电路的输出电压(即输出侧电容C2两端的电压)持续上升,并在输出电压上升至第一给定电压时,对第一开关管进行高频开关控制,通过对第一开关管的占空比进行合理设置,使得输出电压从第一给定电压持续降低,直至降低至第二给定电压;而后,再次确定BUCK电路的负载大小,并在负载大于等于预设值时,再次控制第一开关管开通,如此反复。
进一步的,如图3、11a-图11b所示,假设负载类型为电压敏感型,相应的控制类型为电压控制类型,在BUCK电路工作时,可通过获取BUCK电路的输入电流的方式确定负载大小(也可通过其他方式确定负载大小,在此不作限制),若根据输入电流确定BCUK电路的负载大于等于预设值,则先控制第一开关管Q1持续开通,此时输入电压通过第一开关管Q1给电感L1和输出侧电容C2进行充电,输出电压持续上升,当输出电压上升至第一给定电压时,改变第一开关管Q1的控制方式,即采用高频开关控制方式对第一开关管Q1进行通断控制,如图11a-图11b所示的虚线框,在此期间,当第一开关管Q1关断时,输出侧电容C2给负载供电,输出电压下降,当第一开关管Q1开通时,输入电压通过第一开关管Q1给电感L1和输出侧电容C2充电,输出电压上升,通过设置合适的占空比,可使输出电压整体呈降低趋势,使得输出电压从第一给定电压逐步降低至第二给定电压;而后,再次获取BUCK电路的输入电流,若根据输入电流确定BCUK电路的负载大于等于预设值,则再次控制第一开关管Q1持续开通,如此反复。
需要说明的是,在负载大于等于预设值时,在第一开关管高频运行期间,占空比不能太大,以保证输出电压处于下降状态;第一给定电压需小于等于负载需求最大电压,且需小于等于BUCK电路中各元器件的耐受电压值,如小于等于输出侧电容的耐压值,以保证输出侧电容不会过压损坏;第二给定电压需大于零且小于第一给定电压,如图11a-图11b所示,第二给定电压均大于零且小于第一给定电压;第一给定电压与第二给定电压之间的电压差值为电压纹波,该电压纹波需满足负载工作要求。
在一些实施例中,在BUCK电路的负载小于预设值时,对第一开关管进行高频开关控制,以使BUCK电路的输出侧电容电压上升,并在输出侧电容电压上升至第一给定电压时,控制第一开关管关断,以使输出侧电容电压降低至第二给定电压。
具体地,可在BUCK电路的输入电流小于预设电流阈值时,确定BUCK电路的负载小于预设值,此时可先对BUCK电路中的第一开关管进行高频开关控制,通过对第一开关管的占空比进行合理设置,使得BUCK电路的输出电压持续上升,并在输出电压上升至第一给定电压时,控制第一开关管持续关断,以使输出电压持续降低,直至降低至第二给定电压;而后,再次确定BUCK电路的负载大小,并在负载小于预设值时,再次对第一开关管进行高频开关控制,如此反复。
进一步的,如图3、图11c-图11d所示,假设负载类型为电压敏感型,相应的控制类型为电压控制类型,在BUCK电路工作时,可通过获取BUCK电路的输入电流的方式确定负载大小(也可通过其他方式确定负载大小,在此不作限制),若根据输入电流确定BCUK电路的负载小于预设值,则先采用高频开关控制方式对第一开关管Q1进行通断控制,如图11c-图11d所示的虚线框,在此期间,在第一开关管Q1开通时,输入电压通过第一开关管Q1给电感L1和输出侧电容C2进行充电,输出电压上升,在第一开关管Q1关断时,输出侧电容C2给负载供电,输出电压降低,通过设置合适的占空比,可使输出电压整体呈上升趋势,直至输出电压上升至第一给定电压,改变第一开关管Q1的控制方式,即控制第一开关管Q1持续关断,此时输出电压持续下降,直至下降至第二给定电压;而后,再次获取BUCK电路的输入电
流,若根据输入电流确定BCUK电路的负载小于预设值,则再次采用高频开关控制方式对第一开关管Q1进行通断控制,如此反复。
需要说明的是,在负载小于预设值时,在第一开关管高频运行期间,占空比不能太小,以保证输出电压处于上升状态。另外,图11a-图11b为负载均大于等于预设值的开关管动作和电压电流关系图,图11c-图11d为负载均小于预设值的开关管动作和电压电流关系图,在实际应用中,由于负载会发生变化,输入电流会发生变化,因此存在BUCK电路工作期间,负载大于、等于或小于预设值的情况,具体参考前述以及图14,这里不再赘述。
上述实施例中,在根据负载类型确定控制类型为电压控制类型时,在BUCK电路工作时,基于负载大小对第一开关管间歇进行高频开关控制,不仅能够保证BUCK电路满足负载需求,而且能够降低BUCK电路中开关管的开关损耗,提高BCUK电路的工作效率,同时通过合理设置第一给定电压,可避免BUCK电路中的各元器件因电压过大而损坏。
在一些实施例中,在BUCK电路中的续流元件为第二开关管时,方法还包括:在控制第一开关管开通时,控制第二开关管关断;在控制第一开关管关断时,控制第二开关管开通。
具体来说,参考图4所示,可采用第二开关管Q2代替二极管D,此时的开关管动作和电压电流关系如图15a-图15d所示,当第一开关管Q1关断时,第二开关管Q2开通,为电感L1提供续流回路;当第一开关管Q1开通时,第二开关管Q2关断,自身所在电路断路,不影响BUCK电路的对负载的供电功能,从而实现了使用第二开关管Q2实现二极管D的全部功能。
需要说明的是,针对续流元件为第二开关管的BUCK电路,其与续流元件为二极管的区别仅在于第二开关管的控制,而对于第一开关管的控制相同,因此具有与续流元件为二极管的相同效果,具体参考前述,这里就不再赘述。
综上所述,根据本公开实施例的BUCK电路的控制方法,通过根据BUCK电路的负载信息确定BUCK电路的控制类型和控制方式,并以此控制BUCK电路中的第一开关管的载波频率和占空比,使BUCK电路变开关频率运行,能够在不影响负载正常工作的前提下,降低开关管的平均开关频率,从而有效降低开关管的开关损耗,提高BCUK电路的工作效率。
对应上述实施例,本公开的实施例还提供了一种BUCK电路的控制器。
图16为根据本公开一个实施例的BUCK电路的控制器的结构示意图,参考图10所示,该控制器110包括存储器111、处理器112及存储在存储器111上并可在处理器112上运行的BUCK电路的控制程序,处理器112执行BUCK电路的控制程序时,实现前述的的BUCK电路的控制方法。
根据本公开实施例的BUCK电路的控制器,通过处理器实现前述的BUCK电路的控制方法,使BUCK电路变开关频率运行,能够在不影响负载正常工作的前提下,降低开关管的平均开关频率,从而有效降低开关管的开关损耗,提高BCUK电路的工作效率。
对应上述实施例,本公开的实施例还提供了一种计算机可读存储介质,其上存储有BUCK电路的控制程序,该BUCK电路的控制程序被处理器执行时实现前述的BUCK电路的控制方法。
根据本公开实施例的计算机可读存储介质,通过前述的BUCK电路的控制方法,使BUCK电路变开关频率运行,能够在不影响负载正常工作的前提下,降低开关管的平均开关频率,从而有效降低开关管的开关损耗,提高BCUK电路的工作效率。
对应上述实施例,本公开的实施例还提供了一种BUCK电路的控制装置。
图17为根据本公开一个实施例的BUCK电路的控制装置的结构示意图,参考图11所示,该控制装置200包括:确定模块210和控制模块220。
其中,确定模块210用于确定BUCK电路的负载信息,并根据负载信息确定BUCK电路的控制类型和控制方式;控制模块220用于根据控制类型和控制方式对BUCK电路中第一开关管Q1的载波频率和占空比进行控制,以使BUCK电路变开关频率运行。
根据本公开的一个实施例,负载信息包括负载类型和负载大小,确定模块210还用于:根据负载类型确定控制类型,根据负载大小确定控制方式,其中,控制类型包括电流控制类型和电压控制类型。
根据本公开的一个实施例,确定模块210还用于:在BUCK电路的负载大于等于预设值时,确定控制方式为低载频、高占空比的控制方式;在BUCK电路的负载小于预设值时,确定控制方式为高载频、高占空比的控制方式。
根据本公开的一个实施例,在采用电流控制类型对BUCK电路进行控制时,控制模块220还用于:在采用低载频、高占空比的控制方式对第一开关管进行控制时,获取BUCK电路的电感电流,并在电感电流达到第一给定电流时,采用高载频、低占空比的控制方式对第一开关管进行控制,以使电感电流降低至第二给定电流;或者在采用高载频、高占空比的控制方式对第一开关管进行控制时,获取BUCK电路的电感电流,并在电感电流达到第一给定电流时,采用低载频、低占空比的控制方式对第一开关管进行控制,以使电感电流降低至第二给定电流。
根据本公开的一个实施例,在采用电压控制类型对BUCK电路进行控制时,控制模块220还用于:在采用低载频、高占空比的控制方式对第一开关管进行控制时,获取BUCK电路的输出侧电容电压,并在输出侧电容电压达到第一给定电压时,采用高载频、低占空比的控制方式对第一开关管进行控制,以使输出侧电容电压降低至第二给定电压;或者在采用高载频、高占空比的控制方式对第一开关管进行控制时,获取BUCK电路的输出侧电容电压,并在输出侧电容电压达到第一给定电压时,采用低载频、低占空比的控制方式对第一开关管进行控制,以使输出侧电容电压降低至第二给定电压。
根据本发明的一个实施例,确定模块210用于确定BUCK电路的负载类型;控制模块220用于在根据负载类型采用电流控制类型对BUCK电路进行控制时,获取BUCK电路的负载大小;控制模块220还用于在BUCK电路的负载大于等于预设值时,控制BUCK电路中的第一开关管开通,以使BUCK电路的电感电流上升,以及在电感电流上升至第一给定电流时,对第一开关管进行高频开关控制,以使电感电流降低至第二给定电流。
根据本发明的一个实施例,控制模块220还用于:在BUCK电路的负载小于预设值时,对第一开关管进行高频开关控制,以使BUCK电路的电感电流上升,并在电感电流上升至第一给定电流时,控制第一开关管关断,以使电感电流降低至第二给定电流。
根据本发明的一个实施例,第一给定电流小于等于负载需求最大电流,且小于等于第一开关管的耐受电流和电感饱和电流中的较小值,第二给定电流大于等于零,且小于第一给定电流。
根据本发明的一个实施例,在确定BUCK电路的负载类型之后,控制模块220还用于:根据负载类型采用电压控制类型对BUCK电路进行控制时,获取BUCK电路的负载大小;在BUCK电路的负载大于等于预设值时,控制BUCK电路中的第一开关管开通,以使BUCK电路的输出侧电容电压上升,并在输出侧电容电压上升至第一给定电压时,对第一开关管进行高频开关控制,以使输出侧电容电压降低至第二给定电压。
根据本发明的一个实施例,控制模块220还用于:在BUCK电路的负载小于预设值时,对第一开关管进行高频开关控制,以使BUCK电路的输出侧电容电压上升,并在输出侧电容电压上升至第一给定电压时,控制第一开关管关断,以使输出侧电容电压降低至第二给定电压。
根据本公开的一个实施例,第一给定电压小于等于负载需求最大电压,且小于等于输出侧电容的耐压值,第二给定电压大于零,且小于第一给定电压。
根据本公开的一个实施例,在BUCK电路中的续流元件为第二开关管时,控制模块220还用于:在控制第一开关管导通时,控制第二开关管关断;在控制第一开关管关断时,控制第二开关管导通。
需要说明的是,关于本公开中BUCK电路的控制装置的描述,请参考本公开中BUCK电路的控制方法的相关描述,具体这里不再赘述。
根据本公开实施例的BUCK电路的控制装置,通过确定模块确定BUCK电路的负载信息,并根据负载信息确定BUCK电路的控制类型和控制方式,并通过控制模块以此控制第一开关管的载波频率和占空比,使BUCK电路变开关频率运行,在不影响负载正常工作的前提下,降低开关管的平均开关频率,从而有效降低了开关管的损耗,提高BCUK电路的工作效率。
对应上述实施例,本公开的实施例还提供了一种BUCK电路。
图18为根据本公开一个实施例的BUCK电路的电路图,参考图18所示,该BUCK电路100包括:输入侧电容C1、第一开关管Q1、续流元件XL、电感L1、输出侧电容C2和控制器110。
其中第一开关管Q1的一端与输入侧电容的一端相连;续流元件XL的一端与第一开关管Q1的另一端相连,续流元件XL的另一端与输入侧电容C1的另一端相连;电感L1的一端与第一开关管Q1的另一端相连;输出侧电容C2的一端与电感L1的另一端相连,输出侧电容C2的另一端与续流元件的另一端相连;控制器110用于确定BUCK电路的负载信息,并根据负载信息确定BUCK电路100的控制类型和控制方式,
以及根据控制类型和控制方式对第一开关管Q1的载波频率和占空比进行控制,以使BUCK电路100变开关频率运行。
根据本公开的一个实施例,负载信息包括负载类型和负载大小,控制器110还用于:根据负载类型确定控制类型,根据负载大小确定控制方式,其中,控制类型包括电流控制类型和电压控制类型。
根据本公开的一个实施例,控制器110还用于:在BUCK电路的负载大于等于预设值时,确定控制方式为低载频、高占空比的控制方式;在BUCK电路的负载小于预设值时,确定控制方式为高载频、高占空比的控制方式。
根据本公开的一个实施例,在采用电流控制类型对BUCK电路进行控制时,控制器110还用于:在采用低载频、高占空比的控制方式对第一开关管Q1进行控制时,获取BUCK电路的电感电流,并在电感电流达到第一给定电流时,采用高载频、低占空比的控制方式对第一开关管Q1进行控制,以使电感电流降低至第二给定电流;或者在采用高载频、高占空比的控制方式对第一开关管Q1进行控制时,获取BUCK电路的电感电流,并在电感电流达到第一给定电流时,采用低载频、低占空比的控制方式对第一开关管Q1进行控制,以使电感电流降低至第二给定电流。
根据本公开的一个实施例,在采用电压控制类型对BUCK电路进行控制时,控制器110还用于:在采用低载频、高占空比的控制方式对第一开关管Q1进行控制时,获取BUCK电路的输出侧电容电压,并在输出侧电容电压达到第一给定电压时,采用高载频、低占空比的控制方式对第一开关管Q1进行控制,以使输出侧电容电压降低至第二给定电压;或者在采用高载频、高占空比的控制方式对第一开关管Q1进行控制时,获取BUCK电路的输出侧电容电压,并在输出侧电容电压达到第一给定电压时,采用低载频、低占空比的控制方式对第一开关管Q1进行控制,以使输出侧电容电压降低至第二给定电压。
根据本发明的一个实施例,控制器110用于,确定BUCK电路的负载类型;在根据负载类型采用电流控制类型对BUCK电路进行控制时,获取BUCK电路的负载大小;在BUCK电路的负载大于等于预设值时,控制BUCK电路中的第一开关管开通,以使BUCK电路的电感电流上升,以及在电感电流上升至第一给定电流时,对第一开关管进行高频开关控制,以使电感电流降低至第二给定电流。
根据本发明的一个实施例,控制器110还用于:在BUCK电路的负载小于预设值时,对第一开关管进行高频开关控制,以使BUCK电路的电感电流上升,并在电感电流上升至第一给定电流时,控制第一开关管关断,以使电感电流降低至第二给定电流。
根据本发明的一个实施例,第一给定电流小于等于负载需求最大电流,且小于等于第一开关管的耐受电流和电感饱和电流中的较小值,第二给定电流大于等于零,且小于第一给定电流。
根据本发明的一个实施例,在确定BUCK电路的负载类型之后,控制器110还用于:根据负载类型采用电压控制类型对BUCK电路进行控制时,获取BUCK电路的负载大小;在BUCK电路的负载大于等于预设值时,控制BUCK电路中的第一开关管开通,以使BUCK电路的输出侧电容电压上升,并在输出侧电容电压上升至第一给定电压时,对第一开关管进行高频开关控制,以使输出侧电容电压降低至第二给定电压。
根据本发明的一个实施例,控制器110还用于:在BUCK电路的负载小于预设值时,对第一开关管进行高频开关控制,以使BUCK电路的输出侧电容电压上升,并在输出侧电容电压上升至第一给定电压时,控制第一开关管关断,以使输出侧电容电压降低至第二给定电压。
根据本公开的一个实施例,第一给定电压小于等于负载需求最大电压,且小于等于输出侧电容的耐压值,第二给定电压大于零,且小于第一给定电压。
根据本公开的一个实施例,在BUCK电路中的续流元件为第二开关管时,控制器110还用于:在控制第一开关管Q1导通时,控制第二开关管关断;在控制第一开关管Q1关断时,控制第二开关管导通。
需要说明的是,关于本公开中BUCK电路的描述,请参考本公开中BUCK电路的控制方法的相关描述,具体这里不再赘述。
根据本公开实施例的BUCK电路,通过控制器确定BUCK电路的负载信息,并根据负载信息确定BUCK电路的控制类型和控制方式,以此控制第一开关管的载波频率和占空比,使BUCK电路变开关频率运行,在不影响负载正常工作的前提下,降低开关管的平均开关频率,从而有效降低了开关管的损耗,提高BCUK电路的工作效率。
需要说明的是,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令
并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (16)
- 一种BUCK电路的控制方法,包括:确定所述BUCK电路的负载信息;根据所述负载信息确定所述BUCK电路的控制类型和控制方式;根据所述控制类型和控制方式对所述BUCK电路中第一开关管的载波频率和占空比进行控制,以使所述BUCK电路变开关频率运行。
- 根据权利要求1所述的方法,其中,所述负载信息包括负载类型和负载大小,其中,根据所述负载信息确定所述BUCK电路的控制类型和控制方式,包括:根据所述负载类型确定所述控制类型,根据所述负载大小确定所述控制方式,其中,所述控制类型包括电流控制类型和电压控制类型。
- 根据权利要求2所述的方法,其中,所述根据所述负载大小确定所述控制方式,包括:在所述BUCK电路的负载大于等于预设值时,确定所述控制方式为低载频、高占空比的控制方式;在所述BUCK电路的负载小于预设值时,确定所述控制方式为高载频、高占空比的控制方式。
- 根据权利要求3所述的方法,其中,在采用所述电流控制类型对所述BUCK电路进行控制时,对所述BUCK电路中第一开关管的载波频率和占空比进行控制,包括:在采用低载频、高占空比的控制方式对所述第一开关管进行控制时,获取所述BUCK电路的电感电流,并在所述电感电流达到第一给定电流时,采用高载频、低占空比的控制方式对所述第一开关管进行控制,以使所述电感电流降低至第二给定电流;或者在采用高载频、高占空比的控制方式对所述第一开关管进行控制时,获取所述BUCK电路的电感电流,并在所述电感电流达到第一给定电流时,采用低载频、低占空比的控制方式对所述第一开关管进行控制,以使所述电感电流降低至第二给定电流。
- 根据权利要求3所述的方法,其中,在采用所述电压控制类型对所述BUCK电路进行控制时,对所述BUCK电路中第一开关管的载波频率和占空比进行控制,包括:在采用低载频、高占空比的控制方式对所述第一开关管进行控制时,获取所述BUCK电路的输出侧电容电压,并在所述输出侧电容电压达到第一给定电压时,采用高载频、低占空比的控制方式对所述第一开关管进行控制,以使所述输出侧电容电压降低至第二给定电压;或者在采用高载频、高占空比的控制方式对所述第一开关管进行控制时,获取所述BUCK电路的输出侧电容电压,并在所述输出侧电容电压达到第一给定电压时,采用低载频、低占空比的控制方式对所述第一开关管进行控制,以使所述输出侧电容电压降低至第二给定电压。
- 根据权利要求1所述的方法,其中,还包括:确定所述BUCK电路的负载类型;根据所述负载类型采用电流控制类型对所述BUCK电路进行控制时,获取所述BUCK电路的负载大小;在所述BUCK电路的负载大于等于预设值时,控制所述BUCK电路中的第一开关管开通,以使所述BUCK电路的电感电流上升,并在所述电感电流上升至第一给定电流时,对所述第一开关管进行高频开关控制,以使所述电感电流降低至第二给定电流。
- 根据权利要求6所述的方法,其中,在所述BUCK电路的负载小于预设值时,所述方法还包括:对所述第一开关管进行高频开关控制,以使所述BUCK电路的电感电流上升,并在所述电感电流上升至第一给定电流时,控制所述第一开关管关断,以使所述电感电流降低至第二给定电流。
- 根据权利要求4或6所述的方法,其中,所述第一给定电流小于等于负载需求最大电流,且小于等于所述第一开关管的耐受电流和电感饱和电流中的较小值,所述第二给定电流大于等于零,且小于所述第一给定电流。
- 根据权利要求6所述的方法,其中,在确定所述BUCK电路的负载类型之后,所述方法还包括:根据所述负载类型采用电压控制类型对所述BUCK电路进行控制时,获取所述BUCK电路的负载大小;在所述BUCK电路的负载大于等于预设值时,控制所述BUCK电路中的第一开关管开通,以使所述BUCK电路的输出侧电容电压上升,并在所述输出侧电容电压上升至第一给定电压时,对所述第一开关管进行高频开关控制,以使所述输出侧电容电压降低至第二给定电压。
- 根据权利要求9所述的方法,其中,在所述BUCK电路的负载小于预设值时,所述方法还包括:对所述第一开关管进行高频开关控制,以使所述BUCK电路的输出侧电容电压上升,并在所述输出侧电容电压上升至第一给定电压时,控制所述第一开关管关断,以使所述输出侧电容电压降低至第二给定电压。
- 根据权利要求5或8所述的方法,其中,所述第一给定电压小于等于负载需求最大电压,且小于等于输出侧电容的耐压值,所述第二给定电压大于零,且小于所述第一给定电压。
- 根据权利要求1-11中任一项所述的方法,其中,在所述BUCK电路中的续流元件为第二开关管时,所述方法还包括:在控制所述第一开关管开通时,控制所述第二开关管关断;在控制所述第一开关管关断时,控制所述第二开关管开通。
- 一种BUCK电路的控制器,包括存储器、处理器及存储在存储器上并可在处理器上运行的BUCK电路的控制程序,所述处理器执行所述BUCK电路的控制程序时,实现根据权利要求1-12中任一项所述的BUCK电路的控制方法。
- 一种计算机可读存储介质,其上存储有BUCK电路的控制程序,该BUCK电路的控制程序被处理器执行时实现根据权利要求1-12中任一项所述的BUCK电路的控制方法。
- 一种BUCK电路的控制装置,包括:确定模块,用于确定所述BUCK电路的负载信息,并根据所述负载信息确定所述BUCK电路的控制类型和控制方式;控制模块,用于根据所述控制类型和控制方式对所述BUCK电路中第一开关管的载波频率和占空比进行控制,以使所述BUCK电路变开关频率运行。
- 一种BUCK电路,包括:输入侧电容;第一开关管,所述第一开关管的一端与所述输入侧电容的一端相连;续流元件,所述续流元件的一端与所述第一开关管的另一端相连,所述续流元件的另一端与所述输入侧电容的另一端相连;电感,所述电感的一端与所述第一开关管的另一端相连;输出侧电容,所述输出侧电容的一端与所述电感的另一端相连,所述输出侧电容的另一端与所述续流元件的另一端相连;控制器,用于确定所述BUCK电路的负载信息,并根据所述负载信息确定所述BUCK电路的控制类型和控制方式,以及根据所述控制类型和控制方式对所述第一开关管的载波频率和占空比进行控制,以使所述BUCK电路变开关频率运行。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210869341.7A CN117477943A (zh) | 2022-07-22 | 2022-07-22 | Buck电路及其控制方法、控制器、控制装置、存储介质 |
CN202210872129.6A CN117477947A (zh) | 2022-07-22 | 2022-07-22 | Buck电路及其控制方法、控制器、控制装置、存储介质 |
CN202210872129.6 | 2022-07-22 | ||
CN202210869341.7 | 2022-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024016778A1 true WO2024016778A1 (zh) | 2024-01-25 |
Family
ID=89616978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/091285 WO2024016778A1 (zh) | 2022-07-22 | 2023-04-27 | Buck电路及其控制方法、控制器、控制装置、存储介质 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024016778A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010104207A (ja) * | 2008-10-27 | 2010-05-06 | Fujitsu Microelectronics Ltd | 電源電圧制御回路、電源電圧制御方法及びdc−dcコンバータ |
CN103532347A (zh) * | 2013-10-09 | 2014-01-22 | 无锡华润矽科微电子有限公司 | 一种脉宽调制型开关电源电路 |
CN110190744A (zh) * | 2018-02-23 | 2019-08-30 | 台达电子工业股份有限公司 | 电源供应装置及其控制方法 |
CN111092549A (zh) * | 2019-11-27 | 2020-05-01 | 南京航空航天大学 | 四管Buck-Boost变换器的三模式变频软开关控制方法 |
US20200412246A1 (en) * | 2019-06-26 | 2020-12-31 | Fanuc Corporation | Switching regulator circuit to convert input dc voltage to output dc voltage |
-
2023
- 2023-04-27 WO PCT/CN2023/091285 patent/WO2024016778A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010104207A (ja) * | 2008-10-27 | 2010-05-06 | Fujitsu Microelectronics Ltd | 電源電圧制御回路、電源電圧制御方法及びdc−dcコンバータ |
CN103532347A (zh) * | 2013-10-09 | 2014-01-22 | 无锡华润矽科微电子有限公司 | 一种脉宽调制型开关电源电路 |
CN110190744A (zh) * | 2018-02-23 | 2019-08-30 | 台达电子工业股份有限公司 | 电源供应装置及其控制方法 |
US20200412246A1 (en) * | 2019-06-26 | 2020-12-31 | Fanuc Corporation | Switching regulator circuit to convert input dc voltage to output dc voltage |
CN111092549A (zh) * | 2019-11-27 | 2020-05-01 | 南京航空航天大学 | 四管Buck-Boost变换器的三模式变频软开关控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100446391C (zh) | 具有改进的负载降低瞬态响应的降压转换器 | |
CN104869693B (zh) | 用于驱动器的准谐振模式的波谷到波谷切换 | |
US9634556B2 (en) | Converter, controller, and control method | |
KR101850153B1 (ko) | Dc/dc 컨버터와 그것을 이용한 전원 장치 및 전자 기기 | |
US8253403B2 (en) | Converting circuit and controller for controlling the same | |
JP7001896B2 (ja) | Dc-dcコンバータ | |
CN103973082A (zh) | 电流停泊切换调节器下游控制器预驱动器 | |
US11817725B2 (en) | Charging device | |
US20100246225A1 (en) | Power supply for server | |
CN104242656A (zh) | 用于开关转换器的自适应rcd 缓冲器及方法 | |
EP1479156B1 (en) | Noise reduction in a power converter | |
JP2008220147A (ja) | パルス周波数変調回路、同回路を用いた電源供給装置及び電源安定化方法 | |
CN104901545A (zh) | 开关模式电源 | |
WO2014192399A1 (ja) | Dc-dcコンバータおよびその制御方法 | |
CN101795069A (zh) | 一种开关电源装置及开关电源的控制方法 | |
CN114421759A (zh) | 转换电路及其自举电压控制方法 | |
JP4753729B2 (ja) | スイッチング制御回路 | |
WO2024016778A1 (zh) | Buck电路及其控制方法、控制器、控制装置、存储介质 | |
CN111740599A (zh) | 一种dc-dc降压转换器及其控制方法和控制系统 | |
US9484811B2 (en) | Integrated circuit comprising voltage modulation circuitry and method threfor | |
CN106817019A (zh) | 用于控制环保型车辆的低压直流转换器的装置和方法 | |
CN111416518A (zh) | 可变切换频率开关式储能转换器及相关方法 | |
CN110391738A (zh) | 脉宽调变控制电路及导通时间信号产生方法 | |
TWI609551B (zh) | 充電裝置及其控制方法 | |
US10289139B1 (en) | Power circuit and its operation method for regulating power transfer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23841849 Country of ref document: EP Kind code of ref document: A1 |